xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_migrate.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1  // SPDX-License-Identifier: MIT
2  /*
3   * Copyright © 2020 Intel Corporation
4   */
5  
6  #include "i915_drv.h"
7  #include "intel_context.h"
8  #include "intel_gpu_commands.h"
9  #include "intel_gt.h"
10  #include "intel_gtt.h"
11  #include "intel_migrate.h"
12  #include "intel_ring.h"
13  #include "gem/i915_gem_lmem.h"
14  
15  struct insert_pte_data {
16  	u64 offset;
17  };
18  
19  #define CHUNK_SZ SZ_8M /* ~1ms at 8GiB/s preemption delay */
20  
21  #define GET_CCS_BYTES(i915, size)	(HAS_FLAT_CCS(i915) ? \
22  					 DIV_ROUND_UP(size, NUM_BYTES_PER_CCS_BYTE) : 0)
engine_supports_migration(struct intel_engine_cs * engine)23  static bool engine_supports_migration(struct intel_engine_cs *engine)
24  {
25  	if (!engine)
26  		return false;
27  
28  	/*
29  	 * We need the ability to prevent aribtration (MI_ARB_ON_OFF),
30  	 * the ability to write PTE using inline data (MI_STORE_DATA)
31  	 * and of course the ability to do the block transfer (blits).
32  	 */
33  	GEM_BUG_ON(engine->class != COPY_ENGINE_CLASS);
34  
35  	return true;
36  }
37  
xehpsdv_toggle_pdes(struct i915_address_space * vm,struct i915_page_table * pt,void * data)38  static void xehpsdv_toggle_pdes(struct i915_address_space *vm,
39  				struct i915_page_table *pt,
40  				void *data)
41  {
42  	struct insert_pte_data *d = data;
43  
44  	/*
45  	 * Insert a dummy PTE into every PT that will map to LMEM to ensure
46  	 * we have a correctly setup PDE structure for later use.
47  	 */
48  	vm->insert_page(vm, 0, d->offset,
49  			i915_gem_get_pat_index(vm->i915, I915_CACHE_NONE),
50  			PTE_LM);
51  	GEM_BUG_ON(!pt->is_compact);
52  	d->offset += SZ_2M;
53  }
54  
xehpsdv_insert_pte(struct i915_address_space * vm,struct i915_page_table * pt,void * data)55  static void xehpsdv_insert_pte(struct i915_address_space *vm,
56  			       struct i915_page_table *pt,
57  			       void *data)
58  {
59  	struct insert_pte_data *d = data;
60  
61  	/*
62  	 * We are playing tricks here, since the actual pt, from the hw
63  	 * pov, is only 256bytes with 32 entries, or 4096bytes with 512
64  	 * entries, but we are still guaranteed that the physical
65  	 * alignment is 64K underneath for the pt, and we are careful
66  	 * not to access the space in the void.
67  	 */
68  	vm->insert_page(vm, px_dma(pt), d->offset,
69  			i915_gem_get_pat_index(vm->i915, I915_CACHE_NONE),
70  			PTE_LM);
71  	d->offset += SZ_64K;
72  }
73  
insert_pte(struct i915_address_space * vm,struct i915_page_table * pt,void * data)74  static void insert_pte(struct i915_address_space *vm,
75  		       struct i915_page_table *pt,
76  		       void *data)
77  {
78  	struct insert_pte_data *d = data;
79  
80  	vm->insert_page(vm, px_dma(pt), d->offset,
81  			i915_gem_get_pat_index(vm->i915, I915_CACHE_NONE),
82  			i915_gem_object_is_lmem(pt->base) ? PTE_LM : 0);
83  	d->offset += PAGE_SIZE;
84  }
85  
migrate_vm(struct intel_gt * gt)86  static struct i915_address_space *migrate_vm(struct intel_gt *gt)
87  {
88  	struct i915_vm_pt_stash stash = {};
89  	struct i915_ppgtt *vm;
90  	int err;
91  	int i;
92  
93  	/*
94  	 * We construct a very special VM for use by all migration contexts,
95  	 * it is kept pinned so that it can be used at any time. As we need
96  	 * to pre-allocate the page directories for the migration VM, this
97  	 * limits us to only using a small number of prepared vma.
98  	 *
99  	 * To be able to pipeline and reschedule migration operations while
100  	 * avoiding unnecessary contention on the vm itself, the PTE updates
101  	 * are inline with the blits. All the blits use the same fixed
102  	 * addresses, with the backing store redirection being updated on the
103  	 * fly. Only 2 implicit vma are used for all migration operations.
104  	 *
105  	 * We lay the ppGTT out as:
106  	 *
107  	 *	[0, CHUNK_SZ) -> first object
108  	 *	[CHUNK_SZ, 2 * CHUNK_SZ) -> second object
109  	 *	[2 * CHUNK_SZ, 2 * CHUNK_SZ + 2 * CHUNK_SZ >> 9] -> PTE
110  	 *
111  	 * By exposing the dma addresses of the page directories themselves
112  	 * within the ppGTT, we are then able to rewrite the PTE prior to use.
113  	 * But the PTE update and subsequent migration operation must be atomic,
114  	 * i.e. within the same non-preemptible window so that we do not switch
115  	 * to another migration context that overwrites the PTE.
116  	 *
117  	 * This changes quite a bit on platforms with HAS_64K_PAGES support,
118  	 * where we instead have three windows, each CHUNK_SIZE in size. The
119  	 * first is reserved for mapping system-memory, and that just uses the
120  	 * 512 entry layout using 4K GTT pages. The other two windows just map
121  	 * lmem pages and must use the new compact 32 entry layout using 64K GTT
122  	 * pages, which ensures we can address any lmem object that the user
123  	 * throws at us. We then also use the xehpsdv_toggle_pdes as a way of
124  	 * just toggling the PDE bit(GEN12_PDE_64K) for us, to enable the
125  	 * compact layout for each of these page-tables, that fall within the
126  	 * [CHUNK_SIZE, 3 * CHUNK_SIZE) range.
127  	 *
128  	 * We lay the ppGTT out as:
129  	 *
130  	 * [0, CHUNK_SZ) -> first window/object, maps smem
131  	 * [CHUNK_SZ, 2 * CHUNK_SZ) -> second window/object, maps lmem src
132  	 * [2 * CHUNK_SZ, 3 * CHUNK_SZ) -> third window/object, maps lmem dst
133  	 *
134  	 * For the PTE window it's also quite different, since each PTE must
135  	 * point to some 64K page, one for each PT(since it's in lmem), and yet
136  	 * each is only <= 4096bytes, but since the unused space within that PTE
137  	 * range is never touched, this should be fine.
138  	 *
139  	 * So basically each PT now needs 64K of virtual memory, instead of 4K,
140  	 * which looks like:
141  	 *
142  	 * [3 * CHUNK_SZ, 3 * CHUNK_SZ + ((3 * CHUNK_SZ / SZ_2M) * SZ_64K)] -> PTE
143  	 */
144  
145  	vm = i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY);
146  	if (IS_ERR(vm))
147  		return ERR_CAST(vm);
148  
149  	if (!vm->vm.allocate_va_range || !vm->vm.foreach) {
150  		err = -ENODEV;
151  		goto err_vm;
152  	}
153  
154  	if (HAS_64K_PAGES(gt->i915))
155  		stash.pt_sz = I915_GTT_PAGE_SIZE_64K;
156  
157  	/*
158  	 * Each engine instance is assigned its own chunk in the VM, so
159  	 * that we can run multiple instances concurrently
160  	 */
161  	for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
162  		struct intel_engine_cs *engine;
163  		u64 base = (u64)i << 32;
164  		struct insert_pte_data d = {};
165  		struct i915_gem_ww_ctx ww;
166  		u64 sz;
167  
168  		engine = gt->engine_class[COPY_ENGINE_CLASS][i];
169  		if (!engine_supports_migration(engine))
170  			continue;
171  
172  		/*
173  		 * We copy in 8MiB chunks. Each PDE covers 2MiB, so we need
174  		 * 4x2 page directories for source/destination.
175  		 */
176  		if (HAS_64K_PAGES(gt->i915))
177  			sz = 3 * CHUNK_SZ;
178  		else
179  			sz = 2 * CHUNK_SZ;
180  		d.offset = base + sz;
181  
182  		/*
183  		 * We need another page directory setup so that we can write
184  		 * the 8x512 PTE in each chunk.
185  		 */
186  		if (HAS_64K_PAGES(gt->i915))
187  			sz += (sz / SZ_2M) * SZ_64K;
188  		else
189  			sz += (sz >> 12) * sizeof(u64);
190  
191  		err = i915_vm_alloc_pt_stash(&vm->vm, &stash, sz);
192  		if (err)
193  			goto err_vm;
194  
195  		for_i915_gem_ww(&ww, err, true) {
196  			err = i915_vm_lock_objects(&vm->vm, &ww);
197  			if (err)
198  				continue;
199  			err = i915_vm_map_pt_stash(&vm->vm, &stash);
200  			if (err)
201  				continue;
202  
203  			vm->vm.allocate_va_range(&vm->vm, &stash, base, sz);
204  		}
205  		i915_vm_free_pt_stash(&vm->vm, &stash);
206  		if (err)
207  			goto err_vm;
208  
209  		/* Now allow the GPU to rewrite the PTE via its own ppGTT */
210  		if (HAS_64K_PAGES(gt->i915)) {
211  			vm->vm.foreach(&vm->vm, base, d.offset - base,
212  				       xehpsdv_insert_pte, &d);
213  			d.offset = base + CHUNK_SZ;
214  			vm->vm.foreach(&vm->vm,
215  				       d.offset,
216  				       2 * CHUNK_SZ,
217  				       xehpsdv_toggle_pdes, &d);
218  		} else {
219  			vm->vm.foreach(&vm->vm, base, d.offset - base,
220  				       insert_pte, &d);
221  		}
222  	}
223  
224  	return &vm->vm;
225  
226  err_vm:
227  	i915_vm_put(&vm->vm);
228  	return ERR_PTR(err);
229  }
230  
first_copy_engine(struct intel_gt * gt)231  static struct intel_engine_cs *first_copy_engine(struct intel_gt *gt)
232  {
233  	struct intel_engine_cs *engine;
234  	int i;
235  
236  	for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
237  		engine = gt->engine_class[COPY_ENGINE_CLASS][i];
238  		if (engine_supports_migration(engine))
239  			return engine;
240  	}
241  
242  	return NULL;
243  }
244  
pinned_context(struct intel_gt * gt)245  static struct intel_context *pinned_context(struct intel_gt *gt)
246  {
247  	static struct lock_class_key key;
248  	struct intel_engine_cs *engine;
249  	struct i915_address_space *vm;
250  	struct intel_context *ce;
251  
252  	engine = first_copy_engine(gt);
253  	if (!engine)
254  		return ERR_PTR(-ENODEV);
255  
256  	vm = migrate_vm(gt);
257  	if (IS_ERR(vm))
258  		return ERR_CAST(vm);
259  
260  	ce = intel_engine_create_pinned_context(engine, vm, SZ_512K,
261  						I915_GEM_HWS_MIGRATE,
262  						&key, "migrate");
263  	i915_vm_put(vm);
264  	return ce;
265  }
266  
intel_migrate_init(struct intel_migrate * m,struct intel_gt * gt)267  int intel_migrate_init(struct intel_migrate *m, struct intel_gt *gt)
268  {
269  	struct intel_context *ce;
270  
271  	memset(m, 0, sizeof(*m));
272  
273  	ce = pinned_context(gt);
274  	if (IS_ERR(ce))
275  		return PTR_ERR(ce);
276  
277  	m->context = ce;
278  	return 0;
279  }
280  
random_index(unsigned int max)281  static int random_index(unsigned int max)
282  {
283  	return upper_32_bits(mul_u32_u32(get_random_u32(), max));
284  }
285  
__migrate_engines(struct intel_gt * gt)286  static struct intel_context *__migrate_engines(struct intel_gt *gt)
287  {
288  	struct intel_engine_cs *engines[MAX_ENGINE_INSTANCE];
289  	struct intel_engine_cs *engine;
290  	unsigned int count, i;
291  
292  	count = 0;
293  	for (i = 0; i < ARRAY_SIZE(gt->engine_class[COPY_ENGINE_CLASS]); i++) {
294  		engine = gt->engine_class[COPY_ENGINE_CLASS][i];
295  		if (engine_supports_migration(engine))
296  			engines[count++] = engine;
297  	}
298  
299  	return intel_context_create(engines[random_index(count)]);
300  }
301  
intel_migrate_create_context(struct intel_migrate * m)302  struct intel_context *intel_migrate_create_context(struct intel_migrate *m)
303  {
304  	struct intel_context *ce;
305  
306  	/*
307  	 * We randomly distribute contexts across the engines upon constrction,
308  	 * as they all share the same pinned vm, and so in order to allow
309  	 * multiple blits to run in parallel, we must construct each blit
310  	 * to use a different range of the vm for its GTT. This has to be
311  	 * known at construction, so we can not use the late greedy load
312  	 * balancing of the virtual-engine.
313  	 */
314  	ce = __migrate_engines(m->context->engine->gt);
315  	if (IS_ERR(ce))
316  		return ce;
317  
318  	ce->ring = NULL;
319  	ce->ring_size = SZ_256K;
320  
321  	i915_vm_put(ce->vm);
322  	ce->vm = i915_vm_get(m->context->vm);
323  
324  	return ce;
325  }
326  
sg_sgt(struct scatterlist * sg)327  static inline struct sgt_dma sg_sgt(struct scatterlist *sg)
328  {
329  	dma_addr_t addr = sg_dma_address(sg);
330  
331  	return (struct sgt_dma){ sg, addr, addr + sg_dma_len(sg) };
332  }
333  
emit_no_arbitration(struct i915_request * rq)334  static int emit_no_arbitration(struct i915_request *rq)
335  {
336  	u32 *cs;
337  
338  	cs = intel_ring_begin(rq, 2);
339  	if (IS_ERR(cs))
340  		return PTR_ERR(cs);
341  
342  	/* Explicitly disable preemption for this request. */
343  	*cs++ = MI_ARB_ON_OFF;
344  	*cs++ = MI_NOOP;
345  	intel_ring_advance(rq, cs);
346  
347  	return 0;
348  }
349  
max_pte_pkt_size(struct i915_request * rq,int pkt)350  static int max_pte_pkt_size(struct i915_request *rq, int pkt)
351  {
352  	struct intel_ring *ring = rq->ring;
353  
354  	pkt = min_t(int, pkt, (ring->space - rq->reserved_space) / sizeof(u32) + 5);
355  	pkt = min_t(int, pkt, (ring->size - ring->emit) / sizeof(u32) + 5);
356  
357  	return pkt;
358  }
359  
360  #define I915_EMIT_PTE_NUM_DWORDS 6
361  
emit_pte(struct i915_request * rq,struct sgt_dma * it,unsigned int pat_index,bool is_lmem,u64 offset,int length)362  static int emit_pte(struct i915_request *rq,
363  		    struct sgt_dma *it,
364  		    unsigned int pat_index,
365  		    bool is_lmem,
366  		    u64 offset,
367  		    int length)
368  {
369  	bool has_64K_pages = HAS_64K_PAGES(rq->i915);
370  	const u64 encode = rq->context->vm->pte_encode(0, pat_index,
371  						       is_lmem ? PTE_LM : 0);
372  	struct intel_ring *ring = rq->ring;
373  	int pkt, dword_length;
374  	u32 total = 0;
375  	u32 page_size;
376  	u32 *hdr, *cs;
377  
378  	GEM_BUG_ON(GRAPHICS_VER(rq->i915) < 8);
379  
380  	page_size = I915_GTT_PAGE_SIZE;
381  	dword_length = 0x400;
382  
383  	/* Compute the page directory offset for the target address range */
384  	if (has_64K_pages) {
385  		GEM_BUG_ON(!IS_ALIGNED(offset, SZ_2M));
386  
387  		offset /= SZ_2M;
388  		offset *= SZ_64K;
389  		offset += 3 * CHUNK_SZ;
390  
391  		if (is_lmem) {
392  			page_size = I915_GTT_PAGE_SIZE_64K;
393  			dword_length = 0x40;
394  		}
395  	} else {
396  		offset >>= 12;
397  		offset *= sizeof(u64);
398  		offset += 2 * CHUNK_SZ;
399  	}
400  
401  	offset += (u64)rq->engine->instance << 32;
402  
403  	cs = intel_ring_begin(rq, I915_EMIT_PTE_NUM_DWORDS);
404  	if (IS_ERR(cs))
405  		return PTR_ERR(cs);
406  
407  	/* Pack as many PTE updates as possible into a single MI command */
408  	pkt = max_pte_pkt_size(rq, dword_length);
409  
410  	hdr = cs;
411  	*cs++ = MI_STORE_DATA_IMM | REG_BIT(21); /* as qword elements */
412  	*cs++ = lower_32_bits(offset);
413  	*cs++ = upper_32_bits(offset);
414  
415  	do {
416  		if (cs - hdr >= pkt) {
417  			int dword_rem;
418  
419  			*hdr += cs - hdr - 2;
420  			*cs++ = MI_NOOP;
421  
422  			ring->emit = (void *)cs - ring->vaddr;
423  			intel_ring_advance(rq, cs);
424  			intel_ring_update_space(ring);
425  
426  			cs = intel_ring_begin(rq, I915_EMIT_PTE_NUM_DWORDS);
427  			if (IS_ERR(cs))
428  				return PTR_ERR(cs);
429  
430  			dword_rem = dword_length;
431  			if (has_64K_pages) {
432  				if (IS_ALIGNED(total, SZ_2M)) {
433  					offset = round_up(offset, SZ_64K);
434  				} else {
435  					dword_rem = SZ_2M - (total & (SZ_2M - 1));
436  					dword_rem /= page_size;
437  					dword_rem *= 2;
438  				}
439  			}
440  
441  			pkt = max_pte_pkt_size(rq, dword_rem);
442  
443  			hdr = cs;
444  			*cs++ = MI_STORE_DATA_IMM | REG_BIT(21);
445  			*cs++ = lower_32_bits(offset);
446  			*cs++ = upper_32_bits(offset);
447  		}
448  
449  		GEM_BUG_ON(!IS_ALIGNED(it->dma, page_size));
450  
451  		*cs++ = lower_32_bits(encode | it->dma);
452  		*cs++ = upper_32_bits(encode | it->dma);
453  
454  		offset += 8;
455  		total += page_size;
456  
457  		it->dma += page_size;
458  		if (it->dma >= it->max) {
459  			it->sg = __sg_next(it->sg);
460  			if (!it->sg || sg_dma_len(it->sg) == 0)
461  				break;
462  
463  			it->dma = sg_dma_address(it->sg);
464  			it->max = it->dma + sg_dma_len(it->sg);
465  		}
466  	} while (total < length);
467  
468  	*hdr += cs - hdr - 2;
469  	*cs++ = MI_NOOP;
470  
471  	ring->emit = (void *)cs - ring->vaddr;
472  	intel_ring_advance(rq, cs);
473  	intel_ring_update_space(ring);
474  
475  	return total;
476  }
477  
wa_1209644611_applies(int ver,u32 size)478  static bool wa_1209644611_applies(int ver, u32 size)
479  {
480  	u32 height = size >> PAGE_SHIFT;
481  
482  	if (ver != 11)
483  		return false;
484  
485  	return height % 4 == 3 && height <= 8;
486  }
487  
488  /**
489   * DOC: Flat-CCS - Memory compression for Local memory
490   *
491   * On Xe-HP and later devices, we use dedicated compression control state (CCS)
492   * stored in local memory for each surface, to support the 3D and media
493   * compression formats.
494   *
495   * The memory required for the CCS of the entire local memory is 1/256 of the
496   * local memory size. So before the kernel boot, the required memory is reserved
497   * for the CCS data and a secure register will be programmed with the CCS base
498   * address.
499   *
500   * Flat CCS data needs to be cleared when a lmem object is allocated.
501   * And CCS data can be copied in and out of CCS region through
502   * XY_CTRL_SURF_COPY_BLT. CPU can't access the CCS data directly.
503   *
504   * I915 supports Flat-CCS on lmem only objects. When an objects has smem in
505   * its preference list, on memory pressure, i915 needs to migrate the lmem
506   * content into smem. If the lmem object is Flat-CCS compressed by userspace,
507   * then i915 needs to decompress it. But I915 lack the required information
508   * for such decompression. Hence I915 supports Flat-CCS only on lmem only objects.
509   *
510   * When we exhaust the lmem, Flat-CCS capable objects' lmem backing memory can
511   * be temporarily evicted to smem, along with the auxiliary CCS state, where
512   * it can be potentially swapped-out at a later point, if required.
513   * If userspace later touches the evicted pages, then we always move
514   * the backing memory back to lmem, which includes restoring the saved CCS state,
515   * and potentially performing any required swap-in.
516   *
517   * For the migration of the lmem objects with smem in placement list, such as
518   * {lmem, smem}, objects are treated as non Flat-CCS capable objects.
519   */
520  
i915_flush_dw(u32 * cmd,u32 flags)521  static inline u32 *i915_flush_dw(u32 *cmd, u32 flags)
522  {
523  	*cmd++ = MI_FLUSH_DW | flags;
524  	*cmd++ = 0;
525  	*cmd++ = 0;
526  
527  	return cmd;
528  }
529  
emit_copy_ccs(struct i915_request * rq,u32 dst_offset,u8 dst_access,u32 src_offset,u8 src_access,int size)530  static int emit_copy_ccs(struct i915_request *rq,
531  			 u32 dst_offset, u8 dst_access,
532  			 u32 src_offset, u8 src_access, int size)
533  {
534  	struct drm_i915_private *i915 = rq->i915;
535  	int mocs = rq->engine->gt->mocs.uc_index << 1;
536  	u32 num_ccs_blks;
537  	u32 *cs;
538  
539  	cs = intel_ring_begin(rq, 12);
540  	if (IS_ERR(cs))
541  		return PTR_ERR(cs);
542  
543  	num_ccs_blks = DIV_ROUND_UP(GET_CCS_BYTES(i915, size),
544  				    NUM_CCS_BYTES_PER_BLOCK);
545  	GEM_BUG_ON(num_ccs_blks > NUM_CCS_BLKS_PER_XFER);
546  	cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS);
547  
548  	/*
549  	 * The XY_CTRL_SURF_COPY_BLT instruction is used to copy the CCS
550  	 * data in and out of the CCS region.
551  	 *
552  	 * We can copy at most 1024 blocks of 256 bytes using one
553  	 * XY_CTRL_SURF_COPY_BLT instruction.
554  	 *
555  	 * In case we need to copy more than 1024 blocks, we need to add
556  	 * another instruction to the same batch buffer.
557  	 *
558  	 * 1024 blocks of 256 bytes of CCS represent a total 256KB of CCS.
559  	 *
560  	 * 256 KB of CCS represents 256 * 256 KB = 64 MB of LMEM.
561  	 */
562  	*cs++ = XY_CTRL_SURF_COPY_BLT |
563  		src_access << SRC_ACCESS_TYPE_SHIFT |
564  		dst_access << DST_ACCESS_TYPE_SHIFT |
565  		((num_ccs_blks - 1) & CCS_SIZE_MASK) << CCS_SIZE_SHIFT;
566  	*cs++ = src_offset;
567  	*cs++ = rq->engine->instance |
568  		FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs);
569  	*cs++ = dst_offset;
570  	*cs++ = rq->engine->instance |
571  		FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, mocs);
572  
573  	cs = i915_flush_dw(cs, MI_FLUSH_DW_LLC | MI_FLUSH_DW_CCS);
574  	*cs++ = MI_NOOP;
575  
576  	intel_ring_advance(rq, cs);
577  
578  	return 0;
579  }
580  
emit_copy(struct i915_request * rq,u32 dst_offset,u32 src_offset,int size)581  static int emit_copy(struct i915_request *rq,
582  		     u32 dst_offset, u32 src_offset, int size)
583  {
584  	const int ver = GRAPHICS_VER(rq->i915);
585  	u32 instance = rq->engine->instance;
586  	u32 *cs;
587  
588  	cs = intel_ring_begin(rq, ver >= 8 ? 10 : 6);
589  	if (IS_ERR(cs))
590  		return PTR_ERR(cs);
591  
592  	if (ver >= 9 && !wa_1209644611_applies(ver, size)) {
593  		*cs++ = GEN9_XY_FAST_COPY_BLT_CMD | (10 - 2);
594  		*cs++ = BLT_DEPTH_32 | PAGE_SIZE;
595  		*cs++ = 0;
596  		*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
597  		*cs++ = dst_offset;
598  		*cs++ = instance;
599  		*cs++ = 0;
600  		*cs++ = PAGE_SIZE;
601  		*cs++ = src_offset;
602  		*cs++ = instance;
603  	} else if (ver >= 8) {
604  		*cs++ = XY_SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (10 - 2);
605  		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE;
606  		*cs++ = 0;
607  		*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
608  		*cs++ = dst_offset;
609  		*cs++ = instance;
610  		*cs++ = 0;
611  		*cs++ = PAGE_SIZE;
612  		*cs++ = src_offset;
613  		*cs++ = instance;
614  	} else {
615  		GEM_BUG_ON(instance);
616  		*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
617  		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | PAGE_SIZE;
618  		*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE;
619  		*cs++ = dst_offset;
620  		*cs++ = PAGE_SIZE;
621  		*cs++ = src_offset;
622  	}
623  
624  	intel_ring_advance(rq, cs);
625  	return 0;
626  }
627  
scatter_list_length(struct scatterlist * sg)628  static u64 scatter_list_length(struct scatterlist *sg)
629  {
630  	u64 len = 0;
631  
632  	while (sg && sg_dma_len(sg)) {
633  		len += sg_dma_len(sg);
634  		sg = sg_next(sg);
635  	}
636  
637  	return len;
638  }
639  
640  static int
calculate_chunk_sz(struct drm_i915_private * i915,bool src_is_lmem,u64 bytes_to_cpy,u64 ccs_bytes_to_cpy)641  calculate_chunk_sz(struct drm_i915_private *i915, bool src_is_lmem,
642  		   u64 bytes_to_cpy, u64 ccs_bytes_to_cpy)
643  {
644  	if (ccs_bytes_to_cpy && !src_is_lmem)
645  		/*
646  		 * When CHUNK_SZ is passed all the pages upto CHUNK_SZ
647  		 * will be taken for the blt. in Flat-ccs supported
648  		 * platform Smem obj will have more pages than required
649  		 * for main meory hence limit it to the required size
650  		 * for main memory
651  		 */
652  		return min_t(u64, bytes_to_cpy, CHUNK_SZ);
653  	else
654  		return CHUNK_SZ;
655  }
656  
get_ccs_sg_sgt(struct sgt_dma * it,u64 bytes_to_cpy)657  static void get_ccs_sg_sgt(struct sgt_dma *it, u64 bytes_to_cpy)
658  {
659  	u64 len;
660  
661  	do {
662  		GEM_BUG_ON(!it->sg || !sg_dma_len(it->sg));
663  		len = it->max - it->dma;
664  		if (len > bytes_to_cpy) {
665  			it->dma += bytes_to_cpy;
666  			break;
667  		}
668  
669  		bytes_to_cpy -= len;
670  
671  		it->sg = __sg_next(it->sg);
672  		it->dma = sg_dma_address(it->sg);
673  		it->max = it->dma + sg_dma_len(it->sg);
674  	} while (bytes_to_cpy);
675  }
676  
677  int
intel_context_migrate_copy(struct intel_context * ce,const struct i915_deps * deps,struct scatterlist * src,unsigned int src_pat_index,bool src_is_lmem,struct scatterlist * dst,unsigned int dst_pat_index,bool dst_is_lmem,struct i915_request ** out)678  intel_context_migrate_copy(struct intel_context *ce,
679  			   const struct i915_deps *deps,
680  			   struct scatterlist *src,
681  			   unsigned int src_pat_index,
682  			   bool src_is_lmem,
683  			   struct scatterlist *dst,
684  			   unsigned int dst_pat_index,
685  			   bool dst_is_lmem,
686  			   struct i915_request **out)
687  {
688  	struct sgt_dma it_src = sg_sgt(src), it_dst = sg_sgt(dst), it_ccs;
689  	struct drm_i915_private *i915 = ce->engine->i915;
690  	u64 ccs_bytes_to_cpy = 0, bytes_to_cpy;
691  	unsigned int ccs_pat_index;
692  	u32 src_offset, dst_offset;
693  	u8 src_access, dst_access;
694  	struct i915_request *rq;
695  	u64 src_sz, dst_sz;
696  	bool ccs_is_src, overwrite_ccs;
697  	int err;
698  
699  	GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm);
700  	GEM_BUG_ON(IS_DGFX(ce->engine->i915) && (!src_is_lmem && !dst_is_lmem));
701  	*out = NULL;
702  
703  	GEM_BUG_ON(ce->ring->size < SZ_64K);
704  
705  	src_sz = scatter_list_length(src);
706  	bytes_to_cpy = src_sz;
707  
708  	if (HAS_FLAT_CCS(i915) && src_is_lmem ^ dst_is_lmem) {
709  		src_access = !src_is_lmem && dst_is_lmem;
710  		dst_access = !src_access;
711  
712  		dst_sz = scatter_list_length(dst);
713  		if (src_is_lmem) {
714  			it_ccs = it_dst;
715  			ccs_pat_index = dst_pat_index;
716  			ccs_is_src = false;
717  		} else if (dst_is_lmem) {
718  			bytes_to_cpy = dst_sz;
719  			it_ccs = it_src;
720  			ccs_pat_index = src_pat_index;
721  			ccs_is_src = true;
722  		}
723  
724  		/*
725  		 * When there is a eviction of ccs needed smem will have the
726  		 * extra pages for the ccs data
727  		 *
728  		 * TO-DO: Want to move the size mismatch check to a WARN_ON,
729  		 * but still we have some requests of smem->lmem with same size.
730  		 * Need to fix it.
731  		 */
732  		ccs_bytes_to_cpy = src_sz != dst_sz ? GET_CCS_BYTES(i915, bytes_to_cpy) : 0;
733  		if (ccs_bytes_to_cpy)
734  			get_ccs_sg_sgt(&it_ccs, bytes_to_cpy);
735  	}
736  
737  	overwrite_ccs = HAS_FLAT_CCS(i915) && !ccs_bytes_to_cpy && dst_is_lmem;
738  
739  	src_offset = 0;
740  	dst_offset = CHUNK_SZ;
741  	if (HAS_64K_PAGES(ce->engine->i915)) {
742  		src_offset = 0;
743  		dst_offset = 0;
744  		if (src_is_lmem)
745  			src_offset = CHUNK_SZ;
746  		if (dst_is_lmem)
747  			dst_offset = 2 * CHUNK_SZ;
748  	}
749  
750  	do {
751  		int len;
752  
753  		rq = i915_request_create(ce);
754  		if (IS_ERR(rq)) {
755  			err = PTR_ERR(rq);
756  			goto out_ce;
757  		}
758  
759  		if (deps) {
760  			err = i915_request_await_deps(rq, deps);
761  			if (err)
762  				goto out_rq;
763  
764  			if (rq->engine->emit_init_breadcrumb) {
765  				err = rq->engine->emit_init_breadcrumb(rq);
766  				if (err)
767  					goto out_rq;
768  			}
769  
770  			deps = NULL;
771  		}
772  
773  		/* The PTE updates + copy must not be interrupted. */
774  		err = emit_no_arbitration(rq);
775  		if (err)
776  			goto out_rq;
777  
778  		src_sz = calculate_chunk_sz(i915, src_is_lmem,
779  					    bytes_to_cpy, ccs_bytes_to_cpy);
780  
781  		len = emit_pte(rq, &it_src, src_pat_index, src_is_lmem,
782  			       src_offset, src_sz);
783  		if (!len) {
784  			err = -EINVAL;
785  			goto out_rq;
786  		}
787  		if (len < 0) {
788  			err = len;
789  			goto out_rq;
790  		}
791  
792  		err = emit_pte(rq, &it_dst, dst_pat_index, dst_is_lmem,
793  			       dst_offset, len);
794  		if (err < 0)
795  			goto out_rq;
796  		if (err < len) {
797  			err = -EINVAL;
798  			goto out_rq;
799  		}
800  
801  		err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
802  		if (err)
803  			goto out_rq;
804  
805  		err = emit_copy(rq, dst_offset,	src_offset, len);
806  		if (err)
807  			goto out_rq;
808  
809  		bytes_to_cpy -= len;
810  
811  		if (ccs_bytes_to_cpy) {
812  			int ccs_sz;
813  
814  			err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
815  			if (err)
816  				goto out_rq;
817  
818  			ccs_sz = GET_CCS_BYTES(i915, len);
819  			err = emit_pte(rq, &it_ccs, ccs_pat_index, false,
820  				       ccs_is_src ? src_offset : dst_offset,
821  				       ccs_sz);
822  			if (err < 0)
823  				goto out_rq;
824  			if (err < ccs_sz) {
825  				err = -EINVAL;
826  				goto out_rq;
827  			}
828  
829  			err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
830  			if (err)
831  				goto out_rq;
832  
833  			err = emit_copy_ccs(rq, dst_offset, dst_access,
834  					    src_offset, src_access, len);
835  			if (err)
836  				goto out_rq;
837  
838  			err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
839  			if (err)
840  				goto out_rq;
841  			ccs_bytes_to_cpy -= ccs_sz;
842  		} else if (overwrite_ccs) {
843  			err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
844  			if (err)
845  				goto out_rq;
846  
847  			if (src_is_lmem) {
848  				/*
849  				 * If the src is already in lmem, then we must
850  				 * be doing an lmem -> lmem transfer, and so
851  				 * should be safe to directly copy the CCS
852  				 * state. In this case we have either
853  				 * initialised the CCS aux state when first
854  				 * clearing the pages (since it is already
855  				 * allocated in lmem), or the user has
856  				 * potentially populated it, in which case we
857  				 * need to copy the CCS state as-is.
858  				 */
859  				err = emit_copy_ccs(rq,
860  						    dst_offset, INDIRECT_ACCESS,
861  						    src_offset, INDIRECT_ACCESS,
862  						    len);
863  			} else {
864  				/*
865  				 * While we can't always restore/manage the CCS
866  				 * state, we still need to ensure we don't leak
867  				 * the CCS state from the previous user, so make
868  				 * sure we overwrite it with something.
869  				 */
870  				err = emit_copy_ccs(rq,
871  						    dst_offset, INDIRECT_ACCESS,
872  						    dst_offset, DIRECT_ACCESS,
873  						    len);
874  			}
875  
876  			if (err)
877  				goto out_rq;
878  
879  			err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
880  			if (err)
881  				goto out_rq;
882  		}
883  
884  		/* Arbitration is re-enabled between requests. */
885  out_rq:
886  		if (*out)
887  			i915_request_put(*out);
888  		*out = i915_request_get(rq);
889  		i915_request_add(rq);
890  
891  		if (err)
892  			break;
893  
894  		if (!bytes_to_cpy && !ccs_bytes_to_cpy) {
895  			if (src_is_lmem)
896  				WARN_ON(it_src.sg && sg_dma_len(it_src.sg));
897  			else
898  				WARN_ON(it_dst.sg && sg_dma_len(it_dst.sg));
899  			break;
900  		}
901  
902  		if (WARN_ON(!it_src.sg || !sg_dma_len(it_src.sg) ||
903  			    !it_dst.sg || !sg_dma_len(it_dst.sg) ||
904  			    (ccs_bytes_to_cpy && (!it_ccs.sg ||
905  						  !sg_dma_len(it_ccs.sg))))) {
906  			err = -EINVAL;
907  			break;
908  		}
909  
910  		cond_resched();
911  	} while (1);
912  
913  out_ce:
914  	return err;
915  }
916  
emit_clear(struct i915_request * rq,u32 offset,int size,u32 value,bool is_lmem)917  static int emit_clear(struct i915_request *rq, u32 offset, int size,
918  		      u32 value, bool is_lmem)
919  {
920  	struct drm_i915_private *i915 = rq->i915;
921  	int mocs = rq->engine->gt->mocs.uc_index << 1;
922  	const int ver = GRAPHICS_VER(i915);
923  	int ring_sz;
924  	u32 *cs;
925  
926  	GEM_BUG_ON(size >> PAGE_SHIFT > S16_MAX);
927  
928  	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
929  		ring_sz = XY_FAST_COLOR_BLT_DW;
930  	else if (ver >= 8)
931  		ring_sz = 8;
932  	else
933  		ring_sz = 6;
934  
935  	cs = intel_ring_begin(rq, ring_sz);
936  	if (IS_ERR(cs))
937  		return PTR_ERR(cs);
938  
939  	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
940  		*cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 |
941  			(XY_FAST_COLOR_BLT_DW - 2);
942  		*cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, mocs) |
943  			(PAGE_SIZE - 1);
944  		*cs++ = 0;
945  		*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
946  		*cs++ = offset;
947  		*cs++ = rq->engine->instance;
948  		*cs++ = !is_lmem << XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT;
949  		/* BG7 */
950  		*cs++ = value;
951  		*cs++ = 0;
952  		*cs++ = 0;
953  		*cs++ = 0;
954  		/* BG11 */
955  		*cs++ = 0;
956  		*cs++ = 0;
957  		/* BG13 */
958  		*cs++ = 0;
959  		*cs++ = 0;
960  		*cs++ = 0;
961  	} else if (ver >= 8) {
962  		*cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (7 - 2);
963  		*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE;
964  		*cs++ = 0;
965  		*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
966  		*cs++ = offset;
967  		*cs++ = rq->engine->instance;
968  		*cs++ = value;
969  		*cs++ = MI_NOOP;
970  	} else {
971  		*cs++ = XY_COLOR_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
972  		*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | PAGE_SIZE;
973  		*cs++ = 0;
974  		*cs++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4;
975  		*cs++ = offset;
976  		*cs++ = value;
977  	}
978  
979  	intel_ring_advance(rq, cs);
980  	return 0;
981  }
982  
983  int
intel_context_migrate_clear(struct intel_context * ce,const struct i915_deps * deps,struct scatterlist * sg,unsigned int pat_index,bool is_lmem,u32 value,struct i915_request ** out)984  intel_context_migrate_clear(struct intel_context *ce,
985  			    const struct i915_deps *deps,
986  			    struct scatterlist *sg,
987  			    unsigned int pat_index,
988  			    bool is_lmem,
989  			    u32 value,
990  			    struct i915_request **out)
991  {
992  	struct drm_i915_private *i915 = ce->engine->i915;
993  	struct sgt_dma it = sg_sgt(sg);
994  	struct i915_request *rq;
995  	u32 offset;
996  	int err;
997  
998  	GEM_BUG_ON(ce->vm != ce->engine->gt->migrate.context->vm);
999  	*out = NULL;
1000  
1001  	GEM_BUG_ON(ce->ring->size < SZ_64K);
1002  
1003  	offset = 0;
1004  	if (HAS_64K_PAGES(i915) && is_lmem)
1005  		offset = CHUNK_SZ;
1006  
1007  	do {
1008  		int len;
1009  
1010  		rq = i915_request_create(ce);
1011  		if (IS_ERR(rq)) {
1012  			err = PTR_ERR(rq);
1013  			goto out_ce;
1014  		}
1015  
1016  		if (deps) {
1017  			err = i915_request_await_deps(rq, deps);
1018  			if (err)
1019  				goto out_rq;
1020  
1021  			if (rq->engine->emit_init_breadcrumb) {
1022  				err = rq->engine->emit_init_breadcrumb(rq);
1023  				if (err)
1024  					goto out_rq;
1025  			}
1026  
1027  			deps = NULL;
1028  		}
1029  
1030  		/* The PTE updates + clear must not be interrupted. */
1031  		err = emit_no_arbitration(rq);
1032  		if (err)
1033  			goto out_rq;
1034  
1035  		len = emit_pte(rq, &it, pat_index, is_lmem, offset, CHUNK_SZ);
1036  		if (len <= 0) {
1037  			err = len;
1038  			goto out_rq;
1039  		}
1040  
1041  		err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
1042  		if (err)
1043  			goto out_rq;
1044  
1045  		err = emit_clear(rq, offset, len, value, is_lmem);
1046  		if (err)
1047  			goto out_rq;
1048  
1049  		if (HAS_FLAT_CCS(i915) && is_lmem && !value) {
1050  			/*
1051  			 * copy the content of memory into corresponding
1052  			 * ccs surface
1053  			 */
1054  			err = emit_copy_ccs(rq, offset, INDIRECT_ACCESS, offset,
1055  					    DIRECT_ACCESS, len);
1056  			if (err)
1057  				goto out_rq;
1058  		}
1059  
1060  		err = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
1061  
1062  		/* Arbitration is re-enabled between requests. */
1063  out_rq:
1064  		if (*out)
1065  			i915_request_put(*out);
1066  		*out = i915_request_get(rq);
1067  		i915_request_add(rq);
1068  		if (err || !it.sg || !sg_dma_len(it.sg))
1069  			break;
1070  
1071  		cond_resched();
1072  	} while (1);
1073  
1074  out_ce:
1075  	return err;
1076  }
1077  
intel_migrate_copy(struct intel_migrate * m,struct i915_gem_ww_ctx * ww,const struct i915_deps * deps,struct scatterlist * src,unsigned int src_pat_index,bool src_is_lmem,struct scatterlist * dst,unsigned int dst_pat_index,bool dst_is_lmem,struct i915_request ** out)1078  int intel_migrate_copy(struct intel_migrate *m,
1079  		       struct i915_gem_ww_ctx *ww,
1080  		       const struct i915_deps *deps,
1081  		       struct scatterlist *src,
1082  		       unsigned int src_pat_index,
1083  		       bool src_is_lmem,
1084  		       struct scatterlist *dst,
1085  		       unsigned int dst_pat_index,
1086  		       bool dst_is_lmem,
1087  		       struct i915_request **out)
1088  {
1089  	struct intel_context *ce;
1090  	int err;
1091  
1092  	*out = NULL;
1093  	if (!m->context)
1094  		return -ENODEV;
1095  
1096  	ce = intel_migrate_create_context(m);
1097  	if (IS_ERR(ce))
1098  		ce = intel_context_get(m->context);
1099  	GEM_BUG_ON(IS_ERR(ce));
1100  
1101  	err = intel_context_pin_ww(ce, ww);
1102  	if (err)
1103  		goto out;
1104  
1105  	err = intel_context_migrate_copy(ce, deps,
1106  					 src, src_pat_index, src_is_lmem,
1107  					 dst, dst_pat_index, dst_is_lmem,
1108  					 out);
1109  
1110  	intel_context_unpin(ce);
1111  out:
1112  	intel_context_put(ce);
1113  	return err;
1114  }
1115  
1116  int
intel_migrate_clear(struct intel_migrate * m,struct i915_gem_ww_ctx * ww,const struct i915_deps * deps,struct scatterlist * sg,unsigned int pat_index,bool is_lmem,u32 value,struct i915_request ** out)1117  intel_migrate_clear(struct intel_migrate *m,
1118  		    struct i915_gem_ww_ctx *ww,
1119  		    const struct i915_deps *deps,
1120  		    struct scatterlist *sg,
1121  		    unsigned int pat_index,
1122  		    bool is_lmem,
1123  		    u32 value,
1124  		    struct i915_request **out)
1125  {
1126  	struct intel_context *ce;
1127  	int err;
1128  
1129  	*out = NULL;
1130  	if (!m->context)
1131  		return -ENODEV;
1132  
1133  	ce = intel_migrate_create_context(m);
1134  	if (IS_ERR(ce))
1135  		ce = intel_context_get(m->context);
1136  	GEM_BUG_ON(IS_ERR(ce));
1137  
1138  	err = intel_context_pin_ww(ce, ww);
1139  	if (err)
1140  		goto out;
1141  
1142  	err = intel_context_migrate_clear(ce, deps, sg, pat_index,
1143  					  is_lmem, value, out);
1144  
1145  	intel_context_unpin(ce);
1146  out:
1147  	intel_context_put(ce);
1148  	return err;
1149  }
1150  
intel_migrate_fini(struct intel_migrate * m)1151  void intel_migrate_fini(struct intel_migrate *m)
1152  {
1153  	struct intel_context *ce;
1154  
1155  	ce = fetch_and_zero(&m->context);
1156  	if (!ce)
1157  		return;
1158  
1159  	intel_engine_destroy_pinned_context(ce);
1160  }
1161  
1162  #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1163  #include "selftest_migrate.c"
1164  #endif
1165