1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51
52 #include <asm/switch_to.h>
53
54 #include <linux/sched/cond_resched.h>
55
56 #include "sched.h"
57 #include "stats.h"
58 #include "autogroup.h"
59
60 /*
61 * The initial- and re-scaling of tunables is configurable
62 *
63 * Options are:
64 *
65 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
66 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
67 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
68 *
69 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
70 */
71 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
72
73 /*
74 * Minimal preemption granularity for CPU-bound tasks:
75 *
76 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
77 */
78 unsigned int sysctl_sched_base_slice = 750000ULL;
79 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL;
80
81 /*
82 * After fork, child runs first. If set to 0 (default) then
83 * parent will (try to) run first.
84 */
85 unsigned int sysctl_sched_child_runs_first __read_mostly;
86
87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
88
89 int sched_thermal_decay_shift;
setup_sched_thermal_decay_shift(char * str)90 static int __init setup_sched_thermal_decay_shift(char *str)
91 {
92 int _shift = 0;
93
94 if (kstrtoint(str, 0, &_shift))
95 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
96
97 sched_thermal_decay_shift = clamp(_shift, 0, 10);
98 return 1;
99 }
100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
101
102 #ifdef CONFIG_SMP
103 /*
104 * For asym packing, by default the lower numbered CPU has higher priority.
105 */
arch_asym_cpu_priority(int cpu)106 int __weak arch_asym_cpu_priority(int cpu)
107 {
108 return -cpu;
109 }
110
111 /*
112 * The margin used when comparing utilization with CPU capacity.
113 *
114 * (default: ~20%)
115 */
116 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
117
118 /*
119 * The margin used when comparing CPU capacities.
120 * is 'cap1' noticeably greater than 'cap2'
121 *
122 * (default: ~5%)
123 */
124 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
125 #endif
126
127 #ifdef CONFIG_CFS_BANDWIDTH
128 /*
129 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
130 * each time a cfs_rq requests quota.
131 *
132 * Note: in the case that the slice exceeds the runtime remaining (either due
133 * to consumption or the quota being specified to be smaller than the slice)
134 * we will always only issue the remaining available time.
135 *
136 * (default: 5 msec, units: microseconds)
137 */
138 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
139 #endif
140
141 #ifdef CONFIG_NUMA_BALANCING
142 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
143 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
144 #endif
145
146 #ifdef CONFIG_SYSCTL
147 static struct ctl_table sched_fair_sysctls[] = {
148 {
149 .procname = "sched_child_runs_first",
150 .data = &sysctl_sched_child_runs_first,
151 .maxlen = sizeof(unsigned int),
152 .mode = 0644,
153 .proc_handler = proc_dointvec,
154 },
155 #ifdef CONFIG_CFS_BANDWIDTH
156 {
157 .procname = "sched_cfs_bandwidth_slice_us",
158 .data = &sysctl_sched_cfs_bandwidth_slice,
159 .maxlen = sizeof(unsigned int),
160 .mode = 0644,
161 .proc_handler = proc_dointvec_minmax,
162 .extra1 = SYSCTL_ONE,
163 },
164 #endif
165 #ifdef CONFIG_NUMA_BALANCING
166 {
167 .procname = "numa_balancing_promote_rate_limit_MBps",
168 .data = &sysctl_numa_balancing_promote_rate_limit,
169 .maxlen = sizeof(unsigned int),
170 .mode = 0644,
171 .proc_handler = proc_dointvec_minmax,
172 .extra1 = SYSCTL_ZERO,
173 },
174 #endif /* CONFIG_NUMA_BALANCING */
175 {}
176 };
177
sched_fair_sysctl_init(void)178 static int __init sched_fair_sysctl_init(void)
179 {
180 register_sysctl_init("kernel", sched_fair_sysctls);
181 return 0;
182 }
183 late_initcall(sched_fair_sysctl_init);
184 #endif
185
update_load_add(struct load_weight * lw,unsigned long inc)186 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
187 {
188 lw->weight += inc;
189 lw->inv_weight = 0;
190 }
191
update_load_sub(struct load_weight * lw,unsigned long dec)192 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
193 {
194 lw->weight -= dec;
195 lw->inv_weight = 0;
196 }
197
update_load_set(struct load_weight * lw,unsigned long w)198 static inline void update_load_set(struct load_weight *lw, unsigned long w)
199 {
200 lw->weight = w;
201 lw->inv_weight = 0;
202 }
203
204 /*
205 * Increase the granularity value when there are more CPUs,
206 * because with more CPUs the 'effective latency' as visible
207 * to users decreases. But the relationship is not linear,
208 * so pick a second-best guess by going with the log2 of the
209 * number of CPUs.
210 *
211 * This idea comes from the SD scheduler of Con Kolivas:
212 */
get_update_sysctl_factor(void)213 static unsigned int get_update_sysctl_factor(void)
214 {
215 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
216 unsigned int factor;
217
218 switch (sysctl_sched_tunable_scaling) {
219 case SCHED_TUNABLESCALING_NONE:
220 factor = 1;
221 break;
222 case SCHED_TUNABLESCALING_LINEAR:
223 factor = cpus;
224 break;
225 case SCHED_TUNABLESCALING_LOG:
226 default:
227 factor = 1 + ilog2(cpus);
228 break;
229 }
230
231 return factor;
232 }
233
update_sysctl(void)234 static void update_sysctl(void)
235 {
236 unsigned int factor = get_update_sysctl_factor();
237
238 #define SET_SYSCTL(name) \
239 (sysctl_##name = (factor) * normalized_sysctl_##name)
240 SET_SYSCTL(sched_base_slice);
241 #undef SET_SYSCTL
242 }
243
sched_init_granularity(void)244 void __init sched_init_granularity(void)
245 {
246 update_sysctl();
247 }
248
249 #define WMULT_CONST (~0U)
250 #define WMULT_SHIFT 32
251
__update_inv_weight(struct load_weight * lw)252 static void __update_inv_weight(struct load_weight *lw)
253 {
254 unsigned long w;
255
256 if (likely(lw->inv_weight))
257 return;
258
259 w = scale_load_down(lw->weight);
260
261 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
262 lw->inv_weight = 1;
263 else if (unlikely(!w))
264 lw->inv_weight = WMULT_CONST;
265 else
266 lw->inv_weight = WMULT_CONST / w;
267 }
268
269 /*
270 * delta_exec * weight / lw.weight
271 * OR
272 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
273 *
274 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
275 * we're guaranteed shift stays positive because inv_weight is guaranteed to
276 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
277 *
278 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
279 * weight/lw.weight <= 1, and therefore our shift will also be positive.
280 */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)281 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
282 {
283 u64 fact = scale_load_down(weight);
284 u32 fact_hi = (u32)(fact >> 32);
285 int shift = WMULT_SHIFT;
286 int fs;
287
288 __update_inv_weight(lw);
289
290 if (unlikely(fact_hi)) {
291 fs = fls(fact_hi);
292 shift -= fs;
293 fact >>= fs;
294 }
295
296 fact = mul_u32_u32(fact, lw->inv_weight);
297
298 fact_hi = (u32)(fact >> 32);
299 if (fact_hi) {
300 fs = fls(fact_hi);
301 shift -= fs;
302 fact >>= fs;
303 }
304
305 return mul_u64_u32_shr(delta_exec, fact, shift);
306 }
307
308 /*
309 * delta /= w
310 */
calc_delta_fair(u64 delta,struct sched_entity * se)311 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
312 {
313 if (unlikely(se->load.weight != NICE_0_LOAD))
314 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
315
316 return delta;
317 }
318
319 const struct sched_class fair_sched_class;
320
321 /**************************************************************
322 * CFS operations on generic schedulable entities:
323 */
324
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326
327 /* Walk up scheduling entities hierarchy */
328 #define for_each_sched_entity(se) \
329 for (; se; se = se->parent)
330
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)331 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
332 {
333 struct rq *rq = rq_of(cfs_rq);
334 int cpu = cpu_of(rq);
335
336 if (cfs_rq->on_list)
337 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
338
339 cfs_rq->on_list = 1;
340
341 /*
342 * Ensure we either appear before our parent (if already
343 * enqueued) or force our parent to appear after us when it is
344 * enqueued. The fact that we always enqueue bottom-up
345 * reduces this to two cases and a special case for the root
346 * cfs_rq. Furthermore, it also means that we will always reset
347 * tmp_alone_branch either when the branch is connected
348 * to a tree or when we reach the top of the tree
349 */
350 if (cfs_rq->tg->parent &&
351 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
352 /*
353 * If parent is already on the list, we add the child
354 * just before. Thanks to circular linked property of
355 * the list, this means to put the child at the tail
356 * of the list that starts by parent.
357 */
358 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
359 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
360 /*
361 * The branch is now connected to its tree so we can
362 * reset tmp_alone_branch to the beginning of the
363 * list.
364 */
365 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
366 return true;
367 }
368
369 if (!cfs_rq->tg->parent) {
370 /*
371 * cfs rq without parent should be put
372 * at the tail of the list.
373 */
374 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
375 &rq->leaf_cfs_rq_list);
376 /*
377 * We have reach the top of a tree so we can reset
378 * tmp_alone_branch to the beginning of the list.
379 */
380 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
381 return true;
382 }
383
384 /*
385 * The parent has not already been added so we want to
386 * make sure that it will be put after us.
387 * tmp_alone_branch points to the begin of the branch
388 * where we will add parent.
389 */
390 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
391 /*
392 * update tmp_alone_branch to points to the new begin
393 * of the branch
394 */
395 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
396 return false;
397 }
398
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)399 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
400 {
401 if (cfs_rq->on_list) {
402 struct rq *rq = rq_of(cfs_rq);
403
404 /*
405 * With cfs_rq being unthrottled/throttled during an enqueue,
406 * it can happen the tmp_alone_branch points the a leaf that
407 * we finally want to del. In this case, tmp_alone_branch moves
408 * to the prev element but it will point to rq->leaf_cfs_rq_list
409 * at the end of the enqueue.
410 */
411 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
412 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
413
414 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
415 cfs_rq->on_list = 0;
416 }
417 }
418
assert_list_leaf_cfs_rq(struct rq * rq)419 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
420 {
421 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
422 }
423
424 /* Iterate thr' all leaf cfs_rq's on a runqueue */
425 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
426 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
427 leaf_cfs_rq_list)
428
429 /* Do the two (enqueued) entities belong to the same group ? */
430 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)431 is_same_group(struct sched_entity *se, struct sched_entity *pse)
432 {
433 if (se->cfs_rq == pse->cfs_rq)
434 return se->cfs_rq;
435
436 return NULL;
437 }
438
parent_entity(const struct sched_entity * se)439 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
440 {
441 return se->parent;
442 }
443
444 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)445 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
446 {
447 int se_depth, pse_depth;
448
449 /*
450 * preemption test can be made between sibling entities who are in the
451 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
452 * both tasks until we find their ancestors who are siblings of common
453 * parent.
454 */
455
456 /* First walk up until both entities are at same depth */
457 se_depth = (*se)->depth;
458 pse_depth = (*pse)->depth;
459
460 while (se_depth > pse_depth) {
461 se_depth--;
462 *se = parent_entity(*se);
463 }
464
465 while (pse_depth > se_depth) {
466 pse_depth--;
467 *pse = parent_entity(*pse);
468 }
469
470 while (!is_same_group(*se, *pse)) {
471 *se = parent_entity(*se);
472 *pse = parent_entity(*pse);
473 }
474 }
475
tg_is_idle(struct task_group * tg)476 static int tg_is_idle(struct task_group *tg)
477 {
478 return tg->idle > 0;
479 }
480
cfs_rq_is_idle(struct cfs_rq * cfs_rq)481 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
482 {
483 return cfs_rq->idle > 0;
484 }
485
se_is_idle(struct sched_entity * se)486 static int se_is_idle(struct sched_entity *se)
487 {
488 if (entity_is_task(se))
489 return task_has_idle_policy(task_of(se));
490 return cfs_rq_is_idle(group_cfs_rq(se));
491 }
492
493 #else /* !CONFIG_FAIR_GROUP_SCHED */
494
495 #define for_each_sched_entity(se) \
496 for (; se; se = NULL)
497
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)498 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
499 {
500 return true;
501 }
502
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)503 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
504 {
505 }
506
assert_list_leaf_cfs_rq(struct rq * rq)507 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
508 {
509 }
510
511 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
512 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
513
parent_entity(struct sched_entity * se)514 static inline struct sched_entity *parent_entity(struct sched_entity *se)
515 {
516 return NULL;
517 }
518
519 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)520 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
521 {
522 }
523
tg_is_idle(struct task_group * tg)524 static inline int tg_is_idle(struct task_group *tg)
525 {
526 return 0;
527 }
528
cfs_rq_is_idle(struct cfs_rq * cfs_rq)529 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
530 {
531 return 0;
532 }
533
se_is_idle(struct sched_entity * se)534 static int se_is_idle(struct sched_entity *se)
535 {
536 return task_has_idle_policy(task_of(se));
537 }
538
539 #endif /* CONFIG_FAIR_GROUP_SCHED */
540
541 static __always_inline
542 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
543
544 /**************************************************************
545 * Scheduling class tree data structure manipulation methods:
546 */
547
max_vruntime(u64 max_vruntime,u64 vruntime)548 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
549 {
550 s64 delta = (s64)(vruntime - max_vruntime);
551 if (delta > 0)
552 max_vruntime = vruntime;
553
554 return max_vruntime;
555 }
556
min_vruntime(u64 min_vruntime,u64 vruntime)557 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
558 {
559 s64 delta = (s64)(vruntime - min_vruntime);
560 if (delta < 0)
561 min_vruntime = vruntime;
562
563 return min_vruntime;
564 }
565
entity_before(const struct sched_entity * a,const struct sched_entity * b)566 static inline bool entity_before(const struct sched_entity *a,
567 const struct sched_entity *b)
568 {
569 return (s64)(a->vruntime - b->vruntime) < 0;
570 }
571
entity_key(struct cfs_rq * cfs_rq,struct sched_entity * se)572 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
573 {
574 return (s64)(se->vruntime - cfs_rq->min_vruntime);
575 }
576
577 #define __node_2_se(node) \
578 rb_entry((node), struct sched_entity, run_node)
579
580 /*
581 * Compute virtual time from the per-task service numbers:
582 *
583 * Fair schedulers conserve lag:
584 *
585 * \Sum lag_i = 0
586 *
587 * Where lag_i is given by:
588 *
589 * lag_i = S - s_i = w_i * (V - v_i)
590 *
591 * Where S is the ideal service time and V is it's virtual time counterpart.
592 * Therefore:
593 *
594 * \Sum lag_i = 0
595 * \Sum w_i * (V - v_i) = 0
596 * \Sum w_i * V - w_i * v_i = 0
597 *
598 * From which we can solve an expression for V in v_i (which we have in
599 * se->vruntime):
600 *
601 * \Sum v_i * w_i \Sum v_i * w_i
602 * V = -------------- = --------------
603 * \Sum w_i W
604 *
605 * Specifically, this is the weighted average of all entity virtual runtimes.
606 *
607 * [[ NOTE: this is only equal to the ideal scheduler under the condition
608 * that join/leave operations happen at lag_i = 0, otherwise the
609 * virtual time has non-continguous motion equivalent to:
610 *
611 * V +-= lag_i / W
612 *
613 * Also see the comment in place_entity() that deals with this. ]]
614 *
615 * However, since v_i is u64, and the multiplcation could easily overflow
616 * transform it into a relative form that uses smaller quantities:
617 *
618 * Substitute: v_i == (v_i - v0) + v0
619 *
620 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i
621 * V = ---------------------------- = --------------------- + v0
622 * W W
623 *
624 * Which we track using:
625 *
626 * v0 := cfs_rq->min_vruntime
627 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
628 * \Sum w_i := cfs_rq->avg_load
629 *
630 * Since min_vruntime is a monotonic increasing variable that closely tracks
631 * the per-task service, these deltas: (v_i - v), will be in the order of the
632 * maximal (virtual) lag induced in the system due to quantisation.
633 *
634 * Also, we use scale_load_down() to reduce the size.
635 *
636 * As measured, the max (key * weight) value was ~44 bits for a kernel build.
637 */
638 static void
avg_vruntime_add(struct cfs_rq * cfs_rq,struct sched_entity * se)639 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
640 {
641 unsigned long weight = scale_load_down(se->load.weight);
642 s64 key = entity_key(cfs_rq, se);
643
644 cfs_rq->avg_vruntime += key * weight;
645 cfs_rq->avg_load += weight;
646 }
647
648 static void
avg_vruntime_sub(struct cfs_rq * cfs_rq,struct sched_entity * se)649 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
650 {
651 unsigned long weight = scale_load_down(se->load.weight);
652 s64 key = entity_key(cfs_rq, se);
653
654 cfs_rq->avg_vruntime -= key * weight;
655 cfs_rq->avg_load -= weight;
656 }
657
658 static inline
avg_vruntime_update(struct cfs_rq * cfs_rq,s64 delta)659 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
660 {
661 /*
662 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
663 */
664 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
665 }
666
667 /*
668 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
669 * For this to be so, the result of this function must have a left bias.
670 */
avg_vruntime(struct cfs_rq * cfs_rq)671 u64 avg_vruntime(struct cfs_rq *cfs_rq)
672 {
673 struct sched_entity *curr = cfs_rq->curr;
674 s64 avg = cfs_rq->avg_vruntime;
675 long load = cfs_rq->avg_load;
676
677 if (curr && curr->on_rq) {
678 unsigned long weight = scale_load_down(curr->load.weight);
679
680 avg += entity_key(cfs_rq, curr) * weight;
681 load += weight;
682 }
683
684 if (load) {
685 /* sign flips effective floor / ceil */
686 if (avg < 0)
687 avg -= (load - 1);
688 avg = div_s64(avg, load);
689 }
690
691 return cfs_rq->min_vruntime + avg;
692 }
693
694 /*
695 * lag_i = S - s_i = w_i * (V - v_i)
696 *
697 * However, since V is approximated by the weighted average of all entities it
698 * is possible -- by addition/removal/reweight to the tree -- to move V around
699 * and end up with a larger lag than we started with.
700 *
701 * Limit this to either double the slice length with a minimum of TICK_NSEC
702 * since that is the timing granularity.
703 *
704 * EEVDF gives the following limit for a steady state system:
705 *
706 * -r_max < lag < max(r_max, q)
707 *
708 * XXX could add max_slice to the augmented data to track this.
709 */
entity_lag(u64 avruntime,struct sched_entity * se)710 static s64 entity_lag(u64 avruntime, struct sched_entity *se)
711 {
712 s64 vlag, limit;
713
714 vlag = avruntime - se->vruntime;
715 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
716
717 return clamp(vlag, -limit, limit);
718 }
719
update_entity_lag(struct cfs_rq * cfs_rq,struct sched_entity * se)720 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
721 {
722 SCHED_WARN_ON(!se->on_rq);
723
724 se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
725 }
726
727 /*
728 * Entity is eligible once it received less service than it ought to have,
729 * eg. lag >= 0.
730 *
731 * lag_i = S - s_i = w_i*(V - v_i)
732 *
733 * lag_i >= 0 -> V >= v_i
734 *
735 * \Sum (v_i - v)*w_i
736 * V = ------------------ + v
737 * \Sum w_i
738 *
739 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
740 *
741 * Note: using 'avg_vruntime() > se->vruntime' is inacurate due
742 * to the loss in precision caused by the division.
743 */
entity_eligible(struct cfs_rq * cfs_rq,struct sched_entity * se)744 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
745 {
746 struct sched_entity *curr = cfs_rq->curr;
747 s64 avg = cfs_rq->avg_vruntime;
748 long load = cfs_rq->avg_load;
749
750 if (curr && curr->on_rq) {
751 unsigned long weight = scale_load_down(curr->load.weight);
752
753 avg += entity_key(cfs_rq, curr) * weight;
754 load += weight;
755 }
756
757 return avg >= entity_key(cfs_rq, se) * load;
758 }
759
__update_min_vruntime(struct cfs_rq * cfs_rq,u64 vruntime)760 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
761 {
762 u64 min_vruntime = cfs_rq->min_vruntime;
763 /*
764 * open coded max_vruntime() to allow updating avg_vruntime
765 */
766 s64 delta = (s64)(vruntime - min_vruntime);
767 if (delta > 0) {
768 avg_vruntime_update(cfs_rq, delta);
769 min_vruntime = vruntime;
770 }
771 return min_vruntime;
772 }
773
update_min_vruntime(struct cfs_rq * cfs_rq)774 static void update_min_vruntime(struct cfs_rq *cfs_rq)
775 {
776 struct sched_entity *se = __pick_first_entity(cfs_rq);
777 struct sched_entity *curr = cfs_rq->curr;
778
779 u64 vruntime = cfs_rq->min_vruntime;
780
781 if (curr) {
782 if (curr->on_rq)
783 vruntime = curr->vruntime;
784 else
785 curr = NULL;
786 }
787
788 if (se) {
789 if (!curr)
790 vruntime = se->vruntime;
791 else
792 vruntime = min_vruntime(vruntime, se->vruntime);
793 }
794
795 /* ensure we never gain time by being placed backwards. */
796 u64_u32_store(cfs_rq->min_vruntime,
797 __update_min_vruntime(cfs_rq, vruntime));
798 }
799
__entity_less(struct rb_node * a,const struct rb_node * b)800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
801 {
802 return entity_before(__node_2_se(a), __node_2_se(b));
803 }
804
805 #define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
806
__update_min_deadline(struct sched_entity * se,struct rb_node * node)807 static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node)
808 {
809 if (node) {
810 struct sched_entity *rse = __node_2_se(node);
811 if (deadline_gt(min_deadline, se, rse))
812 se->min_deadline = rse->min_deadline;
813 }
814 }
815
816 /*
817 * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline)
818 */
min_deadline_update(struct sched_entity * se,bool exit)819 static inline bool min_deadline_update(struct sched_entity *se, bool exit)
820 {
821 u64 old_min_deadline = se->min_deadline;
822 struct rb_node *node = &se->run_node;
823
824 se->min_deadline = se->deadline;
825 __update_min_deadline(se, node->rb_right);
826 __update_min_deadline(se, node->rb_left);
827
828 return se->min_deadline == old_min_deadline;
829 }
830
831 RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity,
832 run_node, min_deadline, min_deadline_update);
833
834 /*
835 * Enqueue an entity into the rb-tree:
836 */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)837 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
838 {
839 avg_vruntime_add(cfs_rq, se);
840 se->min_deadline = se->deadline;
841 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
842 __entity_less, &min_deadline_cb);
843 }
844
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)845 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
846 {
847 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
848 &min_deadline_cb);
849 avg_vruntime_sub(cfs_rq, se);
850 }
851
__pick_first_entity(struct cfs_rq * cfs_rq)852 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
853 {
854 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
855
856 if (!left)
857 return NULL;
858
859 return __node_2_se(left);
860 }
861
862 /*
863 * Earliest Eligible Virtual Deadline First
864 *
865 * In order to provide latency guarantees for different request sizes
866 * EEVDF selects the best runnable task from two criteria:
867 *
868 * 1) the task must be eligible (must be owed service)
869 *
870 * 2) from those tasks that meet 1), we select the one
871 * with the earliest virtual deadline.
872 *
873 * We can do this in O(log n) time due to an augmented RB-tree. The
874 * tree keeps the entries sorted on service, but also functions as a
875 * heap based on the deadline by keeping:
876 *
877 * se->min_deadline = min(se->deadline, se->{left,right}->min_deadline)
878 *
879 * Which allows an EDF like search on (sub)trees.
880 */
__pick_eevdf(struct cfs_rq * cfs_rq)881 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq)
882 {
883 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
884 struct sched_entity *curr = cfs_rq->curr;
885 struct sched_entity *best = NULL;
886 struct sched_entity *best_left = NULL;
887
888 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
889 curr = NULL;
890 best = curr;
891
892 /*
893 * Once selected, run a task until it either becomes non-eligible or
894 * until it gets a new slice. See the HACK in set_next_entity().
895 */
896 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
897 return curr;
898
899 while (node) {
900 struct sched_entity *se = __node_2_se(node);
901
902 /*
903 * If this entity is not eligible, try the left subtree.
904 */
905 if (!entity_eligible(cfs_rq, se)) {
906 node = node->rb_left;
907 continue;
908 }
909
910 /*
911 * Now we heap search eligible trees for the best (min_)deadline
912 */
913 if (!best || deadline_gt(deadline, best, se))
914 best = se;
915
916 /*
917 * Every se in a left branch is eligible, keep track of the
918 * branch with the best min_deadline
919 */
920 if (node->rb_left) {
921 struct sched_entity *left = __node_2_se(node->rb_left);
922
923 if (!best_left || deadline_gt(min_deadline, best_left, left))
924 best_left = left;
925
926 /*
927 * min_deadline is in the left branch. rb_left and all
928 * descendants are eligible, so immediately switch to the second
929 * loop.
930 */
931 if (left->min_deadline == se->min_deadline)
932 break;
933 }
934
935 /* min_deadline is at this node, no need to look right */
936 if (se->deadline == se->min_deadline)
937 break;
938
939 /* else min_deadline is in the right branch. */
940 node = node->rb_right;
941 }
942
943 /*
944 * We ran into an eligible node which is itself the best.
945 * (Or nr_running == 0 and both are NULL)
946 */
947 if (!best_left || (s64)(best_left->min_deadline - best->deadline) > 0)
948 return best;
949
950 /*
951 * Now best_left and all of its children are eligible, and we are just
952 * looking for deadline == min_deadline
953 */
954 node = &best_left->run_node;
955 while (node) {
956 struct sched_entity *se = __node_2_se(node);
957
958 /* min_deadline is the current node */
959 if (se->deadline == se->min_deadline)
960 return se;
961
962 /* min_deadline is in the left branch */
963 if (node->rb_left &&
964 __node_2_se(node->rb_left)->min_deadline == se->min_deadline) {
965 node = node->rb_left;
966 continue;
967 }
968
969 /* else min_deadline is in the right branch */
970 node = node->rb_right;
971 }
972 return NULL;
973 }
974
pick_eevdf(struct cfs_rq * cfs_rq)975 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
976 {
977 struct sched_entity *se = __pick_eevdf(cfs_rq);
978
979 if (!se) {
980 struct sched_entity *left = __pick_first_entity(cfs_rq);
981 if (left) {
982 pr_err("EEVDF scheduling fail, picking leftmost\n");
983 return left;
984 }
985 }
986
987 return se;
988 }
989
990 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)991 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
992 {
993 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
994
995 if (!last)
996 return NULL;
997
998 return __node_2_se(last);
999 }
1000
1001 /**************************************************************
1002 * Scheduling class statistics methods:
1003 */
1004 #ifdef CONFIG_SMP
sched_update_scaling(void)1005 int sched_update_scaling(void)
1006 {
1007 unsigned int factor = get_update_sysctl_factor();
1008
1009 #define WRT_SYSCTL(name) \
1010 (normalized_sysctl_##name = sysctl_##name / (factor))
1011 WRT_SYSCTL(sched_base_slice);
1012 #undef WRT_SYSCTL
1013
1014 return 0;
1015 }
1016 #endif
1017 #endif
1018
1019 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1020
1021 /*
1022 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1023 * this is probably good enough.
1024 */
update_deadline(struct cfs_rq * cfs_rq,struct sched_entity * se)1025 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1026 {
1027 if ((s64)(se->vruntime - se->deadline) < 0)
1028 return;
1029
1030 /*
1031 * For EEVDF the virtual time slope is determined by w_i (iow.
1032 * nice) while the request time r_i is determined by
1033 * sysctl_sched_base_slice.
1034 */
1035 se->slice = sysctl_sched_base_slice;
1036
1037 /*
1038 * EEVDF: vd_i = ve_i + r_i / w_i
1039 */
1040 se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1041
1042 /*
1043 * The task has consumed its request, reschedule.
1044 */
1045 if (cfs_rq->nr_running > 1) {
1046 resched_curr(rq_of(cfs_rq));
1047 clear_buddies(cfs_rq, se);
1048 }
1049 }
1050
1051 #include "pelt.h"
1052 #ifdef CONFIG_SMP
1053
1054 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1055 static unsigned long task_h_load(struct task_struct *p);
1056 static unsigned long capacity_of(int cpu);
1057
1058 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)1059 void init_entity_runnable_average(struct sched_entity *se)
1060 {
1061 struct sched_avg *sa = &se->avg;
1062
1063 memset(sa, 0, sizeof(*sa));
1064
1065 /*
1066 * Tasks are initialized with full load to be seen as heavy tasks until
1067 * they get a chance to stabilize to their real load level.
1068 * Group entities are initialized with zero load to reflect the fact that
1069 * nothing has been attached to the task group yet.
1070 */
1071 if (entity_is_task(se))
1072 sa->load_avg = scale_load_down(se->load.weight);
1073
1074 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
1075 }
1076
1077 /*
1078 * With new tasks being created, their initial util_avgs are extrapolated
1079 * based on the cfs_rq's current util_avg:
1080 *
1081 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
1082 *
1083 * However, in many cases, the above util_avg does not give a desired
1084 * value. Moreover, the sum of the util_avgs may be divergent, such
1085 * as when the series is a harmonic series.
1086 *
1087 * To solve this problem, we also cap the util_avg of successive tasks to
1088 * only 1/2 of the left utilization budget:
1089 *
1090 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1091 *
1092 * where n denotes the nth task and cpu_scale the CPU capacity.
1093 *
1094 * For example, for a CPU with 1024 of capacity, a simplest series from
1095 * the beginning would be like:
1096 *
1097 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
1098 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1099 *
1100 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1101 * if util_avg > util_avg_cap.
1102 */
post_init_entity_util_avg(struct task_struct * p)1103 void post_init_entity_util_avg(struct task_struct *p)
1104 {
1105 struct sched_entity *se = &p->se;
1106 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1107 struct sched_avg *sa = &se->avg;
1108 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1109 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1110
1111 if (p->sched_class != &fair_sched_class) {
1112 /*
1113 * For !fair tasks do:
1114 *
1115 update_cfs_rq_load_avg(now, cfs_rq);
1116 attach_entity_load_avg(cfs_rq, se);
1117 switched_from_fair(rq, p);
1118 *
1119 * such that the next switched_to_fair() has the
1120 * expected state.
1121 */
1122 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1123 return;
1124 }
1125
1126 if (cap > 0) {
1127 if (cfs_rq->avg.util_avg != 0) {
1128 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
1129 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1130
1131 if (sa->util_avg > cap)
1132 sa->util_avg = cap;
1133 } else {
1134 sa->util_avg = cap;
1135 }
1136 }
1137
1138 sa->runnable_avg = sa->util_avg;
1139 }
1140
1141 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)1142 void init_entity_runnable_average(struct sched_entity *se)
1143 {
1144 }
post_init_entity_util_avg(struct task_struct * p)1145 void post_init_entity_util_avg(struct task_struct *p)
1146 {
1147 }
update_tg_load_avg(struct cfs_rq * cfs_rq)1148 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1149 {
1150 }
1151 #endif /* CONFIG_SMP */
1152
1153 /*
1154 * Update the current task's runtime statistics.
1155 */
update_curr(struct cfs_rq * cfs_rq)1156 static void update_curr(struct cfs_rq *cfs_rq)
1157 {
1158 struct sched_entity *curr = cfs_rq->curr;
1159 u64 now = rq_clock_task(rq_of(cfs_rq));
1160 u64 delta_exec;
1161
1162 if (unlikely(!curr))
1163 return;
1164
1165 delta_exec = now - curr->exec_start;
1166 if (unlikely((s64)delta_exec <= 0))
1167 return;
1168
1169 curr->exec_start = now;
1170
1171 if (schedstat_enabled()) {
1172 struct sched_statistics *stats;
1173
1174 stats = __schedstats_from_se(curr);
1175 __schedstat_set(stats->exec_max,
1176 max(delta_exec, stats->exec_max));
1177 }
1178
1179 curr->sum_exec_runtime += delta_exec;
1180 schedstat_add(cfs_rq->exec_clock, delta_exec);
1181
1182 curr->vruntime += calc_delta_fair(delta_exec, curr);
1183 update_deadline(cfs_rq, curr);
1184 update_min_vruntime(cfs_rq);
1185
1186 if (entity_is_task(curr)) {
1187 struct task_struct *curtask = task_of(curr);
1188
1189 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
1190 cgroup_account_cputime(curtask, delta_exec);
1191 account_group_exec_runtime(curtask, delta_exec);
1192 }
1193
1194 account_cfs_rq_runtime(cfs_rq, delta_exec);
1195 }
1196
update_curr_fair(struct rq * rq)1197 static void update_curr_fair(struct rq *rq)
1198 {
1199 update_curr(cfs_rq_of(&rq->curr->se));
1200 }
1201
1202 static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1203 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1204 {
1205 struct sched_statistics *stats;
1206 struct task_struct *p = NULL;
1207
1208 if (!schedstat_enabled())
1209 return;
1210
1211 stats = __schedstats_from_se(se);
1212
1213 if (entity_is_task(se))
1214 p = task_of(se);
1215
1216 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
1217 }
1218
1219 static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1220 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1221 {
1222 struct sched_statistics *stats;
1223 struct task_struct *p = NULL;
1224
1225 if (!schedstat_enabled())
1226 return;
1227
1228 stats = __schedstats_from_se(se);
1229
1230 /*
1231 * When the sched_schedstat changes from 0 to 1, some sched se
1232 * maybe already in the runqueue, the se->statistics.wait_start
1233 * will be 0.So it will let the delta wrong. We need to avoid this
1234 * scenario.
1235 */
1236 if (unlikely(!schedstat_val(stats->wait_start)))
1237 return;
1238
1239 if (entity_is_task(se))
1240 p = task_of(se);
1241
1242 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
1243 }
1244
1245 static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1246 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1247 {
1248 struct sched_statistics *stats;
1249 struct task_struct *tsk = NULL;
1250
1251 if (!schedstat_enabled())
1252 return;
1253
1254 stats = __schedstats_from_se(se);
1255
1256 if (entity_is_task(se))
1257 tsk = task_of(se);
1258
1259 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1260 }
1261
1262 /*
1263 * Task is being enqueued - update stats:
1264 */
1265 static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1266 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1267 {
1268 if (!schedstat_enabled())
1269 return;
1270
1271 /*
1272 * Are we enqueueing a waiting task? (for current tasks
1273 * a dequeue/enqueue event is a NOP)
1274 */
1275 if (se != cfs_rq->curr)
1276 update_stats_wait_start_fair(cfs_rq, se);
1277
1278 if (flags & ENQUEUE_WAKEUP)
1279 update_stats_enqueue_sleeper_fair(cfs_rq, se);
1280 }
1281
1282 static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1283 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1284 {
1285
1286 if (!schedstat_enabled())
1287 return;
1288
1289 /*
1290 * Mark the end of the wait period if dequeueing a
1291 * waiting task:
1292 */
1293 if (se != cfs_rq->curr)
1294 update_stats_wait_end_fair(cfs_rq, se);
1295
1296 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1297 struct task_struct *tsk = task_of(se);
1298 unsigned int state;
1299
1300 /* XXX racy against TTWU */
1301 state = READ_ONCE(tsk->__state);
1302 if (state & TASK_INTERRUPTIBLE)
1303 __schedstat_set(tsk->stats.sleep_start,
1304 rq_clock(rq_of(cfs_rq)));
1305 if (state & TASK_UNINTERRUPTIBLE)
1306 __schedstat_set(tsk->stats.block_start,
1307 rq_clock(rq_of(cfs_rq)));
1308 }
1309 }
1310
1311 /*
1312 * We are picking a new current task - update its stats:
1313 */
1314 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1315 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1316 {
1317 /*
1318 * We are starting a new run period:
1319 */
1320 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1321 }
1322
1323 /**************************************************
1324 * Scheduling class queueing methods:
1325 */
1326
is_core_idle(int cpu)1327 static inline bool is_core_idle(int cpu)
1328 {
1329 #ifdef CONFIG_SCHED_SMT
1330 int sibling;
1331
1332 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1333 if (cpu == sibling)
1334 continue;
1335
1336 if (!idle_cpu(sibling))
1337 return false;
1338 }
1339 #endif
1340
1341 return true;
1342 }
1343
1344 #ifdef CONFIG_NUMA
1345 #define NUMA_IMBALANCE_MIN 2
1346
1347 static inline long
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)1348 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1349 {
1350 /*
1351 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1352 * threshold. Above this threshold, individual tasks may be contending
1353 * for both memory bandwidth and any shared HT resources. This is an
1354 * approximation as the number of running tasks may not be related to
1355 * the number of busy CPUs due to sched_setaffinity.
1356 */
1357 if (dst_running > imb_numa_nr)
1358 return imbalance;
1359
1360 /*
1361 * Allow a small imbalance based on a simple pair of communicating
1362 * tasks that remain local when the destination is lightly loaded.
1363 */
1364 if (imbalance <= NUMA_IMBALANCE_MIN)
1365 return 0;
1366
1367 return imbalance;
1368 }
1369 #endif /* CONFIG_NUMA */
1370
1371 #ifdef CONFIG_NUMA_BALANCING
1372 /*
1373 * Approximate time to scan a full NUMA task in ms. The task scan period is
1374 * calculated based on the tasks virtual memory size and
1375 * numa_balancing_scan_size.
1376 */
1377 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1378 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1379
1380 /* Portion of address space to scan in MB */
1381 unsigned int sysctl_numa_balancing_scan_size = 256;
1382
1383 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1384 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1385
1386 /* The page with hint page fault latency < threshold in ms is considered hot */
1387 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1388
1389 struct numa_group {
1390 refcount_t refcount;
1391
1392 spinlock_t lock; /* nr_tasks, tasks */
1393 int nr_tasks;
1394 pid_t gid;
1395 int active_nodes;
1396
1397 struct rcu_head rcu;
1398 unsigned long total_faults;
1399 unsigned long max_faults_cpu;
1400 /*
1401 * faults[] array is split into two regions: faults_mem and faults_cpu.
1402 *
1403 * Faults_cpu is used to decide whether memory should move
1404 * towards the CPU. As a consequence, these stats are weighted
1405 * more by CPU use than by memory faults.
1406 */
1407 unsigned long faults[];
1408 };
1409
1410 /*
1411 * For functions that can be called in multiple contexts that permit reading
1412 * ->numa_group (see struct task_struct for locking rules).
1413 */
deref_task_numa_group(struct task_struct * p)1414 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1415 {
1416 return rcu_dereference_check(p->numa_group, p == current ||
1417 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1418 }
1419
deref_curr_numa_group(struct task_struct * p)1420 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1421 {
1422 return rcu_dereference_protected(p->numa_group, p == current);
1423 }
1424
1425 static inline unsigned long group_faults_priv(struct numa_group *ng);
1426 static inline unsigned long group_faults_shared(struct numa_group *ng);
1427
task_nr_scan_windows(struct task_struct * p)1428 static unsigned int task_nr_scan_windows(struct task_struct *p)
1429 {
1430 unsigned long rss = 0;
1431 unsigned long nr_scan_pages;
1432
1433 /*
1434 * Calculations based on RSS as non-present and empty pages are skipped
1435 * by the PTE scanner and NUMA hinting faults should be trapped based
1436 * on resident pages
1437 */
1438 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1439 rss = get_mm_rss(p->mm);
1440 if (!rss)
1441 rss = nr_scan_pages;
1442
1443 rss = round_up(rss, nr_scan_pages);
1444 return rss / nr_scan_pages;
1445 }
1446
1447 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1448 #define MAX_SCAN_WINDOW 2560
1449
task_scan_min(struct task_struct * p)1450 static unsigned int task_scan_min(struct task_struct *p)
1451 {
1452 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1453 unsigned int scan, floor;
1454 unsigned int windows = 1;
1455
1456 if (scan_size < MAX_SCAN_WINDOW)
1457 windows = MAX_SCAN_WINDOW / scan_size;
1458 floor = 1000 / windows;
1459
1460 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1461 return max_t(unsigned int, floor, scan);
1462 }
1463
task_scan_start(struct task_struct * p)1464 static unsigned int task_scan_start(struct task_struct *p)
1465 {
1466 unsigned long smin = task_scan_min(p);
1467 unsigned long period = smin;
1468 struct numa_group *ng;
1469
1470 /* Scale the maximum scan period with the amount of shared memory. */
1471 rcu_read_lock();
1472 ng = rcu_dereference(p->numa_group);
1473 if (ng) {
1474 unsigned long shared = group_faults_shared(ng);
1475 unsigned long private = group_faults_priv(ng);
1476
1477 period *= refcount_read(&ng->refcount);
1478 period *= shared + 1;
1479 period /= private + shared + 1;
1480 }
1481 rcu_read_unlock();
1482
1483 return max(smin, period);
1484 }
1485
task_scan_max(struct task_struct * p)1486 static unsigned int task_scan_max(struct task_struct *p)
1487 {
1488 unsigned long smin = task_scan_min(p);
1489 unsigned long smax;
1490 struct numa_group *ng;
1491
1492 /* Watch for min being lower than max due to floor calculations */
1493 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1494
1495 /* Scale the maximum scan period with the amount of shared memory. */
1496 ng = deref_curr_numa_group(p);
1497 if (ng) {
1498 unsigned long shared = group_faults_shared(ng);
1499 unsigned long private = group_faults_priv(ng);
1500 unsigned long period = smax;
1501
1502 period *= refcount_read(&ng->refcount);
1503 period *= shared + 1;
1504 period /= private + shared + 1;
1505
1506 smax = max(smax, period);
1507 }
1508
1509 return max(smin, smax);
1510 }
1511
account_numa_enqueue(struct rq * rq,struct task_struct * p)1512 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1513 {
1514 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1515 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1516 }
1517
account_numa_dequeue(struct rq * rq,struct task_struct * p)1518 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1519 {
1520 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1521 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1522 }
1523
1524 /* Shared or private faults. */
1525 #define NR_NUMA_HINT_FAULT_TYPES 2
1526
1527 /* Memory and CPU locality */
1528 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1529
1530 /* Averaged statistics, and temporary buffers. */
1531 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1532
task_numa_group_id(struct task_struct * p)1533 pid_t task_numa_group_id(struct task_struct *p)
1534 {
1535 struct numa_group *ng;
1536 pid_t gid = 0;
1537
1538 rcu_read_lock();
1539 ng = rcu_dereference(p->numa_group);
1540 if (ng)
1541 gid = ng->gid;
1542 rcu_read_unlock();
1543
1544 return gid;
1545 }
1546
1547 /*
1548 * The averaged statistics, shared & private, memory & CPU,
1549 * occupy the first half of the array. The second half of the
1550 * array is for current counters, which are averaged into the
1551 * first set by task_numa_placement.
1552 */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1553 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1554 {
1555 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1556 }
1557
task_faults(struct task_struct * p,int nid)1558 static inline unsigned long task_faults(struct task_struct *p, int nid)
1559 {
1560 if (!p->numa_faults)
1561 return 0;
1562
1563 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1564 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1565 }
1566
group_faults(struct task_struct * p,int nid)1567 static inline unsigned long group_faults(struct task_struct *p, int nid)
1568 {
1569 struct numa_group *ng = deref_task_numa_group(p);
1570
1571 if (!ng)
1572 return 0;
1573
1574 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1575 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1576 }
1577
group_faults_cpu(struct numa_group * group,int nid)1578 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1579 {
1580 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1581 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1582 }
1583
group_faults_priv(struct numa_group * ng)1584 static inline unsigned long group_faults_priv(struct numa_group *ng)
1585 {
1586 unsigned long faults = 0;
1587 int node;
1588
1589 for_each_online_node(node) {
1590 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1591 }
1592
1593 return faults;
1594 }
1595
group_faults_shared(struct numa_group * ng)1596 static inline unsigned long group_faults_shared(struct numa_group *ng)
1597 {
1598 unsigned long faults = 0;
1599 int node;
1600
1601 for_each_online_node(node) {
1602 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1603 }
1604
1605 return faults;
1606 }
1607
1608 /*
1609 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1610 * considered part of a numa group's pseudo-interleaving set. Migrations
1611 * between these nodes are slowed down, to allow things to settle down.
1612 */
1613 #define ACTIVE_NODE_FRACTION 3
1614
numa_is_active_node(int nid,struct numa_group * ng)1615 static bool numa_is_active_node(int nid, struct numa_group *ng)
1616 {
1617 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1618 }
1619
1620 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1621 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1622 int lim_dist, bool task)
1623 {
1624 unsigned long score = 0;
1625 int node, max_dist;
1626
1627 /*
1628 * All nodes are directly connected, and the same distance
1629 * from each other. No need for fancy placement algorithms.
1630 */
1631 if (sched_numa_topology_type == NUMA_DIRECT)
1632 return 0;
1633
1634 /* sched_max_numa_distance may be changed in parallel. */
1635 max_dist = READ_ONCE(sched_max_numa_distance);
1636 /*
1637 * This code is called for each node, introducing N^2 complexity,
1638 * which should be ok given the number of nodes rarely exceeds 8.
1639 */
1640 for_each_online_node(node) {
1641 unsigned long faults;
1642 int dist = node_distance(nid, node);
1643
1644 /*
1645 * The furthest away nodes in the system are not interesting
1646 * for placement; nid was already counted.
1647 */
1648 if (dist >= max_dist || node == nid)
1649 continue;
1650
1651 /*
1652 * On systems with a backplane NUMA topology, compare groups
1653 * of nodes, and move tasks towards the group with the most
1654 * memory accesses. When comparing two nodes at distance
1655 * "hoplimit", only nodes closer by than "hoplimit" are part
1656 * of each group. Skip other nodes.
1657 */
1658 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1659 continue;
1660
1661 /* Add up the faults from nearby nodes. */
1662 if (task)
1663 faults = task_faults(p, node);
1664 else
1665 faults = group_faults(p, node);
1666
1667 /*
1668 * On systems with a glueless mesh NUMA topology, there are
1669 * no fixed "groups of nodes". Instead, nodes that are not
1670 * directly connected bounce traffic through intermediate
1671 * nodes; a numa_group can occupy any set of nodes.
1672 * The further away a node is, the less the faults count.
1673 * This seems to result in good task placement.
1674 */
1675 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1676 faults *= (max_dist - dist);
1677 faults /= (max_dist - LOCAL_DISTANCE);
1678 }
1679
1680 score += faults;
1681 }
1682
1683 return score;
1684 }
1685
1686 /*
1687 * These return the fraction of accesses done by a particular task, or
1688 * task group, on a particular numa node. The group weight is given a
1689 * larger multiplier, in order to group tasks together that are almost
1690 * evenly spread out between numa nodes.
1691 */
task_weight(struct task_struct * p,int nid,int dist)1692 static inline unsigned long task_weight(struct task_struct *p, int nid,
1693 int dist)
1694 {
1695 unsigned long faults, total_faults;
1696
1697 if (!p->numa_faults)
1698 return 0;
1699
1700 total_faults = p->total_numa_faults;
1701
1702 if (!total_faults)
1703 return 0;
1704
1705 faults = task_faults(p, nid);
1706 faults += score_nearby_nodes(p, nid, dist, true);
1707
1708 return 1000 * faults / total_faults;
1709 }
1710
group_weight(struct task_struct * p,int nid,int dist)1711 static inline unsigned long group_weight(struct task_struct *p, int nid,
1712 int dist)
1713 {
1714 struct numa_group *ng = deref_task_numa_group(p);
1715 unsigned long faults, total_faults;
1716
1717 if (!ng)
1718 return 0;
1719
1720 total_faults = ng->total_faults;
1721
1722 if (!total_faults)
1723 return 0;
1724
1725 faults = group_faults(p, nid);
1726 faults += score_nearby_nodes(p, nid, dist, false);
1727
1728 return 1000 * faults / total_faults;
1729 }
1730
1731 /*
1732 * If memory tiering mode is enabled, cpupid of slow memory page is
1733 * used to record scan time instead of CPU and PID. When tiering mode
1734 * is disabled at run time, the scan time (in cpupid) will be
1735 * interpreted as CPU and PID. So CPU needs to be checked to avoid to
1736 * access out of array bound.
1737 */
cpupid_valid(int cpupid)1738 static inline bool cpupid_valid(int cpupid)
1739 {
1740 return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1741 }
1742
1743 /*
1744 * For memory tiering mode, if there are enough free pages (more than
1745 * enough watermark defined here) in fast memory node, to take full
1746 * advantage of fast memory capacity, all recently accessed slow
1747 * memory pages will be migrated to fast memory node without
1748 * considering hot threshold.
1749 */
pgdat_free_space_enough(struct pglist_data * pgdat)1750 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1751 {
1752 int z;
1753 unsigned long enough_wmark;
1754
1755 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1756 pgdat->node_present_pages >> 4);
1757 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1758 struct zone *zone = pgdat->node_zones + z;
1759
1760 if (!populated_zone(zone))
1761 continue;
1762
1763 if (zone_watermark_ok(zone, 0,
1764 wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1765 ZONE_MOVABLE, 0))
1766 return true;
1767 }
1768 return false;
1769 }
1770
1771 /*
1772 * For memory tiering mode, when page tables are scanned, the scan
1773 * time will be recorded in struct page in addition to make page
1774 * PROT_NONE for slow memory page. So when the page is accessed, in
1775 * hint page fault handler, the hint page fault latency is calculated
1776 * via,
1777 *
1778 * hint page fault latency = hint page fault time - scan time
1779 *
1780 * The smaller the hint page fault latency, the higher the possibility
1781 * for the page to be hot.
1782 */
numa_hint_fault_latency(struct page * page)1783 static int numa_hint_fault_latency(struct page *page)
1784 {
1785 int last_time, time;
1786
1787 time = jiffies_to_msecs(jiffies);
1788 last_time = xchg_page_access_time(page, time);
1789
1790 return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1791 }
1792
1793 /*
1794 * For memory tiering mode, too high promotion/demotion throughput may
1795 * hurt application latency. So we provide a mechanism to rate limit
1796 * the number of pages that are tried to be promoted.
1797 */
numa_promotion_rate_limit(struct pglist_data * pgdat,unsigned long rate_limit,int nr)1798 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1799 unsigned long rate_limit, int nr)
1800 {
1801 unsigned long nr_cand;
1802 unsigned int now, start;
1803
1804 now = jiffies_to_msecs(jiffies);
1805 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1806 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1807 start = pgdat->nbp_rl_start;
1808 if (now - start > MSEC_PER_SEC &&
1809 cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1810 pgdat->nbp_rl_nr_cand = nr_cand;
1811 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1812 return true;
1813 return false;
1814 }
1815
1816 #define NUMA_MIGRATION_ADJUST_STEPS 16
1817
numa_promotion_adjust_threshold(struct pglist_data * pgdat,unsigned long rate_limit,unsigned int ref_th)1818 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1819 unsigned long rate_limit,
1820 unsigned int ref_th)
1821 {
1822 unsigned int now, start, th_period, unit_th, th;
1823 unsigned long nr_cand, ref_cand, diff_cand;
1824
1825 now = jiffies_to_msecs(jiffies);
1826 th_period = sysctl_numa_balancing_scan_period_max;
1827 start = pgdat->nbp_th_start;
1828 if (now - start > th_period &&
1829 cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1830 ref_cand = rate_limit *
1831 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1832 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1833 diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1834 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1835 th = pgdat->nbp_threshold ? : ref_th;
1836 if (diff_cand > ref_cand * 11 / 10)
1837 th = max(th - unit_th, unit_th);
1838 else if (diff_cand < ref_cand * 9 / 10)
1839 th = min(th + unit_th, ref_th * 2);
1840 pgdat->nbp_th_nr_cand = nr_cand;
1841 pgdat->nbp_threshold = th;
1842 }
1843 }
1844
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1845 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1846 int src_nid, int dst_cpu)
1847 {
1848 struct numa_group *ng = deref_curr_numa_group(p);
1849 int dst_nid = cpu_to_node(dst_cpu);
1850 int last_cpupid, this_cpupid;
1851
1852 /*
1853 * The pages in slow memory node should be migrated according
1854 * to hot/cold instead of private/shared.
1855 */
1856 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1857 !node_is_toptier(src_nid)) {
1858 struct pglist_data *pgdat;
1859 unsigned long rate_limit;
1860 unsigned int latency, th, def_th;
1861
1862 pgdat = NODE_DATA(dst_nid);
1863 if (pgdat_free_space_enough(pgdat)) {
1864 /* workload changed, reset hot threshold */
1865 pgdat->nbp_threshold = 0;
1866 return true;
1867 }
1868
1869 def_th = sysctl_numa_balancing_hot_threshold;
1870 rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1871 (20 - PAGE_SHIFT);
1872 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1873
1874 th = pgdat->nbp_threshold ? : def_th;
1875 latency = numa_hint_fault_latency(page);
1876 if (latency >= th)
1877 return false;
1878
1879 return !numa_promotion_rate_limit(pgdat, rate_limit,
1880 thp_nr_pages(page));
1881 }
1882
1883 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1884 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1885
1886 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1887 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1888 return false;
1889
1890 /*
1891 * Allow first faults or private faults to migrate immediately early in
1892 * the lifetime of a task. The magic number 4 is based on waiting for
1893 * two full passes of the "multi-stage node selection" test that is
1894 * executed below.
1895 */
1896 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1897 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1898 return true;
1899
1900 /*
1901 * Multi-stage node selection is used in conjunction with a periodic
1902 * migration fault to build a temporal task<->page relation. By using
1903 * a two-stage filter we remove short/unlikely relations.
1904 *
1905 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1906 * a task's usage of a particular page (n_p) per total usage of this
1907 * page (n_t) (in a given time-span) to a probability.
1908 *
1909 * Our periodic faults will sample this probability and getting the
1910 * same result twice in a row, given these samples are fully
1911 * independent, is then given by P(n)^2, provided our sample period
1912 * is sufficiently short compared to the usage pattern.
1913 *
1914 * This quadric squishes small probabilities, making it less likely we
1915 * act on an unlikely task<->page relation.
1916 */
1917 if (!cpupid_pid_unset(last_cpupid) &&
1918 cpupid_to_nid(last_cpupid) != dst_nid)
1919 return false;
1920
1921 /* Always allow migrate on private faults */
1922 if (cpupid_match_pid(p, last_cpupid))
1923 return true;
1924
1925 /* A shared fault, but p->numa_group has not been set up yet. */
1926 if (!ng)
1927 return true;
1928
1929 /*
1930 * Destination node is much more heavily used than the source
1931 * node? Allow migration.
1932 */
1933 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1934 ACTIVE_NODE_FRACTION)
1935 return true;
1936
1937 /*
1938 * Distribute memory according to CPU & memory use on each node,
1939 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1940 *
1941 * faults_cpu(dst) 3 faults_cpu(src)
1942 * --------------- * - > ---------------
1943 * faults_mem(dst) 4 faults_mem(src)
1944 */
1945 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1946 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1947 }
1948
1949 /*
1950 * 'numa_type' describes the node at the moment of load balancing.
1951 */
1952 enum numa_type {
1953 /* The node has spare capacity that can be used to run more tasks. */
1954 node_has_spare = 0,
1955 /*
1956 * The node is fully used and the tasks don't compete for more CPU
1957 * cycles. Nevertheless, some tasks might wait before running.
1958 */
1959 node_fully_busy,
1960 /*
1961 * The node is overloaded and can't provide expected CPU cycles to all
1962 * tasks.
1963 */
1964 node_overloaded
1965 };
1966
1967 /* Cached statistics for all CPUs within a node */
1968 struct numa_stats {
1969 unsigned long load;
1970 unsigned long runnable;
1971 unsigned long util;
1972 /* Total compute capacity of CPUs on a node */
1973 unsigned long compute_capacity;
1974 unsigned int nr_running;
1975 unsigned int weight;
1976 enum numa_type node_type;
1977 int idle_cpu;
1978 };
1979
1980 struct task_numa_env {
1981 struct task_struct *p;
1982
1983 int src_cpu, src_nid;
1984 int dst_cpu, dst_nid;
1985 int imb_numa_nr;
1986
1987 struct numa_stats src_stats, dst_stats;
1988
1989 int imbalance_pct;
1990 int dist;
1991
1992 struct task_struct *best_task;
1993 long best_imp;
1994 int best_cpu;
1995 };
1996
1997 static unsigned long cpu_load(struct rq *rq);
1998 static unsigned long cpu_runnable(struct rq *rq);
1999
2000 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)2001 numa_type numa_classify(unsigned int imbalance_pct,
2002 struct numa_stats *ns)
2003 {
2004 if ((ns->nr_running > ns->weight) &&
2005 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2006 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2007 return node_overloaded;
2008
2009 if ((ns->nr_running < ns->weight) ||
2010 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2011 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2012 return node_has_spare;
2013
2014 return node_fully_busy;
2015 }
2016
2017 #ifdef CONFIG_SCHED_SMT
2018 /* Forward declarations of select_idle_sibling helpers */
2019 static inline bool test_idle_cores(int cpu);
numa_idle_core(int idle_core,int cpu)2020 static inline int numa_idle_core(int idle_core, int cpu)
2021 {
2022 if (!static_branch_likely(&sched_smt_present) ||
2023 idle_core >= 0 || !test_idle_cores(cpu))
2024 return idle_core;
2025
2026 /*
2027 * Prefer cores instead of packing HT siblings
2028 * and triggering future load balancing.
2029 */
2030 if (is_core_idle(cpu))
2031 idle_core = cpu;
2032
2033 return idle_core;
2034 }
2035 #else
numa_idle_core(int idle_core,int cpu)2036 static inline int numa_idle_core(int idle_core, int cpu)
2037 {
2038 return idle_core;
2039 }
2040 #endif
2041
2042 /*
2043 * Gather all necessary information to make NUMA balancing placement
2044 * decisions that are compatible with standard load balancer. This
2045 * borrows code and logic from update_sg_lb_stats but sharing a
2046 * common implementation is impractical.
2047 */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)2048 static void update_numa_stats(struct task_numa_env *env,
2049 struct numa_stats *ns, int nid,
2050 bool find_idle)
2051 {
2052 int cpu, idle_core = -1;
2053
2054 memset(ns, 0, sizeof(*ns));
2055 ns->idle_cpu = -1;
2056
2057 rcu_read_lock();
2058 for_each_cpu(cpu, cpumask_of_node(nid)) {
2059 struct rq *rq = cpu_rq(cpu);
2060
2061 ns->load += cpu_load(rq);
2062 ns->runnable += cpu_runnable(rq);
2063 ns->util += cpu_util_cfs(cpu);
2064 ns->nr_running += rq->cfs.h_nr_running;
2065 ns->compute_capacity += capacity_of(cpu);
2066
2067 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2068 if (READ_ONCE(rq->numa_migrate_on) ||
2069 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2070 continue;
2071
2072 if (ns->idle_cpu == -1)
2073 ns->idle_cpu = cpu;
2074
2075 idle_core = numa_idle_core(idle_core, cpu);
2076 }
2077 }
2078 rcu_read_unlock();
2079
2080 ns->weight = cpumask_weight(cpumask_of_node(nid));
2081
2082 ns->node_type = numa_classify(env->imbalance_pct, ns);
2083
2084 if (idle_core >= 0)
2085 ns->idle_cpu = idle_core;
2086 }
2087
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)2088 static void task_numa_assign(struct task_numa_env *env,
2089 struct task_struct *p, long imp)
2090 {
2091 struct rq *rq = cpu_rq(env->dst_cpu);
2092
2093 /* Check if run-queue part of active NUMA balance. */
2094 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2095 int cpu;
2096 int start = env->dst_cpu;
2097
2098 /* Find alternative idle CPU. */
2099 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2100 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2101 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2102 continue;
2103 }
2104
2105 env->dst_cpu = cpu;
2106 rq = cpu_rq(env->dst_cpu);
2107 if (!xchg(&rq->numa_migrate_on, 1))
2108 goto assign;
2109 }
2110
2111 /* Failed to find an alternative idle CPU */
2112 return;
2113 }
2114
2115 assign:
2116 /*
2117 * Clear previous best_cpu/rq numa-migrate flag, since task now
2118 * found a better CPU to move/swap.
2119 */
2120 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2121 rq = cpu_rq(env->best_cpu);
2122 WRITE_ONCE(rq->numa_migrate_on, 0);
2123 }
2124
2125 if (env->best_task)
2126 put_task_struct(env->best_task);
2127 if (p)
2128 get_task_struct(p);
2129
2130 env->best_task = p;
2131 env->best_imp = imp;
2132 env->best_cpu = env->dst_cpu;
2133 }
2134
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)2135 static bool load_too_imbalanced(long src_load, long dst_load,
2136 struct task_numa_env *env)
2137 {
2138 long imb, old_imb;
2139 long orig_src_load, orig_dst_load;
2140 long src_capacity, dst_capacity;
2141
2142 /*
2143 * The load is corrected for the CPU capacity available on each node.
2144 *
2145 * src_load dst_load
2146 * ------------ vs ---------
2147 * src_capacity dst_capacity
2148 */
2149 src_capacity = env->src_stats.compute_capacity;
2150 dst_capacity = env->dst_stats.compute_capacity;
2151
2152 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2153
2154 orig_src_load = env->src_stats.load;
2155 orig_dst_load = env->dst_stats.load;
2156
2157 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2158
2159 /* Would this change make things worse? */
2160 return (imb > old_imb);
2161 }
2162
2163 /*
2164 * Maximum NUMA importance can be 1998 (2*999);
2165 * SMALLIMP @ 30 would be close to 1998/64.
2166 * Used to deter task migration.
2167 */
2168 #define SMALLIMP 30
2169
2170 /*
2171 * This checks if the overall compute and NUMA accesses of the system would
2172 * be improved if the source tasks was migrated to the target dst_cpu taking
2173 * into account that it might be best if task running on the dst_cpu should
2174 * be exchanged with the source task
2175 */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)2176 static bool task_numa_compare(struct task_numa_env *env,
2177 long taskimp, long groupimp, bool maymove)
2178 {
2179 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2180 struct rq *dst_rq = cpu_rq(env->dst_cpu);
2181 long imp = p_ng ? groupimp : taskimp;
2182 struct task_struct *cur;
2183 long src_load, dst_load;
2184 int dist = env->dist;
2185 long moveimp = imp;
2186 long load;
2187 bool stopsearch = false;
2188
2189 if (READ_ONCE(dst_rq->numa_migrate_on))
2190 return false;
2191
2192 rcu_read_lock();
2193 cur = rcu_dereference(dst_rq->curr);
2194 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2195 cur = NULL;
2196
2197 /*
2198 * Because we have preemption enabled we can get migrated around and
2199 * end try selecting ourselves (current == env->p) as a swap candidate.
2200 */
2201 if (cur == env->p) {
2202 stopsearch = true;
2203 goto unlock;
2204 }
2205
2206 if (!cur) {
2207 if (maymove && moveimp >= env->best_imp)
2208 goto assign;
2209 else
2210 goto unlock;
2211 }
2212
2213 /* Skip this swap candidate if cannot move to the source cpu. */
2214 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2215 goto unlock;
2216
2217 /*
2218 * Skip this swap candidate if it is not moving to its preferred
2219 * node and the best task is.
2220 */
2221 if (env->best_task &&
2222 env->best_task->numa_preferred_nid == env->src_nid &&
2223 cur->numa_preferred_nid != env->src_nid) {
2224 goto unlock;
2225 }
2226
2227 /*
2228 * "imp" is the fault differential for the source task between the
2229 * source and destination node. Calculate the total differential for
2230 * the source task and potential destination task. The more negative
2231 * the value is, the more remote accesses that would be expected to
2232 * be incurred if the tasks were swapped.
2233 *
2234 * If dst and source tasks are in the same NUMA group, or not
2235 * in any group then look only at task weights.
2236 */
2237 cur_ng = rcu_dereference(cur->numa_group);
2238 if (cur_ng == p_ng) {
2239 /*
2240 * Do not swap within a group or between tasks that have
2241 * no group if there is spare capacity. Swapping does
2242 * not address the load imbalance and helps one task at
2243 * the cost of punishing another.
2244 */
2245 if (env->dst_stats.node_type == node_has_spare)
2246 goto unlock;
2247
2248 imp = taskimp + task_weight(cur, env->src_nid, dist) -
2249 task_weight(cur, env->dst_nid, dist);
2250 /*
2251 * Add some hysteresis to prevent swapping the
2252 * tasks within a group over tiny differences.
2253 */
2254 if (cur_ng)
2255 imp -= imp / 16;
2256 } else {
2257 /*
2258 * Compare the group weights. If a task is all by itself
2259 * (not part of a group), use the task weight instead.
2260 */
2261 if (cur_ng && p_ng)
2262 imp += group_weight(cur, env->src_nid, dist) -
2263 group_weight(cur, env->dst_nid, dist);
2264 else
2265 imp += task_weight(cur, env->src_nid, dist) -
2266 task_weight(cur, env->dst_nid, dist);
2267 }
2268
2269 /* Discourage picking a task already on its preferred node */
2270 if (cur->numa_preferred_nid == env->dst_nid)
2271 imp -= imp / 16;
2272
2273 /*
2274 * Encourage picking a task that moves to its preferred node.
2275 * This potentially makes imp larger than it's maximum of
2276 * 1998 (see SMALLIMP and task_weight for why) but in this
2277 * case, it does not matter.
2278 */
2279 if (cur->numa_preferred_nid == env->src_nid)
2280 imp += imp / 8;
2281
2282 if (maymove && moveimp > imp && moveimp > env->best_imp) {
2283 imp = moveimp;
2284 cur = NULL;
2285 goto assign;
2286 }
2287
2288 /*
2289 * Prefer swapping with a task moving to its preferred node over a
2290 * task that is not.
2291 */
2292 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2293 env->best_task->numa_preferred_nid != env->src_nid) {
2294 goto assign;
2295 }
2296
2297 /*
2298 * If the NUMA importance is less than SMALLIMP,
2299 * task migration might only result in ping pong
2300 * of tasks and also hurt performance due to cache
2301 * misses.
2302 */
2303 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2304 goto unlock;
2305
2306 /*
2307 * In the overloaded case, try and keep the load balanced.
2308 */
2309 load = task_h_load(env->p) - task_h_load(cur);
2310 if (!load)
2311 goto assign;
2312
2313 dst_load = env->dst_stats.load + load;
2314 src_load = env->src_stats.load - load;
2315
2316 if (load_too_imbalanced(src_load, dst_load, env))
2317 goto unlock;
2318
2319 assign:
2320 /* Evaluate an idle CPU for a task numa move. */
2321 if (!cur) {
2322 int cpu = env->dst_stats.idle_cpu;
2323
2324 /* Nothing cached so current CPU went idle since the search. */
2325 if (cpu < 0)
2326 cpu = env->dst_cpu;
2327
2328 /*
2329 * If the CPU is no longer truly idle and the previous best CPU
2330 * is, keep using it.
2331 */
2332 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2333 idle_cpu(env->best_cpu)) {
2334 cpu = env->best_cpu;
2335 }
2336
2337 env->dst_cpu = cpu;
2338 }
2339
2340 task_numa_assign(env, cur, imp);
2341
2342 /*
2343 * If a move to idle is allowed because there is capacity or load
2344 * balance improves then stop the search. While a better swap
2345 * candidate may exist, a search is not free.
2346 */
2347 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2348 stopsearch = true;
2349
2350 /*
2351 * If a swap candidate must be identified and the current best task
2352 * moves its preferred node then stop the search.
2353 */
2354 if (!maymove && env->best_task &&
2355 env->best_task->numa_preferred_nid == env->src_nid) {
2356 stopsearch = true;
2357 }
2358 unlock:
2359 rcu_read_unlock();
2360
2361 return stopsearch;
2362 }
2363
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)2364 static void task_numa_find_cpu(struct task_numa_env *env,
2365 long taskimp, long groupimp)
2366 {
2367 bool maymove = false;
2368 int cpu;
2369
2370 /*
2371 * If dst node has spare capacity, then check if there is an
2372 * imbalance that would be overruled by the load balancer.
2373 */
2374 if (env->dst_stats.node_type == node_has_spare) {
2375 unsigned int imbalance;
2376 int src_running, dst_running;
2377
2378 /*
2379 * Would movement cause an imbalance? Note that if src has
2380 * more running tasks that the imbalance is ignored as the
2381 * move improves the imbalance from the perspective of the
2382 * CPU load balancer.
2383 * */
2384 src_running = env->src_stats.nr_running - 1;
2385 dst_running = env->dst_stats.nr_running + 1;
2386 imbalance = max(0, dst_running - src_running);
2387 imbalance = adjust_numa_imbalance(imbalance, dst_running,
2388 env->imb_numa_nr);
2389
2390 /* Use idle CPU if there is no imbalance */
2391 if (!imbalance) {
2392 maymove = true;
2393 if (env->dst_stats.idle_cpu >= 0) {
2394 env->dst_cpu = env->dst_stats.idle_cpu;
2395 task_numa_assign(env, NULL, 0);
2396 return;
2397 }
2398 }
2399 } else {
2400 long src_load, dst_load, load;
2401 /*
2402 * If the improvement from just moving env->p direction is better
2403 * than swapping tasks around, check if a move is possible.
2404 */
2405 load = task_h_load(env->p);
2406 dst_load = env->dst_stats.load + load;
2407 src_load = env->src_stats.load - load;
2408 maymove = !load_too_imbalanced(src_load, dst_load, env);
2409 }
2410
2411 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2412 /* Skip this CPU if the source task cannot migrate */
2413 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2414 continue;
2415
2416 env->dst_cpu = cpu;
2417 if (task_numa_compare(env, taskimp, groupimp, maymove))
2418 break;
2419 }
2420 }
2421
task_numa_migrate(struct task_struct * p)2422 static int task_numa_migrate(struct task_struct *p)
2423 {
2424 struct task_numa_env env = {
2425 .p = p,
2426
2427 .src_cpu = task_cpu(p),
2428 .src_nid = task_node(p),
2429
2430 .imbalance_pct = 112,
2431
2432 .best_task = NULL,
2433 .best_imp = 0,
2434 .best_cpu = -1,
2435 };
2436 unsigned long taskweight, groupweight;
2437 struct sched_domain *sd;
2438 long taskimp, groupimp;
2439 struct numa_group *ng;
2440 struct rq *best_rq;
2441 int nid, ret, dist;
2442
2443 /*
2444 * Pick the lowest SD_NUMA domain, as that would have the smallest
2445 * imbalance and would be the first to start moving tasks about.
2446 *
2447 * And we want to avoid any moving of tasks about, as that would create
2448 * random movement of tasks -- counter the numa conditions we're trying
2449 * to satisfy here.
2450 */
2451 rcu_read_lock();
2452 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2453 if (sd) {
2454 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2455 env.imb_numa_nr = sd->imb_numa_nr;
2456 }
2457 rcu_read_unlock();
2458
2459 /*
2460 * Cpusets can break the scheduler domain tree into smaller
2461 * balance domains, some of which do not cross NUMA boundaries.
2462 * Tasks that are "trapped" in such domains cannot be migrated
2463 * elsewhere, so there is no point in (re)trying.
2464 */
2465 if (unlikely(!sd)) {
2466 sched_setnuma(p, task_node(p));
2467 return -EINVAL;
2468 }
2469
2470 env.dst_nid = p->numa_preferred_nid;
2471 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2472 taskweight = task_weight(p, env.src_nid, dist);
2473 groupweight = group_weight(p, env.src_nid, dist);
2474 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2475 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2476 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2477 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2478
2479 /* Try to find a spot on the preferred nid. */
2480 task_numa_find_cpu(&env, taskimp, groupimp);
2481
2482 /*
2483 * Look at other nodes in these cases:
2484 * - there is no space available on the preferred_nid
2485 * - the task is part of a numa_group that is interleaved across
2486 * multiple NUMA nodes; in order to better consolidate the group,
2487 * we need to check other locations.
2488 */
2489 ng = deref_curr_numa_group(p);
2490 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2491 for_each_node_state(nid, N_CPU) {
2492 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2493 continue;
2494
2495 dist = node_distance(env.src_nid, env.dst_nid);
2496 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2497 dist != env.dist) {
2498 taskweight = task_weight(p, env.src_nid, dist);
2499 groupweight = group_weight(p, env.src_nid, dist);
2500 }
2501
2502 /* Only consider nodes where both task and groups benefit */
2503 taskimp = task_weight(p, nid, dist) - taskweight;
2504 groupimp = group_weight(p, nid, dist) - groupweight;
2505 if (taskimp < 0 && groupimp < 0)
2506 continue;
2507
2508 env.dist = dist;
2509 env.dst_nid = nid;
2510 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2511 task_numa_find_cpu(&env, taskimp, groupimp);
2512 }
2513 }
2514
2515 /*
2516 * If the task is part of a workload that spans multiple NUMA nodes,
2517 * and is migrating into one of the workload's active nodes, remember
2518 * this node as the task's preferred numa node, so the workload can
2519 * settle down.
2520 * A task that migrated to a second choice node will be better off
2521 * trying for a better one later. Do not set the preferred node here.
2522 */
2523 if (ng) {
2524 if (env.best_cpu == -1)
2525 nid = env.src_nid;
2526 else
2527 nid = cpu_to_node(env.best_cpu);
2528
2529 if (nid != p->numa_preferred_nid)
2530 sched_setnuma(p, nid);
2531 }
2532
2533 /* No better CPU than the current one was found. */
2534 if (env.best_cpu == -1) {
2535 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2536 return -EAGAIN;
2537 }
2538
2539 best_rq = cpu_rq(env.best_cpu);
2540 if (env.best_task == NULL) {
2541 ret = migrate_task_to(p, env.best_cpu);
2542 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2543 if (ret != 0)
2544 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2545 return ret;
2546 }
2547
2548 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2549 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2550
2551 if (ret != 0)
2552 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2553 put_task_struct(env.best_task);
2554 return ret;
2555 }
2556
2557 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2558 static void numa_migrate_preferred(struct task_struct *p)
2559 {
2560 unsigned long interval = HZ;
2561
2562 /* This task has no NUMA fault statistics yet */
2563 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2564 return;
2565
2566 /* Periodically retry migrating the task to the preferred node */
2567 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2568 p->numa_migrate_retry = jiffies + interval;
2569
2570 /* Success if task is already running on preferred CPU */
2571 if (task_node(p) == p->numa_preferred_nid)
2572 return;
2573
2574 /* Otherwise, try migrate to a CPU on the preferred node */
2575 task_numa_migrate(p);
2576 }
2577
2578 /*
2579 * Find out how many nodes the workload is actively running on. Do this by
2580 * tracking the nodes from which NUMA hinting faults are triggered. This can
2581 * be different from the set of nodes where the workload's memory is currently
2582 * located.
2583 */
numa_group_count_active_nodes(struct numa_group * numa_group)2584 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2585 {
2586 unsigned long faults, max_faults = 0;
2587 int nid, active_nodes = 0;
2588
2589 for_each_node_state(nid, N_CPU) {
2590 faults = group_faults_cpu(numa_group, nid);
2591 if (faults > max_faults)
2592 max_faults = faults;
2593 }
2594
2595 for_each_node_state(nid, N_CPU) {
2596 faults = group_faults_cpu(numa_group, nid);
2597 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2598 active_nodes++;
2599 }
2600
2601 numa_group->max_faults_cpu = max_faults;
2602 numa_group->active_nodes = active_nodes;
2603 }
2604
2605 /*
2606 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2607 * increments. The more local the fault statistics are, the higher the scan
2608 * period will be for the next scan window. If local/(local+remote) ratio is
2609 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2610 * the scan period will decrease. Aim for 70% local accesses.
2611 */
2612 #define NUMA_PERIOD_SLOTS 10
2613 #define NUMA_PERIOD_THRESHOLD 7
2614
2615 /*
2616 * Increase the scan period (slow down scanning) if the majority of
2617 * our memory is already on our local node, or if the majority of
2618 * the page accesses are shared with other processes.
2619 * Otherwise, decrease the scan period.
2620 */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2621 static void update_task_scan_period(struct task_struct *p,
2622 unsigned long shared, unsigned long private)
2623 {
2624 unsigned int period_slot;
2625 int lr_ratio, ps_ratio;
2626 int diff;
2627
2628 unsigned long remote = p->numa_faults_locality[0];
2629 unsigned long local = p->numa_faults_locality[1];
2630
2631 /*
2632 * If there were no record hinting faults then either the task is
2633 * completely idle or all activity is in areas that are not of interest
2634 * to automatic numa balancing. Related to that, if there were failed
2635 * migration then it implies we are migrating too quickly or the local
2636 * node is overloaded. In either case, scan slower
2637 */
2638 if (local + shared == 0 || p->numa_faults_locality[2]) {
2639 p->numa_scan_period = min(p->numa_scan_period_max,
2640 p->numa_scan_period << 1);
2641
2642 p->mm->numa_next_scan = jiffies +
2643 msecs_to_jiffies(p->numa_scan_period);
2644
2645 return;
2646 }
2647
2648 /*
2649 * Prepare to scale scan period relative to the current period.
2650 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2651 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2652 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2653 */
2654 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2655 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2656 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2657
2658 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2659 /*
2660 * Most memory accesses are local. There is no need to
2661 * do fast NUMA scanning, since memory is already local.
2662 */
2663 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2664 if (!slot)
2665 slot = 1;
2666 diff = slot * period_slot;
2667 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2668 /*
2669 * Most memory accesses are shared with other tasks.
2670 * There is no point in continuing fast NUMA scanning,
2671 * since other tasks may just move the memory elsewhere.
2672 */
2673 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2674 if (!slot)
2675 slot = 1;
2676 diff = slot * period_slot;
2677 } else {
2678 /*
2679 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2680 * yet they are not on the local NUMA node. Speed up
2681 * NUMA scanning to get the memory moved over.
2682 */
2683 int ratio = max(lr_ratio, ps_ratio);
2684 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2685 }
2686
2687 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2688 task_scan_min(p), task_scan_max(p));
2689 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2690 }
2691
2692 /*
2693 * Get the fraction of time the task has been running since the last
2694 * NUMA placement cycle. The scheduler keeps similar statistics, but
2695 * decays those on a 32ms period, which is orders of magnitude off
2696 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2697 * stats only if the task is so new there are no NUMA statistics yet.
2698 */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2699 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2700 {
2701 u64 runtime, delta, now;
2702 /* Use the start of this time slice to avoid calculations. */
2703 now = p->se.exec_start;
2704 runtime = p->se.sum_exec_runtime;
2705
2706 if (p->last_task_numa_placement) {
2707 delta = runtime - p->last_sum_exec_runtime;
2708 *period = now - p->last_task_numa_placement;
2709
2710 /* Avoid time going backwards, prevent potential divide error: */
2711 if (unlikely((s64)*period < 0))
2712 *period = 0;
2713 } else {
2714 delta = p->se.avg.load_sum;
2715 *period = LOAD_AVG_MAX;
2716 }
2717
2718 p->last_sum_exec_runtime = runtime;
2719 p->last_task_numa_placement = now;
2720
2721 return delta;
2722 }
2723
2724 /*
2725 * Determine the preferred nid for a task in a numa_group. This needs to
2726 * be done in a way that produces consistent results with group_weight,
2727 * otherwise workloads might not converge.
2728 */
preferred_group_nid(struct task_struct * p,int nid)2729 static int preferred_group_nid(struct task_struct *p, int nid)
2730 {
2731 nodemask_t nodes;
2732 int dist;
2733
2734 /* Direct connections between all NUMA nodes. */
2735 if (sched_numa_topology_type == NUMA_DIRECT)
2736 return nid;
2737
2738 /*
2739 * On a system with glueless mesh NUMA topology, group_weight
2740 * scores nodes according to the number of NUMA hinting faults on
2741 * both the node itself, and on nearby nodes.
2742 */
2743 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2744 unsigned long score, max_score = 0;
2745 int node, max_node = nid;
2746
2747 dist = sched_max_numa_distance;
2748
2749 for_each_node_state(node, N_CPU) {
2750 score = group_weight(p, node, dist);
2751 if (score > max_score) {
2752 max_score = score;
2753 max_node = node;
2754 }
2755 }
2756 return max_node;
2757 }
2758
2759 /*
2760 * Finding the preferred nid in a system with NUMA backplane
2761 * interconnect topology is more involved. The goal is to locate
2762 * tasks from numa_groups near each other in the system, and
2763 * untangle workloads from different sides of the system. This requires
2764 * searching down the hierarchy of node groups, recursively searching
2765 * inside the highest scoring group of nodes. The nodemask tricks
2766 * keep the complexity of the search down.
2767 */
2768 nodes = node_states[N_CPU];
2769 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2770 unsigned long max_faults = 0;
2771 nodemask_t max_group = NODE_MASK_NONE;
2772 int a, b;
2773
2774 /* Are there nodes at this distance from each other? */
2775 if (!find_numa_distance(dist))
2776 continue;
2777
2778 for_each_node_mask(a, nodes) {
2779 unsigned long faults = 0;
2780 nodemask_t this_group;
2781 nodes_clear(this_group);
2782
2783 /* Sum group's NUMA faults; includes a==b case. */
2784 for_each_node_mask(b, nodes) {
2785 if (node_distance(a, b) < dist) {
2786 faults += group_faults(p, b);
2787 node_set(b, this_group);
2788 node_clear(b, nodes);
2789 }
2790 }
2791
2792 /* Remember the top group. */
2793 if (faults > max_faults) {
2794 max_faults = faults;
2795 max_group = this_group;
2796 /*
2797 * subtle: at the smallest distance there is
2798 * just one node left in each "group", the
2799 * winner is the preferred nid.
2800 */
2801 nid = a;
2802 }
2803 }
2804 /* Next round, evaluate the nodes within max_group. */
2805 if (!max_faults)
2806 break;
2807 nodes = max_group;
2808 }
2809 return nid;
2810 }
2811
task_numa_placement(struct task_struct * p)2812 static void task_numa_placement(struct task_struct *p)
2813 {
2814 int seq, nid, max_nid = NUMA_NO_NODE;
2815 unsigned long max_faults = 0;
2816 unsigned long fault_types[2] = { 0, 0 };
2817 unsigned long total_faults;
2818 u64 runtime, period;
2819 spinlock_t *group_lock = NULL;
2820 struct numa_group *ng;
2821
2822 /*
2823 * The p->mm->numa_scan_seq field gets updated without
2824 * exclusive access. Use READ_ONCE() here to ensure
2825 * that the field is read in a single access:
2826 */
2827 seq = READ_ONCE(p->mm->numa_scan_seq);
2828 if (p->numa_scan_seq == seq)
2829 return;
2830 p->numa_scan_seq = seq;
2831 p->numa_scan_period_max = task_scan_max(p);
2832
2833 total_faults = p->numa_faults_locality[0] +
2834 p->numa_faults_locality[1];
2835 runtime = numa_get_avg_runtime(p, &period);
2836
2837 /* If the task is part of a group prevent parallel updates to group stats */
2838 ng = deref_curr_numa_group(p);
2839 if (ng) {
2840 group_lock = &ng->lock;
2841 spin_lock_irq(group_lock);
2842 }
2843
2844 /* Find the node with the highest number of faults */
2845 for_each_online_node(nid) {
2846 /* Keep track of the offsets in numa_faults array */
2847 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2848 unsigned long faults = 0, group_faults = 0;
2849 int priv;
2850
2851 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2852 long diff, f_diff, f_weight;
2853
2854 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2855 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2856 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2857 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2858
2859 /* Decay existing window, copy faults since last scan */
2860 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2861 fault_types[priv] += p->numa_faults[membuf_idx];
2862 p->numa_faults[membuf_idx] = 0;
2863
2864 /*
2865 * Normalize the faults_from, so all tasks in a group
2866 * count according to CPU use, instead of by the raw
2867 * number of faults. Tasks with little runtime have
2868 * little over-all impact on throughput, and thus their
2869 * faults are less important.
2870 */
2871 f_weight = div64_u64(runtime << 16, period + 1);
2872 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2873 (total_faults + 1);
2874 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2875 p->numa_faults[cpubuf_idx] = 0;
2876
2877 p->numa_faults[mem_idx] += diff;
2878 p->numa_faults[cpu_idx] += f_diff;
2879 faults += p->numa_faults[mem_idx];
2880 p->total_numa_faults += diff;
2881 if (ng) {
2882 /*
2883 * safe because we can only change our own group
2884 *
2885 * mem_idx represents the offset for a given
2886 * nid and priv in a specific region because it
2887 * is at the beginning of the numa_faults array.
2888 */
2889 ng->faults[mem_idx] += diff;
2890 ng->faults[cpu_idx] += f_diff;
2891 ng->total_faults += diff;
2892 group_faults += ng->faults[mem_idx];
2893 }
2894 }
2895
2896 if (!ng) {
2897 if (faults > max_faults) {
2898 max_faults = faults;
2899 max_nid = nid;
2900 }
2901 } else if (group_faults > max_faults) {
2902 max_faults = group_faults;
2903 max_nid = nid;
2904 }
2905 }
2906
2907 /* Cannot migrate task to CPU-less node */
2908 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2909 int near_nid = max_nid;
2910 int distance, near_distance = INT_MAX;
2911
2912 for_each_node_state(nid, N_CPU) {
2913 distance = node_distance(max_nid, nid);
2914 if (distance < near_distance) {
2915 near_nid = nid;
2916 near_distance = distance;
2917 }
2918 }
2919 max_nid = near_nid;
2920 }
2921
2922 if (ng) {
2923 numa_group_count_active_nodes(ng);
2924 spin_unlock_irq(group_lock);
2925 max_nid = preferred_group_nid(p, max_nid);
2926 }
2927
2928 if (max_faults) {
2929 /* Set the new preferred node */
2930 if (max_nid != p->numa_preferred_nid)
2931 sched_setnuma(p, max_nid);
2932 }
2933
2934 update_task_scan_period(p, fault_types[0], fault_types[1]);
2935 }
2936
get_numa_group(struct numa_group * grp)2937 static inline int get_numa_group(struct numa_group *grp)
2938 {
2939 return refcount_inc_not_zero(&grp->refcount);
2940 }
2941
put_numa_group(struct numa_group * grp)2942 static inline void put_numa_group(struct numa_group *grp)
2943 {
2944 if (refcount_dec_and_test(&grp->refcount))
2945 kfree_rcu(grp, rcu);
2946 }
2947
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)2948 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2949 int *priv)
2950 {
2951 struct numa_group *grp, *my_grp;
2952 struct task_struct *tsk;
2953 bool join = false;
2954 int cpu = cpupid_to_cpu(cpupid);
2955 int i;
2956
2957 if (unlikely(!deref_curr_numa_group(p))) {
2958 unsigned int size = sizeof(struct numa_group) +
2959 NR_NUMA_HINT_FAULT_STATS *
2960 nr_node_ids * sizeof(unsigned long);
2961
2962 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2963 if (!grp)
2964 return;
2965
2966 refcount_set(&grp->refcount, 1);
2967 grp->active_nodes = 1;
2968 grp->max_faults_cpu = 0;
2969 spin_lock_init(&grp->lock);
2970 grp->gid = p->pid;
2971
2972 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2973 grp->faults[i] = p->numa_faults[i];
2974
2975 grp->total_faults = p->total_numa_faults;
2976
2977 grp->nr_tasks++;
2978 rcu_assign_pointer(p->numa_group, grp);
2979 }
2980
2981 rcu_read_lock();
2982 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2983
2984 if (!cpupid_match_pid(tsk, cpupid))
2985 goto no_join;
2986
2987 grp = rcu_dereference(tsk->numa_group);
2988 if (!grp)
2989 goto no_join;
2990
2991 my_grp = deref_curr_numa_group(p);
2992 if (grp == my_grp)
2993 goto no_join;
2994
2995 /*
2996 * Only join the other group if its bigger; if we're the bigger group,
2997 * the other task will join us.
2998 */
2999 if (my_grp->nr_tasks > grp->nr_tasks)
3000 goto no_join;
3001
3002 /*
3003 * Tie-break on the grp address.
3004 */
3005 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3006 goto no_join;
3007
3008 /* Always join threads in the same process. */
3009 if (tsk->mm == current->mm)
3010 join = true;
3011
3012 /* Simple filter to avoid false positives due to PID collisions */
3013 if (flags & TNF_SHARED)
3014 join = true;
3015
3016 /* Update priv based on whether false sharing was detected */
3017 *priv = !join;
3018
3019 if (join && !get_numa_group(grp))
3020 goto no_join;
3021
3022 rcu_read_unlock();
3023
3024 if (!join)
3025 return;
3026
3027 WARN_ON_ONCE(irqs_disabled());
3028 double_lock_irq(&my_grp->lock, &grp->lock);
3029
3030 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3031 my_grp->faults[i] -= p->numa_faults[i];
3032 grp->faults[i] += p->numa_faults[i];
3033 }
3034 my_grp->total_faults -= p->total_numa_faults;
3035 grp->total_faults += p->total_numa_faults;
3036
3037 my_grp->nr_tasks--;
3038 grp->nr_tasks++;
3039
3040 spin_unlock(&my_grp->lock);
3041 spin_unlock_irq(&grp->lock);
3042
3043 rcu_assign_pointer(p->numa_group, grp);
3044
3045 put_numa_group(my_grp);
3046 return;
3047
3048 no_join:
3049 rcu_read_unlock();
3050 return;
3051 }
3052
3053 /*
3054 * Get rid of NUMA statistics associated with a task (either current or dead).
3055 * If @final is set, the task is dead and has reached refcount zero, so we can
3056 * safely free all relevant data structures. Otherwise, there might be
3057 * concurrent reads from places like load balancing and procfs, and we should
3058 * reset the data back to default state without freeing ->numa_faults.
3059 */
task_numa_free(struct task_struct * p,bool final)3060 void task_numa_free(struct task_struct *p, bool final)
3061 {
3062 /* safe: p either is current or is being freed by current */
3063 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3064 unsigned long *numa_faults = p->numa_faults;
3065 unsigned long flags;
3066 int i;
3067
3068 if (!numa_faults)
3069 return;
3070
3071 if (grp) {
3072 spin_lock_irqsave(&grp->lock, flags);
3073 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3074 grp->faults[i] -= p->numa_faults[i];
3075 grp->total_faults -= p->total_numa_faults;
3076
3077 grp->nr_tasks--;
3078 spin_unlock_irqrestore(&grp->lock, flags);
3079 RCU_INIT_POINTER(p->numa_group, NULL);
3080 put_numa_group(grp);
3081 }
3082
3083 if (final) {
3084 p->numa_faults = NULL;
3085 kfree(numa_faults);
3086 } else {
3087 p->total_numa_faults = 0;
3088 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3089 numa_faults[i] = 0;
3090 }
3091 }
3092
3093 /*
3094 * Got a PROT_NONE fault for a page on @node.
3095 */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)3096 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3097 {
3098 struct task_struct *p = current;
3099 bool migrated = flags & TNF_MIGRATED;
3100 int cpu_node = task_node(current);
3101 int local = !!(flags & TNF_FAULT_LOCAL);
3102 struct numa_group *ng;
3103 int priv;
3104
3105 if (!static_branch_likely(&sched_numa_balancing))
3106 return;
3107
3108 /* for example, ksmd faulting in a user's mm */
3109 if (!p->mm)
3110 return;
3111
3112 /*
3113 * NUMA faults statistics are unnecessary for the slow memory
3114 * node for memory tiering mode.
3115 */
3116 if (!node_is_toptier(mem_node) &&
3117 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3118 !cpupid_valid(last_cpupid)))
3119 return;
3120
3121 /* Allocate buffer to track faults on a per-node basis */
3122 if (unlikely(!p->numa_faults)) {
3123 int size = sizeof(*p->numa_faults) *
3124 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3125
3126 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3127 if (!p->numa_faults)
3128 return;
3129
3130 p->total_numa_faults = 0;
3131 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3132 }
3133
3134 /*
3135 * First accesses are treated as private, otherwise consider accesses
3136 * to be private if the accessing pid has not changed
3137 */
3138 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3139 priv = 1;
3140 } else {
3141 priv = cpupid_match_pid(p, last_cpupid);
3142 if (!priv && !(flags & TNF_NO_GROUP))
3143 task_numa_group(p, last_cpupid, flags, &priv);
3144 }
3145
3146 /*
3147 * If a workload spans multiple NUMA nodes, a shared fault that
3148 * occurs wholly within the set of nodes that the workload is
3149 * actively using should be counted as local. This allows the
3150 * scan rate to slow down when a workload has settled down.
3151 */
3152 ng = deref_curr_numa_group(p);
3153 if (!priv && !local && ng && ng->active_nodes > 1 &&
3154 numa_is_active_node(cpu_node, ng) &&
3155 numa_is_active_node(mem_node, ng))
3156 local = 1;
3157
3158 /*
3159 * Retry to migrate task to preferred node periodically, in case it
3160 * previously failed, or the scheduler moved us.
3161 */
3162 if (time_after(jiffies, p->numa_migrate_retry)) {
3163 task_numa_placement(p);
3164 numa_migrate_preferred(p);
3165 }
3166
3167 if (migrated)
3168 p->numa_pages_migrated += pages;
3169 if (flags & TNF_MIGRATE_FAIL)
3170 p->numa_faults_locality[2] += pages;
3171
3172 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3173 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3174 p->numa_faults_locality[local] += pages;
3175 }
3176
reset_ptenuma_scan(struct task_struct * p)3177 static void reset_ptenuma_scan(struct task_struct *p)
3178 {
3179 /*
3180 * We only did a read acquisition of the mmap sem, so
3181 * p->mm->numa_scan_seq is written to without exclusive access
3182 * and the update is not guaranteed to be atomic. That's not
3183 * much of an issue though, since this is just used for
3184 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3185 * expensive, to avoid any form of compiler optimizations:
3186 */
3187 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3188 p->mm->numa_scan_offset = 0;
3189 }
3190
vma_is_accessed(struct mm_struct * mm,struct vm_area_struct * vma)3191 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3192 {
3193 unsigned long pids;
3194 /*
3195 * Allow unconditional access first two times, so that all the (pages)
3196 * of VMAs get prot_none fault introduced irrespective of accesses.
3197 * This is also done to avoid any side effect of task scanning
3198 * amplifying the unfairness of disjoint set of VMAs' access.
3199 */
3200 if (READ_ONCE(current->mm->numa_scan_seq) < 2)
3201 return true;
3202
3203 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3204 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3205 return true;
3206
3207 /*
3208 * Complete a scan that has already started regardless of PID access, or
3209 * some VMAs may never be scanned in multi-threaded applications:
3210 */
3211 if (mm->numa_scan_offset > vma->vm_start) {
3212 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3213 return true;
3214 }
3215
3216 /*
3217 * This vma has not been accessed for a while, and if the number
3218 * the threads in the same process is low, which means no other
3219 * threads can help scan this vma, force a vma scan.
3220 */
3221 if (READ_ONCE(mm->numa_scan_seq) >
3222 (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3223 return true;
3224
3225 return false;
3226 }
3227
3228 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3229
3230 /*
3231 * The expensive part of numa migration is done from task_work context.
3232 * Triggered from task_tick_numa().
3233 */
task_numa_work(struct callback_head * work)3234 static void task_numa_work(struct callback_head *work)
3235 {
3236 unsigned long migrate, next_scan, now = jiffies;
3237 struct task_struct *p = current;
3238 struct mm_struct *mm = p->mm;
3239 u64 runtime = p->se.sum_exec_runtime;
3240 struct vm_area_struct *vma;
3241 unsigned long start, end;
3242 unsigned long nr_pte_updates = 0;
3243 long pages, virtpages;
3244 struct vma_iterator vmi;
3245 bool vma_pids_skipped;
3246 bool vma_pids_forced = false;
3247
3248 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3249
3250 work->next = work;
3251 /*
3252 * Who cares about NUMA placement when they're dying.
3253 *
3254 * NOTE: make sure not to dereference p->mm before this check,
3255 * exit_task_work() happens _after_ exit_mm() so we could be called
3256 * without p->mm even though we still had it when we enqueued this
3257 * work.
3258 */
3259 if (p->flags & PF_EXITING)
3260 return;
3261
3262 if (!mm->numa_next_scan) {
3263 mm->numa_next_scan = now +
3264 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3265 }
3266
3267 /*
3268 * Enforce maximal scan/migration frequency..
3269 */
3270 migrate = mm->numa_next_scan;
3271 if (time_before(now, migrate))
3272 return;
3273
3274 if (p->numa_scan_period == 0) {
3275 p->numa_scan_period_max = task_scan_max(p);
3276 p->numa_scan_period = task_scan_start(p);
3277 }
3278
3279 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3280 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3281 return;
3282
3283 /*
3284 * Delay this task enough that another task of this mm will likely win
3285 * the next time around.
3286 */
3287 p->node_stamp += 2 * TICK_NSEC;
3288
3289 pages = sysctl_numa_balancing_scan_size;
3290 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3291 virtpages = pages * 8; /* Scan up to this much virtual space */
3292 if (!pages)
3293 return;
3294
3295
3296 if (!mmap_read_trylock(mm))
3297 return;
3298
3299 /*
3300 * VMAs are skipped if the current PID has not trapped a fault within
3301 * the VMA recently. Allow scanning to be forced if there is no
3302 * suitable VMA remaining.
3303 */
3304 vma_pids_skipped = false;
3305
3306 retry_pids:
3307 start = mm->numa_scan_offset;
3308 vma_iter_init(&vmi, mm, start);
3309 vma = vma_next(&vmi);
3310 if (!vma) {
3311 reset_ptenuma_scan(p);
3312 start = 0;
3313 vma_iter_set(&vmi, start);
3314 vma = vma_next(&vmi);
3315 }
3316
3317 do {
3318 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3319 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3320 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3321 continue;
3322 }
3323
3324 /*
3325 * Shared library pages mapped by multiple processes are not
3326 * migrated as it is expected they are cache replicated. Avoid
3327 * hinting faults in read-only file-backed mappings or the vdso
3328 * as migrating the pages will be of marginal benefit.
3329 */
3330 if (!vma->vm_mm ||
3331 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3332 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3333 continue;
3334 }
3335
3336 /*
3337 * Skip inaccessible VMAs to avoid any confusion between
3338 * PROT_NONE and NUMA hinting ptes
3339 */
3340 if (!vma_is_accessible(vma)) {
3341 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3342 continue;
3343 }
3344
3345 /* Initialise new per-VMA NUMAB state. */
3346 if (!vma->numab_state) {
3347 vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3348 GFP_KERNEL);
3349 if (!vma->numab_state)
3350 continue;
3351
3352 vma->numab_state->next_scan = now +
3353 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3354
3355 /* Reset happens after 4 times scan delay of scan start */
3356 vma->numab_state->pids_active_reset = vma->numab_state->next_scan +
3357 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3358
3359 /*
3360 * Ensure prev_scan_seq does not match numa_scan_seq,
3361 * to prevent VMAs being skipped prematurely on the
3362 * first scan:
3363 */
3364 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3365 }
3366
3367 /*
3368 * Scanning the VMA's of short lived tasks add more overhead. So
3369 * delay the scan for new VMAs.
3370 */
3371 if (mm->numa_scan_seq && time_before(jiffies,
3372 vma->numab_state->next_scan)) {
3373 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3374 continue;
3375 }
3376
3377 /* RESET access PIDs regularly for old VMAs. */
3378 if (mm->numa_scan_seq &&
3379 time_after(jiffies, vma->numab_state->pids_active_reset)) {
3380 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3381 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3382 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3383 vma->numab_state->pids_active[1] = 0;
3384 }
3385
3386 /* Do not rescan VMAs twice within the same sequence. */
3387 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3388 mm->numa_scan_offset = vma->vm_end;
3389 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3390 continue;
3391 }
3392
3393 /*
3394 * Do not scan the VMA if task has not accessed it, unless no other
3395 * VMA candidate exists.
3396 */
3397 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3398 vma_pids_skipped = true;
3399 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3400 continue;
3401 }
3402
3403 do {
3404 start = max(start, vma->vm_start);
3405 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3406 end = min(end, vma->vm_end);
3407 nr_pte_updates = change_prot_numa(vma, start, end);
3408
3409 /*
3410 * Try to scan sysctl_numa_balancing_size worth of
3411 * hpages that have at least one present PTE that
3412 * is not already pte-numa. If the VMA contains
3413 * areas that are unused or already full of prot_numa
3414 * PTEs, scan up to virtpages, to skip through those
3415 * areas faster.
3416 */
3417 if (nr_pte_updates)
3418 pages -= (end - start) >> PAGE_SHIFT;
3419 virtpages -= (end - start) >> PAGE_SHIFT;
3420
3421 start = end;
3422 if (pages <= 0 || virtpages <= 0)
3423 goto out;
3424
3425 cond_resched();
3426 } while (end != vma->vm_end);
3427
3428 /* VMA scan is complete, do not scan until next sequence. */
3429 vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3430
3431 /*
3432 * Only force scan within one VMA at a time, to limit the
3433 * cost of scanning a potentially uninteresting VMA.
3434 */
3435 if (vma_pids_forced)
3436 break;
3437 } for_each_vma(vmi, vma);
3438
3439 /*
3440 * If no VMAs are remaining and VMAs were skipped due to the PID
3441 * not accessing the VMA previously, then force a scan to ensure
3442 * forward progress:
3443 */
3444 if (!vma && !vma_pids_forced && vma_pids_skipped) {
3445 vma_pids_forced = true;
3446 goto retry_pids;
3447 }
3448
3449 out:
3450 /*
3451 * It is possible to reach the end of the VMA list but the last few
3452 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3453 * would find the !migratable VMA on the next scan but not reset the
3454 * scanner to the start so check it now.
3455 */
3456 if (vma)
3457 mm->numa_scan_offset = start;
3458 else
3459 reset_ptenuma_scan(p);
3460 mmap_read_unlock(mm);
3461
3462 /*
3463 * Make sure tasks use at least 32x as much time to run other code
3464 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3465 * Usually update_task_scan_period slows down scanning enough; on an
3466 * overloaded system we need to limit overhead on a per task basis.
3467 */
3468 if (unlikely(p->se.sum_exec_runtime != runtime)) {
3469 u64 diff = p->se.sum_exec_runtime - runtime;
3470 p->node_stamp += 32 * diff;
3471 }
3472 }
3473
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)3474 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3475 {
3476 int mm_users = 0;
3477 struct mm_struct *mm = p->mm;
3478
3479 if (mm) {
3480 mm_users = atomic_read(&mm->mm_users);
3481 if (mm_users == 1) {
3482 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3483 mm->numa_scan_seq = 0;
3484 }
3485 }
3486 p->node_stamp = 0;
3487 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
3488 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
3489 p->numa_migrate_retry = 0;
3490 /* Protect against double add, see task_tick_numa and task_numa_work */
3491 p->numa_work.next = &p->numa_work;
3492 p->numa_faults = NULL;
3493 p->numa_pages_migrated = 0;
3494 p->total_numa_faults = 0;
3495 RCU_INIT_POINTER(p->numa_group, NULL);
3496 p->last_task_numa_placement = 0;
3497 p->last_sum_exec_runtime = 0;
3498
3499 init_task_work(&p->numa_work, task_numa_work);
3500
3501 /* New address space, reset the preferred nid */
3502 if (!(clone_flags & CLONE_VM)) {
3503 p->numa_preferred_nid = NUMA_NO_NODE;
3504 return;
3505 }
3506
3507 /*
3508 * New thread, keep existing numa_preferred_nid which should be copied
3509 * already by arch_dup_task_struct but stagger when scans start.
3510 */
3511 if (mm) {
3512 unsigned int delay;
3513
3514 delay = min_t(unsigned int, task_scan_max(current),
3515 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3516 delay += 2 * TICK_NSEC;
3517 p->node_stamp = delay;
3518 }
3519 }
3520
3521 /*
3522 * Drive the periodic memory faults..
3523 */
task_tick_numa(struct rq * rq,struct task_struct * curr)3524 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3525 {
3526 struct callback_head *work = &curr->numa_work;
3527 u64 period, now;
3528
3529 /*
3530 * We don't care about NUMA placement if we don't have memory.
3531 */
3532 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3533 return;
3534
3535 /*
3536 * Using runtime rather than walltime has the dual advantage that
3537 * we (mostly) drive the selection from busy threads and that the
3538 * task needs to have done some actual work before we bother with
3539 * NUMA placement.
3540 */
3541 now = curr->se.sum_exec_runtime;
3542 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3543
3544 if (now > curr->node_stamp + period) {
3545 if (!curr->node_stamp)
3546 curr->numa_scan_period = task_scan_start(curr);
3547 curr->node_stamp += period;
3548
3549 if (!time_before(jiffies, curr->mm->numa_next_scan))
3550 task_work_add(curr, work, TWA_RESUME);
3551 }
3552 }
3553
update_scan_period(struct task_struct * p,int new_cpu)3554 static void update_scan_period(struct task_struct *p, int new_cpu)
3555 {
3556 int src_nid = cpu_to_node(task_cpu(p));
3557 int dst_nid = cpu_to_node(new_cpu);
3558
3559 if (!static_branch_likely(&sched_numa_balancing))
3560 return;
3561
3562 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3563 return;
3564
3565 if (src_nid == dst_nid)
3566 return;
3567
3568 /*
3569 * Allow resets if faults have been trapped before one scan
3570 * has completed. This is most likely due to a new task that
3571 * is pulled cross-node due to wakeups or load balancing.
3572 */
3573 if (p->numa_scan_seq) {
3574 /*
3575 * Avoid scan adjustments if moving to the preferred
3576 * node or if the task was not previously running on
3577 * the preferred node.
3578 */
3579 if (dst_nid == p->numa_preferred_nid ||
3580 (p->numa_preferred_nid != NUMA_NO_NODE &&
3581 src_nid != p->numa_preferred_nid))
3582 return;
3583 }
3584
3585 p->numa_scan_period = task_scan_start(p);
3586 }
3587
3588 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)3589 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3590 {
3591 }
3592
account_numa_enqueue(struct rq * rq,struct task_struct * p)3593 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3594 {
3595 }
3596
account_numa_dequeue(struct rq * rq,struct task_struct * p)3597 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3598 {
3599 }
3600
update_scan_period(struct task_struct * p,int new_cpu)3601 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3602 {
3603 }
3604
3605 #endif /* CONFIG_NUMA_BALANCING */
3606
3607 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3608 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3609 {
3610 update_load_add(&cfs_rq->load, se->load.weight);
3611 #ifdef CONFIG_SMP
3612 if (entity_is_task(se)) {
3613 struct rq *rq = rq_of(cfs_rq);
3614
3615 account_numa_enqueue(rq, task_of(se));
3616 list_add(&se->group_node, &rq->cfs_tasks);
3617 }
3618 #endif
3619 cfs_rq->nr_running++;
3620 if (se_is_idle(se))
3621 cfs_rq->idle_nr_running++;
3622 }
3623
3624 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3625 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3626 {
3627 update_load_sub(&cfs_rq->load, se->load.weight);
3628 #ifdef CONFIG_SMP
3629 if (entity_is_task(se)) {
3630 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3631 list_del_init(&se->group_node);
3632 }
3633 #endif
3634 cfs_rq->nr_running--;
3635 if (se_is_idle(se))
3636 cfs_rq->idle_nr_running--;
3637 }
3638
3639 /*
3640 * Signed add and clamp on underflow.
3641 *
3642 * Explicitly do a load-store to ensure the intermediate value never hits
3643 * memory. This allows lockless observations without ever seeing the negative
3644 * values.
3645 */
3646 #define add_positive(_ptr, _val) do { \
3647 typeof(_ptr) ptr = (_ptr); \
3648 typeof(_val) val = (_val); \
3649 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3650 \
3651 res = var + val; \
3652 \
3653 if (val < 0 && res > var) \
3654 res = 0; \
3655 \
3656 WRITE_ONCE(*ptr, res); \
3657 } while (0)
3658
3659 /*
3660 * Unsigned subtract and clamp on underflow.
3661 *
3662 * Explicitly do a load-store to ensure the intermediate value never hits
3663 * memory. This allows lockless observations without ever seeing the negative
3664 * values.
3665 */
3666 #define sub_positive(_ptr, _val) do { \
3667 typeof(_ptr) ptr = (_ptr); \
3668 typeof(*ptr) val = (_val); \
3669 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3670 res = var - val; \
3671 if (res > var) \
3672 res = 0; \
3673 WRITE_ONCE(*ptr, res); \
3674 } while (0)
3675
3676 /*
3677 * Remove and clamp on negative, from a local variable.
3678 *
3679 * A variant of sub_positive(), which does not use explicit load-store
3680 * and is thus optimized for local variable updates.
3681 */
3682 #define lsub_positive(_ptr, _val) do { \
3683 typeof(_ptr) ptr = (_ptr); \
3684 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3685 } while (0)
3686
3687 #ifdef CONFIG_SMP
3688 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3689 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3690 {
3691 cfs_rq->avg.load_avg += se->avg.load_avg;
3692 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3693 }
3694
3695 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3696 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3697 {
3698 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3699 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3700 /* See update_cfs_rq_load_avg() */
3701 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3702 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3703 }
3704 #else
3705 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3706 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3707 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3708 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3709 #endif
3710
reweight_eevdf(struct sched_entity * se,u64 avruntime,unsigned long weight)3711 static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
3712 unsigned long weight)
3713 {
3714 unsigned long old_weight = se->load.weight;
3715 s64 vlag, vslice;
3716
3717 /*
3718 * VRUNTIME
3719 * ========
3720 *
3721 * COROLLARY #1: The virtual runtime of the entity needs to be
3722 * adjusted if re-weight at !0-lag point.
3723 *
3724 * Proof: For contradiction assume this is not true, so we can
3725 * re-weight without changing vruntime at !0-lag point.
3726 *
3727 * Weight VRuntime Avg-VRuntime
3728 * before w v V
3729 * after w' v' V'
3730 *
3731 * Since lag needs to be preserved through re-weight:
3732 *
3733 * lag = (V - v)*w = (V'- v')*w', where v = v'
3734 * ==> V' = (V - v)*w/w' + v (1)
3735 *
3736 * Let W be the total weight of the entities before reweight,
3737 * since V' is the new weighted average of entities:
3738 *
3739 * V' = (WV + w'v - wv) / (W + w' - w) (2)
3740 *
3741 * by using (1) & (2) we obtain:
3742 *
3743 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3744 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3745 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3746 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3747 *
3748 * Since we are doing at !0-lag point which means V != v, we
3749 * can simplify (3):
3750 *
3751 * ==> W / (W + w' - w) = w / w'
3752 * ==> Ww' = Ww + ww' - ww
3753 * ==> W * (w' - w) = w * (w' - w)
3754 * ==> W = w (re-weight indicates w' != w)
3755 *
3756 * So the cfs_rq contains only one entity, hence vruntime of
3757 * the entity @v should always equal to the cfs_rq's weighted
3758 * average vruntime @V, which means we will always re-weight
3759 * at 0-lag point, thus breach assumption. Proof completed.
3760 *
3761 *
3762 * COROLLARY #2: Re-weight does NOT affect weighted average
3763 * vruntime of all the entities.
3764 *
3765 * Proof: According to corollary #1, Eq. (1) should be:
3766 *
3767 * (V - v)*w = (V' - v')*w'
3768 * ==> v' = V' - (V - v)*w/w' (4)
3769 *
3770 * According to the weighted average formula, we have:
3771 *
3772 * V' = (WV - wv + w'v') / (W - w + w')
3773 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3774 * = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3775 * = (WV + w'V' - Vw) / (W - w + w')
3776 *
3777 * ==> V'*(W - w + w') = WV + w'V' - Vw
3778 * ==> V' * (W - w) = (W - w) * V (5)
3779 *
3780 * If the entity is the only one in the cfs_rq, then reweight
3781 * always occurs at 0-lag point, so V won't change. Or else
3782 * there are other entities, hence W != w, then Eq. (5) turns
3783 * into V' = V. So V won't change in either case, proof done.
3784 *
3785 *
3786 * So according to corollary #1 & #2, the effect of re-weight
3787 * on vruntime should be:
3788 *
3789 * v' = V' - (V - v) * w / w' (4)
3790 * = V - (V - v) * w / w'
3791 * = V - vl * w / w'
3792 * = V - vl'
3793 */
3794 if (avruntime != se->vruntime) {
3795 vlag = entity_lag(avruntime, se);
3796 vlag = div_s64(vlag * old_weight, weight);
3797 se->vruntime = avruntime - vlag;
3798 }
3799
3800 /*
3801 * DEADLINE
3802 * ========
3803 *
3804 * When the weight changes, the virtual time slope changes and
3805 * we should adjust the relative virtual deadline accordingly.
3806 *
3807 * d' = v' + (d - v)*w/w'
3808 * = V' - (V - v)*w/w' + (d - v)*w/w'
3809 * = V - (V - v)*w/w' + (d - v)*w/w'
3810 * = V + (d - V)*w/w'
3811 */
3812 vslice = (s64)(se->deadline - avruntime);
3813 vslice = div_s64(vslice * old_weight, weight);
3814 se->deadline = avruntime + vslice;
3815 }
3816
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3817 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3818 unsigned long weight)
3819 {
3820 bool curr = cfs_rq->curr == se;
3821 u64 avruntime;
3822
3823 if (se->on_rq) {
3824 /* commit outstanding execution time */
3825 update_curr(cfs_rq);
3826 avruntime = avg_vruntime(cfs_rq);
3827 if (!curr)
3828 __dequeue_entity(cfs_rq, se);
3829 update_load_sub(&cfs_rq->load, se->load.weight);
3830 }
3831 dequeue_load_avg(cfs_rq, se);
3832
3833 if (se->on_rq) {
3834 reweight_eevdf(se, avruntime, weight);
3835 } else {
3836 /*
3837 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3838 * we need to scale se->vlag when w_i changes.
3839 */
3840 se->vlag = div_s64(se->vlag * se->load.weight, weight);
3841 }
3842
3843 update_load_set(&se->load, weight);
3844
3845 #ifdef CONFIG_SMP
3846 do {
3847 u32 divider = get_pelt_divider(&se->avg);
3848
3849 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3850 } while (0);
3851 #endif
3852
3853 enqueue_load_avg(cfs_rq, se);
3854 if (se->on_rq) {
3855 update_load_add(&cfs_rq->load, se->load.weight);
3856 if (!curr)
3857 __enqueue_entity(cfs_rq, se);
3858
3859 /*
3860 * The entity's vruntime has been adjusted, so let's check
3861 * whether the rq-wide min_vruntime needs updated too. Since
3862 * the calculations above require stable min_vruntime rather
3863 * than up-to-date one, we do the update at the end of the
3864 * reweight process.
3865 */
3866 update_min_vruntime(cfs_rq);
3867 }
3868 }
3869
reweight_task(struct task_struct * p,const struct load_weight * lw)3870 void reweight_task(struct task_struct *p, const struct load_weight *lw)
3871 {
3872 struct sched_entity *se = &p->se;
3873 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3874 struct load_weight *load = &se->load;
3875
3876 reweight_entity(cfs_rq, se, lw->weight);
3877 load->inv_weight = lw->inv_weight;
3878 }
3879
3880 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3881
3882 #ifdef CONFIG_FAIR_GROUP_SCHED
3883 #ifdef CONFIG_SMP
3884 /*
3885 * All this does is approximate the hierarchical proportion which includes that
3886 * global sum we all love to hate.
3887 *
3888 * That is, the weight of a group entity, is the proportional share of the
3889 * group weight based on the group runqueue weights. That is:
3890 *
3891 * tg->weight * grq->load.weight
3892 * ge->load.weight = ----------------------------- (1)
3893 * \Sum grq->load.weight
3894 *
3895 * Now, because computing that sum is prohibitively expensive to compute (been
3896 * there, done that) we approximate it with this average stuff. The average
3897 * moves slower and therefore the approximation is cheaper and more stable.
3898 *
3899 * So instead of the above, we substitute:
3900 *
3901 * grq->load.weight -> grq->avg.load_avg (2)
3902 *
3903 * which yields the following:
3904 *
3905 * tg->weight * grq->avg.load_avg
3906 * ge->load.weight = ------------------------------ (3)
3907 * tg->load_avg
3908 *
3909 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3910 *
3911 * That is shares_avg, and it is right (given the approximation (2)).
3912 *
3913 * The problem with it is that because the average is slow -- it was designed
3914 * to be exactly that of course -- this leads to transients in boundary
3915 * conditions. In specific, the case where the group was idle and we start the
3916 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3917 * yielding bad latency etc..
3918 *
3919 * Now, in that special case (1) reduces to:
3920 *
3921 * tg->weight * grq->load.weight
3922 * ge->load.weight = ----------------------------- = tg->weight (4)
3923 * grp->load.weight
3924 *
3925 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3926 *
3927 * So what we do is modify our approximation (3) to approach (4) in the (near)
3928 * UP case, like:
3929 *
3930 * ge->load.weight =
3931 *
3932 * tg->weight * grq->load.weight
3933 * --------------------------------------------------- (5)
3934 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3935 *
3936 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3937 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3938 *
3939 *
3940 * tg->weight * grq->load.weight
3941 * ge->load.weight = ----------------------------- (6)
3942 * tg_load_avg'
3943 *
3944 * Where:
3945 *
3946 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3947 * max(grq->load.weight, grq->avg.load_avg)
3948 *
3949 * And that is shares_weight and is icky. In the (near) UP case it approaches
3950 * (4) while in the normal case it approaches (3). It consistently
3951 * overestimates the ge->load.weight and therefore:
3952 *
3953 * \Sum ge->load.weight >= tg->weight
3954 *
3955 * hence icky!
3956 */
calc_group_shares(struct cfs_rq * cfs_rq)3957 static long calc_group_shares(struct cfs_rq *cfs_rq)
3958 {
3959 long tg_weight, tg_shares, load, shares;
3960 struct task_group *tg = cfs_rq->tg;
3961
3962 tg_shares = READ_ONCE(tg->shares);
3963
3964 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3965
3966 tg_weight = atomic_long_read(&tg->load_avg);
3967
3968 /* Ensure tg_weight >= load */
3969 tg_weight -= cfs_rq->tg_load_avg_contrib;
3970 tg_weight += load;
3971
3972 shares = (tg_shares * load);
3973 if (tg_weight)
3974 shares /= tg_weight;
3975
3976 /*
3977 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3978 * of a group with small tg->shares value. It is a floor value which is
3979 * assigned as a minimum load.weight to the sched_entity representing
3980 * the group on a CPU.
3981 *
3982 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3983 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3984 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3985 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3986 * instead of 0.
3987 */
3988 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3989 }
3990 #endif /* CONFIG_SMP */
3991
3992 /*
3993 * Recomputes the group entity based on the current state of its group
3994 * runqueue.
3995 */
update_cfs_group(struct sched_entity * se)3996 static void update_cfs_group(struct sched_entity *se)
3997 {
3998 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3999 long shares;
4000
4001 if (!gcfs_rq)
4002 return;
4003
4004 if (throttled_hierarchy(gcfs_rq))
4005 return;
4006
4007 #ifndef CONFIG_SMP
4008 shares = READ_ONCE(gcfs_rq->tg->shares);
4009 #else
4010 shares = calc_group_shares(gcfs_rq);
4011 #endif
4012 if (unlikely(se->load.weight != shares))
4013 reweight_entity(cfs_rq_of(se), se, shares);
4014 }
4015
4016 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)4017 static inline void update_cfs_group(struct sched_entity *se)
4018 {
4019 }
4020 #endif /* CONFIG_FAIR_GROUP_SCHED */
4021
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)4022 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
4023 {
4024 struct rq *rq = rq_of(cfs_rq);
4025
4026 if (&rq->cfs == cfs_rq) {
4027 /*
4028 * There are a few boundary cases this might miss but it should
4029 * get called often enough that that should (hopefully) not be
4030 * a real problem.
4031 *
4032 * It will not get called when we go idle, because the idle
4033 * thread is a different class (!fair), nor will the utilization
4034 * number include things like RT tasks.
4035 *
4036 * As is, the util number is not freq-invariant (we'd have to
4037 * implement arch_scale_freq_capacity() for that).
4038 *
4039 * See cpu_util_cfs().
4040 */
4041 cpufreq_update_util(rq, flags);
4042 }
4043 }
4044
4045 #ifdef CONFIG_SMP
load_avg_is_decayed(struct sched_avg * sa)4046 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4047 {
4048 if (sa->load_sum)
4049 return false;
4050
4051 if (sa->util_sum)
4052 return false;
4053
4054 if (sa->runnable_sum)
4055 return false;
4056
4057 /*
4058 * _avg must be null when _sum are null because _avg = _sum / divider
4059 * Make sure that rounding and/or propagation of PELT values never
4060 * break this.
4061 */
4062 SCHED_WARN_ON(sa->load_avg ||
4063 sa->util_avg ||
4064 sa->runnable_avg);
4065
4066 return true;
4067 }
4068
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)4069 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4070 {
4071 return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4072 cfs_rq->last_update_time_copy);
4073 }
4074 #ifdef CONFIG_FAIR_GROUP_SCHED
4075 /*
4076 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4077 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4078 * bottom-up, we only have to test whether the cfs_rq before us on the list
4079 * is our child.
4080 * If cfs_rq is not on the list, test whether a child needs its to be added to
4081 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
4082 */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)4083 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4084 {
4085 struct cfs_rq *prev_cfs_rq;
4086 struct list_head *prev;
4087
4088 if (cfs_rq->on_list) {
4089 prev = cfs_rq->leaf_cfs_rq_list.prev;
4090 } else {
4091 struct rq *rq = rq_of(cfs_rq);
4092
4093 prev = rq->tmp_alone_branch;
4094 }
4095
4096 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4097
4098 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4099 }
4100
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4101 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4102 {
4103 if (cfs_rq->load.weight)
4104 return false;
4105
4106 if (!load_avg_is_decayed(&cfs_rq->avg))
4107 return false;
4108
4109 if (child_cfs_rq_on_list(cfs_rq))
4110 return false;
4111
4112 return true;
4113 }
4114
4115 /**
4116 * update_tg_load_avg - update the tg's load avg
4117 * @cfs_rq: the cfs_rq whose avg changed
4118 *
4119 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4120 * However, because tg->load_avg is a global value there are performance
4121 * considerations.
4122 *
4123 * In order to avoid having to look at the other cfs_rq's, we use a
4124 * differential update where we store the last value we propagated. This in
4125 * turn allows skipping updates if the differential is 'small'.
4126 *
4127 * Updating tg's load_avg is necessary before update_cfs_share().
4128 */
update_tg_load_avg(struct cfs_rq * cfs_rq)4129 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4130 {
4131 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4132
4133 /*
4134 * No need to update load_avg for root_task_group as it is not used.
4135 */
4136 if (cfs_rq->tg == &root_task_group)
4137 return;
4138
4139 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4140 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4141 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4142 }
4143 }
4144
4145 /*
4146 * Called within set_task_rq() right before setting a task's CPU. The
4147 * caller only guarantees p->pi_lock is held; no other assumptions,
4148 * including the state of rq->lock, should be made.
4149 */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)4150 void set_task_rq_fair(struct sched_entity *se,
4151 struct cfs_rq *prev, struct cfs_rq *next)
4152 {
4153 u64 p_last_update_time;
4154 u64 n_last_update_time;
4155
4156 if (!sched_feat(ATTACH_AGE_LOAD))
4157 return;
4158
4159 /*
4160 * We are supposed to update the task to "current" time, then its up to
4161 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4162 * getting what current time is, so simply throw away the out-of-date
4163 * time. This will result in the wakee task is less decayed, but giving
4164 * the wakee more load sounds not bad.
4165 */
4166 if (!(se->avg.last_update_time && prev))
4167 return;
4168
4169 p_last_update_time = cfs_rq_last_update_time(prev);
4170 n_last_update_time = cfs_rq_last_update_time(next);
4171
4172 __update_load_avg_blocked_se(p_last_update_time, se);
4173 se->avg.last_update_time = n_last_update_time;
4174 }
4175
4176 /*
4177 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4178 * propagate its contribution. The key to this propagation is the invariant
4179 * that for each group:
4180 *
4181 * ge->avg == grq->avg (1)
4182 *
4183 * _IFF_ we look at the pure running and runnable sums. Because they
4184 * represent the very same entity, just at different points in the hierarchy.
4185 *
4186 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4187 * and simply copies the running/runnable sum over (but still wrong, because
4188 * the group entity and group rq do not have their PELT windows aligned).
4189 *
4190 * However, update_tg_cfs_load() is more complex. So we have:
4191 *
4192 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
4193 *
4194 * And since, like util, the runnable part should be directly transferable,
4195 * the following would _appear_ to be the straight forward approach:
4196 *
4197 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
4198 *
4199 * And per (1) we have:
4200 *
4201 * ge->avg.runnable_avg == grq->avg.runnable_avg
4202 *
4203 * Which gives:
4204 *
4205 * ge->load.weight * grq->avg.load_avg
4206 * ge->avg.load_avg = ----------------------------------- (4)
4207 * grq->load.weight
4208 *
4209 * Except that is wrong!
4210 *
4211 * Because while for entities historical weight is not important and we
4212 * really only care about our future and therefore can consider a pure
4213 * runnable sum, runqueues can NOT do this.
4214 *
4215 * We specifically want runqueues to have a load_avg that includes
4216 * historical weights. Those represent the blocked load, the load we expect
4217 * to (shortly) return to us. This only works by keeping the weights as
4218 * integral part of the sum. We therefore cannot decompose as per (3).
4219 *
4220 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4221 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4222 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4223 * runnable section of these tasks overlap (or not). If they were to perfectly
4224 * align the rq as a whole would be runnable 2/3 of the time. If however we
4225 * always have at least 1 runnable task, the rq as a whole is always runnable.
4226 *
4227 * So we'll have to approximate.. :/
4228 *
4229 * Given the constraint:
4230 *
4231 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4232 *
4233 * We can construct a rule that adds runnable to a rq by assuming minimal
4234 * overlap.
4235 *
4236 * On removal, we'll assume each task is equally runnable; which yields:
4237 *
4238 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4239 *
4240 * XXX: only do this for the part of runnable > running ?
4241 *
4242 */
4243 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4244 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4245 {
4246 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4247 u32 new_sum, divider;
4248
4249 /* Nothing to update */
4250 if (!delta_avg)
4251 return;
4252
4253 /*
4254 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4255 * See ___update_load_avg() for details.
4256 */
4257 divider = get_pelt_divider(&cfs_rq->avg);
4258
4259
4260 /* Set new sched_entity's utilization */
4261 se->avg.util_avg = gcfs_rq->avg.util_avg;
4262 new_sum = se->avg.util_avg * divider;
4263 delta_sum = (long)new_sum - (long)se->avg.util_sum;
4264 se->avg.util_sum = new_sum;
4265
4266 /* Update parent cfs_rq utilization */
4267 add_positive(&cfs_rq->avg.util_avg, delta_avg);
4268 add_positive(&cfs_rq->avg.util_sum, delta_sum);
4269
4270 /* See update_cfs_rq_load_avg() */
4271 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4272 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4273 }
4274
4275 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4276 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4277 {
4278 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4279 u32 new_sum, divider;
4280
4281 /* Nothing to update */
4282 if (!delta_avg)
4283 return;
4284
4285 /*
4286 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4287 * See ___update_load_avg() for details.
4288 */
4289 divider = get_pelt_divider(&cfs_rq->avg);
4290
4291 /* Set new sched_entity's runnable */
4292 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4293 new_sum = se->avg.runnable_avg * divider;
4294 delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4295 se->avg.runnable_sum = new_sum;
4296
4297 /* Update parent cfs_rq runnable */
4298 add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4299 add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4300 /* See update_cfs_rq_load_avg() */
4301 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4302 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4303 }
4304
4305 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4306 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4307 {
4308 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4309 unsigned long load_avg;
4310 u64 load_sum = 0;
4311 s64 delta_sum;
4312 u32 divider;
4313
4314 if (!runnable_sum)
4315 return;
4316
4317 gcfs_rq->prop_runnable_sum = 0;
4318
4319 /*
4320 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4321 * See ___update_load_avg() for details.
4322 */
4323 divider = get_pelt_divider(&cfs_rq->avg);
4324
4325 if (runnable_sum >= 0) {
4326 /*
4327 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4328 * the CPU is saturated running == runnable.
4329 */
4330 runnable_sum += se->avg.load_sum;
4331 runnable_sum = min_t(long, runnable_sum, divider);
4332 } else {
4333 /*
4334 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4335 * assuming all tasks are equally runnable.
4336 */
4337 if (scale_load_down(gcfs_rq->load.weight)) {
4338 load_sum = div_u64(gcfs_rq->avg.load_sum,
4339 scale_load_down(gcfs_rq->load.weight));
4340 }
4341
4342 /* But make sure to not inflate se's runnable */
4343 runnable_sum = min(se->avg.load_sum, load_sum);
4344 }
4345
4346 /*
4347 * runnable_sum can't be lower than running_sum
4348 * Rescale running sum to be in the same range as runnable sum
4349 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
4350 * runnable_sum is in [0 : LOAD_AVG_MAX]
4351 */
4352 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4353 runnable_sum = max(runnable_sum, running_sum);
4354
4355 load_sum = se_weight(se) * runnable_sum;
4356 load_avg = div_u64(load_sum, divider);
4357
4358 delta_avg = load_avg - se->avg.load_avg;
4359 if (!delta_avg)
4360 return;
4361
4362 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4363
4364 se->avg.load_sum = runnable_sum;
4365 se->avg.load_avg = load_avg;
4366 add_positive(&cfs_rq->avg.load_avg, delta_avg);
4367 add_positive(&cfs_rq->avg.load_sum, delta_sum);
4368 /* See update_cfs_rq_load_avg() */
4369 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4370 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4371 }
4372
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4373 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4374 {
4375 cfs_rq->propagate = 1;
4376 cfs_rq->prop_runnable_sum += runnable_sum;
4377 }
4378
4379 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)4380 static inline int propagate_entity_load_avg(struct sched_entity *se)
4381 {
4382 struct cfs_rq *cfs_rq, *gcfs_rq;
4383
4384 if (entity_is_task(se))
4385 return 0;
4386
4387 gcfs_rq = group_cfs_rq(se);
4388 if (!gcfs_rq->propagate)
4389 return 0;
4390
4391 gcfs_rq->propagate = 0;
4392
4393 cfs_rq = cfs_rq_of(se);
4394
4395 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4396
4397 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4398 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4399 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4400
4401 trace_pelt_cfs_tp(cfs_rq);
4402 trace_pelt_se_tp(se);
4403
4404 return 1;
4405 }
4406
4407 /*
4408 * Check if we need to update the load and the utilization of a blocked
4409 * group_entity:
4410 */
skip_blocked_update(struct sched_entity * se)4411 static inline bool skip_blocked_update(struct sched_entity *se)
4412 {
4413 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4414
4415 /*
4416 * If sched_entity still have not zero load or utilization, we have to
4417 * decay it:
4418 */
4419 if (se->avg.load_avg || se->avg.util_avg)
4420 return false;
4421
4422 /*
4423 * If there is a pending propagation, we have to update the load and
4424 * the utilization of the sched_entity:
4425 */
4426 if (gcfs_rq->propagate)
4427 return false;
4428
4429 /*
4430 * Otherwise, the load and the utilization of the sched_entity is
4431 * already zero and there is no pending propagation, so it will be a
4432 * waste of time to try to decay it:
4433 */
4434 return true;
4435 }
4436
4437 #else /* CONFIG_FAIR_GROUP_SCHED */
4438
update_tg_load_avg(struct cfs_rq * cfs_rq)4439 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4440
propagate_entity_load_avg(struct sched_entity * se)4441 static inline int propagate_entity_load_avg(struct sched_entity *se)
4442 {
4443 return 0;
4444 }
4445
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4446 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4447
4448 #endif /* CONFIG_FAIR_GROUP_SCHED */
4449
4450 #ifdef CONFIG_NO_HZ_COMMON
migrate_se_pelt_lag(struct sched_entity * se)4451 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4452 {
4453 u64 throttled = 0, now, lut;
4454 struct cfs_rq *cfs_rq;
4455 struct rq *rq;
4456 bool is_idle;
4457
4458 if (load_avg_is_decayed(&se->avg))
4459 return;
4460
4461 cfs_rq = cfs_rq_of(se);
4462 rq = rq_of(cfs_rq);
4463
4464 rcu_read_lock();
4465 is_idle = is_idle_task(rcu_dereference(rq->curr));
4466 rcu_read_unlock();
4467
4468 /*
4469 * The lag estimation comes with a cost we don't want to pay all the
4470 * time. Hence, limiting to the case where the source CPU is idle and
4471 * we know we are at the greatest risk to have an outdated clock.
4472 */
4473 if (!is_idle)
4474 return;
4475
4476 /*
4477 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4478 *
4479 * last_update_time (the cfs_rq's last_update_time)
4480 * = cfs_rq_clock_pelt()@cfs_rq_idle
4481 * = rq_clock_pelt()@cfs_rq_idle
4482 * - cfs->throttled_clock_pelt_time@cfs_rq_idle
4483 *
4484 * cfs_idle_lag (delta between rq's update and cfs_rq's update)
4485 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4486 *
4487 * rq_idle_lag (delta between now and rq's update)
4488 * = sched_clock_cpu() - rq_clock()@rq_idle
4489 *
4490 * We can then write:
4491 *
4492 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4493 * sched_clock_cpu() - rq_clock()@rq_idle
4494 * Where:
4495 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4496 * rq_clock()@rq_idle is rq->clock_idle
4497 * cfs->throttled_clock_pelt_time@cfs_rq_idle
4498 * is cfs_rq->throttled_pelt_idle
4499 */
4500
4501 #ifdef CONFIG_CFS_BANDWIDTH
4502 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4503 /* The clock has been stopped for throttling */
4504 if (throttled == U64_MAX)
4505 return;
4506 #endif
4507 now = u64_u32_load(rq->clock_pelt_idle);
4508 /*
4509 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4510 * is observed the old clock_pelt_idle value and the new clock_idle,
4511 * which lead to an underestimation. The opposite would lead to an
4512 * overestimation.
4513 */
4514 smp_rmb();
4515 lut = cfs_rq_last_update_time(cfs_rq);
4516
4517 now -= throttled;
4518 if (now < lut)
4519 /*
4520 * cfs_rq->avg.last_update_time is more recent than our
4521 * estimation, let's use it.
4522 */
4523 now = lut;
4524 else
4525 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4526
4527 __update_load_avg_blocked_se(now, se);
4528 }
4529 #else
migrate_se_pelt_lag(struct sched_entity * se)4530 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4531 #endif
4532
4533 /**
4534 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4535 * @now: current time, as per cfs_rq_clock_pelt()
4536 * @cfs_rq: cfs_rq to update
4537 *
4538 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4539 * avg. The immediate corollary is that all (fair) tasks must be attached.
4540 *
4541 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4542 *
4543 * Return: true if the load decayed or we removed load.
4544 *
4545 * Since both these conditions indicate a changed cfs_rq->avg.load we should
4546 * call update_tg_load_avg() when this function returns true.
4547 */
4548 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)4549 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4550 {
4551 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4552 struct sched_avg *sa = &cfs_rq->avg;
4553 int decayed = 0;
4554
4555 if (cfs_rq->removed.nr) {
4556 unsigned long r;
4557 u32 divider = get_pelt_divider(&cfs_rq->avg);
4558
4559 raw_spin_lock(&cfs_rq->removed.lock);
4560 swap(cfs_rq->removed.util_avg, removed_util);
4561 swap(cfs_rq->removed.load_avg, removed_load);
4562 swap(cfs_rq->removed.runnable_avg, removed_runnable);
4563 cfs_rq->removed.nr = 0;
4564 raw_spin_unlock(&cfs_rq->removed.lock);
4565
4566 r = removed_load;
4567 sub_positive(&sa->load_avg, r);
4568 sub_positive(&sa->load_sum, r * divider);
4569 /* See sa->util_sum below */
4570 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4571
4572 r = removed_util;
4573 sub_positive(&sa->util_avg, r);
4574 sub_positive(&sa->util_sum, r * divider);
4575 /*
4576 * Because of rounding, se->util_sum might ends up being +1 more than
4577 * cfs->util_sum. Although this is not a problem by itself, detaching
4578 * a lot of tasks with the rounding problem between 2 updates of
4579 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4580 * cfs_util_avg is not.
4581 * Check that util_sum is still above its lower bound for the new
4582 * util_avg. Given that period_contrib might have moved since the last
4583 * sync, we are only sure that util_sum must be above or equal to
4584 * util_avg * minimum possible divider
4585 */
4586 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4587
4588 r = removed_runnable;
4589 sub_positive(&sa->runnable_avg, r);
4590 sub_positive(&sa->runnable_sum, r * divider);
4591 /* See sa->util_sum above */
4592 sa->runnable_sum = max_t(u32, sa->runnable_sum,
4593 sa->runnable_avg * PELT_MIN_DIVIDER);
4594
4595 /*
4596 * removed_runnable is the unweighted version of removed_load so we
4597 * can use it to estimate removed_load_sum.
4598 */
4599 add_tg_cfs_propagate(cfs_rq,
4600 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4601
4602 decayed = 1;
4603 }
4604
4605 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4606 u64_u32_store_copy(sa->last_update_time,
4607 cfs_rq->last_update_time_copy,
4608 sa->last_update_time);
4609 return decayed;
4610 }
4611
4612 /**
4613 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4614 * @cfs_rq: cfs_rq to attach to
4615 * @se: sched_entity to attach
4616 *
4617 * Must call update_cfs_rq_load_avg() before this, since we rely on
4618 * cfs_rq->avg.last_update_time being current.
4619 */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4620 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4621 {
4622 /*
4623 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4624 * See ___update_load_avg() for details.
4625 */
4626 u32 divider = get_pelt_divider(&cfs_rq->avg);
4627
4628 /*
4629 * When we attach the @se to the @cfs_rq, we must align the decay
4630 * window because without that, really weird and wonderful things can
4631 * happen.
4632 *
4633 * XXX illustrate
4634 */
4635 se->avg.last_update_time = cfs_rq->avg.last_update_time;
4636 se->avg.period_contrib = cfs_rq->avg.period_contrib;
4637
4638 /*
4639 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4640 * period_contrib. This isn't strictly correct, but since we're
4641 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4642 * _sum a little.
4643 */
4644 se->avg.util_sum = se->avg.util_avg * divider;
4645
4646 se->avg.runnable_sum = se->avg.runnable_avg * divider;
4647
4648 se->avg.load_sum = se->avg.load_avg * divider;
4649 if (se_weight(se) < se->avg.load_sum)
4650 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4651 else
4652 se->avg.load_sum = 1;
4653
4654 enqueue_load_avg(cfs_rq, se);
4655 cfs_rq->avg.util_avg += se->avg.util_avg;
4656 cfs_rq->avg.util_sum += se->avg.util_sum;
4657 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4658 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4659
4660 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4661
4662 cfs_rq_util_change(cfs_rq, 0);
4663
4664 trace_pelt_cfs_tp(cfs_rq);
4665 }
4666
4667 /**
4668 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4669 * @cfs_rq: cfs_rq to detach from
4670 * @se: sched_entity to detach
4671 *
4672 * Must call update_cfs_rq_load_avg() before this, since we rely on
4673 * cfs_rq->avg.last_update_time being current.
4674 */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4675 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4676 {
4677 dequeue_load_avg(cfs_rq, se);
4678 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4679 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4680 /* See update_cfs_rq_load_avg() */
4681 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4682 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4683
4684 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4685 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4686 /* See update_cfs_rq_load_avg() */
4687 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4688 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4689
4690 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4691
4692 cfs_rq_util_change(cfs_rq, 0);
4693
4694 trace_pelt_cfs_tp(cfs_rq);
4695 }
4696
4697 /*
4698 * Optional action to be done while updating the load average
4699 */
4700 #define UPDATE_TG 0x1
4701 #define SKIP_AGE_LOAD 0x2
4702 #define DO_ATTACH 0x4
4703 #define DO_DETACH 0x8
4704
4705 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4706 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4707 {
4708 u64 now = cfs_rq_clock_pelt(cfs_rq);
4709 int decayed;
4710
4711 /*
4712 * Track task load average for carrying it to new CPU after migrated, and
4713 * track group sched_entity load average for task_h_load calc in migration
4714 */
4715 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4716 __update_load_avg_se(now, cfs_rq, se);
4717
4718 decayed = update_cfs_rq_load_avg(now, cfs_rq);
4719 decayed |= propagate_entity_load_avg(se);
4720
4721 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4722
4723 /*
4724 * DO_ATTACH means we're here from enqueue_entity().
4725 * !last_update_time means we've passed through
4726 * migrate_task_rq_fair() indicating we migrated.
4727 *
4728 * IOW we're enqueueing a task on a new CPU.
4729 */
4730 attach_entity_load_avg(cfs_rq, se);
4731 update_tg_load_avg(cfs_rq);
4732
4733 } else if (flags & DO_DETACH) {
4734 /*
4735 * DO_DETACH means we're here from dequeue_entity()
4736 * and we are migrating task out of the CPU.
4737 */
4738 detach_entity_load_avg(cfs_rq, se);
4739 update_tg_load_avg(cfs_rq);
4740 } else if (decayed) {
4741 cfs_rq_util_change(cfs_rq, 0);
4742
4743 if (flags & UPDATE_TG)
4744 update_tg_load_avg(cfs_rq);
4745 }
4746 }
4747
4748 /*
4749 * Synchronize entity load avg of dequeued entity without locking
4750 * the previous rq.
4751 */
sync_entity_load_avg(struct sched_entity * se)4752 static void sync_entity_load_avg(struct sched_entity *se)
4753 {
4754 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4755 u64 last_update_time;
4756
4757 last_update_time = cfs_rq_last_update_time(cfs_rq);
4758 __update_load_avg_blocked_se(last_update_time, se);
4759 }
4760
4761 /*
4762 * Task first catches up with cfs_rq, and then subtract
4763 * itself from the cfs_rq (task must be off the queue now).
4764 */
remove_entity_load_avg(struct sched_entity * se)4765 static void remove_entity_load_avg(struct sched_entity *se)
4766 {
4767 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4768 unsigned long flags;
4769
4770 /*
4771 * tasks cannot exit without having gone through wake_up_new_task() ->
4772 * enqueue_task_fair() which will have added things to the cfs_rq,
4773 * so we can remove unconditionally.
4774 */
4775
4776 sync_entity_load_avg(se);
4777
4778 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4779 ++cfs_rq->removed.nr;
4780 cfs_rq->removed.util_avg += se->avg.util_avg;
4781 cfs_rq->removed.load_avg += se->avg.load_avg;
4782 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
4783 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4784 }
4785
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4786 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4787 {
4788 return cfs_rq->avg.runnable_avg;
4789 }
4790
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4791 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4792 {
4793 return cfs_rq->avg.load_avg;
4794 }
4795
4796 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4797
task_util(struct task_struct * p)4798 static inline unsigned long task_util(struct task_struct *p)
4799 {
4800 return READ_ONCE(p->se.avg.util_avg);
4801 }
4802
_task_util_est(struct task_struct * p)4803 static inline unsigned long _task_util_est(struct task_struct *p)
4804 {
4805 struct util_est ue = READ_ONCE(p->se.avg.util_est);
4806
4807 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4808 }
4809
task_util_est(struct task_struct * p)4810 static inline unsigned long task_util_est(struct task_struct *p)
4811 {
4812 return max(task_util(p), _task_util_est(p));
4813 }
4814
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4815 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4816 struct task_struct *p)
4817 {
4818 unsigned int enqueued;
4819
4820 if (!sched_feat(UTIL_EST))
4821 return;
4822
4823 /* Update root cfs_rq's estimated utilization */
4824 enqueued = cfs_rq->avg.util_est.enqueued;
4825 enqueued += _task_util_est(p);
4826 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4827
4828 trace_sched_util_est_cfs_tp(cfs_rq);
4829 }
4830
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4831 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4832 struct task_struct *p)
4833 {
4834 unsigned int enqueued;
4835
4836 if (!sched_feat(UTIL_EST))
4837 return;
4838
4839 /* Update root cfs_rq's estimated utilization */
4840 enqueued = cfs_rq->avg.util_est.enqueued;
4841 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4842 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4843
4844 trace_sched_util_est_cfs_tp(cfs_rq);
4845 }
4846
4847 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4848
4849 /*
4850 * Check if a (signed) value is within a specified (unsigned) margin,
4851 * based on the observation that:
4852 *
4853 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4854 *
4855 * NOTE: this only works when value + margin < INT_MAX.
4856 */
within_margin(int value,int margin)4857 static inline bool within_margin(int value, int margin)
4858 {
4859 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4860 }
4861
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4862 static inline void util_est_update(struct cfs_rq *cfs_rq,
4863 struct task_struct *p,
4864 bool task_sleep)
4865 {
4866 long last_ewma_diff, last_enqueued_diff;
4867 struct util_est ue;
4868
4869 if (!sched_feat(UTIL_EST))
4870 return;
4871
4872 /*
4873 * Skip update of task's estimated utilization when the task has not
4874 * yet completed an activation, e.g. being migrated.
4875 */
4876 if (!task_sleep)
4877 return;
4878
4879 /*
4880 * If the PELT values haven't changed since enqueue time,
4881 * skip the util_est update.
4882 */
4883 ue = p->se.avg.util_est;
4884 if (ue.enqueued & UTIL_AVG_UNCHANGED)
4885 return;
4886
4887 last_enqueued_diff = ue.enqueued;
4888
4889 /*
4890 * Reset EWMA on utilization increases, the moving average is used only
4891 * to smooth utilization decreases.
4892 */
4893 ue.enqueued = task_util(p);
4894 if (sched_feat(UTIL_EST_FASTUP)) {
4895 if (ue.ewma < ue.enqueued) {
4896 ue.ewma = ue.enqueued;
4897 goto done;
4898 }
4899 }
4900
4901 /*
4902 * Skip update of task's estimated utilization when its members are
4903 * already ~1% close to its last activation value.
4904 */
4905 last_ewma_diff = ue.enqueued - ue.ewma;
4906 last_enqueued_diff -= ue.enqueued;
4907 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4908 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4909 goto done;
4910
4911 return;
4912 }
4913
4914 /*
4915 * To avoid overestimation of actual task utilization, skip updates if
4916 * we cannot grant there is idle time in this CPU.
4917 */
4918 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4919 return;
4920
4921 /*
4922 * Update Task's estimated utilization
4923 *
4924 * When *p completes an activation we can consolidate another sample
4925 * of the task size. This is done by storing the current PELT value
4926 * as ue.enqueued and by using this value to update the Exponential
4927 * Weighted Moving Average (EWMA):
4928 *
4929 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4930 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4931 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4932 * = w * ( last_ewma_diff ) + ewma(t-1)
4933 * = w * (last_ewma_diff + ewma(t-1) / w)
4934 *
4935 * Where 'w' is the weight of new samples, which is configured to be
4936 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4937 */
4938 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4939 ue.ewma += last_ewma_diff;
4940 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4941 done:
4942 ue.enqueued |= UTIL_AVG_UNCHANGED;
4943 WRITE_ONCE(p->se.avg.util_est, ue);
4944
4945 trace_sched_util_est_se_tp(&p->se);
4946 }
4947
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)4948 static inline int util_fits_cpu(unsigned long util,
4949 unsigned long uclamp_min,
4950 unsigned long uclamp_max,
4951 int cpu)
4952 {
4953 unsigned long capacity_orig, capacity_orig_thermal;
4954 unsigned long capacity = capacity_of(cpu);
4955 bool fits, uclamp_max_fits;
4956
4957 /*
4958 * Check if the real util fits without any uclamp boost/cap applied.
4959 */
4960 fits = fits_capacity(util, capacity);
4961
4962 if (!uclamp_is_used())
4963 return fits;
4964
4965 /*
4966 * We must use capacity_orig_of() for comparing against uclamp_min and
4967 * uclamp_max. We only care about capacity pressure (by using
4968 * capacity_of()) for comparing against the real util.
4969 *
4970 * If a task is boosted to 1024 for example, we don't want a tiny
4971 * pressure to skew the check whether it fits a CPU or not.
4972 *
4973 * Similarly if a task is capped to capacity_orig_of(little_cpu), it
4974 * should fit a little cpu even if there's some pressure.
4975 *
4976 * Only exception is for thermal pressure since it has a direct impact
4977 * on available OPP of the system.
4978 *
4979 * We honour it for uclamp_min only as a drop in performance level
4980 * could result in not getting the requested minimum performance level.
4981 *
4982 * For uclamp_max, we can tolerate a drop in performance level as the
4983 * goal is to cap the task. So it's okay if it's getting less.
4984 */
4985 capacity_orig = capacity_orig_of(cpu);
4986 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
4987
4988 /*
4989 * We want to force a task to fit a cpu as implied by uclamp_max.
4990 * But we do have some corner cases to cater for..
4991 *
4992 *
4993 * C=z
4994 * | ___
4995 * | C=y | |
4996 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4997 * | C=x | | | |
4998 * | ___ | | | |
4999 * | | | | | | | (util somewhere in this region)
5000 * | | | | | | |
5001 * | | | | | | |
5002 * +----------------------------------------
5003 * cpu0 cpu1 cpu2
5004 *
5005 * In the above example if a task is capped to a specific performance
5006 * point, y, then when:
5007 *
5008 * * util = 80% of x then it does not fit on cpu0 and should migrate
5009 * to cpu1
5010 * * util = 80% of y then it is forced to fit on cpu1 to honour
5011 * uclamp_max request.
5012 *
5013 * which is what we're enforcing here. A task always fits if
5014 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5015 * the normal upmigration rules should withhold still.
5016 *
5017 * Only exception is when we are on max capacity, then we need to be
5018 * careful not to block overutilized state. This is so because:
5019 *
5020 * 1. There's no concept of capping at max_capacity! We can't go
5021 * beyond this performance level anyway.
5022 * 2. The system is being saturated when we're operating near
5023 * max capacity, it doesn't make sense to block overutilized.
5024 */
5025 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5026 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5027 fits = fits || uclamp_max_fits;
5028
5029 /*
5030 *
5031 * C=z
5032 * | ___ (region a, capped, util >= uclamp_max)
5033 * | C=y | |
5034 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5035 * | C=x | | | |
5036 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
5037 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5038 * | | | | | | |
5039 * | | | | | | | (region c, boosted, util < uclamp_min)
5040 * +----------------------------------------
5041 * cpu0 cpu1 cpu2
5042 *
5043 * a) If util > uclamp_max, then we're capped, we don't care about
5044 * actual fitness value here. We only care if uclamp_max fits
5045 * capacity without taking margin/pressure into account.
5046 * See comment above.
5047 *
5048 * b) If uclamp_min <= util <= uclamp_max, then the normal
5049 * fits_capacity() rules apply. Except we need to ensure that we
5050 * enforce we remain within uclamp_max, see comment above.
5051 *
5052 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5053 * need to take into account the boosted value fits the CPU without
5054 * taking margin/pressure into account.
5055 *
5056 * Cases (a) and (b) are handled in the 'fits' variable already. We
5057 * just need to consider an extra check for case (c) after ensuring we
5058 * handle the case uclamp_min > uclamp_max.
5059 */
5060 uclamp_min = min(uclamp_min, uclamp_max);
5061 if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
5062 return -1;
5063
5064 return fits;
5065 }
5066
task_fits_cpu(struct task_struct * p,int cpu)5067 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5068 {
5069 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5070 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5071 unsigned long util = task_util_est(p);
5072 /*
5073 * Return true only if the cpu fully fits the task requirements, which
5074 * include the utilization but also the performance hints.
5075 */
5076 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5077 }
5078
update_misfit_status(struct task_struct * p,struct rq * rq)5079 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5080 {
5081 if (!sched_asym_cpucap_active())
5082 return;
5083
5084 if (!p || p->nr_cpus_allowed == 1) {
5085 rq->misfit_task_load = 0;
5086 return;
5087 }
5088
5089 if (task_fits_cpu(p, cpu_of(rq))) {
5090 rq->misfit_task_load = 0;
5091 return;
5092 }
5093
5094 /*
5095 * Make sure that misfit_task_load will not be null even if
5096 * task_h_load() returns 0.
5097 */
5098 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5099 }
5100
5101 #else /* CONFIG_SMP */
5102
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)5103 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5104 {
5105 return !cfs_rq->nr_running;
5106 }
5107
5108 #define UPDATE_TG 0x0
5109 #define SKIP_AGE_LOAD 0x0
5110 #define DO_ATTACH 0x0
5111 #define DO_DETACH 0x0
5112
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)5113 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5114 {
5115 cfs_rq_util_change(cfs_rq, 0);
5116 }
5117
remove_entity_load_avg(struct sched_entity * se)5118 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5119
5120 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5121 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5122 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5123 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5124
newidle_balance(struct rq * rq,struct rq_flags * rf)5125 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
5126 {
5127 return 0;
5128 }
5129
5130 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)5131 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5132
5133 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)5134 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5135
5136 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)5137 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5138 bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)5139 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5140
5141 #endif /* CONFIG_SMP */
5142
5143 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5144 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5145 {
5146 u64 vslice, vruntime = avg_vruntime(cfs_rq);
5147 s64 lag = 0;
5148
5149 se->slice = sysctl_sched_base_slice;
5150 vslice = calc_delta_fair(se->slice, se);
5151
5152 /*
5153 * Due to how V is constructed as the weighted average of entities,
5154 * adding tasks with positive lag, or removing tasks with negative lag
5155 * will move 'time' backwards, this can screw around with the lag of
5156 * other tasks.
5157 *
5158 * EEVDF: placement strategy #1 / #2
5159 */
5160 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5161 struct sched_entity *curr = cfs_rq->curr;
5162 unsigned long load;
5163
5164 lag = se->vlag;
5165
5166 /*
5167 * If we want to place a task and preserve lag, we have to
5168 * consider the effect of the new entity on the weighted
5169 * average and compensate for this, otherwise lag can quickly
5170 * evaporate.
5171 *
5172 * Lag is defined as:
5173 *
5174 * lag_i = S - s_i = w_i * (V - v_i)
5175 *
5176 * To avoid the 'w_i' term all over the place, we only track
5177 * the virtual lag:
5178 *
5179 * vl_i = V - v_i <=> v_i = V - vl_i
5180 *
5181 * And we take V to be the weighted average of all v:
5182 *
5183 * V = (\Sum w_j*v_j) / W
5184 *
5185 * Where W is: \Sum w_j
5186 *
5187 * Then, the weighted average after adding an entity with lag
5188 * vl_i is given by:
5189 *
5190 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5191 * = (W*V + w_i*(V - vl_i)) / (W + w_i)
5192 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5193 * = (V*(W + w_i) - w_i*l) / (W + w_i)
5194 * = V - w_i*vl_i / (W + w_i)
5195 *
5196 * And the actual lag after adding an entity with vl_i is:
5197 *
5198 * vl'_i = V' - v_i
5199 * = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5200 * = vl_i - w_i*vl_i / (W + w_i)
5201 *
5202 * Which is strictly less than vl_i. So in order to preserve lag
5203 * we should inflate the lag before placement such that the
5204 * effective lag after placement comes out right.
5205 *
5206 * As such, invert the above relation for vl'_i to get the vl_i
5207 * we need to use such that the lag after placement is the lag
5208 * we computed before dequeue.
5209 *
5210 * vl'_i = vl_i - w_i*vl_i / (W + w_i)
5211 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5212 *
5213 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5214 * = W*vl_i
5215 *
5216 * vl_i = (W + w_i)*vl'_i / W
5217 */
5218 load = cfs_rq->avg_load;
5219 if (curr && curr->on_rq)
5220 load += scale_load_down(curr->load.weight);
5221
5222 lag *= load + scale_load_down(se->load.weight);
5223 if (WARN_ON_ONCE(!load))
5224 load = 1;
5225 lag = div_s64(lag, load);
5226 }
5227
5228 se->vruntime = vruntime - lag;
5229
5230 /*
5231 * When joining the competition; the exisiting tasks will be,
5232 * on average, halfway through their slice, as such start tasks
5233 * off with half a slice to ease into the competition.
5234 */
5235 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5236 vslice /= 2;
5237
5238 /*
5239 * EEVDF: vd_i = ve_i + r_i/w_i
5240 */
5241 se->deadline = se->vruntime + vslice;
5242 }
5243
5244 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5245 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5246
5247 static inline bool cfs_bandwidth_used(void);
5248
5249 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5250 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5251 {
5252 bool curr = cfs_rq->curr == se;
5253
5254 /*
5255 * If we're the current task, we must renormalise before calling
5256 * update_curr().
5257 */
5258 if (curr)
5259 place_entity(cfs_rq, se, flags);
5260
5261 update_curr(cfs_rq);
5262
5263 /*
5264 * When enqueuing a sched_entity, we must:
5265 * - Update loads to have both entity and cfs_rq synced with now.
5266 * - For group_entity, update its runnable_weight to reflect the new
5267 * h_nr_running of its group cfs_rq.
5268 * - For group_entity, update its weight to reflect the new share of
5269 * its group cfs_rq
5270 * - Add its new weight to cfs_rq->load.weight
5271 */
5272 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5273 se_update_runnable(se);
5274 /*
5275 * XXX update_load_avg() above will have attached us to the pelt sum;
5276 * but update_cfs_group() here will re-adjust the weight and have to
5277 * undo/redo all that. Seems wasteful.
5278 */
5279 update_cfs_group(se);
5280
5281 /*
5282 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5283 * we can place the entity.
5284 */
5285 if (!curr)
5286 place_entity(cfs_rq, se, flags);
5287
5288 account_entity_enqueue(cfs_rq, se);
5289
5290 /* Entity has migrated, no longer consider this task hot */
5291 if (flags & ENQUEUE_MIGRATED)
5292 se->exec_start = 0;
5293
5294 check_schedstat_required();
5295 update_stats_enqueue_fair(cfs_rq, se, flags);
5296 if (!curr)
5297 __enqueue_entity(cfs_rq, se);
5298 se->on_rq = 1;
5299
5300 if (cfs_rq->nr_running == 1) {
5301 check_enqueue_throttle(cfs_rq);
5302 if (!throttled_hierarchy(cfs_rq)) {
5303 list_add_leaf_cfs_rq(cfs_rq);
5304 } else {
5305 #ifdef CONFIG_CFS_BANDWIDTH
5306 struct rq *rq = rq_of(cfs_rq);
5307
5308 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5309 cfs_rq->throttled_clock = rq_clock(rq);
5310 if (!cfs_rq->throttled_clock_self)
5311 cfs_rq->throttled_clock_self = rq_clock(rq);
5312 #endif
5313 }
5314 }
5315 }
5316
__clear_buddies_next(struct sched_entity * se)5317 static void __clear_buddies_next(struct sched_entity *se)
5318 {
5319 for_each_sched_entity(se) {
5320 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5321 if (cfs_rq->next != se)
5322 break;
5323
5324 cfs_rq->next = NULL;
5325 }
5326 }
5327
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)5328 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5329 {
5330 if (cfs_rq->next == se)
5331 __clear_buddies_next(se);
5332 }
5333
5334 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5335
5336 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5337 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5338 {
5339 int action = UPDATE_TG;
5340
5341 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5342 action |= DO_DETACH;
5343
5344 /*
5345 * Update run-time statistics of the 'current'.
5346 */
5347 update_curr(cfs_rq);
5348
5349 /*
5350 * When dequeuing a sched_entity, we must:
5351 * - Update loads to have both entity and cfs_rq synced with now.
5352 * - For group_entity, update its runnable_weight to reflect the new
5353 * h_nr_running of its group cfs_rq.
5354 * - Subtract its previous weight from cfs_rq->load.weight.
5355 * - For group entity, update its weight to reflect the new share
5356 * of its group cfs_rq.
5357 */
5358 update_load_avg(cfs_rq, se, action);
5359 se_update_runnable(se);
5360
5361 update_stats_dequeue_fair(cfs_rq, se, flags);
5362
5363 clear_buddies(cfs_rq, se);
5364
5365 update_entity_lag(cfs_rq, se);
5366 if (se != cfs_rq->curr)
5367 __dequeue_entity(cfs_rq, se);
5368 se->on_rq = 0;
5369 account_entity_dequeue(cfs_rq, se);
5370
5371 /* return excess runtime on last dequeue */
5372 return_cfs_rq_runtime(cfs_rq);
5373
5374 update_cfs_group(se);
5375
5376 /*
5377 * Now advance min_vruntime if @se was the entity holding it back,
5378 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5379 * put back on, and if we advance min_vruntime, we'll be placed back
5380 * further than we started -- ie. we'll be penalized.
5381 */
5382 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5383 update_min_vruntime(cfs_rq);
5384
5385 if (cfs_rq->nr_running == 0)
5386 update_idle_cfs_rq_clock_pelt(cfs_rq);
5387 }
5388
5389 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)5390 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5391 {
5392 clear_buddies(cfs_rq, se);
5393
5394 /* 'current' is not kept within the tree. */
5395 if (se->on_rq) {
5396 /*
5397 * Any task has to be enqueued before it get to execute on
5398 * a CPU. So account for the time it spent waiting on the
5399 * runqueue.
5400 */
5401 update_stats_wait_end_fair(cfs_rq, se);
5402 __dequeue_entity(cfs_rq, se);
5403 update_load_avg(cfs_rq, se, UPDATE_TG);
5404 /*
5405 * HACK, stash a copy of deadline at the point of pick in vlag,
5406 * which isn't used until dequeue.
5407 */
5408 se->vlag = se->deadline;
5409 }
5410
5411 update_stats_curr_start(cfs_rq, se);
5412 cfs_rq->curr = se;
5413
5414 /*
5415 * Track our maximum slice length, if the CPU's load is at
5416 * least twice that of our own weight (i.e. dont track it
5417 * when there are only lesser-weight tasks around):
5418 */
5419 if (schedstat_enabled() &&
5420 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5421 struct sched_statistics *stats;
5422
5423 stats = __schedstats_from_se(se);
5424 __schedstat_set(stats->slice_max,
5425 max((u64)stats->slice_max,
5426 se->sum_exec_runtime - se->prev_sum_exec_runtime));
5427 }
5428
5429 se->prev_sum_exec_runtime = se->sum_exec_runtime;
5430 }
5431
5432 /*
5433 * Pick the next process, keeping these things in mind, in this order:
5434 * 1) keep things fair between processes/task groups
5435 * 2) pick the "next" process, since someone really wants that to run
5436 * 3) pick the "last" process, for cache locality
5437 * 4) do not run the "skip" process, if something else is available
5438 */
5439 static struct sched_entity *
pick_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * curr)5440 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
5441 {
5442 /*
5443 * Enabling NEXT_BUDDY will affect latency but not fairness.
5444 */
5445 if (sched_feat(NEXT_BUDDY) &&
5446 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5447 return cfs_rq->next;
5448
5449 return pick_eevdf(cfs_rq);
5450 }
5451
5452 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5453
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)5454 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5455 {
5456 /*
5457 * If still on the runqueue then deactivate_task()
5458 * was not called and update_curr() has to be done:
5459 */
5460 if (prev->on_rq)
5461 update_curr(cfs_rq);
5462
5463 /* throttle cfs_rqs exceeding runtime */
5464 check_cfs_rq_runtime(cfs_rq);
5465
5466 if (prev->on_rq) {
5467 update_stats_wait_start_fair(cfs_rq, prev);
5468 /* Put 'current' back into the tree. */
5469 __enqueue_entity(cfs_rq, prev);
5470 /* in !on_rq case, update occurred at dequeue */
5471 update_load_avg(cfs_rq, prev, 0);
5472 }
5473 cfs_rq->curr = NULL;
5474 }
5475
5476 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)5477 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5478 {
5479 /*
5480 * Update run-time statistics of the 'current'.
5481 */
5482 update_curr(cfs_rq);
5483
5484 /*
5485 * Ensure that runnable average is periodically updated.
5486 */
5487 update_load_avg(cfs_rq, curr, UPDATE_TG);
5488 update_cfs_group(curr);
5489
5490 #ifdef CONFIG_SCHED_HRTICK
5491 /*
5492 * queued ticks are scheduled to match the slice, so don't bother
5493 * validating it and just reschedule.
5494 */
5495 if (queued) {
5496 resched_curr(rq_of(cfs_rq));
5497 return;
5498 }
5499 /*
5500 * don't let the period tick interfere with the hrtick preemption
5501 */
5502 if (!sched_feat(DOUBLE_TICK) &&
5503 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5504 return;
5505 #endif
5506 }
5507
5508
5509 /**************************************************
5510 * CFS bandwidth control machinery
5511 */
5512
5513 #ifdef CONFIG_CFS_BANDWIDTH
5514
5515 #ifdef CONFIG_JUMP_LABEL
5516 static struct static_key __cfs_bandwidth_used;
5517
cfs_bandwidth_used(void)5518 static inline bool cfs_bandwidth_used(void)
5519 {
5520 return static_key_false(&__cfs_bandwidth_used);
5521 }
5522
cfs_bandwidth_usage_inc(void)5523 void cfs_bandwidth_usage_inc(void)
5524 {
5525 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5526 }
5527
cfs_bandwidth_usage_dec(void)5528 void cfs_bandwidth_usage_dec(void)
5529 {
5530 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5531 }
5532 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)5533 static bool cfs_bandwidth_used(void)
5534 {
5535 return true;
5536 }
5537
cfs_bandwidth_usage_inc(void)5538 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)5539 void cfs_bandwidth_usage_dec(void) {}
5540 #endif /* CONFIG_JUMP_LABEL */
5541
5542 /*
5543 * default period for cfs group bandwidth.
5544 * default: 0.1s, units: nanoseconds
5545 */
default_cfs_period(void)5546 static inline u64 default_cfs_period(void)
5547 {
5548 return 100000000ULL;
5549 }
5550
sched_cfs_bandwidth_slice(void)5551 static inline u64 sched_cfs_bandwidth_slice(void)
5552 {
5553 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5554 }
5555
5556 /*
5557 * Replenish runtime according to assigned quota. We use sched_clock_cpu
5558 * directly instead of rq->clock to avoid adding additional synchronization
5559 * around rq->lock.
5560 *
5561 * requires cfs_b->lock
5562 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)5563 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5564 {
5565 s64 runtime;
5566
5567 if (unlikely(cfs_b->quota == RUNTIME_INF))
5568 return;
5569
5570 cfs_b->runtime += cfs_b->quota;
5571 runtime = cfs_b->runtime_snap - cfs_b->runtime;
5572 if (runtime > 0) {
5573 cfs_b->burst_time += runtime;
5574 cfs_b->nr_burst++;
5575 }
5576
5577 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5578 cfs_b->runtime_snap = cfs_b->runtime;
5579 }
5580
tg_cfs_bandwidth(struct task_group * tg)5581 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5582 {
5583 return &tg->cfs_bandwidth;
5584 }
5585
5586 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)5587 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5588 struct cfs_rq *cfs_rq, u64 target_runtime)
5589 {
5590 u64 min_amount, amount = 0;
5591
5592 lockdep_assert_held(&cfs_b->lock);
5593
5594 /* note: this is a positive sum as runtime_remaining <= 0 */
5595 min_amount = target_runtime - cfs_rq->runtime_remaining;
5596
5597 if (cfs_b->quota == RUNTIME_INF)
5598 amount = min_amount;
5599 else {
5600 start_cfs_bandwidth(cfs_b);
5601
5602 if (cfs_b->runtime > 0) {
5603 amount = min(cfs_b->runtime, min_amount);
5604 cfs_b->runtime -= amount;
5605 cfs_b->idle = 0;
5606 }
5607 }
5608
5609 cfs_rq->runtime_remaining += amount;
5610
5611 return cfs_rq->runtime_remaining > 0;
5612 }
5613
5614 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)5615 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5616 {
5617 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5618 int ret;
5619
5620 raw_spin_lock(&cfs_b->lock);
5621 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5622 raw_spin_unlock(&cfs_b->lock);
5623
5624 return ret;
5625 }
5626
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5627 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5628 {
5629 /* dock delta_exec before expiring quota (as it could span periods) */
5630 cfs_rq->runtime_remaining -= delta_exec;
5631
5632 if (likely(cfs_rq->runtime_remaining > 0))
5633 return;
5634
5635 if (cfs_rq->throttled)
5636 return;
5637 /*
5638 * if we're unable to extend our runtime we resched so that the active
5639 * hierarchy can be throttled
5640 */
5641 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5642 resched_curr(rq_of(cfs_rq));
5643 }
5644
5645 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5646 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5647 {
5648 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5649 return;
5650
5651 __account_cfs_rq_runtime(cfs_rq, delta_exec);
5652 }
5653
cfs_rq_throttled(struct cfs_rq * cfs_rq)5654 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5655 {
5656 return cfs_bandwidth_used() && cfs_rq->throttled;
5657 }
5658
5659 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)5660 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5661 {
5662 return cfs_bandwidth_used() && cfs_rq->throttle_count;
5663 }
5664
5665 /*
5666 * Ensure that neither of the group entities corresponding to src_cpu or
5667 * dest_cpu are members of a throttled hierarchy when performing group
5668 * load-balance operations.
5669 */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5670 static inline int throttled_lb_pair(struct task_group *tg,
5671 int src_cpu, int dest_cpu)
5672 {
5673 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5674
5675 src_cfs_rq = tg->cfs_rq[src_cpu];
5676 dest_cfs_rq = tg->cfs_rq[dest_cpu];
5677
5678 return throttled_hierarchy(src_cfs_rq) ||
5679 throttled_hierarchy(dest_cfs_rq);
5680 }
5681
tg_unthrottle_up(struct task_group * tg,void * data)5682 static int tg_unthrottle_up(struct task_group *tg, void *data)
5683 {
5684 struct rq *rq = data;
5685 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5686
5687 cfs_rq->throttle_count--;
5688 if (!cfs_rq->throttle_count) {
5689 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5690 cfs_rq->throttled_clock_pelt;
5691
5692 /* Add cfs_rq with load or one or more already running entities to the list */
5693 if (!cfs_rq_is_decayed(cfs_rq))
5694 list_add_leaf_cfs_rq(cfs_rq);
5695
5696 if (cfs_rq->throttled_clock_self) {
5697 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5698
5699 cfs_rq->throttled_clock_self = 0;
5700
5701 if (SCHED_WARN_ON((s64)delta < 0))
5702 delta = 0;
5703
5704 cfs_rq->throttled_clock_self_time += delta;
5705 }
5706 }
5707
5708 return 0;
5709 }
5710
tg_throttle_down(struct task_group * tg,void * data)5711 static int tg_throttle_down(struct task_group *tg, void *data)
5712 {
5713 struct rq *rq = data;
5714 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5715
5716 /* group is entering throttled state, stop time */
5717 if (!cfs_rq->throttle_count) {
5718 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5719 list_del_leaf_cfs_rq(cfs_rq);
5720
5721 SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5722 if (cfs_rq->nr_running)
5723 cfs_rq->throttled_clock_self = rq_clock(rq);
5724 }
5725 cfs_rq->throttle_count++;
5726
5727 return 0;
5728 }
5729
throttle_cfs_rq(struct cfs_rq * cfs_rq)5730 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5731 {
5732 struct rq *rq = rq_of(cfs_rq);
5733 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5734 struct sched_entity *se;
5735 long task_delta, idle_task_delta, dequeue = 1;
5736
5737 raw_spin_lock(&cfs_b->lock);
5738 /* This will start the period timer if necessary */
5739 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5740 /*
5741 * We have raced with bandwidth becoming available, and if we
5742 * actually throttled the timer might not unthrottle us for an
5743 * entire period. We additionally needed to make sure that any
5744 * subsequent check_cfs_rq_runtime calls agree not to throttle
5745 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5746 * for 1ns of runtime rather than just check cfs_b.
5747 */
5748 dequeue = 0;
5749 } else {
5750 list_add_tail_rcu(&cfs_rq->throttled_list,
5751 &cfs_b->throttled_cfs_rq);
5752 }
5753 raw_spin_unlock(&cfs_b->lock);
5754
5755 if (!dequeue)
5756 return false; /* Throttle no longer required. */
5757
5758 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5759
5760 /* freeze hierarchy runnable averages while throttled */
5761 rcu_read_lock();
5762 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5763 rcu_read_unlock();
5764
5765 task_delta = cfs_rq->h_nr_running;
5766 idle_task_delta = cfs_rq->idle_h_nr_running;
5767 for_each_sched_entity(se) {
5768 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5769 /* throttled entity or throttle-on-deactivate */
5770 if (!se->on_rq)
5771 goto done;
5772
5773 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5774
5775 if (cfs_rq_is_idle(group_cfs_rq(se)))
5776 idle_task_delta = cfs_rq->h_nr_running;
5777
5778 qcfs_rq->h_nr_running -= task_delta;
5779 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5780
5781 if (qcfs_rq->load.weight) {
5782 /* Avoid re-evaluating load for this entity: */
5783 se = parent_entity(se);
5784 break;
5785 }
5786 }
5787
5788 for_each_sched_entity(se) {
5789 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5790 /* throttled entity or throttle-on-deactivate */
5791 if (!se->on_rq)
5792 goto done;
5793
5794 update_load_avg(qcfs_rq, se, 0);
5795 se_update_runnable(se);
5796
5797 if (cfs_rq_is_idle(group_cfs_rq(se)))
5798 idle_task_delta = cfs_rq->h_nr_running;
5799
5800 qcfs_rq->h_nr_running -= task_delta;
5801 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5802 }
5803
5804 /* At this point se is NULL and we are at root level*/
5805 sub_nr_running(rq, task_delta);
5806
5807 done:
5808 /*
5809 * Note: distribution will already see us throttled via the
5810 * throttled-list. rq->lock protects completion.
5811 */
5812 cfs_rq->throttled = 1;
5813 SCHED_WARN_ON(cfs_rq->throttled_clock);
5814 if (cfs_rq->nr_running)
5815 cfs_rq->throttled_clock = rq_clock(rq);
5816 return true;
5817 }
5818
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)5819 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5820 {
5821 struct rq *rq = rq_of(cfs_rq);
5822 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5823 struct sched_entity *se;
5824 long task_delta, idle_task_delta;
5825
5826 se = cfs_rq->tg->se[cpu_of(rq)];
5827
5828 cfs_rq->throttled = 0;
5829
5830 update_rq_clock(rq);
5831
5832 raw_spin_lock(&cfs_b->lock);
5833 if (cfs_rq->throttled_clock) {
5834 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5835 cfs_rq->throttled_clock = 0;
5836 }
5837 list_del_rcu(&cfs_rq->throttled_list);
5838 raw_spin_unlock(&cfs_b->lock);
5839
5840 /* update hierarchical throttle state */
5841 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5842
5843 if (!cfs_rq->load.weight) {
5844 if (!cfs_rq->on_list)
5845 return;
5846 /*
5847 * Nothing to run but something to decay (on_list)?
5848 * Complete the branch.
5849 */
5850 for_each_sched_entity(se) {
5851 if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5852 break;
5853 }
5854 goto unthrottle_throttle;
5855 }
5856
5857 task_delta = cfs_rq->h_nr_running;
5858 idle_task_delta = cfs_rq->idle_h_nr_running;
5859 for_each_sched_entity(se) {
5860 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5861
5862 if (se->on_rq)
5863 break;
5864 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5865
5866 if (cfs_rq_is_idle(group_cfs_rq(se)))
5867 idle_task_delta = cfs_rq->h_nr_running;
5868
5869 qcfs_rq->h_nr_running += task_delta;
5870 qcfs_rq->idle_h_nr_running += idle_task_delta;
5871
5872 /* end evaluation on encountering a throttled cfs_rq */
5873 if (cfs_rq_throttled(qcfs_rq))
5874 goto unthrottle_throttle;
5875 }
5876
5877 for_each_sched_entity(se) {
5878 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5879
5880 update_load_avg(qcfs_rq, se, UPDATE_TG);
5881 se_update_runnable(se);
5882
5883 if (cfs_rq_is_idle(group_cfs_rq(se)))
5884 idle_task_delta = cfs_rq->h_nr_running;
5885
5886 qcfs_rq->h_nr_running += task_delta;
5887 qcfs_rq->idle_h_nr_running += idle_task_delta;
5888
5889 /* end evaluation on encountering a throttled cfs_rq */
5890 if (cfs_rq_throttled(qcfs_rq))
5891 goto unthrottle_throttle;
5892 }
5893
5894 /* At this point se is NULL and we are at root level*/
5895 add_nr_running(rq, task_delta);
5896
5897 unthrottle_throttle:
5898 assert_list_leaf_cfs_rq(rq);
5899
5900 /* Determine whether we need to wake up potentially idle CPU: */
5901 if (rq->curr == rq->idle && rq->cfs.nr_running)
5902 resched_curr(rq);
5903 }
5904
5905 #ifdef CONFIG_SMP
__cfsb_csd_unthrottle(void * arg)5906 static void __cfsb_csd_unthrottle(void *arg)
5907 {
5908 struct cfs_rq *cursor, *tmp;
5909 struct rq *rq = arg;
5910 struct rq_flags rf;
5911
5912 rq_lock(rq, &rf);
5913
5914 /*
5915 * Iterating over the list can trigger several call to
5916 * update_rq_clock() in unthrottle_cfs_rq().
5917 * Do it once and skip the potential next ones.
5918 */
5919 update_rq_clock(rq);
5920 rq_clock_start_loop_update(rq);
5921
5922 /*
5923 * Since we hold rq lock we're safe from concurrent manipulation of
5924 * the CSD list. However, this RCU critical section annotates the
5925 * fact that we pair with sched_free_group_rcu(), so that we cannot
5926 * race with group being freed in the window between removing it
5927 * from the list and advancing to the next entry in the list.
5928 */
5929 rcu_read_lock();
5930
5931 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5932 throttled_csd_list) {
5933 list_del_init(&cursor->throttled_csd_list);
5934
5935 if (cfs_rq_throttled(cursor))
5936 unthrottle_cfs_rq(cursor);
5937 }
5938
5939 rcu_read_unlock();
5940
5941 rq_clock_stop_loop_update(rq);
5942 rq_unlock(rq, &rf);
5943 }
5944
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)5945 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5946 {
5947 struct rq *rq = rq_of(cfs_rq);
5948 bool first;
5949
5950 if (rq == this_rq()) {
5951 unthrottle_cfs_rq(cfs_rq);
5952 return;
5953 }
5954
5955 /* Already enqueued */
5956 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5957 return;
5958
5959 first = list_empty(&rq->cfsb_csd_list);
5960 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5961 if (first)
5962 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5963 }
5964 #else
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)5965 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5966 {
5967 unthrottle_cfs_rq(cfs_rq);
5968 }
5969 #endif
5970
unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)5971 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5972 {
5973 lockdep_assert_rq_held(rq_of(cfs_rq));
5974
5975 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
5976 cfs_rq->runtime_remaining <= 0))
5977 return;
5978
5979 __unthrottle_cfs_rq_async(cfs_rq);
5980 }
5981
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)5982 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5983 {
5984 struct cfs_rq *local_unthrottle = NULL;
5985 int this_cpu = smp_processor_id();
5986 u64 runtime, remaining = 1;
5987 bool throttled = false;
5988 struct cfs_rq *cfs_rq;
5989 struct rq_flags rf;
5990 struct rq *rq;
5991
5992 rcu_read_lock();
5993 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5994 throttled_list) {
5995 rq = rq_of(cfs_rq);
5996
5997 if (!remaining) {
5998 throttled = true;
5999 break;
6000 }
6001
6002 rq_lock_irqsave(rq, &rf);
6003 if (!cfs_rq_throttled(cfs_rq))
6004 goto next;
6005
6006 #ifdef CONFIG_SMP
6007 /* Already queued for async unthrottle */
6008 if (!list_empty(&cfs_rq->throttled_csd_list))
6009 goto next;
6010 #endif
6011
6012 /* By the above checks, this should never be true */
6013 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6014
6015 raw_spin_lock(&cfs_b->lock);
6016 runtime = -cfs_rq->runtime_remaining + 1;
6017 if (runtime > cfs_b->runtime)
6018 runtime = cfs_b->runtime;
6019 cfs_b->runtime -= runtime;
6020 remaining = cfs_b->runtime;
6021 raw_spin_unlock(&cfs_b->lock);
6022
6023 cfs_rq->runtime_remaining += runtime;
6024
6025 /* we check whether we're throttled above */
6026 if (cfs_rq->runtime_remaining > 0) {
6027 if (cpu_of(rq) != this_cpu ||
6028 SCHED_WARN_ON(local_unthrottle))
6029 unthrottle_cfs_rq_async(cfs_rq);
6030 else
6031 local_unthrottle = cfs_rq;
6032 } else {
6033 throttled = true;
6034 }
6035
6036 next:
6037 rq_unlock_irqrestore(rq, &rf);
6038 }
6039 rcu_read_unlock();
6040
6041 if (local_unthrottle) {
6042 rq = cpu_rq(this_cpu);
6043 rq_lock_irqsave(rq, &rf);
6044 if (cfs_rq_throttled(local_unthrottle))
6045 unthrottle_cfs_rq(local_unthrottle);
6046 rq_unlock_irqrestore(rq, &rf);
6047 }
6048
6049 return throttled;
6050 }
6051
6052 /*
6053 * Responsible for refilling a task_group's bandwidth and unthrottling its
6054 * cfs_rqs as appropriate. If there has been no activity within the last
6055 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6056 * used to track this state.
6057 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)6058 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6059 {
6060 int throttled;
6061
6062 /* no need to continue the timer with no bandwidth constraint */
6063 if (cfs_b->quota == RUNTIME_INF)
6064 goto out_deactivate;
6065
6066 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6067 cfs_b->nr_periods += overrun;
6068
6069 /* Refill extra burst quota even if cfs_b->idle */
6070 __refill_cfs_bandwidth_runtime(cfs_b);
6071
6072 /*
6073 * idle depends on !throttled (for the case of a large deficit), and if
6074 * we're going inactive then everything else can be deferred
6075 */
6076 if (cfs_b->idle && !throttled)
6077 goto out_deactivate;
6078
6079 if (!throttled) {
6080 /* mark as potentially idle for the upcoming period */
6081 cfs_b->idle = 1;
6082 return 0;
6083 }
6084
6085 /* account preceding periods in which throttling occurred */
6086 cfs_b->nr_throttled += overrun;
6087
6088 /*
6089 * This check is repeated as we release cfs_b->lock while we unthrottle.
6090 */
6091 while (throttled && cfs_b->runtime > 0) {
6092 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6093 /* we can't nest cfs_b->lock while distributing bandwidth */
6094 throttled = distribute_cfs_runtime(cfs_b);
6095 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6096 }
6097
6098 /*
6099 * While we are ensured activity in the period following an
6100 * unthrottle, this also covers the case in which the new bandwidth is
6101 * insufficient to cover the existing bandwidth deficit. (Forcing the
6102 * timer to remain active while there are any throttled entities.)
6103 */
6104 cfs_b->idle = 0;
6105
6106 return 0;
6107
6108 out_deactivate:
6109 return 1;
6110 }
6111
6112 /* a cfs_rq won't donate quota below this amount */
6113 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6114 /* minimum remaining period time to redistribute slack quota */
6115 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6116 /* how long we wait to gather additional slack before distributing */
6117 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6118
6119 /*
6120 * Are we near the end of the current quota period?
6121 *
6122 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6123 * hrtimer base being cleared by hrtimer_start. In the case of
6124 * migrate_hrtimers, base is never cleared, so we are fine.
6125 */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)6126 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6127 {
6128 struct hrtimer *refresh_timer = &cfs_b->period_timer;
6129 s64 remaining;
6130
6131 /* if the call-back is running a quota refresh is already occurring */
6132 if (hrtimer_callback_running(refresh_timer))
6133 return 1;
6134
6135 /* is a quota refresh about to occur? */
6136 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6137 if (remaining < (s64)min_expire)
6138 return 1;
6139
6140 return 0;
6141 }
6142
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)6143 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6144 {
6145 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6146
6147 /* if there's a quota refresh soon don't bother with slack */
6148 if (runtime_refresh_within(cfs_b, min_left))
6149 return;
6150
6151 /* don't push forwards an existing deferred unthrottle */
6152 if (cfs_b->slack_started)
6153 return;
6154 cfs_b->slack_started = true;
6155
6156 hrtimer_start(&cfs_b->slack_timer,
6157 ns_to_ktime(cfs_bandwidth_slack_period),
6158 HRTIMER_MODE_REL);
6159 }
6160
6161 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6162 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6163 {
6164 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6165 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6166
6167 if (slack_runtime <= 0)
6168 return;
6169
6170 raw_spin_lock(&cfs_b->lock);
6171 if (cfs_b->quota != RUNTIME_INF) {
6172 cfs_b->runtime += slack_runtime;
6173
6174 /* we are under rq->lock, defer unthrottling using a timer */
6175 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6176 !list_empty(&cfs_b->throttled_cfs_rq))
6177 start_cfs_slack_bandwidth(cfs_b);
6178 }
6179 raw_spin_unlock(&cfs_b->lock);
6180
6181 /* even if it's not valid for return we don't want to try again */
6182 cfs_rq->runtime_remaining -= slack_runtime;
6183 }
6184
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6185 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6186 {
6187 if (!cfs_bandwidth_used())
6188 return;
6189
6190 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6191 return;
6192
6193 __return_cfs_rq_runtime(cfs_rq);
6194 }
6195
6196 /*
6197 * This is done with a timer (instead of inline with bandwidth return) since
6198 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6199 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)6200 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6201 {
6202 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6203 unsigned long flags;
6204
6205 /* confirm we're still not at a refresh boundary */
6206 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6207 cfs_b->slack_started = false;
6208
6209 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6210 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6211 return;
6212 }
6213
6214 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6215 runtime = cfs_b->runtime;
6216
6217 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6218
6219 if (!runtime)
6220 return;
6221
6222 distribute_cfs_runtime(cfs_b);
6223 }
6224
6225 /*
6226 * When a group wakes up we want to make sure that its quota is not already
6227 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6228 * runtime as update_curr() throttling can not trigger until it's on-rq.
6229 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)6230 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6231 {
6232 if (!cfs_bandwidth_used())
6233 return;
6234
6235 /* an active group must be handled by the update_curr()->put() path */
6236 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6237 return;
6238
6239 /* ensure the group is not already throttled */
6240 if (cfs_rq_throttled(cfs_rq))
6241 return;
6242
6243 /* update runtime allocation */
6244 account_cfs_rq_runtime(cfs_rq, 0);
6245 if (cfs_rq->runtime_remaining <= 0)
6246 throttle_cfs_rq(cfs_rq);
6247 }
6248
sync_throttle(struct task_group * tg,int cpu)6249 static void sync_throttle(struct task_group *tg, int cpu)
6250 {
6251 struct cfs_rq *pcfs_rq, *cfs_rq;
6252
6253 if (!cfs_bandwidth_used())
6254 return;
6255
6256 if (!tg->parent)
6257 return;
6258
6259 cfs_rq = tg->cfs_rq[cpu];
6260 pcfs_rq = tg->parent->cfs_rq[cpu];
6261
6262 cfs_rq->throttle_count = pcfs_rq->throttle_count;
6263 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6264 }
6265
6266 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6267 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6268 {
6269 if (!cfs_bandwidth_used())
6270 return false;
6271
6272 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6273 return false;
6274
6275 /*
6276 * it's possible for a throttled entity to be forced into a running
6277 * state (e.g. set_curr_task), in this case we're finished.
6278 */
6279 if (cfs_rq_throttled(cfs_rq))
6280 return true;
6281
6282 return throttle_cfs_rq(cfs_rq);
6283 }
6284
sched_cfs_slack_timer(struct hrtimer * timer)6285 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6286 {
6287 struct cfs_bandwidth *cfs_b =
6288 container_of(timer, struct cfs_bandwidth, slack_timer);
6289
6290 do_sched_cfs_slack_timer(cfs_b);
6291
6292 return HRTIMER_NORESTART;
6293 }
6294
6295 extern const u64 max_cfs_quota_period;
6296
sched_cfs_period_timer(struct hrtimer * timer)6297 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6298 {
6299 struct cfs_bandwidth *cfs_b =
6300 container_of(timer, struct cfs_bandwidth, period_timer);
6301 unsigned long flags;
6302 int overrun;
6303 int idle = 0;
6304 int count = 0;
6305
6306 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6307 for (;;) {
6308 overrun = hrtimer_forward_now(timer, cfs_b->period);
6309 if (!overrun)
6310 break;
6311
6312 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6313
6314 if (++count > 3) {
6315 u64 new, old = ktime_to_ns(cfs_b->period);
6316
6317 /*
6318 * Grow period by a factor of 2 to avoid losing precision.
6319 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6320 * to fail.
6321 */
6322 new = old * 2;
6323 if (new < max_cfs_quota_period) {
6324 cfs_b->period = ns_to_ktime(new);
6325 cfs_b->quota *= 2;
6326 cfs_b->burst *= 2;
6327
6328 pr_warn_ratelimited(
6329 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6330 smp_processor_id(),
6331 div_u64(new, NSEC_PER_USEC),
6332 div_u64(cfs_b->quota, NSEC_PER_USEC));
6333 } else {
6334 pr_warn_ratelimited(
6335 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6336 smp_processor_id(),
6337 div_u64(old, NSEC_PER_USEC),
6338 div_u64(cfs_b->quota, NSEC_PER_USEC));
6339 }
6340
6341 /* reset count so we don't come right back in here */
6342 count = 0;
6343 }
6344 }
6345 if (idle)
6346 cfs_b->period_active = 0;
6347 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6348
6349 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6350 }
6351
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6352 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6353 {
6354 raw_spin_lock_init(&cfs_b->lock);
6355 cfs_b->runtime = 0;
6356 cfs_b->quota = RUNTIME_INF;
6357 cfs_b->period = ns_to_ktime(default_cfs_period());
6358 cfs_b->burst = 0;
6359 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6360
6361 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6362 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6363 cfs_b->period_timer.function = sched_cfs_period_timer;
6364
6365 /* Add a random offset so that timers interleave */
6366 hrtimer_set_expires(&cfs_b->period_timer,
6367 get_random_u32_below(cfs_b->period));
6368 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6369 cfs_b->slack_timer.function = sched_cfs_slack_timer;
6370 cfs_b->slack_started = false;
6371 }
6372
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6373 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6374 {
6375 cfs_rq->runtime_enabled = 0;
6376 INIT_LIST_HEAD(&cfs_rq->throttled_list);
6377 #ifdef CONFIG_SMP
6378 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6379 #endif
6380 }
6381
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6382 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6383 {
6384 lockdep_assert_held(&cfs_b->lock);
6385
6386 if (cfs_b->period_active)
6387 return;
6388
6389 cfs_b->period_active = 1;
6390 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6391 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6392 }
6393
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6394 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6395 {
6396 int __maybe_unused i;
6397
6398 /* init_cfs_bandwidth() was not called */
6399 if (!cfs_b->throttled_cfs_rq.next)
6400 return;
6401
6402 hrtimer_cancel(&cfs_b->period_timer);
6403 hrtimer_cancel(&cfs_b->slack_timer);
6404
6405 /*
6406 * It is possible that we still have some cfs_rq's pending on a CSD
6407 * list, though this race is very rare. In order for this to occur, we
6408 * must have raced with the last task leaving the group while there
6409 * exist throttled cfs_rq(s), and the period_timer must have queued the
6410 * CSD item but the remote cpu has not yet processed it. To handle this,
6411 * we can simply flush all pending CSD work inline here. We're
6412 * guaranteed at this point that no additional cfs_rq of this group can
6413 * join a CSD list.
6414 */
6415 #ifdef CONFIG_SMP
6416 for_each_possible_cpu(i) {
6417 struct rq *rq = cpu_rq(i);
6418 unsigned long flags;
6419
6420 if (list_empty(&rq->cfsb_csd_list))
6421 continue;
6422
6423 local_irq_save(flags);
6424 __cfsb_csd_unthrottle(rq);
6425 local_irq_restore(flags);
6426 }
6427 #endif
6428 }
6429
6430 /*
6431 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6432 *
6433 * The race is harmless, since modifying bandwidth settings of unhooked group
6434 * bits doesn't do much.
6435 */
6436
6437 /* cpu online callback */
update_runtime_enabled(struct rq * rq)6438 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6439 {
6440 struct task_group *tg;
6441
6442 lockdep_assert_rq_held(rq);
6443
6444 rcu_read_lock();
6445 list_for_each_entry_rcu(tg, &task_groups, list) {
6446 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6447 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6448
6449 raw_spin_lock(&cfs_b->lock);
6450 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6451 raw_spin_unlock(&cfs_b->lock);
6452 }
6453 rcu_read_unlock();
6454 }
6455
6456 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)6457 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6458 {
6459 struct task_group *tg;
6460
6461 lockdep_assert_rq_held(rq);
6462
6463 /*
6464 * The rq clock has already been updated in the
6465 * set_rq_offline(), so we should skip updating
6466 * the rq clock again in unthrottle_cfs_rq().
6467 */
6468 rq_clock_start_loop_update(rq);
6469
6470 rcu_read_lock();
6471 list_for_each_entry_rcu(tg, &task_groups, list) {
6472 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6473
6474 if (!cfs_rq->runtime_enabled)
6475 continue;
6476
6477 /*
6478 * clock_task is not advancing so we just need to make sure
6479 * there's some valid quota amount
6480 */
6481 cfs_rq->runtime_remaining = 1;
6482 /*
6483 * Offline rq is schedulable till CPU is completely disabled
6484 * in take_cpu_down(), so we prevent new cfs throttling here.
6485 */
6486 cfs_rq->runtime_enabled = 0;
6487
6488 if (cfs_rq_throttled(cfs_rq))
6489 unthrottle_cfs_rq(cfs_rq);
6490 }
6491 rcu_read_unlock();
6492
6493 rq_clock_stop_loop_update(rq);
6494 }
6495
cfs_task_bw_constrained(struct task_struct * p)6496 bool cfs_task_bw_constrained(struct task_struct *p)
6497 {
6498 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6499
6500 if (!cfs_bandwidth_used())
6501 return false;
6502
6503 if (cfs_rq->runtime_enabled ||
6504 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6505 return true;
6506
6507 return false;
6508 }
6509
6510 #ifdef CONFIG_NO_HZ_FULL
6511 /* called from pick_next_task_fair() */
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6512 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6513 {
6514 int cpu = cpu_of(rq);
6515
6516 if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6517 return;
6518
6519 if (!tick_nohz_full_cpu(cpu))
6520 return;
6521
6522 if (rq->nr_running != 1)
6523 return;
6524
6525 /*
6526 * We know there is only one task runnable and we've just picked it. The
6527 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6528 * be otherwise able to stop the tick. Just need to check if we are using
6529 * bandwidth control.
6530 */
6531 if (cfs_task_bw_constrained(p))
6532 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6533 }
6534 #endif
6535
6536 #else /* CONFIG_CFS_BANDWIDTH */
6537
cfs_bandwidth_used(void)6538 static inline bool cfs_bandwidth_used(void)
6539 {
6540 return false;
6541 }
6542
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)6543 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6544 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)6545 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)6546 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6547 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6548
cfs_rq_throttled(struct cfs_rq * cfs_rq)6549 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6550 {
6551 return 0;
6552 }
6553
throttled_hierarchy(struct cfs_rq * cfs_rq)6554 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6555 {
6556 return 0;
6557 }
6558
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)6559 static inline int throttled_lb_pair(struct task_group *tg,
6560 int src_cpu, int dest_cpu)
6561 {
6562 return 0;
6563 }
6564
6565 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6566 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6567 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6568 #endif
6569
tg_cfs_bandwidth(struct task_group * tg)6570 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6571 {
6572 return NULL;
6573 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6574 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)6575 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)6576 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6577 #ifdef CONFIG_CGROUP_SCHED
cfs_task_bw_constrained(struct task_struct * p)6578 bool cfs_task_bw_constrained(struct task_struct *p)
6579 {
6580 return false;
6581 }
6582 #endif
6583 #endif /* CONFIG_CFS_BANDWIDTH */
6584
6585 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6586 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6587 #endif
6588
6589 /**************************************************
6590 * CFS operations on tasks:
6591 */
6592
6593 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)6594 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6595 {
6596 struct sched_entity *se = &p->se;
6597
6598 SCHED_WARN_ON(task_rq(p) != rq);
6599
6600 if (rq->cfs.h_nr_running > 1) {
6601 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6602 u64 slice = se->slice;
6603 s64 delta = slice - ran;
6604
6605 if (delta < 0) {
6606 if (task_current(rq, p))
6607 resched_curr(rq);
6608 return;
6609 }
6610 hrtick_start(rq, delta);
6611 }
6612 }
6613
6614 /*
6615 * called from enqueue/dequeue and updates the hrtick when the
6616 * current task is from our class and nr_running is low enough
6617 * to matter.
6618 */
hrtick_update(struct rq * rq)6619 static void hrtick_update(struct rq *rq)
6620 {
6621 struct task_struct *curr = rq->curr;
6622
6623 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6624 return;
6625
6626 hrtick_start_fair(rq, curr);
6627 }
6628 #else /* !CONFIG_SCHED_HRTICK */
6629 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)6630 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6631 {
6632 }
6633
hrtick_update(struct rq * rq)6634 static inline void hrtick_update(struct rq *rq)
6635 {
6636 }
6637 #endif
6638
6639 #ifdef CONFIG_SMP
cpu_overutilized(int cpu)6640 static inline bool cpu_overutilized(int cpu)
6641 {
6642 unsigned long rq_util_min, rq_util_max;
6643
6644 if (!sched_energy_enabled())
6645 return false;
6646
6647 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6648 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6649
6650 /* Return true only if the utilization doesn't fit CPU's capacity */
6651 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6652 }
6653
set_rd_overutilized_status(struct root_domain * rd,unsigned int status)6654 static inline void set_rd_overutilized_status(struct root_domain *rd,
6655 unsigned int status)
6656 {
6657 if (!sched_energy_enabled())
6658 return;
6659
6660 WRITE_ONCE(rd->overutilized, status);
6661 trace_sched_overutilized_tp(rd, !!status);
6662 }
6663
check_update_overutilized_status(struct rq * rq)6664 static inline void check_update_overutilized_status(struct rq *rq)
6665 {
6666 /*
6667 * overutilized field is used for load balancing decisions only
6668 * if energy aware scheduler is being used
6669 */
6670 if (!sched_energy_enabled())
6671 return;
6672
6673 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu))
6674 set_rd_overutilized_status(rq->rd, SG_OVERUTILIZED);
6675 }
6676 #else
check_update_overutilized_status(struct rq * rq)6677 static inline void check_update_overutilized_status(struct rq *rq) { }
6678 #endif
6679
6680 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)6681 static int sched_idle_rq(struct rq *rq)
6682 {
6683 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6684 rq->nr_running);
6685 }
6686
6687 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)6688 static int sched_idle_cpu(int cpu)
6689 {
6690 return sched_idle_rq(cpu_rq(cpu));
6691 }
6692 #endif
6693
6694 /*
6695 * The enqueue_task method is called before nr_running is
6696 * increased. Here we update the fair scheduling stats and
6697 * then put the task into the rbtree:
6698 */
6699 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)6700 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6701 {
6702 struct cfs_rq *cfs_rq;
6703 struct sched_entity *se = &p->se;
6704 int idle_h_nr_running = task_has_idle_policy(p);
6705 int task_new = !(flags & ENQUEUE_WAKEUP);
6706
6707 /*
6708 * The code below (indirectly) updates schedutil which looks at
6709 * the cfs_rq utilization to select a frequency.
6710 * Let's add the task's estimated utilization to the cfs_rq's
6711 * estimated utilization, before we update schedutil.
6712 */
6713 util_est_enqueue(&rq->cfs, p);
6714
6715 /*
6716 * If in_iowait is set, the code below may not trigger any cpufreq
6717 * utilization updates, so do it here explicitly with the IOWAIT flag
6718 * passed.
6719 */
6720 if (p->in_iowait)
6721 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6722
6723 for_each_sched_entity(se) {
6724 if (se->on_rq)
6725 break;
6726 cfs_rq = cfs_rq_of(se);
6727 enqueue_entity(cfs_rq, se, flags);
6728
6729 cfs_rq->h_nr_running++;
6730 cfs_rq->idle_h_nr_running += idle_h_nr_running;
6731
6732 if (cfs_rq_is_idle(cfs_rq))
6733 idle_h_nr_running = 1;
6734
6735 /* end evaluation on encountering a throttled cfs_rq */
6736 if (cfs_rq_throttled(cfs_rq))
6737 goto enqueue_throttle;
6738
6739 flags = ENQUEUE_WAKEUP;
6740 }
6741
6742 for_each_sched_entity(se) {
6743 cfs_rq = cfs_rq_of(se);
6744
6745 update_load_avg(cfs_rq, se, UPDATE_TG);
6746 se_update_runnable(se);
6747 update_cfs_group(se);
6748
6749 cfs_rq->h_nr_running++;
6750 cfs_rq->idle_h_nr_running += idle_h_nr_running;
6751
6752 if (cfs_rq_is_idle(cfs_rq))
6753 idle_h_nr_running = 1;
6754
6755 /* end evaluation on encountering a throttled cfs_rq */
6756 if (cfs_rq_throttled(cfs_rq))
6757 goto enqueue_throttle;
6758 }
6759
6760 /* At this point se is NULL and we are at root level*/
6761 add_nr_running(rq, 1);
6762
6763 /*
6764 * Since new tasks are assigned an initial util_avg equal to
6765 * half of the spare capacity of their CPU, tiny tasks have the
6766 * ability to cross the overutilized threshold, which will
6767 * result in the load balancer ruining all the task placement
6768 * done by EAS. As a way to mitigate that effect, do not account
6769 * for the first enqueue operation of new tasks during the
6770 * overutilized flag detection.
6771 *
6772 * A better way of solving this problem would be to wait for
6773 * the PELT signals of tasks to converge before taking them
6774 * into account, but that is not straightforward to implement,
6775 * and the following generally works well enough in practice.
6776 */
6777 if (!task_new)
6778 check_update_overutilized_status(rq);
6779
6780 enqueue_throttle:
6781 assert_list_leaf_cfs_rq(rq);
6782
6783 hrtick_update(rq);
6784 }
6785
6786 static void set_next_buddy(struct sched_entity *se);
6787
6788 /*
6789 * The dequeue_task method is called before nr_running is
6790 * decreased. We remove the task from the rbtree and
6791 * update the fair scheduling stats:
6792 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)6793 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6794 {
6795 struct cfs_rq *cfs_rq;
6796 struct sched_entity *se = &p->se;
6797 int task_sleep = flags & DEQUEUE_SLEEP;
6798 int idle_h_nr_running = task_has_idle_policy(p);
6799 bool was_sched_idle = sched_idle_rq(rq);
6800
6801 util_est_dequeue(&rq->cfs, p);
6802
6803 for_each_sched_entity(se) {
6804 cfs_rq = cfs_rq_of(se);
6805 dequeue_entity(cfs_rq, se, flags);
6806
6807 cfs_rq->h_nr_running--;
6808 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6809
6810 if (cfs_rq_is_idle(cfs_rq))
6811 idle_h_nr_running = 1;
6812
6813 /* end evaluation on encountering a throttled cfs_rq */
6814 if (cfs_rq_throttled(cfs_rq))
6815 goto dequeue_throttle;
6816
6817 /* Don't dequeue parent if it has other entities besides us */
6818 if (cfs_rq->load.weight) {
6819 /* Avoid re-evaluating load for this entity: */
6820 se = parent_entity(se);
6821 /*
6822 * Bias pick_next to pick a task from this cfs_rq, as
6823 * p is sleeping when it is within its sched_slice.
6824 */
6825 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6826 set_next_buddy(se);
6827 break;
6828 }
6829 flags |= DEQUEUE_SLEEP;
6830 }
6831
6832 for_each_sched_entity(se) {
6833 cfs_rq = cfs_rq_of(se);
6834
6835 update_load_avg(cfs_rq, se, UPDATE_TG);
6836 se_update_runnable(se);
6837 update_cfs_group(se);
6838
6839 cfs_rq->h_nr_running--;
6840 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6841
6842 if (cfs_rq_is_idle(cfs_rq))
6843 idle_h_nr_running = 1;
6844
6845 /* end evaluation on encountering a throttled cfs_rq */
6846 if (cfs_rq_throttled(cfs_rq))
6847 goto dequeue_throttle;
6848
6849 }
6850
6851 /* At this point se is NULL and we are at root level*/
6852 sub_nr_running(rq, 1);
6853
6854 /* balance early to pull high priority tasks */
6855 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6856 rq->next_balance = jiffies;
6857
6858 dequeue_throttle:
6859 util_est_update(&rq->cfs, p, task_sleep);
6860 hrtick_update(rq);
6861 }
6862
6863 #ifdef CONFIG_SMP
6864
6865 /* Working cpumask for: load_balance, load_balance_newidle. */
6866 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6867 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6868 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
6869
6870 #ifdef CONFIG_NO_HZ_COMMON
6871
6872 static struct {
6873 cpumask_var_t idle_cpus_mask;
6874 atomic_t nr_cpus;
6875 int has_blocked; /* Idle CPUS has blocked load */
6876 int needs_update; /* Newly idle CPUs need their next_balance collated */
6877 unsigned long next_balance; /* in jiffy units */
6878 unsigned long next_blocked; /* Next update of blocked load in jiffies */
6879 } nohz ____cacheline_aligned;
6880
6881 #endif /* CONFIG_NO_HZ_COMMON */
6882
cpu_load(struct rq * rq)6883 static unsigned long cpu_load(struct rq *rq)
6884 {
6885 return cfs_rq_load_avg(&rq->cfs);
6886 }
6887
6888 /*
6889 * cpu_load_without - compute CPU load without any contributions from *p
6890 * @cpu: the CPU which load is requested
6891 * @p: the task which load should be discounted
6892 *
6893 * The load of a CPU is defined by the load of tasks currently enqueued on that
6894 * CPU as well as tasks which are currently sleeping after an execution on that
6895 * CPU.
6896 *
6897 * This method returns the load of the specified CPU by discounting the load of
6898 * the specified task, whenever the task is currently contributing to the CPU
6899 * load.
6900 */
cpu_load_without(struct rq * rq,struct task_struct * p)6901 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6902 {
6903 struct cfs_rq *cfs_rq;
6904 unsigned int load;
6905
6906 /* Task has no contribution or is new */
6907 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6908 return cpu_load(rq);
6909
6910 cfs_rq = &rq->cfs;
6911 load = READ_ONCE(cfs_rq->avg.load_avg);
6912
6913 /* Discount task's util from CPU's util */
6914 lsub_positive(&load, task_h_load(p));
6915
6916 return load;
6917 }
6918
cpu_runnable(struct rq * rq)6919 static unsigned long cpu_runnable(struct rq *rq)
6920 {
6921 return cfs_rq_runnable_avg(&rq->cfs);
6922 }
6923
cpu_runnable_without(struct rq * rq,struct task_struct * p)6924 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6925 {
6926 struct cfs_rq *cfs_rq;
6927 unsigned int runnable;
6928
6929 /* Task has no contribution or is new */
6930 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6931 return cpu_runnable(rq);
6932
6933 cfs_rq = &rq->cfs;
6934 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6935
6936 /* Discount task's runnable from CPU's runnable */
6937 lsub_positive(&runnable, p->se.avg.runnable_avg);
6938
6939 return runnable;
6940 }
6941
capacity_of(int cpu)6942 static unsigned long capacity_of(int cpu)
6943 {
6944 return cpu_rq(cpu)->cpu_capacity;
6945 }
6946
record_wakee(struct task_struct * p)6947 static void record_wakee(struct task_struct *p)
6948 {
6949 /*
6950 * Only decay a single time; tasks that have less then 1 wakeup per
6951 * jiffy will not have built up many flips.
6952 */
6953 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6954 current->wakee_flips >>= 1;
6955 current->wakee_flip_decay_ts = jiffies;
6956 }
6957
6958 if (current->last_wakee != p) {
6959 current->last_wakee = p;
6960 current->wakee_flips++;
6961 }
6962 }
6963
6964 /*
6965 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6966 *
6967 * A waker of many should wake a different task than the one last awakened
6968 * at a frequency roughly N times higher than one of its wakees.
6969 *
6970 * In order to determine whether we should let the load spread vs consolidating
6971 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6972 * partner, and a factor of lls_size higher frequency in the other.
6973 *
6974 * With both conditions met, we can be relatively sure that the relationship is
6975 * non-monogamous, with partner count exceeding socket size.
6976 *
6977 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6978 * whatever is irrelevant, spread criteria is apparent partner count exceeds
6979 * socket size.
6980 */
wake_wide(struct task_struct * p)6981 static int wake_wide(struct task_struct *p)
6982 {
6983 unsigned int master = current->wakee_flips;
6984 unsigned int slave = p->wakee_flips;
6985 int factor = __this_cpu_read(sd_llc_size);
6986
6987 if (master < slave)
6988 swap(master, slave);
6989 if (slave < factor || master < slave * factor)
6990 return 0;
6991 return 1;
6992 }
6993
6994 /*
6995 * The purpose of wake_affine() is to quickly determine on which CPU we can run
6996 * soonest. For the purpose of speed we only consider the waking and previous
6997 * CPU.
6998 *
6999 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7000 * cache-affine and is (or will be) idle.
7001 *
7002 * wake_affine_weight() - considers the weight to reflect the average
7003 * scheduling latency of the CPUs. This seems to work
7004 * for the overloaded case.
7005 */
7006 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)7007 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7008 {
7009 /*
7010 * If this_cpu is idle, it implies the wakeup is from interrupt
7011 * context. Only allow the move if cache is shared. Otherwise an
7012 * interrupt intensive workload could force all tasks onto one
7013 * node depending on the IO topology or IRQ affinity settings.
7014 *
7015 * If the prev_cpu is idle and cache affine then avoid a migration.
7016 * There is no guarantee that the cache hot data from an interrupt
7017 * is more important than cache hot data on the prev_cpu and from
7018 * a cpufreq perspective, it's better to have higher utilisation
7019 * on one CPU.
7020 */
7021 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7022 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7023
7024 if (sync && cpu_rq(this_cpu)->nr_running == 1)
7025 return this_cpu;
7026
7027 if (available_idle_cpu(prev_cpu))
7028 return prev_cpu;
7029
7030 return nr_cpumask_bits;
7031 }
7032
7033 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7034 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7035 int this_cpu, int prev_cpu, int sync)
7036 {
7037 s64 this_eff_load, prev_eff_load;
7038 unsigned long task_load;
7039
7040 this_eff_load = cpu_load(cpu_rq(this_cpu));
7041
7042 if (sync) {
7043 unsigned long current_load = task_h_load(current);
7044
7045 if (current_load > this_eff_load)
7046 return this_cpu;
7047
7048 this_eff_load -= current_load;
7049 }
7050
7051 task_load = task_h_load(p);
7052
7053 this_eff_load += task_load;
7054 if (sched_feat(WA_BIAS))
7055 this_eff_load *= 100;
7056 this_eff_load *= capacity_of(prev_cpu);
7057
7058 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7059 prev_eff_load -= task_load;
7060 if (sched_feat(WA_BIAS))
7061 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7062 prev_eff_load *= capacity_of(this_cpu);
7063
7064 /*
7065 * If sync, adjust the weight of prev_eff_load such that if
7066 * prev_eff == this_eff that select_idle_sibling() will consider
7067 * stacking the wakee on top of the waker if no other CPU is
7068 * idle.
7069 */
7070 if (sync)
7071 prev_eff_load += 1;
7072
7073 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7074 }
7075
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7076 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7077 int this_cpu, int prev_cpu, int sync)
7078 {
7079 int target = nr_cpumask_bits;
7080
7081 if (sched_feat(WA_IDLE))
7082 target = wake_affine_idle(this_cpu, prev_cpu, sync);
7083
7084 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7085 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7086
7087 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7088 if (target != this_cpu)
7089 return prev_cpu;
7090
7091 schedstat_inc(sd->ttwu_move_affine);
7092 schedstat_inc(p->stats.nr_wakeups_affine);
7093 return target;
7094 }
7095
7096 static struct sched_group *
7097 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7098
7099 /*
7100 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
7101 */
7102 static int
find_idlest_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)7103 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7104 {
7105 unsigned long load, min_load = ULONG_MAX;
7106 unsigned int min_exit_latency = UINT_MAX;
7107 u64 latest_idle_timestamp = 0;
7108 int least_loaded_cpu = this_cpu;
7109 int shallowest_idle_cpu = -1;
7110 int i;
7111
7112 /* Check if we have any choice: */
7113 if (group->group_weight == 1)
7114 return cpumask_first(sched_group_span(group));
7115
7116 /* Traverse only the allowed CPUs */
7117 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7118 struct rq *rq = cpu_rq(i);
7119
7120 if (!sched_core_cookie_match(rq, p))
7121 continue;
7122
7123 if (sched_idle_cpu(i))
7124 return i;
7125
7126 if (available_idle_cpu(i)) {
7127 struct cpuidle_state *idle = idle_get_state(rq);
7128 if (idle && idle->exit_latency < min_exit_latency) {
7129 /*
7130 * We give priority to a CPU whose idle state
7131 * has the smallest exit latency irrespective
7132 * of any idle timestamp.
7133 */
7134 min_exit_latency = idle->exit_latency;
7135 latest_idle_timestamp = rq->idle_stamp;
7136 shallowest_idle_cpu = i;
7137 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
7138 rq->idle_stamp > latest_idle_timestamp) {
7139 /*
7140 * If equal or no active idle state, then
7141 * the most recently idled CPU might have
7142 * a warmer cache.
7143 */
7144 latest_idle_timestamp = rq->idle_stamp;
7145 shallowest_idle_cpu = i;
7146 }
7147 } else if (shallowest_idle_cpu == -1) {
7148 load = cpu_load(cpu_rq(i));
7149 if (load < min_load) {
7150 min_load = load;
7151 least_loaded_cpu = i;
7152 }
7153 }
7154 }
7155
7156 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7157 }
7158
find_idlest_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)7159 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
7160 int cpu, int prev_cpu, int sd_flag)
7161 {
7162 int new_cpu = cpu;
7163
7164 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7165 return prev_cpu;
7166
7167 /*
7168 * We need task's util for cpu_util_without, sync it up to
7169 * prev_cpu's last_update_time.
7170 */
7171 if (!(sd_flag & SD_BALANCE_FORK))
7172 sync_entity_load_avg(&p->se);
7173
7174 while (sd) {
7175 struct sched_group *group;
7176 struct sched_domain *tmp;
7177 int weight;
7178
7179 if (!(sd->flags & sd_flag)) {
7180 sd = sd->child;
7181 continue;
7182 }
7183
7184 group = find_idlest_group(sd, p, cpu);
7185 if (!group) {
7186 sd = sd->child;
7187 continue;
7188 }
7189
7190 new_cpu = find_idlest_group_cpu(group, p, cpu);
7191 if (new_cpu == cpu) {
7192 /* Now try balancing at a lower domain level of 'cpu': */
7193 sd = sd->child;
7194 continue;
7195 }
7196
7197 /* Now try balancing at a lower domain level of 'new_cpu': */
7198 cpu = new_cpu;
7199 weight = sd->span_weight;
7200 sd = NULL;
7201 for_each_domain(cpu, tmp) {
7202 if (weight <= tmp->span_weight)
7203 break;
7204 if (tmp->flags & sd_flag)
7205 sd = tmp;
7206 }
7207 }
7208
7209 return new_cpu;
7210 }
7211
__select_idle_cpu(int cpu,struct task_struct * p)7212 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7213 {
7214 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7215 sched_cpu_cookie_match(cpu_rq(cpu), p))
7216 return cpu;
7217
7218 return -1;
7219 }
7220
7221 #ifdef CONFIG_SCHED_SMT
7222 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7223 EXPORT_SYMBOL_GPL(sched_smt_present);
7224
set_idle_cores(int cpu,int val)7225 static inline void set_idle_cores(int cpu, int val)
7226 {
7227 struct sched_domain_shared *sds;
7228
7229 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7230 if (sds)
7231 WRITE_ONCE(sds->has_idle_cores, val);
7232 }
7233
test_idle_cores(int cpu)7234 static inline bool test_idle_cores(int cpu)
7235 {
7236 struct sched_domain_shared *sds;
7237
7238 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7239 if (sds)
7240 return READ_ONCE(sds->has_idle_cores);
7241
7242 return false;
7243 }
7244
7245 /*
7246 * Scans the local SMT mask to see if the entire core is idle, and records this
7247 * information in sd_llc_shared->has_idle_cores.
7248 *
7249 * Since SMT siblings share all cache levels, inspecting this limited remote
7250 * state should be fairly cheap.
7251 */
__update_idle_core(struct rq * rq)7252 void __update_idle_core(struct rq *rq)
7253 {
7254 int core = cpu_of(rq);
7255 int cpu;
7256
7257 rcu_read_lock();
7258 if (test_idle_cores(core))
7259 goto unlock;
7260
7261 for_each_cpu(cpu, cpu_smt_mask(core)) {
7262 if (cpu == core)
7263 continue;
7264
7265 if (!available_idle_cpu(cpu))
7266 goto unlock;
7267 }
7268
7269 set_idle_cores(core, 1);
7270 unlock:
7271 rcu_read_unlock();
7272 }
7273
7274 /*
7275 * Scan the entire LLC domain for idle cores; this dynamically switches off if
7276 * there are no idle cores left in the system; tracked through
7277 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7278 */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7279 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7280 {
7281 bool idle = true;
7282 int cpu;
7283
7284 for_each_cpu(cpu, cpu_smt_mask(core)) {
7285 if (!available_idle_cpu(cpu)) {
7286 idle = false;
7287 if (*idle_cpu == -1) {
7288 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7289 *idle_cpu = cpu;
7290 break;
7291 }
7292 continue;
7293 }
7294 break;
7295 }
7296 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7297 *idle_cpu = cpu;
7298 }
7299
7300 if (idle)
7301 return core;
7302
7303 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7304 return -1;
7305 }
7306
7307 /*
7308 * Scan the local SMT mask for idle CPUs.
7309 */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7310 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7311 {
7312 int cpu;
7313
7314 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7315 if (cpu == target)
7316 continue;
7317 /*
7318 * Check if the CPU is in the LLC scheduling domain of @target.
7319 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7320 */
7321 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7322 continue;
7323 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7324 return cpu;
7325 }
7326
7327 return -1;
7328 }
7329
7330 #else /* CONFIG_SCHED_SMT */
7331
set_idle_cores(int cpu,int val)7332 static inline void set_idle_cores(int cpu, int val)
7333 {
7334 }
7335
test_idle_cores(int cpu)7336 static inline bool test_idle_cores(int cpu)
7337 {
7338 return false;
7339 }
7340
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7341 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7342 {
7343 return __select_idle_cpu(core, p);
7344 }
7345
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7346 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7347 {
7348 return -1;
7349 }
7350
7351 #endif /* CONFIG_SCHED_SMT */
7352
7353 /*
7354 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7355 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7356 * average idle time for this rq (as found in rq->avg_idle).
7357 */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)7358 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7359 {
7360 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7361 int i, cpu, idle_cpu = -1, nr = INT_MAX;
7362 struct sched_domain_shared *sd_share;
7363 struct rq *this_rq = this_rq();
7364 int this = smp_processor_id();
7365 struct sched_domain *this_sd = NULL;
7366 u64 time = 0;
7367
7368 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7369
7370 if (sched_feat(SIS_PROP) && !has_idle_core) {
7371 u64 avg_cost, avg_idle, span_avg;
7372 unsigned long now = jiffies;
7373
7374 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
7375 if (!this_sd)
7376 return -1;
7377
7378 /*
7379 * If we're busy, the assumption that the last idle period
7380 * predicts the future is flawed; age away the remaining
7381 * predicted idle time.
7382 */
7383 if (unlikely(this_rq->wake_stamp < now)) {
7384 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
7385 this_rq->wake_stamp++;
7386 this_rq->wake_avg_idle >>= 1;
7387 }
7388 }
7389
7390 avg_idle = this_rq->wake_avg_idle;
7391 avg_cost = this_sd->avg_scan_cost + 1;
7392
7393 span_avg = sd->span_weight * avg_idle;
7394 if (span_avg > 4*avg_cost)
7395 nr = div_u64(span_avg, avg_cost);
7396 else
7397 nr = 4;
7398
7399 time = cpu_clock(this);
7400 }
7401
7402 if (sched_feat(SIS_UTIL)) {
7403 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7404 if (sd_share) {
7405 /* because !--nr is the condition to stop scan */
7406 nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7407 /* overloaded LLC is unlikely to have idle cpu/core */
7408 if (nr == 1)
7409 return -1;
7410 }
7411 }
7412
7413 for_each_cpu_wrap(cpu, cpus, target + 1) {
7414 if (has_idle_core) {
7415 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7416 if ((unsigned int)i < nr_cpumask_bits)
7417 return i;
7418
7419 } else {
7420 if (!--nr)
7421 return -1;
7422 idle_cpu = __select_idle_cpu(cpu, p);
7423 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7424 break;
7425 }
7426 }
7427
7428 if (has_idle_core)
7429 set_idle_cores(target, false);
7430
7431 if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
7432 time = cpu_clock(this) - time;
7433
7434 /*
7435 * Account for the scan cost of wakeups against the average
7436 * idle time.
7437 */
7438 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
7439
7440 update_avg(&this_sd->avg_scan_cost, time);
7441 }
7442
7443 return idle_cpu;
7444 }
7445
7446 /*
7447 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7448 * the task fits. If no CPU is big enough, but there are idle ones, try to
7449 * maximize capacity.
7450 */
7451 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)7452 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7453 {
7454 unsigned long task_util, util_min, util_max, best_cap = 0;
7455 int fits, best_fits = 0;
7456 int cpu, best_cpu = -1;
7457 struct cpumask *cpus;
7458
7459 cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7460 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7461
7462 task_util = task_util_est(p);
7463 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7464 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7465
7466 for_each_cpu_wrap(cpu, cpus, target) {
7467 unsigned long cpu_cap = capacity_of(cpu);
7468
7469 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7470 continue;
7471
7472 fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7473
7474 /* This CPU fits with all requirements */
7475 if (fits > 0)
7476 return cpu;
7477 /*
7478 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7479 * Look for the CPU with best capacity.
7480 */
7481 else if (fits < 0)
7482 cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu));
7483
7484 /*
7485 * First, select CPU which fits better (-1 being better than 0).
7486 * Then, select the one with best capacity at same level.
7487 */
7488 if ((fits < best_fits) ||
7489 ((fits == best_fits) && (cpu_cap > best_cap))) {
7490 best_cap = cpu_cap;
7491 best_cpu = cpu;
7492 best_fits = fits;
7493 }
7494 }
7495
7496 return best_cpu;
7497 }
7498
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)7499 static inline bool asym_fits_cpu(unsigned long util,
7500 unsigned long util_min,
7501 unsigned long util_max,
7502 int cpu)
7503 {
7504 if (sched_asym_cpucap_active())
7505 /*
7506 * Return true only if the cpu fully fits the task requirements
7507 * which include the utilization and the performance hints.
7508 */
7509 return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7510
7511 return true;
7512 }
7513
7514 /*
7515 * Try and locate an idle core/thread in the LLC cache domain.
7516 */
select_idle_sibling(struct task_struct * p,int prev,int target)7517 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7518 {
7519 bool has_idle_core = false;
7520 struct sched_domain *sd;
7521 unsigned long task_util, util_min, util_max;
7522 int i, recent_used_cpu;
7523
7524 /*
7525 * On asymmetric system, update task utilization because we will check
7526 * that the task fits with cpu's capacity.
7527 */
7528 if (sched_asym_cpucap_active()) {
7529 sync_entity_load_avg(&p->se);
7530 task_util = task_util_est(p);
7531 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7532 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7533 }
7534
7535 /*
7536 * per-cpu select_rq_mask usage
7537 */
7538 lockdep_assert_irqs_disabled();
7539
7540 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7541 asym_fits_cpu(task_util, util_min, util_max, target))
7542 return target;
7543
7544 /*
7545 * If the previous CPU is cache affine and idle, don't be stupid:
7546 */
7547 if (prev != target && cpus_share_cache(prev, target) &&
7548 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7549 asym_fits_cpu(task_util, util_min, util_max, prev))
7550 return prev;
7551
7552 /*
7553 * Allow a per-cpu kthread to stack with the wakee if the
7554 * kworker thread and the tasks previous CPUs are the same.
7555 * The assumption is that the wakee queued work for the
7556 * per-cpu kthread that is now complete and the wakeup is
7557 * essentially a sync wakeup. An obvious example of this
7558 * pattern is IO completions.
7559 */
7560 if (is_per_cpu_kthread(current) &&
7561 in_task() &&
7562 prev == smp_processor_id() &&
7563 this_rq()->nr_running <= 1 &&
7564 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7565 return prev;
7566 }
7567
7568 /* Check a recently used CPU as a potential idle candidate: */
7569 recent_used_cpu = p->recent_used_cpu;
7570 p->recent_used_cpu = prev;
7571 if (recent_used_cpu != prev &&
7572 recent_used_cpu != target &&
7573 cpus_share_cache(recent_used_cpu, target) &&
7574 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7575 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7576 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7577 return recent_used_cpu;
7578 }
7579
7580 /*
7581 * For asymmetric CPU capacity systems, our domain of interest is
7582 * sd_asym_cpucapacity rather than sd_llc.
7583 */
7584 if (sched_asym_cpucap_active()) {
7585 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7586 /*
7587 * On an asymmetric CPU capacity system where an exclusive
7588 * cpuset defines a symmetric island (i.e. one unique
7589 * capacity_orig value through the cpuset), the key will be set
7590 * but the CPUs within that cpuset will not have a domain with
7591 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7592 * capacity path.
7593 */
7594 if (sd) {
7595 i = select_idle_capacity(p, sd, target);
7596 return ((unsigned)i < nr_cpumask_bits) ? i : target;
7597 }
7598 }
7599
7600 sd = rcu_dereference(per_cpu(sd_llc, target));
7601 if (!sd)
7602 return target;
7603
7604 if (sched_smt_active()) {
7605 has_idle_core = test_idle_cores(target);
7606
7607 if (!has_idle_core && cpus_share_cache(prev, target)) {
7608 i = select_idle_smt(p, sd, prev);
7609 if ((unsigned int)i < nr_cpumask_bits)
7610 return i;
7611 }
7612 }
7613
7614 i = select_idle_cpu(p, sd, has_idle_core, target);
7615 if ((unsigned)i < nr_cpumask_bits)
7616 return i;
7617
7618 return target;
7619 }
7620
7621 /**
7622 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7623 * @cpu: the CPU to get the utilization for
7624 * @p: task for which the CPU utilization should be predicted or NULL
7625 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7626 * @boost: 1 to enable boosting, otherwise 0
7627 *
7628 * The unit of the return value must be the same as the one of CPU capacity
7629 * so that CPU utilization can be compared with CPU capacity.
7630 *
7631 * CPU utilization is the sum of running time of runnable tasks plus the
7632 * recent utilization of currently non-runnable tasks on that CPU.
7633 * It represents the amount of CPU capacity currently used by CFS tasks in
7634 * the range [0..max CPU capacity] with max CPU capacity being the CPU
7635 * capacity at f_max.
7636 *
7637 * The estimated CPU utilization is defined as the maximum between CPU
7638 * utilization and sum of the estimated utilization of the currently
7639 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7640 * previously-executed tasks, which helps better deduce how busy a CPU will
7641 * be when a long-sleeping task wakes up. The contribution to CPU utilization
7642 * of such a task would be significantly decayed at this point of time.
7643 *
7644 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7645 * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7646 * utilization. Boosting is implemented in cpu_util() so that internal
7647 * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7648 * latter via cpu_util_cfs_boost().
7649 *
7650 * CPU utilization can be higher than the current CPU capacity
7651 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7652 * of rounding errors as well as task migrations or wakeups of new tasks.
7653 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7654 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7655 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7656 * capacity. CPU utilization is allowed to overshoot current CPU capacity
7657 * though since this is useful for predicting the CPU capacity required
7658 * after task migrations (scheduler-driven DVFS).
7659 *
7660 * Return: (Boosted) (estimated) utilization for the specified CPU.
7661 */
7662 static unsigned long
cpu_util(int cpu,struct task_struct * p,int dst_cpu,int boost)7663 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7664 {
7665 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7666 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7667 unsigned long runnable;
7668
7669 if (boost) {
7670 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7671 util = max(util, runnable);
7672 }
7673
7674 /*
7675 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7676 * contribution. If @p migrates from another CPU to @cpu add its
7677 * contribution. In all the other cases @cpu is not impacted by the
7678 * migration so its util_avg is already correct.
7679 */
7680 if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7681 lsub_positive(&util, task_util(p));
7682 else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7683 util += task_util(p);
7684
7685 if (sched_feat(UTIL_EST)) {
7686 unsigned long util_est;
7687
7688 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
7689
7690 /*
7691 * During wake-up @p isn't enqueued yet and doesn't contribute
7692 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
7693 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7694 * has been enqueued.
7695 *
7696 * During exec (@dst_cpu = -1) @p is enqueued and does
7697 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
7698 * Remove it to "simulate" cpu_util without @p's contribution.
7699 *
7700 * Despite the task_on_rq_queued(@p) check there is still a
7701 * small window for a possible race when an exec
7702 * select_task_rq_fair() races with LB's detach_task().
7703 *
7704 * detach_task()
7705 * deactivate_task()
7706 * p->on_rq = TASK_ON_RQ_MIGRATING;
7707 * -------------------------------- A
7708 * dequeue_task() \
7709 * dequeue_task_fair() + Race Time
7710 * util_est_dequeue() /
7711 * -------------------------------- B
7712 *
7713 * The additional check "current == p" is required to further
7714 * reduce the race window.
7715 */
7716 if (dst_cpu == cpu)
7717 util_est += _task_util_est(p);
7718 else if (p && unlikely(task_on_rq_queued(p) || current == p))
7719 lsub_positive(&util_est, _task_util_est(p));
7720
7721 util = max(util, util_est);
7722 }
7723
7724 return min(util, capacity_orig_of(cpu));
7725 }
7726
cpu_util_cfs(int cpu)7727 unsigned long cpu_util_cfs(int cpu)
7728 {
7729 return cpu_util(cpu, NULL, -1, 0);
7730 }
7731
cpu_util_cfs_boost(int cpu)7732 unsigned long cpu_util_cfs_boost(int cpu)
7733 {
7734 return cpu_util(cpu, NULL, -1, 1);
7735 }
7736
7737 /*
7738 * cpu_util_without: compute cpu utilization without any contributions from *p
7739 * @cpu: the CPU which utilization is requested
7740 * @p: the task which utilization should be discounted
7741 *
7742 * The utilization of a CPU is defined by the utilization of tasks currently
7743 * enqueued on that CPU as well as tasks which are currently sleeping after an
7744 * execution on that CPU.
7745 *
7746 * This method returns the utilization of the specified CPU by discounting the
7747 * utilization of the specified task, whenever the task is currently
7748 * contributing to the CPU utilization.
7749 */
cpu_util_without(int cpu,struct task_struct * p)7750 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7751 {
7752 /* Task has no contribution or is new */
7753 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7754 p = NULL;
7755
7756 return cpu_util(cpu, p, -1, 0);
7757 }
7758
7759 /*
7760 * energy_env - Utilization landscape for energy estimation.
7761 * @task_busy_time: Utilization contribution by the task for which we test the
7762 * placement. Given by eenv_task_busy_time().
7763 * @pd_busy_time: Utilization of the whole perf domain without the task
7764 * contribution. Given by eenv_pd_busy_time().
7765 * @cpu_cap: Maximum CPU capacity for the perf domain.
7766 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7767 */
7768 struct energy_env {
7769 unsigned long task_busy_time;
7770 unsigned long pd_busy_time;
7771 unsigned long cpu_cap;
7772 unsigned long pd_cap;
7773 };
7774
7775 /*
7776 * Compute the task busy time for compute_energy(). This time cannot be
7777 * injected directly into effective_cpu_util() because of the IRQ scaling.
7778 * The latter only makes sense with the most recent CPUs where the task has
7779 * run.
7780 */
eenv_task_busy_time(struct energy_env * eenv,struct task_struct * p,int prev_cpu)7781 static inline void eenv_task_busy_time(struct energy_env *eenv,
7782 struct task_struct *p, int prev_cpu)
7783 {
7784 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7785 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7786
7787 if (unlikely(irq >= max_cap))
7788 busy_time = max_cap;
7789 else
7790 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7791
7792 eenv->task_busy_time = busy_time;
7793 }
7794
7795 /*
7796 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7797 * utilization for each @pd_cpus, it however doesn't take into account
7798 * clamping since the ratio (utilization / cpu_capacity) is already enough to
7799 * scale the EM reported power consumption at the (eventually clamped)
7800 * cpu_capacity.
7801 *
7802 * The contribution of the task @p for which we want to estimate the
7803 * energy cost is removed (by cpu_util()) and must be calculated
7804 * separately (see eenv_task_busy_time). This ensures:
7805 *
7806 * - A stable PD utilization, no matter which CPU of that PD we want to place
7807 * the task on.
7808 *
7809 * - A fair comparison between CPUs as the task contribution (task_util())
7810 * will always be the same no matter which CPU utilization we rely on
7811 * (util_avg or util_est).
7812 *
7813 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7814 * exceed @eenv->pd_cap.
7815 */
eenv_pd_busy_time(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p)7816 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7817 struct cpumask *pd_cpus,
7818 struct task_struct *p)
7819 {
7820 unsigned long busy_time = 0;
7821 int cpu;
7822
7823 for_each_cpu(cpu, pd_cpus) {
7824 unsigned long util = cpu_util(cpu, p, -1, 0);
7825
7826 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
7827 }
7828
7829 eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7830 }
7831
7832 /*
7833 * Compute the maximum utilization for compute_energy() when the task @p
7834 * is placed on the cpu @dst_cpu.
7835 *
7836 * Returns the maximum utilization among @eenv->cpus. This utilization can't
7837 * exceed @eenv->cpu_cap.
7838 */
7839 static inline unsigned long
eenv_pd_max_util(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)7840 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7841 struct task_struct *p, int dst_cpu)
7842 {
7843 unsigned long max_util = 0;
7844 int cpu;
7845
7846 for_each_cpu(cpu, pd_cpus) {
7847 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7848 unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
7849 unsigned long eff_util;
7850
7851 /*
7852 * Performance domain frequency: utilization clamping
7853 * must be considered since it affects the selection
7854 * of the performance domain frequency.
7855 * NOTE: in case RT tasks are running, by default the
7856 * FREQUENCY_UTIL's utilization can be max OPP.
7857 */
7858 eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
7859 max_util = max(max_util, eff_util);
7860 }
7861
7862 return min(max_util, eenv->cpu_cap);
7863 }
7864
7865 /*
7866 * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7867 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7868 * contribution is ignored.
7869 */
7870 static inline unsigned long
compute_energy(struct energy_env * eenv,struct perf_domain * pd,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)7871 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7872 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7873 {
7874 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7875 unsigned long busy_time = eenv->pd_busy_time;
7876
7877 if (dst_cpu >= 0)
7878 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7879
7880 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7881 }
7882
7883 /*
7884 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7885 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7886 * spare capacity in each performance domain and uses it as a potential
7887 * candidate to execute the task. Then, it uses the Energy Model to figure
7888 * out which of the CPU candidates is the most energy-efficient.
7889 *
7890 * The rationale for this heuristic is as follows. In a performance domain,
7891 * all the most energy efficient CPU candidates (according to the Energy
7892 * Model) are those for which we'll request a low frequency. When there are
7893 * several CPUs for which the frequency request will be the same, we don't
7894 * have enough data to break the tie between them, because the Energy Model
7895 * only includes active power costs. With this model, if we assume that
7896 * frequency requests follow utilization (e.g. using schedutil), the CPU with
7897 * the maximum spare capacity in a performance domain is guaranteed to be among
7898 * the best candidates of the performance domain.
7899 *
7900 * In practice, it could be preferable from an energy standpoint to pack
7901 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7902 * but that could also hurt our chances to go cluster idle, and we have no
7903 * ways to tell with the current Energy Model if this is actually a good
7904 * idea or not. So, find_energy_efficient_cpu() basically favors
7905 * cluster-packing, and spreading inside a cluster. That should at least be
7906 * a good thing for latency, and this is consistent with the idea that most
7907 * of the energy savings of EAS come from the asymmetry of the system, and
7908 * not so much from breaking the tie between identical CPUs. That's also the
7909 * reason why EAS is enabled in the topology code only for systems where
7910 * SD_ASYM_CPUCAPACITY is set.
7911 *
7912 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7913 * they don't have any useful utilization data yet and it's not possible to
7914 * forecast their impact on energy consumption. Consequently, they will be
7915 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7916 * to be energy-inefficient in some use-cases. The alternative would be to
7917 * bias new tasks towards specific types of CPUs first, or to try to infer
7918 * their util_avg from the parent task, but those heuristics could hurt
7919 * other use-cases too. So, until someone finds a better way to solve this,
7920 * let's keep things simple by re-using the existing slow path.
7921 */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)7922 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7923 {
7924 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7925 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7926 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7927 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7928 struct root_domain *rd = this_rq()->rd;
7929 int cpu, best_energy_cpu, target = -1;
7930 int prev_fits = -1, best_fits = -1;
7931 unsigned long best_thermal_cap = 0;
7932 unsigned long prev_thermal_cap = 0;
7933 struct sched_domain *sd;
7934 struct perf_domain *pd;
7935 struct energy_env eenv;
7936
7937 rcu_read_lock();
7938 pd = rcu_dereference(rd->pd);
7939 if (!pd || READ_ONCE(rd->overutilized))
7940 goto unlock;
7941
7942 /*
7943 * Energy-aware wake-up happens on the lowest sched_domain starting
7944 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7945 */
7946 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7947 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7948 sd = sd->parent;
7949 if (!sd)
7950 goto unlock;
7951
7952 target = prev_cpu;
7953
7954 sync_entity_load_avg(&p->se);
7955 if (!task_util_est(p) && p_util_min == 0)
7956 goto unlock;
7957
7958 eenv_task_busy_time(&eenv, p, prev_cpu);
7959
7960 for (; pd; pd = pd->next) {
7961 unsigned long util_min = p_util_min, util_max = p_util_max;
7962 unsigned long cpu_cap, cpu_thermal_cap, util;
7963 long prev_spare_cap = -1, max_spare_cap = -1;
7964 unsigned long rq_util_min, rq_util_max;
7965 unsigned long cur_delta, base_energy;
7966 int max_spare_cap_cpu = -1;
7967 int fits, max_fits = -1;
7968
7969 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
7970
7971 if (cpumask_empty(cpus))
7972 continue;
7973
7974 /* Account thermal pressure for the energy estimation */
7975 cpu = cpumask_first(cpus);
7976 cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
7977 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
7978
7979 eenv.cpu_cap = cpu_thermal_cap;
7980 eenv.pd_cap = 0;
7981
7982 for_each_cpu(cpu, cpus) {
7983 struct rq *rq = cpu_rq(cpu);
7984
7985 eenv.pd_cap += cpu_thermal_cap;
7986
7987 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7988 continue;
7989
7990 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
7991 continue;
7992
7993 util = cpu_util(cpu, p, cpu, 0);
7994 cpu_cap = capacity_of(cpu);
7995
7996 /*
7997 * Skip CPUs that cannot satisfy the capacity request.
7998 * IOW, placing the task there would make the CPU
7999 * overutilized. Take uclamp into account to see how
8000 * much capacity we can get out of the CPU; this is
8001 * aligned with sched_cpu_util().
8002 */
8003 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8004 /*
8005 * Open code uclamp_rq_util_with() except for
8006 * the clamp() part. Ie: apply max aggregation
8007 * only. util_fits_cpu() logic requires to
8008 * operate on non clamped util but must use the
8009 * max-aggregated uclamp_{min, max}.
8010 */
8011 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8012 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8013
8014 util_min = max(rq_util_min, p_util_min);
8015 util_max = max(rq_util_max, p_util_max);
8016 }
8017
8018 fits = util_fits_cpu(util, util_min, util_max, cpu);
8019 if (!fits)
8020 continue;
8021
8022 lsub_positive(&cpu_cap, util);
8023
8024 if (cpu == prev_cpu) {
8025 /* Always use prev_cpu as a candidate. */
8026 prev_spare_cap = cpu_cap;
8027 prev_fits = fits;
8028 } else if ((fits > max_fits) ||
8029 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8030 /*
8031 * Find the CPU with the maximum spare capacity
8032 * among the remaining CPUs in the performance
8033 * domain.
8034 */
8035 max_spare_cap = cpu_cap;
8036 max_spare_cap_cpu = cpu;
8037 max_fits = fits;
8038 }
8039 }
8040
8041 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8042 continue;
8043
8044 eenv_pd_busy_time(&eenv, cpus, p);
8045 /* Compute the 'base' energy of the pd, without @p */
8046 base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8047
8048 /* Evaluate the energy impact of using prev_cpu. */
8049 if (prev_spare_cap > -1) {
8050 prev_delta = compute_energy(&eenv, pd, cpus, p,
8051 prev_cpu);
8052 /* CPU utilization has changed */
8053 if (prev_delta < base_energy)
8054 goto unlock;
8055 prev_delta -= base_energy;
8056 prev_thermal_cap = cpu_thermal_cap;
8057 best_delta = min(best_delta, prev_delta);
8058 }
8059
8060 /* Evaluate the energy impact of using max_spare_cap_cpu. */
8061 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8062 /* Current best energy cpu fits better */
8063 if (max_fits < best_fits)
8064 continue;
8065
8066 /*
8067 * Both don't fit performance hint (i.e. uclamp_min)
8068 * but best energy cpu has better capacity.
8069 */
8070 if ((max_fits < 0) &&
8071 (cpu_thermal_cap <= best_thermal_cap))
8072 continue;
8073
8074 cur_delta = compute_energy(&eenv, pd, cpus, p,
8075 max_spare_cap_cpu);
8076 /* CPU utilization has changed */
8077 if (cur_delta < base_energy)
8078 goto unlock;
8079 cur_delta -= base_energy;
8080
8081 /*
8082 * Both fit for the task but best energy cpu has lower
8083 * energy impact.
8084 */
8085 if ((max_fits > 0) && (best_fits > 0) &&
8086 (cur_delta >= best_delta))
8087 continue;
8088
8089 best_delta = cur_delta;
8090 best_energy_cpu = max_spare_cap_cpu;
8091 best_fits = max_fits;
8092 best_thermal_cap = cpu_thermal_cap;
8093 }
8094 }
8095 rcu_read_unlock();
8096
8097 if ((best_fits > prev_fits) ||
8098 ((best_fits > 0) && (best_delta < prev_delta)) ||
8099 ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
8100 target = best_energy_cpu;
8101
8102 return target;
8103
8104 unlock:
8105 rcu_read_unlock();
8106
8107 return target;
8108 }
8109
8110 /*
8111 * select_task_rq_fair: Select target runqueue for the waking task in domains
8112 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8113 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8114 *
8115 * Balances load by selecting the idlest CPU in the idlest group, or under
8116 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8117 *
8118 * Returns the target CPU number.
8119 */
8120 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)8121 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8122 {
8123 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8124 struct sched_domain *tmp, *sd = NULL;
8125 int cpu = smp_processor_id();
8126 int new_cpu = prev_cpu;
8127 int want_affine = 0;
8128 /* SD_flags and WF_flags share the first nibble */
8129 int sd_flag = wake_flags & 0xF;
8130
8131 /*
8132 * required for stable ->cpus_allowed
8133 */
8134 lockdep_assert_held(&p->pi_lock);
8135 if (wake_flags & WF_TTWU) {
8136 record_wakee(p);
8137
8138 if ((wake_flags & WF_CURRENT_CPU) &&
8139 cpumask_test_cpu(cpu, p->cpus_ptr))
8140 return cpu;
8141
8142 if (sched_energy_enabled()) {
8143 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8144 if (new_cpu >= 0)
8145 return new_cpu;
8146 new_cpu = prev_cpu;
8147 }
8148
8149 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8150 }
8151
8152 rcu_read_lock();
8153 for_each_domain(cpu, tmp) {
8154 /*
8155 * If both 'cpu' and 'prev_cpu' are part of this domain,
8156 * cpu is a valid SD_WAKE_AFFINE target.
8157 */
8158 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8159 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8160 if (cpu != prev_cpu)
8161 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8162
8163 sd = NULL; /* Prefer wake_affine over balance flags */
8164 break;
8165 }
8166
8167 /*
8168 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8169 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8170 * will usually go to the fast path.
8171 */
8172 if (tmp->flags & sd_flag)
8173 sd = tmp;
8174 else if (!want_affine)
8175 break;
8176 }
8177
8178 if (unlikely(sd)) {
8179 /* Slow path */
8180 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
8181 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
8182 /* Fast path */
8183 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8184 }
8185 rcu_read_unlock();
8186
8187 return new_cpu;
8188 }
8189
8190 /*
8191 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8192 * cfs_rq_of(p) references at time of call are still valid and identify the
8193 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8194 */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)8195 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8196 {
8197 struct sched_entity *se = &p->se;
8198
8199 if (!task_on_rq_migrating(p)) {
8200 remove_entity_load_avg(se);
8201
8202 /*
8203 * Here, the task's PELT values have been updated according to
8204 * the current rq's clock. But if that clock hasn't been
8205 * updated in a while, a substantial idle time will be missed,
8206 * leading to an inflation after wake-up on the new rq.
8207 *
8208 * Estimate the missing time from the cfs_rq last_update_time
8209 * and update sched_avg to improve the PELT continuity after
8210 * migration.
8211 */
8212 migrate_se_pelt_lag(se);
8213 }
8214
8215 /* Tell new CPU we are migrated */
8216 se->avg.last_update_time = 0;
8217
8218 update_scan_period(p, new_cpu);
8219 }
8220
task_dead_fair(struct task_struct * p)8221 static void task_dead_fair(struct task_struct *p)
8222 {
8223 remove_entity_load_avg(&p->se);
8224 }
8225
8226 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8227 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8228 {
8229 if (rq->nr_running)
8230 return 1;
8231
8232 return newidle_balance(rq, rf) != 0;
8233 }
8234 #endif /* CONFIG_SMP */
8235
set_next_buddy(struct sched_entity * se)8236 static void set_next_buddy(struct sched_entity *se)
8237 {
8238 for_each_sched_entity(se) {
8239 if (SCHED_WARN_ON(!se->on_rq))
8240 return;
8241 if (se_is_idle(se))
8242 return;
8243 cfs_rq_of(se)->next = se;
8244 }
8245 }
8246
8247 /*
8248 * Preempt the current task with a newly woken task if needed:
8249 */
check_preempt_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)8250 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
8251 {
8252 struct task_struct *curr = rq->curr;
8253 struct sched_entity *se = &curr->se, *pse = &p->se;
8254 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8255 int next_buddy_marked = 0;
8256 int cse_is_idle, pse_is_idle;
8257
8258 if (unlikely(se == pse))
8259 return;
8260
8261 /*
8262 * This is possible from callers such as attach_tasks(), in which we
8263 * unconditionally check_preempt_curr() after an enqueue (which may have
8264 * lead to a throttle). This both saves work and prevents false
8265 * next-buddy nomination below.
8266 */
8267 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8268 return;
8269
8270 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8271 set_next_buddy(pse);
8272 next_buddy_marked = 1;
8273 }
8274
8275 /*
8276 * We can come here with TIF_NEED_RESCHED already set from new task
8277 * wake up path.
8278 *
8279 * Note: this also catches the edge-case of curr being in a throttled
8280 * group (e.g. via set_curr_task), since update_curr() (in the
8281 * enqueue of curr) will have resulted in resched being set. This
8282 * prevents us from potentially nominating it as a false LAST_BUDDY
8283 * below.
8284 */
8285 if (test_tsk_need_resched(curr))
8286 return;
8287
8288 if (!sched_feat(WAKEUP_PREEMPTION))
8289 return;
8290
8291 find_matching_se(&se, &pse);
8292 WARN_ON_ONCE(!pse);
8293
8294 cse_is_idle = se_is_idle(se);
8295 pse_is_idle = se_is_idle(pse);
8296
8297 /*
8298 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8299 * in the inverse case).
8300 */
8301 if (cse_is_idle && !pse_is_idle)
8302 goto preempt;
8303 if (cse_is_idle != pse_is_idle)
8304 return;
8305
8306 /*
8307 * BATCH and IDLE tasks do not preempt others.
8308 */
8309 if (unlikely(p->policy != SCHED_NORMAL))
8310 return;
8311
8312 cfs_rq = cfs_rq_of(se);
8313 update_curr(cfs_rq);
8314 /*
8315 * XXX pick_eevdf(cfs_rq) != se ?
8316 */
8317 if (pick_eevdf(cfs_rq) == pse)
8318 goto preempt;
8319
8320 return;
8321
8322 preempt:
8323 resched_curr(rq);
8324 }
8325
8326 #ifdef CONFIG_SMP
pick_task_fair(struct rq * rq)8327 static struct task_struct *pick_task_fair(struct rq *rq)
8328 {
8329 struct sched_entity *se;
8330 struct cfs_rq *cfs_rq;
8331
8332 again:
8333 cfs_rq = &rq->cfs;
8334 if (!cfs_rq->nr_running)
8335 return NULL;
8336
8337 do {
8338 struct sched_entity *curr = cfs_rq->curr;
8339
8340 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8341 if (curr) {
8342 if (curr->on_rq)
8343 update_curr(cfs_rq);
8344 else
8345 curr = NULL;
8346
8347 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8348 goto again;
8349 }
8350
8351 se = pick_next_entity(cfs_rq, curr);
8352 cfs_rq = group_cfs_rq(se);
8353 } while (cfs_rq);
8354
8355 return task_of(se);
8356 }
8357 #endif
8358
8359 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8360 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8361 {
8362 struct cfs_rq *cfs_rq = &rq->cfs;
8363 struct sched_entity *se;
8364 struct task_struct *p;
8365 int new_tasks;
8366
8367 again:
8368 if (!sched_fair_runnable(rq))
8369 goto idle;
8370
8371 #ifdef CONFIG_FAIR_GROUP_SCHED
8372 if (!prev || prev->sched_class != &fair_sched_class)
8373 goto simple;
8374
8375 /*
8376 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8377 * likely that a next task is from the same cgroup as the current.
8378 *
8379 * Therefore attempt to avoid putting and setting the entire cgroup
8380 * hierarchy, only change the part that actually changes.
8381 */
8382
8383 do {
8384 struct sched_entity *curr = cfs_rq->curr;
8385
8386 /*
8387 * Since we got here without doing put_prev_entity() we also
8388 * have to consider cfs_rq->curr. If it is still a runnable
8389 * entity, update_curr() will update its vruntime, otherwise
8390 * forget we've ever seen it.
8391 */
8392 if (curr) {
8393 if (curr->on_rq)
8394 update_curr(cfs_rq);
8395 else
8396 curr = NULL;
8397
8398 /*
8399 * This call to check_cfs_rq_runtime() will do the
8400 * throttle and dequeue its entity in the parent(s).
8401 * Therefore the nr_running test will indeed
8402 * be correct.
8403 */
8404 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8405 cfs_rq = &rq->cfs;
8406
8407 if (!cfs_rq->nr_running)
8408 goto idle;
8409
8410 goto simple;
8411 }
8412 }
8413
8414 se = pick_next_entity(cfs_rq, curr);
8415 cfs_rq = group_cfs_rq(se);
8416 } while (cfs_rq);
8417
8418 p = task_of(se);
8419
8420 /*
8421 * Since we haven't yet done put_prev_entity and if the selected task
8422 * is a different task than we started out with, try and touch the
8423 * least amount of cfs_rqs.
8424 */
8425 if (prev != p) {
8426 struct sched_entity *pse = &prev->se;
8427
8428 while (!(cfs_rq = is_same_group(se, pse))) {
8429 int se_depth = se->depth;
8430 int pse_depth = pse->depth;
8431
8432 if (se_depth <= pse_depth) {
8433 put_prev_entity(cfs_rq_of(pse), pse);
8434 pse = parent_entity(pse);
8435 }
8436 if (se_depth >= pse_depth) {
8437 set_next_entity(cfs_rq_of(se), se);
8438 se = parent_entity(se);
8439 }
8440 }
8441
8442 put_prev_entity(cfs_rq, pse);
8443 set_next_entity(cfs_rq, se);
8444 }
8445
8446 goto done;
8447 simple:
8448 #endif
8449 if (prev)
8450 put_prev_task(rq, prev);
8451
8452 do {
8453 se = pick_next_entity(cfs_rq, NULL);
8454 set_next_entity(cfs_rq, se);
8455 cfs_rq = group_cfs_rq(se);
8456 } while (cfs_rq);
8457
8458 p = task_of(se);
8459
8460 done: __maybe_unused;
8461 #ifdef CONFIG_SMP
8462 /*
8463 * Move the next running task to the front of
8464 * the list, so our cfs_tasks list becomes MRU
8465 * one.
8466 */
8467 list_move(&p->se.group_node, &rq->cfs_tasks);
8468 #endif
8469
8470 if (hrtick_enabled_fair(rq))
8471 hrtick_start_fair(rq, p);
8472
8473 update_misfit_status(p, rq);
8474 sched_fair_update_stop_tick(rq, p);
8475
8476 return p;
8477
8478 idle:
8479 if (!rf)
8480 return NULL;
8481
8482 new_tasks = newidle_balance(rq, rf);
8483
8484 /*
8485 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
8486 * possible for any higher priority task to appear. In that case we
8487 * must re-start the pick_next_entity() loop.
8488 */
8489 if (new_tasks < 0)
8490 return RETRY_TASK;
8491
8492 if (new_tasks > 0)
8493 goto again;
8494
8495 /*
8496 * rq is about to be idle, check if we need to update the
8497 * lost_idle_time of clock_pelt
8498 */
8499 update_idle_rq_clock_pelt(rq);
8500
8501 return NULL;
8502 }
8503
__pick_next_task_fair(struct rq * rq)8504 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8505 {
8506 return pick_next_task_fair(rq, NULL, NULL);
8507 }
8508
8509 /*
8510 * Account for a descheduled task:
8511 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)8512 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8513 {
8514 struct sched_entity *se = &prev->se;
8515 struct cfs_rq *cfs_rq;
8516
8517 for_each_sched_entity(se) {
8518 cfs_rq = cfs_rq_of(se);
8519 put_prev_entity(cfs_rq, se);
8520 }
8521 }
8522
8523 /*
8524 * sched_yield() is very simple
8525 */
yield_task_fair(struct rq * rq)8526 static void yield_task_fair(struct rq *rq)
8527 {
8528 struct task_struct *curr = rq->curr;
8529 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8530 struct sched_entity *se = &curr->se;
8531
8532 /*
8533 * Are we the only task in the tree?
8534 */
8535 if (unlikely(rq->nr_running == 1))
8536 return;
8537
8538 clear_buddies(cfs_rq, se);
8539
8540 update_rq_clock(rq);
8541 /*
8542 * Update run-time statistics of the 'current'.
8543 */
8544 update_curr(cfs_rq);
8545 /*
8546 * Tell update_rq_clock() that we've just updated,
8547 * so we don't do microscopic update in schedule()
8548 * and double the fastpath cost.
8549 */
8550 rq_clock_skip_update(rq);
8551
8552 se->deadline += calc_delta_fair(se->slice, se);
8553 }
8554
yield_to_task_fair(struct rq * rq,struct task_struct * p)8555 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8556 {
8557 struct sched_entity *se = &p->se;
8558
8559 /* throttled hierarchies are not runnable */
8560 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8561 return false;
8562
8563 /* Tell the scheduler that we'd really like pse to run next. */
8564 set_next_buddy(se);
8565
8566 yield_task_fair(rq);
8567
8568 return true;
8569 }
8570
8571 #ifdef CONFIG_SMP
8572 /**************************************************
8573 * Fair scheduling class load-balancing methods.
8574 *
8575 * BASICS
8576 *
8577 * The purpose of load-balancing is to achieve the same basic fairness the
8578 * per-CPU scheduler provides, namely provide a proportional amount of compute
8579 * time to each task. This is expressed in the following equation:
8580 *
8581 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
8582 *
8583 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8584 * W_i,0 is defined as:
8585 *
8586 * W_i,0 = \Sum_j w_i,j (2)
8587 *
8588 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8589 * is derived from the nice value as per sched_prio_to_weight[].
8590 *
8591 * The weight average is an exponential decay average of the instantaneous
8592 * weight:
8593 *
8594 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
8595 *
8596 * C_i is the compute capacity of CPU i, typically it is the
8597 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8598 * can also include other factors [XXX].
8599 *
8600 * To achieve this balance we define a measure of imbalance which follows
8601 * directly from (1):
8602 *
8603 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
8604 *
8605 * We them move tasks around to minimize the imbalance. In the continuous
8606 * function space it is obvious this converges, in the discrete case we get
8607 * a few fun cases generally called infeasible weight scenarios.
8608 *
8609 * [XXX expand on:
8610 * - infeasible weights;
8611 * - local vs global optima in the discrete case. ]
8612 *
8613 *
8614 * SCHED DOMAINS
8615 *
8616 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8617 * for all i,j solution, we create a tree of CPUs that follows the hardware
8618 * topology where each level pairs two lower groups (or better). This results
8619 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8620 * tree to only the first of the previous level and we decrease the frequency
8621 * of load-balance at each level inv. proportional to the number of CPUs in
8622 * the groups.
8623 *
8624 * This yields:
8625 *
8626 * log_2 n 1 n
8627 * \Sum { --- * --- * 2^i } = O(n) (5)
8628 * i = 0 2^i 2^i
8629 * `- size of each group
8630 * | | `- number of CPUs doing load-balance
8631 * | `- freq
8632 * `- sum over all levels
8633 *
8634 * Coupled with a limit on how many tasks we can migrate every balance pass,
8635 * this makes (5) the runtime complexity of the balancer.
8636 *
8637 * An important property here is that each CPU is still (indirectly) connected
8638 * to every other CPU in at most O(log n) steps:
8639 *
8640 * The adjacency matrix of the resulting graph is given by:
8641 *
8642 * log_2 n
8643 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
8644 * k = 0
8645 *
8646 * And you'll find that:
8647 *
8648 * A^(log_2 n)_i,j != 0 for all i,j (7)
8649 *
8650 * Showing there's indeed a path between every CPU in at most O(log n) steps.
8651 * The task movement gives a factor of O(m), giving a convergence complexity
8652 * of:
8653 *
8654 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
8655 *
8656 *
8657 * WORK CONSERVING
8658 *
8659 * In order to avoid CPUs going idle while there's still work to do, new idle
8660 * balancing is more aggressive and has the newly idle CPU iterate up the domain
8661 * tree itself instead of relying on other CPUs to bring it work.
8662 *
8663 * This adds some complexity to both (5) and (8) but it reduces the total idle
8664 * time.
8665 *
8666 * [XXX more?]
8667 *
8668 *
8669 * CGROUPS
8670 *
8671 * Cgroups make a horror show out of (2), instead of a simple sum we get:
8672 *
8673 * s_k,i
8674 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
8675 * S_k
8676 *
8677 * Where
8678 *
8679 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
8680 *
8681 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8682 *
8683 * The big problem is S_k, its a global sum needed to compute a local (W_i)
8684 * property.
8685 *
8686 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8687 * rewrite all of this once again.]
8688 */
8689
8690 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8691
8692 enum fbq_type { regular, remote, all };
8693
8694 /*
8695 * 'group_type' describes the group of CPUs at the moment of load balancing.
8696 *
8697 * The enum is ordered by pulling priority, with the group with lowest priority
8698 * first so the group_type can simply be compared when selecting the busiest
8699 * group. See update_sd_pick_busiest().
8700 */
8701 enum group_type {
8702 /* The group has spare capacity that can be used to run more tasks. */
8703 group_has_spare = 0,
8704 /*
8705 * The group is fully used and the tasks don't compete for more CPU
8706 * cycles. Nevertheless, some tasks might wait before running.
8707 */
8708 group_fully_busy,
8709 /*
8710 * One task doesn't fit with CPU's capacity and must be migrated to a
8711 * more powerful CPU.
8712 */
8713 group_misfit_task,
8714 /*
8715 * Balance SMT group that's fully busy. Can benefit from migration
8716 * a task on SMT with busy sibling to another CPU on idle core.
8717 */
8718 group_smt_balance,
8719 /*
8720 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8721 * and the task should be migrated to it instead of running on the
8722 * current CPU.
8723 */
8724 group_asym_packing,
8725 /*
8726 * The tasks' affinity constraints previously prevented the scheduler
8727 * from balancing the load across the system.
8728 */
8729 group_imbalanced,
8730 /*
8731 * The CPU is overloaded and can't provide expected CPU cycles to all
8732 * tasks.
8733 */
8734 group_overloaded
8735 };
8736
8737 enum migration_type {
8738 migrate_load = 0,
8739 migrate_util,
8740 migrate_task,
8741 migrate_misfit
8742 };
8743
8744 #define LBF_ALL_PINNED 0x01
8745 #define LBF_NEED_BREAK 0x02
8746 #define LBF_DST_PINNED 0x04
8747 #define LBF_SOME_PINNED 0x08
8748 #define LBF_ACTIVE_LB 0x10
8749
8750 struct lb_env {
8751 struct sched_domain *sd;
8752
8753 struct rq *src_rq;
8754 int src_cpu;
8755
8756 int dst_cpu;
8757 struct rq *dst_rq;
8758
8759 struct cpumask *dst_grpmask;
8760 int new_dst_cpu;
8761 enum cpu_idle_type idle;
8762 long imbalance;
8763 /* The set of CPUs under consideration for load-balancing */
8764 struct cpumask *cpus;
8765
8766 unsigned int flags;
8767
8768 unsigned int loop;
8769 unsigned int loop_break;
8770 unsigned int loop_max;
8771
8772 enum fbq_type fbq_type;
8773 enum migration_type migration_type;
8774 struct list_head tasks;
8775 };
8776
8777 /*
8778 * Is this task likely cache-hot:
8779 */
task_hot(struct task_struct * p,struct lb_env * env)8780 static int task_hot(struct task_struct *p, struct lb_env *env)
8781 {
8782 s64 delta;
8783
8784 lockdep_assert_rq_held(env->src_rq);
8785
8786 if (p->sched_class != &fair_sched_class)
8787 return 0;
8788
8789 if (unlikely(task_has_idle_policy(p)))
8790 return 0;
8791
8792 /* SMT siblings share cache */
8793 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8794 return 0;
8795
8796 /*
8797 * Buddy candidates are cache hot:
8798 */
8799 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8800 (&p->se == cfs_rq_of(&p->se)->next))
8801 return 1;
8802
8803 if (sysctl_sched_migration_cost == -1)
8804 return 1;
8805
8806 /*
8807 * Don't migrate task if the task's cookie does not match
8808 * with the destination CPU's core cookie.
8809 */
8810 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8811 return 1;
8812
8813 if (sysctl_sched_migration_cost == 0)
8814 return 0;
8815
8816 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8817
8818 return delta < (s64)sysctl_sched_migration_cost;
8819 }
8820
8821 #ifdef CONFIG_NUMA_BALANCING
8822 /*
8823 * Returns 1, if task migration degrades locality
8824 * Returns 0, if task migration improves locality i.e migration preferred.
8825 * Returns -1, if task migration is not affected by locality.
8826 */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8827 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8828 {
8829 struct numa_group *numa_group = rcu_dereference(p->numa_group);
8830 unsigned long src_weight, dst_weight;
8831 int src_nid, dst_nid, dist;
8832
8833 if (!static_branch_likely(&sched_numa_balancing))
8834 return -1;
8835
8836 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8837 return -1;
8838
8839 src_nid = cpu_to_node(env->src_cpu);
8840 dst_nid = cpu_to_node(env->dst_cpu);
8841
8842 if (src_nid == dst_nid)
8843 return -1;
8844
8845 /* Migrating away from the preferred node is always bad. */
8846 if (src_nid == p->numa_preferred_nid) {
8847 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8848 return 1;
8849 else
8850 return -1;
8851 }
8852
8853 /* Encourage migration to the preferred node. */
8854 if (dst_nid == p->numa_preferred_nid)
8855 return 0;
8856
8857 /* Leaving a core idle is often worse than degrading locality. */
8858 if (env->idle == CPU_IDLE)
8859 return -1;
8860
8861 dist = node_distance(src_nid, dst_nid);
8862 if (numa_group) {
8863 src_weight = group_weight(p, src_nid, dist);
8864 dst_weight = group_weight(p, dst_nid, dist);
8865 } else {
8866 src_weight = task_weight(p, src_nid, dist);
8867 dst_weight = task_weight(p, dst_nid, dist);
8868 }
8869
8870 return dst_weight < src_weight;
8871 }
8872
8873 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8874 static inline int migrate_degrades_locality(struct task_struct *p,
8875 struct lb_env *env)
8876 {
8877 return -1;
8878 }
8879 #endif
8880
8881 /*
8882 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8883 */
8884 static
can_migrate_task(struct task_struct * p,struct lb_env * env)8885 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8886 {
8887 int tsk_cache_hot;
8888
8889 lockdep_assert_rq_held(env->src_rq);
8890
8891 /*
8892 * We do not migrate tasks that are:
8893 * 1) throttled_lb_pair, or
8894 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8895 * 3) running (obviously), or
8896 * 4) are cache-hot on their current CPU.
8897 */
8898 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8899 return 0;
8900
8901 /* Disregard pcpu kthreads; they are where they need to be. */
8902 if (kthread_is_per_cpu(p))
8903 return 0;
8904
8905 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8906 int cpu;
8907
8908 schedstat_inc(p->stats.nr_failed_migrations_affine);
8909
8910 env->flags |= LBF_SOME_PINNED;
8911
8912 /*
8913 * Remember if this task can be migrated to any other CPU in
8914 * our sched_group. We may want to revisit it if we couldn't
8915 * meet load balance goals by pulling other tasks on src_cpu.
8916 *
8917 * Avoid computing new_dst_cpu
8918 * - for NEWLY_IDLE
8919 * - if we have already computed one in current iteration
8920 * - if it's an active balance
8921 */
8922 if (env->idle == CPU_NEWLY_IDLE ||
8923 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8924 return 0;
8925
8926 /* Prevent to re-select dst_cpu via env's CPUs: */
8927 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8928 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8929 env->flags |= LBF_DST_PINNED;
8930 env->new_dst_cpu = cpu;
8931 break;
8932 }
8933 }
8934
8935 return 0;
8936 }
8937
8938 /* Record that we found at least one task that could run on dst_cpu */
8939 env->flags &= ~LBF_ALL_PINNED;
8940
8941 if (task_on_cpu(env->src_rq, p)) {
8942 schedstat_inc(p->stats.nr_failed_migrations_running);
8943 return 0;
8944 }
8945
8946 /*
8947 * Aggressive migration if:
8948 * 1) active balance
8949 * 2) destination numa is preferred
8950 * 3) task is cache cold, or
8951 * 4) too many balance attempts have failed.
8952 */
8953 if (env->flags & LBF_ACTIVE_LB)
8954 return 1;
8955
8956 tsk_cache_hot = migrate_degrades_locality(p, env);
8957 if (tsk_cache_hot == -1)
8958 tsk_cache_hot = task_hot(p, env);
8959
8960 if (tsk_cache_hot <= 0 ||
8961 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8962 if (tsk_cache_hot == 1) {
8963 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8964 schedstat_inc(p->stats.nr_forced_migrations);
8965 }
8966 return 1;
8967 }
8968
8969 schedstat_inc(p->stats.nr_failed_migrations_hot);
8970 return 0;
8971 }
8972
8973 /*
8974 * detach_task() -- detach the task for the migration specified in env
8975 */
detach_task(struct task_struct * p,struct lb_env * env)8976 static void detach_task(struct task_struct *p, struct lb_env *env)
8977 {
8978 lockdep_assert_rq_held(env->src_rq);
8979
8980 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
8981 set_task_cpu(p, env->dst_cpu);
8982 }
8983
8984 /*
8985 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
8986 * part of active balancing operations within "domain".
8987 *
8988 * Returns a task if successful and NULL otherwise.
8989 */
detach_one_task(struct lb_env * env)8990 static struct task_struct *detach_one_task(struct lb_env *env)
8991 {
8992 struct task_struct *p;
8993
8994 lockdep_assert_rq_held(env->src_rq);
8995
8996 list_for_each_entry_reverse(p,
8997 &env->src_rq->cfs_tasks, se.group_node) {
8998 if (!can_migrate_task(p, env))
8999 continue;
9000
9001 detach_task(p, env);
9002
9003 /*
9004 * Right now, this is only the second place where
9005 * lb_gained[env->idle] is updated (other is detach_tasks)
9006 * so we can safely collect stats here rather than
9007 * inside detach_tasks().
9008 */
9009 schedstat_inc(env->sd->lb_gained[env->idle]);
9010 return p;
9011 }
9012 return NULL;
9013 }
9014
9015 /*
9016 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9017 * busiest_rq, as part of a balancing operation within domain "sd".
9018 *
9019 * Returns number of detached tasks if successful and 0 otherwise.
9020 */
detach_tasks(struct lb_env * env)9021 static int detach_tasks(struct lb_env *env)
9022 {
9023 struct list_head *tasks = &env->src_rq->cfs_tasks;
9024 unsigned long util, load;
9025 struct task_struct *p;
9026 int detached = 0;
9027
9028 lockdep_assert_rq_held(env->src_rq);
9029
9030 /*
9031 * Source run queue has been emptied by another CPU, clear
9032 * LBF_ALL_PINNED flag as we will not test any task.
9033 */
9034 if (env->src_rq->nr_running <= 1) {
9035 env->flags &= ~LBF_ALL_PINNED;
9036 return 0;
9037 }
9038
9039 if (env->imbalance <= 0)
9040 return 0;
9041
9042 while (!list_empty(tasks)) {
9043 /*
9044 * We don't want to steal all, otherwise we may be treated likewise,
9045 * which could at worst lead to a livelock crash.
9046 */
9047 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
9048 break;
9049
9050 env->loop++;
9051 /* We've more or less seen every task there is, call it quits */
9052 if (env->loop > env->loop_max)
9053 break;
9054
9055 /* take a breather every nr_migrate tasks */
9056 if (env->loop > env->loop_break) {
9057 env->loop_break += SCHED_NR_MIGRATE_BREAK;
9058 env->flags |= LBF_NEED_BREAK;
9059 break;
9060 }
9061
9062 p = list_last_entry(tasks, struct task_struct, se.group_node);
9063
9064 if (!can_migrate_task(p, env))
9065 goto next;
9066
9067 switch (env->migration_type) {
9068 case migrate_load:
9069 /*
9070 * Depending of the number of CPUs and tasks and the
9071 * cgroup hierarchy, task_h_load() can return a null
9072 * value. Make sure that env->imbalance decreases
9073 * otherwise detach_tasks() will stop only after
9074 * detaching up to loop_max tasks.
9075 */
9076 load = max_t(unsigned long, task_h_load(p), 1);
9077
9078 if (sched_feat(LB_MIN) &&
9079 load < 16 && !env->sd->nr_balance_failed)
9080 goto next;
9081
9082 /*
9083 * Make sure that we don't migrate too much load.
9084 * Nevertheless, let relax the constraint if
9085 * scheduler fails to find a good waiting task to
9086 * migrate.
9087 */
9088 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9089 goto next;
9090
9091 env->imbalance -= load;
9092 break;
9093
9094 case migrate_util:
9095 util = task_util_est(p);
9096
9097 if (util > env->imbalance)
9098 goto next;
9099
9100 env->imbalance -= util;
9101 break;
9102
9103 case migrate_task:
9104 env->imbalance--;
9105 break;
9106
9107 case migrate_misfit:
9108 /* This is not a misfit task */
9109 if (task_fits_cpu(p, env->src_cpu))
9110 goto next;
9111
9112 env->imbalance = 0;
9113 break;
9114 }
9115
9116 detach_task(p, env);
9117 list_add(&p->se.group_node, &env->tasks);
9118
9119 detached++;
9120
9121 #ifdef CONFIG_PREEMPTION
9122 /*
9123 * NEWIDLE balancing is a source of latency, so preemptible
9124 * kernels will stop after the first task is detached to minimize
9125 * the critical section.
9126 */
9127 if (env->idle == CPU_NEWLY_IDLE)
9128 break;
9129 #endif
9130
9131 /*
9132 * We only want to steal up to the prescribed amount of
9133 * load/util/tasks.
9134 */
9135 if (env->imbalance <= 0)
9136 break;
9137
9138 continue;
9139 next:
9140 list_move(&p->se.group_node, tasks);
9141 }
9142
9143 /*
9144 * Right now, this is one of only two places we collect this stat
9145 * so we can safely collect detach_one_task() stats here rather
9146 * than inside detach_one_task().
9147 */
9148 schedstat_add(env->sd->lb_gained[env->idle], detached);
9149
9150 return detached;
9151 }
9152
9153 /*
9154 * attach_task() -- attach the task detached by detach_task() to its new rq.
9155 */
attach_task(struct rq * rq,struct task_struct * p)9156 static void attach_task(struct rq *rq, struct task_struct *p)
9157 {
9158 lockdep_assert_rq_held(rq);
9159
9160 WARN_ON_ONCE(task_rq(p) != rq);
9161 activate_task(rq, p, ENQUEUE_NOCLOCK);
9162 check_preempt_curr(rq, p, 0);
9163 }
9164
9165 /*
9166 * attach_one_task() -- attaches the task returned from detach_one_task() to
9167 * its new rq.
9168 */
attach_one_task(struct rq * rq,struct task_struct * p)9169 static void attach_one_task(struct rq *rq, struct task_struct *p)
9170 {
9171 struct rq_flags rf;
9172
9173 rq_lock(rq, &rf);
9174 update_rq_clock(rq);
9175 attach_task(rq, p);
9176 rq_unlock(rq, &rf);
9177 }
9178
9179 /*
9180 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9181 * new rq.
9182 */
attach_tasks(struct lb_env * env)9183 static void attach_tasks(struct lb_env *env)
9184 {
9185 struct list_head *tasks = &env->tasks;
9186 struct task_struct *p;
9187 struct rq_flags rf;
9188
9189 rq_lock(env->dst_rq, &rf);
9190 update_rq_clock(env->dst_rq);
9191
9192 while (!list_empty(tasks)) {
9193 p = list_first_entry(tasks, struct task_struct, se.group_node);
9194 list_del_init(&p->se.group_node);
9195
9196 attach_task(env->dst_rq, p);
9197 }
9198
9199 rq_unlock(env->dst_rq, &rf);
9200 }
9201
9202 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9203 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9204 {
9205 if (cfs_rq->avg.load_avg)
9206 return true;
9207
9208 if (cfs_rq->avg.util_avg)
9209 return true;
9210
9211 return false;
9212 }
9213
others_have_blocked(struct rq * rq)9214 static inline bool others_have_blocked(struct rq *rq)
9215 {
9216 if (READ_ONCE(rq->avg_rt.util_avg))
9217 return true;
9218
9219 if (READ_ONCE(rq->avg_dl.util_avg))
9220 return true;
9221
9222 if (thermal_load_avg(rq))
9223 return true;
9224
9225 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9226 if (READ_ONCE(rq->avg_irq.util_avg))
9227 return true;
9228 #endif
9229
9230 return false;
9231 }
9232
update_blocked_load_tick(struct rq * rq)9233 static inline void update_blocked_load_tick(struct rq *rq)
9234 {
9235 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9236 }
9237
update_blocked_load_status(struct rq * rq,bool has_blocked)9238 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9239 {
9240 if (!has_blocked)
9241 rq->has_blocked_load = 0;
9242 }
9243 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9244 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)9245 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)9246 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)9247 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9248 #endif
9249
__update_blocked_others(struct rq * rq,bool * done)9250 static bool __update_blocked_others(struct rq *rq, bool *done)
9251 {
9252 const struct sched_class *curr_class;
9253 u64 now = rq_clock_pelt(rq);
9254 unsigned long thermal_pressure;
9255 bool decayed;
9256
9257 /*
9258 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9259 * DL and IRQ signals have been updated before updating CFS.
9260 */
9261 curr_class = rq->curr->sched_class;
9262
9263 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
9264
9265 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9266 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
9267 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
9268 update_irq_load_avg(rq, 0);
9269
9270 if (others_have_blocked(rq))
9271 *done = false;
9272
9273 return decayed;
9274 }
9275
9276 #ifdef CONFIG_FAIR_GROUP_SCHED
9277
__update_blocked_fair(struct rq * rq,bool * done)9278 static bool __update_blocked_fair(struct rq *rq, bool *done)
9279 {
9280 struct cfs_rq *cfs_rq, *pos;
9281 bool decayed = false;
9282 int cpu = cpu_of(rq);
9283
9284 /*
9285 * Iterates the task_group tree in a bottom up fashion, see
9286 * list_add_leaf_cfs_rq() for details.
9287 */
9288 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9289 struct sched_entity *se;
9290
9291 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9292 update_tg_load_avg(cfs_rq);
9293
9294 if (cfs_rq->nr_running == 0)
9295 update_idle_cfs_rq_clock_pelt(cfs_rq);
9296
9297 if (cfs_rq == &rq->cfs)
9298 decayed = true;
9299 }
9300
9301 /* Propagate pending load changes to the parent, if any: */
9302 se = cfs_rq->tg->se[cpu];
9303 if (se && !skip_blocked_update(se))
9304 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9305
9306 /*
9307 * There can be a lot of idle CPU cgroups. Don't let fully
9308 * decayed cfs_rqs linger on the list.
9309 */
9310 if (cfs_rq_is_decayed(cfs_rq))
9311 list_del_leaf_cfs_rq(cfs_rq);
9312
9313 /* Don't need periodic decay once load/util_avg are null */
9314 if (cfs_rq_has_blocked(cfs_rq))
9315 *done = false;
9316 }
9317
9318 return decayed;
9319 }
9320
9321 /*
9322 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9323 * This needs to be done in a top-down fashion because the load of a child
9324 * group is a fraction of its parents load.
9325 */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)9326 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9327 {
9328 struct rq *rq = rq_of(cfs_rq);
9329 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9330 unsigned long now = jiffies;
9331 unsigned long load;
9332
9333 if (cfs_rq->last_h_load_update == now)
9334 return;
9335
9336 WRITE_ONCE(cfs_rq->h_load_next, NULL);
9337 for_each_sched_entity(se) {
9338 cfs_rq = cfs_rq_of(se);
9339 WRITE_ONCE(cfs_rq->h_load_next, se);
9340 if (cfs_rq->last_h_load_update == now)
9341 break;
9342 }
9343
9344 if (!se) {
9345 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9346 cfs_rq->last_h_load_update = now;
9347 }
9348
9349 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9350 load = cfs_rq->h_load;
9351 load = div64_ul(load * se->avg.load_avg,
9352 cfs_rq_load_avg(cfs_rq) + 1);
9353 cfs_rq = group_cfs_rq(se);
9354 cfs_rq->h_load = load;
9355 cfs_rq->last_h_load_update = now;
9356 }
9357 }
9358
task_h_load(struct task_struct * p)9359 static unsigned long task_h_load(struct task_struct *p)
9360 {
9361 struct cfs_rq *cfs_rq = task_cfs_rq(p);
9362
9363 update_cfs_rq_h_load(cfs_rq);
9364 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9365 cfs_rq_load_avg(cfs_rq) + 1);
9366 }
9367 #else
__update_blocked_fair(struct rq * rq,bool * done)9368 static bool __update_blocked_fair(struct rq *rq, bool *done)
9369 {
9370 struct cfs_rq *cfs_rq = &rq->cfs;
9371 bool decayed;
9372
9373 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9374 if (cfs_rq_has_blocked(cfs_rq))
9375 *done = false;
9376
9377 return decayed;
9378 }
9379
task_h_load(struct task_struct * p)9380 static unsigned long task_h_load(struct task_struct *p)
9381 {
9382 return p->se.avg.load_avg;
9383 }
9384 #endif
9385
update_blocked_averages(int cpu)9386 static void update_blocked_averages(int cpu)
9387 {
9388 bool decayed = false, done = true;
9389 struct rq *rq = cpu_rq(cpu);
9390 struct rq_flags rf;
9391
9392 rq_lock_irqsave(rq, &rf);
9393 update_blocked_load_tick(rq);
9394 update_rq_clock(rq);
9395
9396 decayed |= __update_blocked_others(rq, &done);
9397 decayed |= __update_blocked_fair(rq, &done);
9398
9399 update_blocked_load_status(rq, !done);
9400 if (decayed)
9401 cpufreq_update_util(rq, 0);
9402 rq_unlock_irqrestore(rq, &rf);
9403 }
9404
9405 /********** Helpers for find_busiest_group ************************/
9406
9407 /*
9408 * sg_lb_stats - stats of a sched_group required for load_balancing
9409 */
9410 struct sg_lb_stats {
9411 unsigned long avg_load; /*Avg load across the CPUs of the group */
9412 unsigned long group_load; /* Total load over the CPUs of the group */
9413 unsigned long group_capacity;
9414 unsigned long group_util; /* Total utilization over the CPUs of the group */
9415 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9416 unsigned int sum_nr_running; /* Nr of tasks running in the group */
9417 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9418 unsigned int idle_cpus;
9419 unsigned int group_weight;
9420 enum group_type group_type;
9421 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9422 unsigned int group_smt_balance; /* Task on busy SMT be moved */
9423 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9424 #ifdef CONFIG_NUMA_BALANCING
9425 unsigned int nr_numa_running;
9426 unsigned int nr_preferred_running;
9427 #endif
9428 };
9429
9430 /*
9431 * sd_lb_stats - Structure to store the statistics of a sched_domain
9432 * during load balancing.
9433 */
9434 struct sd_lb_stats {
9435 struct sched_group *busiest; /* Busiest group in this sd */
9436 struct sched_group *local; /* Local group in this sd */
9437 unsigned long total_load; /* Total load of all groups in sd */
9438 unsigned long total_capacity; /* Total capacity of all groups in sd */
9439 unsigned long avg_load; /* Average load across all groups in sd */
9440 unsigned int prefer_sibling; /* tasks should go to sibling first */
9441
9442 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
9443 struct sg_lb_stats local_stat; /* Statistics of the local group */
9444 };
9445
init_sd_lb_stats(struct sd_lb_stats * sds)9446 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9447 {
9448 /*
9449 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9450 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9451 * We must however set busiest_stat::group_type and
9452 * busiest_stat::idle_cpus to the worst busiest group because
9453 * update_sd_pick_busiest() reads these before assignment.
9454 */
9455 *sds = (struct sd_lb_stats){
9456 .busiest = NULL,
9457 .local = NULL,
9458 .total_load = 0UL,
9459 .total_capacity = 0UL,
9460 .busiest_stat = {
9461 .idle_cpus = UINT_MAX,
9462 .group_type = group_has_spare,
9463 },
9464 };
9465 }
9466
scale_rt_capacity(int cpu)9467 static unsigned long scale_rt_capacity(int cpu)
9468 {
9469 struct rq *rq = cpu_rq(cpu);
9470 unsigned long max = arch_scale_cpu_capacity(cpu);
9471 unsigned long used, free;
9472 unsigned long irq;
9473
9474 irq = cpu_util_irq(rq);
9475
9476 if (unlikely(irq >= max))
9477 return 1;
9478
9479 /*
9480 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9481 * (running and not running) with weights 0 and 1024 respectively.
9482 * avg_thermal.load_avg tracks thermal pressure and the weighted
9483 * average uses the actual delta max capacity(load).
9484 */
9485 used = READ_ONCE(rq->avg_rt.util_avg);
9486 used += READ_ONCE(rq->avg_dl.util_avg);
9487 used += thermal_load_avg(rq);
9488
9489 if (unlikely(used >= max))
9490 return 1;
9491
9492 free = max - used;
9493
9494 return scale_irq_capacity(free, irq, max);
9495 }
9496
update_cpu_capacity(struct sched_domain * sd,int cpu)9497 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9498 {
9499 unsigned long capacity = scale_rt_capacity(cpu);
9500 struct sched_group *sdg = sd->groups;
9501
9502 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
9503
9504 if (!capacity)
9505 capacity = 1;
9506
9507 cpu_rq(cpu)->cpu_capacity = capacity;
9508 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9509
9510 sdg->sgc->capacity = capacity;
9511 sdg->sgc->min_capacity = capacity;
9512 sdg->sgc->max_capacity = capacity;
9513 }
9514
update_group_capacity(struct sched_domain * sd,int cpu)9515 void update_group_capacity(struct sched_domain *sd, int cpu)
9516 {
9517 struct sched_domain *child = sd->child;
9518 struct sched_group *group, *sdg = sd->groups;
9519 unsigned long capacity, min_capacity, max_capacity;
9520 unsigned long interval;
9521
9522 interval = msecs_to_jiffies(sd->balance_interval);
9523 interval = clamp(interval, 1UL, max_load_balance_interval);
9524 sdg->sgc->next_update = jiffies + interval;
9525
9526 if (!child) {
9527 update_cpu_capacity(sd, cpu);
9528 return;
9529 }
9530
9531 capacity = 0;
9532 min_capacity = ULONG_MAX;
9533 max_capacity = 0;
9534
9535 if (child->flags & SD_OVERLAP) {
9536 /*
9537 * SD_OVERLAP domains cannot assume that child groups
9538 * span the current group.
9539 */
9540
9541 for_each_cpu(cpu, sched_group_span(sdg)) {
9542 unsigned long cpu_cap = capacity_of(cpu);
9543
9544 capacity += cpu_cap;
9545 min_capacity = min(cpu_cap, min_capacity);
9546 max_capacity = max(cpu_cap, max_capacity);
9547 }
9548 } else {
9549 /*
9550 * !SD_OVERLAP domains can assume that child groups
9551 * span the current group.
9552 */
9553
9554 group = child->groups;
9555 do {
9556 struct sched_group_capacity *sgc = group->sgc;
9557
9558 capacity += sgc->capacity;
9559 min_capacity = min(sgc->min_capacity, min_capacity);
9560 max_capacity = max(sgc->max_capacity, max_capacity);
9561 group = group->next;
9562 } while (group != child->groups);
9563 }
9564
9565 sdg->sgc->capacity = capacity;
9566 sdg->sgc->min_capacity = min_capacity;
9567 sdg->sgc->max_capacity = max_capacity;
9568 }
9569
9570 /*
9571 * Check whether the capacity of the rq has been noticeably reduced by side
9572 * activity. The imbalance_pct is used for the threshold.
9573 * Return true is the capacity is reduced
9574 */
9575 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)9576 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9577 {
9578 return ((rq->cpu_capacity * sd->imbalance_pct) <
9579 (rq->cpu_capacity_orig * 100));
9580 }
9581
9582 /*
9583 * Check whether a rq has a misfit task and if it looks like we can actually
9584 * help that task: we can migrate the task to a CPU of higher capacity, or
9585 * the task's current CPU is heavily pressured.
9586 */
check_misfit_status(struct rq * rq,struct sched_domain * sd)9587 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9588 {
9589 return rq->misfit_task_load &&
9590 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
9591 check_cpu_capacity(rq, sd));
9592 }
9593
9594 /*
9595 * Group imbalance indicates (and tries to solve) the problem where balancing
9596 * groups is inadequate due to ->cpus_ptr constraints.
9597 *
9598 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9599 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9600 * Something like:
9601 *
9602 * { 0 1 2 3 } { 4 5 6 7 }
9603 * * * * *
9604 *
9605 * If we were to balance group-wise we'd place two tasks in the first group and
9606 * two tasks in the second group. Clearly this is undesired as it will overload
9607 * cpu 3 and leave one of the CPUs in the second group unused.
9608 *
9609 * The current solution to this issue is detecting the skew in the first group
9610 * by noticing the lower domain failed to reach balance and had difficulty
9611 * moving tasks due to affinity constraints.
9612 *
9613 * When this is so detected; this group becomes a candidate for busiest; see
9614 * update_sd_pick_busiest(). And calculate_imbalance() and
9615 * find_busiest_group() avoid some of the usual balance conditions to allow it
9616 * to create an effective group imbalance.
9617 *
9618 * This is a somewhat tricky proposition since the next run might not find the
9619 * group imbalance and decide the groups need to be balanced again. A most
9620 * subtle and fragile situation.
9621 */
9622
sg_imbalanced(struct sched_group * group)9623 static inline int sg_imbalanced(struct sched_group *group)
9624 {
9625 return group->sgc->imbalance;
9626 }
9627
9628 /*
9629 * group_has_capacity returns true if the group has spare capacity that could
9630 * be used by some tasks.
9631 * We consider that a group has spare capacity if the number of task is
9632 * smaller than the number of CPUs or if the utilization is lower than the
9633 * available capacity for CFS tasks.
9634 * For the latter, we use a threshold to stabilize the state, to take into
9635 * account the variance of the tasks' load and to return true if the available
9636 * capacity in meaningful for the load balancer.
9637 * As an example, an available capacity of 1% can appear but it doesn't make
9638 * any benefit for the load balance.
9639 */
9640 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)9641 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9642 {
9643 if (sgs->sum_nr_running < sgs->group_weight)
9644 return true;
9645
9646 if ((sgs->group_capacity * imbalance_pct) <
9647 (sgs->group_runnable * 100))
9648 return false;
9649
9650 if ((sgs->group_capacity * 100) >
9651 (sgs->group_util * imbalance_pct))
9652 return true;
9653
9654 return false;
9655 }
9656
9657 /*
9658 * group_is_overloaded returns true if the group has more tasks than it can
9659 * handle.
9660 * group_is_overloaded is not equals to !group_has_capacity because a group
9661 * with the exact right number of tasks, has no more spare capacity but is not
9662 * overloaded so both group_has_capacity and group_is_overloaded return
9663 * false.
9664 */
9665 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)9666 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9667 {
9668 if (sgs->sum_nr_running <= sgs->group_weight)
9669 return false;
9670
9671 if ((sgs->group_capacity * 100) <
9672 (sgs->group_util * imbalance_pct))
9673 return true;
9674
9675 if ((sgs->group_capacity * imbalance_pct) <
9676 (sgs->group_runnable * 100))
9677 return true;
9678
9679 return false;
9680 }
9681
9682 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)9683 group_type group_classify(unsigned int imbalance_pct,
9684 struct sched_group *group,
9685 struct sg_lb_stats *sgs)
9686 {
9687 if (group_is_overloaded(imbalance_pct, sgs))
9688 return group_overloaded;
9689
9690 if (sg_imbalanced(group))
9691 return group_imbalanced;
9692
9693 if (sgs->group_asym_packing)
9694 return group_asym_packing;
9695
9696 if (sgs->group_smt_balance)
9697 return group_smt_balance;
9698
9699 if (sgs->group_misfit_task_load)
9700 return group_misfit_task;
9701
9702 if (!group_has_capacity(imbalance_pct, sgs))
9703 return group_fully_busy;
9704
9705 return group_has_spare;
9706 }
9707
9708 /**
9709 * sched_use_asym_prio - Check whether asym_packing priority must be used
9710 * @sd: The scheduling domain of the load balancing
9711 * @cpu: A CPU
9712 *
9713 * Always use CPU priority when balancing load between SMT siblings. When
9714 * balancing load between cores, it is not sufficient that @cpu is idle. Only
9715 * use CPU priority if the whole core is idle.
9716 *
9717 * Returns: True if the priority of @cpu must be followed. False otherwise.
9718 */
sched_use_asym_prio(struct sched_domain * sd,int cpu)9719 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9720 {
9721 if (!sched_smt_active())
9722 return true;
9723
9724 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9725 }
9726
9727 /**
9728 * sched_asym - Check if the destination CPU can do asym_packing load balance
9729 * @env: The load balancing environment
9730 * @sds: Load-balancing data with statistics of the local group
9731 * @sgs: Load-balancing statistics of the candidate busiest group
9732 * @group: The candidate busiest group
9733 *
9734 * @env::dst_cpu can do asym_packing if it has higher priority than the
9735 * preferred CPU of @group.
9736 *
9737 * SMT is a special case. If we are balancing load between cores, @env::dst_cpu
9738 * can do asym_packing balance only if all its SMT siblings are idle. Also, it
9739 * can only do it if @group is an SMT group and has exactly on busy CPU. Larger
9740 * imbalances in the number of CPUS are dealt with in find_busiest_group().
9741 *
9742 * If we are balancing load within an SMT core, or at DIE domain level, always
9743 * proceed.
9744 *
9745 * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9746 * otherwise.
9747 */
9748 static inline bool
sched_asym(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * sgs,struct sched_group * group)9749 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs,
9750 struct sched_group *group)
9751 {
9752 /* Ensure that the whole local core is idle, if applicable. */
9753 if (!sched_use_asym_prio(env->sd, env->dst_cpu))
9754 return false;
9755
9756 /*
9757 * CPU priorities does not make sense for SMT cores with more than one
9758 * busy sibling.
9759 */
9760 if (group->flags & SD_SHARE_CPUCAPACITY) {
9761 if (sgs->group_weight - sgs->idle_cpus != 1)
9762 return false;
9763 }
9764
9765 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
9766 }
9767
9768 /* One group has more than one SMT CPU while the other group does not */
smt_vs_nonsmt_groups(struct sched_group * sg1,struct sched_group * sg2)9769 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
9770 struct sched_group *sg2)
9771 {
9772 if (!sg1 || !sg2)
9773 return false;
9774
9775 return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
9776 (sg2->flags & SD_SHARE_CPUCAPACITY);
9777 }
9778
smt_balance(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)9779 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
9780 struct sched_group *group)
9781 {
9782 if (env->idle == CPU_NOT_IDLE)
9783 return false;
9784
9785 /*
9786 * For SMT source group, it is better to move a task
9787 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
9788 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
9789 * will not be on.
9790 */
9791 if (group->flags & SD_SHARE_CPUCAPACITY &&
9792 sgs->sum_h_nr_running > 1)
9793 return true;
9794
9795 return false;
9796 }
9797
sibling_imbalance(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * busiest,struct sg_lb_stats * local)9798 static inline long sibling_imbalance(struct lb_env *env,
9799 struct sd_lb_stats *sds,
9800 struct sg_lb_stats *busiest,
9801 struct sg_lb_stats *local)
9802 {
9803 int ncores_busiest, ncores_local;
9804 long imbalance;
9805
9806 if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
9807 return 0;
9808
9809 ncores_busiest = sds->busiest->cores;
9810 ncores_local = sds->local->cores;
9811
9812 if (ncores_busiest == ncores_local) {
9813 imbalance = busiest->sum_nr_running;
9814 lsub_positive(&imbalance, local->sum_nr_running);
9815 return imbalance;
9816 }
9817
9818 /* Balance such that nr_running/ncores ratio are same on both groups */
9819 imbalance = ncores_local * busiest->sum_nr_running;
9820 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
9821 /* Normalize imbalance and do rounding on normalization */
9822 imbalance = 2 * imbalance + ncores_local + ncores_busiest;
9823 imbalance /= ncores_local + ncores_busiest;
9824
9825 /* Take advantage of resource in an empty sched group */
9826 if (imbalance <= 1 && local->sum_nr_running == 0 &&
9827 busiest->sum_nr_running > 1)
9828 imbalance = 2;
9829
9830 return imbalance;
9831 }
9832
9833 static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)9834 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9835 {
9836 /*
9837 * When there is more than 1 task, the group_overloaded case already
9838 * takes care of cpu with reduced capacity
9839 */
9840 if (rq->cfs.h_nr_running != 1)
9841 return false;
9842
9843 return check_cpu_capacity(rq, sd);
9844 }
9845
9846 /**
9847 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9848 * @env: The load balancing environment.
9849 * @sds: Load-balancing data with statistics of the local group.
9850 * @group: sched_group whose statistics are to be updated.
9851 * @sgs: variable to hold the statistics for this group.
9852 * @sg_status: Holds flag indicating the status of the sched_group
9853 */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,int * sg_status)9854 static inline void update_sg_lb_stats(struct lb_env *env,
9855 struct sd_lb_stats *sds,
9856 struct sched_group *group,
9857 struct sg_lb_stats *sgs,
9858 int *sg_status)
9859 {
9860 int i, nr_running, local_group;
9861
9862 memset(sgs, 0, sizeof(*sgs));
9863
9864 local_group = group == sds->local;
9865
9866 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9867 struct rq *rq = cpu_rq(i);
9868 unsigned long load = cpu_load(rq);
9869
9870 sgs->group_load += load;
9871 sgs->group_util += cpu_util_cfs(i);
9872 sgs->group_runnable += cpu_runnable(rq);
9873 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9874
9875 nr_running = rq->nr_running;
9876 sgs->sum_nr_running += nr_running;
9877
9878 if (nr_running > 1)
9879 *sg_status |= SG_OVERLOAD;
9880
9881 if (cpu_overutilized(i))
9882 *sg_status |= SG_OVERUTILIZED;
9883
9884 #ifdef CONFIG_NUMA_BALANCING
9885 sgs->nr_numa_running += rq->nr_numa_running;
9886 sgs->nr_preferred_running += rq->nr_preferred_running;
9887 #endif
9888 /*
9889 * No need to call idle_cpu() if nr_running is not 0
9890 */
9891 if (!nr_running && idle_cpu(i)) {
9892 sgs->idle_cpus++;
9893 /* Idle cpu can't have misfit task */
9894 continue;
9895 }
9896
9897 if (local_group)
9898 continue;
9899
9900 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9901 /* Check for a misfit task on the cpu */
9902 if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9903 sgs->group_misfit_task_load = rq->misfit_task_load;
9904 *sg_status |= SG_OVERLOAD;
9905 }
9906 } else if ((env->idle != CPU_NOT_IDLE) &&
9907 sched_reduced_capacity(rq, env->sd)) {
9908 /* Check for a task running on a CPU with reduced capacity */
9909 if (sgs->group_misfit_task_load < load)
9910 sgs->group_misfit_task_load = load;
9911 }
9912 }
9913
9914 sgs->group_capacity = group->sgc->capacity;
9915
9916 sgs->group_weight = group->group_weight;
9917
9918 /* Check if dst CPU is idle and preferred to this group */
9919 if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
9920 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9921 sched_asym(env, sds, sgs, group)) {
9922 sgs->group_asym_packing = 1;
9923 }
9924
9925 /* Check for loaded SMT group to be balanced to dst CPU */
9926 if (!local_group && smt_balance(env, sgs, group))
9927 sgs->group_smt_balance = 1;
9928
9929 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9930
9931 /* Computing avg_load makes sense only when group is overloaded */
9932 if (sgs->group_type == group_overloaded)
9933 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9934 sgs->group_capacity;
9935 }
9936
9937 /**
9938 * update_sd_pick_busiest - return 1 on busiest group
9939 * @env: The load balancing environment.
9940 * @sds: sched_domain statistics
9941 * @sg: sched_group candidate to be checked for being the busiest
9942 * @sgs: sched_group statistics
9943 *
9944 * Determine if @sg is a busier group than the previously selected
9945 * busiest group.
9946 *
9947 * Return: %true if @sg is a busier group than the previously selected
9948 * busiest group. %false otherwise.
9949 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)9950 static bool update_sd_pick_busiest(struct lb_env *env,
9951 struct sd_lb_stats *sds,
9952 struct sched_group *sg,
9953 struct sg_lb_stats *sgs)
9954 {
9955 struct sg_lb_stats *busiest = &sds->busiest_stat;
9956
9957 /* Make sure that there is at least one task to pull */
9958 if (!sgs->sum_h_nr_running)
9959 return false;
9960
9961 /*
9962 * Don't try to pull misfit tasks we can't help.
9963 * We can use max_capacity here as reduction in capacity on some
9964 * CPUs in the group should either be possible to resolve
9965 * internally or be covered by avg_load imbalance (eventually).
9966 */
9967 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9968 (sgs->group_type == group_misfit_task) &&
9969 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9970 sds->local_stat.group_type != group_has_spare))
9971 return false;
9972
9973 if (sgs->group_type > busiest->group_type)
9974 return true;
9975
9976 if (sgs->group_type < busiest->group_type)
9977 return false;
9978
9979 /*
9980 * The candidate and the current busiest group are the same type of
9981 * group. Let check which one is the busiest according to the type.
9982 */
9983
9984 switch (sgs->group_type) {
9985 case group_overloaded:
9986 /* Select the overloaded group with highest avg_load. */
9987 if (sgs->avg_load <= busiest->avg_load)
9988 return false;
9989 break;
9990
9991 case group_imbalanced:
9992 /*
9993 * Select the 1st imbalanced group as we don't have any way to
9994 * choose one more than another.
9995 */
9996 return false;
9997
9998 case group_asym_packing:
9999 /* Prefer to move from lowest priority CPU's work */
10000 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
10001 return false;
10002 break;
10003
10004 case group_misfit_task:
10005 /*
10006 * If we have more than one misfit sg go with the biggest
10007 * misfit.
10008 */
10009 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
10010 return false;
10011 break;
10012
10013 case group_smt_balance:
10014 /*
10015 * Check if we have spare CPUs on either SMT group to
10016 * choose has spare or fully busy handling.
10017 */
10018 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10019 goto has_spare;
10020
10021 fallthrough;
10022
10023 case group_fully_busy:
10024 /*
10025 * Select the fully busy group with highest avg_load. In
10026 * theory, there is no need to pull task from such kind of
10027 * group because tasks have all compute capacity that they need
10028 * but we can still improve the overall throughput by reducing
10029 * contention when accessing shared HW resources.
10030 *
10031 * XXX for now avg_load is not computed and always 0 so we
10032 * select the 1st one, except if @sg is composed of SMT
10033 * siblings.
10034 */
10035
10036 if (sgs->avg_load < busiest->avg_load)
10037 return false;
10038
10039 if (sgs->avg_load == busiest->avg_load) {
10040 /*
10041 * SMT sched groups need more help than non-SMT groups.
10042 * If @sg happens to also be SMT, either choice is good.
10043 */
10044 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10045 return false;
10046 }
10047
10048 break;
10049
10050 case group_has_spare:
10051 /*
10052 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10053 * as we do not want to pull task off SMT core with one task
10054 * and make the core idle.
10055 */
10056 if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10057 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10058 return false;
10059 else
10060 return true;
10061 }
10062 has_spare:
10063
10064 /*
10065 * Select not overloaded group with lowest number of idle cpus
10066 * and highest number of running tasks. We could also compare
10067 * the spare capacity which is more stable but it can end up
10068 * that the group has less spare capacity but finally more idle
10069 * CPUs which means less opportunity to pull tasks.
10070 */
10071 if (sgs->idle_cpus > busiest->idle_cpus)
10072 return false;
10073 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10074 (sgs->sum_nr_running <= busiest->sum_nr_running))
10075 return false;
10076
10077 break;
10078 }
10079
10080 /*
10081 * Candidate sg has no more than one task per CPU and has higher
10082 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10083 * throughput. Maximize throughput, power/energy consequences are not
10084 * considered.
10085 */
10086 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10087 (sgs->group_type <= group_fully_busy) &&
10088 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10089 return false;
10090
10091 return true;
10092 }
10093
10094 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)10095 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10096 {
10097 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10098 return regular;
10099 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10100 return remote;
10101 return all;
10102 }
10103
fbq_classify_rq(struct rq * rq)10104 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10105 {
10106 if (rq->nr_running > rq->nr_numa_running)
10107 return regular;
10108 if (rq->nr_running > rq->nr_preferred_running)
10109 return remote;
10110 return all;
10111 }
10112 #else
fbq_classify_group(struct sg_lb_stats * sgs)10113 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10114 {
10115 return all;
10116 }
10117
fbq_classify_rq(struct rq * rq)10118 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10119 {
10120 return regular;
10121 }
10122 #endif /* CONFIG_NUMA_BALANCING */
10123
10124
10125 struct sg_lb_stats;
10126
10127 /*
10128 * task_running_on_cpu - return 1 if @p is running on @cpu.
10129 */
10130
task_running_on_cpu(int cpu,struct task_struct * p)10131 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10132 {
10133 /* Task has no contribution or is new */
10134 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10135 return 0;
10136
10137 if (task_on_rq_queued(p))
10138 return 1;
10139
10140 return 0;
10141 }
10142
10143 /**
10144 * idle_cpu_without - would a given CPU be idle without p ?
10145 * @cpu: the processor on which idleness is tested.
10146 * @p: task which should be ignored.
10147 *
10148 * Return: 1 if the CPU would be idle. 0 otherwise.
10149 */
idle_cpu_without(int cpu,struct task_struct * p)10150 static int idle_cpu_without(int cpu, struct task_struct *p)
10151 {
10152 struct rq *rq = cpu_rq(cpu);
10153
10154 if (rq->curr != rq->idle && rq->curr != p)
10155 return 0;
10156
10157 /*
10158 * rq->nr_running can't be used but an updated version without the
10159 * impact of p on cpu must be used instead. The updated nr_running
10160 * be computed and tested before calling idle_cpu_without().
10161 */
10162
10163 #ifdef CONFIG_SMP
10164 if (rq->ttwu_pending)
10165 return 0;
10166 #endif
10167
10168 return 1;
10169 }
10170
10171 /*
10172 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10173 * @sd: The sched_domain level to look for idlest group.
10174 * @group: sched_group whose statistics are to be updated.
10175 * @sgs: variable to hold the statistics for this group.
10176 * @p: The task for which we look for the idlest group/CPU.
10177 */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)10178 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10179 struct sched_group *group,
10180 struct sg_lb_stats *sgs,
10181 struct task_struct *p)
10182 {
10183 int i, nr_running;
10184
10185 memset(sgs, 0, sizeof(*sgs));
10186
10187 /* Assume that task can't fit any CPU of the group */
10188 if (sd->flags & SD_ASYM_CPUCAPACITY)
10189 sgs->group_misfit_task_load = 1;
10190
10191 for_each_cpu(i, sched_group_span(group)) {
10192 struct rq *rq = cpu_rq(i);
10193 unsigned int local;
10194
10195 sgs->group_load += cpu_load_without(rq, p);
10196 sgs->group_util += cpu_util_without(i, p);
10197 sgs->group_runnable += cpu_runnable_without(rq, p);
10198 local = task_running_on_cpu(i, p);
10199 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10200
10201 nr_running = rq->nr_running - local;
10202 sgs->sum_nr_running += nr_running;
10203
10204 /*
10205 * No need to call idle_cpu_without() if nr_running is not 0
10206 */
10207 if (!nr_running && idle_cpu_without(i, p))
10208 sgs->idle_cpus++;
10209
10210 /* Check if task fits in the CPU */
10211 if (sd->flags & SD_ASYM_CPUCAPACITY &&
10212 sgs->group_misfit_task_load &&
10213 task_fits_cpu(p, i))
10214 sgs->group_misfit_task_load = 0;
10215
10216 }
10217
10218 sgs->group_capacity = group->sgc->capacity;
10219
10220 sgs->group_weight = group->group_weight;
10221
10222 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10223
10224 /*
10225 * Computing avg_load makes sense only when group is fully busy or
10226 * overloaded
10227 */
10228 if (sgs->group_type == group_fully_busy ||
10229 sgs->group_type == group_overloaded)
10230 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10231 sgs->group_capacity;
10232 }
10233
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)10234 static bool update_pick_idlest(struct sched_group *idlest,
10235 struct sg_lb_stats *idlest_sgs,
10236 struct sched_group *group,
10237 struct sg_lb_stats *sgs)
10238 {
10239 if (sgs->group_type < idlest_sgs->group_type)
10240 return true;
10241
10242 if (sgs->group_type > idlest_sgs->group_type)
10243 return false;
10244
10245 /*
10246 * The candidate and the current idlest group are the same type of
10247 * group. Let check which one is the idlest according to the type.
10248 */
10249
10250 switch (sgs->group_type) {
10251 case group_overloaded:
10252 case group_fully_busy:
10253 /* Select the group with lowest avg_load. */
10254 if (idlest_sgs->avg_load <= sgs->avg_load)
10255 return false;
10256 break;
10257
10258 case group_imbalanced:
10259 case group_asym_packing:
10260 case group_smt_balance:
10261 /* Those types are not used in the slow wakeup path */
10262 return false;
10263
10264 case group_misfit_task:
10265 /* Select group with the highest max capacity */
10266 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10267 return false;
10268 break;
10269
10270 case group_has_spare:
10271 /* Select group with most idle CPUs */
10272 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10273 return false;
10274
10275 /* Select group with lowest group_util */
10276 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10277 idlest_sgs->group_util <= sgs->group_util)
10278 return false;
10279
10280 break;
10281 }
10282
10283 return true;
10284 }
10285
10286 /*
10287 * find_idlest_group() finds and returns the least busy CPU group within the
10288 * domain.
10289 *
10290 * Assumes p is allowed on at least one CPU in sd.
10291 */
10292 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)10293 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10294 {
10295 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10296 struct sg_lb_stats local_sgs, tmp_sgs;
10297 struct sg_lb_stats *sgs;
10298 unsigned long imbalance;
10299 struct sg_lb_stats idlest_sgs = {
10300 .avg_load = UINT_MAX,
10301 .group_type = group_overloaded,
10302 };
10303
10304 do {
10305 int local_group;
10306
10307 /* Skip over this group if it has no CPUs allowed */
10308 if (!cpumask_intersects(sched_group_span(group),
10309 p->cpus_ptr))
10310 continue;
10311
10312 /* Skip over this group if no cookie matched */
10313 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10314 continue;
10315
10316 local_group = cpumask_test_cpu(this_cpu,
10317 sched_group_span(group));
10318
10319 if (local_group) {
10320 sgs = &local_sgs;
10321 local = group;
10322 } else {
10323 sgs = &tmp_sgs;
10324 }
10325
10326 update_sg_wakeup_stats(sd, group, sgs, p);
10327
10328 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10329 idlest = group;
10330 idlest_sgs = *sgs;
10331 }
10332
10333 } while (group = group->next, group != sd->groups);
10334
10335
10336 /* There is no idlest group to push tasks to */
10337 if (!idlest)
10338 return NULL;
10339
10340 /* The local group has been skipped because of CPU affinity */
10341 if (!local)
10342 return idlest;
10343
10344 /*
10345 * If the local group is idler than the selected idlest group
10346 * don't try and push the task.
10347 */
10348 if (local_sgs.group_type < idlest_sgs.group_type)
10349 return NULL;
10350
10351 /*
10352 * If the local group is busier than the selected idlest group
10353 * try and push the task.
10354 */
10355 if (local_sgs.group_type > idlest_sgs.group_type)
10356 return idlest;
10357
10358 switch (local_sgs.group_type) {
10359 case group_overloaded:
10360 case group_fully_busy:
10361
10362 /* Calculate allowed imbalance based on load */
10363 imbalance = scale_load_down(NICE_0_LOAD) *
10364 (sd->imbalance_pct-100) / 100;
10365
10366 /*
10367 * When comparing groups across NUMA domains, it's possible for
10368 * the local domain to be very lightly loaded relative to the
10369 * remote domains but "imbalance" skews the comparison making
10370 * remote CPUs look much more favourable. When considering
10371 * cross-domain, add imbalance to the load on the remote node
10372 * and consider staying local.
10373 */
10374
10375 if ((sd->flags & SD_NUMA) &&
10376 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10377 return NULL;
10378
10379 /*
10380 * If the local group is less loaded than the selected
10381 * idlest group don't try and push any tasks.
10382 */
10383 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10384 return NULL;
10385
10386 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10387 return NULL;
10388 break;
10389
10390 case group_imbalanced:
10391 case group_asym_packing:
10392 case group_smt_balance:
10393 /* Those type are not used in the slow wakeup path */
10394 return NULL;
10395
10396 case group_misfit_task:
10397 /* Select group with the highest max capacity */
10398 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10399 return NULL;
10400 break;
10401
10402 case group_has_spare:
10403 #ifdef CONFIG_NUMA
10404 if (sd->flags & SD_NUMA) {
10405 int imb_numa_nr = sd->imb_numa_nr;
10406 #ifdef CONFIG_NUMA_BALANCING
10407 int idlest_cpu;
10408 /*
10409 * If there is spare capacity at NUMA, try to select
10410 * the preferred node
10411 */
10412 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10413 return NULL;
10414
10415 idlest_cpu = cpumask_first(sched_group_span(idlest));
10416 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10417 return idlest;
10418 #endif /* CONFIG_NUMA_BALANCING */
10419 /*
10420 * Otherwise, keep the task close to the wakeup source
10421 * and improve locality if the number of running tasks
10422 * would remain below threshold where an imbalance is
10423 * allowed while accounting for the possibility the
10424 * task is pinned to a subset of CPUs. If there is a
10425 * real need of migration, periodic load balance will
10426 * take care of it.
10427 */
10428 if (p->nr_cpus_allowed != NR_CPUS) {
10429 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10430
10431 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10432 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10433 }
10434
10435 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10436 if (!adjust_numa_imbalance(imbalance,
10437 local_sgs.sum_nr_running + 1,
10438 imb_numa_nr)) {
10439 return NULL;
10440 }
10441 }
10442 #endif /* CONFIG_NUMA */
10443
10444 /*
10445 * Select group with highest number of idle CPUs. We could also
10446 * compare the utilization which is more stable but it can end
10447 * up that the group has less spare capacity but finally more
10448 * idle CPUs which means more opportunity to run task.
10449 */
10450 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10451 return NULL;
10452 break;
10453 }
10454
10455 return idlest;
10456 }
10457
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)10458 static void update_idle_cpu_scan(struct lb_env *env,
10459 unsigned long sum_util)
10460 {
10461 struct sched_domain_shared *sd_share;
10462 int llc_weight, pct;
10463 u64 x, y, tmp;
10464 /*
10465 * Update the number of CPUs to scan in LLC domain, which could
10466 * be used as a hint in select_idle_cpu(). The update of sd_share
10467 * could be expensive because it is within a shared cache line.
10468 * So the write of this hint only occurs during periodic load
10469 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10470 * can fire way more frequently than the former.
10471 */
10472 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10473 return;
10474
10475 llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10476 if (env->sd->span_weight != llc_weight)
10477 return;
10478
10479 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10480 if (!sd_share)
10481 return;
10482
10483 /*
10484 * The number of CPUs to search drops as sum_util increases, when
10485 * sum_util hits 85% or above, the scan stops.
10486 * The reason to choose 85% as the threshold is because this is the
10487 * imbalance_pct(117) when a LLC sched group is overloaded.
10488 *
10489 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
10490 * and y'= y / SCHED_CAPACITY_SCALE
10491 *
10492 * x is the ratio of sum_util compared to the CPU capacity:
10493 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10494 * y' is the ratio of CPUs to be scanned in the LLC domain,
10495 * and the number of CPUs to scan is calculated by:
10496 *
10497 * nr_scan = llc_weight * y' [2]
10498 *
10499 * When x hits the threshold of overloaded, AKA, when
10500 * x = 100 / pct, y drops to 0. According to [1],
10501 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10502 *
10503 * Scale x by SCHED_CAPACITY_SCALE:
10504 * x' = sum_util / llc_weight; [3]
10505 *
10506 * and finally [1] becomes:
10507 * y = SCHED_CAPACITY_SCALE -
10508 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
10509 *
10510 */
10511 /* equation [3] */
10512 x = sum_util;
10513 do_div(x, llc_weight);
10514
10515 /* equation [4] */
10516 pct = env->sd->imbalance_pct;
10517 tmp = x * x * pct * pct;
10518 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10519 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10520 y = SCHED_CAPACITY_SCALE - tmp;
10521
10522 /* equation [2] */
10523 y *= llc_weight;
10524 do_div(y, SCHED_CAPACITY_SCALE);
10525 if ((int)y != sd_share->nr_idle_scan)
10526 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10527 }
10528
10529 /**
10530 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10531 * @env: The load balancing environment.
10532 * @sds: variable to hold the statistics for this sched_domain.
10533 */
10534
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)10535 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10536 {
10537 struct sched_group *sg = env->sd->groups;
10538 struct sg_lb_stats *local = &sds->local_stat;
10539 struct sg_lb_stats tmp_sgs;
10540 unsigned long sum_util = 0;
10541 int sg_status = 0;
10542
10543 do {
10544 struct sg_lb_stats *sgs = &tmp_sgs;
10545 int local_group;
10546
10547 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10548 if (local_group) {
10549 sds->local = sg;
10550 sgs = local;
10551
10552 if (env->idle != CPU_NEWLY_IDLE ||
10553 time_after_eq(jiffies, sg->sgc->next_update))
10554 update_group_capacity(env->sd, env->dst_cpu);
10555 }
10556
10557 update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
10558
10559 if (local_group)
10560 goto next_group;
10561
10562
10563 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
10564 sds->busiest = sg;
10565 sds->busiest_stat = *sgs;
10566 }
10567
10568 next_group:
10569 /* Now, start updating sd_lb_stats */
10570 sds->total_load += sgs->group_load;
10571 sds->total_capacity += sgs->group_capacity;
10572
10573 sum_util += sgs->group_util;
10574 sg = sg->next;
10575 } while (sg != env->sd->groups);
10576
10577 /*
10578 * Indicate that the child domain of the busiest group prefers tasks
10579 * go to a child's sibling domains first. NB the flags of a sched group
10580 * are those of the child domain.
10581 */
10582 if (sds->busiest)
10583 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10584
10585
10586 if (env->sd->flags & SD_NUMA)
10587 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10588
10589 if (!env->sd->parent) {
10590 /* update overload indicator if we are at root domain */
10591 WRITE_ONCE(env->dst_rq->rd->overload, sg_status & SG_OVERLOAD);
10592
10593 /* Update over-utilization (tipping point, U >= 0) indicator */
10594 set_rd_overutilized_status(env->dst_rq->rd,
10595 sg_status & SG_OVERUTILIZED);
10596 } else if (sg_status & SG_OVERUTILIZED) {
10597 set_rd_overutilized_status(env->dst_rq->rd, SG_OVERUTILIZED);
10598 }
10599
10600 update_idle_cpu_scan(env, sum_util);
10601 }
10602
10603 /**
10604 * calculate_imbalance - Calculate the amount of imbalance present within the
10605 * groups of a given sched_domain during load balance.
10606 * @env: load balance environment
10607 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10608 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)10609 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10610 {
10611 struct sg_lb_stats *local, *busiest;
10612
10613 local = &sds->local_stat;
10614 busiest = &sds->busiest_stat;
10615
10616 if (busiest->group_type == group_misfit_task) {
10617 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10618 /* Set imbalance to allow misfit tasks to be balanced. */
10619 env->migration_type = migrate_misfit;
10620 env->imbalance = 1;
10621 } else {
10622 /*
10623 * Set load imbalance to allow moving task from cpu
10624 * with reduced capacity.
10625 */
10626 env->migration_type = migrate_load;
10627 env->imbalance = busiest->group_misfit_task_load;
10628 }
10629 return;
10630 }
10631
10632 if (busiest->group_type == group_asym_packing) {
10633 /*
10634 * In case of asym capacity, we will try to migrate all load to
10635 * the preferred CPU.
10636 */
10637 env->migration_type = migrate_task;
10638 env->imbalance = busiest->sum_h_nr_running;
10639 return;
10640 }
10641
10642 if (busiest->group_type == group_smt_balance) {
10643 /* Reduce number of tasks sharing CPU capacity */
10644 env->migration_type = migrate_task;
10645 env->imbalance = 1;
10646 return;
10647 }
10648
10649 if (busiest->group_type == group_imbalanced) {
10650 /*
10651 * In the group_imb case we cannot rely on group-wide averages
10652 * to ensure CPU-load equilibrium, try to move any task to fix
10653 * the imbalance. The next load balance will take care of
10654 * balancing back the system.
10655 */
10656 env->migration_type = migrate_task;
10657 env->imbalance = 1;
10658 return;
10659 }
10660
10661 /*
10662 * Try to use spare capacity of local group without overloading it or
10663 * emptying busiest.
10664 */
10665 if (local->group_type == group_has_spare) {
10666 if ((busiest->group_type > group_fully_busy) &&
10667 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
10668 /*
10669 * If busiest is overloaded, try to fill spare
10670 * capacity. This might end up creating spare capacity
10671 * in busiest or busiest still being overloaded but
10672 * there is no simple way to directly compute the
10673 * amount of load to migrate in order to balance the
10674 * system.
10675 */
10676 env->migration_type = migrate_util;
10677 env->imbalance = max(local->group_capacity, local->group_util) -
10678 local->group_util;
10679
10680 /*
10681 * In some cases, the group's utilization is max or even
10682 * higher than capacity because of migrations but the
10683 * local CPU is (newly) idle. There is at least one
10684 * waiting task in this overloaded busiest group. Let's
10685 * try to pull it.
10686 */
10687 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
10688 env->migration_type = migrate_task;
10689 env->imbalance = 1;
10690 }
10691
10692 return;
10693 }
10694
10695 if (busiest->group_weight == 1 || sds->prefer_sibling) {
10696 /*
10697 * When prefer sibling, evenly spread running tasks on
10698 * groups.
10699 */
10700 env->migration_type = migrate_task;
10701 env->imbalance = sibling_imbalance(env, sds, busiest, local);
10702 } else {
10703
10704 /*
10705 * If there is no overload, we just want to even the number of
10706 * idle cpus.
10707 */
10708 env->migration_type = migrate_task;
10709 env->imbalance = max_t(long, 0,
10710 (local->idle_cpus - busiest->idle_cpus));
10711 }
10712
10713 #ifdef CONFIG_NUMA
10714 /* Consider allowing a small imbalance between NUMA groups */
10715 if (env->sd->flags & SD_NUMA) {
10716 env->imbalance = adjust_numa_imbalance(env->imbalance,
10717 local->sum_nr_running + 1,
10718 env->sd->imb_numa_nr);
10719 }
10720 #endif
10721
10722 /* Number of tasks to move to restore balance */
10723 env->imbalance >>= 1;
10724
10725 return;
10726 }
10727
10728 /*
10729 * Local is fully busy but has to take more load to relieve the
10730 * busiest group
10731 */
10732 if (local->group_type < group_overloaded) {
10733 /*
10734 * Local will become overloaded so the avg_load metrics are
10735 * finally needed.
10736 */
10737
10738 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10739 local->group_capacity;
10740
10741 /*
10742 * If the local group is more loaded than the selected
10743 * busiest group don't try to pull any tasks.
10744 */
10745 if (local->avg_load >= busiest->avg_load) {
10746 env->imbalance = 0;
10747 return;
10748 }
10749
10750 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10751 sds->total_capacity;
10752
10753 /*
10754 * If the local group is more loaded than the average system
10755 * load, don't try to pull any tasks.
10756 */
10757 if (local->avg_load >= sds->avg_load) {
10758 env->imbalance = 0;
10759 return;
10760 }
10761
10762 }
10763
10764 /*
10765 * Both group are or will become overloaded and we're trying to get all
10766 * the CPUs to the average_load, so we don't want to push ourselves
10767 * above the average load, nor do we wish to reduce the max loaded CPU
10768 * below the average load. At the same time, we also don't want to
10769 * reduce the group load below the group capacity. Thus we look for
10770 * the minimum possible imbalance.
10771 */
10772 env->migration_type = migrate_load;
10773 env->imbalance = min(
10774 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10775 (sds->avg_load - local->avg_load) * local->group_capacity
10776 ) / SCHED_CAPACITY_SCALE;
10777 }
10778
10779 /******* find_busiest_group() helpers end here *********************/
10780
10781 /*
10782 * Decision matrix according to the local and busiest group type:
10783 *
10784 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10785 * has_spare nr_idle balanced N/A N/A balanced balanced
10786 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
10787 * misfit_task force N/A N/A N/A N/A N/A
10788 * asym_packing force force N/A N/A force force
10789 * imbalanced force force N/A N/A force force
10790 * overloaded force force N/A N/A force avg_load
10791 *
10792 * N/A : Not Applicable because already filtered while updating
10793 * statistics.
10794 * balanced : The system is balanced for these 2 groups.
10795 * force : Calculate the imbalance as load migration is probably needed.
10796 * avg_load : Only if imbalance is significant enough.
10797 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
10798 * different in groups.
10799 */
10800
10801 /**
10802 * find_busiest_group - Returns the busiest group within the sched_domain
10803 * if there is an imbalance.
10804 * @env: The load balancing environment.
10805 *
10806 * Also calculates the amount of runnable load which should be moved
10807 * to restore balance.
10808 *
10809 * Return: - The busiest group if imbalance exists.
10810 */
find_busiest_group(struct lb_env * env)10811 static struct sched_group *find_busiest_group(struct lb_env *env)
10812 {
10813 struct sg_lb_stats *local, *busiest;
10814 struct sd_lb_stats sds;
10815
10816 init_sd_lb_stats(&sds);
10817
10818 /*
10819 * Compute the various statistics relevant for load balancing at
10820 * this level.
10821 */
10822 update_sd_lb_stats(env, &sds);
10823
10824 /* There is no busy sibling group to pull tasks from */
10825 if (!sds.busiest)
10826 goto out_balanced;
10827
10828 busiest = &sds.busiest_stat;
10829
10830 /* Misfit tasks should be dealt with regardless of the avg load */
10831 if (busiest->group_type == group_misfit_task)
10832 goto force_balance;
10833
10834 if (sched_energy_enabled()) {
10835 struct root_domain *rd = env->dst_rq->rd;
10836
10837 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10838 goto out_balanced;
10839 }
10840
10841 /* ASYM feature bypasses nice load balance check */
10842 if (busiest->group_type == group_asym_packing)
10843 goto force_balance;
10844
10845 /*
10846 * If the busiest group is imbalanced the below checks don't
10847 * work because they assume all things are equal, which typically
10848 * isn't true due to cpus_ptr constraints and the like.
10849 */
10850 if (busiest->group_type == group_imbalanced)
10851 goto force_balance;
10852
10853 local = &sds.local_stat;
10854 /*
10855 * If the local group is busier than the selected busiest group
10856 * don't try and pull any tasks.
10857 */
10858 if (local->group_type > busiest->group_type)
10859 goto out_balanced;
10860
10861 /*
10862 * When groups are overloaded, use the avg_load to ensure fairness
10863 * between tasks.
10864 */
10865 if (local->group_type == group_overloaded) {
10866 /*
10867 * If the local group is more loaded than the selected
10868 * busiest group don't try to pull any tasks.
10869 */
10870 if (local->avg_load >= busiest->avg_load)
10871 goto out_balanced;
10872
10873 /* XXX broken for overlapping NUMA groups */
10874 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10875 sds.total_capacity;
10876
10877 /*
10878 * Don't pull any tasks if this group is already above the
10879 * domain average load.
10880 */
10881 if (local->avg_load >= sds.avg_load)
10882 goto out_balanced;
10883
10884 /*
10885 * If the busiest group is more loaded, use imbalance_pct to be
10886 * conservative.
10887 */
10888 if (100 * busiest->avg_load <=
10889 env->sd->imbalance_pct * local->avg_load)
10890 goto out_balanced;
10891 }
10892
10893 /*
10894 * Try to move all excess tasks to a sibling domain of the busiest
10895 * group's child domain.
10896 */
10897 if (sds.prefer_sibling && local->group_type == group_has_spare &&
10898 sibling_imbalance(env, &sds, busiest, local) > 1)
10899 goto force_balance;
10900
10901 if (busiest->group_type != group_overloaded) {
10902 if (env->idle == CPU_NOT_IDLE) {
10903 /*
10904 * If the busiest group is not overloaded (and as a
10905 * result the local one too) but this CPU is already
10906 * busy, let another idle CPU try to pull task.
10907 */
10908 goto out_balanced;
10909 }
10910
10911 if (busiest->group_type == group_smt_balance &&
10912 smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
10913 /* Let non SMT CPU pull from SMT CPU sharing with sibling */
10914 goto force_balance;
10915 }
10916
10917 if (busiest->group_weight > 1 &&
10918 local->idle_cpus <= (busiest->idle_cpus + 1)) {
10919 /*
10920 * If the busiest group is not overloaded
10921 * and there is no imbalance between this and busiest
10922 * group wrt idle CPUs, it is balanced. The imbalance
10923 * becomes significant if the diff is greater than 1
10924 * otherwise we might end up to just move the imbalance
10925 * on another group. Of course this applies only if
10926 * there is more than 1 CPU per group.
10927 */
10928 goto out_balanced;
10929 }
10930
10931 if (busiest->sum_h_nr_running == 1) {
10932 /*
10933 * busiest doesn't have any tasks waiting to run
10934 */
10935 goto out_balanced;
10936 }
10937 }
10938
10939 force_balance:
10940 /* Looks like there is an imbalance. Compute it */
10941 calculate_imbalance(env, &sds);
10942 return env->imbalance ? sds.busiest : NULL;
10943
10944 out_balanced:
10945 env->imbalance = 0;
10946 return NULL;
10947 }
10948
10949 /*
10950 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10951 */
find_busiest_queue(struct lb_env * env,struct sched_group * group)10952 static struct rq *find_busiest_queue(struct lb_env *env,
10953 struct sched_group *group)
10954 {
10955 struct rq *busiest = NULL, *rq;
10956 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10957 unsigned int busiest_nr = 0;
10958 int i;
10959
10960 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10961 unsigned long capacity, load, util;
10962 unsigned int nr_running;
10963 enum fbq_type rt;
10964
10965 rq = cpu_rq(i);
10966 rt = fbq_classify_rq(rq);
10967
10968 /*
10969 * We classify groups/runqueues into three groups:
10970 * - regular: there are !numa tasks
10971 * - remote: there are numa tasks that run on the 'wrong' node
10972 * - all: there is no distinction
10973 *
10974 * In order to avoid migrating ideally placed numa tasks,
10975 * ignore those when there's better options.
10976 *
10977 * If we ignore the actual busiest queue to migrate another
10978 * task, the next balance pass can still reduce the busiest
10979 * queue by moving tasks around inside the node.
10980 *
10981 * If we cannot move enough load due to this classification
10982 * the next pass will adjust the group classification and
10983 * allow migration of more tasks.
10984 *
10985 * Both cases only affect the total convergence complexity.
10986 */
10987 if (rt > env->fbq_type)
10988 continue;
10989
10990 nr_running = rq->cfs.h_nr_running;
10991 if (!nr_running)
10992 continue;
10993
10994 capacity = capacity_of(i);
10995
10996 /*
10997 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
10998 * eventually lead to active_balancing high->low capacity.
10999 * Higher per-CPU capacity is considered better than balancing
11000 * average load.
11001 */
11002 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11003 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11004 nr_running == 1)
11005 continue;
11006
11007 /*
11008 * Make sure we only pull tasks from a CPU of lower priority
11009 * when balancing between SMT siblings.
11010 *
11011 * If balancing between cores, let lower priority CPUs help
11012 * SMT cores with more than one busy sibling.
11013 */
11014 if ((env->sd->flags & SD_ASYM_PACKING) &&
11015 sched_use_asym_prio(env->sd, i) &&
11016 sched_asym_prefer(i, env->dst_cpu) &&
11017 nr_running == 1)
11018 continue;
11019
11020 switch (env->migration_type) {
11021 case migrate_load:
11022 /*
11023 * When comparing with load imbalance, use cpu_load()
11024 * which is not scaled with the CPU capacity.
11025 */
11026 load = cpu_load(rq);
11027
11028 if (nr_running == 1 && load > env->imbalance &&
11029 !check_cpu_capacity(rq, env->sd))
11030 break;
11031
11032 /*
11033 * For the load comparisons with the other CPUs,
11034 * consider the cpu_load() scaled with the CPU
11035 * capacity, so that the load can be moved away
11036 * from the CPU that is potentially running at a
11037 * lower capacity.
11038 *
11039 * Thus we're looking for max(load_i / capacity_i),
11040 * crosswise multiplication to rid ourselves of the
11041 * division works out to:
11042 * load_i * capacity_j > load_j * capacity_i;
11043 * where j is our previous maximum.
11044 */
11045 if (load * busiest_capacity > busiest_load * capacity) {
11046 busiest_load = load;
11047 busiest_capacity = capacity;
11048 busiest = rq;
11049 }
11050 break;
11051
11052 case migrate_util:
11053 util = cpu_util_cfs_boost(i);
11054
11055 /*
11056 * Don't try to pull utilization from a CPU with one
11057 * running task. Whatever its utilization, we will fail
11058 * detach the task.
11059 */
11060 if (nr_running <= 1)
11061 continue;
11062
11063 if (busiest_util < util) {
11064 busiest_util = util;
11065 busiest = rq;
11066 }
11067 break;
11068
11069 case migrate_task:
11070 if (busiest_nr < nr_running) {
11071 busiest_nr = nr_running;
11072 busiest = rq;
11073 }
11074 break;
11075
11076 case migrate_misfit:
11077 /*
11078 * For ASYM_CPUCAPACITY domains with misfit tasks we
11079 * simply seek the "biggest" misfit task.
11080 */
11081 if (rq->misfit_task_load > busiest_load) {
11082 busiest_load = rq->misfit_task_load;
11083 busiest = rq;
11084 }
11085
11086 break;
11087
11088 }
11089 }
11090
11091 return busiest;
11092 }
11093
11094 /*
11095 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11096 * so long as it is large enough.
11097 */
11098 #define MAX_PINNED_INTERVAL 512
11099
11100 static inline bool
asym_active_balance(struct lb_env * env)11101 asym_active_balance(struct lb_env *env)
11102 {
11103 /*
11104 * ASYM_PACKING needs to force migrate tasks from busy but lower
11105 * priority CPUs in order to pack all tasks in the highest priority
11106 * CPUs. When done between cores, do it only if the whole core if the
11107 * whole core is idle.
11108 *
11109 * If @env::src_cpu is an SMT core with busy siblings, let
11110 * the lower priority @env::dst_cpu help it. Do not follow
11111 * CPU priority.
11112 */
11113 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
11114 sched_use_asym_prio(env->sd, env->dst_cpu) &&
11115 (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11116 !sched_use_asym_prio(env->sd, env->src_cpu));
11117 }
11118
11119 static inline bool
imbalanced_active_balance(struct lb_env * env)11120 imbalanced_active_balance(struct lb_env *env)
11121 {
11122 struct sched_domain *sd = env->sd;
11123
11124 /*
11125 * The imbalanced case includes the case of pinned tasks preventing a fair
11126 * distribution of the load on the system but also the even distribution of the
11127 * threads on a system with spare capacity
11128 */
11129 if ((env->migration_type == migrate_task) &&
11130 (sd->nr_balance_failed > sd->cache_nice_tries+2))
11131 return 1;
11132
11133 return 0;
11134 }
11135
need_active_balance(struct lb_env * env)11136 static int need_active_balance(struct lb_env *env)
11137 {
11138 struct sched_domain *sd = env->sd;
11139
11140 if (asym_active_balance(env))
11141 return 1;
11142
11143 if (imbalanced_active_balance(env))
11144 return 1;
11145
11146 /*
11147 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11148 * It's worth migrating the task if the src_cpu's capacity is reduced
11149 * because of other sched_class or IRQs if more capacity stays
11150 * available on dst_cpu.
11151 */
11152 if ((env->idle != CPU_NOT_IDLE) &&
11153 (env->src_rq->cfs.h_nr_running == 1)) {
11154 if ((check_cpu_capacity(env->src_rq, sd)) &&
11155 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11156 return 1;
11157 }
11158
11159 if (env->migration_type == migrate_misfit)
11160 return 1;
11161
11162 return 0;
11163 }
11164
11165 static int active_load_balance_cpu_stop(void *data);
11166
should_we_balance(struct lb_env * env)11167 static int should_we_balance(struct lb_env *env)
11168 {
11169 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11170 struct sched_group *sg = env->sd->groups;
11171 int cpu, idle_smt = -1;
11172
11173 /*
11174 * Ensure the balancing environment is consistent; can happen
11175 * when the softirq triggers 'during' hotplug.
11176 */
11177 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11178 return 0;
11179
11180 /*
11181 * In the newly idle case, we will allow all the CPUs
11182 * to do the newly idle load balance.
11183 *
11184 * However, we bail out if we already have tasks or a wakeup pending,
11185 * to optimize wakeup latency.
11186 */
11187 if (env->idle == CPU_NEWLY_IDLE) {
11188 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11189 return 0;
11190 return 1;
11191 }
11192
11193 cpumask_copy(swb_cpus, group_balance_mask(sg));
11194 /* Try to find first idle CPU */
11195 for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11196 if (!idle_cpu(cpu))
11197 continue;
11198
11199 /*
11200 * Don't balance to idle SMT in busy core right away when
11201 * balancing cores, but remember the first idle SMT CPU for
11202 * later consideration. Find CPU on an idle core first.
11203 */
11204 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11205 if (idle_smt == -1)
11206 idle_smt = cpu;
11207 /*
11208 * If the core is not idle, and first SMT sibling which is
11209 * idle has been found, then its not needed to check other
11210 * SMT siblings for idleness:
11211 */
11212 #ifdef CONFIG_SCHED_SMT
11213 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11214 #endif
11215 continue;
11216 }
11217
11218 /*
11219 * Are we the first idle core in a non-SMT domain or higher,
11220 * or the first idle CPU in a SMT domain?
11221 */
11222 return cpu == env->dst_cpu;
11223 }
11224
11225 /* Are we the first idle CPU with busy siblings? */
11226 if (idle_smt != -1)
11227 return idle_smt == env->dst_cpu;
11228
11229 /* Are we the first CPU of this group ? */
11230 return group_balance_cpu(sg) == env->dst_cpu;
11231 }
11232
11233 /*
11234 * Check this_cpu to ensure it is balanced within domain. Attempt to move
11235 * tasks if there is an imbalance.
11236 */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)11237 static int load_balance(int this_cpu, struct rq *this_rq,
11238 struct sched_domain *sd, enum cpu_idle_type idle,
11239 int *continue_balancing)
11240 {
11241 int ld_moved, cur_ld_moved, active_balance = 0;
11242 struct sched_domain *sd_parent = sd->parent;
11243 struct sched_group *group;
11244 struct rq *busiest;
11245 struct rq_flags rf;
11246 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11247 struct lb_env env = {
11248 .sd = sd,
11249 .dst_cpu = this_cpu,
11250 .dst_rq = this_rq,
11251 .dst_grpmask = group_balance_mask(sd->groups),
11252 .idle = idle,
11253 .loop_break = SCHED_NR_MIGRATE_BREAK,
11254 .cpus = cpus,
11255 .fbq_type = all,
11256 .tasks = LIST_HEAD_INIT(env.tasks),
11257 };
11258
11259 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11260
11261 schedstat_inc(sd->lb_count[idle]);
11262
11263 redo:
11264 if (!should_we_balance(&env)) {
11265 *continue_balancing = 0;
11266 goto out_balanced;
11267 }
11268
11269 group = find_busiest_group(&env);
11270 if (!group) {
11271 schedstat_inc(sd->lb_nobusyg[idle]);
11272 goto out_balanced;
11273 }
11274
11275 busiest = find_busiest_queue(&env, group);
11276 if (!busiest) {
11277 schedstat_inc(sd->lb_nobusyq[idle]);
11278 goto out_balanced;
11279 }
11280
11281 WARN_ON_ONCE(busiest == env.dst_rq);
11282
11283 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11284
11285 env.src_cpu = busiest->cpu;
11286 env.src_rq = busiest;
11287
11288 ld_moved = 0;
11289 /* Clear this flag as soon as we find a pullable task */
11290 env.flags |= LBF_ALL_PINNED;
11291 if (busiest->nr_running > 1) {
11292 /*
11293 * Attempt to move tasks. If find_busiest_group has found
11294 * an imbalance but busiest->nr_running <= 1, the group is
11295 * still unbalanced. ld_moved simply stays zero, so it is
11296 * correctly treated as an imbalance.
11297 */
11298 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
11299
11300 more_balance:
11301 rq_lock_irqsave(busiest, &rf);
11302 update_rq_clock(busiest);
11303
11304 /*
11305 * cur_ld_moved - load moved in current iteration
11306 * ld_moved - cumulative load moved across iterations
11307 */
11308 cur_ld_moved = detach_tasks(&env);
11309
11310 /*
11311 * We've detached some tasks from busiest_rq. Every
11312 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11313 * unlock busiest->lock, and we are able to be sure
11314 * that nobody can manipulate the tasks in parallel.
11315 * See task_rq_lock() family for the details.
11316 */
11317
11318 rq_unlock(busiest, &rf);
11319
11320 if (cur_ld_moved) {
11321 attach_tasks(&env);
11322 ld_moved += cur_ld_moved;
11323 }
11324
11325 local_irq_restore(rf.flags);
11326
11327 if (env.flags & LBF_NEED_BREAK) {
11328 env.flags &= ~LBF_NEED_BREAK;
11329 goto more_balance;
11330 }
11331
11332 /*
11333 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11334 * us and move them to an alternate dst_cpu in our sched_group
11335 * where they can run. The upper limit on how many times we
11336 * iterate on same src_cpu is dependent on number of CPUs in our
11337 * sched_group.
11338 *
11339 * This changes load balance semantics a bit on who can move
11340 * load to a given_cpu. In addition to the given_cpu itself
11341 * (or a ilb_cpu acting on its behalf where given_cpu is
11342 * nohz-idle), we now have balance_cpu in a position to move
11343 * load to given_cpu. In rare situations, this may cause
11344 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11345 * _independently_ and at _same_ time to move some load to
11346 * given_cpu) causing excess load to be moved to given_cpu.
11347 * This however should not happen so much in practice and
11348 * moreover subsequent load balance cycles should correct the
11349 * excess load moved.
11350 */
11351 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11352
11353 /* Prevent to re-select dst_cpu via env's CPUs */
11354 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
11355
11356 env.dst_rq = cpu_rq(env.new_dst_cpu);
11357 env.dst_cpu = env.new_dst_cpu;
11358 env.flags &= ~LBF_DST_PINNED;
11359 env.loop = 0;
11360 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11361
11362 /*
11363 * Go back to "more_balance" rather than "redo" since we
11364 * need to continue with same src_cpu.
11365 */
11366 goto more_balance;
11367 }
11368
11369 /*
11370 * We failed to reach balance because of affinity.
11371 */
11372 if (sd_parent) {
11373 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11374
11375 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11376 *group_imbalance = 1;
11377 }
11378
11379 /* All tasks on this runqueue were pinned by CPU affinity */
11380 if (unlikely(env.flags & LBF_ALL_PINNED)) {
11381 __cpumask_clear_cpu(cpu_of(busiest), cpus);
11382 /*
11383 * Attempting to continue load balancing at the current
11384 * sched_domain level only makes sense if there are
11385 * active CPUs remaining as possible busiest CPUs to
11386 * pull load from which are not contained within the
11387 * destination group that is receiving any migrated
11388 * load.
11389 */
11390 if (!cpumask_subset(cpus, env.dst_grpmask)) {
11391 env.loop = 0;
11392 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11393 goto redo;
11394 }
11395 goto out_all_pinned;
11396 }
11397 }
11398
11399 if (!ld_moved) {
11400 schedstat_inc(sd->lb_failed[idle]);
11401 /*
11402 * Increment the failure counter only on periodic balance.
11403 * We do not want newidle balance, which can be very
11404 * frequent, pollute the failure counter causing
11405 * excessive cache_hot migrations and active balances.
11406 */
11407 if (idle != CPU_NEWLY_IDLE)
11408 sd->nr_balance_failed++;
11409
11410 if (need_active_balance(&env)) {
11411 unsigned long flags;
11412
11413 raw_spin_rq_lock_irqsave(busiest, flags);
11414
11415 /*
11416 * Don't kick the active_load_balance_cpu_stop,
11417 * if the curr task on busiest CPU can't be
11418 * moved to this_cpu:
11419 */
11420 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11421 raw_spin_rq_unlock_irqrestore(busiest, flags);
11422 goto out_one_pinned;
11423 }
11424
11425 /* Record that we found at least one task that could run on this_cpu */
11426 env.flags &= ~LBF_ALL_PINNED;
11427
11428 /*
11429 * ->active_balance synchronizes accesses to
11430 * ->active_balance_work. Once set, it's cleared
11431 * only after active load balance is finished.
11432 */
11433 if (!busiest->active_balance) {
11434 busiest->active_balance = 1;
11435 busiest->push_cpu = this_cpu;
11436 active_balance = 1;
11437 }
11438
11439 preempt_disable();
11440 raw_spin_rq_unlock_irqrestore(busiest, flags);
11441 if (active_balance) {
11442 stop_one_cpu_nowait(cpu_of(busiest),
11443 active_load_balance_cpu_stop, busiest,
11444 &busiest->active_balance_work);
11445 }
11446 preempt_enable();
11447 }
11448 } else {
11449 sd->nr_balance_failed = 0;
11450 }
11451
11452 if (likely(!active_balance) || need_active_balance(&env)) {
11453 /* We were unbalanced, so reset the balancing interval */
11454 sd->balance_interval = sd->min_interval;
11455 }
11456
11457 goto out;
11458
11459 out_balanced:
11460 /*
11461 * We reach balance although we may have faced some affinity
11462 * constraints. Clear the imbalance flag only if other tasks got
11463 * a chance to move and fix the imbalance.
11464 */
11465 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11466 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11467
11468 if (*group_imbalance)
11469 *group_imbalance = 0;
11470 }
11471
11472 out_all_pinned:
11473 /*
11474 * We reach balance because all tasks are pinned at this level so
11475 * we can't migrate them. Let the imbalance flag set so parent level
11476 * can try to migrate them.
11477 */
11478 schedstat_inc(sd->lb_balanced[idle]);
11479
11480 sd->nr_balance_failed = 0;
11481
11482 out_one_pinned:
11483 ld_moved = 0;
11484
11485 /*
11486 * newidle_balance() disregards balance intervals, so we could
11487 * repeatedly reach this code, which would lead to balance_interval
11488 * skyrocketing in a short amount of time. Skip the balance_interval
11489 * increase logic to avoid that.
11490 */
11491 if (env.idle == CPU_NEWLY_IDLE)
11492 goto out;
11493
11494 /* tune up the balancing interval */
11495 if ((env.flags & LBF_ALL_PINNED &&
11496 sd->balance_interval < MAX_PINNED_INTERVAL) ||
11497 sd->balance_interval < sd->max_interval)
11498 sd->balance_interval *= 2;
11499 out:
11500 return ld_moved;
11501 }
11502
11503 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)11504 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11505 {
11506 unsigned long interval = sd->balance_interval;
11507
11508 if (cpu_busy)
11509 interval *= sd->busy_factor;
11510
11511 /* scale ms to jiffies */
11512 interval = msecs_to_jiffies(interval);
11513
11514 /*
11515 * Reduce likelihood of busy balancing at higher domains racing with
11516 * balancing at lower domains by preventing their balancing periods
11517 * from being multiples of each other.
11518 */
11519 if (cpu_busy)
11520 interval -= 1;
11521
11522 interval = clamp(interval, 1UL, max_load_balance_interval);
11523
11524 return interval;
11525 }
11526
11527 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)11528 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11529 {
11530 unsigned long interval, next;
11531
11532 /* used by idle balance, so cpu_busy = 0 */
11533 interval = get_sd_balance_interval(sd, 0);
11534 next = sd->last_balance + interval;
11535
11536 if (time_after(*next_balance, next))
11537 *next_balance = next;
11538 }
11539
11540 /*
11541 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11542 * running tasks off the busiest CPU onto idle CPUs. It requires at
11543 * least 1 task to be running on each physical CPU where possible, and
11544 * avoids physical / logical imbalances.
11545 */
active_load_balance_cpu_stop(void * data)11546 static int active_load_balance_cpu_stop(void *data)
11547 {
11548 struct rq *busiest_rq = data;
11549 int busiest_cpu = cpu_of(busiest_rq);
11550 int target_cpu = busiest_rq->push_cpu;
11551 struct rq *target_rq = cpu_rq(target_cpu);
11552 struct sched_domain *sd;
11553 struct task_struct *p = NULL;
11554 struct rq_flags rf;
11555
11556 rq_lock_irq(busiest_rq, &rf);
11557 /*
11558 * Between queueing the stop-work and running it is a hole in which
11559 * CPUs can become inactive. We should not move tasks from or to
11560 * inactive CPUs.
11561 */
11562 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11563 goto out_unlock;
11564
11565 /* Make sure the requested CPU hasn't gone down in the meantime: */
11566 if (unlikely(busiest_cpu != smp_processor_id() ||
11567 !busiest_rq->active_balance))
11568 goto out_unlock;
11569
11570 /* Is there any task to move? */
11571 if (busiest_rq->nr_running <= 1)
11572 goto out_unlock;
11573
11574 /*
11575 * This condition is "impossible", if it occurs
11576 * we need to fix it. Originally reported by
11577 * Bjorn Helgaas on a 128-CPU setup.
11578 */
11579 WARN_ON_ONCE(busiest_rq == target_rq);
11580
11581 /* Search for an sd spanning us and the target CPU. */
11582 rcu_read_lock();
11583 for_each_domain(target_cpu, sd) {
11584 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11585 break;
11586 }
11587
11588 if (likely(sd)) {
11589 struct lb_env env = {
11590 .sd = sd,
11591 .dst_cpu = target_cpu,
11592 .dst_rq = target_rq,
11593 .src_cpu = busiest_rq->cpu,
11594 .src_rq = busiest_rq,
11595 .idle = CPU_IDLE,
11596 .flags = LBF_ACTIVE_LB,
11597 };
11598
11599 schedstat_inc(sd->alb_count);
11600 update_rq_clock(busiest_rq);
11601
11602 p = detach_one_task(&env);
11603 if (p) {
11604 schedstat_inc(sd->alb_pushed);
11605 /* Active balancing done, reset the failure counter. */
11606 sd->nr_balance_failed = 0;
11607 } else {
11608 schedstat_inc(sd->alb_failed);
11609 }
11610 }
11611 rcu_read_unlock();
11612 out_unlock:
11613 busiest_rq->active_balance = 0;
11614 rq_unlock(busiest_rq, &rf);
11615
11616 if (p)
11617 attach_one_task(target_rq, p);
11618
11619 local_irq_enable();
11620
11621 return 0;
11622 }
11623
11624 static DEFINE_SPINLOCK(balancing);
11625
11626 /*
11627 * Scale the max load_balance interval with the number of CPUs in the system.
11628 * This trades load-balance latency on larger machines for less cross talk.
11629 */
update_max_interval(void)11630 void update_max_interval(void)
11631 {
11632 max_load_balance_interval = HZ*num_online_cpus()/10;
11633 }
11634
update_newidle_cost(struct sched_domain * sd,u64 cost)11635 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11636 {
11637 if (cost > sd->max_newidle_lb_cost) {
11638 /*
11639 * Track max cost of a domain to make sure to not delay the
11640 * next wakeup on the CPU.
11641 */
11642 sd->max_newidle_lb_cost = cost;
11643 sd->last_decay_max_lb_cost = jiffies;
11644 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11645 /*
11646 * Decay the newidle max times by ~1% per second to ensure that
11647 * it is not outdated and the current max cost is actually
11648 * shorter.
11649 */
11650 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11651 sd->last_decay_max_lb_cost = jiffies;
11652
11653 return true;
11654 }
11655
11656 return false;
11657 }
11658
11659 /*
11660 * It checks each scheduling domain to see if it is due to be balanced,
11661 * and initiates a balancing operation if so.
11662 *
11663 * Balancing parameters are set up in init_sched_domains.
11664 */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)11665 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11666 {
11667 int continue_balancing = 1;
11668 int cpu = rq->cpu;
11669 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11670 unsigned long interval;
11671 struct sched_domain *sd;
11672 /* Earliest time when we have to do rebalance again */
11673 unsigned long next_balance = jiffies + 60*HZ;
11674 int update_next_balance = 0;
11675 int need_serialize, need_decay = 0;
11676 u64 max_cost = 0;
11677
11678 rcu_read_lock();
11679 for_each_domain(cpu, sd) {
11680 /*
11681 * Decay the newidle max times here because this is a regular
11682 * visit to all the domains.
11683 */
11684 need_decay = update_newidle_cost(sd, 0);
11685 max_cost += sd->max_newidle_lb_cost;
11686
11687 /*
11688 * Stop the load balance at this level. There is another
11689 * CPU in our sched group which is doing load balancing more
11690 * actively.
11691 */
11692 if (!continue_balancing) {
11693 if (need_decay)
11694 continue;
11695 break;
11696 }
11697
11698 interval = get_sd_balance_interval(sd, busy);
11699
11700 need_serialize = sd->flags & SD_SERIALIZE;
11701 if (need_serialize) {
11702 if (!spin_trylock(&balancing))
11703 goto out;
11704 }
11705
11706 if (time_after_eq(jiffies, sd->last_balance + interval)) {
11707 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11708 /*
11709 * The LBF_DST_PINNED logic could have changed
11710 * env->dst_cpu, so we can't know our idle
11711 * state even if we migrated tasks. Update it.
11712 */
11713 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11714 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11715 }
11716 sd->last_balance = jiffies;
11717 interval = get_sd_balance_interval(sd, busy);
11718 }
11719 if (need_serialize)
11720 spin_unlock(&balancing);
11721 out:
11722 if (time_after(next_balance, sd->last_balance + interval)) {
11723 next_balance = sd->last_balance + interval;
11724 update_next_balance = 1;
11725 }
11726 }
11727 if (need_decay) {
11728 /*
11729 * Ensure the rq-wide value also decays but keep it at a
11730 * reasonable floor to avoid funnies with rq->avg_idle.
11731 */
11732 rq->max_idle_balance_cost =
11733 max((u64)sysctl_sched_migration_cost, max_cost);
11734 }
11735 rcu_read_unlock();
11736
11737 /*
11738 * next_balance will be updated only when there is a need.
11739 * When the cpu is attached to null domain for ex, it will not be
11740 * updated.
11741 */
11742 if (likely(update_next_balance))
11743 rq->next_balance = next_balance;
11744
11745 }
11746
on_null_domain(struct rq * rq)11747 static inline int on_null_domain(struct rq *rq)
11748 {
11749 return unlikely(!rcu_dereference_sched(rq->sd));
11750 }
11751
11752 #ifdef CONFIG_NO_HZ_COMMON
11753 /*
11754 * idle load balancing details
11755 * - When one of the busy CPUs notice that there may be an idle rebalancing
11756 * needed, they will kick the idle load balancer, which then does idle
11757 * load balancing for all the idle CPUs.
11758 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
11759 * anywhere yet.
11760 */
11761
find_new_ilb(void)11762 static inline int find_new_ilb(void)
11763 {
11764 int ilb;
11765 const struct cpumask *hk_mask;
11766
11767 hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11768
11769 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
11770
11771 if (ilb == smp_processor_id())
11772 continue;
11773
11774 if (idle_cpu(ilb))
11775 return ilb;
11776 }
11777
11778 return nr_cpu_ids;
11779 }
11780
11781 /*
11782 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
11783 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11784 */
kick_ilb(unsigned int flags)11785 static void kick_ilb(unsigned int flags)
11786 {
11787 int ilb_cpu;
11788
11789 /*
11790 * Increase nohz.next_balance only when if full ilb is triggered but
11791 * not if we only update stats.
11792 */
11793 if (flags & NOHZ_BALANCE_KICK)
11794 nohz.next_balance = jiffies+1;
11795
11796 ilb_cpu = find_new_ilb();
11797
11798 if (ilb_cpu >= nr_cpu_ids)
11799 return;
11800
11801 /*
11802 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11803 * the first flag owns it; cleared by nohz_csd_func().
11804 */
11805 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11806 if (flags & NOHZ_KICK_MASK)
11807 return;
11808
11809 /*
11810 * This way we generate an IPI on the target CPU which
11811 * is idle. And the softirq performing nohz idle load balance
11812 * will be run before returning from the IPI.
11813 */
11814 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11815 }
11816
11817 /*
11818 * Current decision point for kicking the idle load balancer in the presence
11819 * of idle CPUs in the system.
11820 */
nohz_balancer_kick(struct rq * rq)11821 static void nohz_balancer_kick(struct rq *rq)
11822 {
11823 unsigned long now = jiffies;
11824 struct sched_domain_shared *sds;
11825 struct sched_domain *sd;
11826 int nr_busy, i, cpu = rq->cpu;
11827 unsigned int flags = 0;
11828
11829 if (unlikely(rq->idle_balance))
11830 return;
11831
11832 /*
11833 * We may be recently in ticked or tickless idle mode. At the first
11834 * busy tick after returning from idle, we will update the busy stats.
11835 */
11836 nohz_balance_exit_idle(rq);
11837
11838 /*
11839 * None are in tickless mode and hence no need for NOHZ idle load
11840 * balancing.
11841 */
11842 if (likely(!atomic_read(&nohz.nr_cpus)))
11843 return;
11844
11845 if (READ_ONCE(nohz.has_blocked) &&
11846 time_after(now, READ_ONCE(nohz.next_blocked)))
11847 flags = NOHZ_STATS_KICK;
11848
11849 if (time_before(now, nohz.next_balance))
11850 goto out;
11851
11852 if (rq->nr_running >= 2) {
11853 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11854 goto out;
11855 }
11856
11857 rcu_read_lock();
11858
11859 sd = rcu_dereference(rq->sd);
11860 if (sd) {
11861 /*
11862 * If there's a CFS task and the current CPU has reduced
11863 * capacity; kick the ILB to see if there's a better CPU to run
11864 * on.
11865 */
11866 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11867 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11868 goto unlock;
11869 }
11870 }
11871
11872 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11873 if (sd) {
11874 /*
11875 * When ASYM_PACKING; see if there's a more preferred CPU
11876 * currently idle; in which case, kick the ILB to move tasks
11877 * around.
11878 *
11879 * When balancing betwen cores, all the SMT siblings of the
11880 * preferred CPU must be idle.
11881 */
11882 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11883 if (sched_use_asym_prio(sd, i) &&
11884 sched_asym_prefer(i, cpu)) {
11885 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11886 goto unlock;
11887 }
11888 }
11889 }
11890
11891 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11892 if (sd) {
11893 /*
11894 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11895 * to run the misfit task on.
11896 */
11897 if (check_misfit_status(rq, sd)) {
11898 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11899 goto unlock;
11900 }
11901
11902 /*
11903 * For asymmetric systems, we do not want to nicely balance
11904 * cache use, instead we want to embrace asymmetry and only
11905 * ensure tasks have enough CPU capacity.
11906 *
11907 * Skip the LLC logic because it's not relevant in that case.
11908 */
11909 goto unlock;
11910 }
11911
11912 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11913 if (sds) {
11914 /*
11915 * If there is an imbalance between LLC domains (IOW we could
11916 * increase the overall cache use), we need some less-loaded LLC
11917 * domain to pull some load. Likewise, we may need to spread
11918 * load within the current LLC domain (e.g. packed SMT cores but
11919 * other CPUs are idle). We can't really know from here how busy
11920 * the others are - so just get a nohz balance going if it looks
11921 * like this LLC domain has tasks we could move.
11922 */
11923 nr_busy = atomic_read(&sds->nr_busy_cpus);
11924 if (nr_busy > 1) {
11925 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11926 goto unlock;
11927 }
11928 }
11929 unlock:
11930 rcu_read_unlock();
11931 out:
11932 if (READ_ONCE(nohz.needs_update))
11933 flags |= NOHZ_NEXT_KICK;
11934
11935 if (flags)
11936 kick_ilb(flags);
11937 }
11938
set_cpu_sd_state_busy(int cpu)11939 static void set_cpu_sd_state_busy(int cpu)
11940 {
11941 struct sched_domain *sd;
11942
11943 rcu_read_lock();
11944 sd = rcu_dereference(per_cpu(sd_llc, cpu));
11945
11946 if (!sd || !sd->nohz_idle)
11947 goto unlock;
11948 sd->nohz_idle = 0;
11949
11950 atomic_inc(&sd->shared->nr_busy_cpus);
11951 unlock:
11952 rcu_read_unlock();
11953 }
11954
nohz_balance_exit_idle(struct rq * rq)11955 void nohz_balance_exit_idle(struct rq *rq)
11956 {
11957 SCHED_WARN_ON(rq != this_rq());
11958
11959 if (likely(!rq->nohz_tick_stopped))
11960 return;
11961
11962 rq->nohz_tick_stopped = 0;
11963 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11964 atomic_dec(&nohz.nr_cpus);
11965
11966 set_cpu_sd_state_busy(rq->cpu);
11967 }
11968
set_cpu_sd_state_idle(int cpu)11969 static void set_cpu_sd_state_idle(int cpu)
11970 {
11971 struct sched_domain *sd;
11972
11973 rcu_read_lock();
11974 sd = rcu_dereference(per_cpu(sd_llc, cpu));
11975
11976 if (!sd || sd->nohz_idle)
11977 goto unlock;
11978 sd->nohz_idle = 1;
11979
11980 atomic_dec(&sd->shared->nr_busy_cpus);
11981 unlock:
11982 rcu_read_unlock();
11983 }
11984
11985 /*
11986 * This routine will record that the CPU is going idle with tick stopped.
11987 * This info will be used in performing idle load balancing in the future.
11988 */
nohz_balance_enter_idle(int cpu)11989 void nohz_balance_enter_idle(int cpu)
11990 {
11991 struct rq *rq = cpu_rq(cpu);
11992
11993 SCHED_WARN_ON(cpu != smp_processor_id());
11994
11995 /* If this CPU is going down, then nothing needs to be done: */
11996 if (!cpu_active(cpu))
11997 return;
11998
11999 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
12000 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12001 return;
12002
12003 /*
12004 * Can be set safely without rq->lock held
12005 * If a clear happens, it will have evaluated last additions because
12006 * rq->lock is held during the check and the clear
12007 */
12008 rq->has_blocked_load = 1;
12009
12010 /*
12011 * The tick is still stopped but load could have been added in the
12012 * meantime. We set the nohz.has_blocked flag to trig a check of the
12013 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12014 * of nohz.has_blocked can only happen after checking the new load
12015 */
12016 if (rq->nohz_tick_stopped)
12017 goto out;
12018
12019 /* If we're a completely isolated CPU, we don't play: */
12020 if (on_null_domain(rq))
12021 return;
12022
12023 rq->nohz_tick_stopped = 1;
12024
12025 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12026 atomic_inc(&nohz.nr_cpus);
12027
12028 /*
12029 * Ensures that if nohz_idle_balance() fails to observe our
12030 * @idle_cpus_mask store, it must observe the @has_blocked
12031 * and @needs_update stores.
12032 */
12033 smp_mb__after_atomic();
12034
12035 set_cpu_sd_state_idle(cpu);
12036
12037 WRITE_ONCE(nohz.needs_update, 1);
12038 out:
12039 /*
12040 * Each time a cpu enter idle, we assume that it has blocked load and
12041 * enable the periodic update of the load of idle cpus
12042 */
12043 WRITE_ONCE(nohz.has_blocked, 1);
12044 }
12045
update_nohz_stats(struct rq * rq)12046 static bool update_nohz_stats(struct rq *rq)
12047 {
12048 unsigned int cpu = rq->cpu;
12049
12050 if (!rq->has_blocked_load)
12051 return false;
12052
12053 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12054 return false;
12055
12056 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12057 return true;
12058
12059 update_blocked_averages(cpu);
12060
12061 return rq->has_blocked_load;
12062 }
12063
12064 /*
12065 * Internal function that runs load balance for all idle cpus. The load balance
12066 * can be a simple update of blocked load or a complete load balance with
12067 * tasks movement depending of flags.
12068 */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags)12069 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12070 {
12071 /* Earliest time when we have to do rebalance again */
12072 unsigned long now = jiffies;
12073 unsigned long next_balance = now + 60*HZ;
12074 bool has_blocked_load = false;
12075 int update_next_balance = 0;
12076 int this_cpu = this_rq->cpu;
12077 int balance_cpu;
12078 struct rq *rq;
12079
12080 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12081
12082 /*
12083 * We assume there will be no idle load after this update and clear
12084 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12085 * set the has_blocked flag and trigger another update of idle load.
12086 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12087 * setting the flag, we are sure to not clear the state and not
12088 * check the load of an idle cpu.
12089 *
12090 * Same applies to idle_cpus_mask vs needs_update.
12091 */
12092 if (flags & NOHZ_STATS_KICK)
12093 WRITE_ONCE(nohz.has_blocked, 0);
12094 if (flags & NOHZ_NEXT_KICK)
12095 WRITE_ONCE(nohz.needs_update, 0);
12096
12097 /*
12098 * Ensures that if we miss the CPU, we must see the has_blocked
12099 * store from nohz_balance_enter_idle().
12100 */
12101 smp_mb();
12102
12103 /*
12104 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12105 * chance for other idle cpu to pull load.
12106 */
12107 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
12108 if (!idle_cpu(balance_cpu))
12109 continue;
12110
12111 /*
12112 * If this CPU gets work to do, stop the load balancing
12113 * work being done for other CPUs. Next load
12114 * balancing owner will pick it up.
12115 */
12116 if (need_resched()) {
12117 if (flags & NOHZ_STATS_KICK)
12118 has_blocked_load = true;
12119 if (flags & NOHZ_NEXT_KICK)
12120 WRITE_ONCE(nohz.needs_update, 1);
12121 goto abort;
12122 }
12123
12124 rq = cpu_rq(balance_cpu);
12125
12126 if (flags & NOHZ_STATS_KICK)
12127 has_blocked_load |= update_nohz_stats(rq);
12128
12129 /*
12130 * If time for next balance is due,
12131 * do the balance.
12132 */
12133 if (time_after_eq(jiffies, rq->next_balance)) {
12134 struct rq_flags rf;
12135
12136 rq_lock_irqsave(rq, &rf);
12137 update_rq_clock(rq);
12138 rq_unlock_irqrestore(rq, &rf);
12139
12140 if (flags & NOHZ_BALANCE_KICK)
12141 rebalance_domains(rq, CPU_IDLE);
12142 }
12143
12144 if (time_after(next_balance, rq->next_balance)) {
12145 next_balance = rq->next_balance;
12146 update_next_balance = 1;
12147 }
12148 }
12149
12150 /*
12151 * next_balance will be updated only when there is a need.
12152 * When the CPU is attached to null domain for ex, it will not be
12153 * updated.
12154 */
12155 if (likely(update_next_balance))
12156 nohz.next_balance = next_balance;
12157
12158 if (flags & NOHZ_STATS_KICK)
12159 WRITE_ONCE(nohz.next_blocked,
12160 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12161
12162 abort:
12163 /* There is still blocked load, enable periodic update */
12164 if (has_blocked_load)
12165 WRITE_ONCE(nohz.has_blocked, 1);
12166 }
12167
12168 /*
12169 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12170 * rebalancing for all the cpus for whom scheduler ticks are stopped.
12171 */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12172 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12173 {
12174 unsigned int flags = this_rq->nohz_idle_balance;
12175
12176 if (!flags)
12177 return false;
12178
12179 this_rq->nohz_idle_balance = 0;
12180
12181 if (idle != CPU_IDLE)
12182 return false;
12183
12184 _nohz_idle_balance(this_rq, flags);
12185
12186 return true;
12187 }
12188
12189 /*
12190 * Check if we need to run the ILB for updating blocked load before entering
12191 * idle state.
12192 */
nohz_run_idle_balance(int cpu)12193 void nohz_run_idle_balance(int cpu)
12194 {
12195 unsigned int flags;
12196
12197 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12198
12199 /*
12200 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12201 * (ie NOHZ_STATS_KICK set) and will do the same.
12202 */
12203 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12204 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12205 }
12206
nohz_newidle_balance(struct rq * this_rq)12207 static void nohz_newidle_balance(struct rq *this_rq)
12208 {
12209 int this_cpu = this_rq->cpu;
12210
12211 /*
12212 * This CPU doesn't want to be disturbed by scheduler
12213 * housekeeping
12214 */
12215 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12216 return;
12217
12218 /* Will wake up very soon. No time for doing anything else*/
12219 if (this_rq->avg_idle < sysctl_sched_migration_cost)
12220 return;
12221
12222 /* Don't need to update blocked load of idle CPUs*/
12223 if (!READ_ONCE(nohz.has_blocked) ||
12224 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12225 return;
12226
12227 /*
12228 * Set the need to trigger ILB in order to update blocked load
12229 * before entering idle state.
12230 */
12231 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12232 }
12233
12234 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)12235 static inline void nohz_balancer_kick(struct rq *rq) { }
12236
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12237 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12238 {
12239 return false;
12240 }
12241
nohz_newidle_balance(struct rq * this_rq)12242 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12243 #endif /* CONFIG_NO_HZ_COMMON */
12244
12245 /*
12246 * newidle_balance is called by schedule() if this_cpu is about to become
12247 * idle. Attempts to pull tasks from other CPUs.
12248 *
12249 * Returns:
12250 * < 0 - we released the lock and there are !fair tasks present
12251 * 0 - failed, no new tasks
12252 * > 0 - success, new (fair) tasks present
12253 */
newidle_balance(struct rq * this_rq,struct rq_flags * rf)12254 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
12255 {
12256 unsigned long next_balance = jiffies + HZ;
12257 int this_cpu = this_rq->cpu;
12258 u64 t0, t1, curr_cost = 0;
12259 struct sched_domain *sd;
12260 int pulled_task = 0;
12261
12262 update_misfit_status(NULL, this_rq);
12263
12264 /*
12265 * There is a task waiting to run. No need to search for one.
12266 * Return 0; the task will be enqueued when switching to idle.
12267 */
12268 if (this_rq->ttwu_pending)
12269 return 0;
12270
12271 /*
12272 * We must set idle_stamp _before_ calling idle_balance(), such that we
12273 * measure the duration of idle_balance() as idle time.
12274 */
12275 this_rq->idle_stamp = rq_clock(this_rq);
12276
12277 /*
12278 * Do not pull tasks towards !active CPUs...
12279 */
12280 if (!cpu_active(this_cpu))
12281 return 0;
12282
12283 /*
12284 * This is OK, because current is on_cpu, which avoids it being picked
12285 * for load-balance and preemption/IRQs are still disabled avoiding
12286 * further scheduler activity on it and we're being very careful to
12287 * re-start the picking loop.
12288 */
12289 rq_unpin_lock(this_rq, rf);
12290
12291 rcu_read_lock();
12292 sd = rcu_dereference_check_sched_domain(this_rq->sd);
12293
12294 if (!READ_ONCE(this_rq->rd->overload) ||
12295 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12296
12297 if (sd)
12298 update_next_balance(sd, &next_balance);
12299 rcu_read_unlock();
12300
12301 goto out;
12302 }
12303 rcu_read_unlock();
12304
12305 raw_spin_rq_unlock(this_rq);
12306
12307 t0 = sched_clock_cpu(this_cpu);
12308 update_blocked_averages(this_cpu);
12309
12310 rcu_read_lock();
12311 for_each_domain(this_cpu, sd) {
12312 int continue_balancing = 1;
12313 u64 domain_cost;
12314
12315 update_next_balance(sd, &next_balance);
12316
12317 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12318 break;
12319
12320 if (sd->flags & SD_BALANCE_NEWIDLE) {
12321
12322 pulled_task = load_balance(this_cpu, this_rq,
12323 sd, CPU_NEWLY_IDLE,
12324 &continue_balancing);
12325
12326 t1 = sched_clock_cpu(this_cpu);
12327 domain_cost = t1 - t0;
12328 update_newidle_cost(sd, domain_cost);
12329
12330 curr_cost += domain_cost;
12331 t0 = t1;
12332 }
12333
12334 /*
12335 * Stop searching for tasks to pull if there are
12336 * now runnable tasks on this rq.
12337 */
12338 if (pulled_task || this_rq->nr_running > 0 ||
12339 this_rq->ttwu_pending)
12340 break;
12341 }
12342 rcu_read_unlock();
12343
12344 raw_spin_rq_lock(this_rq);
12345
12346 if (curr_cost > this_rq->max_idle_balance_cost)
12347 this_rq->max_idle_balance_cost = curr_cost;
12348
12349 /*
12350 * While browsing the domains, we released the rq lock, a task could
12351 * have been enqueued in the meantime. Since we're not going idle,
12352 * pretend we pulled a task.
12353 */
12354 if (this_rq->cfs.h_nr_running && !pulled_task)
12355 pulled_task = 1;
12356
12357 /* Is there a task of a high priority class? */
12358 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12359 pulled_task = -1;
12360
12361 out:
12362 /* Move the next balance forward */
12363 if (time_after(this_rq->next_balance, next_balance))
12364 this_rq->next_balance = next_balance;
12365
12366 if (pulled_task)
12367 this_rq->idle_stamp = 0;
12368 else
12369 nohz_newidle_balance(this_rq);
12370
12371 rq_repin_lock(this_rq, rf);
12372
12373 return pulled_task;
12374 }
12375
12376 /*
12377 * run_rebalance_domains is triggered when needed from the scheduler tick.
12378 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
12379 */
run_rebalance_domains(struct softirq_action * h)12380 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
12381 {
12382 struct rq *this_rq = this_rq();
12383 enum cpu_idle_type idle = this_rq->idle_balance ?
12384 CPU_IDLE : CPU_NOT_IDLE;
12385
12386 /*
12387 * If this CPU has a pending nohz_balance_kick, then do the
12388 * balancing on behalf of the other idle CPUs whose ticks are
12389 * stopped. Do nohz_idle_balance *before* rebalance_domains to
12390 * give the idle CPUs a chance to load balance. Else we may
12391 * load balance only within the local sched_domain hierarchy
12392 * and abort nohz_idle_balance altogether if we pull some load.
12393 */
12394 if (nohz_idle_balance(this_rq, idle))
12395 return;
12396
12397 /* normal load balance */
12398 update_blocked_averages(this_rq->cpu);
12399 rebalance_domains(this_rq, idle);
12400 }
12401
12402 /*
12403 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12404 */
trigger_load_balance(struct rq * rq)12405 void trigger_load_balance(struct rq *rq)
12406 {
12407 /*
12408 * Don't need to rebalance while attached to NULL domain or
12409 * runqueue CPU is not active
12410 */
12411 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12412 return;
12413
12414 if (time_after_eq(jiffies, rq->next_balance))
12415 raise_softirq(SCHED_SOFTIRQ);
12416
12417 nohz_balancer_kick(rq);
12418 }
12419
rq_online_fair(struct rq * rq)12420 static void rq_online_fair(struct rq *rq)
12421 {
12422 update_sysctl();
12423
12424 update_runtime_enabled(rq);
12425 }
12426
rq_offline_fair(struct rq * rq)12427 static void rq_offline_fair(struct rq *rq)
12428 {
12429 update_sysctl();
12430
12431 /* Ensure any throttled groups are reachable by pick_next_task */
12432 unthrottle_offline_cfs_rqs(rq);
12433 }
12434
12435 #endif /* CONFIG_SMP */
12436
12437 #ifdef CONFIG_SCHED_CORE
12438 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)12439 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12440 {
12441 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12442 u64 slice = se->slice;
12443
12444 return (rtime * min_nr_tasks > slice);
12445 }
12446
12447 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
task_tick_core(struct rq * rq,struct task_struct * curr)12448 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12449 {
12450 if (!sched_core_enabled(rq))
12451 return;
12452
12453 /*
12454 * If runqueue has only one task which used up its slice and
12455 * if the sibling is forced idle, then trigger schedule to
12456 * give forced idle task a chance.
12457 *
12458 * sched_slice() considers only this active rq and it gets the
12459 * whole slice. But during force idle, we have siblings acting
12460 * like a single runqueue and hence we need to consider runnable
12461 * tasks on this CPU and the forced idle CPU. Ideally, we should
12462 * go through the forced idle rq, but that would be a perf hit.
12463 * We can assume that the forced idle CPU has at least
12464 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12465 * if we need to give up the CPU.
12466 */
12467 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12468 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12469 resched_curr(rq);
12470 }
12471
12472 /*
12473 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12474 */
se_fi_update(const struct sched_entity * se,unsigned int fi_seq,bool forceidle)12475 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12476 bool forceidle)
12477 {
12478 for_each_sched_entity(se) {
12479 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12480
12481 if (forceidle) {
12482 if (cfs_rq->forceidle_seq == fi_seq)
12483 break;
12484 cfs_rq->forceidle_seq = fi_seq;
12485 }
12486
12487 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12488 }
12489 }
12490
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)12491 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12492 {
12493 struct sched_entity *se = &p->se;
12494
12495 if (p->sched_class != &fair_sched_class)
12496 return;
12497
12498 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12499 }
12500
cfs_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)12501 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12502 bool in_fi)
12503 {
12504 struct rq *rq = task_rq(a);
12505 const struct sched_entity *sea = &a->se;
12506 const struct sched_entity *seb = &b->se;
12507 struct cfs_rq *cfs_rqa;
12508 struct cfs_rq *cfs_rqb;
12509 s64 delta;
12510
12511 SCHED_WARN_ON(task_rq(b)->core != rq->core);
12512
12513 #ifdef CONFIG_FAIR_GROUP_SCHED
12514 /*
12515 * Find an se in the hierarchy for tasks a and b, such that the se's
12516 * are immediate siblings.
12517 */
12518 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12519 int sea_depth = sea->depth;
12520 int seb_depth = seb->depth;
12521
12522 if (sea_depth >= seb_depth)
12523 sea = parent_entity(sea);
12524 if (sea_depth <= seb_depth)
12525 seb = parent_entity(seb);
12526 }
12527
12528 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12529 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12530
12531 cfs_rqa = sea->cfs_rq;
12532 cfs_rqb = seb->cfs_rq;
12533 #else
12534 cfs_rqa = &task_rq(a)->cfs;
12535 cfs_rqb = &task_rq(b)->cfs;
12536 #endif
12537
12538 /*
12539 * Find delta after normalizing se's vruntime with its cfs_rq's
12540 * min_vruntime_fi, which would have been updated in prior calls
12541 * to se_fi_update().
12542 */
12543 delta = (s64)(sea->vruntime - seb->vruntime) +
12544 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12545
12546 return delta > 0;
12547 }
12548
task_is_throttled_fair(struct task_struct * p,int cpu)12549 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12550 {
12551 struct cfs_rq *cfs_rq;
12552
12553 #ifdef CONFIG_FAIR_GROUP_SCHED
12554 cfs_rq = task_group(p)->cfs_rq[cpu];
12555 #else
12556 cfs_rq = &cpu_rq(cpu)->cfs;
12557 #endif
12558 return throttled_hierarchy(cfs_rq);
12559 }
12560 #else
task_tick_core(struct rq * rq,struct task_struct * curr)12561 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12562 #endif
12563
12564 /*
12565 * scheduler tick hitting a task of our scheduling class.
12566 *
12567 * NOTE: This function can be called remotely by the tick offload that
12568 * goes along full dynticks. Therefore no local assumption can be made
12569 * and everything must be accessed through the @rq and @curr passed in
12570 * parameters.
12571 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)12572 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12573 {
12574 struct cfs_rq *cfs_rq;
12575 struct sched_entity *se = &curr->se;
12576
12577 for_each_sched_entity(se) {
12578 cfs_rq = cfs_rq_of(se);
12579 entity_tick(cfs_rq, se, queued);
12580 }
12581
12582 if (static_branch_unlikely(&sched_numa_balancing))
12583 task_tick_numa(rq, curr);
12584
12585 update_misfit_status(curr, rq);
12586 check_update_overutilized_status(task_rq(curr));
12587
12588 task_tick_core(rq, curr);
12589 }
12590
12591 /*
12592 * called on fork with the child task as argument from the parent's context
12593 * - child not yet on the tasklist
12594 * - preemption disabled
12595 */
task_fork_fair(struct task_struct * p)12596 static void task_fork_fair(struct task_struct *p)
12597 {
12598 struct sched_entity *se = &p->se, *curr;
12599 struct cfs_rq *cfs_rq;
12600 struct rq *rq = this_rq();
12601 struct rq_flags rf;
12602
12603 rq_lock(rq, &rf);
12604 update_rq_clock(rq);
12605
12606 cfs_rq = task_cfs_rq(current);
12607 curr = cfs_rq->curr;
12608 if (curr)
12609 update_curr(cfs_rq);
12610 place_entity(cfs_rq, se, ENQUEUE_INITIAL);
12611 rq_unlock(rq, &rf);
12612 }
12613
12614 /*
12615 * Priority of the task has changed. Check to see if we preempt
12616 * the current task.
12617 */
12618 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)12619 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12620 {
12621 if (!task_on_rq_queued(p))
12622 return;
12623
12624 if (rq->cfs.nr_running == 1)
12625 return;
12626
12627 /*
12628 * Reschedule if we are currently running on this runqueue and
12629 * our priority decreased, or if we are not currently running on
12630 * this runqueue and our priority is higher than the current's
12631 */
12632 if (task_current(rq, p)) {
12633 if (p->prio > oldprio)
12634 resched_curr(rq);
12635 } else
12636 check_preempt_curr(rq, p, 0);
12637 }
12638
12639 #ifdef CONFIG_FAIR_GROUP_SCHED
12640 /*
12641 * Propagate the changes of the sched_entity across the tg tree to make it
12642 * visible to the root
12643 */
propagate_entity_cfs_rq(struct sched_entity * se)12644 static void propagate_entity_cfs_rq(struct sched_entity *se)
12645 {
12646 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12647
12648 if (cfs_rq_throttled(cfs_rq))
12649 return;
12650
12651 if (!throttled_hierarchy(cfs_rq))
12652 list_add_leaf_cfs_rq(cfs_rq);
12653
12654 /* Start to propagate at parent */
12655 se = se->parent;
12656
12657 for_each_sched_entity(se) {
12658 cfs_rq = cfs_rq_of(se);
12659
12660 update_load_avg(cfs_rq, se, UPDATE_TG);
12661
12662 if (cfs_rq_throttled(cfs_rq))
12663 break;
12664
12665 if (!throttled_hierarchy(cfs_rq))
12666 list_add_leaf_cfs_rq(cfs_rq);
12667 }
12668 }
12669 #else
propagate_entity_cfs_rq(struct sched_entity * se)12670 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12671 #endif
12672
detach_entity_cfs_rq(struct sched_entity * se)12673 static void detach_entity_cfs_rq(struct sched_entity *se)
12674 {
12675 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12676
12677 #ifdef CONFIG_SMP
12678 /*
12679 * In case the task sched_avg hasn't been attached:
12680 * - A forked task which hasn't been woken up by wake_up_new_task().
12681 * - A task which has been woken up by try_to_wake_up() but is
12682 * waiting for actually being woken up by sched_ttwu_pending().
12683 */
12684 if (!se->avg.last_update_time)
12685 return;
12686 #endif
12687
12688 /* Catch up with the cfs_rq and remove our load when we leave */
12689 update_load_avg(cfs_rq, se, 0);
12690 detach_entity_load_avg(cfs_rq, se);
12691 update_tg_load_avg(cfs_rq);
12692 propagate_entity_cfs_rq(se);
12693 }
12694
attach_entity_cfs_rq(struct sched_entity * se)12695 static void attach_entity_cfs_rq(struct sched_entity *se)
12696 {
12697 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12698
12699 /* Synchronize entity with its cfs_rq */
12700 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12701 attach_entity_load_avg(cfs_rq, se);
12702 update_tg_load_avg(cfs_rq);
12703 propagate_entity_cfs_rq(se);
12704 }
12705
detach_task_cfs_rq(struct task_struct * p)12706 static void detach_task_cfs_rq(struct task_struct *p)
12707 {
12708 struct sched_entity *se = &p->se;
12709
12710 detach_entity_cfs_rq(se);
12711 }
12712
attach_task_cfs_rq(struct task_struct * p)12713 static void attach_task_cfs_rq(struct task_struct *p)
12714 {
12715 struct sched_entity *se = &p->se;
12716
12717 attach_entity_cfs_rq(se);
12718 }
12719
switched_from_fair(struct rq * rq,struct task_struct * p)12720 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12721 {
12722 detach_task_cfs_rq(p);
12723 }
12724
switched_to_fair(struct rq * rq,struct task_struct * p)12725 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12726 {
12727 attach_task_cfs_rq(p);
12728
12729 if (task_on_rq_queued(p)) {
12730 /*
12731 * We were most likely switched from sched_rt, so
12732 * kick off the schedule if running, otherwise just see
12733 * if we can still preempt the current task.
12734 */
12735 if (task_current(rq, p))
12736 resched_curr(rq);
12737 else
12738 check_preempt_curr(rq, p, 0);
12739 }
12740 }
12741
12742 /* Account for a task changing its policy or group.
12743 *
12744 * This routine is mostly called to set cfs_rq->curr field when a task
12745 * migrates between groups/classes.
12746 */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)12747 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12748 {
12749 struct sched_entity *se = &p->se;
12750
12751 #ifdef CONFIG_SMP
12752 if (task_on_rq_queued(p)) {
12753 /*
12754 * Move the next running task to the front of the list, so our
12755 * cfs_tasks list becomes MRU one.
12756 */
12757 list_move(&se->group_node, &rq->cfs_tasks);
12758 }
12759 #endif
12760
12761 for_each_sched_entity(se) {
12762 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12763
12764 set_next_entity(cfs_rq, se);
12765 /* ensure bandwidth has been allocated on our new cfs_rq */
12766 account_cfs_rq_runtime(cfs_rq, 0);
12767 }
12768 }
12769
init_cfs_rq(struct cfs_rq * cfs_rq)12770 void init_cfs_rq(struct cfs_rq *cfs_rq)
12771 {
12772 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12773 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12774 #ifdef CONFIG_SMP
12775 raw_spin_lock_init(&cfs_rq->removed.lock);
12776 #endif
12777 }
12778
12779 #ifdef CONFIG_FAIR_GROUP_SCHED
task_change_group_fair(struct task_struct * p)12780 static void task_change_group_fair(struct task_struct *p)
12781 {
12782 /*
12783 * We couldn't detach or attach a forked task which
12784 * hasn't been woken up by wake_up_new_task().
12785 */
12786 if (READ_ONCE(p->__state) == TASK_NEW)
12787 return;
12788
12789 detach_task_cfs_rq(p);
12790
12791 #ifdef CONFIG_SMP
12792 /* Tell se's cfs_rq has been changed -- migrated */
12793 p->se.avg.last_update_time = 0;
12794 #endif
12795 set_task_rq(p, task_cpu(p));
12796 attach_task_cfs_rq(p);
12797 }
12798
free_fair_sched_group(struct task_group * tg)12799 void free_fair_sched_group(struct task_group *tg)
12800 {
12801 int i;
12802
12803 for_each_possible_cpu(i) {
12804 if (tg->cfs_rq)
12805 kfree(tg->cfs_rq[i]);
12806 if (tg->se)
12807 kfree(tg->se[i]);
12808 }
12809
12810 kfree(tg->cfs_rq);
12811 kfree(tg->se);
12812 }
12813
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)12814 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12815 {
12816 struct sched_entity *se;
12817 struct cfs_rq *cfs_rq;
12818 int i;
12819
12820 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12821 if (!tg->cfs_rq)
12822 goto err;
12823 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12824 if (!tg->se)
12825 goto err;
12826
12827 tg->shares = NICE_0_LOAD;
12828
12829 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
12830
12831 for_each_possible_cpu(i) {
12832 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12833 GFP_KERNEL, cpu_to_node(i));
12834 if (!cfs_rq)
12835 goto err;
12836
12837 se = kzalloc_node(sizeof(struct sched_entity_stats),
12838 GFP_KERNEL, cpu_to_node(i));
12839 if (!se)
12840 goto err_free_rq;
12841
12842 init_cfs_rq(cfs_rq);
12843 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12844 init_entity_runnable_average(se);
12845 }
12846
12847 return 1;
12848
12849 err_free_rq:
12850 kfree(cfs_rq);
12851 err:
12852 return 0;
12853 }
12854
online_fair_sched_group(struct task_group * tg)12855 void online_fair_sched_group(struct task_group *tg)
12856 {
12857 struct sched_entity *se;
12858 struct rq_flags rf;
12859 struct rq *rq;
12860 int i;
12861
12862 for_each_possible_cpu(i) {
12863 rq = cpu_rq(i);
12864 se = tg->se[i];
12865 rq_lock_irq(rq, &rf);
12866 update_rq_clock(rq);
12867 attach_entity_cfs_rq(se);
12868 sync_throttle(tg, i);
12869 rq_unlock_irq(rq, &rf);
12870 }
12871 }
12872
unregister_fair_sched_group(struct task_group * tg)12873 void unregister_fair_sched_group(struct task_group *tg)
12874 {
12875 unsigned long flags;
12876 struct rq *rq;
12877 int cpu;
12878
12879 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12880
12881 for_each_possible_cpu(cpu) {
12882 if (tg->se[cpu])
12883 remove_entity_load_avg(tg->se[cpu]);
12884
12885 /*
12886 * Only empty task groups can be destroyed; so we can speculatively
12887 * check on_list without danger of it being re-added.
12888 */
12889 if (!tg->cfs_rq[cpu]->on_list)
12890 continue;
12891
12892 rq = cpu_rq(cpu);
12893
12894 raw_spin_rq_lock_irqsave(rq, flags);
12895 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12896 raw_spin_rq_unlock_irqrestore(rq, flags);
12897 }
12898 }
12899
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)12900 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12901 struct sched_entity *se, int cpu,
12902 struct sched_entity *parent)
12903 {
12904 struct rq *rq = cpu_rq(cpu);
12905
12906 cfs_rq->tg = tg;
12907 cfs_rq->rq = rq;
12908 init_cfs_rq_runtime(cfs_rq);
12909
12910 tg->cfs_rq[cpu] = cfs_rq;
12911 tg->se[cpu] = se;
12912
12913 /* se could be NULL for root_task_group */
12914 if (!se)
12915 return;
12916
12917 if (!parent) {
12918 se->cfs_rq = &rq->cfs;
12919 se->depth = 0;
12920 } else {
12921 se->cfs_rq = parent->my_q;
12922 se->depth = parent->depth + 1;
12923 }
12924
12925 se->my_q = cfs_rq;
12926 /* guarantee group entities always have weight */
12927 update_load_set(&se->load, NICE_0_LOAD);
12928 se->parent = parent;
12929 }
12930
12931 static DEFINE_MUTEX(shares_mutex);
12932
__sched_group_set_shares(struct task_group * tg,unsigned long shares)12933 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12934 {
12935 int i;
12936
12937 lockdep_assert_held(&shares_mutex);
12938
12939 /*
12940 * We can't change the weight of the root cgroup.
12941 */
12942 if (!tg->se[0])
12943 return -EINVAL;
12944
12945 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12946
12947 if (tg->shares == shares)
12948 return 0;
12949
12950 tg->shares = shares;
12951 for_each_possible_cpu(i) {
12952 struct rq *rq = cpu_rq(i);
12953 struct sched_entity *se = tg->se[i];
12954 struct rq_flags rf;
12955
12956 /* Propagate contribution to hierarchy */
12957 rq_lock_irqsave(rq, &rf);
12958 update_rq_clock(rq);
12959 for_each_sched_entity(se) {
12960 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12961 update_cfs_group(se);
12962 }
12963 rq_unlock_irqrestore(rq, &rf);
12964 }
12965
12966 return 0;
12967 }
12968
sched_group_set_shares(struct task_group * tg,unsigned long shares)12969 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
12970 {
12971 int ret;
12972
12973 mutex_lock(&shares_mutex);
12974 if (tg_is_idle(tg))
12975 ret = -EINVAL;
12976 else
12977 ret = __sched_group_set_shares(tg, shares);
12978 mutex_unlock(&shares_mutex);
12979
12980 return ret;
12981 }
12982
sched_group_set_idle(struct task_group * tg,long idle)12983 int sched_group_set_idle(struct task_group *tg, long idle)
12984 {
12985 int i;
12986
12987 if (tg == &root_task_group)
12988 return -EINVAL;
12989
12990 if (idle < 0 || idle > 1)
12991 return -EINVAL;
12992
12993 mutex_lock(&shares_mutex);
12994
12995 if (tg->idle == idle) {
12996 mutex_unlock(&shares_mutex);
12997 return 0;
12998 }
12999
13000 tg->idle = idle;
13001
13002 for_each_possible_cpu(i) {
13003 struct rq *rq = cpu_rq(i);
13004 struct sched_entity *se = tg->se[i];
13005 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13006 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13007 long idle_task_delta;
13008 struct rq_flags rf;
13009
13010 rq_lock_irqsave(rq, &rf);
13011
13012 grp_cfs_rq->idle = idle;
13013 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13014 goto next_cpu;
13015
13016 if (se->on_rq) {
13017 parent_cfs_rq = cfs_rq_of(se);
13018 if (cfs_rq_is_idle(grp_cfs_rq))
13019 parent_cfs_rq->idle_nr_running++;
13020 else
13021 parent_cfs_rq->idle_nr_running--;
13022 }
13023
13024 idle_task_delta = grp_cfs_rq->h_nr_running -
13025 grp_cfs_rq->idle_h_nr_running;
13026 if (!cfs_rq_is_idle(grp_cfs_rq))
13027 idle_task_delta *= -1;
13028
13029 for_each_sched_entity(se) {
13030 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13031
13032 if (!se->on_rq)
13033 break;
13034
13035 cfs_rq->idle_h_nr_running += idle_task_delta;
13036
13037 /* Already accounted at parent level and above. */
13038 if (cfs_rq_is_idle(cfs_rq))
13039 break;
13040 }
13041
13042 next_cpu:
13043 rq_unlock_irqrestore(rq, &rf);
13044 }
13045
13046 /* Idle groups have minimum weight. */
13047 if (tg_is_idle(tg))
13048 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13049 else
13050 __sched_group_set_shares(tg, NICE_0_LOAD);
13051
13052 mutex_unlock(&shares_mutex);
13053 return 0;
13054 }
13055
13056 #else /* CONFIG_FAIR_GROUP_SCHED */
13057
free_fair_sched_group(struct task_group * tg)13058 void free_fair_sched_group(struct task_group *tg) { }
13059
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)13060 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13061 {
13062 return 1;
13063 }
13064
online_fair_sched_group(struct task_group * tg)13065 void online_fair_sched_group(struct task_group *tg) { }
13066
unregister_fair_sched_group(struct task_group * tg)13067 void unregister_fair_sched_group(struct task_group *tg) { }
13068
13069 #endif /* CONFIG_FAIR_GROUP_SCHED */
13070
13071
get_rr_interval_fair(struct rq * rq,struct task_struct * task)13072 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13073 {
13074 struct sched_entity *se = &task->se;
13075 unsigned int rr_interval = 0;
13076
13077 /*
13078 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13079 * idle runqueue:
13080 */
13081 if (rq->cfs.load.weight)
13082 rr_interval = NS_TO_JIFFIES(se->slice);
13083
13084 return rr_interval;
13085 }
13086
13087 /*
13088 * All the scheduling class methods:
13089 */
13090 DEFINE_SCHED_CLASS(fair) = {
13091
13092 .enqueue_task = enqueue_task_fair,
13093 .dequeue_task = dequeue_task_fair,
13094 .yield_task = yield_task_fair,
13095 .yield_to_task = yield_to_task_fair,
13096
13097 .check_preempt_curr = check_preempt_wakeup,
13098
13099 .pick_next_task = __pick_next_task_fair,
13100 .put_prev_task = put_prev_task_fair,
13101 .set_next_task = set_next_task_fair,
13102
13103 #ifdef CONFIG_SMP
13104 .balance = balance_fair,
13105 .pick_task = pick_task_fair,
13106 .select_task_rq = select_task_rq_fair,
13107 .migrate_task_rq = migrate_task_rq_fair,
13108
13109 .rq_online = rq_online_fair,
13110 .rq_offline = rq_offline_fair,
13111
13112 .task_dead = task_dead_fair,
13113 .set_cpus_allowed = set_cpus_allowed_common,
13114 #endif
13115
13116 .task_tick = task_tick_fair,
13117 .task_fork = task_fork_fair,
13118
13119 .prio_changed = prio_changed_fair,
13120 .switched_from = switched_from_fair,
13121 .switched_to = switched_to_fair,
13122
13123 .get_rr_interval = get_rr_interval_fair,
13124
13125 .update_curr = update_curr_fair,
13126
13127 #ifdef CONFIG_FAIR_GROUP_SCHED
13128 .task_change_group = task_change_group_fair,
13129 #endif
13130
13131 #ifdef CONFIG_SCHED_CORE
13132 .task_is_throttled = task_is_throttled_fair,
13133 #endif
13134
13135 #ifdef CONFIG_UCLAMP_TASK
13136 .uclamp_enabled = 1,
13137 #endif
13138 };
13139
13140 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)13141 void print_cfs_stats(struct seq_file *m, int cpu)
13142 {
13143 struct cfs_rq *cfs_rq, *pos;
13144
13145 rcu_read_lock();
13146 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13147 print_cfs_rq(m, cpu, cfs_rq);
13148 rcu_read_unlock();
13149 }
13150
13151 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)13152 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13153 {
13154 int node;
13155 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13156 struct numa_group *ng;
13157
13158 rcu_read_lock();
13159 ng = rcu_dereference(p->numa_group);
13160 for_each_online_node(node) {
13161 if (p->numa_faults) {
13162 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13163 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13164 }
13165 if (ng) {
13166 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13167 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13168 }
13169 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13170 }
13171 rcu_read_unlock();
13172 }
13173 #endif /* CONFIG_NUMA_BALANCING */
13174 #endif /* CONFIG_SCHED_DEBUG */
13175
init_sched_fair_class(void)13176 __init void init_sched_fair_class(void)
13177 {
13178 #ifdef CONFIG_SMP
13179 int i;
13180
13181 for_each_possible_cpu(i) {
13182 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13183 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i));
13184 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13185 GFP_KERNEL, cpu_to_node(i));
13186
13187 #ifdef CONFIG_CFS_BANDWIDTH
13188 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13189 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13190 #endif
13191 }
13192
13193 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
13194
13195 #ifdef CONFIG_NO_HZ_COMMON
13196 nohz.next_balance = jiffies;
13197 nohz.next_blocked = jiffies;
13198 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13199 #endif
13200 #endif /* SMP */
13201
13202 }
13203