1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * super.c
4 *
5 * PURPOSE
6 * Super block routines for the OSTA-UDF(tm) filesystem.
7 *
8 * DESCRIPTION
9 * OSTA-UDF(tm) = Optical Storage Technology Association
10 * Universal Disk Format.
11 *
12 * This code is based on version 2.00 of the UDF specification,
13 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
14 * http://www.osta.org/
15 * https://www.ecma.ch/
16 * https://www.iso.org/
17 *
18 * COPYRIGHT
19 * (C) 1998 Dave Boynton
20 * (C) 1998-2004 Ben Fennema
21 * (C) 2000 Stelias Computing Inc
22 *
23 * HISTORY
24 *
25 * 09/24/98 dgb changed to allow compiling outside of kernel, and
26 * added some debugging.
27 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
28 * 10/16/98 attempting some multi-session support
29 * 10/17/98 added freespace count for "df"
30 * 11/11/98 gr added novrs option
31 * 11/26/98 dgb added fileset,anchor mount options
32 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
33 * vol descs. rewrote option handling based on isofs
34 * 12/20/98 find the free space bitmap (if it exists)
35 */
36
37 #include "udfdecl.h"
38
39 #include <linux/blkdev.h>
40 #include <linux/slab.h>
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/parser.h>
44 #include <linux/stat.h>
45 #include <linux/cdrom.h>
46 #include <linux/nls.h>
47 #include <linux/vfs.h>
48 #include <linux/vmalloc.h>
49 #include <linux/errno.h>
50 #include <linux/mount.h>
51 #include <linux/seq_file.h>
52 #include <linux/bitmap.h>
53 #include <linux/crc-itu-t.h>
54 #include <linux/log2.h>
55 #include <asm/byteorder.h>
56 #include <linux/iversion.h>
57
58 #include "udf_sb.h"
59 #include "udf_i.h"
60
61 #include <linux/init.h>
62 #include <linux/uaccess.h>
63
64 enum {
65 VDS_POS_PRIMARY_VOL_DESC,
66 VDS_POS_UNALLOC_SPACE_DESC,
67 VDS_POS_LOGICAL_VOL_DESC,
68 VDS_POS_IMP_USE_VOL_DESC,
69 VDS_POS_LENGTH
70 };
71
72 #define VSD_FIRST_SECTOR_OFFSET 32768
73 #define VSD_MAX_SECTOR_OFFSET 0x800000
74
75 /*
76 * Maximum number of Terminating Descriptor / Logical Volume Integrity
77 * Descriptor redirections. The chosen numbers are arbitrary - just that we
78 * hopefully don't limit any real use of rewritten inode on write-once media
79 * but avoid looping for too long on corrupted media.
80 */
81 #define UDF_MAX_TD_NESTING 64
82 #define UDF_MAX_LVID_NESTING 1000
83
84 enum { UDF_MAX_LINKS = 0xffff };
85 /*
86 * We limit filesize to 4TB. This is arbitrary as the on-disk format supports
87 * more but because the file space is described by a linked list of extents,
88 * each of which can have at most 1GB, the creation and handling of extents
89 * gets unusably slow beyond certain point...
90 */
91 #define UDF_MAX_FILESIZE (1ULL << 42)
92
93 /* These are the "meat" - everything else is stuffing */
94 static int udf_fill_super(struct super_block *, void *, int);
95 static void udf_put_super(struct super_block *);
96 static int udf_sync_fs(struct super_block *, int);
97 static int udf_remount_fs(struct super_block *, int *, char *);
98 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
99 static void udf_open_lvid(struct super_block *);
100 static void udf_close_lvid(struct super_block *);
101 static unsigned int udf_count_free(struct super_block *);
102 static int udf_statfs(struct dentry *, struct kstatfs *);
103 static int udf_show_options(struct seq_file *, struct dentry *);
104
udf_sb_lvidiu(struct super_block * sb)105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106 {
107 struct logicalVolIntegrityDesc *lvid;
108 unsigned int partnum;
109 unsigned int offset;
110
111 if (!UDF_SB(sb)->s_lvid_bh)
112 return NULL;
113 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114 partnum = le32_to_cpu(lvid->numOfPartitions);
115 /* The offset is to skip freeSpaceTable and sizeTable arrays */
116 offset = partnum * 2 * sizeof(uint32_t);
117 return (struct logicalVolIntegrityDescImpUse *)
118 (((uint8_t *)(lvid + 1)) + offset);
119 }
120
121 /* UDF filesystem type */
udf_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)122 static struct dentry *udf_mount(struct file_system_type *fs_type,
123 int flags, const char *dev_name, void *data)
124 {
125 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
126 }
127
128 static struct file_system_type udf_fstype = {
129 .owner = THIS_MODULE,
130 .name = "udf",
131 .mount = udf_mount,
132 .kill_sb = kill_block_super,
133 .fs_flags = FS_REQUIRES_DEV,
134 };
135 MODULE_ALIAS_FS("udf");
136
137 static struct kmem_cache *udf_inode_cachep;
138
udf_alloc_inode(struct super_block * sb)139 static struct inode *udf_alloc_inode(struct super_block *sb)
140 {
141 struct udf_inode_info *ei;
142 ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
143 if (!ei)
144 return NULL;
145
146 ei->i_unique = 0;
147 ei->i_lenExtents = 0;
148 ei->i_lenStreams = 0;
149 ei->i_next_alloc_block = 0;
150 ei->i_next_alloc_goal = 0;
151 ei->i_strat4096 = 0;
152 ei->i_streamdir = 0;
153 ei->i_hidden = 0;
154 init_rwsem(&ei->i_data_sem);
155 ei->cached_extent.lstart = -1;
156 spin_lock_init(&ei->i_extent_cache_lock);
157 inode_set_iversion(&ei->vfs_inode, 1);
158
159 return &ei->vfs_inode;
160 }
161
udf_free_in_core_inode(struct inode * inode)162 static void udf_free_in_core_inode(struct inode *inode)
163 {
164 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
165 }
166
init_once(void * foo)167 static void init_once(void *foo)
168 {
169 struct udf_inode_info *ei = foo;
170
171 ei->i_data = NULL;
172 inode_init_once(&ei->vfs_inode);
173 }
174
init_inodecache(void)175 static int __init init_inodecache(void)
176 {
177 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
178 sizeof(struct udf_inode_info),
179 0, (SLAB_RECLAIM_ACCOUNT |
180 SLAB_MEM_SPREAD |
181 SLAB_ACCOUNT),
182 init_once);
183 if (!udf_inode_cachep)
184 return -ENOMEM;
185 return 0;
186 }
187
destroy_inodecache(void)188 static void destroy_inodecache(void)
189 {
190 /*
191 * Make sure all delayed rcu free inodes are flushed before we
192 * destroy cache.
193 */
194 rcu_barrier();
195 kmem_cache_destroy(udf_inode_cachep);
196 }
197
198 /* Superblock operations */
199 static const struct super_operations udf_sb_ops = {
200 .alloc_inode = udf_alloc_inode,
201 .free_inode = udf_free_in_core_inode,
202 .write_inode = udf_write_inode,
203 .evict_inode = udf_evict_inode,
204 .put_super = udf_put_super,
205 .sync_fs = udf_sync_fs,
206 .statfs = udf_statfs,
207 .remount_fs = udf_remount_fs,
208 .show_options = udf_show_options,
209 };
210
211 struct udf_options {
212 unsigned char novrs;
213 unsigned int blocksize;
214 unsigned int session;
215 unsigned int lastblock;
216 unsigned int anchor;
217 unsigned int flags;
218 umode_t umask;
219 kgid_t gid;
220 kuid_t uid;
221 umode_t fmode;
222 umode_t dmode;
223 struct nls_table *nls_map;
224 };
225
init_udf_fs(void)226 static int __init init_udf_fs(void)
227 {
228 int err;
229
230 err = init_inodecache();
231 if (err)
232 goto out1;
233 err = register_filesystem(&udf_fstype);
234 if (err)
235 goto out;
236
237 return 0;
238
239 out:
240 destroy_inodecache();
241
242 out1:
243 return err;
244 }
245
exit_udf_fs(void)246 static void __exit exit_udf_fs(void)
247 {
248 unregister_filesystem(&udf_fstype);
249 destroy_inodecache();
250 }
251
udf_sb_alloc_partition_maps(struct super_block * sb,u32 count)252 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
253 {
254 struct udf_sb_info *sbi = UDF_SB(sb);
255
256 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
257 if (!sbi->s_partmaps) {
258 sbi->s_partitions = 0;
259 return -ENOMEM;
260 }
261
262 sbi->s_partitions = count;
263 return 0;
264 }
265
udf_sb_free_bitmap(struct udf_bitmap * bitmap)266 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
267 {
268 int i;
269 int nr_groups = bitmap->s_nr_groups;
270
271 for (i = 0; i < nr_groups; i++)
272 if (!IS_ERR_OR_NULL(bitmap->s_block_bitmap[i]))
273 brelse(bitmap->s_block_bitmap[i]);
274
275 kvfree(bitmap);
276 }
277
udf_free_partition(struct udf_part_map * map)278 static void udf_free_partition(struct udf_part_map *map)
279 {
280 int i;
281 struct udf_meta_data *mdata;
282
283 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
284 iput(map->s_uspace.s_table);
285 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
286 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
287 if (map->s_partition_type == UDF_SPARABLE_MAP15)
288 for (i = 0; i < 4; i++)
289 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
290 else if (map->s_partition_type == UDF_METADATA_MAP25) {
291 mdata = &map->s_type_specific.s_metadata;
292 iput(mdata->s_metadata_fe);
293 mdata->s_metadata_fe = NULL;
294
295 iput(mdata->s_mirror_fe);
296 mdata->s_mirror_fe = NULL;
297
298 iput(mdata->s_bitmap_fe);
299 mdata->s_bitmap_fe = NULL;
300 }
301 }
302
udf_sb_free_partitions(struct super_block * sb)303 static void udf_sb_free_partitions(struct super_block *sb)
304 {
305 struct udf_sb_info *sbi = UDF_SB(sb);
306 int i;
307
308 if (!sbi->s_partmaps)
309 return;
310 for (i = 0; i < sbi->s_partitions; i++)
311 udf_free_partition(&sbi->s_partmaps[i]);
312 kfree(sbi->s_partmaps);
313 sbi->s_partmaps = NULL;
314 }
315
udf_show_options(struct seq_file * seq,struct dentry * root)316 static int udf_show_options(struct seq_file *seq, struct dentry *root)
317 {
318 struct super_block *sb = root->d_sb;
319 struct udf_sb_info *sbi = UDF_SB(sb);
320
321 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
322 seq_puts(seq, ",nostrict");
323 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
324 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
325 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
326 seq_puts(seq, ",unhide");
327 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
328 seq_puts(seq, ",undelete");
329 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
330 seq_puts(seq, ",noadinicb");
331 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
332 seq_puts(seq, ",shortad");
333 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
334 seq_puts(seq, ",uid=forget");
335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
336 seq_puts(seq, ",gid=forget");
337 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
338 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
339 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
340 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
341 if (sbi->s_umask != 0)
342 seq_printf(seq, ",umask=%ho", sbi->s_umask);
343 if (sbi->s_fmode != UDF_INVALID_MODE)
344 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
345 if (sbi->s_dmode != UDF_INVALID_MODE)
346 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
348 seq_printf(seq, ",session=%d", sbi->s_session);
349 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
350 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
351 if (sbi->s_anchor != 0)
352 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
353 if (sbi->s_nls_map)
354 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
355 else
356 seq_puts(seq, ",iocharset=utf8");
357
358 return 0;
359 }
360
361 /*
362 * udf_parse_options
363 *
364 * PURPOSE
365 * Parse mount options.
366 *
367 * DESCRIPTION
368 * The following mount options are supported:
369 *
370 * gid= Set the default group.
371 * umask= Set the default umask.
372 * mode= Set the default file permissions.
373 * dmode= Set the default directory permissions.
374 * uid= Set the default user.
375 * bs= Set the block size.
376 * unhide Show otherwise hidden files.
377 * undelete Show deleted files in lists.
378 * adinicb Embed data in the inode (default)
379 * noadinicb Don't embed data in the inode
380 * shortad Use short ad's
381 * longad Use long ad's (default)
382 * nostrict Unset strict conformance
383 * iocharset= Set the NLS character set
384 *
385 * The remaining are for debugging and disaster recovery:
386 *
387 * novrs Skip volume sequence recognition
388 *
389 * The following expect a offset from 0.
390 *
391 * session= Set the CDROM session (default= last session)
392 * anchor= Override standard anchor location. (default= 256)
393 * volume= Override the VolumeDesc location. (unused)
394 * partition= Override the PartitionDesc location. (unused)
395 * lastblock= Set the last block of the filesystem/
396 *
397 * The following expect a offset from the partition root.
398 *
399 * fileset= Override the fileset block location. (unused)
400 * rootdir= Override the root directory location. (unused)
401 * WARNING: overriding the rootdir to a non-directory may
402 * yield highly unpredictable results.
403 *
404 * PRE-CONDITIONS
405 * options Pointer to mount options string.
406 * uopts Pointer to mount options variable.
407 *
408 * POST-CONDITIONS
409 * <return> 1 Mount options parsed okay.
410 * <return> 0 Error parsing mount options.
411 *
412 * HISTORY
413 * July 1, 1997 - Andrew E. Mileski
414 * Written, tested, and released.
415 */
416
417 enum {
418 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
419 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
420 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
421 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
422 Opt_rootdir, Opt_utf8, Opt_iocharset,
423 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
424 Opt_fmode, Opt_dmode
425 };
426
427 static const match_table_t tokens = {
428 {Opt_novrs, "novrs"},
429 {Opt_nostrict, "nostrict"},
430 {Opt_bs, "bs=%u"},
431 {Opt_unhide, "unhide"},
432 {Opt_undelete, "undelete"},
433 {Opt_noadinicb, "noadinicb"},
434 {Opt_adinicb, "adinicb"},
435 {Opt_shortad, "shortad"},
436 {Opt_longad, "longad"},
437 {Opt_uforget, "uid=forget"},
438 {Opt_uignore, "uid=ignore"},
439 {Opt_gforget, "gid=forget"},
440 {Opt_gignore, "gid=ignore"},
441 {Opt_gid, "gid=%u"},
442 {Opt_uid, "uid=%u"},
443 {Opt_umask, "umask=%o"},
444 {Opt_session, "session=%u"},
445 {Opt_lastblock, "lastblock=%u"},
446 {Opt_anchor, "anchor=%u"},
447 {Opt_volume, "volume=%u"},
448 {Opt_partition, "partition=%u"},
449 {Opt_fileset, "fileset=%u"},
450 {Opt_rootdir, "rootdir=%u"},
451 {Opt_utf8, "utf8"},
452 {Opt_iocharset, "iocharset=%s"},
453 {Opt_fmode, "mode=%o"},
454 {Opt_dmode, "dmode=%o"},
455 {Opt_err, NULL}
456 };
457
udf_parse_options(char * options,struct udf_options * uopt,bool remount)458 static int udf_parse_options(char *options, struct udf_options *uopt,
459 bool remount)
460 {
461 char *p;
462 int option;
463 unsigned int uv;
464
465 uopt->novrs = 0;
466 uopt->session = 0xFFFFFFFF;
467 uopt->lastblock = 0;
468 uopt->anchor = 0;
469
470 if (!options)
471 return 1;
472
473 while ((p = strsep(&options, ",")) != NULL) {
474 substring_t args[MAX_OPT_ARGS];
475 int token;
476 unsigned n;
477 if (!*p)
478 continue;
479
480 token = match_token(p, tokens, args);
481 switch (token) {
482 case Opt_novrs:
483 uopt->novrs = 1;
484 break;
485 case Opt_bs:
486 if (match_int(&args[0], &option))
487 return 0;
488 n = option;
489 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
490 return 0;
491 uopt->blocksize = n;
492 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
493 break;
494 case Opt_unhide:
495 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
496 break;
497 case Opt_undelete:
498 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
499 break;
500 case Opt_noadinicb:
501 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
502 break;
503 case Opt_adinicb:
504 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
505 break;
506 case Opt_shortad:
507 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
508 break;
509 case Opt_longad:
510 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
511 break;
512 case Opt_gid:
513 if (match_uint(args, &uv))
514 return 0;
515 uopt->gid = make_kgid(current_user_ns(), uv);
516 if (!gid_valid(uopt->gid))
517 return 0;
518 uopt->flags |= (1 << UDF_FLAG_GID_SET);
519 break;
520 case Opt_uid:
521 if (match_uint(args, &uv))
522 return 0;
523 uopt->uid = make_kuid(current_user_ns(), uv);
524 if (!uid_valid(uopt->uid))
525 return 0;
526 uopt->flags |= (1 << UDF_FLAG_UID_SET);
527 break;
528 case Opt_umask:
529 if (match_octal(args, &option))
530 return 0;
531 uopt->umask = option;
532 break;
533 case Opt_nostrict:
534 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
535 break;
536 case Opt_session:
537 if (match_int(args, &option))
538 return 0;
539 uopt->session = option;
540 if (!remount)
541 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
542 break;
543 case Opt_lastblock:
544 if (match_int(args, &option))
545 return 0;
546 uopt->lastblock = option;
547 if (!remount)
548 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
549 break;
550 case Opt_anchor:
551 if (match_int(args, &option))
552 return 0;
553 uopt->anchor = option;
554 break;
555 case Opt_volume:
556 case Opt_partition:
557 case Opt_fileset:
558 case Opt_rootdir:
559 /* Ignored (never implemented properly) */
560 break;
561 case Opt_utf8:
562 if (!remount) {
563 unload_nls(uopt->nls_map);
564 uopt->nls_map = NULL;
565 }
566 break;
567 case Opt_iocharset:
568 if (!remount) {
569 unload_nls(uopt->nls_map);
570 uopt->nls_map = NULL;
571 }
572 /* When nls_map is not loaded then UTF-8 is used */
573 if (!remount && strcmp(args[0].from, "utf8") != 0) {
574 uopt->nls_map = load_nls(args[0].from);
575 if (!uopt->nls_map) {
576 pr_err("iocharset %s not found\n",
577 args[0].from);
578 return 0;
579 }
580 }
581 break;
582 case Opt_uforget:
583 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
584 break;
585 case Opt_uignore:
586 case Opt_gignore:
587 /* These options are superseeded by uid=<number> */
588 break;
589 case Opt_gforget:
590 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
591 break;
592 case Opt_fmode:
593 if (match_octal(args, &option))
594 return 0;
595 uopt->fmode = option & 0777;
596 break;
597 case Opt_dmode:
598 if (match_octal(args, &option))
599 return 0;
600 uopt->dmode = option & 0777;
601 break;
602 default:
603 pr_err("bad mount option \"%s\" or missing value\n", p);
604 return 0;
605 }
606 }
607 return 1;
608 }
609
udf_remount_fs(struct super_block * sb,int * flags,char * options)610 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
611 {
612 struct udf_options uopt;
613 struct udf_sb_info *sbi = UDF_SB(sb);
614 int error = 0;
615
616 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
617 return -EACCES;
618
619 sync_filesystem(sb);
620
621 uopt.flags = sbi->s_flags;
622 uopt.uid = sbi->s_uid;
623 uopt.gid = sbi->s_gid;
624 uopt.umask = sbi->s_umask;
625 uopt.fmode = sbi->s_fmode;
626 uopt.dmode = sbi->s_dmode;
627 uopt.nls_map = NULL;
628
629 if (!udf_parse_options(options, &uopt, true))
630 return -EINVAL;
631
632 write_lock(&sbi->s_cred_lock);
633 sbi->s_flags = uopt.flags;
634 sbi->s_uid = uopt.uid;
635 sbi->s_gid = uopt.gid;
636 sbi->s_umask = uopt.umask;
637 sbi->s_fmode = uopt.fmode;
638 sbi->s_dmode = uopt.dmode;
639 write_unlock(&sbi->s_cred_lock);
640
641 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
642 goto out_unlock;
643
644 if (*flags & SB_RDONLY)
645 udf_close_lvid(sb);
646 else
647 udf_open_lvid(sb);
648
649 out_unlock:
650 return error;
651 }
652
653 /*
654 * Check VSD descriptor. Returns -1 in case we are at the end of volume
655 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
656 * we found one of NSR descriptors we are looking for.
657 */
identify_vsd(const struct volStructDesc * vsd)658 static int identify_vsd(const struct volStructDesc *vsd)
659 {
660 int ret = 0;
661
662 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
663 switch (vsd->structType) {
664 case 0:
665 udf_debug("ISO9660 Boot Record found\n");
666 break;
667 case 1:
668 udf_debug("ISO9660 Primary Volume Descriptor found\n");
669 break;
670 case 2:
671 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
672 break;
673 case 3:
674 udf_debug("ISO9660 Volume Partition Descriptor found\n");
675 break;
676 case 255:
677 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
678 break;
679 default:
680 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
681 break;
682 }
683 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
684 ; /* ret = 0 */
685 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
686 ret = 1;
687 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
688 ret = 1;
689 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
690 ; /* ret = 0 */
691 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
692 ; /* ret = 0 */
693 else {
694 /* TEA01 or invalid id : end of volume recognition area */
695 ret = -1;
696 }
697
698 return ret;
699 }
700
701 /*
702 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
703 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
704 * @return 1 if NSR02 or NSR03 found,
705 * -1 if first sector read error, 0 otherwise
706 */
udf_check_vsd(struct super_block * sb)707 static int udf_check_vsd(struct super_block *sb)
708 {
709 struct volStructDesc *vsd = NULL;
710 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
711 int sectorsize;
712 struct buffer_head *bh = NULL;
713 int nsr = 0;
714 struct udf_sb_info *sbi;
715 loff_t session_offset;
716
717 sbi = UDF_SB(sb);
718 if (sb->s_blocksize < sizeof(struct volStructDesc))
719 sectorsize = sizeof(struct volStructDesc);
720 else
721 sectorsize = sb->s_blocksize;
722
723 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
724 sector += session_offset;
725
726 udf_debug("Starting at sector %u (%lu byte sectors)\n",
727 (unsigned int)(sector >> sb->s_blocksize_bits),
728 sb->s_blocksize);
729 /* Process the sequence (if applicable). The hard limit on the sector
730 * offset is arbitrary, hopefully large enough so that all valid UDF
731 * filesystems will be recognised. There is no mention of an upper
732 * bound to the size of the volume recognition area in the standard.
733 * The limit will prevent the code to read all the sectors of a
734 * specially crafted image (like a bluray disc full of CD001 sectors),
735 * potentially causing minutes or even hours of uninterruptible I/O
736 * activity. This actually happened with uninitialised SSD partitions
737 * (all 0xFF) before the check for the limit and all valid IDs were
738 * added */
739 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
740 /* Read a block */
741 bh = sb_bread(sb, sector >> sb->s_blocksize_bits);
742 if (!bh)
743 break;
744
745 vsd = (struct volStructDesc *)(bh->b_data +
746 (sector & (sb->s_blocksize - 1)));
747 nsr = identify_vsd(vsd);
748 /* Found NSR or end? */
749 if (nsr) {
750 brelse(bh);
751 break;
752 }
753 /*
754 * Special handling for improperly formatted VRS (e.g., Win10)
755 * where components are separated by 2048 bytes even though
756 * sectors are 4K
757 */
758 if (sb->s_blocksize == 4096) {
759 nsr = identify_vsd(vsd + 1);
760 /* Ignore unknown IDs... */
761 if (nsr < 0)
762 nsr = 0;
763 }
764 brelse(bh);
765 }
766
767 if (nsr > 0)
768 return 1;
769 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
770 return -1;
771 else
772 return 0;
773 }
774
udf_verify_domain_identifier(struct super_block * sb,struct regid * ident,char * dname)775 static int udf_verify_domain_identifier(struct super_block *sb,
776 struct regid *ident, char *dname)
777 {
778 struct domainIdentSuffix *suffix;
779
780 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
781 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
782 goto force_ro;
783 }
784 if (ident->flags & ENTITYID_FLAGS_DIRTY) {
785 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
786 dname);
787 goto force_ro;
788 }
789 suffix = (struct domainIdentSuffix *)ident->identSuffix;
790 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
791 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
792 if (!sb_rdonly(sb)) {
793 udf_warn(sb, "Descriptor for %s marked write protected."
794 " Forcing read only mount.\n", dname);
795 }
796 goto force_ro;
797 }
798 return 0;
799
800 force_ro:
801 if (!sb_rdonly(sb))
802 return -EACCES;
803 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
804 return 0;
805 }
806
udf_load_fileset(struct super_block * sb,struct fileSetDesc * fset,struct kernel_lb_addr * root)807 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
808 struct kernel_lb_addr *root)
809 {
810 int ret;
811
812 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
813 if (ret < 0)
814 return ret;
815
816 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
817 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
818
819 udf_debug("Rootdir at block=%u, partition=%u\n",
820 root->logicalBlockNum, root->partitionReferenceNum);
821 return 0;
822 }
823
udf_find_fileset(struct super_block * sb,struct kernel_lb_addr * fileset,struct kernel_lb_addr * root)824 static int udf_find_fileset(struct super_block *sb,
825 struct kernel_lb_addr *fileset,
826 struct kernel_lb_addr *root)
827 {
828 struct buffer_head *bh;
829 uint16_t ident;
830 int ret;
831
832 if (fileset->logicalBlockNum == 0xFFFFFFFF &&
833 fileset->partitionReferenceNum == 0xFFFF)
834 return -EINVAL;
835
836 bh = udf_read_ptagged(sb, fileset, 0, &ident);
837 if (!bh)
838 return -EIO;
839 if (ident != TAG_IDENT_FSD) {
840 brelse(bh);
841 return -EINVAL;
842 }
843
844 udf_debug("Fileset at block=%u, partition=%u\n",
845 fileset->logicalBlockNum, fileset->partitionReferenceNum);
846
847 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
848 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
849 brelse(bh);
850 return ret;
851 }
852
853 /*
854 * Load primary Volume Descriptor Sequence
855 *
856 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
857 * should be tried.
858 */
udf_load_pvoldesc(struct super_block * sb,sector_t block)859 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
860 {
861 struct primaryVolDesc *pvoldesc;
862 uint8_t *outstr;
863 struct buffer_head *bh;
864 uint16_t ident;
865 int ret;
866 struct timestamp *ts;
867
868 outstr = kmalloc(128, GFP_NOFS);
869 if (!outstr)
870 return -ENOMEM;
871
872 bh = udf_read_tagged(sb, block, block, &ident);
873 if (!bh) {
874 ret = -EAGAIN;
875 goto out2;
876 }
877
878 if (ident != TAG_IDENT_PVD) {
879 ret = -EIO;
880 goto out_bh;
881 }
882
883 pvoldesc = (struct primaryVolDesc *)bh->b_data;
884
885 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
886 pvoldesc->recordingDateAndTime);
887 ts = &pvoldesc->recordingDateAndTime;
888 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
889 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
890 ts->minute, le16_to_cpu(ts->typeAndTimezone));
891
892 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
893 if (ret < 0) {
894 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
895 pr_warn("incorrect volume identification, setting to "
896 "'InvalidName'\n");
897 } else {
898 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
899 }
900 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
901
902 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
903 if (ret < 0) {
904 ret = 0;
905 goto out_bh;
906 }
907 outstr[ret] = 0;
908 udf_debug("volSetIdent[] = '%s'\n", outstr);
909
910 ret = 0;
911 out_bh:
912 brelse(bh);
913 out2:
914 kfree(outstr);
915 return ret;
916 }
917
udf_find_metadata_inode_efe(struct super_block * sb,u32 meta_file_loc,u32 partition_ref)918 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
919 u32 meta_file_loc, u32 partition_ref)
920 {
921 struct kernel_lb_addr addr;
922 struct inode *metadata_fe;
923
924 addr.logicalBlockNum = meta_file_loc;
925 addr.partitionReferenceNum = partition_ref;
926
927 metadata_fe = udf_iget_special(sb, &addr);
928
929 if (IS_ERR(metadata_fe)) {
930 udf_warn(sb, "metadata inode efe not found\n");
931 return metadata_fe;
932 }
933 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
934 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
935 iput(metadata_fe);
936 return ERR_PTR(-EIO);
937 }
938
939 return metadata_fe;
940 }
941
udf_load_metadata_files(struct super_block * sb,int partition,int type1_index)942 static int udf_load_metadata_files(struct super_block *sb, int partition,
943 int type1_index)
944 {
945 struct udf_sb_info *sbi = UDF_SB(sb);
946 struct udf_part_map *map;
947 struct udf_meta_data *mdata;
948 struct kernel_lb_addr addr;
949 struct inode *fe;
950
951 map = &sbi->s_partmaps[partition];
952 mdata = &map->s_type_specific.s_metadata;
953 mdata->s_phys_partition_ref = type1_index;
954
955 /* metadata address */
956 udf_debug("Metadata file location: block = %u part = %u\n",
957 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
958
959 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
960 mdata->s_phys_partition_ref);
961 if (IS_ERR(fe)) {
962 /* mirror file entry */
963 udf_debug("Mirror metadata file location: block = %u part = %u\n",
964 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
965
966 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
967 mdata->s_phys_partition_ref);
968
969 if (IS_ERR(fe)) {
970 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
971 return PTR_ERR(fe);
972 }
973 mdata->s_mirror_fe = fe;
974 } else
975 mdata->s_metadata_fe = fe;
976
977
978 /*
979 * bitmap file entry
980 * Note:
981 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
982 */
983 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
984 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
985 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
986
987 udf_debug("Bitmap file location: block = %u part = %u\n",
988 addr.logicalBlockNum, addr.partitionReferenceNum);
989
990 fe = udf_iget_special(sb, &addr);
991 if (IS_ERR(fe)) {
992 if (sb_rdonly(sb))
993 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
994 else {
995 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
996 return PTR_ERR(fe);
997 }
998 } else
999 mdata->s_bitmap_fe = fe;
1000 }
1001
1002 udf_debug("udf_load_metadata_files Ok\n");
1003 return 0;
1004 }
1005
udf_compute_nr_groups(struct super_block * sb,u32 partition)1006 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1007 {
1008 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1009 return DIV_ROUND_UP(map->s_partition_len +
1010 (sizeof(struct spaceBitmapDesc) << 3),
1011 sb->s_blocksize * 8);
1012 }
1013
udf_sb_alloc_bitmap(struct super_block * sb,u32 index)1014 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1015 {
1016 struct udf_bitmap *bitmap;
1017 int nr_groups = udf_compute_nr_groups(sb, index);
1018
1019 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1020 GFP_KERNEL);
1021 if (!bitmap)
1022 return NULL;
1023
1024 bitmap->s_nr_groups = nr_groups;
1025 return bitmap;
1026 }
1027
check_partition_desc(struct super_block * sb,struct partitionDesc * p,struct udf_part_map * map)1028 static int check_partition_desc(struct super_block *sb,
1029 struct partitionDesc *p,
1030 struct udf_part_map *map)
1031 {
1032 bool umap, utable, fmap, ftable;
1033 struct partitionHeaderDesc *phd;
1034
1035 switch (le32_to_cpu(p->accessType)) {
1036 case PD_ACCESS_TYPE_READ_ONLY:
1037 case PD_ACCESS_TYPE_WRITE_ONCE:
1038 case PD_ACCESS_TYPE_NONE:
1039 goto force_ro;
1040 }
1041
1042 /* No Partition Header Descriptor? */
1043 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1044 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1045 goto force_ro;
1046
1047 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1048 utable = phd->unallocSpaceTable.extLength;
1049 umap = phd->unallocSpaceBitmap.extLength;
1050 ftable = phd->freedSpaceTable.extLength;
1051 fmap = phd->freedSpaceBitmap.extLength;
1052
1053 /* No allocation info? */
1054 if (!utable && !umap && !ftable && !fmap)
1055 goto force_ro;
1056
1057 /* We don't support blocks that require erasing before overwrite */
1058 if (ftable || fmap)
1059 goto force_ro;
1060 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1061 if (utable && umap)
1062 goto force_ro;
1063
1064 if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1065 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1066 map->s_partition_type == UDF_METADATA_MAP25)
1067 goto force_ro;
1068
1069 return 0;
1070 force_ro:
1071 if (!sb_rdonly(sb))
1072 return -EACCES;
1073 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1074 return 0;
1075 }
1076
udf_fill_partdesc_info(struct super_block * sb,struct partitionDesc * p,int p_index)1077 static int udf_fill_partdesc_info(struct super_block *sb,
1078 struct partitionDesc *p, int p_index)
1079 {
1080 struct udf_part_map *map;
1081 struct udf_sb_info *sbi = UDF_SB(sb);
1082 struct partitionHeaderDesc *phd;
1083 u32 sum;
1084 int err;
1085
1086 map = &sbi->s_partmaps[p_index];
1087
1088 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1089 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1090 if (check_add_overflow(map->s_partition_root, map->s_partition_len,
1091 &sum)) {
1092 udf_err(sb, "Partition %d has invalid location %u + %u\n",
1093 p_index, map->s_partition_root, map->s_partition_len);
1094 return -EFSCORRUPTED;
1095 }
1096
1097 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1098 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1099 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1100 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1101 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1102 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1103 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1104 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1105
1106 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1107 p_index, map->s_partition_type,
1108 map->s_partition_root, map->s_partition_len);
1109
1110 err = check_partition_desc(sb, p, map);
1111 if (err)
1112 return err;
1113
1114 /*
1115 * Skip loading allocation info it we cannot ever write to the fs.
1116 * This is a correctness thing as we may have decided to force ro mount
1117 * to avoid allocation info we don't support.
1118 */
1119 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1120 return 0;
1121
1122 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1123 if (phd->unallocSpaceTable.extLength) {
1124 struct kernel_lb_addr loc = {
1125 .logicalBlockNum = le32_to_cpu(
1126 phd->unallocSpaceTable.extPosition),
1127 .partitionReferenceNum = p_index,
1128 };
1129 struct inode *inode;
1130
1131 inode = udf_iget_special(sb, &loc);
1132 if (IS_ERR(inode)) {
1133 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1134 p_index);
1135 return PTR_ERR(inode);
1136 }
1137 map->s_uspace.s_table = inode;
1138 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1139 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1140 p_index, map->s_uspace.s_table->i_ino);
1141 }
1142
1143 if (phd->unallocSpaceBitmap.extLength) {
1144 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1145 if (!bitmap)
1146 return -ENOMEM;
1147 map->s_uspace.s_bitmap = bitmap;
1148 bitmap->s_extPosition = le32_to_cpu(
1149 phd->unallocSpaceBitmap.extPosition);
1150 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1151 /* Check whether math over bitmap won't overflow. */
1152 if (check_add_overflow(map->s_partition_len,
1153 sizeof(struct spaceBitmapDesc) << 3,
1154 &sum)) {
1155 udf_err(sb, "Partition %d is too long (%u)\n", p_index,
1156 map->s_partition_len);
1157 return -EFSCORRUPTED;
1158 }
1159 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1160 p_index, bitmap->s_extPosition);
1161 }
1162
1163 return 0;
1164 }
1165
udf_find_vat_block(struct super_block * sb,int p_index,int type1_index,sector_t start_block)1166 static void udf_find_vat_block(struct super_block *sb, int p_index,
1167 int type1_index, sector_t start_block)
1168 {
1169 struct udf_sb_info *sbi = UDF_SB(sb);
1170 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1171 sector_t vat_block;
1172 struct kernel_lb_addr ino;
1173 struct inode *inode;
1174
1175 /*
1176 * VAT file entry is in the last recorded block. Some broken disks have
1177 * it a few blocks before so try a bit harder...
1178 */
1179 ino.partitionReferenceNum = type1_index;
1180 for (vat_block = start_block;
1181 vat_block >= map->s_partition_root &&
1182 vat_block >= start_block - 3; vat_block--) {
1183 ino.logicalBlockNum = vat_block - map->s_partition_root;
1184 inode = udf_iget_special(sb, &ino);
1185 if (!IS_ERR(inode)) {
1186 sbi->s_vat_inode = inode;
1187 break;
1188 }
1189 }
1190 }
1191
udf_load_vat(struct super_block * sb,int p_index,int type1_index)1192 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1193 {
1194 struct udf_sb_info *sbi = UDF_SB(sb);
1195 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1196 struct buffer_head *bh = NULL;
1197 struct udf_inode_info *vati;
1198 struct virtualAllocationTable20 *vat20;
1199 sector_t blocks = sb_bdev_nr_blocks(sb);
1200
1201 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1202 if (!sbi->s_vat_inode &&
1203 sbi->s_last_block != blocks - 1) {
1204 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1205 (unsigned long)sbi->s_last_block,
1206 (unsigned long)blocks - 1);
1207 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1208 }
1209 if (!sbi->s_vat_inode)
1210 return -EIO;
1211
1212 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1213 map->s_type_specific.s_virtual.s_start_offset = 0;
1214 map->s_type_specific.s_virtual.s_num_entries =
1215 (sbi->s_vat_inode->i_size - 36) >> 2;
1216 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1217 vati = UDF_I(sbi->s_vat_inode);
1218 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1219 int err = 0;
1220
1221 bh = udf_bread(sbi->s_vat_inode, 0, 0, &err);
1222 if (!bh) {
1223 if (!err)
1224 err = -EFSCORRUPTED;
1225 return err;
1226 }
1227 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1228 } else {
1229 vat20 = (struct virtualAllocationTable20 *)
1230 vati->i_data;
1231 }
1232
1233 map->s_type_specific.s_virtual.s_start_offset =
1234 le16_to_cpu(vat20->lengthHeader);
1235 map->s_type_specific.s_virtual.s_num_entries =
1236 (sbi->s_vat_inode->i_size -
1237 map->s_type_specific.s_virtual.
1238 s_start_offset) >> 2;
1239 brelse(bh);
1240 }
1241 return 0;
1242 }
1243
1244 /*
1245 * Load partition descriptor block
1246 *
1247 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1248 * sequence.
1249 */
udf_load_partdesc(struct super_block * sb,sector_t block)1250 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1251 {
1252 struct buffer_head *bh;
1253 struct partitionDesc *p;
1254 struct udf_part_map *map;
1255 struct udf_sb_info *sbi = UDF_SB(sb);
1256 int i, type1_idx;
1257 uint16_t partitionNumber;
1258 uint16_t ident;
1259 int ret;
1260
1261 bh = udf_read_tagged(sb, block, block, &ident);
1262 if (!bh)
1263 return -EAGAIN;
1264 if (ident != TAG_IDENT_PD) {
1265 ret = 0;
1266 goto out_bh;
1267 }
1268
1269 p = (struct partitionDesc *)bh->b_data;
1270 partitionNumber = le16_to_cpu(p->partitionNumber);
1271
1272 /* First scan for TYPE1 and SPARABLE partitions */
1273 for (i = 0; i < sbi->s_partitions; i++) {
1274 map = &sbi->s_partmaps[i];
1275 udf_debug("Searching map: (%u == %u)\n",
1276 map->s_partition_num, partitionNumber);
1277 if (map->s_partition_num == partitionNumber &&
1278 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1279 map->s_partition_type == UDF_SPARABLE_MAP15))
1280 break;
1281 }
1282
1283 if (i >= sbi->s_partitions) {
1284 udf_debug("Partition (%u) not found in partition map\n",
1285 partitionNumber);
1286 ret = 0;
1287 goto out_bh;
1288 }
1289
1290 ret = udf_fill_partdesc_info(sb, p, i);
1291 if (ret < 0)
1292 goto out_bh;
1293
1294 /*
1295 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1296 * PHYSICAL partitions are already set up
1297 */
1298 type1_idx = i;
1299 map = NULL; /* supress 'maybe used uninitialized' warning */
1300 for (i = 0; i < sbi->s_partitions; i++) {
1301 map = &sbi->s_partmaps[i];
1302
1303 if (map->s_partition_num == partitionNumber &&
1304 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1305 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1306 map->s_partition_type == UDF_METADATA_MAP25))
1307 break;
1308 }
1309
1310 if (i >= sbi->s_partitions) {
1311 ret = 0;
1312 goto out_bh;
1313 }
1314
1315 ret = udf_fill_partdesc_info(sb, p, i);
1316 if (ret < 0)
1317 goto out_bh;
1318
1319 if (map->s_partition_type == UDF_METADATA_MAP25) {
1320 ret = udf_load_metadata_files(sb, i, type1_idx);
1321 if (ret < 0) {
1322 udf_err(sb, "error loading MetaData partition map %d\n",
1323 i);
1324 goto out_bh;
1325 }
1326 } else {
1327 /*
1328 * If we have a partition with virtual map, we don't handle
1329 * writing to it (we overwrite blocks instead of relocating
1330 * them).
1331 */
1332 if (!sb_rdonly(sb)) {
1333 ret = -EACCES;
1334 goto out_bh;
1335 }
1336 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1337 ret = udf_load_vat(sb, i, type1_idx);
1338 if (ret < 0)
1339 goto out_bh;
1340 }
1341 ret = 0;
1342 out_bh:
1343 /* In case loading failed, we handle cleanup in udf_fill_super */
1344 brelse(bh);
1345 return ret;
1346 }
1347
udf_load_sparable_map(struct super_block * sb,struct udf_part_map * map,struct sparablePartitionMap * spm)1348 static int udf_load_sparable_map(struct super_block *sb,
1349 struct udf_part_map *map,
1350 struct sparablePartitionMap *spm)
1351 {
1352 uint32_t loc;
1353 uint16_t ident;
1354 struct sparingTable *st;
1355 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1356 int i;
1357 struct buffer_head *bh;
1358
1359 map->s_partition_type = UDF_SPARABLE_MAP15;
1360 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1361 if (!is_power_of_2(sdata->s_packet_len)) {
1362 udf_err(sb, "error loading logical volume descriptor: "
1363 "Invalid packet length %u\n",
1364 (unsigned)sdata->s_packet_len);
1365 return -EIO;
1366 }
1367 if (spm->numSparingTables > 4) {
1368 udf_err(sb, "error loading logical volume descriptor: "
1369 "Too many sparing tables (%d)\n",
1370 (int)spm->numSparingTables);
1371 return -EIO;
1372 }
1373 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1374 udf_err(sb, "error loading logical volume descriptor: "
1375 "Too big sparing table size (%u)\n",
1376 le32_to_cpu(spm->sizeSparingTable));
1377 return -EIO;
1378 }
1379
1380 for (i = 0; i < spm->numSparingTables; i++) {
1381 loc = le32_to_cpu(spm->locSparingTable[i]);
1382 bh = udf_read_tagged(sb, loc, loc, &ident);
1383 if (!bh)
1384 continue;
1385
1386 st = (struct sparingTable *)bh->b_data;
1387 if (ident != 0 ||
1388 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1389 strlen(UDF_ID_SPARING)) ||
1390 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1391 sb->s_blocksize) {
1392 brelse(bh);
1393 continue;
1394 }
1395
1396 sdata->s_spar_map[i] = bh;
1397 }
1398 map->s_partition_func = udf_get_pblock_spar15;
1399 return 0;
1400 }
1401
udf_load_logicalvol(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1402 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1403 struct kernel_lb_addr *fileset)
1404 {
1405 struct logicalVolDesc *lvd;
1406 int i, offset;
1407 uint8_t type;
1408 struct udf_sb_info *sbi = UDF_SB(sb);
1409 struct genericPartitionMap *gpm;
1410 uint16_t ident;
1411 struct buffer_head *bh;
1412 unsigned int table_len;
1413 int ret;
1414
1415 bh = udf_read_tagged(sb, block, block, &ident);
1416 if (!bh)
1417 return -EAGAIN;
1418 BUG_ON(ident != TAG_IDENT_LVD);
1419 lvd = (struct logicalVolDesc *)bh->b_data;
1420 table_len = le32_to_cpu(lvd->mapTableLength);
1421 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1422 udf_err(sb, "error loading logical volume descriptor: "
1423 "Partition table too long (%u > %lu)\n", table_len,
1424 sb->s_blocksize - sizeof(*lvd));
1425 ret = -EIO;
1426 goto out_bh;
1427 }
1428
1429 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1430 "logical volume");
1431 if (ret)
1432 goto out_bh;
1433 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1434 if (ret)
1435 goto out_bh;
1436
1437 for (i = 0, offset = 0;
1438 i < sbi->s_partitions && offset < table_len;
1439 i++, offset += gpm->partitionMapLength) {
1440 struct udf_part_map *map = &sbi->s_partmaps[i];
1441 gpm = (struct genericPartitionMap *)
1442 &(lvd->partitionMaps[offset]);
1443 type = gpm->partitionMapType;
1444 if (type == 1) {
1445 struct genericPartitionMap1 *gpm1 =
1446 (struct genericPartitionMap1 *)gpm;
1447 map->s_partition_type = UDF_TYPE1_MAP15;
1448 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1449 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1450 map->s_partition_func = NULL;
1451 } else if (type == 2) {
1452 struct udfPartitionMap2 *upm2 =
1453 (struct udfPartitionMap2 *)gpm;
1454 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1455 strlen(UDF_ID_VIRTUAL))) {
1456 u16 suf =
1457 le16_to_cpu(((__le16 *)upm2->partIdent.
1458 identSuffix)[0]);
1459 if (suf < 0x0200) {
1460 map->s_partition_type =
1461 UDF_VIRTUAL_MAP15;
1462 map->s_partition_func =
1463 udf_get_pblock_virt15;
1464 } else {
1465 map->s_partition_type =
1466 UDF_VIRTUAL_MAP20;
1467 map->s_partition_func =
1468 udf_get_pblock_virt20;
1469 }
1470 } else if (!strncmp(upm2->partIdent.ident,
1471 UDF_ID_SPARABLE,
1472 strlen(UDF_ID_SPARABLE))) {
1473 ret = udf_load_sparable_map(sb, map,
1474 (struct sparablePartitionMap *)gpm);
1475 if (ret < 0)
1476 goto out_bh;
1477 } else if (!strncmp(upm2->partIdent.ident,
1478 UDF_ID_METADATA,
1479 strlen(UDF_ID_METADATA))) {
1480 struct udf_meta_data *mdata =
1481 &map->s_type_specific.s_metadata;
1482 struct metadataPartitionMap *mdm =
1483 (struct metadataPartitionMap *)
1484 &(lvd->partitionMaps[offset]);
1485 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1486 i, type, UDF_ID_METADATA);
1487
1488 map->s_partition_type = UDF_METADATA_MAP25;
1489 map->s_partition_func = udf_get_pblock_meta25;
1490
1491 mdata->s_meta_file_loc =
1492 le32_to_cpu(mdm->metadataFileLoc);
1493 mdata->s_mirror_file_loc =
1494 le32_to_cpu(mdm->metadataMirrorFileLoc);
1495 mdata->s_bitmap_file_loc =
1496 le32_to_cpu(mdm->metadataBitmapFileLoc);
1497 mdata->s_alloc_unit_size =
1498 le32_to_cpu(mdm->allocUnitSize);
1499 mdata->s_align_unit_size =
1500 le16_to_cpu(mdm->alignUnitSize);
1501 if (mdm->flags & 0x01)
1502 mdata->s_flags |= MF_DUPLICATE_MD;
1503
1504 udf_debug("Metadata Ident suffix=0x%x\n",
1505 le16_to_cpu(*(__le16 *)
1506 mdm->partIdent.identSuffix));
1507 udf_debug("Metadata part num=%u\n",
1508 le16_to_cpu(mdm->partitionNum));
1509 udf_debug("Metadata part alloc unit size=%u\n",
1510 le32_to_cpu(mdm->allocUnitSize));
1511 udf_debug("Metadata file loc=%u\n",
1512 le32_to_cpu(mdm->metadataFileLoc));
1513 udf_debug("Mirror file loc=%u\n",
1514 le32_to_cpu(mdm->metadataMirrorFileLoc));
1515 udf_debug("Bitmap file loc=%u\n",
1516 le32_to_cpu(mdm->metadataBitmapFileLoc));
1517 udf_debug("Flags: %d %u\n",
1518 mdata->s_flags, mdm->flags);
1519 } else {
1520 udf_debug("Unknown ident: %s\n",
1521 upm2->partIdent.ident);
1522 continue;
1523 }
1524 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1525 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1526 }
1527 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1528 i, map->s_partition_num, type, map->s_volumeseqnum);
1529 }
1530
1531 if (fileset) {
1532 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1533
1534 *fileset = lelb_to_cpu(la->extLocation);
1535 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1536 fileset->logicalBlockNum,
1537 fileset->partitionReferenceNum);
1538 }
1539 if (lvd->integritySeqExt.extLength)
1540 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1541 ret = 0;
1542
1543 if (!sbi->s_lvid_bh) {
1544 /* We can't generate unique IDs without a valid LVID */
1545 if (sb_rdonly(sb)) {
1546 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1547 } else {
1548 udf_warn(sb, "Damaged or missing LVID, forcing "
1549 "readonly mount\n");
1550 ret = -EACCES;
1551 }
1552 }
1553 out_bh:
1554 brelse(bh);
1555 return ret;
1556 }
1557
1558 /*
1559 * Find the prevailing Logical Volume Integrity Descriptor.
1560 */
udf_load_logicalvolint(struct super_block * sb,struct kernel_extent_ad loc)1561 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1562 {
1563 struct buffer_head *bh, *final_bh;
1564 uint16_t ident;
1565 struct udf_sb_info *sbi = UDF_SB(sb);
1566 struct logicalVolIntegrityDesc *lvid;
1567 int indirections = 0;
1568 u32 parts, impuselen;
1569
1570 while (++indirections <= UDF_MAX_LVID_NESTING) {
1571 final_bh = NULL;
1572 while (loc.extLength > 0 &&
1573 (bh = udf_read_tagged(sb, loc.extLocation,
1574 loc.extLocation, &ident))) {
1575 if (ident != TAG_IDENT_LVID) {
1576 brelse(bh);
1577 break;
1578 }
1579
1580 brelse(final_bh);
1581 final_bh = bh;
1582
1583 loc.extLength -= sb->s_blocksize;
1584 loc.extLocation++;
1585 }
1586
1587 if (!final_bh)
1588 return;
1589
1590 brelse(sbi->s_lvid_bh);
1591 sbi->s_lvid_bh = final_bh;
1592
1593 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1594 if (lvid->nextIntegrityExt.extLength == 0)
1595 goto check;
1596
1597 loc = leea_to_cpu(lvid->nextIntegrityExt);
1598 }
1599
1600 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1601 UDF_MAX_LVID_NESTING);
1602 out_err:
1603 brelse(sbi->s_lvid_bh);
1604 sbi->s_lvid_bh = NULL;
1605 return;
1606 check:
1607 parts = le32_to_cpu(lvid->numOfPartitions);
1608 impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1609 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1610 sizeof(struct logicalVolIntegrityDesc) + impuselen +
1611 2 * parts * sizeof(u32) > sb->s_blocksize) {
1612 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1613 "ignoring.\n", parts, impuselen);
1614 goto out_err;
1615 }
1616 }
1617
1618 /*
1619 * Step for reallocation of table of partition descriptor sequence numbers.
1620 * Must be power of 2.
1621 */
1622 #define PART_DESC_ALLOC_STEP 32
1623
1624 struct part_desc_seq_scan_data {
1625 struct udf_vds_record rec;
1626 u32 partnum;
1627 };
1628
1629 struct desc_seq_scan_data {
1630 struct udf_vds_record vds[VDS_POS_LENGTH];
1631 unsigned int size_part_descs;
1632 unsigned int num_part_descs;
1633 struct part_desc_seq_scan_data *part_descs_loc;
1634 };
1635
handle_partition_descriptor(struct buffer_head * bh,struct desc_seq_scan_data * data)1636 static struct udf_vds_record *handle_partition_descriptor(
1637 struct buffer_head *bh,
1638 struct desc_seq_scan_data *data)
1639 {
1640 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1641 int partnum;
1642 int i;
1643
1644 partnum = le16_to_cpu(desc->partitionNumber);
1645 for (i = 0; i < data->num_part_descs; i++)
1646 if (partnum == data->part_descs_loc[i].partnum)
1647 return &(data->part_descs_loc[i].rec);
1648 if (data->num_part_descs >= data->size_part_descs) {
1649 struct part_desc_seq_scan_data *new_loc;
1650 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1651
1652 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1653 if (!new_loc)
1654 return ERR_PTR(-ENOMEM);
1655 memcpy(new_loc, data->part_descs_loc,
1656 data->size_part_descs * sizeof(*new_loc));
1657 kfree(data->part_descs_loc);
1658 data->part_descs_loc = new_loc;
1659 data->size_part_descs = new_size;
1660 }
1661 return &(data->part_descs_loc[data->num_part_descs++].rec);
1662 }
1663
1664
get_volume_descriptor_record(uint16_t ident,struct buffer_head * bh,struct desc_seq_scan_data * data)1665 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1666 struct buffer_head *bh, struct desc_seq_scan_data *data)
1667 {
1668 switch (ident) {
1669 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1670 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1671 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1672 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1673 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1674 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1675 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1676 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1677 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1678 return handle_partition_descriptor(bh, data);
1679 }
1680 return NULL;
1681 }
1682
1683 /*
1684 * Process a main/reserve volume descriptor sequence.
1685 * @block First block of first extent of the sequence.
1686 * @lastblock Lastblock of first extent of the sequence.
1687 * @fileset There we store extent containing root fileset
1688 *
1689 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1690 * sequence
1691 */
udf_process_sequence(struct super_block * sb,sector_t block,sector_t lastblock,struct kernel_lb_addr * fileset)1692 static noinline int udf_process_sequence(
1693 struct super_block *sb,
1694 sector_t block, sector_t lastblock,
1695 struct kernel_lb_addr *fileset)
1696 {
1697 struct buffer_head *bh = NULL;
1698 struct udf_vds_record *curr;
1699 struct generic_desc *gd;
1700 struct volDescPtr *vdp;
1701 bool done = false;
1702 uint32_t vdsn;
1703 uint16_t ident;
1704 int ret;
1705 unsigned int indirections = 0;
1706 struct desc_seq_scan_data data;
1707 unsigned int i;
1708
1709 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1710 data.size_part_descs = PART_DESC_ALLOC_STEP;
1711 data.num_part_descs = 0;
1712 data.part_descs_loc = kcalloc(data.size_part_descs,
1713 sizeof(*data.part_descs_loc),
1714 GFP_KERNEL);
1715 if (!data.part_descs_loc)
1716 return -ENOMEM;
1717
1718 /*
1719 * Read the main descriptor sequence and find which descriptors
1720 * are in it.
1721 */
1722 for (; (!done && block <= lastblock); block++) {
1723 bh = udf_read_tagged(sb, block, block, &ident);
1724 if (!bh)
1725 break;
1726
1727 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1728 gd = (struct generic_desc *)bh->b_data;
1729 vdsn = le32_to_cpu(gd->volDescSeqNum);
1730 switch (ident) {
1731 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1732 if (++indirections > UDF_MAX_TD_NESTING) {
1733 udf_err(sb, "too many Volume Descriptor "
1734 "Pointers (max %u supported)\n",
1735 UDF_MAX_TD_NESTING);
1736 brelse(bh);
1737 ret = -EIO;
1738 goto out;
1739 }
1740
1741 vdp = (struct volDescPtr *)bh->b_data;
1742 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1743 lastblock = le32_to_cpu(
1744 vdp->nextVolDescSeqExt.extLength) >>
1745 sb->s_blocksize_bits;
1746 lastblock += block - 1;
1747 /* For loop is going to increment 'block' again */
1748 block--;
1749 break;
1750 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1751 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1752 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1753 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1754 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1755 curr = get_volume_descriptor_record(ident, bh, &data);
1756 if (IS_ERR(curr)) {
1757 brelse(bh);
1758 ret = PTR_ERR(curr);
1759 goto out;
1760 }
1761 /* Descriptor we don't care about? */
1762 if (!curr)
1763 break;
1764 if (vdsn >= curr->volDescSeqNum) {
1765 curr->volDescSeqNum = vdsn;
1766 curr->block = block;
1767 }
1768 break;
1769 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1770 done = true;
1771 break;
1772 }
1773 brelse(bh);
1774 }
1775 /*
1776 * Now read interesting descriptors again and process them
1777 * in a suitable order
1778 */
1779 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1780 udf_err(sb, "Primary Volume Descriptor not found!\n");
1781 ret = -EAGAIN;
1782 goto out;
1783 }
1784 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1785 if (ret < 0)
1786 goto out;
1787
1788 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1789 ret = udf_load_logicalvol(sb,
1790 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1791 fileset);
1792 if (ret < 0)
1793 goto out;
1794 }
1795
1796 /* Now handle prevailing Partition Descriptors */
1797 for (i = 0; i < data.num_part_descs; i++) {
1798 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1799 if (ret < 0)
1800 goto out;
1801 }
1802 ret = 0;
1803 out:
1804 kfree(data.part_descs_loc);
1805 return ret;
1806 }
1807
1808 /*
1809 * Load Volume Descriptor Sequence described by anchor in bh
1810 *
1811 * Returns <0 on error, 0 on success
1812 */
udf_load_sequence(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * fileset)1813 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1814 struct kernel_lb_addr *fileset)
1815 {
1816 struct anchorVolDescPtr *anchor;
1817 sector_t main_s, main_e, reserve_s, reserve_e;
1818 int ret;
1819
1820 anchor = (struct anchorVolDescPtr *)bh->b_data;
1821
1822 /* Locate the main sequence */
1823 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1824 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1825 main_e = main_e >> sb->s_blocksize_bits;
1826 main_e += main_s - 1;
1827
1828 /* Locate the reserve sequence */
1829 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1830 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1831 reserve_e = reserve_e >> sb->s_blocksize_bits;
1832 reserve_e += reserve_s - 1;
1833
1834 /* Process the main & reserve sequences */
1835 /* responsible for finding the PartitionDesc(s) */
1836 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1837 if (ret != -EAGAIN)
1838 return ret;
1839 udf_sb_free_partitions(sb);
1840 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1841 if (ret < 0) {
1842 udf_sb_free_partitions(sb);
1843 /* No sequence was OK, return -EIO */
1844 if (ret == -EAGAIN)
1845 ret = -EIO;
1846 }
1847 return ret;
1848 }
1849
1850 /*
1851 * Check whether there is an anchor block in the given block and
1852 * load Volume Descriptor Sequence if so.
1853 *
1854 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1855 * block
1856 */
udf_check_anchor_block(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1857 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1858 struct kernel_lb_addr *fileset)
1859 {
1860 struct buffer_head *bh;
1861 uint16_t ident;
1862 int ret;
1863
1864 bh = udf_read_tagged(sb, block, block, &ident);
1865 if (!bh)
1866 return -EAGAIN;
1867 if (ident != TAG_IDENT_AVDP) {
1868 brelse(bh);
1869 return -EAGAIN;
1870 }
1871 ret = udf_load_sequence(sb, bh, fileset);
1872 brelse(bh);
1873 return ret;
1874 }
1875
1876 /*
1877 * Search for an anchor volume descriptor pointer.
1878 *
1879 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1880 * of anchors.
1881 */
udf_scan_anchors(struct super_block * sb,udf_pblk_t * lastblock,struct kernel_lb_addr * fileset)1882 static int udf_scan_anchors(struct super_block *sb, udf_pblk_t *lastblock,
1883 struct kernel_lb_addr *fileset)
1884 {
1885 udf_pblk_t last[6];
1886 int i;
1887 struct udf_sb_info *sbi = UDF_SB(sb);
1888 int last_count = 0;
1889 int ret;
1890
1891 /* First try user provided anchor */
1892 if (sbi->s_anchor) {
1893 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1894 if (ret != -EAGAIN)
1895 return ret;
1896 }
1897 /*
1898 * according to spec, anchor is in either:
1899 * block 256
1900 * lastblock-256
1901 * lastblock
1902 * however, if the disc isn't closed, it could be 512.
1903 */
1904 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1905 if (ret != -EAGAIN)
1906 return ret;
1907 /*
1908 * The trouble is which block is the last one. Drives often misreport
1909 * this so we try various possibilities.
1910 */
1911 last[last_count++] = *lastblock;
1912 if (*lastblock >= 1)
1913 last[last_count++] = *lastblock - 1;
1914 last[last_count++] = *lastblock + 1;
1915 if (*lastblock >= 2)
1916 last[last_count++] = *lastblock - 2;
1917 if (*lastblock >= 150)
1918 last[last_count++] = *lastblock - 150;
1919 if (*lastblock >= 152)
1920 last[last_count++] = *lastblock - 152;
1921
1922 for (i = 0; i < last_count; i++) {
1923 if (last[i] >= sb_bdev_nr_blocks(sb))
1924 continue;
1925 ret = udf_check_anchor_block(sb, last[i], fileset);
1926 if (ret != -EAGAIN) {
1927 if (!ret)
1928 *lastblock = last[i];
1929 return ret;
1930 }
1931 if (last[i] < 256)
1932 continue;
1933 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1934 if (ret != -EAGAIN) {
1935 if (!ret)
1936 *lastblock = last[i];
1937 return ret;
1938 }
1939 }
1940
1941 /* Finally try block 512 in case media is open */
1942 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1943 }
1944
1945 /*
1946 * Check Volume Structure Descriptor, find Anchor block and load Volume
1947 * Descriptor Sequence.
1948 *
1949 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1950 * block was not found.
1951 */
udf_load_vrs(struct super_block * sb,struct udf_options * uopt,int silent,struct kernel_lb_addr * fileset)1952 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1953 int silent, struct kernel_lb_addr *fileset)
1954 {
1955 struct udf_sb_info *sbi = UDF_SB(sb);
1956 int nsr = 0;
1957 int ret;
1958
1959 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1960 if (!silent)
1961 udf_warn(sb, "Bad block size\n");
1962 return -EINVAL;
1963 }
1964 sbi->s_last_block = uopt->lastblock;
1965 if (!uopt->novrs) {
1966 /* Check that it is NSR02 compliant */
1967 nsr = udf_check_vsd(sb);
1968 if (!nsr) {
1969 if (!silent)
1970 udf_warn(sb, "No VRS found\n");
1971 return -EINVAL;
1972 }
1973 if (nsr == -1)
1974 udf_debug("Failed to read sector at offset %d. "
1975 "Assuming open disc. Skipping validity "
1976 "check\n", VSD_FIRST_SECTOR_OFFSET);
1977 if (!sbi->s_last_block)
1978 sbi->s_last_block = udf_get_last_block(sb);
1979 } else {
1980 udf_debug("Validity check skipped because of novrs option\n");
1981 }
1982
1983 /* Look for anchor block and load Volume Descriptor Sequence */
1984 sbi->s_anchor = uopt->anchor;
1985 ret = udf_scan_anchors(sb, &sbi->s_last_block, fileset);
1986 if (ret < 0) {
1987 if (!silent && ret == -EAGAIN)
1988 udf_warn(sb, "No anchor found\n");
1989 return ret;
1990 }
1991 return 0;
1992 }
1993
udf_finalize_lvid(struct logicalVolIntegrityDesc * lvid)1994 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
1995 {
1996 struct timespec64 ts;
1997
1998 ktime_get_real_ts64(&ts);
1999 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2000 lvid->descTag.descCRC = cpu_to_le16(
2001 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2002 le16_to_cpu(lvid->descTag.descCRCLength)));
2003 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2004 }
2005
udf_open_lvid(struct super_block * sb)2006 static void udf_open_lvid(struct super_block *sb)
2007 {
2008 struct udf_sb_info *sbi = UDF_SB(sb);
2009 struct buffer_head *bh = sbi->s_lvid_bh;
2010 struct logicalVolIntegrityDesc *lvid;
2011 struct logicalVolIntegrityDescImpUse *lvidiu;
2012
2013 if (!bh)
2014 return;
2015 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2016 lvidiu = udf_sb_lvidiu(sb);
2017 if (!lvidiu)
2018 return;
2019
2020 mutex_lock(&sbi->s_alloc_mutex);
2021 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2022 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2023 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2024 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2025 else
2026 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2027
2028 udf_finalize_lvid(lvid);
2029 mark_buffer_dirty(bh);
2030 sbi->s_lvid_dirty = 0;
2031 mutex_unlock(&sbi->s_alloc_mutex);
2032 /* Make opening of filesystem visible on the media immediately */
2033 sync_dirty_buffer(bh);
2034 }
2035
udf_close_lvid(struct super_block * sb)2036 static void udf_close_lvid(struct super_block *sb)
2037 {
2038 struct udf_sb_info *sbi = UDF_SB(sb);
2039 struct buffer_head *bh = sbi->s_lvid_bh;
2040 struct logicalVolIntegrityDesc *lvid;
2041 struct logicalVolIntegrityDescImpUse *lvidiu;
2042
2043 if (!bh)
2044 return;
2045 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2046 lvidiu = udf_sb_lvidiu(sb);
2047 if (!lvidiu)
2048 return;
2049
2050 mutex_lock(&sbi->s_alloc_mutex);
2051 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2052 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2053 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2054 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2055 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2056 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2057 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2058 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2059 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2060 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2061
2062 /*
2063 * We set buffer uptodate unconditionally here to avoid spurious
2064 * warnings from mark_buffer_dirty() when previous EIO has marked
2065 * the buffer as !uptodate
2066 */
2067 set_buffer_uptodate(bh);
2068 udf_finalize_lvid(lvid);
2069 mark_buffer_dirty(bh);
2070 sbi->s_lvid_dirty = 0;
2071 mutex_unlock(&sbi->s_alloc_mutex);
2072 /* Make closing of filesystem visible on the media immediately */
2073 sync_dirty_buffer(bh);
2074 }
2075
lvid_get_unique_id(struct super_block * sb)2076 u64 lvid_get_unique_id(struct super_block *sb)
2077 {
2078 struct buffer_head *bh;
2079 struct udf_sb_info *sbi = UDF_SB(sb);
2080 struct logicalVolIntegrityDesc *lvid;
2081 struct logicalVolHeaderDesc *lvhd;
2082 u64 uniqueID;
2083 u64 ret;
2084
2085 bh = sbi->s_lvid_bh;
2086 if (!bh)
2087 return 0;
2088
2089 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2090 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2091
2092 mutex_lock(&sbi->s_alloc_mutex);
2093 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2094 if (!(++uniqueID & 0xFFFFFFFF))
2095 uniqueID += 16;
2096 lvhd->uniqueID = cpu_to_le64(uniqueID);
2097 udf_updated_lvid(sb);
2098 mutex_unlock(&sbi->s_alloc_mutex);
2099
2100 return ret;
2101 }
2102
udf_fill_super(struct super_block * sb,void * options,int silent)2103 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2104 {
2105 int ret = -EINVAL;
2106 struct inode *inode = NULL;
2107 struct udf_options uopt;
2108 struct kernel_lb_addr rootdir, fileset;
2109 struct udf_sb_info *sbi;
2110 bool lvid_open = false;
2111
2112 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2113 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2114 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2115 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2116 uopt.umask = 0;
2117 uopt.fmode = UDF_INVALID_MODE;
2118 uopt.dmode = UDF_INVALID_MODE;
2119 uopt.nls_map = NULL;
2120
2121 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2122 if (!sbi)
2123 return -ENOMEM;
2124
2125 sb->s_fs_info = sbi;
2126
2127 mutex_init(&sbi->s_alloc_mutex);
2128
2129 if (!udf_parse_options((char *)options, &uopt, false))
2130 goto parse_options_failure;
2131
2132 fileset.logicalBlockNum = 0xFFFFFFFF;
2133 fileset.partitionReferenceNum = 0xFFFF;
2134
2135 sbi->s_flags = uopt.flags;
2136 sbi->s_uid = uopt.uid;
2137 sbi->s_gid = uopt.gid;
2138 sbi->s_umask = uopt.umask;
2139 sbi->s_fmode = uopt.fmode;
2140 sbi->s_dmode = uopt.dmode;
2141 sbi->s_nls_map = uopt.nls_map;
2142 rwlock_init(&sbi->s_cred_lock);
2143
2144 if (uopt.session == 0xFFFFFFFF)
2145 sbi->s_session = udf_get_last_session(sb);
2146 else
2147 sbi->s_session = uopt.session;
2148
2149 udf_debug("Multi-session=%d\n", sbi->s_session);
2150
2151 /* Fill in the rest of the superblock */
2152 sb->s_op = &udf_sb_ops;
2153 sb->s_export_op = &udf_export_ops;
2154
2155 sb->s_magic = UDF_SUPER_MAGIC;
2156 sb->s_time_gran = 1000;
2157
2158 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2159 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2160 } else {
2161 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2162 while (uopt.blocksize <= 4096) {
2163 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2164 if (ret < 0) {
2165 if (!silent && ret != -EACCES) {
2166 pr_notice("Scanning with blocksize %u failed\n",
2167 uopt.blocksize);
2168 }
2169 brelse(sbi->s_lvid_bh);
2170 sbi->s_lvid_bh = NULL;
2171 /*
2172 * EACCES is special - we want to propagate to
2173 * upper layers that we cannot handle RW mount.
2174 */
2175 if (ret == -EACCES)
2176 break;
2177 } else
2178 break;
2179
2180 uopt.blocksize <<= 1;
2181 }
2182 }
2183 if (ret < 0) {
2184 if (ret == -EAGAIN) {
2185 udf_warn(sb, "No partition found (1)\n");
2186 ret = -EINVAL;
2187 }
2188 goto error_out;
2189 }
2190
2191 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2192
2193 if (sbi->s_lvid_bh) {
2194 struct logicalVolIntegrityDescImpUse *lvidiu =
2195 udf_sb_lvidiu(sb);
2196 uint16_t minUDFReadRev;
2197 uint16_t minUDFWriteRev;
2198
2199 if (!lvidiu) {
2200 ret = -EINVAL;
2201 goto error_out;
2202 }
2203 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2204 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2205 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2206 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2207 minUDFReadRev,
2208 UDF_MAX_READ_VERSION);
2209 ret = -EINVAL;
2210 goto error_out;
2211 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2212 if (!sb_rdonly(sb)) {
2213 ret = -EACCES;
2214 goto error_out;
2215 }
2216 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2217 }
2218
2219 sbi->s_udfrev = minUDFWriteRev;
2220
2221 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2222 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2223 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2224 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2225 }
2226
2227 if (!sbi->s_partitions) {
2228 udf_warn(sb, "No partition found (2)\n");
2229 ret = -EINVAL;
2230 goto error_out;
2231 }
2232
2233 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2234 UDF_PART_FLAG_READ_ONLY) {
2235 if (!sb_rdonly(sb)) {
2236 ret = -EACCES;
2237 goto error_out;
2238 }
2239 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2240 }
2241
2242 ret = udf_find_fileset(sb, &fileset, &rootdir);
2243 if (ret < 0) {
2244 udf_warn(sb, "No fileset found\n");
2245 goto error_out;
2246 }
2247
2248 if (!silent) {
2249 struct timestamp ts;
2250 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2251 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2252 sbi->s_volume_ident,
2253 le16_to_cpu(ts.year), ts.month, ts.day,
2254 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2255 }
2256 if (!sb_rdonly(sb)) {
2257 udf_open_lvid(sb);
2258 lvid_open = true;
2259 }
2260
2261 /* Assign the root inode */
2262 /* assign inodes by physical block number */
2263 /* perhaps it's not extensible enough, but for now ... */
2264 inode = udf_iget(sb, &rootdir);
2265 if (IS_ERR(inode)) {
2266 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2267 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2268 ret = PTR_ERR(inode);
2269 goto error_out;
2270 }
2271
2272 /* Allocate a dentry for the root inode */
2273 sb->s_root = d_make_root(inode);
2274 if (!sb->s_root) {
2275 udf_err(sb, "Couldn't allocate root dentry\n");
2276 ret = -ENOMEM;
2277 goto error_out;
2278 }
2279 sb->s_maxbytes = UDF_MAX_FILESIZE;
2280 sb->s_max_links = UDF_MAX_LINKS;
2281 return 0;
2282
2283 error_out:
2284 iput(sbi->s_vat_inode);
2285 parse_options_failure:
2286 unload_nls(uopt.nls_map);
2287 if (lvid_open)
2288 udf_close_lvid(sb);
2289 brelse(sbi->s_lvid_bh);
2290 udf_sb_free_partitions(sb);
2291 kfree(sbi);
2292 sb->s_fs_info = NULL;
2293
2294 return ret;
2295 }
2296
_udf_err(struct super_block * sb,const char * function,const char * fmt,...)2297 void _udf_err(struct super_block *sb, const char *function,
2298 const char *fmt, ...)
2299 {
2300 struct va_format vaf;
2301 va_list args;
2302
2303 va_start(args, fmt);
2304
2305 vaf.fmt = fmt;
2306 vaf.va = &args;
2307
2308 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2309
2310 va_end(args);
2311 }
2312
_udf_warn(struct super_block * sb,const char * function,const char * fmt,...)2313 void _udf_warn(struct super_block *sb, const char *function,
2314 const char *fmt, ...)
2315 {
2316 struct va_format vaf;
2317 va_list args;
2318
2319 va_start(args, fmt);
2320
2321 vaf.fmt = fmt;
2322 vaf.va = &args;
2323
2324 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2325
2326 va_end(args);
2327 }
2328
udf_put_super(struct super_block * sb)2329 static void udf_put_super(struct super_block *sb)
2330 {
2331 struct udf_sb_info *sbi;
2332
2333 sbi = UDF_SB(sb);
2334
2335 iput(sbi->s_vat_inode);
2336 unload_nls(sbi->s_nls_map);
2337 if (!sb_rdonly(sb))
2338 udf_close_lvid(sb);
2339 brelse(sbi->s_lvid_bh);
2340 udf_sb_free_partitions(sb);
2341 mutex_destroy(&sbi->s_alloc_mutex);
2342 kfree(sb->s_fs_info);
2343 sb->s_fs_info = NULL;
2344 }
2345
udf_sync_fs(struct super_block * sb,int wait)2346 static int udf_sync_fs(struct super_block *sb, int wait)
2347 {
2348 struct udf_sb_info *sbi = UDF_SB(sb);
2349
2350 mutex_lock(&sbi->s_alloc_mutex);
2351 if (sbi->s_lvid_dirty) {
2352 struct buffer_head *bh = sbi->s_lvid_bh;
2353 struct logicalVolIntegrityDesc *lvid;
2354
2355 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2356 udf_finalize_lvid(lvid);
2357
2358 /*
2359 * Blockdevice will be synced later so we don't have to submit
2360 * the buffer for IO
2361 */
2362 mark_buffer_dirty(bh);
2363 sbi->s_lvid_dirty = 0;
2364 }
2365 mutex_unlock(&sbi->s_alloc_mutex);
2366
2367 return 0;
2368 }
2369
udf_statfs(struct dentry * dentry,struct kstatfs * buf)2370 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2371 {
2372 struct super_block *sb = dentry->d_sb;
2373 struct udf_sb_info *sbi = UDF_SB(sb);
2374 struct logicalVolIntegrityDescImpUse *lvidiu;
2375 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2376
2377 lvidiu = udf_sb_lvidiu(sb);
2378 buf->f_type = UDF_SUPER_MAGIC;
2379 buf->f_bsize = sb->s_blocksize;
2380 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2381 buf->f_bfree = udf_count_free(sb);
2382 buf->f_bavail = buf->f_bfree;
2383 /*
2384 * Let's pretend each free block is also a free 'inode' since UDF does
2385 * not have separate preallocated table of inodes.
2386 */
2387 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2388 le32_to_cpu(lvidiu->numDirs)) : 0)
2389 + buf->f_bfree;
2390 buf->f_ffree = buf->f_bfree;
2391 buf->f_namelen = UDF_NAME_LEN;
2392 buf->f_fsid = u64_to_fsid(id);
2393
2394 return 0;
2395 }
2396
udf_count_free_bitmap(struct super_block * sb,struct udf_bitmap * bitmap)2397 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2398 struct udf_bitmap *bitmap)
2399 {
2400 struct buffer_head *bh = NULL;
2401 unsigned int accum = 0;
2402 int index;
2403 udf_pblk_t block = 0, newblock;
2404 struct kernel_lb_addr loc;
2405 uint32_t bytes;
2406 uint8_t *ptr;
2407 uint16_t ident;
2408 struct spaceBitmapDesc *bm;
2409
2410 loc.logicalBlockNum = bitmap->s_extPosition;
2411 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2412 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2413
2414 if (!bh) {
2415 udf_err(sb, "udf_count_free failed\n");
2416 goto out;
2417 } else if (ident != TAG_IDENT_SBD) {
2418 brelse(bh);
2419 udf_err(sb, "udf_count_free failed\n");
2420 goto out;
2421 }
2422
2423 bm = (struct spaceBitmapDesc *)bh->b_data;
2424 bytes = le32_to_cpu(bm->numOfBytes);
2425 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2426 ptr = (uint8_t *)bh->b_data;
2427
2428 while (bytes > 0) {
2429 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2430 accum += bitmap_weight((const unsigned long *)(ptr + index),
2431 cur_bytes * 8);
2432 bytes -= cur_bytes;
2433 if (bytes) {
2434 brelse(bh);
2435 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2436 bh = sb_bread(sb, newblock);
2437 if (!bh) {
2438 udf_debug("read failed\n");
2439 goto out;
2440 }
2441 index = 0;
2442 ptr = (uint8_t *)bh->b_data;
2443 }
2444 }
2445 brelse(bh);
2446 out:
2447 return accum;
2448 }
2449
udf_count_free_table(struct super_block * sb,struct inode * table)2450 static unsigned int udf_count_free_table(struct super_block *sb,
2451 struct inode *table)
2452 {
2453 unsigned int accum = 0;
2454 uint32_t elen;
2455 struct kernel_lb_addr eloc;
2456 struct extent_position epos;
2457 int8_t etype;
2458
2459 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2460 epos.block = UDF_I(table)->i_location;
2461 epos.offset = sizeof(struct unallocSpaceEntry);
2462 epos.bh = NULL;
2463
2464 while (udf_next_aext(table, &epos, &eloc, &elen, &etype, 1) > 0)
2465 accum += (elen >> table->i_sb->s_blocksize_bits);
2466
2467 brelse(epos.bh);
2468 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2469
2470 return accum;
2471 }
2472
udf_count_free(struct super_block * sb)2473 static unsigned int udf_count_free(struct super_block *sb)
2474 {
2475 unsigned int accum = 0;
2476 struct udf_sb_info *sbi = UDF_SB(sb);
2477 struct udf_part_map *map;
2478 unsigned int part = sbi->s_partition;
2479 int ptype = sbi->s_partmaps[part].s_partition_type;
2480
2481 if (ptype == UDF_METADATA_MAP25) {
2482 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2483 s_phys_partition_ref;
2484 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2485 /*
2486 * Filesystems with VAT are append-only and we cannot write to
2487 * them. Let's just report 0 here.
2488 */
2489 return 0;
2490 }
2491
2492 if (sbi->s_lvid_bh) {
2493 struct logicalVolIntegrityDesc *lvid =
2494 (struct logicalVolIntegrityDesc *)
2495 sbi->s_lvid_bh->b_data;
2496 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2497 accum = le32_to_cpu(
2498 lvid->freeSpaceTable[part]);
2499 if (accum == 0xFFFFFFFF)
2500 accum = 0;
2501 }
2502 }
2503
2504 if (accum)
2505 return accum;
2506
2507 map = &sbi->s_partmaps[part];
2508 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2509 accum += udf_count_free_bitmap(sb,
2510 map->s_uspace.s_bitmap);
2511 }
2512 if (accum)
2513 return accum;
2514
2515 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2516 accum += udf_count_free_table(sb,
2517 map->s_uspace.s_table);
2518 }
2519 return accum;
2520 }
2521
2522 MODULE_AUTHOR("Ben Fennema");
2523 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2524 MODULE_LICENSE("GPL");
2525 module_init(init_udf_fs)
2526 module_exit(exit_udf_fs)
2527