1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for the L3 cache PMUs in Qualcomm Technologies chips.
4 *
5 * The driver supports a distributed cache architecture where the overall
6 * cache for a socket is comprised of multiple slices each with its own PMU.
7 * Access to each individual PMU is provided even though all CPUs share all
8 * the slices. User space needs to aggregate to individual counts to provide
9 * a global picture.
10 *
11 * See Documentation/admin-guide/perf/qcom_l3_pmu.rst for more details.
12 *
13 * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
14 */
15
16 #include <linux/acpi.h>
17 #include <linux/bitops.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/perf_event.h>
23 #include <linux/platform_device.h>
24
25 /*
26 * General constants
27 */
28
29 /* Number of counters on each PMU */
30 #define L3_NUM_COUNTERS 8
31 /* Mask for the event type field within perf_event_attr.config and EVTYPE reg */
32 #define L3_EVTYPE_MASK 0xFF
33 /*
34 * Bit position of the 'long counter' flag within perf_event_attr.config.
35 * Reserve some space between the event type and this flag to allow expansion
36 * in the event type field.
37 */
38 #define L3_EVENT_LC_BIT 32
39
40 /*
41 * Register offsets
42 */
43
44 /* Perfmon registers */
45 #define L3_HML3_PM_CR 0x000
46 #define L3_HML3_PM_EVCNTR(__cntr) (0x420 + ((__cntr) & 0x7) * 8)
47 #define L3_HML3_PM_CNTCTL(__cntr) (0x120 + ((__cntr) & 0x7) * 8)
48 #define L3_HML3_PM_EVTYPE(__cntr) (0x220 + ((__cntr) & 0x7) * 8)
49 #define L3_HML3_PM_FILTRA 0x300
50 #define L3_HML3_PM_FILTRB 0x308
51 #define L3_HML3_PM_FILTRC 0x310
52 #define L3_HML3_PM_FILTRAM 0x304
53 #define L3_HML3_PM_FILTRBM 0x30C
54 #define L3_HML3_PM_FILTRCM 0x314
55
56 /* Basic counter registers */
57 #define L3_M_BC_CR 0x500
58 #define L3_M_BC_SATROLL_CR 0x504
59 #define L3_M_BC_CNTENSET 0x508
60 #define L3_M_BC_CNTENCLR 0x50C
61 #define L3_M_BC_INTENSET 0x510
62 #define L3_M_BC_INTENCLR 0x514
63 #define L3_M_BC_GANG 0x718
64 #define L3_M_BC_OVSR 0x740
65 #define L3_M_BC_IRQCTL 0x96C
66
67 /*
68 * Bit field definitions
69 */
70
71 /* L3_HML3_PM_CR */
72 #define PM_CR_RESET (0)
73
74 /* L3_HML3_PM_XCNTCTL/L3_HML3_PM_CNTCTLx */
75 #define PMCNT_RESET (0)
76
77 /* L3_HML3_PM_EVTYPEx */
78 #define EVSEL(__val) ((__val) & L3_EVTYPE_MASK)
79
80 /* Reset value for all the filter registers */
81 #define PM_FLTR_RESET (0)
82
83 /* L3_M_BC_CR */
84 #define BC_RESET (1UL << 1)
85 #define BC_ENABLE (1UL << 0)
86
87 /* L3_M_BC_SATROLL_CR */
88 #define BC_SATROLL_CR_RESET (0)
89
90 /* L3_M_BC_CNTENSET */
91 #define PMCNTENSET(__cntr) (1UL << ((__cntr) & 0x7))
92
93 /* L3_M_BC_CNTENCLR */
94 #define PMCNTENCLR(__cntr) (1UL << ((__cntr) & 0x7))
95 #define BC_CNTENCLR_RESET (0xFF)
96
97 /* L3_M_BC_INTENSET */
98 #define PMINTENSET(__cntr) (1UL << ((__cntr) & 0x7))
99
100 /* L3_M_BC_INTENCLR */
101 #define PMINTENCLR(__cntr) (1UL << ((__cntr) & 0x7))
102 #define BC_INTENCLR_RESET (0xFF)
103
104 /* L3_M_BC_GANG */
105 #define GANG_EN(__cntr) (1UL << ((__cntr) & 0x7))
106 #define BC_GANG_RESET (0)
107
108 /* L3_M_BC_OVSR */
109 #define PMOVSRCLR(__cntr) (1UL << ((__cntr) & 0x7))
110 #define PMOVSRCLR_RESET (0xFF)
111
112 /* L3_M_BC_IRQCTL */
113 #define PMIRQONMSBEN(__cntr) (1UL << ((__cntr) & 0x7))
114 #define BC_IRQCTL_RESET (0x0)
115
116 /*
117 * Events
118 */
119
120 #define L3_EVENT_CYCLES 0x01
121 #define L3_EVENT_READ_HIT 0x20
122 #define L3_EVENT_READ_MISS 0x21
123 #define L3_EVENT_READ_HIT_D 0x22
124 #define L3_EVENT_READ_MISS_D 0x23
125 #define L3_EVENT_WRITE_HIT 0x24
126 #define L3_EVENT_WRITE_MISS 0x25
127
128 /*
129 * Decoding of settings from perf_event_attr
130 *
131 * The config format for perf events is:
132 * - config: bits 0-7: event type
133 * bit 32: HW counter size requested, 0: 32 bits, 1: 64 bits
134 */
135
get_event_type(struct perf_event * event)136 static inline u32 get_event_type(struct perf_event *event)
137 {
138 return (event->attr.config) & L3_EVTYPE_MASK;
139 }
140
event_uses_long_counter(struct perf_event * event)141 static inline bool event_uses_long_counter(struct perf_event *event)
142 {
143 return !!(event->attr.config & BIT_ULL(L3_EVENT_LC_BIT));
144 }
145
event_num_counters(struct perf_event * event)146 static inline int event_num_counters(struct perf_event *event)
147 {
148 return event_uses_long_counter(event) ? 2 : 1;
149 }
150
151 /*
152 * Main PMU, inherits from the core perf PMU type
153 */
154 struct l3cache_pmu {
155 struct pmu pmu;
156 struct hlist_node node;
157 void __iomem *regs;
158 struct perf_event *events[L3_NUM_COUNTERS];
159 unsigned long used_mask[BITS_TO_LONGS(L3_NUM_COUNTERS)];
160 cpumask_t cpumask;
161 };
162
163 #define to_l3cache_pmu(p) (container_of(p, struct l3cache_pmu, pmu))
164
165 /*
166 * Type used to group hardware counter operations
167 *
168 * Used to implement two types of hardware counters, standard (32bits) and
169 * long (64bits). The hardware supports counter chaining which we use to
170 * implement long counters. This support is exposed via the 'lc' flag field
171 * in perf_event_attr.config.
172 */
173 struct l3cache_event_ops {
174 /* Called to start event monitoring */
175 void (*start)(struct perf_event *event);
176 /* Called to stop event monitoring */
177 void (*stop)(struct perf_event *event, int flags);
178 /* Called to update the perf_event */
179 void (*update)(struct perf_event *event);
180 };
181
182 /*
183 * Implementation of long counter operations
184 *
185 * 64bit counters are implemented by chaining two of the 32bit physical
186 * counters. The PMU only supports chaining of adjacent even/odd pairs
187 * and for simplicity the driver always configures the odd counter to
188 * count the overflows of the lower-numbered even counter. Note that since
189 * the resulting hardware counter is 64bits no IRQs are required to maintain
190 * the software counter which is also 64bits.
191 */
192
qcom_l3_cache__64bit_counter_start(struct perf_event * event)193 static void qcom_l3_cache__64bit_counter_start(struct perf_event *event)
194 {
195 struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu);
196 int idx = event->hw.idx;
197 u32 evsel = get_event_type(event);
198 u32 gang;
199
200 /* Set the odd counter to count the overflows of the even counter */
201 gang = readl_relaxed(l3pmu->regs + L3_M_BC_GANG);
202 gang |= GANG_EN(idx + 1);
203 writel_relaxed(gang, l3pmu->regs + L3_M_BC_GANG);
204
205 /* Initialize the hardware counters and reset prev_count*/
206 local64_set(&event->hw.prev_count, 0);
207 writel_relaxed(0, l3pmu->regs + L3_HML3_PM_EVCNTR(idx + 1));
208 writel_relaxed(0, l3pmu->regs + L3_HML3_PM_EVCNTR(idx));
209
210 /*
211 * Set the event types, the upper half must use zero and the lower
212 * half the actual event type
213 */
214 writel_relaxed(EVSEL(0), l3pmu->regs + L3_HML3_PM_EVTYPE(idx + 1));
215 writel_relaxed(EVSEL(evsel), l3pmu->regs + L3_HML3_PM_EVTYPE(idx));
216
217 /* Finally, enable the counters */
218 writel_relaxed(PMCNT_RESET, l3pmu->regs + L3_HML3_PM_CNTCTL(idx + 1));
219 writel_relaxed(PMCNTENSET(idx + 1), l3pmu->regs + L3_M_BC_CNTENSET);
220 writel_relaxed(PMCNT_RESET, l3pmu->regs + L3_HML3_PM_CNTCTL(idx));
221 writel_relaxed(PMCNTENSET(idx), l3pmu->regs + L3_M_BC_CNTENSET);
222 }
223
qcom_l3_cache__64bit_counter_stop(struct perf_event * event,int flags)224 static void qcom_l3_cache__64bit_counter_stop(struct perf_event *event,
225 int flags)
226 {
227 struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu);
228 int idx = event->hw.idx;
229 u32 gang = readl_relaxed(l3pmu->regs + L3_M_BC_GANG);
230
231 /* Disable the counters */
232 writel_relaxed(PMCNTENCLR(idx), l3pmu->regs + L3_M_BC_CNTENCLR);
233 writel_relaxed(PMCNTENCLR(idx + 1), l3pmu->regs + L3_M_BC_CNTENCLR);
234
235 /* Disable chaining */
236 writel_relaxed(gang & ~GANG_EN(idx + 1), l3pmu->regs + L3_M_BC_GANG);
237 }
238
qcom_l3_cache__64bit_counter_update(struct perf_event * event)239 static void qcom_l3_cache__64bit_counter_update(struct perf_event *event)
240 {
241 struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu);
242 int idx = event->hw.idx;
243 u32 hi, lo;
244 u64 prev, new;
245
246 do {
247 prev = local64_read(&event->hw.prev_count);
248 do {
249 hi = readl_relaxed(l3pmu->regs + L3_HML3_PM_EVCNTR(idx + 1));
250 lo = readl_relaxed(l3pmu->regs + L3_HML3_PM_EVCNTR(idx));
251 } while (hi != readl_relaxed(l3pmu->regs + L3_HML3_PM_EVCNTR(idx + 1)));
252 new = ((u64)hi << 32) | lo;
253 } while (local64_cmpxchg(&event->hw.prev_count, prev, new) != prev);
254
255 local64_add(new - prev, &event->count);
256 }
257
258 static const struct l3cache_event_ops event_ops_long = {
259 .start = qcom_l3_cache__64bit_counter_start,
260 .stop = qcom_l3_cache__64bit_counter_stop,
261 .update = qcom_l3_cache__64bit_counter_update,
262 };
263
264 /*
265 * Implementation of standard counter operations
266 *
267 * 32bit counters use a single physical counter and a hardware feature that
268 * asserts the overflow IRQ on the toggling of the most significant bit in
269 * the counter. This feature allows the counters to be left free-running
270 * without needing the usual reprogramming required to properly handle races
271 * during concurrent calls to update.
272 */
273
qcom_l3_cache__32bit_counter_start(struct perf_event * event)274 static void qcom_l3_cache__32bit_counter_start(struct perf_event *event)
275 {
276 struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu);
277 int idx = event->hw.idx;
278 u32 evsel = get_event_type(event);
279 u32 irqctl = readl_relaxed(l3pmu->regs + L3_M_BC_IRQCTL);
280
281 /* Set the counter to assert the overflow IRQ on MSB toggling */
282 writel_relaxed(irqctl | PMIRQONMSBEN(idx), l3pmu->regs + L3_M_BC_IRQCTL);
283
284 /* Initialize the hardware counter and reset prev_count*/
285 local64_set(&event->hw.prev_count, 0);
286 writel_relaxed(0, l3pmu->regs + L3_HML3_PM_EVCNTR(idx));
287
288 /* Set the event type */
289 writel_relaxed(EVSEL(evsel), l3pmu->regs + L3_HML3_PM_EVTYPE(idx));
290
291 /* Enable interrupt generation by this counter */
292 writel_relaxed(PMINTENSET(idx), l3pmu->regs + L3_M_BC_INTENSET);
293
294 /* Finally, enable the counter */
295 writel_relaxed(PMCNT_RESET, l3pmu->regs + L3_HML3_PM_CNTCTL(idx));
296 writel_relaxed(PMCNTENSET(idx), l3pmu->regs + L3_M_BC_CNTENSET);
297 }
298
qcom_l3_cache__32bit_counter_stop(struct perf_event * event,int flags)299 static void qcom_l3_cache__32bit_counter_stop(struct perf_event *event,
300 int flags)
301 {
302 struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu);
303 int idx = event->hw.idx;
304 u32 irqctl = readl_relaxed(l3pmu->regs + L3_M_BC_IRQCTL);
305
306 /* Disable the counter */
307 writel_relaxed(PMCNTENCLR(idx), l3pmu->regs + L3_M_BC_CNTENCLR);
308
309 /* Disable interrupt generation by this counter */
310 writel_relaxed(PMINTENCLR(idx), l3pmu->regs + L3_M_BC_INTENCLR);
311
312 /* Set the counter to not assert the overflow IRQ on MSB toggling */
313 writel_relaxed(irqctl & ~PMIRQONMSBEN(idx), l3pmu->regs + L3_M_BC_IRQCTL);
314 }
315
qcom_l3_cache__32bit_counter_update(struct perf_event * event)316 static void qcom_l3_cache__32bit_counter_update(struct perf_event *event)
317 {
318 struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu);
319 int idx = event->hw.idx;
320 u32 prev, new;
321
322 do {
323 prev = local64_read(&event->hw.prev_count);
324 new = readl_relaxed(l3pmu->regs + L3_HML3_PM_EVCNTR(idx));
325 } while (local64_cmpxchg(&event->hw.prev_count, prev, new) != prev);
326
327 local64_add(new - prev, &event->count);
328 }
329
330 static const struct l3cache_event_ops event_ops_std = {
331 .start = qcom_l3_cache__32bit_counter_start,
332 .stop = qcom_l3_cache__32bit_counter_stop,
333 .update = qcom_l3_cache__32bit_counter_update,
334 };
335
336 /* Retrieve the appropriate operations for the given event */
337 static
l3cache_event_get_ops(struct perf_event * event)338 const struct l3cache_event_ops *l3cache_event_get_ops(struct perf_event *event)
339 {
340 if (event_uses_long_counter(event))
341 return &event_ops_long;
342 else
343 return &event_ops_std;
344 }
345
346 /*
347 * Top level PMU functions.
348 */
349
qcom_l3_cache__init(struct l3cache_pmu * l3pmu)350 static inline void qcom_l3_cache__init(struct l3cache_pmu *l3pmu)
351 {
352 int i;
353
354 writel_relaxed(BC_RESET, l3pmu->regs + L3_M_BC_CR);
355
356 /*
357 * Use writel for the first programming command to ensure the basic
358 * counter unit is stopped before proceeding
359 */
360 writel(BC_SATROLL_CR_RESET, l3pmu->regs + L3_M_BC_SATROLL_CR);
361
362 writel_relaxed(BC_CNTENCLR_RESET, l3pmu->regs + L3_M_BC_CNTENCLR);
363 writel_relaxed(BC_INTENCLR_RESET, l3pmu->regs + L3_M_BC_INTENCLR);
364 writel_relaxed(PMOVSRCLR_RESET, l3pmu->regs + L3_M_BC_OVSR);
365 writel_relaxed(BC_GANG_RESET, l3pmu->regs + L3_M_BC_GANG);
366 writel_relaxed(BC_IRQCTL_RESET, l3pmu->regs + L3_M_BC_IRQCTL);
367 writel_relaxed(PM_CR_RESET, l3pmu->regs + L3_HML3_PM_CR);
368
369 for (i = 0; i < L3_NUM_COUNTERS; ++i) {
370 writel_relaxed(PMCNT_RESET, l3pmu->regs + L3_HML3_PM_CNTCTL(i));
371 writel_relaxed(EVSEL(0), l3pmu->regs + L3_HML3_PM_EVTYPE(i));
372 }
373
374 writel_relaxed(PM_FLTR_RESET, l3pmu->regs + L3_HML3_PM_FILTRA);
375 writel_relaxed(PM_FLTR_RESET, l3pmu->regs + L3_HML3_PM_FILTRAM);
376 writel_relaxed(PM_FLTR_RESET, l3pmu->regs + L3_HML3_PM_FILTRB);
377 writel_relaxed(PM_FLTR_RESET, l3pmu->regs + L3_HML3_PM_FILTRBM);
378 writel_relaxed(PM_FLTR_RESET, l3pmu->regs + L3_HML3_PM_FILTRC);
379 writel_relaxed(PM_FLTR_RESET, l3pmu->regs + L3_HML3_PM_FILTRCM);
380
381 /*
382 * Use writel here to ensure all programming commands are done
383 * before proceeding
384 */
385 writel(BC_ENABLE, l3pmu->regs + L3_M_BC_CR);
386 }
387
qcom_l3_cache__handle_irq(int irq_num,void * data)388 static irqreturn_t qcom_l3_cache__handle_irq(int irq_num, void *data)
389 {
390 struct l3cache_pmu *l3pmu = data;
391 /* Read the overflow status register */
392 long status = readl_relaxed(l3pmu->regs + L3_M_BC_OVSR);
393 int idx;
394
395 if (status == 0)
396 return IRQ_NONE;
397
398 /* Clear the bits we read on the overflow status register */
399 writel_relaxed(status, l3pmu->regs + L3_M_BC_OVSR);
400
401 for_each_set_bit(idx, &status, L3_NUM_COUNTERS) {
402 struct perf_event *event;
403 const struct l3cache_event_ops *ops;
404
405 event = l3pmu->events[idx];
406 if (!event)
407 continue;
408
409 /*
410 * Since the IRQ is not enabled for events using long counters
411 * we should never see one of those here, however, be consistent
412 * and use the ops indirections like in the other operations.
413 */
414
415 ops = l3cache_event_get_ops(event);
416 ops->update(event);
417 }
418
419 return IRQ_HANDLED;
420 }
421
422 /*
423 * Implementation of abstract pmu functionality required by
424 * the core perf events code.
425 */
426
qcom_l3_cache__pmu_enable(struct pmu * pmu)427 static void qcom_l3_cache__pmu_enable(struct pmu *pmu)
428 {
429 struct l3cache_pmu *l3pmu = to_l3cache_pmu(pmu);
430
431 /* Ensure the other programming commands are observed before enabling */
432 wmb();
433
434 writel_relaxed(BC_ENABLE, l3pmu->regs + L3_M_BC_CR);
435 }
436
qcom_l3_cache__pmu_disable(struct pmu * pmu)437 static void qcom_l3_cache__pmu_disable(struct pmu *pmu)
438 {
439 struct l3cache_pmu *l3pmu = to_l3cache_pmu(pmu);
440
441 writel_relaxed(0, l3pmu->regs + L3_M_BC_CR);
442
443 /* Ensure the basic counter unit is stopped before proceeding */
444 wmb();
445 }
446
447 /*
448 * We must NOT create groups containing events from multiple hardware PMUs,
449 * although mixing different software and hardware PMUs is allowed.
450 */
qcom_l3_cache__validate_event_group(struct perf_event * event)451 static bool qcom_l3_cache__validate_event_group(struct perf_event *event)
452 {
453 struct perf_event *leader = event->group_leader;
454 struct perf_event *sibling;
455 int counters = 0;
456
457 if (leader->pmu != event->pmu && !is_software_event(leader))
458 return false;
459
460 counters = event_num_counters(event);
461 counters += event_num_counters(leader);
462
463 for_each_sibling_event(sibling, leader) {
464 if (is_software_event(sibling))
465 continue;
466 if (sibling->pmu != event->pmu)
467 return false;
468 counters += event_num_counters(sibling);
469 }
470
471 /*
472 * If the group requires more counters than the HW has, it
473 * cannot ever be scheduled.
474 */
475 return counters <= L3_NUM_COUNTERS;
476 }
477
qcom_l3_cache__event_init(struct perf_event * event)478 static int qcom_l3_cache__event_init(struct perf_event *event)
479 {
480 struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu);
481 struct hw_perf_event *hwc = &event->hw;
482
483 /*
484 * Is the event for this PMU?
485 */
486 if (event->attr.type != event->pmu->type)
487 return -ENOENT;
488
489 /*
490 * Sampling not supported since these events are not core-attributable.
491 */
492 if (hwc->sample_period)
493 return -EINVAL;
494
495 /*
496 * Task mode not available, we run the counters as socket counters,
497 * not attributable to any CPU and therefore cannot attribute per-task.
498 */
499 if (event->cpu < 0)
500 return -EINVAL;
501
502 /* Validate the group */
503 if (!qcom_l3_cache__validate_event_group(event))
504 return -EINVAL;
505
506 hwc->idx = -1;
507
508 /*
509 * Many perf core operations (eg. events rotation) operate on a
510 * single CPU context. This is obvious for CPU PMUs, where one
511 * expects the same sets of events being observed on all CPUs,
512 * but can lead to issues for off-core PMUs, like this one, where
513 * each event could be theoretically assigned to a different CPU.
514 * To mitigate this, we enforce CPU assignment to one designated
515 * processor (the one described in the "cpumask" attribute exported
516 * by the PMU device). perf user space tools honor this and avoid
517 * opening more than one copy of the events.
518 */
519 event->cpu = cpumask_first(&l3pmu->cpumask);
520
521 return 0;
522 }
523
qcom_l3_cache__event_start(struct perf_event * event,int flags)524 static void qcom_l3_cache__event_start(struct perf_event *event, int flags)
525 {
526 struct hw_perf_event *hwc = &event->hw;
527 const struct l3cache_event_ops *ops = l3cache_event_get_ops(event);
528
529 hwc->state = 0;
530 ops->start(event);
531 }
532
qcom_l3_cache__event_stop(struct perf_event * event,int flags)533 static void qcom_l3_cache__event_stop(struct perf_event *event, int flags)
534 {
535 struct hw_perf_event *hwc = &event->hw;
536 const struct l3cache_event_ops *ops = l3cache_event_get_ops(event);
537
538 if (hwc->state & PERF_HES_STOPPED)
539 return;
540
541 ops->stop(event, flags);
542 if (flags & PERF_EF_UPDATE)
543 ops->update(event);
544 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
545 }
546
qcom_l3_cache__event_add(struct perf_event * event,int flags)547 static int qcom_l3_cache__event_add(struct perf_event *event, int flags)
548 {
549 struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu);
550 struct hw_perf_event *hwc = &event->hw;
551 int order = event_uses_long_counter(event) ? 1 : 0;
552 int idx;
553
554 /*
555 * Try to allocate a counter.
556 */
557 idx = bitmap_find_free_region(l3pmu->used_mask, L3_NUM_COUNTERS, order);
558 if (idx < 0)
559 /* The counters are all in use. */
560 return -EAGAIN;
561
562 hwc->idx = idx;
563 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
564 l3pmu->events[idx] = event;
565
566 if (flags & PERF_EF_START)
567 qcom_l3_cache__event_start(event, 0);
568
569 /* Propagate changes to the userspace mapping. */
570 perf_event_update_userpage(event);
571
572 return 0;
573 }
574
qcom_l3_cache__event_del(struct perf_event * event,int flags)575 static void qcom_l3_cache__event_del(struct perf_event *event, int flags)
576 {
577 struct l3cache_pmu *l3pmu = to_l3cache_pmu(event->pmu);
578 struct hw_perf_event *hwc = &event->hw;
579 int order = event_uses_long_counter(event) ? 1 : 0;
580
581 /* Stop and clean up */
582 qcom_l3_cache__event_stop(event, flags | PERF_EF_UPDATE);
583 l3pmu->events[hwc->idx] = NULL;
584 bitmap_release_region(l3pmu->used_mask, hwc->idx, order);
585
586 /* Propagate changes to the userspace mapping. */
587 perf_event_update_userpage(event);
588 }
589
qcom_l3_cache__event_read(struct perf_event * event)590 static void qcom_l3_cache__event_read(struct perf_event *event)
591 {
592 const struct l3cache_event_ops *ops = l3cache_event_get_ops(event);
593
594 ops->update(event);
595 }
596
597 /*
598 * Add sysfs attributes
599 *
600 * We export:
601 * - formats, used by perf user space and other tools to configure events
602 * - events, used by perf user space and other tools to create events
603 * symbolically, e.g.:
604 * perf stat -a -e l3cache_0_0/event=read-miss/ ls
605 * perf stat -a -e l3cache_0_0/event=0x21/ ls
606 * - cpumask, used by perf user space and other tools to know on which CPUs
607 * to open the events
608 */
609
610 /* formats */
611
l3cache_pmu_format_show(struct device * dev,struct device_attribute * attr,char * buf)612 static ssize_t l3cache_pmu_format_show(struct device *dev,
613 struct device_attribute *attr, char *buf)
614 {
615 struct dev_ext_attribute *eattr;
616
617 eattr = container_of(attr, struct dev_ext_attribute, attr);
618 return sysfs_emit(buf, "%s\n", (char *) eattr->var);
619 }
620
621 #define L3CACHE_PMU_FORMAT_ATTR(_name, _config) \
622 (&((struct dev_ext_attribute[]) { \
623 { .attr = __ATTR(_name, 0444, l3cache_pmu_format_show, NULL), \
624 .var = (void *) _config, } \
625 })[0].attr.attr)
626
627 static struct attribute *qcom_l3_cache_pmu_formats[] = {
628 L3CACHE_PMU_FORMAT_ATTR(event, "config:0-7"),
629 L3CACHE_PMU_FORMAT_ATTR(lc, "config:" __stringify(L3_EVENT_LC_BIT)),
630 NULL,
631 };
632
633 static const struct attribute_group qcom_l3_cache_pmu_format_group = {
634 .name = "format",
635 .attrs = qcom_l3_cache_pmu_formats,
636 };
637
638 /* events */
639
l3cache_pmu_event_show(struct device * dev,struct device_attribute * attr,char * page)640 static ssize_t l3cache_pmu_event_show(struct device *dev,
641 struct device_attribute *attr, char *page)
642 {
643 struct perf_pmu_events_attr *pmu_attr;
644
645 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
646 return sysfs_emit(page, "event=0x%02llx\n", pmu_attr->id);
647 }
648
649 #define L3CACHE_EVENT_ATTR(_name, _id) \
650 PMU_EVENT_ATTR_ID(_name, l3cache_pmu_event_show, _id)
651
652 static struct attribute *qcom_l3_cache_pmu_events[] = {
653 L3CACHE_EVENT_ATTR(cycles, L3_EVENT_CYCLES),
654 L3CACHE_EVENT_ATTR(read-hit, L3_EVENT_READ_HIT),
655 L3CACHE_EVENT_ATTR(read-miss, L3_EVENT_READ_MISS),
656 L3CACHE_EVENT_ATTR(read-hit-d-side, L3_EVENT_READ_HIT_D),
657 L3CACHE_EVENT_ATTR(read-miss-d-side, L3_EVENT_READ_MISS_D),
658 L3CACHE_EVENT_ATTR(write-hit, L3_EVENT_WRITE_HIT),
659 L3CACHE_EVENT_ATTR(write-miss, L3_EVENT_WRITE_MISS),
660 NULL
661 };
662
663 static const struct attribute_group qcom_l3_cache_pmu_events_group = {
664 .name = "events",
665 .attrs = qcom_l3_cache_pmu_events,
666 };
667
668 /* cpumask */
669
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)670 static ssize_t cpumask_show(struct device *dev,
671 struct device_attribute *attr, char *buf)
672 {
673 struct l3cache_pmu *l3pmu = to_l3cache_pmu(dev_get_drvdata(dev));
674
675 return cpumap_print_to_pagebuf(true, buf, &l3pmu->cpumask);
676 }
677
678 static DEVICE_ATTR_RO(cpumask);
679
680 static struct attribute *qcom_l3_cache_pmu_cpumask_attrs[] = {
681 &dev_attr_cpumask.attr,
682 NULL,
683 };
684
685 static const struct attribute_group qcom_l3_cache_pmu_cpumask_attr_group = {
686 .attrs = qcom_l3_cache_pmu_cpumask_attrs,
687 };
688
689 /*
690 * Per PMU device attribute groups
691 */
692 static const struct attribute_group *qcom_l3_cache_pmu_attr_grps[] = {
693 &qcom_l3_cache_pmu_format_group,
694 &qcom_l3_cache_pmu_events_group,
695 &qcom_l3_cache_pmu_cpumask_attr_group,
696 NULL,
697 };
698
699 /*
700 * Probing functions and data.
701 */
702
qcom_l3_cache_pmu_online_cpu(unsigned int cpu,struct hlist_node * node)703 static int qcom_l3_cache_pmu_online_cpu(unsigned int cpu, struct hlist_node *node)
704 {
705 struct l3cache_pmu *l3pmu = hlist_entry_safe(node, struct l3cache_pmu, node);
706
707 /* If there is not a CPU/PMU association pick this CPU */
708 if (cpumask_empty(&l3pmu->cpumask))
709 cpumask_set_cpu(cpu, &l3pmu->cpumask);
710
711 return 0;
712 }
713
qcom_l3_cache_pmu_offline_cpu(unsigned int cpu,struct hlist_node * node)714 static int qcom_l3_cache_pmu_offline_cpu(unsigned int cpu, struct hlist_node *node)
715 {
716 struct l3cache_pmu *l3pmu = hlist_entry_safe(node, struct l3cache_pmu, node);
717 unsigned int target;
718
719 if (!cpumask_test_and_clear_cpu(cpu, &l3pmu->cpumask))
720 return 0;
721 target = cpumask_any_but(cpu_online_mask, cpu);
722 if (target >= nr_cpu_ids)
723 return 0;
724 perf_pmu_migrate_context(&l3pmu->pmu, cpu, target);
725 cpumask_set_cpu(target, &l3pmu->cpumask);
726 return 0;
727 }
728
qcom_l3_cache_pmu_probe(struct platform_device * pdev)729 static int qcom_l3_cache_pmu_probe(struct platform_device *pdev)
730 {
731 struct l3cache_pmu *l3pmu;
732 struct acpi_device *acpi_dev;
733 struct resource *memrc;
734 int ret;
735 char *name;
736
737 /* Initialize the PMU data structures */
738
739 acpi_dev = ACPI_COMPANION(&pdev->dev);
740 if (!acpi_dev)
741 return -ENODEV;
742
743 l3pmu = devm_kzalloc(&pdev->dev, sizeof(*l3pmu), GFP_KERNEL);
744 name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "l3cache_%s_%s",
745 acpi_dev_parent(acpi_dev)->pnp.unique_id,
746 acpi_dev->pnp.unique_id);
747 if (!l3pmu || !name)
748 return -ENOMEM;
749
750 l3pmu->pmu = (struct pmu) {
751 .task_ctx_nr = perf_invalid_context,
752
753 .pmu_enable = qcom_l3_cache__pmu_enable,
754 .pmu_disable = qcom_l3_cache__pmu_disable,
755 .event_init = qcom_l3_cache__event_init,
756 .add = qcom_l3_cache__event_add,
757 .del = qcom_l3_cache__event_del,
758 .start = qcom_l3_cache__event_start,
759 .stop = qcom_l3_cache__event_stop,
760 .read = qcom_l3_cache__event_read,
761
762 .attr_groups = qcom_l3_cache_pmu_attr_grps,
763 .capabilities = PERF_PMU_CAP_NO_EXCLUDE,
764 };
765
766 l3pmu->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &memrc);
767 if (IS_ERR(l3pmu->regs))
768 return PTR_ERR(l3pmu->regs);
769
770 qcom_l3_cache__init(l3pmu);
771
772 ret = platform_get_irq(pdev, 0);
773 if (ret <= 0)
774 return ret;
775
776 ret = devm_request_irq(&pdev->dev, ret, qcom_l3_cache__handle_irq, 0,
777 name, l3pmu);
778 if (ret) {
779 dev_err(&pdev->dev, "Request for IRQ failed for slice @%pa\n",
780 &memrc->start);
781 return ret;
782 }
783
784 /* Add this instance to the list used by the offline callback */
785 ret = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_QCOM_L3_ONLINE, &l3pmu->node);
786 if (ret) {
787 dev_err(&pdev->dev, "Error %d registering hotplug", ret);
788 return ret;
789 }
790
791 ret = perf_pmu_register(&l3pmu->pmu, name, -1);
792 if (ret < 0) {
793 dev_err(&pdev->dev, "Failed to register L3 cache PMU (%d)\n", ret);
794 return ret;
795 }
796
797 dev_info(&pdev->dev, "Registered %s, type: %d\n", name, l3pmu->pmu.type);
798
799 return 0;
800 }
801
802 static const struct acpi_device_id qcom_l3_cache_pmu_acpi_match[] = {
803 { "QCOM8081", },
804 { }
805 };
806 MODULE_DEVICE_TABLE(acpi, qcom_l3_cache_pmu_acpi_match);
807
808 static struct platform_driver qcom_l3_cache_pmu_driver = {
809 .driver = {
810 .name = "qcom-l3cache-pmu",
811 .acpi_match_table = ACPI_PTR(qcom_l3_cache_pmu_acpi_match),
812 .suppress_bind_attrs = true,
813 },
814 .probe = qcom_l3_cache_pmu_probe,
815 };
816
register_qcom_l3_cache_pmu_driver(void)817 static int __init register_qcom_l3_cache_pmu_driver(void)
818 {
819 int ret;
820
821 /* Install a hook to update the reader CPU in case it goes offline */
822 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_QCOM_L3_ONLINE,
823 "perf/qcom/l3cache:online",
824 qcom_l3_cache_pmu_online_cpu,
825 qcom_l3_cache_pmu_offline_cpu);
826 if (ret)
827 return ret;
828
829 return platform_driver_register(&qcom_l3_cache_pmu_driver);
830 }
831 device_initcall(register_qcom_l3_cache_pmu_driver);
832