1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include <linux/sched/isolation.h>
67 #include "internal.h"
68 #include <net/sock.h>
69 #include <net/ip.h>
70 #include "slab.h"
71 #include "swap.h"
72
73 #include <linux/uaccess.h>
74
75 #include <trace/events/vmscan.h>
76
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82 /* Active memory cgroup to use from an interrupt context */
83 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
84 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
85
86 /* Socket memory accounting disabled? */
87 static bool cgroup_memory_nosocket __ro_after_init;
88
89 /* Kernel memory accounting disabled? */
90 static bool cgroup_memory_nokmem __ro_after_init;
91
92 /* BPF memory accounting disabled? */
93 static bool cgroup_memory_nobpf __ro_after_init;
94
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98
99 /* Whether legacy memory+swap accounting is active */
do_memsw_account(void)100 static bool do_memsw_account(void)
101 {
102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
103 }
104
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107
108 /*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
113 struct mem_cgroup_tree_per_node {
114 struct rb_root rb_root;
115 struct rb_node *rb_rightmost;
116 spinlock_t lock;
117 };
118
119 struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129 };
130
131 /*
132 * cgroup_event represents events which userspace want to receive.
133 */
134 struct mem_cgroup_event {
135 /*
136 * memcg which the event belongs to.
137 */
138 struct mem_cgroup *memcg;
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
152 int (*register_event)(struct mem_cgroup *memcg,
153 struct eventfd_ctx *eventfd, const char *args);
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
159 void (*unregister_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd);
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
167 wait_queue_entry_t wait;
168 struct work_struct remove;
169 };
170
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174 /* Stuffs for move charges at task migration. */
175 /*
176 * Types of charges to be moved.
177 */
178 #define MOVE_ANON 0x1U
179 #define MOVE_FILE 0x2U
180 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
181
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 spinlock_t lock; /* for from, to */
185 struct mm_struct *mm;
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
188 unsigned long flags;
189 unsigned long precharge;
190 unsigned long moved_charge;
191 unsigned long moved_swap;
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194 } mc = {
195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198
199 /*
200 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206 /* for encoding cft->private value on file */
207 enum res_type {
208 _MEM,
209 _MEMSWAP,
210 _KMEM,
211 _TCP,
212 };
213
214 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
215 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
216 #define MEMFILE_ATTR(val) ((val) & 0xffff)
217
218 /*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223 #define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228 #define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
task_is_dying(void)233 static inline bool task_is_dying(void)
234 {
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237 }
238
239 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241 {
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245 }
246
vmpressure_to_memcg(struct vmpressure * vmpr)247 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
248 {
249 return container_of(vmpr, struct mem_cgroup, vmpressure);
250 }
251
252 #ifdef CONFIG_MEMCG_KMEM
253 static DEFINE_SPINLOCK(objcg_lock);
254
mem_cgroup_kmem_disabled(void)255 bool mem_cgroup_kmem_disabled(void)
256 {
257 return cgroup_memory_nokmem;
258 }
259
260 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
261 unsigned int nr_pages);
262
obj_cgroup_release(struct percpu_ref * ref)263 static void obj_cgroup_release(struct percpu_ref *ref)
264 {
265 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266 unsigned int nr_bytes;
267 unsigned int nr_pages;
268 unsigned long flags;
269
270 /*
271 * At this point all allocated objects are freed, and
272 * objcg->nr_charged_bytes can't have an arbitrary byte value.
273 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274 *
275 * The following sequence can lead to it:
276 * 1) CPU0: objcg == stock->cached_objcg
277 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278 * PAGE_SIZE bytes are charged
279 * 3) CPU1: a process from another memcg is allocating something,
280 * the stock if flushed,
281 * objcg->nr_charged_bytes = PAGE_SIZE - 92
282 * 5) CPU0: we do release this object,
283 * 92 bytes are added to stock->nr_bytes
284 * 6) CPU0: stock is flushed,
285 * 92 bytes are added to objcg->nr_charged_bytes
286 *
287 * In the result, nr_charged_bytes == PAGE_SIZE.
288 * This page will be uncharged in obj_cgroup_release().
289 */
290 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292 nr_pages = nr_bytes >> PAGE_SHIFT;
293
294 if (nr_pages)
295 obj_cgroup_uncharge_pages(objcg, nr_pages);
296
297 spin_lock_irqsave(&objcg_lock, flags);
298 list_del(&objcg->list);
299 spin_unlock_irqrestore(&objcg_lock, flags);
300
301 percpu_ref_exit(ref);
302 kfree_rcu(objcg, rcu);
303 }
304
obj_cgroup_alloc(void)305 static struct obj_cgroup *obj_cgroup_alloc(void)
306 {
307 struct obj_cgroup *objcg;
308 int ret;
309
310 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311 if (!objcg)
312 return NULL;
313
314 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315 GFP_KERNEL);
316 if (ret) {
317 kfree(objcg);
318 return NULL;
319 }
320 INIT_LIST_HEAD(&objcg->list);
321 return objcg;
322 }
323
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)324 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325 struct mem_cgroup *parent)
326 {
327 struct obj_cgroup *objcg, *iter;
328
329 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330
331 spin_lock_irq(&objcg_lock);
332
333 /* 1) Ready to reparent active objcg. */
334 list_add(&objcg->list, &memcg->objcg_list);
335 /* 2) Reparent active objcg and already reparented objcgs to parent. */
336 list_for_each_entry(iter, &memcg->objcg_list, list)
337 WRITE_ONCE(iter->memcg, parent);
338 /* 3) Move already reparented objcgs to the parent's list */
339 list_splice(&memcg->objcg_list, &parent->objcg_list);
340
341 spin_unlock_irq(&objcg_lock);
342
343 percpu_ref_kill(&objcg->refcnt);
344 }
345
346 /*
347 * A lot of the calls to the cache allocation functions are expected to be
348 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
349 * conditional to this static branch, we'll have to allow modules that does
350 * kmem_cache_alloc and the such to see this symbol as well
351 */
352 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
353 EXPORT_SYMBOL(memcg_kmem_online_key);
354
355 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
356 EXPORT_SYMBOL(memcg_bpf_enabled_key);
357 #endif
358
359 /**
360 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
361 * @folio: folio of interest
362 *
363 * If memcg is bound to the default hierarchy, css of the memcg associated
364 * with @folio is returned. The returned css remains associated with @folio
365 * until it is released.
366 *
367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368 * is returned.
369 */
mem_cgroup_css_from_folio(struct folio * folio)370 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
371 {
372 struct mem_cgroup *memcg = folio_memcg(folio);
373
374 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
375 memcg = root_mem_cgroup;
376
377 return &memcg->css;
378 }
379
380 /**
381 * page_cgroup_ino - return inode number of the memcg a page is charged to
382 * @page: the page
383 *
384 * Look up the closest online ancestor of the memory cgroup @page is charged to
385 * and return its inode number or 0 if @page is not charged to any cgroup. It
386 * is safe to call this function without holding a reference to @page.
387 *
388 * Note, this function is inherently racy, because there is nothing to prevent
389 * the cgroup inode from getting torn down and potentially reallocated a moment
390 * after page_cgroup_ino() returns, so it only should be used by callers that
391 * do not care (such as procfs interfaces).
392 */
page_cgroup_ino(struct page * page)393 ino_t page_cgroup_ino(struct page *page)
394 {
395 struct mem_cgroup *memcg;
396 unsigned long ino = 0;
397
398 rcu_read_lock();
399 /* page_folio() is racy here, but the entire function is racy anyway */
400 memcg = folio_memcg_check(page_folio(page));
401
402 while (memcg && !(memcg->css.flags & CSS_ONLINE))
403 memcg = parent_mem_cgroup(memcg);
404 if (memcg)
405 ino = cgroup_ino(memcg->css.cgroup);
406 rcu_read_unlock();
407 return ino;
408 }
409
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz,unsigned long new_usage_in_excess)410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
411 struct mem_cgroup_tree_per_node *mctz,
412 unsigned long new_usage_in_excess)
413 {
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_node *mz_node;
417 bool rightmost = true;
418
419 if (mz->on_tree)
420 return;
421
422 mz->usage_in_excess = new_usage_in_excess;
423 if (!mz->usage_in_excess)
424 return;
425 while (*p) {
426 parent = *p;
427 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
428 tree_node);
429 if (mz->usage_in_excess < mz_node->usage_in_excess) {
430 p = &(*p)->rb_left;
431 rightmost = false;
432 } else {
433 p = &(*p)->rb_right;
434 }
435 }
436
437 if (rightmost)
438 mctz->rb_rightmost = &mz->tree_node;
439
440 rb_link_node(&mz->tree_node, parent, p);
441 rb_insert_color(&mz->tree_node, &mctz->rb_root);
442 mz->on_tree = true;
443 }
444
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)445 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
446 struct mem_cgroup_tree_per_node *mctz)
447 {
448 if (!mz->on_tree)
449 return;
450
451 if (&mz->tree_node == mctz->rb_rightmost)
452 mctz->rb_rightmost = rb_prev(&mz->tree_node);
453
454 rb_erase(&mz->tree_node, &mctz->rb_root);
455 mz->on_tree = false;
456 }
457
mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)458 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
459 struct mem_cgroup_tree_per_node *mctz)
460 {
461 unsigned long flags;
462
463 spin_lock_irqsave(&mctz->lock, flags);
464 __mem_cgroup_remove_exceeded(mz, mctz);
465 spin_unlock_irqrestore(&mctz->lock, flags);
466 }
467
soft_limit_excess(struct mem_cgroup * memcg)468 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
469 {
470 unsigned long nr_pages = page_counter_read(&memcg->memory);
471 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
472 unsigned long excess = 0;
473
474 if (nr_pages > soft_limit)
475 excess = nr_pages - soft_limit;
476
477 return excess;
478 }
479
mem_cgroup_update_tree(struct mem_cgroup * memcg,int nid)480 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
481 {
482 unsigned long excess;
483 struct mem_cgroup_per_node *mz;
484 struct mem_cgroup_tree_per_node *mctz;
485
486 if (lru_gen_enabled()) {
487 if (soft_limit_excess(memcg))
488 lru_gen_soft_reclaim(memcg, nid);
489 return;
490 }
491
492 mctz = soft_limit_tree.rb_tree_per_node[nid];
493 if (!mctz)
494 return;
495 /*
496 * Necessary to update all ancestors when hierarchy is used.
497 * because their event counter is not touched.
498 */
499 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
500 mz = memcg->nodeinfo[nid];
501 excess = soft_limit_excess(memcg);
502 /*
503 * We have to update the tree if mz is on RB-tree or
504 * mem is over its softlimit.
505 */
506 if (excess || mz->on_tree) {
507 unsigned long flags;
508
509 spin_lock_irqsave(&mctz->lock, flags);
510 /* if on-tree, remove it */
511 if (mz->on_tree)
512 __mem_cgroup_remove_exceeded(mz, mctz);
513 /*
514 * Insert again. mz->usage_in_excess will be updated.
515 * If excess is 0, no tree ops.
516 */
517 __mem_cgroup_insert_exceeded(mz, mctz, excess);
518 spin_unlock_irqrestore(&mctz->lock, flags);
519 }
520 }
521 }
522
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)523 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
524 {
525 struct mem_cgroup_tree_per_node *mctz;
526 struct mem_cgroup_per_node *mz;
527 int nid;
528
529 for_each_node(nid) {
530 mz = memcg->nodeinfo[nid];
531 mctz = soft_limit_tree.rb_tree_per_node[nid];
532 if (mctz)
533 mem_cgroup_remove_exceeded(mz, mctz);
534 }
535 }
536
537 static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)538 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
539 {
540 struct mem_cgroup_per_node *mz;
541
542 retry:
543 mz = NULL;
544 if (!mctz->rb_rightmost)
545 goto done; /* Nothing to reclaim from */
546
547 mz = rb_entry(mctz->rb_rightmost,
548 struct mem_cgroup_per_node, tree_node);
549 /*
550 * Remove the node now but someone else can add it back,
551 * we will to add it back at the end of reclaim to its correct
552 * position in the tree.
553 */
554 __mem_cgroup_remove_exceeded(mz, mctz);
555 if (!soft_limit_excess(mz->memcg) ||
556 !css_tryget(&mz->memcg->css))
557 goto retry;
558 done:
559 return mz;
560 }
561
562 static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)563 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
564 {
565 struct mem_cgroup_per_node *mz;
566
567 spin_lock_irq(&mctz->lock);
568 mz = __mem_cgroup_largest_soft_limit_node(mctz);
569 spin_unlock_irq(&mctz->lock);
570 return mz;
571 }
572
573 /*
574 * memcg and lruvec stats flushing
575 *
576 * Many codepaths leading to stats update or read are performance sensitive and
577 * adding stats flushing in such codepaths is not desirable. So, to optimize the
578 * flushing the kernel does:
579 *
580 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
581 * rstat update tree grow unbounded.
582 *
583 * 2) Flush the stats synchronously on reader side only when there are more than
584 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
585 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
586 * only for 2 seconds due to (1).
587 */
588 static void flush_memcg_stats_dwork(struct work_struct *w);
589 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
590 static DEFINE_PER_CPU(unsigned int, stats_updates);
591 static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
592 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
593 static u64 flush_next_time;
594
595 #define FLUSH_TIME (2UL*HZ)
596
597 /*
598 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
599 * not rely on this as part of an acquired spinlock_t lock. These functions are
600 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
601 * is sufficient.
602 */
memcg_stats_lock(void)603 static void memcg_stats_lock(void)
604 {
605 preempt_disable_nested();
606 VM_WARN_ON_IRQS_ENABLED();
607 }
608
__memcg_stats_lock(void)609 static void __memcg_stats_lock(void)
610 {
611 preempt_disable_nested();
612 }
613
memcg_stats_unlock(void)614 static void memcg_stats_unlock(void)
615 {
616 preempt_enable_nested();
617 }
618
memcg_rstat_updated(struct mem_cgroup * memcg,int val)619 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
620 {
621 unsigned int x;
622
623 if (!val)
624 return;
625
626 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
627
628 x = __this_cpu_add_return(stats_updates, abs(val));
629 if (x > MEMCG_CHARGE_BATCH) {
630 /*
631 * If stats_flush_threshold exceeds the threshold
632 * (>num_online_cpus()), cgroup stats update will be triggered
633 * in __mem_cgroup_flush_stats(). Increasing this var further
634 * is redundant and simply adds overhead in atomic update.
635 */
636 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
637 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
638 __this_cpu_write(stats_updates, 0);
639 }
640 }
641
do_flush_stats(void)642 static void do_flush_stats(void)
643 {
644 /*
645 * We always flush the entire tree, so concurrent flushers can just
646 * skip. This avoids a thundering herd problem on the rstat global lock
647 * from memcg flushers (e.g. reclaim, refault, etc).
648 */
649 if (atomic_read(&stats_flush_ongoing) ||
650 atomic_xchg(&stats_flush_ongoing, 1))
651 return;
652
653 WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
654
655 cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
656
657 atomic_set(&stats_flush_threshold, 0);
658 atomic_set(&stats_flush_ongoing, 0);
659 }
660
mem_cgroup_flush_stats(void)661 void mem_cgroup_flush_stats(void)
662 {
663 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
664 do_flush_stats();
665 }
666
mem_cgroup_flush_stats_ratelimited(void)667 void mem_cgroup_flush_stats_ratelimited(void)
668 {
669 if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
670 mem_cgroup_flush_stats();
671 }
672
flush_memcg_stats_dwork(struct work_struct * w)673 static void flush_memcg_stats_dwork(struct work_struct *w)
674 {
675 /*
676 * Always flush here so that flushing in latency-sensitive paths is
677 * as cheap as possible.
678 */
679 do_flush_stats();
680 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
681 }
682
683 /* Subset of vm_event_item to report for memcg event stats */
684 static const unsigned int memcg_vm_event_stat[] = {
685 PGPGIN,
686 PGPGOUT,
687 PGSCAN_KSWAPD,
688 PGSCAN_DIRECT,
689 PGSCAN_KHUGEPAGED,
690 PGSTEAL_KSWAPD,
691 PGSTEAL_DIRECT,
692 PGSTEAL_KHUGEPAGED,
693 PGFAULT,
694 PGMAJFAULT,
695 PGREFILL,
696 PGACTIVATE,
697 PGDEACTIVATE,
698 PGLAZYFREE,
699 PGLAZYFREED,
700 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
701 ZSWPIN,
702 ZSWPOUT,
703 #endif
704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
705 THP_FAULT_ALLOC,
706 THP_COLLAPSE_ALLOC,
707 #endif
708 };
709
710 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
711 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
712
init_memcg_events(void)713 static void init_memcg_events(void)
714 {
715 int i;
716
717 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
718 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
719 }
720
memcg_events_index(enum vm_event_item idx)721 static inline int memcg_events_index(enum vm_event_item idx)
722 {
723 return mem_cgroup_events_index[idx] - 1;
724 }
725
726 struct memcg_vmstats_percpu {
727 /* Local (CPU and cgroup) page state & events */
728 long state[MEMCG_NR_STAT];
729 unsigned long events[NR_MEMCG_EVENTS];
730
731 /* Delta calculation for lockless upward propagation */
732 long state_prev[MEMCG_NR_STAT];
733 unsigned long events_prev[NR_MEMCG_EVENTS];
734
735 /* Cgroup1: threshold notifications & softlimit tree updates */
736 unsigned long nr_page_events;
737 unsigned long targets[MEM_CGROUP_NTARGETS];
738 };
739
740 struct memcg_vmstats {
741 /* Aggregated (CPU and subtree) page state & events */
742 long state[MEMCG_NR_STAT];
743 unsigned long events[NR_MEMCG_EVENTS];
744
745 /* Non-hierarchical (CPU aggregated) page state & events */
746 long state_local[MEMCG_NR_STAT];
747 unsigned long events_local[NR_MEMCG_EVENTS];
748
749 /* Pending child counts during tree propagation */
750 long state_pending[MEMCG_NR_STAT];
751 unsigned long events_pending[NR_MEMCG_EVENTS];
752 };
753
memcg_page_state(struct mem_cgroup * memcg,int idx)754 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
755 {
756 long x = READ_ONCE(memcg->vmstats->state[idx]);
757 #ifdef CONFIG_SMP
758 if (x < 0)
759 x = 0;
760 #endif
761 return x;
762 }
763
764 /**
765 * __mod_memcg_state - update cgroup memory statistics
766 * @memcg: the memory cgroup
767 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
768 * @val: delta to add to the counter, can be negative
769 */
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)770 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
771 {
772 if (mem_cgroup_disabled())
773 return;
774
775 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
776 memcg_rstat_updated(memcg, val);
777 }
778
779 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)780 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
781 {
782 long x = READ_ONCE(memcg->vmstats->state_local[idx]);
783
784 #ifdef CONFIG_SMP
785 if (x < 0)
786 x = 0;
787 #endif
788 return x;
789 }
790
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)791 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
792 int val)
793 {
794 struct mem_cgroup_per_node *pn;
795 struct mem_cgroup *memcg;
796
797 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
798 memcg = pn->memcg;
799
800 /*
801 * The caller from rmap relay on disabled preemption becase they never
802 * update their counter from in-interrupt context. For these two
803 * counters we check that the update is never performed from an
804 * interrupt context while other caller need to have disabled interrupt.
805 */
806 __memcg_stats_lock();
807 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
808 switch (idx) {
809 case NR_ANON_MAPPED:
810 case NR_FILE_MAPPED:
811 case NR_ANON_THPS:
812 case NR_SHMEM_PMDMAPPED:
813 case NR_FILE_PMDMAPPED:
814 WARN_ON_ONCE(!in_task());
815 break;
816 default:
817 VM_WARN_ON_IRQS_ENABLED();
818 }
819 }
820
821 /* Update memcg */
822 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
823
824 /* Update lruvec */
825 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
826
827 memcg_rstat_updated(memcg, val);
828 memcg_stats_unlock();
829 }
830
831 /**
832 * __mod_lruvec_state - update lruvec memory statistics
833 * @lruvec: the lruvec
834 * @idx: the stat item
835 * @val: delta to add to the counter, can be negative
836 *
837 * The lruvec is the intersection of the NUMA node and a cgroup. This
838 * function updates the all three counters that are affected by a
839 * change of state at this level: per-node, per-cgroup, per-lruvec.
840 */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)841 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
842 int val)
843 {
844 /* Update node */
845 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
846
847 /* Update memcg and lruvec */
848 if (!mem_cgroup_disabled())
849 __mod_memcg_lruvec_state(lruvec, idx, val);
850 }
851
__mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)852 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
853 int val)
854 {
855 struct page *head = compound_head(page); /* rmap on tail pages */
856 struct mem_cgroup *memcg;
857 pg_data_t *pgdat = page_pgdat(page);
858 struct lruvec *lruvec;
859
860 rcu_read_lock();
861 memcg = page_memcg(head);
862 /* Untracked pages have no memcg, no lruvec. Update only the node */
863 if (!memcg) {
864 rcu_read_unlock();
865 __mod_node_page_state(pgdat, idx, val);
866 return;
867 }
868
869 lruvec = mem_cgroup_lruvec(memcg, pgdat);
870 __mod_lruvec_state(lruvec, idx, val);
871 rcu_read_unlock();
872 }
873 EXPORT_SYMBOL(__mod_lruvec_page_state);
874
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)875 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
876 {
877 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
878 struct mem_cgroup *memcg;
879 struct lruvec *lruvec;
880
881 rcu_read_lock();
882 memcg = mem_cgroup_from_slab_obj(p);
883
884 /*
885 * Untracked pages have no memcg, no lruvec. Update only the
886 * node. If we reparent the slab objects to the root memcg,
887 * when we free the slab object, we need to update the per-memcg
888 * vmstats to keep it correct for the root memcg.
889 */
890 if (!memcg) {
891 __mod_node_page_state(pgdat, idx, val);
892 } else {
893 lruvec = mem_cgroup_lruvec(memcg, pgdat);
894 __mod_lruvec_state(lruvec, idx, val);
895 }
896 rcu_read_unlock();
897 }
898
899 /**
900 * __count_memcg_events - account VM events in a cgroup
901 * @memcg: the memory cgroup
902 * @idx: the event item
903 * @count: the number of events that occurred
904 */
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)905 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
906 unsigned long count)
907 {
908 int index = memcg_events_index(idx);
909
910 if (mem_cgroup_disabled() || index < 0)
911 return;
912
913 memcg_stats_lock();
914 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
915 memcg_rstat_updated(memcg, count);
916 memcg_stats_unlock();
917 }
918
memcg_events(struct mem_cgroup * memcg,int event)919 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
920 {
921 int index = memcg_events_index(event);
922
923 if (index < 0)
924 return 0;
925 return READ_ONCE(memcg->vmstats->events[index]);
926 }
927
memcg_events_local(struct mem_cgroup * memcg,int event)928 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
929 {
930 int index = memcg_events_index(event);
931
932 if (index < 0)
933 return 0;
934
935 return READ_ONCE(memcg->vmstats->events_local[index]);
936 }
937
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,int nr_pages)938 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
939 int nr_pages)
940 {
941 /* pagein of a big page is an event. So, ignore page size */
942 if (nr_pages > 0)
943 __count_memcg_events(memcg, PGPGIN, 1);
944 else {
945 __count_memcg_events(memcg, PGPGOUT, 1);
946 nr_pages = -nr_pages; /* for event */
947 }
948
949 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
950 }
951
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)952 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
953 enum mem_cgroup_events_target target)
954 {
955 unsigned long val, next;
956
957 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
958 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
959 /* from time_after() in jiffies.h */
960 if ((long)(next - val) < 0) {
961 switch (target) {
962 case MEM_CGROUP_TARGET_THRESH:
963 next = val + THRESHOLDS_EVENTS_TARGET;
964 break;
965 case MEM_CGROUP_TARGET_SOFTLIMIT:
966 next = val + SOFTLIMIT_EVENTS_TARGET;
967 break;
968 default:
969 break;
970 }
971 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
972 return true;
973 }
974 return false;
975 }
976
977 /*
978 * Check events in order.
979 *
980 */
memcg_check_events(struct mem_cgroup * memcg,int nid)981 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
982 {
983 if (IS_ENABLED(CONFIG_PREEMPT_RT))
984 return;
985
986 /* threshold event is triggered in finer grain than soft limit */
987 if (unlikely(mem_cgroup_event_ratelimit(memcg,
988 MEM_CGROUP_TARGET_THRESH))) {
989 bool do_softlimit;
990
991 do_softlimit = mem_cgroup_event_ratelimit(memcg,
992 MEM_CGROUP_TARGET_SOFTLIMIT);
993 mem_cgroup_threshold(memcg);
994 if (unlikely(do_softlimit))
995 mem_cgroup_update_tree(memcg, nid);
996 }
997 }
998
mem_cgroup_from_task(struct task_struct * p)999 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1000 {
1001 /*
1002 * mm_update_next_owner() may clear mm->owner to NULL
1003 * if it races with swapoff, page migration, etc.
1004 * So this can be called with p == NULL.
1005 */
1006 if (unlikely(!p))
1007 return NULL;
1008
1009 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1010 }
1011 EXPORT_SYMBOL(mem_cgroup_from_task);
1012
active_memcg(void)1013 static __always_inline struct mem_cgroup *active_memcg(void)
1014 {
1015 if (!in_task())
1016 return this_cpu_read(int_active_memcg);
1017 else
1018 return current->active_memcg;
1019 }
1020
1021 /**
1022 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1023 * @mm: mm from which memcg should be extracted. It can be NULL.
1024 *
1025 * Obtain a reference on mm->memcg and returns it if successful. If mm
1026 * is NULL, then the memcg is chosen as follows:
1027 * 1) The active memcg, if set.
1028 * 2) current->mm->memcg, if available
1029 * 3) root memcg
1030 * If mem_cgroup is disabled, NULL is returned.
1031 */
get_mem_cgroup_from_mm(struct mm_struct * mm)1032 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1033 {
1034 struct mem_cgroup *memcg;
1035
1036 if (mem_cgroup_disabled())
1037 return NULL;
1038
1039 /*
1040 * Page cache insertions can happen without an
1041 * actual mm context, e.g. during disk probing
1042 * on boot, loopback IO, acct() writes etc.
1043 *
1044 * No need to css_get on root memcg as the reference
1045 * counting is disabled on the root level in the
1046 * cgroup core. See CSS_NO_REF.
1047 */
1048 if (unlikely(!mm)) {
1049 memcg = active_memcg();
1050 if (unlikely(memcg)) {
1051 /* remote memcg must hold a ref */
1052 css_get(&memcg->css);
1053 return memcg;
1054 }
1055 mm = current->mm;
1056 if (unlikely(!mm))
1057 return root_mem_cgroup;
1058 }
1059
1060 rcu_read_lock();
1061 do {
1062 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1063 if (unlikely(!memcg))
1064 memcg = root_mem_cgroup;
1065 } while (!css_tryget(&memcg->css));
1066 rcu_read_unlock();
1067 return memcg;
1068 }
1069 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1070
memcg_kmem_bypass(void)1071 static __always_inline bool memcg_kmem_bypass(void)
1072 {
1073 /* Allow remote memcg charging from any context. */
1074 if (unlikely(active_memcg()))
1075 return false;
1076
1077 /* Memcg to charge can't be determined. */
1078 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1079 return true;
1080
1081 return false;
1082 }
1083
1084 /**
1085 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1086 * @root: hierarchy root
1087 * @prev: previously returned memcg, NULL on first invocation
1088 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1089 *
1090 * Returns references to children of the hierarchy below @root, or
1091 * @root itself, or %NULL after a full round-trip.
1092 *
1093 * Caller must pass the return value in @prev on subsequent
1094 * invocations for reference counting, or use mem_cgroup_iter_break()
1095 * to cancel a hierarchy walk before the round-trip is complete.
1096 *
1097 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1098 * in the hierarchy among all concurrent reclaimers operating on the
1099 * same node.
1100 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1101 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1102 struct mem_cgroup *prev,
1103 struct mem_cgroup_reclaim_cookie *reclaim)
1104 {
1105 struct mem_cgroup_reclaim_iter *iter;
1106 struct cgroup_subsys_state *css = NULL;
1107 struct mem_cgroup *memcg = NULL;
1108 struct mem_cgroup *pos = NULL;
1109
1110 if (mem_cgroup_disabled())
1111 return NULL;
1112
1113 if (!root)
1114 root = root_mem_cgroup;
1115
1116 rcu_read_lock();
1117
1118 if (reclaim) {
1119 struct mem_cgroup_per_node *mz;
1120
1121 mz = root->nodeinfo[reclaim->pgdat->node_id];
1122 iter = &mz->iter;
1123
1124 /*
1125 * On start, join the current reclaim iteration cycle.
1126 * Exit when a concurrent walker completes it.
1127 */
1128 if (!prev)
1129 reclaim->generation = iter->generation;
1130 else if (reclaim->generation != iter->generation)
1131 goto out_unlock;
1132
1133 while (1) {
1134 pos = READ_ONCE(iter->position);
1135 if (!pos || css_tryget(&pos->css))
1136 break;
1137 /*
1138 * css reference reached zero, so iter->position will
1139 * be cleared by ->css_released. However, we should not
1140 * rely on this happening soon, because ->css_released
1141 * is called from a work queue, and by busy-waiting we
1142 * might block it. So we clear iter->position right
1143 * away.
1144 */
1145 (void)cmpxchg(&iter->position, pos, NULL);
1146 }
1147 } else if (prev) {
1148 pos = prev;
1149 }
1150
1151 if (pos)
1152 css = &pos->css;
1153
1154 for (;;) {
1155 css = css_next_descendant_pre(css, &root->css);
1156 if (!css) {
1157 /*
1158 * Reclaimers share the hierarchy walk, and a
1159 * new one might jump in right at the end of
1160 * the hierarchy - make sure they see at least
1161 * one group and restart from the beginning.
1162 */
1163 if (!prev)
1164 continue;
1165 break;
1166 }
1167
1168 /*
1169 * Verify the css and acquire a reference. The root
1170 * is provided by the caller, so we know it's alive
1171 * and kicking, and don't take an extra reference.
1172 */
1173 if (css == &root->css || css_tryget(css)) {
1174 memcg = mem_cgroup_from_css(css);
1175 break;
1176 }
1177 }
1178
1179 if (reclaim) {
1180 /*
1181 * The position could have already been updated by a competing
1182 * thread, so check that the value hasn't changed since we read
1183 * it to avoid reclaiming from the same cgroup twice.
1184 */
1185 (void)cmpxchg(&iter->position, pos, memcg);
1186
1187 if (pos)
1188 css_put(&pos->css);
1189
1190 if (!memcg)
1191 iter->generation++;
1192 }
1193
1194 out_unlock:
1195 rcu_read_unlock();
1196 if (prev && prev != root)
1197 css_put(&prev->css);
1198
1199 return memcg;
1200 }
1201
1202 /**
1203 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1204 * @root: hierarchy root
1205 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1206 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1207 void mem_cgroup_iter_break(struct mem_cgroup *root,
1208 struct mem_cgroup *prev)
1209 {
1210 if (!root)
1211 root = root_mem_cgroup;
1212 if (prev && prev != root)
1213 css_put(&prev->css);
1214 }
1215
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1216 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1217 struct mem_cgroup *dead_memcg)
1218 {
1219 struct mem_cgroup_reclaim_iter *iter;
1220 struct mem_cgroup_per_node *mz;
1221 int nid;
1222
1223 for_each_node(nid) {
1224 mz = from->nodeinfo[nid];
1225 iter = &mz->iter;
1226 cmpxchg(&iter->position, dead_memcg, NULL);
1227 }
1228 }
1229
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1230 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1231 {
1232 struct mem_cgroup *memcg = dead_memcg;
1233 struct mem_cgroup *last;
1234
1235 do {
1236 __invalidate_reclaim_iterators(memcg, dead_memcg);
1237 last = memcg;
1238 } while ((memcg = parent_mem_cgroup(memcg)));
1239
1240 /*
1241 * When cgroup1 non-hierarchy mode is used,
1242 * parent_mem_cgroup() does not walk all the way up to the
1243 * cgroup root (root_mem_cgroup). So we have to handle
1244 * dead_memcg from cgroup root separately.
1245 */
1246 if (!mem_cgroup_is_root(last))
1247 __invalidate_reclaim_iterators(root_mem_cgroup,
1248 dead_memcg);
1249 }
1250
1251 /**
1252 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1253 * @memcg: hierarchy root
1254 * @fn: function to call for each task
1255 * @arg: argument passed to @fn
1256 *
1257 * This function iterates over tasks attached to @memcg or to any of its
1258 * descendants and calls @fn for each task. If @fn returns a non-zero
1259 * value, the function breaks the iteration loop. Otherwise, it will iterate
1260 * over all tasks and return 0.
1261 *
1262 * This function must not be called for the root memory cgroup.
1263 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1264 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1265 int (*fn)(struct task_struct *, void *), void *arg)
1266 {
1267 struct mem_cgroup *iter;
1268 int ret = 0;
1269
1270 BUG_ON(mem_cgroup_is_root(memcg));
1271
1272 for_each_mem_cgroup_tree(iter, memcg) {
1273 struct css_task_iter it;
1274 struct task_struct *task;
1275
1276 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1277 while (!ret && (task = css_task_iter_next(&it)))
1278 ret = fn(task, arg);
1279 css_task_iter_end(&it);
1280 if (ret) {
1281 mem_cgroup_iter_break(memcg, iter);
1282 break;
1283 }
1284 }
1285 }
1286
1287 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1288 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1289 {
1290 struct mem_cgroup *memcg;
1291
1292 if (mem_cgroup_disabled())
1293 return;
1294
1295 memcg = folio_memcg(folio);
1296
1297 if (!memcg)
1298 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1299 else
1300 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1301 }
1302 #endif
1303
1304 /**
1305 * folio_lruvec_lock - Lock the lruvec for a folio.
1306 * @folio: Pointer to the folio.
1307 *
1308 * These functions are safe to use under any of the following conditions:
1309 * - folio locked
1310 * - folio_test_lru false
1311 * - folio_memcg_lock()
1312 * - folio frozen (refcount of 0)
1313 *
1314 * Return: The lruvec this folio is on with its lock held.
1315 */
folio_lruvec_lock(struct folio * folio)1316 struct lruvec *folio_lruvec_lock(struct folio *folio)
1317 {
1318 struct lruvec *lruvec = folio_lruvec(folio);
1319
1320 spin_lock(&lruvec->lru_lock);
1321 lruvec_memcg_debug(lruvec, folio);
1322
1323 return lruvec;
1324 }
1325
1326 /**
1327 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1328 * @folio: Pointer to the folio.
1329 *
1330 * These functions are safe to use under any of the following conditions:
1331 * - folio locked
1332 * - folio_test_lru false
1333 * - folio_memcg_lock()
1334 * - folio frozen (refcount of 0)
1335 *
1336 * Return: The lruvec this folio is on with its lock held and interrupts
1337 * disabled.
1338 */
folio_lruvec_lock_irq(struct folio * folio)1339 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1340 {
1341 struct lruvec *lruvec = folio_lruvec(folio);
1342
1343 spin_lock_irq(&lruvec->lru_lock);
1344 lruvec_memcg_debug(lruvec, folio);
1345
1346 return lruvec;
1347 }
1348
1349 /**
1350 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1351 * @folio: Pointer to the folio.
1352 * @flags: Pointer to irqsave flags.
1353 *
1354 * These functions are safe to use under any of the following conditions:
1355 * - folio locked
1356 * - folio_test_lru false
1357 * - folio_memcg_lock()
1358 * - folio frozen (refcount of 0)
1359 *
1360 * Return: The lruvec this folio is on with its lock held and interrupts
1361 * disabled.
1362 */
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flags)1363 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1364 unsigned long *flags)
1365 {
1366 struct lruvec *lruvec = folio_lruvec(folio);
1367
1368 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1369 lruvec_memcg_debug(lruvec, folio);
1370
1371 return lruvec;
1372 }
1373
1374 /**
1375 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1376 * @lruvec: mem_cgroup per zone lru vector
1377 * @lru: index of lru list the page is sitting on
1378 * @zid: zone id of the accounted pages
1379 * @nr_pages: positive when adding or negative when removing
1380 *
1381 * This function must be called under lru_lock, just before a page is added
1382 * to or just after a page is removed from an lru list.
1383 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1384 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1385 int zid, int nr_pages)
1386 {
1387 struct mem_cgroup_per_node *mz;
1388 unsigned long *lru_size;
1389 long size;
1390
1391 if (mem_cgroup_disabled())
1392 return;
1393
1394 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1395 lru_size = &mz->lru_zone_size[zid][lru];
1396
1397 if (nr_pages < 0)
1398 *lru_size += nr_pages;
1399
1400 size = *lru_size;
1401 if (WARN_ONCE(size < 0,
1402 "%s(%p, %d, %d): lru_size %ld\n",
1403 __func__, lruvec, lru, nr_pages, size)) {
1404 VM_BUG_ON(1);
1405 *lru_size = 0;
1406 }
1407
1408 if (nr_pages > 0)
1409 *lru_size += nr_pages;
1410 }
1411
1412 /**
1413 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1414 * @memcg: the memory cgroup
1415 *
1416 * Returns the maximum amount of memory @mem can be charged with, in
1417 * pages.
1418 */
mem_cgroup_margin(struct mem_cgroup * memcg)1419 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1420 {
1421 unsigned long margin = 0;
1422 unsigned long count;
1423 unsigned long limit;
1424
1425 count = page_counter_read(&memcg->memory);
1426 limit = READ_ONCE(memcg->memory.max);
1427 if (count < limit)
1428 margin = limit - count;
1429
1430 if (do_memsw_account()) {
1431 count = page_counter_read(&memcg->memsw);
1432 limit = READ_ONCE(memcg->memsw.max);
1433 if (count < limit)
1434 margin = min(margin, limit - count);
1435 else
1436 margin = 0;
1437 }
1438
1439 return margin;
1440 }
1441
1442 /*
1443 * A routine for checking "mem" is under move_account() or not.
1444 *
1445 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1446 * moving cgroups. This is for waiting at high-memory pressure
1447 * caused by "move".
1448 */
mem_cgroup_under_move(struct mem_cgroup * memcg)1449 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1450 {
1451 struct mem_cgroup *from;
1452 struct mem_cgroup *to;
1453 bool ret = false;
1454 /*
1455 * Unlike task_move routines, we access mc.to, mc.from not under
1456 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1457 */
1458 spin_lock(&mc.lock);
1459 from = mc.from;
1460 to = mc.to;
1461 if (!from)
1462 goto unlock;
1463
1464 ret = mem_cgroup_is_descendant(from, memcg) ||
1465 mem_cgroup_is_descendant(to, memcg);
1466 unlock:
1467 spin_unlock(&mc.lock);
1468 return ret;
1469 }
1470
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1471 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1472 {
1473 if (mc.moving_task && current != mc.moving_task) {
1474 if (mem_cgroup_under_move(memcg)) {
1475 DEFINE_WAIT(wait);
1476 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1477 /* moving charge context might have finished. */
1478 if (mc.moving_task)
1479 schedule();
1480 finish_wait(&mc.waitq, &wait);
1481 return true;
1482 }
1483 }
1484 return false;
1485 }
1486
1487 struct memory_stat {
1488 const char *name;
1489 unsigned int idx;
1490 };
1491
1492 static const struct memory_stat memory_stats[] = {
1493 { "anon", NR_ANON_MAPPED },
1494 { "file", NR_FILE_PAGES },
1495 { "kernel", MEMCG_KMEM },
1496 { "kernel_stack", NR_KERNEL_STACK_KB },
1497 { "pagetables", NR_PAGETABLE },
1498 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1499 { "percpu", MEMCG_PERCPU_B },
1500 { "sock", MEMCG_SOCK },
1501 { "vmalloc", MEMCG_VMALLOC },
1502 { "shmem", NR_SHMEM },
1503 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1504 { "zswap", MEMCG_ZSWAP_B },
1505 { "zswapped", MEMCG_ZSWAPPED },
1506 #endif
1507 { "file_mapped", NR_FILE_MAPPED },
1508 { "file_dirty", NR_FILE_DIRTY },
1509 { "file_writeback", NR_WRITEBACK },
1510 #ifdef CONFIG_SWAP
1511 { "swapcached", NR_SWAPCACHE },
1512 #endif
1513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1514 { "anon_thp", NR_ANON_THPS },
1515 { "file_thp", NR_FILE_THPS },
1516 { "shmem_thp", NR_SHMEM_THPS },
1517 #endif
1518 { "inactive_anon", NR_INACTIVE_ANON },
1519 { "active_anon", NR_ACTIVE_ANON },
1520 { "inactive_file", NR_INACTIVE_FILE },
1521 { "active_file", NR_ACTIVE_FILE },
1522 { "unevictable", NR_UNEVICTABLE },
1523 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1524 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1525
1526 /* The memory events */
1527 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1528 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1529 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1530 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1531 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1532 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1533 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1534 };
1535
1536 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_unit(int item)1537 static int memcg_page_state_unit(int item)
1538 {
1539 switch (item) {
1540 case MEMCG_PERCPU_B:
1541 case MEMCG_ZSWAP_B:
1542 case NR_SLAB_RECLAIMABLE_B:
1543 case NR_SLAB_UNRECLAIMABLE_B:
1544 case WORKINGSET_REFAULT_ANON:
1545 case WORKINGSET_REFAULT_FILE:
1546 case WORKINGSET_ACTIVATE_ANON:
1547 case WORKINGSET_ACTIVATE_FILE:
1548 case WORKINGSET_RESTORE_ANON:
1549 case WORKINGSET_RESTORE_FILE:
1550 case WORKINGSET_NODERECLAIM:
1551 return 1;
1552 case NR_KERNEL_STACK_KB:
1553 return SZ_1K;
1554 default:
1555 return PAGE_SIZE;
1556 }
1557 }
1558
memcg_page_state_output(struct mem_cgroup * memcg,int item)1559 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1560 int item)
1561 {
1562 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1563 }
1564
memcg_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1565 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1566 {
1567 int i;
1568
1569 /*
1570 * Provide statistics on the state of the memory subsystem as
1571 * well as cumulative event counters that show past behavior.
1572 *
1573 * This list is ordered following a combination of these gradients:
1574 * 1) generic big picture -> specifics and details
1575 * 2) reflecting userspace activity -> reflecting kernel heuristics
1576 *
1577 * Current memory state:
1578 */
1579 mem_cgroup_flush_stats();
1580
1581 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1582 u64 size;
1583
1584 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1585 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1586
1587 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1588 size += memcg_page_state_output(memcg,
1589 NR_SLAB_RECLAIMABLE_B);
1590 seq_buf_printf(s, "slab %llu\n", size);
1591 }
1592 }
1593
1594 /* Accumulated memory events */
1595 seq_buf_printf(s, "pgscan %lu\n",
1596 memcg_events(memcg, PGSCAN_KSWAPD) +
1597 memcg_events(memcg, PGSCAN_DIRECT) +
1598 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1599 seq_buf_printf(s, "pgsteal %lu\n",
1600 memcg_events(memcg, PGSTEAL_KSWAPD) +
1601 memcg_events(memcg, PGSTEAL_DIRECT) +
1602 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1603
1604 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1605 if (memcg_vm_event_stat[i] == PGPGIN ||
1606 memcg_vm_event_stat[i] == PGPGOUT)
1607 continue;
1608
1609 seq_buf_printf(s, "%s %lu\n",
1610 vm_event_name(memcg_vm_event_stat[i]),
1611 memcg_events(memcg, memcg_vm_event_stat[i]));
1612 }
1613
1614 /* The above should easily fit into one page */
1615 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1616 }
1617
1618 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1619
memory_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1620 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1621 {
1622 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1623 memcg_stat_format(memcg, s);
1624 else
1625 memcg1_stat_format(memcg, s);
1626 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1627 }
1628
1629 /**
1630 * mem_cgroup_print_oom_context: Print OOM information relevant to
1631 * memory controller.
1632 * @memcg: The memory cgroup that went over limit
1633 * @p: Task that is going to be killed
1634 *
1635 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1636 * enabled
1637 */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1638 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1639 {
1640 rcu_read_lock();
1641
1642 if (memcg) {
1643 pr_cont(",oom_memcg=");
1644 pr_cont_cgroup_path(memcg->css.cgroup);
1645 } else
1646 pr_cont(",global_oom");
1647 if (p) {
1648 pr_cont(",task_memcg=");
1649 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1650 }
1651 rcu_read_unlock();
1652 }
1653
1654 /**
1655 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1656 * memory controller.
1657 * @memcg: The memory cgroup that went over limit
1658 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1659 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1660 {
1661 /* Use static buffer, for the caller is holding oom_lock. */
1662 static char buf[PAGE_SIZE];
1663 struct seq_buf s;
1664
1665 lockdep_assert_held(&oom_lock);
1666
1667 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1668 K((u64)page_counter_read(&memcg->memory)),
1669 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1670 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1671 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1672 K((u64)page_counter_read(&memcg->swap)),
1673 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1674 else {
1675 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1676 K((u64)page_counter_read(&memcg->memsw)),
1677 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1678 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1679 K((u64)page_counter_read(&memcg->kmem)),
1680 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1681 }
1682
1683 pr_info("Memory cgroup stats for ");
1684 pr_cont_cgroup_path(memcg->css.cgroup);
1685 pr_cont(":");
1686 seq_buf_init(&s, buf, sizeof(buf));
1687 memory_stat_format(memcg, &s);
1688 seq_buf_do_printk(&s, KERN_INFO);
1689 }
1690
1691 /*
1692 * Return the memory (and swap, if configured) limit for a memcg.
1693 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1694 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1695 {
1696 unsigned long max = READ_ONCE(memcg->memory.max);
1697
1698 if (do_memsw_account()) {
1699 if (mem_cgroup_swappiness(memcg)) {
1700 /* Calculate swap excess capacity from memsw limit */
1701 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1702
1703 max += min(swap, (unsigned long)total_swap_pages);
1704 }
1705 } else {
1706 if (mem_cgroup_swappiness(memcg))
1707 max += min(READ_ONCE(memcg->swap.max),
1708 (unsigned long)total_swap_pages);
1709 }
1710 return max;
1711 }
1712
mem_cgroup_size(struct mem_cgroup * memcg)1713 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1714 {
1715 return page_counter_read(&memcg->memory);
1716 }
1717
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1718 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1719 int order)
1720 {
1721 struct oom_control oc = {
1722 .zonelist = NULL,
1723 .nodemask = NULL,
1724 .memcg = memcg,
1725 .gfp_mask = gfp_mask,
1726 .order = order,
1727 };
1728 bool ret = true;
1729
1730 if (mutex_lock_killable(&oom_lock))
1731 return true;
1732
1733 if (mem_cgroup_margin(memcg) >= (1 << order))
1734 goto unlock;
1735
1736 /*
1737 * A few threads which were not waiting at mutex_lock_killable() can
1738 * fail to bail out. Therefore, check again after holding oom_lock.
1739 */
1740 ret = task_is_dying() || out_of_memory(&oc);
1741
1742 unlock:
1743 mutex_unlock(&oom_lock);
1744 return ret;
1745 }
1746
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,pg_data_t * pgdat,gfp_t gfp_mask,unsigned long * total_scanned)1747 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1748 pg_data_t *pgdat,
1749 gfp_t gfp_mask,
1750 unsigned long *total_scanned)
1751 {
1752 struct mem_cgroup *victim = NULL;
1753 int total = 0;
1754 int loop = 0;
1755 unsigned long excess;
1756 unsigned long nr_scanned;
1757 struct mem_cgroup_reclaim_cookie reclaim = {
1758 .pgdat = pgdat,
1759 };
1760
1761 excess = soft_limit_excess(root_memcg);
1762
1763 while (1) {
1764 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1765 if (!victim) {
1766 loop++;
1767 if (loop >= 2) {
1768 /*
1769 * If we have not been able to reclaim
1770 * anything, it might because there are
1771 * no reclaimable pages under this hierarchy
1772 */
1773 if (!total)
1774 break;
1775 /*
1776 * We want to do more targeted reclaim.
1777 * excess >> 2 is not to excessive so as to
1778 * reclaim too much, nor too less that we keep
1779 * coming back to reclaim from this cgroup
1780 */
1781 if (total >= (excess >> 2) ||
1782 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1783 break;
1784 }
1785 continue;
1786 }
1787 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1788 pgdat, &nr_scanned);
1789 *total_scanned += nr_scanned;
1790 if (!soft_limit_excess(root_memcg))
1791 break;
1792 }
1793 mem_cgroup_iter_break(root_memcg, victim);
1794 return total;
1795 }
1796
1797 #ifdef CONFIG_LOCKDEP
1798 static struct lockdep_map memcg_oom_lock_dep_map = {
1799 .name = "memcg_oom_lock",
1800 };
1801 #endif
1802
1803 static DEFINE_SPINLOCK(memcg_oom_lock);
1804
1805 /*
1806 * Check OOM-Killer is already running under our hierarchy.
1807 * If someone is running, return false.
1808 */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1809 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1810 {
1811 struct mem_cgroup *iter, *failed = NULL;
1812
1813 spin_lock(&memcg_oom_lock);
1814
1815 for_each_mem_cgroup_tree(iter, memcg) {
1816 if (iter->oom_lock) {
1817 /*
1818 * this subtree of our hierarchy is already locked
1819 * so we cannot give a lock.
1820 */
1821 failed = iter;
1822 mem_cgroup_iter_break(memcg, iter);
1823 break;
1824 } else
1825 iter->oom_lock = true;
1826 }
1827
1828 if (failed) {
1829 /*
1830 * OK, we failed to lock the whole subtree so we have
1831 * to clean up what we set up to the failing subtree
1832 */
1833 for_each_mem_cgroup_tree(iter, memcg) {
1834 if (iter == failed) {
1835 mem_cgroup_iter_break(memcg, iter);
1836 break;
1837 }
1838 iter->oom_lock = false;
1839 }
1840 } else
1841 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1842
1843 spin_unlock(&memcg_oom_lock);
1844
1845 return !failed;
1846 }
1847
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1848 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1849 {
1850 struct mem_cgroup *iter;
1851
1852 spin_lock(&memcg_oom_lock);
1853 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1854 for_each_mem_cgroup_tree(iter, memcg)
1855 iter->oom_lock = false;
1856 spin_unlock(&memcg_oom_lock);
1857 }
1858
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1859 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1860 {
1861 struct mem_cgroup *iter;
1862
1863 spin_lock(&memcg_oom_lock);
1864 for_each_mem_cgroup_tree(iter, memcg)
1865 iter->under_oom++;
1866 spin_unlock(&memcg_oom_lock);
1867 }
1868
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1869 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1870 {
1871 struct mem_cgroup *iter;
1872
1873 /*
1874 * Be careful about under_oom underflows because a child memcg
1875 * could have been added after mem_cgroup_mark_under_oom.
1876 */
1877 spin_lock(&memcg_oom_lock);
1878 for_each_mem_cgroup_tree(iter, memcg)
1879 if (iter->under_oom > 0)
1880 iter->under_oom--;
1881 spin_unlock(&memcg_oom_lock);
1882 }
1883
1884 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1885
1886 struct oom_wait_info {
1887 struct mem_cgroup *memcg;
1888 wait_queue_entry_t wait;
1889 };
1890
memcg_oom_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1891 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1892 unsigned mode, int sync, void *arg)
1893 {
1894 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1895 struct mem_cgroup *oom_wait_memcg;
1896 struct oom_wait_info *oom_wait_info;
1897
1898 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1899 oom_wait_memcg = oom_wait_info->memcg;
1900
1901 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1902 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1903 return 0;
1904 return autoremove_wake_function(wait, mode, sync, arg);
1905 }
1906
memcg_oom_recover(struct mem_cgroup * memcg)1907 static void memcg_oom_recover(struct mem_cgroup *memcg)
1908 {
1909 /*
1910 * For the following lockless ->under_oom test, the only required
1911 * guarantee is that it must see the state asserted by an OOM when
1912 * this function is called as a result of userland actions
1913 * triggered by the notification of the OOM. This is trivially
1914 * achieved by invoking mem_cgroup_mark_under_oom() before
1915 * triggering notification.
1916 */
1917 if (memcg && memcg->under_oom)
1918 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1919 }
1920
1921 /*
1922 * Returns true if successfully killed one or more processes. Though in some
1923 * corner cases it can return true even without killing any process.
1924 */
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1925 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1926 {
1927 bool locked, ret;
1928
1929 if (order > PAGE_ALLOC_COSTLY_ORDER)
1930 return false;
1931
1932 memcg_memory_event(memcg, MEMCG_OOM);
1933
1934 /*
1935 * We are in the middle of the charge context here, so we
1936 * don't want to block when potentially sitting on a callstack
1937 * that holds all kinds of filesystem and mm locks.
1938 *
1939 * cgroup1 allows disabling the OOM killer and waiting for outside
1940 * handling until the charge can succeed; remember the context and put
1941 * the task to sleep at the end of the page fault when all locks are
1942 * released.
1943 *
1944 * On the other hand, in-kernel OOM killer allows for an async victim
1945 * memory reclaim (oom_reaper) and that means that we are not solely
1946 * relying on the oom victim to make a forward progress and we can
1947 * invoke the oom killer here.
1948 *
1949 * Please note that mem_cgroup_out_of_memory might fail to find a
1950 * victim and then we have to bail out from the charge path.
1951 */
1952 if (READ_ONCE(memcg->oom_kill_disable)) {
1953 if (current->in_user_fault) {
1954 css_get(&memcg->css);
1955 current->memcg_in_oom = memcg;
1956 current->memcg_oom_gfp_mask = mask;
1957 current->memcg_oom_order = order;
1958 }
1959 return false;
1960 }
1961
1962 mem_cgroup_mark_under_oom(memcg);
1963
1964 locked = mem_cgroup_oom_trylock(memcg);
1965
1966 if (locked)
1967 mem_cgroup_oom_notify(memcg);
1968
1969 mem_cgroup_unmark_under_oom(memcg);
1970 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1971
1972 if (locked)
1973 mem_cgroup_oom_unlock(memcg);
1974
1975 return ret;
1976 }
1977
1978 /**
1979 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1980 * @handle: actually kill/wait or just clean up the OOM state
1981 *
1982 * This has to be called at the end of a page fault if the memcg OOM
1983 * handler was enabled.
1984 *
1985 * Memcg supports userspace OOM handling where failed allocations must
1986 * sleep on a waitqueue until the userspace task resolves the
1987 * situation. Sleeping directly in the charge context with all kinds
1988 * of locks held is not a good idea, instead we remember an OOM state
1989 * in the task and mem_cgroup_oom_synchronize() has to be called at
1990 * the end of the page fault to complete the OOM handling.
1991 *
1992 * Returns %true if an ongoing memcg OOM situation was detected and
1993 * completed, %false otherwise.
1994 */
mem_cgroup_oom_synchronize(bool handle)1995 bool mem_cgroup_oom_synchronize(bool handle)
1996 {
1997 struct mem_cgroup *memcg = current->memcg_in_oom;
1998 struct oom_wait_info owait;
1999 bool locked;
2000
2001 /* OOM is global, do not handle */
2002 if (!memcg)
2003 return false;
2004
2005 if (!handle)
2006 goto cleanup;
2007
2008 owait.memcg = memcg;
2009 owait.wait.flags = 0;
2010 owait.wait.func = memcg_oom_wake_function;
2011 owait.wait.private = current;
2012 INIT_LIST_HEAD(&owait.wait.entry);
2013
2014 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2015 mem_cgroup_mark_under_oom(memcg);
2016
2017 locked = mem_cgroup_oom_trylock(memcg);
2018
2019 if (locked)
2020 mem_cgroup_oom_notify(memcg);
2021
2022 schedule();
2023 mem_cgroup_unmark_under_oom(memcg);
2024 finish_wait(&memcg_oom_waitq, &owait.wait);
2025
2026 if (locked)
2027 mem_cgroup_oom_unlock(memcg);
2028 cleanup:
2029 current->memcg_in_oom = NULL;
2030 css_put(&memcg->css);
2031 return true;
2032 }
2033
2034 /**
2035 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2036 * @victim: task to be killed by the OOM killer
2037 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2038 *
2039 * Returns a pointer to a memory cgroup, which has to be cleaned up
2040 * by killing all belonging OOM-killable tasks.
2041 *
2042 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2043 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)2044 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2045 struct mem_cgroup *oom_domain)
2046 {
2047 struct mem_cgroup *oom_group = NULL;
2048 struct mem_cgroup *memcg;
2049
2050 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2051 return NULL;
2052
2053 if (!oom_domain)
2054 oom_domain = root_mem_cgroup;
2055
2056 rcu_read_lock();
2057
2058 memcg = mem_cgroup_from_task(victim);
2059 if (mem_cgroup_is_root(memcg))
2060 goto out;
2061
2062 /*
2063 * If the victim task has been asynchronously moved to a different
2064 * memory cgroup, we might end up killing tasks outside oom_domain.
2065 * In this case it's better to ignore memory.group.oom.
2066 */
2067 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2068 goto out;
2069
2070 /*
2071 * Traverse the memory cgroup hierarchy from the victim task's
2072 * cgroup up to the OOMing cgroup (or root) to find the
2073 * highest-level memory cgroup with oom.group set.
2074 */
2075 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2076 if (READ_ONCE(memcg->oom_group))
2077 oom_group = memcg;
2078
2079 if (memcg == oom_domain)
2080 break;
2081 }
2082
2083 if (oom_group)
2084 css_get(&oom_group->css);
2085 out:
2086 rcu_read_unlock();
2087
2088 return oom_group;
2089 }
2090
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)2091 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2092 {
2093 pr_info("Tasks in ");
2094 pr_cont_cgroup_path(memcg->css.cgroup);
2095 pr_cont(" are going to be killed due to memory.oom.group set\n");
2096 }
2097
2098 /**
2099 * folio_memcg_lock - Bind a folio to its memcg.
2100 * @folio: The folio.
2101 *
2102 * This function prevents unlocked LRU folios from being moved to
2103 * another cgroup.
2104 *
2105 * It ensures lifetime of the bound memcg. The caller is responsible
2106 * for the lifetime of the folio.
2107 */
folio_memcg_lock(struct folio * folio)2108 void folio_memcg_lock(struct folio *folio)
2109 {
2110 struct mem_cgroup *memcg;
2111 unsigned long flags;
2112
2113 /*
2114 * The RCU lock is held throughout the transaction. The fast
2115 * path can get away without acquiring the memcg->move_lock
2116 * because page moving starts with an RCU grace period.
2117 */
2118 rcu_read_lock();
2119
2120 if (mem_cgroup_disabled())
2121 return;
2122 again:
2123 memcg = folio_memcg(folio);
2124 if (unlikely(!memcg))
2125 return;
2126
2127 #ifdef CONFIG_PROVE_LOCKING
2128 local_irq_save(flags);
2129 might_lock(&memcg->move_lock);
2130 local_irq_restore(flags);
2131 #endif
2132
2133 if (atomic_read(&memcg->moving_account) <= 0)
2134 return;
2135
2136 spin_lock_irqsave(&memcg->move_lock, flags);
2137 if (memcg != folio_memcg(folio)) {
2138 spin_unlock_irqrestore(&memcg->move_lock, flags);
2139 goto again;
2140 }
2141
2142 /*
2143 * When charge migration first begins, we can have multiple
2144 * critical sections holding the fast-path RCU lock and one
2145 * holding the slowpath move_lock. Track the task who has the
2146 * move_lock for folio_memcg_unlock().
2147 */
2148 memcg->move_lock_task = current;
2149 memcg->move_lock_flags = flags;
2150 }
2151
__folio_memcg_unlock(struct mem_cgroup * memcg)2152 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2153 {
2154 if (memcg && memcg->move_lock_task == current) {
2155 unsigned long flags = memcg->move_lock_flags;
2156
2157 memcg->move_lock_task = NULL;
2158 memcg->move_lock_flags = 0;
2159
2160 spin_unlock_irqrestore(&memcg->move_lock, flags);
2161 }
2162
2163 rcu_read_unlock();
2164 }
2165
2166 /**
2167 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2168 * @folio: The folio.
2169 *
2170 * This releases the binding created by folio_memcg_lock(). This does
2171 * not change the accounting of this folio to its memcg, but it does
2172 * permit others to change it.
2173 */
folio_memcg_unlock(struct folio * folio)2174 void folio_memcg_unlock(struct folio *folio)
2175 {
2176 __folio_memcg_unlock(folio_memcg(folio));
2177 }
2178
2179 struct memcg_stock_pcp {
2180 local_lock_t stock_lock;
2181 struct mem_cgroup *cached; /* this never be root cgroup */
2182 unsigned int nr_pages;
2183
2184 #ifdef CONFIG_MEMCG_KMEM
2185 struct obj_cgroup *cached_objcg;
2186 struct pglist_data *cached_pgdat;
2187 unsigned int nr_bytes;
2188 int nr_slab_reclaimable_b;
2189 int nr_slab_unreclaimable_b;
2190 #endif
2191
2192 struct work_struct work;
2193 unsigned long flags;
2194 #define FLUSHING_CACHED_CHARGE 0
2195 };
2196 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2197 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2198 };
2199 static DEFINE_MUTEX(percpu_charge_mutex);
2200
2201 #ifdef CONFIG_MEMCG_KMEM
2202 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2203 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2204 struct mem_cgroup *root_memcg);
2205 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2206
2207 #else
drain_obj_stock(struct memcg_stock_pcp * stock)2208 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2209 {
2210 return NULL;
2211 }
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)2212 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2213 struct mem_cgroup *root_memcg)
2214 {
2215 return false;
2216 }
memcg_account_kmem(struct mem_cgroup * memcg,int nr_pages)2217 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2218 {
2219 }
2220 #endif
2221
2222 /**
2223 * consume_stock: Try to consume stocked charge on this cpu.
2224 * @memcg: memcg to consume from.
2225 * @nr_pages: how many pages to charge.
2226 *
2227 * The charges will only happen if @memcg matches the current cpu's memcg
2228 * stock, and at least @nr_pages are available in that stock. Failure to
2229 * service an allocation will refill the stock.
2230 *
2231 * returns true if successful, false otherwise.
2232 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2233 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2234 {
2235 struct memcg_stock_pcp *stock;
2236 unsigned long flags;
2237 bool ret = false;
2238
2239 if (nr_pages > MEMCG_CHARGE_BATCH)
2240 return ret;
2241
2242 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2243
2244 stock = this_cpu_ptr(&memcg_stock);
2245 if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2246 stock->nr_pages -= nr_pages;
2247 ret = true;
2248 }
2249
2250 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2251
2252 return ret;
2253 }
2254
2255 /*
2256 * Returns stocks cached in percpu and reset cached information.
2257 */
drain_stock(struct memcg_stock_pcp * stock)2258 static void drain_stock(struct memcg_stock_pcp *stock)
2259 {
2260 struct mem_cgroup *old = READ_ONCE(stock->cached);
2261
2262 if (!old)
2263 return;
2264
2265 if (stock->nr_pages) {
2266 page_counter_uncharge(&old->memory, stock->nr_pages);
2267 if (do_memsw_account())
2268 page_counter_uncharge(&old->memsw, stock->nr_pages);
2269 stock->nr_pages = 0;
2270 }
2271
2272 css_put(&old->css);
2273 WRITE_ONCE(stock->cached, NULL);
2274 }
2275
drain_local_stock(struct work_struct * dummy)2276 static void drain_local_stock(struct work_struct *dummy)
2277 {
2278 struct memcg_stock_pcp *stock;
2279 struct obj_cgroup *old = NULL;
2280 unsigned long flags;
2281
2282 /*
2283 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2284 * drain_stock races is that we always operate on local CPU stock
2285 * here with IRQ disabled
2286 */
2287 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2288
2289 stock = this_cpu_ptr(&memcg_stock);
2290 old = drain_obj_stock(stock);
2291 drain_stock(stock);
2292 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2293
2294 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2295 if (old)
2296 obj_cgroup_put(old);
2297 }
2298
2299 /*
2300 * Cache charges(val) to local per_cpu area.
2301 * This will be consumed by consume_stock() function, later.
2302 */
__refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2303 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2304 {
2305 struct memcg_stock_pcp *stock;
2306
2307 stock = this_cpu_ptr(&memcg_stock);
2308 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2309 drain_stock(stock);
2310 css_get(&memcg->css);
2311 WRITE_ONCE(stock->cached, memcg);
2312 }
2313 stock->nr_pages += nr_pages;
2314
2315 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2316 drain_stock(stock);
2317 }
2318
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2319 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2320 {
2321 unsigned long flags;
2322
2323 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2324 __refill_stock(memcg, nr_pages);
2325 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2326 }
2327
2328 /*
2329 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2330 * of the hierarchy under it.
2331 */
drain_all_stock(struct mem_cgroup * root_memcg)2332 static void drain_all_stock(struct mem_cgroup *root_memcg)
2333 {
2334 int cpu, curcpu;
2335
2336 /* If someone's already draining, avoid adding running more workers. */
2337 if (!mutex_trylock(&percpu_charge_mutex))
2338 return;
2339 /*
2340 * Notify other cpus that system-wide "drain" is running
2341 * We do not care about races with the cpu hotplug because cpu down
2342 * as well as workers from this path always operate on the local
2343 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2344 */
2345 migrate_disable();
2346 curcpu = smp_processor_id();
2347 for_each_online_cpu(cpu) {
2348 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2349 struct mem_cgroup *memcg;
2350 bool flush = false;
2351
2352 rcu_read_lock();
2353 memcg = READ_ONCE(stock->cached);
2354 if (memcg && stock->nr_pages &&
2355 mem_cgroup_is_descendant(memcg, root_memcg))
2356 flush = true;
2357 else if (obj_stock_flush_required(stock, root_memcg))
2358 flush = true;
2359 rcu_read_unlock();
2360
2361 if (flush &&
2362 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2363 if (cpu == curcpu)
2364 drain_local_stock(&stock->work);
2365 else if (!cpu_is_isolated(cpu))
2366 schedule_work_on(cpu, &stock->work);
2367 }
2368 }
2369 migrate_enable();
2370 mutex_unlock(&percpu_charge_mutex);
2371 }
2372
memcg_hotplug_cpu_dead(unsigned int cpu)2373 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2374 {
2375 struct memcg_stock_pcp *stock;
2376
2377 stock = &per_cpu(memcg_stock, cpu);
2378 drain_stock(stock);
2379
2380 return 0;
2381 }
2382
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2383 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2384 unsigned int nr_pages,
2385 gfp_t gfp_mask)
2386 {
2387 unsigned long nr_reclaimed = 0;
2388
2389 do {
2390 unsigned long pflags;
2391
2392 if (page_counter_read(&memcg->memory) <=
2393 READ_ONCE(memcg->memory.high))
2394 continue;
2395
2396 memcg_memory_event(memcg, MEMCG_HIGH);
2397
2398 psi_memstall_enter(&pflags);
2399 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2400 gfp_mask,
2401 MEMCG_RECLAIM_MAY_SWAP);
2402 psi_memstall_leave(&pflags);
2403 } while ((memcg = parent_mem_cgroup(memcg)) &&
2404 !mem_cgroup_is_root(memcg));
2405
2406 return nr_reclaimed;
2407 }
2408
high_work_func(struct work_struct * work)2409 static void high_work_func(struct work_struct *work)
2410 {
2411 struct mem_cgroup *memcg;
2412
2413 memcg = container_of(work, struct mem_cgroup, high_work);
2414 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2415 }
2416
2417 /*
2418 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2419 * enough to still cause a significant slowdown in most cases, while still
2420 * allowing diagnostics and tracing to proceed without becoming stuck.
2421 */
2422 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2423
2424 /*
2425 * When calculating the delay, we use these either side of the exponentiation to
2426 * maintain precision and scale to a reasonable number of jiffies (see the table
2427 * below.
2428 *
2429 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2430 * overage ratio to a delay.
2431 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2432 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2433 * to produce a reasonable delay curve.
2434 *
2435 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2436 * reasonable delay curve compared to precision-adjusted overage, not
2437 * penalising heavily at first, but still making sure that growth beyond the
2438 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2439 * example, with a high of 100 megabytes:
2440 *
2441 * +-------+------------------------+
2442 * | usage | time to allocate in ms |
2443 * +-------+------------------------+
2444 * | 100M | 0 |
2445 * | 101M | 6 |
2446 * | 102M | 25 |
2447 * | 103M | 57 |
2448 * | 104M | 102 |
2449 * | 105M | 159 |
2450 * | 106M | 230 |
2451 * | 107M | 313 |
2452 * | 108M | 409 |
2453 * | 109M | 518 |
2454 * | 110M | 639 |
2455 * | 111M | 774 |
2456 * | 112M | 921 |
2457 * | 113M | 1081 |
2458 * | 114M | 1254 |
2459 * | 115M | 1439 |
2460 * | 116M | 1638 |
2461 * | 117M | 1849 |
2462 * | 118M | 2000 |
2463 * | 119M | 2000 |
2464 * | 120M | 2000 |
2465 * +-------+------------------------+
2466 */
2467 #define MEMCG_DELAY_PRECISION_SHIFT 20
2468 #define MEMCG_DELAY_SCALING_SHIFT 14
2469
calculate_overage(unsigned long usage,unsigned long high)2470 static u64 calculate_overage(unsigned long usage, unsigned long high)
2471 {
2472 u64 overage;
2473
2474 if (usage <= high)
2475 return 0;
2476
2477 /*
2478 * Prevent division by 0 in overage calculation by acting as if
2479 * it was a threshold of 1 page
2480 */
2481 high = max(high, 1UL);
2482
2483 overage = usage - high;
2484 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2485 return div64_u64(overage, high);
2486 }
2487
mem_find_max_overage(struct mem_cgroup * memcg)2488 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2489 {
2490 u64 overage, max_overage = 0;
2491
2492 do {
2493 overage = calculate_overage(page_counter_read(&memcg->memory),
2494 READ_ONCE(memcg->memory.high));
2495 max_overage = max(overage, max_overage);
2496 } while ((memcg = parent_mem_cgroup(memcg)) &&
2497 !mem_cgroup_is_root(memcg));
2498
2499 return max_overage;
2500 }
2501
swap_find_max_overage(struct mem_cgroup * memcg)2502 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2503 {
2504 u64 overage, max_overage = 0;
2505
2506 do {
2507 overage = calculate_overage(page_counter_read(&memcg->swap),
2508 READ_ONCE(memcg->swap.high));
2509 if (overage)
2510 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2511 max_overage = max(overage, max_overage);
2512 } while ((memcg = parent_mem_cgroup(memcg)) &&
2513 !mem_cgroup_is_root(memcg));
2514
2515 return max_overage;
2516 }
2517
2518 /*
2519 * Get the number of jiffies that we should penalise a mischievous cgroup which
2520 * is exceeding its memory.high by checking both it and its ancestors.
2521 */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2522 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2523 unsigned int nr_pages,
2524 u64 max_overage)
2525 {
2526 unsigned long penalty_jiffies;
2527
2528 if (!max_overage)
2529 return 0;
2530
2531 /*
2532 * We use overage compared to memory.high to calculate the number of
2533 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2534 * fairly lenient on small overages, and increasingly harsh when the
2535 * memcg in question makes it clear that it has no intention of stopping
2536 * its crazy behaviour, so we exponentially increase the delay based on
2537 * overage amount.
2538 */
2539 penalty_jiffies = max_overage * max_overage * HZ;
2540 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2541 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2542
2543 /*
2544 * Factor in the task's own contribution to the overage, such that four
2545 * N-sized allocations are throttled approximately the same as one
2546 * 4N-sized allocation.
2547 *
2548 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2549 * larger the current charge patch is than that.
2550 */
2551 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2552 }
2553
2554 /*
2555 * Scheduled by try_charge() to be executed from the userland return path
2556 * and reclaims memory over the high limit.
2557 */
mem_cgroup_handle_over_high(gfp_t gfp_mask)2558 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2559 {
2560 unsigned long penalty_jiffies;
2561 unsigned long pflags;
2562 unsigned long nr_reclaimed;
2563 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2564 int nr_retries = MAX_RECLAIM_RETRIES;
2565 struct mem_cgroup *memcg;
2566 bool in_retry = false;
2567
2568 if (likely(!nr_pages))
2569 return;
2570
2571 memcg = get_mem_cgroup_from_mm(current->mm);
2572 current->memcg_nr_pages_over_high = 0;
2573
2574 retry_reclaim:
2575 /*
2576 * The allocating task should reclaim at least the batch size, but for
2577 * subsequent retries we only want to do what's necessary to prevent oom
2578 * or breaching resource isolation.
2579 *
2580 * This is distinct from memory.max or page allocator behaviour because
2581 * memory.high is currently batched, whereas memory.max and the page
2582 * allocator run every time an allocation is made.
2583 */
2584 nr_reclaimed = reclaim_high(memcg,
2585 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2586 gfp_mask);
2587
2588 /*
2589 * memory.high is breached and reclaim is unable to keep up. Throttle
2590 * allocators proactively to slow down excessive growth.
2591 */
2592 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2593 mem_find_max_overage(memcg));
2594
2595 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2596 swap_find_max_overage(memcg));
2597
2598 /*
2599 * Clamp the max delay per usermode return so as to still keep the
2600 * application moving forwards and also permit diagnostics, albeit
2601 * extremely slowly.
2602 */
2603 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2604
2605 /*
2606 * Don't sleep if the amount of jiffies this memcg owes us is so low
2607 * that it's not even worth doing, in an attempt to be nice to those who
2608 * go only a small amount over their memory.high value and maybe haven't
2609 * been aggressively reclaimed enough yet.
2610 */
2611 if (penalty_jiffies <= HZ / 100)
2612 goto out;
2613
2614 /*
2615 * If reclaim is making forward progress but we're still over
2616 * memory.high, we want to encourage that rather than doing allocator
2617 * throttling.
2618 */
2619 if (nr_reclaimed || nr_retries--) {
2620 in_retry = true;
2621 goto retry_reclaim;
2622 }
2623
2624 /*
2625 * If we exit early, we're guaranteed to die (since
2626 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2627 * need to account for any ill-begotten jiffies to pay them off later.
2628 */
2629 psi_memstall_enter(&pflags);
2630 schedule_timeout_killable(penalty_jiffies);
2631 psi_memstall_leave(&pflags);
2632
2633 out:
2634 css_put(&memcg->css);
2635 }
2636
try_charge_memcg(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2637 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2638 unsigned int nr_pages)
2639 {
2640 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2641 int nr_retries = MAX_RECLAIM_RETRIES;
2642 struct mem_cgroup *mem_over_limit;
2643 struct page_counter *counter;
2644 unsigned long nr_reclaimed;
2645 bool passed_oom = false;
2646 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2647 bool drained = false;
2648 bool raised_max_event = false;
2649 unsigned long pflags;
2650
2651 retry:
2652 if (consume_stock(memcg, nr_pages))
2653 return 0;
2654
2655 if (!do_memsw_account() ||
2656 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2657 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2658 goto done_restock;
2659 if (do_memsw_account())
2660 page_counter_uncharge(&memcg->memsw, batch);
2661 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2662 } else {
2663 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2664 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2665 }
2666
2667 if (batch > nr_pages) {
2668 batch = nr_pages;
2669 goto retry;
2670 }
2671
2672 /*
2673 * Prevent unbounded recursion when reclaim operations need to
2674 * allocate memory. This might exceed the limits temporarily,
2675 * but we prefer facilitating memory reclaim and getting back
2676 * under the limit over triggering OOM kills in these cases.
2677 */
2678 if (unlikely(current->flags & PF_MEMALLOC))
2679 goto force;
2680
2681 if (unlikely(task_in_memcg_oom(current)))
2682 goto nomem;
2683
2684 if (!gfpflags_allow_blocking(gfp_mask))
2685 goto nomem;
2686
2687 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2688 raised_max_event = true;
2689
2690 psi_memstall_enter(&pflags);
2691 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2692 gfp_mask, reclaim_options);
2693 psi_memstall_leave(&pflags);
2694
2695 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2696 goto retry;
2697
2698 if (!drained) {
2699 drain_all_stock(mem_over_limit);
2700 drained = true;
2701 goto retry;
2702 }
2703
2704 if (gfp_mask & __GFP_NORETRY)
2705 goto nomem;
2706 /*
2707 * Even though the limit is exceeded at this point, reclaim
2708 * may have been able to free some pages. Retry the charge
2709 * before killing the task.
2710 *
2711 * Only for regular pages, though: huge pages are rather
2712 * unlikely to succeed so close to the limit, and we fall back
2713 * to regular pages anyway in case of failure.
2714 */
2715 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2716 goto retry;
2717 /*
2718 * At task move, charge accounts can be doubly counted. So, it's
2719 * better to wait until the end of task_move if something is going on.
2720 */
2721 if (mem_cgroup_wait_acct_move(mem_over_limit))
2722 goto retry;
2723
2724 if (nr_retries--)
2725 goto retry;
2726
2727 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2728 goto nomem;
2729
2730 /* Avoid endless loop for tasks bypassed by the oom killer */
2731 if (passed_oom && task_is_dying())
2732 goto nomem;
2733
2734 /*
2735 * keep retrying as long as the memcg oom killer is able to make
2736 * a forward progress or bypass the charge if the oom killer
2737 * couldn't make any progress.
2738 */
2739 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2740 get_order(nr_pages * PAGE_SIZE))) {
2741 passed_oom = true;
2742 nr_retries = MAX_RECLAIM_RETRIES;
2743 goto retry;
2744 }
2745 nomem:
2746 /*
2747 * Memcg doesn't have a dedicated reserve for atomic
2748 * allocations. But like the global atomic pool, we need to
2749 * put the burden of reclaim on regular allocation requests
2750 * and let these go through as privileged allocations.
2751 */
2752 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2753 return -ENOMEM;
2754 force:
2755 /*
2756 * If the allocation has to be enforced, don't forget to raise
2757 * a MEMCG_MAX event.
2758 */
2759 if (!raised_max_event)
2760 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2761
2762 /*
2763 * The allocation either can't fail or will lead to more memory
2764 * being freed very soon. Allow memory usage go over the limit
2765 * temporarily by force charging it.
2766 */
2767 page_counter_charge(&memcg->memory, nr_pages);
2768 if (do_memsw_account())
2769 page_counter_charge(&memcg->memsw, nr_pages);
2770
2771 return 0;
2772
2773 done_restock:
2774 if (batch > nr_pages)
2775 refill_stock(memcg, batch - nr_pages);
2776
2777 /*
2778 * If the hierarchy is above the normal consumption range, schedule
2779 * reclaim on returning to userland. We can perform reclaim here
2780 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2781 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2782 * not recorded as it most likely matches current's and won't
2783 * change in the meantime. As high limit is checked again before
2784 * reclaim, the cost of mismatch is negligible.
2785 */
2786 do {
2787 bool mem_high, swap_high;
2788
2789 mem_high = page_counter_read(&memcg->memory) >
2790 READ_ONCE(memcg->memory.high);
2791 swap_high = page_counter_read(&memcg->swap) >
2792 READ_ONCE(memcg->swap.high);
2793
2794 /* Don't bother a random interrupted task */
2795 if (!in_task()) {
2796 if (mem_high) {
2797 schedule_work(&memcg->high_work);
2798 break;
2799 }
2800 continue;
2801 }
2802
2803 if (mem_high || swap_high) {
2804 /*
2805 * The allocating tasks in this cgroup will need to do
2806 * reclaim or be throttled to prevent further growth
2807 * of the memory or swap footprints.
2808 *
2809 * Target some best-effort fairness between the tasks,
2810 * and distribute reclaim work and delay penalties
2811 * based on how much each task is actually allocating.
2812 */
2813 current->memcg_nr_pages_over_high += batch;
2814 set_notify_resume(current);
2815 break;
2816 }
2817 } while ((memcg = parent_mem_cgroup(memcg)));
2818
2819 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2820 !(current->flags & PF_MEMALLOC) &&
2821 gfpflags_allow_blocking(gfp_mask)) {
2822 mem_cgroup_handle_over_high(gfp_mask);
2823 }
2824 return 0;
2825 }
2826
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2827 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2828 unsigned int nr_pages)
2829 {
2830 if (mem_cgroup_is_root(memcg))
2831 return 0;
2832
2833 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2834 }
2835
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2836 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2837 {
2838 if (mem_cgroup_is_root(memcg))
2839 return;
2840
2841 page_counter_uncharge(&memcg->memory, nr_pages);
2842 if (do_memsw_account())
2843 page_counter_uncharge(&memcg->memsw, nr_pages);
2844 }
2845
commit_charge(struct folio * folio,struct mem_cgroup * memcg)2846 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2847 {
2848 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2849 /*
2850 * Any of the following ensures page's memcg stability:
2851 *
2852 * - the page lock
2853 * - LRU isolation
2854 * - folio_memcg_lock()
2855 * - exclusive reference
2856 * - mem_cgroup_trylock_pages()
2857 */
2858 folio->memcg_data = (unsigned long)memcg;
2859 }
2860
2861 #ifdef CONFIG_MEMCG_KMEM
2862 /*
2863 * The allocated objcg pointers array is not accounted directly.
2864 * Moreover, it should not come from DMA buffer and is not readily
2865 * reclaimable. So those GFP bits should be masked off.
2866 */
2867 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
2868 __GFP_ACCOUNT | __GFP_NOFAIL)
2869
2870 /*
2871 * mod_objcg_mlstate() may be called with irq enabled, so
2872 * mod_memcg_lruvec_state() should be used.
2873 */
mod_objcg_mlstate(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2874 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2875 struct pglist_data *pgdat,
2876 enum node_stat_item idx, int nr)
2877 {
2878 struct mem_cgroup *memcg;
2879 struct lruvec *lruvec;
2880
2881 rcu_read_lock();
2882 memcg = obj_cgroup_memcg(objcg);
2883 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2884 mod_memcg_lruvec_state(lruvec, idx, nr);
2885 rcu_read_unlock();
2886 }
2887
memcg_alloc_slab_cgroups(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2888 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2889 gfp_t gfp, bool new_slab)
2890 {
2891 unsigned int objects = objs_per_slab(s, slab);
2892 unsigned long memcg_data;
2893 void *vec;
2894
2895 gfp &= ~OBJCGS_CLEAR_MASK;
2896 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2897 slab_nid(slab));
2898 if (!vec)
2899 return -ENOMEM;
2900
2901 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2902 if (new_slab) {
2903 /*
2904 * If the slab is brand new and nobody can yet access its
2905 * memcg_data, no synchronization is required and memcg_data can
2906 * be simply assigned.
2907 */
2908 slab->memcg_data = memcg_data;
2909 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2910 /*
2911 * If the slab is already in use, somebody can allocate and
2912 * assign obj_cgroups in parallel. In this case the existing
2913 * objcg vector should be reused.
2914 */
2915 kfree(vec);
2916 return 0;
2917 }
2918
2919 kmemleak_not_leak(vec);
2920 return 0;
2921 }
2922
2923 static __always_inline
mem_cgroup_from_obj_folio(struct folio * folio,void * p)2924 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2925 {
2926 /*
2927 * Slab objects are accounted individually, not per-page.
2928 * Memcg membership data for each individual object is saved in
2929 * slab->memcg_data.
2930 */
2931 if (folio_test_slab(folio)) {
2932 struct obj_cgroup **objcgs;
2933 struct slab *slab;
2934 unsigned int off;
2935
2936 slab = folio_slab(folio);
2937 objcgs = slab_objcgs(slab);
2938 if (!objcgs)
2939 return NULL;
2940
2941 off = obj_to_index(slab->slab_cache, slab, p);
2942 if (objcgs[off])
2943 return obj_cgroup_memcg(objcgs[off]);
2944
2945 return NULL;
2946 }
2947
2948 /*
2949 * folio_memcg_check() is used here, because in theory we can encounter
2950 * a folio where the slab flag has been cleared already, but
2951 * slab->memcg_data has not been freed yet
2952 * folio_memcg_check() will guarantee that a proper memory
2953 * cgroup pointer or NULL will be returned.
2954 */
2955 return folio_memcg_check(folio);
2956 }
2957
2958 /*
2959 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2960 *
2961 * A passed kernel object can be a slab object, vmalloc object or a generic
2962 * kernel page, so different mechanisms for getting the memory cgroup pointer
2963 * should be used.
2964 *
2965 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2966 * can not know for sure how the kernel object is implemented.
2967 * mem_cgroup_from_obj() can be safely used in such cases.
2968 *
2969 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2970 * cgroup_mutex, etc.
2971 */
mem_cgroup_from_obj(void * p)2972 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2973 {
2974 struct folio *folio;
2975
2976 if (mem_cgroup_disabled())
2977 return NULL;
2978
2979 if (unlikely(is_vmalloc_addr(p)))
2980 folio = page_folio(vmalloc_to_page(p));
2981 else
2982 folio = virt_to_folio(p);
2983
2984 return mem_cgroup_from_obj_folio(folio, p);
2985 }
2986
2987 /*
2988 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2989 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2990 * allocated using vmalloc().
2991 *
2992 * A passed kernel object must be a slab object or a generic kernel page.
2993 *
2994 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2995 * cgroup_mutex, etc.
2996 */
mem_cgroup_from_slab_obj(void * p)2997 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2998 {
2999 if (mem_cgroup_disabled())
3000 return NULL;
3001
3002 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3003 }
3004
__get_obj_cgroup_from_memcg(struct mem_cgroup * memcg)3005 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3006 {
3007 struct obj_cgroup *objcg = NULL;
3008
3009 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3010 objcg = rcu_dereference(memcg->objcg);
3011 if (objcg && obj_cgroup_tryget(objcg))
3012 break;
3013 objcg = NULL;
3014 }
3015 return objcg;
3016 }
3017
get_obj_cgroup_from_current(void)3018 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3019 {
3020 struct obj_cgroup *objcg = NULL;
3021 struct mem_cgroup *memcg;
3022
3023 if (memcg_kmem_bypass())
3024 return NULL;
3025
3026 rcu_read_lock();
3027 if (unlikely(active_memcg()))
3028 memcg = active_memcg();
3029 else
3030 memcg = mem_cgroup_from_task(current);
3031 objcg = __get_obj_cgroup_from_memcg(memcg);
3032 rcu_read_unlock();
3033 return objcg;
3034 }
3035
get_obj_cgroup_from_folio(struct folio * folio)3036 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
3037 {
3038 struct obj_cgroup *objcg;
3039
3040 if (!memcg_kmem_online())
3041 return NULL;
3042
3043 if (folio_memcg_kmem(folio)) {
3044 objcg = __folio_objcg(folio);
3045 obj_cgroup_get(objcg);
3046 } else {
3047 struct mem_cgroup *memcg;
3048
3049 rcu_read_lock();
3050 memcg = __folio_memcg(folio);
3051 if (memcg)
3052 objcg = __get_obj_cgroup_from_memcg(memcg);
3053 else
3054 objcg = NULL;
3055 rcu_read_unlock();
3056 }
3057 return objcg;
3058 }
3059
memcg_account_kmem(struct mem_cgroup * memcg,int nr_pages)3060 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3061 {
3062 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3063 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3064 if (nr_pages > 0)
3065 page_counter_charge(&memcg->kmem, nr_pages);
3066 else
3067 page_counter_uncharge(&memcg->kmem, -nr_pages);
3068 }
3069 }
3070
3071
3072 /*
3073 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3074 * @objcg: object cgroup to uncharge
3075 * @nr_pages: number of pages to uncharge
3076 */
obj_cgroup_uncharge_pages(struct obj_cgroup * objcg,unsigned int nr_pages)3077 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3078 unsigned int nr_pages)
3079 {
3080 struct mem_cgroup *memcg;
3081
3082 memcg = get_mem_cgroup_from_objcg(objcg);
3083
3084 memcg_account_kmem(memcg, -nr_pages);
3085 refill_stock(memcg, nr_pages);
3086
3087 css_put(&memcg->css);
3088 }
3089
3090 /*
3091 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3092 * @objcg: object cgroup to charge
3093 * @gfp: reclaim mode
3094 * @nr_pages: number of pages to charge
3095 *
3096 * Returns 0 on success, an error code on failure.
3097 */
obj_cgroup_charge_pages(struct obj_cgroup * objcg,gfp_t gfp,unsigned int nr_pages)3098 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3099 unsigned int nr_pages)
3100 {
3101 struct mem_cgroup *memcg;
3102 int ret;
3103
3104 memcg = get_mem_cgroup_from_objcg(objcg);
3105
3106 ret = try_charge_memcg(memcg, gfp, nr_pages);
3107 if (ret)
3108 goto out;
3109
3110 memcg_account_kmem(memcg, nr_pages);
3111 out:
3112 css_put(&memcg->css);
3113
3114 return ret;
3115 }
3116
3117 /**
3118 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3119 * @page: page to charge
3120 * @gfp: reclaim mode
3121 * @order: allocation order
3122 *
3123 * Returns 0 on success, an error code on failure.
3124 */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)3125 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3126 {
3127 struct obj_cgroup *objcg;
3128 int ret = 0;
3129
3130 objcg = get_obj_cgroup_from_current();
3131 if (objcg) {
3132 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3133 if (!ret) {
3134 page->memcg_data = (unsigned long)objcg |
3135 MEMCG_DATA_KMEM;
3136 return 0;
3137 }
3138 obj_cgroup_put(objcg);
3139 }
3140 return ret;
3141 }
3142
3143 /**
3144 * __memcg_kmem_uncharge_page: uncharge a kmem page
3145 * @page: page to uncharge
3146 * @order: allocation order
3147 */
__memcg_kmem_uncharge_page(struct page * page,int order)3148 void __memcg_kmem_uncharge_page(struct page *page, int order)
3149 {
3150 struct folio *folio = page_folio(page);
3151 struct obj_cgroup *objcg;
3152 unsigned int nr_pages = 1 << order;
3153
3154 if (!folio_memcg_kmem(folio))
3155 return;
3156
3157 objcg = __folio_objcg(folio);
3158 obj_cgroup_uncharge_pages(objcg, nr_pages);
3159 folio->memcg_data = 0;
3160 obj_cgroup_put(objcg);
3161 }
3162
mod_objcg_state(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)3163 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3164 enum node_stat_item idx, int nr)
3165 {
3166 struct memcg_stock_pcp *stock;
3167 struct obj_cgroup *old = NULL;
3168 unsigned long flags;
3169 int *bytes;
3170
3171 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3172 stock = this_cpu_ptr(&memcg_stock);
3173
3174 /*
3175 * Save vmstat data in stock and skip vmstat array update unless
3176 * accumulating over a page of vmstat data or when pgdat or idx
3177 * changes.
3178 */
3179 if (READ_ONCE(stock->cached_objcg) != objcg) {
3180 old = drain_obj_stock(stock);
3181 obj_cgroup_get(objcg);
3182 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3183 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3184 WRITE_ONCE(stock->cached_objcg, objcg);
3185 stock->cached_pgdat = pgdat;
3186 } else if (stock->cached_pgdat != pgdat) {
3187 /* Flush the existing cached vmstat data */
3188 struct pglist_data *oldpg = stock->cached_pgdat;
3189
3190 if (stock->nr_slab_reclaimable_b) {
3191 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3192 stock->nr_slab_reclaimable_b);
3193 stock->nr_slab_reclaimable_b = 0;
3194 }
3195 if (stock->nr_slab_unreclaimable_b) {
3196 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3197 stock->nr_slab_unreclaimable_b);
3198 stock->nr_slab_unreclaimable_b = 0;
3199 }
3200 stock->cached_pgdat = pgdat;
3201 }
3202
3203 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3204 : &stock->nr_slab_unreclaimable_b;
3205 /*
3206 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3207 * cached locally at least once before pushing it out.
3208 */
3209 if (!*bytes) {
3210 *bytes = nr;
3211 nr = 0;
3212 } else {
3213 *bytes += nr;
3214 if (abs(*bytes) > PAGE_SIZE) {
3215 nr = *bytes;
3216 *bytes = 0;
3217 } else {
3218 nr = 0;
3219 }
3220 }
3221 if (nr)
3222 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3223
3224 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3225 if (old)
3226 obj_cgroup_put(old);
3227 }
3228
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)3229 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3230 {
3231 struct memcg_stock_pcp *stock;
3232 unsigned long flags;
3233 bool ret = false;
3234
3235 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3236
3237 stock = this_cpu_ptr(&memcg_stock);
3238 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3239 stock->nr_bytes -= nr_bytes;
3240 ret = true;
3241 }
3242
3243 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3244
3245 return ret;
3246 }
3247
drain_obj_stock(struct memcg_stock_pcp * stock)3248 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3249 {
3250 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3251
3252 if (!old)
3253 return NULL;
3254
3255 if (stock->nr_bytes) {
3256 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3257 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3258
3259 if (nr_pages) {
3260 struct mem_cgroup *memcg;
3261
3262 memcg = get_mem_cgroup_from_objcg(old);
3263
3264 memcg_account_kmem(memcg, -nr_pages);
3265 __refill_stock(memcg, nr_pages);
3266
3267 css_put(&memcg->css);
3268 }
3269
3270 /*
3271 * The leftover is flushed to the centralized per-memcg value.
3272 * On the next attempt to refill obj stock it will be moved
3273 * to a per-cpu stock (probably, on an other CPU), see
3274 * refill_obj_stock().
3275 *
3276 * How often it's flushed is a trade-off between the memory
3277 * limit enforcement accuracy and potential CPU contention,
3278 * so it might be changed in the future.
3279 */
3280 atomic_add(nr_bytes, &old->nr_charged_bytes);
3281 stock->nr_bytes = 0;
3282 }
3283
3284 /*
3285 * Flush the vmstat data in current stock
3286 */
3287 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3288 if (stock->nr_slab_reclaimable_b) {
3289 mod_objcg_mlstate(old, stock->cached_pgdat,
3290 NR_SLAB_RECLAIMABLE_B,
3291 stock->nr_slab_reclaimable_b);
3292 stock->nr_slab_reclaimable_b = 0;
3293 }
3294 if (stock->nr_slab_unreclaimable_b) {
3295 mod_objcg_mlstate(old, stock->cached_pgdat,
3296 NR_SLAB_UNRECLAIMABLE_B,
3297 stock->nr_slab_unreclaimable_b);
3298 stock->nr_slab_unreclaimable_b = 0;
3299 }
3300 stock->cached_pgdat = NULL;
3301 }
3302
3303 WRITE_ONCE(stock->cached_objcg, NULL);
3304 /*
3305 * The `old' objects needs to be released by the caller via
3306 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3307 */
3308 return old;
3309 }
3310
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)3311 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3312 struct mem_cgroup *root_memcg)
3313 {
3314 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3315 struct mem_cgroup *memcg;
3316
3317 if (objcg) {
3318 memcg = obj_cgroup_memcg(objcg);
3319 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3320 return true;
3321 }
3322
3323 return false;
3324 }
3325
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,bool allow_uncharge)3326 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3327 bool allow_uncharge)
3328 {
3329 struct memcg_stock_pcp *stock;
3330 struct obj_cgroup *old = NULL;
3331 unsigned long flags;
3332 unsigned int nr_pages = 0;
3333
3334 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3335
3336 stock = this_cpu_ptr(&memcg_stock);
3337 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3338 old = drain_obj_stock(stock);
3339 obj_cgroup_get(objcg);
3340 WRITE_ONCE(stock->cached_objcg, objcg);
3341 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3342 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3343 allow_uncharge = true; /* Allow uncharge when objcg changes */
3344 }
3345 stock->nr_bytes += nr_bytes;
3346
3347 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3348 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3349 stock->nr_bytes &= (PAGE_SIZE - 1);
3350 }
3351
3352 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3353 if (old)
3354 obj_cgroup_put(old);
3355
3356 if (nr_pages)
3357 obj_cgroup_uncharge_pages(objcg, nr_pages);
3358 }
3359
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3360 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3361 {
3362 unsigned int nr_pages, nr_bytes;
3363 int ret;
3364
3365 if (consume_obj_stock(objcg, size))
3366 return 0;
3367
3368 /*
3369 * In theory, objcg->nr_charged_bytes can have enough
3370 * pre-charged bytes to satisfy the allocation. However,
3371 * flushing objcg->nr_charged_bytes requires two atomic
3372 * operations, and objcg->nr_charged_bytes can't be big.
3373 * The shared objcg->nr_charged_bytes can also become a
3374 * performance bottleneck if all tasks of the same memcg are
3375 * trying to update it. So it's better to ignore it and try
3376 * grab some new pages. The stock's nr_bytes will be flushed to
3377 * objcg->nr_charged_bytes later on when objcg changes.
3378 *
3379 * The stock's nr_bytes may contain enough pre-charged bytes
3380 * to allow one less page from being charged, but we can't rely
3381 * on the pre-charged bytes not being changed outside of
3382 * consume_obj_stock() or refill_obj_stock(). So ignore those
3383 * pre-charged bytes as well when charging pages. To avoid a
3384 * page uncharge right after a page charge, we set the
3385 * allow_uncharge flag to false when calling refill_obj_stock()
3386 * to temporarily allow the pre-charged bytes to exceed the page
3387 * size limit. The maximum reachable value of the pre-charged
3388 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3389 * race.
3390 */
3391 nr_pages = size >> PAGE_SHIFT;
3392 nr_bytes = size & (PAGE_SIZE - 1);
3393
3394 if (nr_bytes)
3395 nr_pages += 1;
3396
3397 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3398 if (!ret && nr_bytes)
3399 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3400
3401 return ret;
3402 }
3403
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3404 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3405 {
3406 refill_obj_stock(objcg, size, true);
3407 }
3408
3409 #endif /* CONFIG_MEMCG_KMEM */
3410
3411 /*
3412 * Because page_memcg(head) is not set on tails, set it now.
3413 */
split_page_memcg(struct page * head,unsigned int nr)3414 void split_page_memcg(struct page *head, unsigned int nr)
3415 {
3416 struct folio *folio = page_folio(head);
3417 struct mem_cgroup *memcg = folio_memcg(folio);
3418 int i;
3419
3420 if (mem_cgroup_disabled() || !memcg)
3421 return;
3422
3423 for (i = 1; i < nr; i++)
3424 folio_page(folio, i)->memcg_data = folio->memcg_data;
3425
3426 if (folio_memcg_kmem(folio))
3427 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3428 else
3429 css_get_many(&memcg->css, nr - 1);
3430 }
3431
3432 #ifdef CONFIG_SWAP
3433 /**
3434 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3435 * @entry: swap entry to be moved
3436 * @from: mem_cgroup which the entry is moved from
3437 * @to: mem_cgroup which the entry is moved to
3438 *
3439 * It succeeds only when the swap_cgroup's record for this entry is the same
3440 * as the mem_cgroup's id of @from.
3441 *
3442 * Returns 0 on success, -EINVAL on failure.
3443 *
3444 * The caller must have charged to @to, IOW, called page_counter_charge() about
3445 * both res and memsw, and called css_get().
3446 */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3447 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3448 struct mem_cgroup *from, struct mem_cgroup *to)
3449 {
3450 unsigned short old_id, new_id;
3451
3452 old_id = mem_cgroup_id(from);
3453 new_id = mem_cgroup_id(to);
3454
3455 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3456 mod_memcg_state(from, MEMCG_SWAP, -1);
3457 mod_memcg_state(to, MEMCG_SWAP, 1);
3458 return 0;
3459 }
3460 return -EINVAL;
3461 }
3462 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3463 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3464 struct mem_cgroup *from, struct mem_cgroup *to)
3465 {
3466 return -EINVAL;
3467 }
3468 #endif
3469
3470 static DEFINE_MUTEX(memcg_max_mutex);
3471
mem_cgroup_resize_max(struct mem_cgroup * memcg,unsigned long max,bool memsw)3472 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3473 unsigned long max, bool memsw)
3474 {
3475 bool enlarge = false;
3476 bool drained = false;
3477 int ret;
3478 bool limits_invariant;
3479 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3480
3481 do {
3482 if (signal_pending(current)) {
3483 ret = -EINTR;
3484 break;
3485 }
3486
3487 mutex_lock(&memcg_max_mutex);
3488 /*
3489 * Make sure that the new limit (memsw or memory limit) doesn't
3490 * break our basic invariant rule memory.max <= memsw.max.
3491 */
3492 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3493 max <= memcg->memsw.max;
3494 if (!limits_invariant) {
3495 mutex_unlock(&memcg_max_mutex);
3496 ret = -EINVAL;
3497 break;
3498 }
3499 if (max > counter->max)
3500 enlarge = true;
3501 ret = page_counter_set_max(counter, max);
3502 mutex_unlock(&memcg_max_mutex);
3503
3504 if (!ret)
3505 break;
3506
3507 if (!drained) {
3508 drain_all_stock(memcg);
3509 drained = true;
3510 continue;
3511 }
3512
3513 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3514 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3515 ret = -EBUSY;
3516 break;
3517 }
3518 } while (true);
3519
3520 if (!ret && enlarge)
3521 memcg_oom_recover(memcg);
3522
3523 return ret;
3524 }
3525
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)3526 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3527 gfp_t gfp_mask,
3528 unsigned long *total_scanned)
3529 {
3530 unsigned long nr_reclaimed = 0;
3531 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3532 unsigned long reclaimed;
3533 int loop = 0;
3534 struct mem_cgroup_tree_per_node *mctz;
3535 unsigned long excess;
3536
3537 if (lru_gen_enabled())
3538 return 0;
3539
3540 if (order > 0)
3541 return 0;
3542
3543 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3544
3545 /*
3546 * Do not even bother to check the largest node if the root
3547 * is empty. Do it lockless to prevent lock bouncing. Races
3548 * are acceptable as soft limit is best effort anyway.
3549 */
3550 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3551 return 0;
3552
3553 /*
3554 * This loop can run a while, specially if mem_cgroup's continuously
3555 * keep exceeding their soft limit and putting the system under
3556 * pressure
3557 */
3558 do {
3559 if (next_mz)
3560 mz = next_mz;
3561 else
3562 mz = mem_cgroup_largest_soft_limit_node(mctz);
3563 if (!mz)
3564 break;
3565
3566 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3567 gfp_mask, total_scanned);
3568 nr_reclaimed += reclaimed;
3569 spin_lock_irq(&mctz->lock);
3570
3571 /*
3572 * If we failed to reclaim anything from this memory cgroup
3573 * it is time to move on to the next cgroup
3574 */
3575 next_mz = NULL;
3576 if (!reclaimed)
3577 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3578
3579 excess = soft_limit_excess(mz->memcg);
3580 /*
3581 * One school of thought says that we should not add
3582 * back the node to the tree if reclaim returns 0.
3583 * But our reclaim could return 0, simply because due
3584 * to priority we are exposing a smaller subset of
3585 * memory to reclaim from. Consider this as a longer
3586 * term TODO.
3587 */
3588 /* If excess == 0, no tree ops */
3589 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3590 spin_unlock_irq(&mctz->lock);
3591 css_put(&mz->memcg->css);
3592 loop++;
3593 /*
3594 * Could not reclaim anything and there are no more
3595 * mem cgroups to try or we seem to be looping without
3596 * reclaiming anything.
3597 */
3598 if (!nr_reclaimed &&
3599 (next_mz == NULL ||
3600 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3601 break;
3602 } while (!nr_reclaimed);
3603 if (next_mz)
3604 css_put(&next_mz->memcg->css);
3605 return nr_reclaimed;
3606 }
3607
3608 /*
3609 * Reclaims as many pages from the given memcg as possible.
3610 *
3611 * Caller is responsible for holding css reference for memcg.
3612 */
mem_cgroup_force_empty(struct mem_cgroup * memcg)3613 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3614 {
3615 int nr_retries = MAX_RECLAIM_RETRIES;
3616
3617 /* we call try-to-free pages for make this cgroup empty */
3618 lru_add_drain_all();
3619
3620 drain_all_stock(memcg);
3621
3622 /* try to free all pages in this cgroup */
3623 while (nr_retries && page_counter_read(&memcg->memory)) {
3624 if (signal_pending(current))
3625 return -EINTR;
3626
3627 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3628 MEMCG_RECLAIM_MAY_SWAP))
3629 nr_retries--;
3630 }
3631
3632 return 0;
3633 }
3634
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3635 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3636 char *buf, size_t nbytes,
3637 loff_t off)
3638 {
3639 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3640
3641 if (mem_cgroup_is_root(memcg))
3642 return -EINVAL;
3643 return mem_cgroup_force_empty(memcg) ?: nbytes;
3644 }
3645
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)3646 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3647 struct cftype *cft)
3648 {
3649 return 1;
3650 }
3651
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3652 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3653 struct cftype *cft, u64 val)
3654 {
3655 if (val == 1)
3656 return 0;
3657
3658 pr_warn_once("Non-hierarchical mode is deprecated. "
3659 "Please report your usecase to linux-mm@kvack.org if you "
3660 "depend on this functionality.\n");
3661
3662 return -EINVAL;
3663 }
3664
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3665 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3666 {
3667 unsigned long val;
3668
3669 if (mem_cgroup_is_root(memcg)) {
3670 /*
3671 * Approximate root's usage from global state. This isn't
3672 * perfect, but the root usage was always an approximation.
3673 */
3674 val = global_node_page_state(NR_FILE_PAGES) +
3675 global_node_page_state(NR_ANON_MAPPED);
3676 if (swap)
3677 val += total_swap_pages - get_nr_swap_pages();
3678 } else {
3679 if (!swap)
3680 val = page_counter_read(&memcg->memory);
3681 else
3682 val = page_counter_read(&memcg->memsw);
3683 }
3684 return val;
3685 }
3686
3687 enum {
3688 RES_USAGE,
3689 RES_LIMIT,
3690 RES_MAX_USAGE,
3691 RES_FAILCNT,
3692 RES_SOFT_LIMIT,
3693 };
3694
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)3695 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3696 struct cftype *cft)
3697 {
3698 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3699 struct page_counter *counter;
3700
3701 switch (MEMFILE_TYPE(cft->private)) {
3702 case _MEM:
3703 counter = &memcg->memory;
3704 break;
3705 case _MEMSWAP:
3706 counter = &memcg->memsw;
3707 break;
3708 case _KMEM:
3709 counter = &memcg->kmem;
3710 break;
3711 case _TCP:
3712 counter = &memcg->tcpmem;
3713 break;
3714 default:
3715 BUG();
3716 }
3717
3718 switch (MEMFILE_ATTR(cft->private)) {
3719 case RES_USAGE:
3720 if (counter == &memcg->memory)
3721 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3722 if (counter == &memcg->memsw)
3723 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3724 return (u64)page_counter_read(counter) * PAGE_SIZE;
3725 case RES_LIMIT:
3726 return (u64)counter->max * PAGE_SIZE;
3727 case RES_MAX_USAGE:
3728 return (u64)counter->watermark * PAGE_SIZE;
3729 case RES_FAILCNT:
3730 return counter->failcnt;
3731 case RES_SOFT_LIMIT:
3732 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3733 default:
3734 BUG();
3735 }
3736 }
3737
3738 /*
3739 * This function doesn't do anything useful. Its only job is to provide a read
3740 * handler for a file so that cgroup_file_mode() will add read permissions.
3741 */
mem_cgroup_dummy_seq_show(__always_unused struct seq_file * m,__always_unused void * v)3742 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3743 __always_unused void *v)
3744 {
3745 return -EINVAL;
3746 }
3747
3748 #ifdef CONFIG_MEMCG_KMEM
memcg_online_kmem(struct mem_cgroup * memcg)3749 static int memcg_online_kmem(struct mem_cgroup *memcg)
3750 {
3751 struct obj_cgroup *objcg;
3752
3753 if (mem_cgroup_kmem_disabled())
3754 return 0;
3755
3756 if (unlikely(mem_cgroup_is_root(memcg)))
3757 return 0;
3758
3759 objcg = obj_cgroup_alloc();
3760 if (!objcg)
3761 return -ENOMEM;
3762
3763 objcg->memcg = memcg;
3764 rcu_assign_pointer(memcg->objcg, objcg);
3765
3766 static_branch_enable(&memcg_kmem_online_key);
3767
3768 memcg->kmemcg_id = memcg->id.id;
3769
3770 return 0;
3771 }
3772
memcg_offline_kmem(struct mem_cgroup * memcg)3773 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3774 {
3775 struct mem_cgroup *parent;
3776
3777 if (mem_cgroup_kmem_disabled())
3778 return;
3779
3780 if (unlikely(mem_cgroup_is_root(memcg)))
3781 return;
3782
3783 parent = parent_mem_cgroup(memcg);
3784 if (!parent)
3785 parent = root_mem_cgroup;
3786
3787 memcg_reparent_objcgs(memcg, parent);
3788
3789 /*
3790 * After we have finished memcg_reparent_objcgs(), all list_lrus
3791 * corresponding to this cgroup are guaranteed to remain empty.
3792 * The ordering is imposed by list_lru_node->lock taken by
3793 * memcg_reparent_list_lrus().
3794 */
3795 memcg_reparent_list_lrus(memcg, parent);
3796 }
3797 #else
memcg_online_kmem(struct mem_cgroup * memcg)3798 static int memcg_online_kmem(struct mem_cgroup *memcg)
3799 {
3800 return 0;
3801 }
memcg_offline_kmem(struct mem_cgroup * memcg)3802 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3803 {
3804 }
3805 #endif /* CONFIG_MEMCG_KMEM */
3806
memcg_update_tcp_max(struct mem_cgroup * memcg,unsigned long max)3807 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3808 {
3809 int ret;
3810
3811 mutex_lock(&memcg_max_mutex);
3812
3813 ret = page_counter_set_max(&memcg->tcpmem, max);
3814 if (ret)
3815 goto out;
3816
3817 if (!memcg->tcpmem_active) {
3818 /*
3819 * The active flag needs to be written after the static_key
3820 * update. This is what guarantees that the socket activation
3821 * function is the last one to run. See mem_cgroup_sk_alloc()
3822 * for details, and note that we don't mark any socket as
3823 * belonging to this memcg until that flag is up.
3824 *
3825 * We need to do this, because static_keys will span multiple
3826 * sites, but we can't control their order. If we mark a socket
3827 * as accounted, but the accounting functions are not patched in
3828 * yet, we'll lose accounting.
3829 *
3830 * We never race with the readers in mem_cgroup_sk_alloc(),
3831 * because when this value change, the code to process it is not
3832 * patched in yet.
3833 */
3834 static_branch_inc(&memcg_sockets_enabled_key);
3835 memcg->tcpmem_active = true;
3836 }
3837 out:
3838 mutex_unlock(&memcg_max_mutex);
3839 return ret;
3840 }
3841
3842 /*
3843 * The user of this function is...
3844 * RES_LIMIT.
3845 */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3846 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3847 char *buf, size_t nbytes, loff_t off)
3848 {
3849 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3850 unsigned long nr_pages;
3851 int ret;
3852
3853 buf = strstrip(buf);
3854 ret = page_counter_memparse(buf, "-1", &nr_pages);
3855 if (ret)
3856 return ret;
3857
3858 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3859 case RES_LIMIT:
3860 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3861 ret = -EINVAL;
3862 break;
3863 }
3864 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3865 case _MEM:
3866 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3867 break;
3868 case _MEMSWAP:
3869 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3870 break;
3871 case _KMEM:
3872 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3873 "Writing any value to this file has no effect. "
3874 "Please report your usecase to linux-mm@kvack.org if you "
3875 "depend on this functionality.\n");
3876 ret = 0;
3877 break;
3878 case _TCP:
3879 ret = memcg_update_tcp_max(memcg, nr_pages);
3880 break;
3881 }
3882 break;
3883 case RES_SOFT_LIMIT:
3884 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3885 ret = -EOPNOTSUPP;
3886 } else {
3887 WRITE_ONCE(memcg->soft_limit, nr_pages);
3888 ret = 0;
3889 }
3890 break;
3891 }
3892 return ret ?: nbytes;
3893 }
3894
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3895 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3896 size_t nbytes, loff_t off)
3897 {
3898 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3899 struct page_counter *counter;
3900
3901 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3902 case _MEM:
3903 counter = &memcg->memory;
3904 break;
3905 case _MEMSWAP:
3906 counter = &memcg->memsw;
3907 break;
3908 case _KMEM:
3909 counter = &memcg->kmem;
3910 break;
3911 case _TCP:
3912 counter = &memcg->tcpmem;
3913 break;
3914 default:
3915 BUG();
3916 }
3917
3918 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3919 case RES_MAX_USAGE:
3920 page_counter_reset_watermark(counter);
3921 break;
3922 case RES_FAILCNT:
3923 counter->failcnt = 0;
3924 break;
3925 default:
3926 BUG();
3927 }
3928
3929 return nbytes;
3930 }
3931
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)3932 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3933 struct cftype *cft)
3934 {
3935 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3936 }
3937
3938 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3939 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3940 struct cftype *cft, u64 val)
3941 {
3942 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3943
3944 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3945 "Please report your usecase to linux-mm@kvack.org if you "
3946 "depend on this functionality.\n");
3947
3948 if (val & ~MOVE_MASK)
3949 return -EINVAL;
3950
3951 /*
3952 * No kind of locking is needed in here, because ->can_attach() will
3953 * check this value once in the beginning of the process, and then carry
3954 * on with stale data. This means that changes to this value will only
3955 * affect task migrations starting after the change.
3956 */
3957 memcg->move_charge_at_immigrate = val;
3958 return 0;
3959 }
3960 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3961 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3962 struct cftype *cft, u64 val)
3963 {
3964 return -ENOSYS;
3965 }
3966 #endif
3967
3968 #ifdef CONFIG_NUMA
3969
3970 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3971 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3972 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3973
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask,bool tree)3974 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3975 int nid, unsigned int lru_mask, bool tree)
3976 {
3977 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3978 unsigned long nr = 0;
3979 enum lru_list lru;
3980
3981 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3982
3983 for_each_lru(lru) {
3984 if (!(BIT(lru) & lru_mask))
3985 continue;
3986 if (tree)
3987 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3988 else
3989 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3990 }
3991 return nr;
3992 }
3993
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask,bool tree)3994 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3995 unsigned int lru_mask,
3996 bool tree)
3997 {
3998 unsigned long nr = 0;
3999 enum lru_list lru;
4000
4001 for_each_lru(lru) {
4002 if (!(BIT(lru) & lru_mask))
4003 continue;
4004 if (tree)
4005 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4006 else
4007 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4008 }
4009 return nr;
4010 }
4011
memcg_numa_stat_show(struct seq_file * m,void * v)4012 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4013 {
4014 struct numa_stat {
4015 const char *name;
4016 unsigned int lru_mask;
4017 };
4018
4019 static const struct numa_stat stats[] = {
4020 { "total", LRU_ALL },
4021 { "file", LRU_ALL_FILE },
4022 { "anon", LRU_ALL_ANON },
4023 { "unevictable", BIT(LRU_UNEVICTABLE) },
4024 };
4025 const struct numa_stat *stat;
4026 int nid;
4027 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4028
4029 mem_cgroup_flush_stats();
4030
4031 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4032 seq_printf(m, "%s=%lu", stat->name,
4033 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4034 false));
4035 for_each_node_state(nid, N_MEMORY)
4036 seq_printf(m, " N%d=%lu", nid,
4037 mem_cgroup_node_nr_lru_pages(memcg, nid,
4038 stat->lru_mask, false));
4039 seq_putc(m, '\n');
4040 }
4041
4042 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4043
4044 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4045 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4046 true));
4047 for_each_node_state(nid, N_MEMORY)
4048 seq_printf(m, " N%d=%lu", nid,
4049 mem_cgroup_node_nr_lru_pages(memcg, nid,
4050 stat->lru_mask, true));
4051 seq_putc(m, '\n');
4052 }
4053
4054 return 0;
4055 }
4056 #endif /* CONFIG_NUMA */
4057
4058 static const unsigned int memcg1_stats[] = {
4059 NR_FILE_PAGES,
4060 NR_ANON_MAPPED,
4061 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4062 NR_ANON_THPS,
4063 #endif
4064 NR_SHMEM,
4065 NR_FILE_MAPPED,
4066 NR_FILE_DIRTY,
4067 NR_WRITEBACK,
4068 WORKINGSET_REFAULT_ANON,
4069 WORKINGSET_REFAULT_FILE,
4070 MEMCG_SWAP,
4071 };
4072
4073 static const char *const memcg1_stat_names[] = {
4074 "cache",
4075 "rss",
4076 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4077 "rss_huge",
4078 #endif
4079 "shmem",
4080 "mapped_file",
4081 "dirty",
4082 "writeback",
4083 "workingset_refault_anon",
4084 "workingset_refault_file",
4085 "swap",
4086 };
4087
4088 /* Universal VM events cgroup1 shows, original sort order */
4089 static const unsigned int memcg1_events[] = {
4090 PGPGIN,
4091 PGPGOUT,
4092 PGFAULT,
4093 PGMAJFAULT,
4094 };
4095
memcg1_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)4096 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4097 {
4098 unsigned long memory, memsw;
4099 struct mem_cgroup *mi;
4100 unsigned int i;
4101
4102 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4103
4104 mem_cgroup_flush_stats();
4105
4106 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4107 unsigned long nr;
4108
4109 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4110 continue;
4111 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4112 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i],
4113 nr * memcg_page_state_unit(memcg1_stats[i]));
4114 }
4115
4116 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4117 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4118 memcg_events_local(memcg, memcg1_events[i]));
4119
4120 for (i = 0; i < NR_LRU_LISTS; i++)
4121 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4122 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4123 PAGE_SIZE);
4124
4125 /* Hierarchical information */
4126 memory = memsw = PAGE_COUNTER_MAX;
4127 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4128 memory = min(memory, READ_ONCE(mi->memory.max));
4129 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4130 }
4131 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4132 (u64)memory * PAGE_SIZE);
4133 if (do_memsw_account())
4134 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4135 (u64)memsw * PAGE_SIZE);
4136
4137 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4138 unsigned long nr;
4139
4140 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4141 continue;
4142 nr = memcg_page_state(memcg, memcg1_stats[i]);
4143 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4144 (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4145 }
4146
4147 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4148 seq_buf_printf(s, "total_%s %llu\n",
4149 vm_event_name(memcg1_events[i]),
4150 (u64)memcg_events(memcg, memcg1_events[i]));
4151
4152 for (i = 0; i < NR_LRU_LISTS; i++)
4153 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4154 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4155 PAGE_SIZE);
4156
4157 #ifdef CONFIG_DEBUG_VM
4158 {
4159 pg_data_t *pgdat;
4160 struct mem_cgroup_per_node *mz;
4161 unsigned long anon_cost = 0;
4162 unsigned long file_cost = 0;
4163
4164 for_each_online_pgdat(pgdat) {
4165 mz = memcg->nodeinfo[pgdat->node_id];
4166
4167 anon_cost += mz->lruvec.anon_cost;
4168 file_cost += mz->lruvec.file_cost;
4169 }
4170 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4171 seq_buf_printf(s, "file_cost %lu\n", file_cost);
4172 }
4173 #endif
4174 }
4175
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)4176 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4177 struct cftype *cft)
4178 {
4179 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4180
4181 return mem_cgroup_swappiness(memcg);
4182 }
4183
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4184 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4185 struct cftype *cft, u64 val)
4186 {
4187 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4188
4189 if (val > 200)
4190 return -EINVAL;
4191
4192 if (!mem_cgroup_is_root(memcg))
4193 WRITE_ONCE(memcg->swappiness, val);
4194 else
4195 WRITE_ONCE(vm_swappiness, val);
4196
4197 return 0;
4198 }
4199
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)4200 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4201 {
4202 struct mem_cgroup_threshold_ary *t;
4203 unsigned long usage;
4204 int i;
4205
4206 rcu_read_lock();
4207 if (!swap)
4208 t = rcu_dereference(memcg->thresholds.primary);
4209 else
4210 t = rcu_dereference(memcg->memsw_thresholds.primary);
4211
4212 if (!t)
4213 goto unlock;
4214
4215 usage = mem_cgroup_usage(memcg, swap);
4216
4217 /*
4218 * current_threshold points to threshold just below or equal to usage.
4219 * If it's not true, a threshold was crossed after last
4220 * call of __mem_cgroup_threshold().
4221 */
4222 i = t->current_threshold;
4223
4224 /*
4225 * Iterate backward over array of thresholds starting from
4226 * current_threshold and check if a threshold is crossed.
4227 * If none of thresholds below usage is crossed, we read
4228 * only one element of the array here.
4229 */
4230 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4231 eventfd_signal(t->entries[i].eventfd, 1);
4232
4233 /* i = current_threshold + 1 */
4234 i++;
4235
4236 /*
4237 * Iterate forward over array of thresholds starting from
4238 * current_threshold+1 and check if a threshold is crossed.
4239 * If none of thresholds above usage is crossed, we read
4240 * only one element of the array here.
4241 */
4242 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4243 eventfd_signal(t->entries[i].eventfd, 1);
4244
4245 /* Update current_threshold */
4246 t->current_threshold = i - 1;
4247 unlock:
4248 rcu_read_unlock();
4249 }
4250
mem_cgroup_threshold(struct mem_cgroup * memcg)4251 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4252 {
4253 while (memcg) {
4254 __mem_cgroup_threshold(memcg, false);
4255 if (do_memsw_account())
4256 __mem_cgroup_threshold(memcg, true);
4257
4258 memcg = parent_mem_cgroup(memcg);
4259 }
4260 }
4261
compare_thresholds(const void * a,const void * b)4262 static int compare_thresholds(const void *a, const void *b)
4263 {
4264 const struct mem_cgroup_threshold *_a = a;
4265 const struct mem_cgroup_threshold *_b = b;
4266
4267 if (_a->threshold > _b->threshold)
4268 return 1;
4269
4270 if (_a->threshold < _b->threshold)
4271 return -1;
4272
4273 return 0;
4274 }
4275
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)4276 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4277 {
4278 struct mem_cgroup_eventfd_list *ev;
4279
4280 spin_lock(&memcg_oom_lock);
4281
4282 list_for_each_entry(ev, &memcg->oom_notify, list)
4283 eventfd_signal(ev->eventfd, 1);
4284
4285 spin_unlock(&memcg_oom_lock);
4286 return 0;
4287 }
4288
mem_cgroup_oom_notify(struct mem_cgroup * memcg)4289 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4290 {
4291 struct mem_cgroup *iter;
4292
4293 for_each_mem_cgroup_tree(iter, memcg)
4294 mem_cgroup_oom_notify_cb(iter);
4295 }
4296
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)4297 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4298 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4299 {
4300 struct mem_cgroup_thresholds *thresholds;
4301 struct mem_cgroup_threshold_ary *new;
4302 unsigned long threshold;
4303 unsigned long usage;
4304 int i, size, ret;
4305
4306 ret = page_counter_memparse(args, "-1", &threshold);
4307 if (ret)
4308 return ret;
4309
4310 mutex_lock(&memcg->thresholds_lock);
4311
4312 if (type == _MEM) {
4313 thresholds = &memcg->thresholds;
4314 usage = mem_cgroup_usage(memcg, false);
4315 } else if (type == _MEMSWAP) {
4316 thresholds = &memcg->memsw_thresholds;
4317 usage = mem_cgroup_usage(memcg, true);
4318 } else
4319 BUG();
4320
4321 /* Check if a threshold crossed before adding a new one */
4322 if (thresholds->primary)
4323 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4324
4325 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4326
4327 /* Allocate memory for new array of thresholds */
4328 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4329 if (!new) {
4330 ret = -ENOMEM;
4331 goto unlock;
4332 }
4333 new->size = size;
4334
4335 /* Copy thresholds (if any) to new array */
4336 if (thresholds->primary)
4337 memcpy(new->entries, thresholds->primary->entries,
4338 flex_array_size(new, entries, size - 1));
4339
4340 /* Add new threshold */
4341 new->entries[size - 1].eventfd = eventfd;
4342 new->entries[size - 1].threshold = threshold;
4343
4344 /* Sort thresholds. Registering of new threshold isn't time-critical */
4345 sort(new->entries, size, sizeof(*new->entries),
4346 compare_thresholds, NULL);
4347
4348 /* Find current threshold */
4349 new->current_threshold = -1;
4350 for (i = 0; i < size; i++) {
4351 if (new->entries[i].threshold <= usage) {
4352 /*
4353 * new->current_threshold will not be used until
4354 * rcu_assign_pointer(), so it's safe to increment
4355 * it here.
4356 */
4357 ++new->current_threshold;
4358 } else
4359 break;
4360 }
4361
4362 /* Free old spare buffer and save old primary buffer as spare */
4363 kfree(thresholds->spare);
4364 thresholds->spare = thresholds->primary;
4365
4366 rcu_assign_pointer(thresholds->primary, new);
4367
4368 /* To be sure that nobody uses thresholds */
4369 synchronize_rcu();
4370
4371 unlock:
4372 mutex_unlock(&memcg->thresholds_lock);
4373
4374 return ret;
4375 }
4376
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4377 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4378 struct eventfd_ctx *eventfd, const char *args)
4379 {
4380 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4381 }
4382
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4383 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4384 struct eventfd_ctx *eventfd, const char *args)
4385 {
4386 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4387 }
4388
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)4389 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4390 struct eventfd_ctx *eventfd, enum res_type type)
4391 {
4392 struct mem_cgroup_thresholds *thresholds;
4393 struct mem_cgroup_threshold_ary *new;
4394 unsigned long usage;
4395 int i, j, size, entries;
4396
4397 mutex_lock(&memcg->thresholds_lock);
4398
4399 if (type == _MEM) {
4400 thresholds = &memcg->thresholds;
4401 usage = mem_cgroup_usage(memcg, false);
4402 } else if (type == _MEMSWAP) {
4403 thresholds = &memcg->memsw_thresholds;
4404 usage = mem_cgroup_usage(memcg, true);
4405 } else
4406 BUG();
4407
4408 if (!thresholds->primary)
4409 goto unlock;
4410
4411 /* Check if a threshold crossed before removing */
4412 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4413
4414 /* Calculate new number of threshold */
4415 size = entries = 0;
4416 for (i = 0; i < thresholds->primary->size; i++) {
4417 if (thresholds->primary->entries[i].eventfd != eventfd)
4418 size++;
4419 else
4420 entries++;
4421 }
4422
4423 new = thresholds->spare;
4424
4425 /* If no items related to eventfd have been cleared, nothing to do */
4426 if (!entries)
4427 goto unlock;
4428
4429 /* Set thresholds array to NULL if we don't have thresholds */
4430 if (!size) {
4431 kfree(new);
4432 new = NULL;
4433 goto swap_buffers;
4434 }
4435
4436 new->size = size;
4437
4438 /* Copy thresholds and find current threshold */
4439 new->current_threshold = -1;
4440 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4441 if (thresholds->primary->entries[i].eventfd == eventfd)
4442 continue;
4443
4444 new->entries[j] = thresholds->primary->entries[i];
4445 if (new->entries[j].threshold <= usage) {
4446 /*
4447 * new->current_threshold will not be used
4448 * until rcu_assign_pointer(), so it's safe to increment
4449 * it here.
4450 */
4451 ++new->current_threshold;
4452 }
4453 j++;
4454 }
4455
4456 swap_buffers:
4457 /* Swap primary and spare array */
4458 thresholds->spare = thresholds->primary;
4459
4460 rcu_assign_pointer(thresholds->primary, new);
4461
4462 /* To be sure that nobody uses thresholds */
4463 synchronize_rcu();
4464
4465 /* If all events are unregistered, free the spare array */
4466 if (!new) {
4467 kfree(thresholds->spare);
4468 thresholds->spare = NULL;
4469 }
4470 unlock:
4471 mutex_unlock(&memcg->thresholds_lock);
4472 }
4473
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4474 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4475 struct eventfd_ctx *eventfd)
4476 {
4477 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4478 }
4479
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4480 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4481 struct eventfd_ctx *eventfd)
4482 {
4483 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4484 }
4485
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4486 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4487 struct eventfd_ctx *eventfd, const char *args)
4488 {
4489 struct mem_cgroup_eventfd_list *event;
4490
4491 event = kmalloc(sizeof(*event), GFP_KERNEL);
4492 if (!event)
4493 return -ENOMEM;
4494
4495 spin_lock(&memcg_oom_lock);
4496
4497 event->eventfd = eventfd;
4498 list_add(&event->list, &memcg->oom_notify);
4499
4500 /* already in OOM ? */
4501 if (memcg->under_oom)
4502 eventfd_signal(eventfd, 1);
4503 spin_unlock(&memcg_oom_lock);
4504
4505 return 0;
4506 }
4507
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4508 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4509 struct eventfd_ctx *eventfd)
4510 {
4511 struct mem_cgroup_eventfd_list *ev, *tmp;
4512
4513 spin_lock(&memcg_oom_lock);
4514
4515 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4516 if (ev->eventfd == eventfd) {
4517 list_del(&ev->list);
4518 kfree(ev);
4519 }
4520 }
4521
4522 spin_unlock(&memcg_oom_lock);
4523 }
4524
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)4525 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4526 {
4527 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4528
4529 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4530 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4531 seq_printf(sf, "oom_kill %lu\n",
4532 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4533 return 0;
4534 }
4535
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4536 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4537 struct cftype *cft, u64 val)
4538 {
4539 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4540
4541 /* cannot set to root cgroup and only 0 and 1 are allowed */
4542 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4543 return -EINVAL;
4544
4545 WRITE_ONCE(memcg->oom_kill_disable, val);
4546 if (!val)
4547 memcg_oom_recover(memcg);
4548
4549 return 0;
4550 }
4551
4552 #ifdef CONFIG_CGROUP_WRITEBACK
4553
4554 #include <trace/events/writeback.h>
4555
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4556 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4557 {
4558 return wb_domain_init(&memcg->cgwb_domain, gfp);
4559 }
4560
memcg_wb_domain_exit(struct mem_cgroup * memcg)4561 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4562 {
4563 wb_domain_exit(&memcg->cgwb_domain);
4564 }
4565
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4566 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4567 {
4568 wb_domain_size_changed(&memcg->cgwb_domain);
4569 }
4570
mem_cgroup_wb_domain(struct bdi_writeback * wb)4571 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4572 {
4573 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4574
4575 if (!memcg->css.parent)
4576 return NULL;
4577
4578 return &memcg->cgwb_domain;
4579 }
4580
4581 /**
4582 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4583 * @wb: bdi_writeback in question
4584 * @pfilepages: out parameter for number of file pages
4585 * @pheadroom: out parameter for number of allocatable pages according to memcg
4586 * @pdirty: out parameter for number of dirty pages
4587 * @pwriteback: out parameter for number of pages under writeback
4588 *
4589 * Determine the numbers of file, headroom, dirty, and writeback pages in
4590 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4591 * is a bit more involved.
4592 *
4593 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4594 * headroom is calculated as the lowest headroom of itself and the
4595 * ancestors. Note that this doesn't consider the actual amount of
4596 * available memory in the system. The caller should further cap
4597 * *@pheadroom accordingly.
4598 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)4599 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4600 unsigned long *pheadroom, unsigned long *pdirty,
4601 unsigned long *pwriteback)
4602 {
4603 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4604 struct mem_cgroup *parent;
4605
4606 mem_cgroup_flush_stats();
4607
4608 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4609 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4610 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4611 memcg_page_state(memcg, NR_ACTIVE_FILE);
4612
4613 *pheadroom = PAGE_COUNTER_MAX;
4614 while ((parent = parent_mem_cgroup(memcg))) {
4615 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4616 READ_ONCE(memcg->memory.high));
4617 unsigned long used = page_counter_read(&memcg->memory);
4618
4619 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4620 memcg = parent;
4621 }
4622 }
4623
4624 /*
4625 * Foreign dirty flushing
4626 *
4627 * There's an inherent mismatch between memcg and writeback. The former
4628 * tracks ownership per-page while the latter per-inode. This was a
4629 * deliberate design decision because honoring per-page ownership in the
4630 * writeback path is complicated, may lead to higher CPU and IO overheads
4631 * and deemed unnecessary given that write-sharing an inode across
4632 * different cgroups isn't a common use-case.
4633 *
4634 * Combined with inode majority-writer ownership switching, this works well
4635 * enough in most cases but there are some pathological cases. For
4636 * example, let's say there are two cgroups A and B which keep writing to
4637 * different but confined parts of the same inode. B owns the inode and
4638 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4639 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4640 * triggering background writeback. A will be slowed down without a way to
4641 * make writeback of the dirty pages happen.
4642 *
4643 * Conditions like the above can lead to a cgroup getting repeatedly and
4644 * severely throttled after making some progress after each
4645 * dirty_expire_interval while the underlying IO device is almost
4646 * completely idle.
4647 *
4648 * Solving this problem completely requires matching the ownership tracking
4649 * granularities between memcg and writeback in either direction. However,
4650 * the more egregious behaviors can be avoided by simply remembering the
4651 * most recent foreign dirtying events and initiating remote flushes on
4652 * them when local writeback isn't enough to keep the memory clean enough.
4653 *
4654 * The following two functions implement such mechanism. When a foreign
4655 * page - a page whose memcg and writeback ownerships don't match - is
4656 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4657 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4658 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4659 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4660 * foreign bdi_writebacks which haven't expired. Both the numbers of
4661 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4662 * limited to MEMCG_CGWB_FRN_CNT.
4663 *
4664 * The mechanism only remembers IDs and doesn't hold any object references.
4665 * As being wrong occasionally doesn't matter, updates and accesses to the
4666 * records are lockless and racy.
4667 */
mem_cgroup_track_foreign_dirty_slowpath(struct folio * folio,struct bdi_writeback * wb)4668 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4669 struct bdi_writeback *wb)
4670 {
4671 struct mem_cgroup *memcg = folio_memcg(folio);
4672 struct memcg_cgwb_frn *frn;
4673 u64 now = get_jiffies_64();
4674 u64 oldest_at = now;
4675 int oldest = -1;
4676 int i;
4677
4678 trace_track_foreign_dirty(folio, wb);
4679
4680 /*
4681 * Pick the slot to use. If there is already a slot for @wb, keep
4682 * using it. If not replace the oldest one which isn't being
4683 * written out.
4684 */
4685 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4686 frn = &memcg->cgwb_frn[i];
4687 if (frn->bdi_id == wb->bdi->id &&
4688 frn->memcg_id == wb->memcg_css->id)
4689 break;
4690 if (time_before64(frn->at, oldest_at) &&
4691 atomic_read(&frn->done.cnt) == 1) {
4692 oldest = i;
4693 oldest_at = frn->at;
4694 }
4695 }
4696
4697 if (i < MEMCG_CGWB_FRN_CNT) {
4698 /*
4699 * Re-using an existing one. Update timestamp lazily to
4700 * avoid making the cacheline hot. We want them to be
4701 * reasonably up-to-date and significantly shorter than
4702 * dirty_expire_interval as that's what expires the record.
4703 * Use the shorter of 1s and dirty_expire_interval / 8.
4704 */
4705 unsigned long update_intv =
4706 min_t(unsigned long, HZ,
4707 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4708
4709 if (time_before64(frn->at, now - update_intv))
4710 frn->at = now;
4711 } else if (oldest >= 0) {
4712 /* replace the oldest free one */
4713 frn = &memcg->cgwb_frn[oldest];
4714 frn->bdi_id = wb->bdi->id;
4715 frn->memcg_id = wb->memcg_css->id;
4716 frn->at = now;
4717 }
4718 }
4719
4720 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)4721 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4722 {
4723 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4724 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4725 u64 now = jiffies_64;
4726 int i;
4727
4728 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4729 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4730
4731 /*
4732 * If the record is older than dirty_expire_interval,
4733 * writeback on it has already started. No need to kick it
4734 * off again. Also, don't start a new one if there's
4735 * already one in flight.
4736 */
4737 if (time_after64(frn->at, now - intv) &&
4738 atomic_read(&frn->done.cnt) == 1) {
4739 frn->at = 0;
4740 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4741 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4742 WB_REASON_FOREIGN_FLUSH,
4743 &frn->done);
4744 }
4745 }
4746 }
4747
4748 #else /* CONFIG_CGROUP_WRITEBACK */
4749
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4750 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4751 {
4752 return 0;
4753 }
4754
memcg_wb_domain_exit(struct mem_cgroup * memcg)4755 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4756 {
4757 }
4758
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4759 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4760 {
4761 }
4762
4763 #endif /* CONFIG_CGROUP_WRITEBACK */
4764
4765 /*
4766 * DO NOT USE IN NEW FILES.
4767 *
4768 * "cgroup.event_control" implementation.
4769 *
4770 * This is way over-engineered. It tries to support fully configurable
4771 * events for each user. Such level of flexibility is completely
4772 * unnecessary especially in the light of the planned unified hierarchy.
4773 *
4774 * Please deprecate this and replace with something simpler if at all
4775 * possible.
4776 */
4777
4778 /*
4779 * Unregister event and free resources.
4780 *
4781 * Gets called from workqueue.
4782 */
memcg_event_remove(struct work_struct * work)4783 static void memcg_event_remove(struct work_struct *work)
4784 {
4785 struct mem_cgroup_event *event =
4786 container_of(work, struct mem_cgroup_event, remove);
4787 struct mem_cgroup *memcg = event->memcg;
4788
4789 remove_wait_queue(event->wqh, &event->wait);
4790
4791 event->unregister_event(memcg, event->eventfd);
4792
4793 /* Notify userspace the event is going away. */
4794 eventfd_signal(event->eventfd, 1);
4795
4796 eventfd_ctx_put(event->eventfd);
4797 kfree(event);
4798 css_put(&memcg->css);
4799 }
4800
4801 /*
4802 * Gets called on EPOLLHUP on eventfd when user closes it.
4803 *
4804 * Called with wqh->lock held and interrupts disabled.
4805 */
memcg_event_wake(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)4806 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4807 int sync, void *key)
4808 {
4809 struct mem_cgroup_event *event =
4810 container_of(wait, struct mem_cgroup_event, wait);
4811 struct mem_cgroup *memcg = event->memcg;
4812 __poll_t flags = key_to_poll(key);
4813
4814 if (flags & EPOLLHUP) {
4815 /*
4816 * If the event has been detached at cgroup removal, we
4817 * can simply return knowing the other side will cleanup
4818 * for us.
4819 *
4820 * We can't race against event freeing since the other
4821 * side will require wqh->lock via remove_wait_queue(),
4822 * which we hold.
4823 */
4824 spin_lock(&memcg->event_list_lock);
4825 if (!list_empty(&event->list)) {
4826 list_del_init(&event->list);
4827 /*
4828 * We are in atomic context, but cgroup_event_remove()
4829 * may sleep, so we have to call it in workqueue.
4830 */
4831 schedule_work(&event->remove);
4832 }
4833 spin_unlock(&memcg->event_list_lock);
4834 }
4835
4836 return 0;
4837 }
4838
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)4839 static void memcg_event_ptable_queue_proc(struct file *file,
4840 wait_queue_head_t *wqh, poll_table *pt)
4841 {
4842 struct mem_cgroup_event *event =
4843 container_of(pt, struct mem_cgroup_event, pt);
4844
4845 event->wqh = wqh;
4846 add_wait_queue(wqh, &event->wait);
4847 }
4848
4849 /*
4850 * DO NOT USE IN NEW FILES.
4851 *
4852 * Parse input and register new cgroup event handler.
4853 *
4854 * Input must be in format '<event_fd> <control_fd> <args>'.
4855 * Interpretation of args is defined by control file implementation.
4856 */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4857 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4858 char *buf, size_t nbytes, loff_t off)
4859 {
4860 struct cgroup_subsys_state *css = of_css(of);
4861 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4862 struct mem_cgroup_event *event;
4863 struct cgroup_subsys_state *cfile_css;
4864 unsigned int efd, cfd;
4865 struct fd efile;
4866 struct fd cfile;
4867 struct dentry *cdentry;
4868 const char *name;
4869 char *endp;
4870 int ret;
4871
4872 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4873 return -EOPNOTSUPP;
4874
4875 buf = strstrip(buf);
4876
4877 efd = simple_strtoul(buf, &endp, 10);
4878 if (*endp != ' ')
4879 return -EINVAL;
4880 buf = endp + 1;
4881
4882 cfd = simple_strtoul(buf, &endp, 10);
4883 if (*endp == '\0')
4884 buf = endp;
4885 else if (*endp == ' ')
4886 buf = endp + 1;
4887 else
4888 return -EINVAL;
4889
4890 event = kzalloc(sizeof(*event), GFP_KERNEL);
4891 if (!event)
4892 return -ENOMEM;
4893
4894 event->memcg = memcg;
4895 INIT_LIST_HEAD(&event->list);
4896 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4897 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4898 INIT_WORK(&event->remove, memcg_event_remove);
4899
4900 efile = fdget(efd);
4901 if (!efile.file) {
4902 ret = -EBADF;
4903 goto out_kfree;
4904 }
4905
4906 event->eventfd = eventfd_ctx_fileget(efile.file);
4907 if (IS_ERR(event->eventfd)) {
4908 ret = PTR_ERR(event->eventfd);
4909 goto out_put_efile;
4910 }
4911
4912 cfile = fdget(cfd);
4913 if (!cfile.file) {
4914 ret = -EBADF;
4915 goto out_put_eventfd;
4916 }
4917
4918 /* the process need read permission on control file */
4919 /* AV: shouldn't we check that it's been opened for read instead? */
4920 ret = file_permission(cfile.file, MAY_READ);
4921 if (ret < 0)
4922 goto out_put_cfile;
4923
4924 /*
4925 * The control file must be a regular cgroup1 file. As a regular cgroup
4926 * file can't be renamed, it's safe to access its name afterwards.
4927 */
4928 cdentry = cfile.file->f_path.dentry;
4929 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4930 ret = -EINVAL;
4931 goto out_put_cfile;
4932 }
4933
4934 /*
4935 * Determine the event callbacks and set them in @event. This used
4936 * to be done via struct cftype but cgroup core no longer knows
4937 * about these events. The following is crude but the whole thing
4938 * is for compatibility anyway.
4939 *
4940 * DO NOT ADD NEW FILES.
4941 */
4942 name = cdentry->d_name.name;
4943
4944 if (!strcmp(name, "memory.usage_in_bytes")) {
4945 event->register_event = mem_cgroup_usage_register_event;
4946 event->unregister_event = mem_cgroup_usage_unregister_event;
4947 } else if (!strcmp(name, "memory.oom_control")) {
4948 event->register_event = mem_cgroup_oom_register_event;
4949 event->unregister_event = mem_cgroup_oom_unregister_event;
4950 } else if (!strcmp(name, "memory.pressure_level")) {
4951 event->register_event = vmpressure_register_event;
4952 event->unregister_event = vmpressure_unregister_event;
4953 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4954 event->register_event = memsw_cgroup_usage_register_event;
4955 event->unregister_event = memsw_cgroup_usage_unregister_event;
4956 } else {
4957 ret = -EINVAL;
4958 goto out_put_cfile;
4959 }
4960
4961 /*
4962 * Verify @cfile should belong to @css. Also, remaining events are
4963 * automatically removed on cgroup destruction but the removal is
4964 * asynchronous, so take an extra ref on @css.
4965 */
4966 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4967 &memory_cgrp_subsys);
4968 ret = -EINVAL;
4969 if (IS_ERR(cfile_css))
4970 goto out_put_cfile;
4971 if (cfile_css != css) {
4972 css_put(cfile_css);
4973 goto out_put_cfile;
4974 }
4975
4976 ret = event->register_event(memcg, event->eventfd, buf);
4977 if (ret)
4978 goto out_put_css;
4979
4980 vfs_poll(efile.file, &event->pt);
4981
4982 spin_lock_irq(&memcg->event_list_lock);
4983 list_add(&event->list, &memcg->event_list);
4984 spin_unlock_irq(&memcg->event_list_lock);
4985
4986 fdput(cfile);
4987 fdput(efile);
4988
4989 return nbytes;
4990
4991 out_put_css:
4992 css_put(css);
4993 out_put_cfile:
4994 fdput(cfile);
4995 out_put_eventfd:
4996 eventfd_ctx_put(event->eventfd);
4997 out_put_efile:
4998 fdput(efile);
4999 out_kfree:
5000 kfree(event);
5001
5002 return ret;
5003 }
5004
5005 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
mem_cgroup_slab_show(struct seq_file * m,void * p)5006 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5007 {
5008 /*
5009 * Deprecated.
5010 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5011 */
5012 return 0;
5013 }
5014 #endif
5015
5016 static int memory_stat_show(struct seq_file *m, void *v);
5017
5018 static struct cftype mem_cgroup_legacy_files[] = {
5019 {
5020 .name = "usage_in_bytes",
5021 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5022 .read_u64 = mem_cgroup_read_u64,
5023 },
5024 {
5025 .name = "max_usage_in_bytes",
5026 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5027 .write = mem_cgroup_reset,
5028 .read_u64 = mem_cgroup_read_u64,
5029 },
5030 {
5031 .name = "limit_in_bytes",
5032 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5033 .write = mem_cgroup_write,
5034 .read_u64 = mem_cgroup_read_u64,
5035 },
5036 {
5037 .name = "soft_limit_in_bytes",
5038 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5039 .write = mem_cgroup_write,
5040 .read_u64 = mem_cgroup_read_u64,
5041 },
5042 {
5043 .name = "failcnt",
5044 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5045 .write = mem_cgroup_reset,
5046 .read_u64 = mem_cgroup_read_u64,
5047 },
5048 {
5049 .name = "stat",
5050 .seq_show = memory_stat_show,
5051 },
5052 {
5053 .name = "force_empty",
5054 .write = mem_cgroup_force_empty_write,
5055 },
5056 {
5057 .name = "use_hierarchy",
5058 .write_u64 = mem_cgroup_hierarchy_write,
5059 .read_u64 = mem_cgroup_hierarchy_read,
5060 },
5061 {
5062 .name = "cgroup.event_control", /* XXX: for compat */
5063 .write = memcg_write_event_control,
5064 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5065 },
5066 {
5067 .name = "swappiness",
5068 .read_u64 = mem_cgroup_swappiness_read,
5069 .write_u64 = mem_cgroup_swappiness_write,
5070 },
5071 {
5072 .name = "move_charge_at_immigrate",
5073 .read_u64 = mem_cgroup_move_charge_read,
5074 .write_u64 = mem_cgroup_move_charge_write,
5075 },
5076 {
5077 .name = "oom_control",
5078 .seq_show = mem_cgroup_oom_control_read,
5079 .write_u64 = mem_cgroup_oom_control_write,
5080 },
5081 {
5082 .name = "pressure_level",
5083 .seq_show = mem_cgroup_dummy_seq_show,
5084 },
5085 #ifdef CONFIG_NUMA
5086 {
5087 .name = "numa_stat",
5088 .seq_show = memcg_numa_stat_show,
5089 },
5090 #endif
5091 {
5092 .name = "kmem.limit_in_bytes",
5093 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5094 .write = mem_cgroup_write,
5095 .read_u64 = mem_cgroup_read_u64,
5096 },
5097 {
5098 .name = "kmem.usage_in_bytes",
5099 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5100 .read_u64 = mem_cgroup_read_u64,
5101 },
5102 {
5103 .name = "kmem.failcnt",
5104 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5105 .write = mem_cgroup_reset,
5106 .read_u64 = mem_cgroup_read_u64,
5107 },
5108 {
5109 .name = "kmem.max_usage_in_bytes",
5110 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5111 .write = mem_cgroup_reset,
5112 .read_u64 = mem_cgroup_read_u64,
5113 },
5114 #if defined(CONFIG_MEMCG_KMEM) && \
5115 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5116 {
5117 .name = "kmem.slabinfo",
5118 .seq_show = mem_cgroup_slab_show,
5119 },
5120 #endif
5121 {
5122 .name = "kmem.tcp.limit_in_bytes",
5123 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5124 .write = mem_cgroup_write,
5125 .read_u64 = mem_cgroup_read_u64,
5126 },
5127 {
5128 .name = "kmem.tcp.usage_in_bytes",
5129 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5130 .read_u64 = mem_cgroup_read_u64,
5131 },
5132 {
5133 .name = "kmem.tcp.failcnt",
5134 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5135 .write = mem_cgroup_reset,
5136 .read_u64 = mem_cgroup_read_u64,
5137 },
5138 {
5139 .name = "kmem.tcp.max_usage_in_bytes",
5140 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5141 .write = mem_cgroup_reset,
5142 .read_u64 = mem_cgroup_read_u64,
5143 },
5144 { }, /* terminate */
5145 };
5146
5147 /*
5148 * Private memory cgroup IDR
5149 *
5150 * Swap-out records and page cache shadow entries need to store memcg
5151 * references in constrained space, so we maintain an ID space that is
5152 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5153 * memory-controlled cgroups to 64k.
5154 *
5155 * However, there usually are many references to the offline CSS after
5156 * the cgroup has been destroyed, such as page cache or reclaimable
5157 * slab objects, that don't need to hang on to the ID. We want to keep
5158 * those dead CSS from occupying IDs, or we might quickly exhaust the
5159 * relatively small ID space and prevent the creation of new cgroups
5160 * even when there are much fewer than 64k cgroups - possibly none.
5161 *
5162 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5163 * be freed and recycled when it's no longer needed, which is usually
5164 * when the CSS is offlined.
5165 *
5166 * The only exception to that are records of swapped out tmpfs/shmem
5167 * pages that need to be attributed to live ancestors on swapin. But
5168 * those references are manageable from userspace.
5169 */
5170
5171 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
5172 static DEFINE_IDR(mem_cgroup_idr);
5173 static DEFINE_SPINLOCK(memcg_idr_lock);
5174
mem_cgroup_alloc_id(void)5175 static int mem_cgroup_alloc_id(void)
5176 {
5177 int ret;
5178
5179 idr_preload(GFP_KERNEL);
5180 spin_lock(&memcg_idr_lock);
5181 ret = idr_alloc(&mem_cgroup_idr, NULL, 1, MEM_CGROUP_ID_MAX + 1,
5182 GFP_NOWAIT);
5183 spin_unlock(&memcg_idr_lock);
5184 idr_preload_end();
5185 return ret;
5186 }
5187
mem_cgroup_id_remove(struct mem_cgroup * memcg)5188 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5189 {
5190 if (memcg->id.id > 0) {
5191 spin_lock(&memcg_idr_lock);
5192 idr_remove(&mem_cgroup_idr, memcg->id.id);
5193 spin_unlock(&memcg_idr_lock);
5194
5195 memcg->id.id = 0;
5196 }
5197 }
5198
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)5199 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5200 unsigned int n)
5201 {
5202 refcount_add(n, &memcg->id.ref);
5203 }
5204
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)5205 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5206 {
5207 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5208 mem_cgroup_id_remove(memcg);
5209
5210 /* Memcg ID pins CSS */
5211 css_put(&memcg->css);
5212 }
5213 }
5214
mem_cgroup_id_put(struct mem_cgroup * memcg)5215 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5216 {
5217 mem_cgroup_id_put_many(memcg, 1);
5218 }
5219
5220 /**
5221 * mem_cgroup_from_id - look up a memcg from a memcg id
5222 * @id: the memcg id to look up
5223 *
5224 * Caller must hold rcu_read_lock().
5225 */
mem_cgroup_from_id(unsigned short id)5226 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5227 {
5228 WARN_ON_ONCE(!rcu_read_lock_held());
5229 return idr_find(&mem_cgroup_idr, id);
5230 }
5231
5232 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_get_from_ino(unsigned long ino)5233 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5234 {
5235 struct cgroup *cgrp;
5236 struct cgroup_subsys_state *css;
5237 struct mem_cgroup *memcg;
5238
5239 cgrp = cgroup_get_from_id(ino);
5240 if (IS_ERR(cgrp))
5241 return ERR_CAST(cgrp);
5242
5243 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5244 if (css)
5245 memcg = container_of(css, struct mem_cgroup, css);
5246 else
5247 memcg = ERR_PTR(-ENOENT);
5248
5249 cgroup_put(cgrp);
5250
5251 return memcg;
5252 }
5253 #endif
5254
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5255 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5256 {
5257 struct mem_cgroup_per_node *pn;
5258
5259 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5260 if (!pn)
5261 return 1;
5262
5263 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5264 GFP_KERNEL_ACCOUNT);
5265 if (!pn->lruvec_stats_percpu) {
5266 kfree(pn);
5267 return 1;
5268 }
5269
5270 lruvec_init(&pn->lruvec);
5271 pn->memcg = memcg;
5272
5273 memcg->nodeinfo[node] = pn;
5274 return 0;
5275 }
5276
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5277 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5278 {
5279 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5280
5281 if (!pn)
5282 return;
5283
5284 free_percpu(pn->lruvec_stats_percpu);
5285 kfree(pn);
5286 }
5287
__mem_cgroup_free(struct mem_cgroup * memcg)5288 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5289 {
5290 int node;
5291
5292 for_each_node(node)
5293 free_mem_cgroup_per_node_info(memcg, node);
5294 kfree(memcg->vmstats);
5295 free_percpu(memcg->vmstats_percpu);
5296 kfree(memcg);
5297 }
5298
mem_cgroup_free(struct mem_cgroup * memcg)5299 static void mem_cgroup_free(struct mem_cgroup *memcg)
5300 {
5301 lru_gen_exit_memcg(memcg);
5302 memcg_wb_domain_exit(memcg);
5303 __mem_cgroup_free(memcg);
5304 }
5305
mem_cgroup_alloc(void)5306 static struct mem_cgroup *mem_cgroup_alloc(void)
5307 {
5308 struct mem_cgroup *memcg;
5309 int node;
5310 int __maybe_unused i;
5311 long error = -ENOMEM;
5312
5313 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5314 if (!memcg)
5315 return ERR_PTR(error);
5316
5317 memcg->id.id = mem_cgroup_alloc_id();
5318 if (memcg->id.id < 0) {
5319 error = memcg->id.id;
5320 goto fail;
5321 }
5322
5323 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5324 if (!memcg->vmstats)
5325 goto fail;
5326
5327 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5328 GFP_KERNEL_ACCOUNT);
5329 if (!memcg->vmstats_percpu)
5330 goto fail;
5331
5332 for_each_node(node)
5333 if (alloc_mem_cgroup_per_node_info(memcg, node))
5334 goto fail;
5335
5336 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5337 goto fail;
5338
5339 INIT_WORK(&memcg->high_work, high_work_func);
5340 INIT_LIST_HEAD(&memcg->oom_notify);
5341 mutex_init(&memcg->thresholds_lock);
5342 spin_lock_init(&memcg->move_lock);
5343 vmpressure_init(&memcg->vmpressure);
5344 INIT_LIST_HEAD(&memcg->event_list);
5345 spin_lock_init(&memcg->event_list_lock);
5346 memcg->socket_pressure = jiffies;
5347 #ifdef CONFIG_MEMCG_KMEM
5348 memcg->kmemcg_id = -1;
5349 INIT_LIST_HEAD(&memcg->objcg_list);
5350 #endif
5351 #ifdef CONFIG_CGROUP_WRITEBACK
5352 INIT_LIST_HEAD(&memcg->cgwb_list);
5353 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5354 memcg->cgwb_frn[i].done =
5355 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5356 #endif
5357 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5358 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5359 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5360 memcg->deferred_split_queue.split_queue_len = 0;
5361 #endif
5362 lru_gen_init_memcg(memcg);
5363 return memcg;
5364 fail:
5365 mem_cgroup_id_remove(memcg);
5366 __mem_cgroup_free(memcg);
5367 return ERR_PTR(error);
5368 }
5369
5370 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)5371 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5372 {
5373 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5374 struct mem_cgroup *memcg, *old_memcg;
5375
5376 old_memcg = set_active_memcg(parent);
5377 memcg = mem_cgroup_alloc();
5378 set_active_memcg(old_memcg);
5379 if (IS_ERR(memcg))
5380 return ERR_CAST(memcg);
5381
5382 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5383 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5384 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5385 memcg->zswap_max = PAGE_COUNTER_MAX;
5386 #endif
5387 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5388 if (parent) {
5389 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5390 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5391
5392 page_counter_init(&memcg->memory, &parent->memory);
5393 page_counter_init(&memcg->swap, &parent->swap);
5394 page_counter_init(&memcg->kmem, &parent->kmem);
5395 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5396 } else {
5397 init_memcg_events();
5398 page_counter_init(&memcg->memory, NULL);
5399 page_counter_init(&memcg->swap, NULL);
5400 page_counter_init(&memcg->kmem, NULL);
5401 page_counter_init(&memcg->tcpmem, NULL);
5402
5403 root_mem_cgroup = memcg;
5404 return &memcg->css;
5405 }
5406
5407 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5408 static_branch_inc(&memcg_sockets_enabled_key);
5409
5410 #if defined(CONFIG_MEMCG_KMEM)
5411 if (!cgroup_memory_nobpf)
5412 static_branch_inc(&memcg_bpf_enabled_key);
5413 #endif
5414
5415 return &memcg->css;
5416 }
5417
mem_cgroup_css_online(struct cgroup_subsys_state * css)5418 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5419 {
5420 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5421
5422 if (memcg_online_kmem(memcg))
5423 goto remove_id;
5424
5425 /*
5426 * A memcg must be visible for expand_shrinker_info()
5427 * by the time the maps are allocated. So, we allocate maps
5428 * here, when for_each_mem_cgroup() can't skip it.
5429 */
5430 if (alloc_shrinker_info(memcg))
5431 goto offline_kmem;
5432
5433 if (unlikely(mem_cgroup_is_root(memcg)))
5434 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5435 FLUSH_TIME);
5436 lru_gen_online_memcg(memcg);
5437
5438 /* Online state pins memcg ID, memcg ID pins CSS */
5439 refcount_set(&memcg->id.ref, 1);
5440 css_get(css);
5441
5442 /*
5443 * Ensure mem_cgroup_from_id() works once we're fully online.
5444 *
5445 * We could do this earlier and require callers to filter with
5446 * css_tryget_online(). But right now there are no users that
5447 * need earlier access, and the workingset code relies on the
5448 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5449 * publish it here at the end of onlining. This matches the
5450 * regular ID destruction during offlining.
5451 */
5452 spin_lock(&memcg_idr_lock);
5453 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5454 spin_unlock(&memcg_idr_lock);
5455
5456 return 0;
5457 offline_kmem:
5458 memcg_offline_kmem(memcg);
5459 remove_id:
5460 mem_cgroup_id_remove(memcg);
5461 return -ENOMEM;
5462 }
5463
mem_cgroup_css_offline(struct cgroup_subsys_state * css)5464 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5465 {
5466 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5467 struct mem_cgroup_event *event, *tmp;
5468
5469 /*
5470 * Unregister events and notify userspace.
5471 * Notify userspace about cgroup removing only after rmdir of cgroup
5472 * directory to avoid race between userspace and kernelspace.
5473 */
5474 spin_lock_irq(&memcg->event_list_lock);
5475 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5476 list_del_init(&event->list);
5477 schedule_work(&event->remove);
5478 }
5479 spin_unlock_irq(&memcg->event_list_lock);
5480
5481 page_counter_set_min(&memcg->memory, 0);
5482 page_counter_set_low(&memcg->memory, 0);
5483
5484 memcg_offline_kmem(memcg);
5485 reparent_shrinker_deferred(memcg);
5486 wb_memcg_offline(memcg);
5487 lru_gen_offline_memcg(memcg);
5488
5489 drain_all_stock(memcg);
5490
5491 mem_cgroup_id_put(memcg);
5492 }
5493
mem_cgroup_css_released(struct cgroup_subsys_state * css)5494 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5495 {
5496 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5497
5498 invalidate_reclaim_iterators(memcg);
5499 lru_gen_release_memcg(memcg);
5500 }
5501
mem_cgroup_css_free(struct cgroup_subsys_state * css)5502 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5503 {
5504 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5505 int __maybe_unused i;
5506
5507 #ifdef CONFIG_CGROUP_WRITEBACK
5508 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5509 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5510 #endif
5511 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5512 static_branch_dec(&memcg_sockets_enabled_key);
5513
5514 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5515 static_branch_dec(&memcg_sockets_enabled_key);
5516
5517 #if defined(CONFIG_MEMCG_KMEM)
5518 if (!cgroup_memory_nobpf)
5519 static_branch_dec(&memcg_bpf_enabled_key);
5520 #endif
5521
5522 vmpressure_cleanup(&memcg->vmpressure);
5523 cancel_work_sync(&memcg->high_work);
5524 mem_cgroup_remove_from_trees(memcg);
5525 free_shrinker_info(memcg);
5526 mem_cgroup_free(memcg);
5527 }
5528
5529 /**
5530 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5531 * @css: the target css
5532 *
5533 * Reset the states of the mem_cgroup associated with @css. This is
5534 * invoked when the userland requests disabling on the default hierarchy
5535 * but the memcg is pinned through dependency. The memcg should stop
5536 * applying policies and should revert to the vanilla state as it may be
5537 * made visible again.
5538 *
5539 * The current implementation only resets the essential configurations.
5540 * This needs to be expanded to cover all the visible parts.
5541 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)5542 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5543 {
5544 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5545
5546 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5547 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5548 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5549 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5550 page_counter_set_min(&memcg->memory, 0);
5551 page_counter_set_low(&memcg->memory, 0);
5552 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5553 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5554 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5555 memcg_wb_domain_size_changed(memcg);
5556 }
5557
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state * css,int cpu)5558 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5559 {
5560 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5561 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5562 struct memcg_vmstats_percpu *statc;
5563 long delta, delta_cpu, v;
5564 int i, nid;
5565
5566 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5567
5568 for (i = 0; i < MEMCG_NR_STAT; i++) {
5569 /*
5570 * Collect the aggregated propagation counts of groups
5571 * below us. We're in a per-cpu loop here and this is
5572 * a global counter, so the first cycle will get them.
5573 */
5574 delta = memcg->vmstats->state_pending[i];
5575 if (delta)
5576 memcg->vmstats->state_pending[i] = 0;
5577
5578 /* Add CPU changes on this level since the last flush */
5579 delta_cpu = 0;
5580 v = READ_ONCE(statc->state[i]);
5581 if (v != statc->state_prev[i]) {
5582 delta_cpu = v - statc->state_prev[i];
5583 delta += delta_cpu;
5584 statc->state_prev[i] = v;
5585 }
5586
5587 /* Aggregate counts on this level and propagate upwards */
5588 if (delta_cpu)
5589 memcg->vmstats->state_local[i] += delta_cpu;
5590
5591 if (delta) {
5592 memcg->vmstats->state[i] += delta;
5593 if (parent)
5594 parent->vmstats->state_pending[i] += delta;
5595 }
5596 }
5597
5598 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5599 delta = memcg->vmstats->events_pending[i];
5600 if (delta)
5601 memcg->vmstats->events_pending[i] = 0;
5602
5603 delta_cpu = 0;
5604 v = READ_ONCE(statc->events[i]);
5605 if (v != statc->events_prev[i]) {
5606 delta_cpu = v - statc->events_prev[i];
5607 delta += delta_cpu;
5608 statc->events_prev[i] = v;
5609 }
5610
5611 if (delta_cpu)
5612 memcg->vmstats->events_local[i] += delta_cpu;
5613
5614 if (delta) {
5615 memcg->vmstats->events[i] += delta;
5616 if (parent)
5617 parent->vmstats->events_pending[i] += delta;
5618 }
5619 }
5620
5621 for_each_node_state(nid, N_MEMORY) {
5622 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5623 struct mem_cgroup_per_node *ppn = NULL;
5624 struct lruvec_stats_percpu *lstatc;
5625
5626 if (parent)
5627 ppn = parent->nodeinfo[nid];
5628
5629 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5630
5631 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5632 delta = pn->lruvec_stats.state_pending[i];
5633 if (delta)
5634 pn->lruvec_stats.state_pending[i] = 0;
5635
5636 delta_cpu = 0;
5637 v = READ_ONCE(lstatc->state[i]);
5638 if (v != lstatc->state_prev[i]) {
5639 delta_cpu = v - lstatc->state_prev[i];
5640 delta += delta_cpu;
5641 lstatc->state_prev[i] = v;
5642 }
5643
5644 if (delta_cpu)
5645 pn->lruvec_stats.state_local[i] += delta_cpu;
5646
5647 if (delta) {
5648 pn->lruvec_stats.state[i] += delta;
5649 if (ppn)
5650 ppn->lruvec_stats.state_pending[i] += delta;
5651 }
5652 }
5653 }
5654 }
5655
5656 #ifdef CONFIG_MMU
5657 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)5658 static int mem_cgroup_do_precharge(unsigned long count)
5659 {
5660 int ret;
5661
5662 /* Try a single bulk charge without reclaim first, kswapd may wake */
5663 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5664 if (!ret) {
5665 mc.precharge += count;
5666 return ret;
5667 }
5668
5669 /* Try charges one by one with reclaim, but do not retry */
5670 while (count--) {
5671 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5672 if (ret)
5673 return ret;
5674 mc.precharge++;
5675 cond_resched();
5676 }
5677 return 0;
5678 }
5679
5680 union mc_target {
5681 struct page *page;
5682 swp_entry_t ent;
5683 };
5684
5685 enum mc_target_type {
5686 MC_TARGET_NONE = 0,
5687 MC_TARGET_PAGE,
5688 MC_TARGET_SWAP,
5689 MC_TARGET_DEVICE,
5690 };
5691
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5692 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5693 unsigned long addr, pte_t ptent)
5694 {
5695 struct page *page = vm_normal_page(vma, addr, ptent);
5696
5697 if (!page)
5698 return NULL;
5699 if (PageAnon(page)) {
5700 if (!(mc.flags & MOVE_ANON))
5701 return NULL;
5702 } else {
5703 if (!(mc.flags & MOVE_FILE))
5704 return NULL;
5705 }
5706 get_page(page);
5707
5708 return page;
5709 }
5710
5711 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5712 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5713 pte_t ptent, swp_entry_t *entry)
5714 {
5715 struct page *page = NULL;
5716 swp_entry_t ent = pte_to_swp_entry(ptent);
5717
5718 if (!(mc.flags & MOVE_ANON))
5719 return NULL;
5720
5721 /*
5722 * Handle device private pages that are not accessible by the CPU, but
5723 * stored as special swap entries in the page table.
5724 */
5725 if (is_device_private_entry(ent)) {
5726 page = pfn_swap_entry_to_page(ent);
5727 if (!get_page_unless_zero(page))
5728 return NULL;
5729 return page;
5730 }
5731
5732 if (non_swap_entry(ent))
5733 return NULL;
5734
5735 /*
5736 * Because swap_cache_get_folio() updates some statistics counter,
5737 * we call find_get_page() with swapper_space directly.
5738 */
5739 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5740 entry->val = ent.val;
5741
5742 return page;
5743 }
5744 #else
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5745 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5746 pte_t ptent, swp_entry_t *entry)
5747 {
5748 return NULL;
5749 }
5750 #endif
5751
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5752 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5753 unsigned long addr, pte_t ptent)
5754 {
5755 unsigned long index;
5756 struct folio *folio;
5757
5758 if (!vma->vm_file) /* anonymous vma */
5759 return NULL;
5760 if (!(mc.flags & MOVE_FILE))
5761 return NULL;
5762
5763 /* folio is moved even if it's not RSS of this task(page-faulted). */
5764 /* shmem/tmpfs may report page out on swap: account for that too. */
5765 index = linear_page_index(vma, addr);
5766 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5767 if (IS_ERR(folio))
5768 return NULL;
5769 return folio_file_page(folio, index);
5770 }
5771
5772 /**
5773 * mem_cgroup_move_account - move account of the page
5774 * @page: the page
5775 * @compound: charge the page as compound or small page
5776 * @from: mem_cgroup which the page is moved from.
5777 * @to: mem_cgroup which the page is moved to. @from != @to.
5778 *
5779 * The page must be locked and not on the LRU.
5780 *
5781 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5782 * from old cgroup.
5783 */
mem_cgroup_move_account(struct page * page,bool compound,struct mem_cgroup * from,struct mem_cgroup * to)5784 static int mem_cgroup_move_account(struct page *page,
5785 bool compound,
5786 struct mem_cgroup *from,
5787 struct mem_cgroup *to)
5788 {
5789 struct folio *folio = page_folio(page);
5790 struct lruvec *from_vec, *to_vec;
5791 struct pglist_data *pgdat;
5792 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5793 int nid, ret;
5794
5795 VM_BUG_ON(from == to);
5796 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5797 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5798 VM_BUG_ON(compound && !folio_test_large(folio));
5799
5800 ret = -EINVAL;
5801 if (folio_memcg(folio) != from)
5802 goto out;
5803
5804 pgdat = folio_pgdat(folio);
5805 from_vec = mem_cgroup_lruvec(from, pgdat);
5806 to_vec = mem_cgroup_lruvec(to, pgdat);
5807
5808 folio_memcg_lock(folio);
5809
5810 if (folio_test_anon(folio)) {
5811 if (folio_mapped(folio)) {
5812 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5813 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5814 if (folio_test_pmd_mappable(folio)) {
5815 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5816 -nr_pages);
5817 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5818 nr_pages);
5819 }
5820 }
5821 } else {
5822 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5823 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5824
5825 if (folio_test_swapbacked(folio)) {
5826 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5827 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5828 }
5829
5830 if (folio_mapped(folio)) {
5831 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5832 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5833 }
5834
5835 if (folio_test_dirty(folio)) {
5836 struct address_space *mapping = folio_mapping(folio);
5837
5838 if (mapping_can_writeback(mapping)) {
5839 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5840 -nr_pages);
5841 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5842 nr_pages);
5843 }
5844 }
5845 }
5846
5847 #ifdef CONFIG_SWAP
5848 if (folio_test_swapcache(folio)) {
5849 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5850 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5851 }
5852 #endif
5853 if (folio_test_writeback(folio)) {
5854 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5855 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5856 }
5857
5858 /*
5859 * All state has been migrated, let's switch to the new memcg.
5860 *
5861 * It is safe to change page's memcg here because the page
5862 * is referenced, charged, isolated, and locked: we can't race
5863 * with (un)charging, migration, LRU putback, or anything else
5864 * that would rely on a stable page's memory cgroup.
5865 *
5866 * Note that folio_memcg_lock is a memcg lock, not a page lock,
5867 * to save space. As soon as we switch page's memory cgroup to a
5868 * new memcg that isn't locked, the above state can change
5869 * concurrently again. Make sure we're truly done with it.
5870 */
5871 smp_mb();
5872
5873 css_get(&to->css);
5874 css_put(&from->css);
5875
5876 /* Warning should never happen, so don't worry about refcount non-0 */
5877 WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
5878 folio->memcg_data = (unsigned long)to;
5879
5880 __folio_memcg_unlock(from);
5881
5882 ret = 0;
5883 nid = folio_nid(folio);
5884
5885 local_irq_disable();
5886 mem_cgroup_charge_statistics(to, nr_pages);
5887 memcg_check_events(to, nid);
5888 mem_cgroup_charge_statistics(from, -nr_pages);
5889 memcg_check_events(from, nid);
5890 local_irq_enable();
5891 out:
5892 return ret;
5893 }
5894
5895 /**
5896 * get_mctgt_type - get target type of moving charge
5897 * @vma: the vma the pte to be checked belongs
5898 * @addr: the address corresponding to the pte to be checked
5899 * @ptent: the pte to be checked
5900 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5901 *
5902 * Context: Called with pte lock held.
5903 * Return:
5904 * * MC_TARGET_NONE - If the pte is not a target for move charge.
5905 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
5906 * move charge. If @target is not NULL, the page is stored in target->page
5907 * with extra refcnt taken (Caller should release it).
5908 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
5909 * target for charge migration. If @target is not NULL, the entry is
5910 * stored in target->ent.
5911 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
5912 * thus not on the lru. For now such page is charged like a regular page
5913 * would be as it is just special memory taking the place of a regular page.
5914 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5915 */
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)5916 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5917 unsigned long addr, pte_t ptent, union mc_target *target)
5918 {
5919 struct page *page = NULL;
5920 enum mc_target_type ret = MC_TARGET_NONE;
5921 swp_entry_t ent = { .val = 0 };
5922
5923 if (pte_present(ptent))
5924 page = mc_handle_present_pte(vma, addr, ptent);
5925 else if (pte_none_mostly(ptent))
5926 /*
5927 * PTE markers should be treated as a none pte here, separated
5928 * from other swap handling below.
5929 */
5930 page = mc_handle_file_pte(vma, addr, ptent);
5931 else if (is_swap_pte(ptent))
5932 page = mc_handle_swap_pte(vma, ptent, &ent);
5933
5934 if (target && page) {
5935 if (!trylock_page(page)) {
5936 put_page(page);
5937 return ret;
5938 }
5939 /*
5940 * page_mapped() must be stable during the move. This
5941 * pte is locked, so if it's present, the page cannot
5942 * become unmapped. If it isn't, we have only partial
5943 * control over the mapped state: the page lock will
5944 * prevent new faults against pagecache and swapcache,
5945 * so an unmapped page cannot become mapped. However,
5946 * if the page is already mapped elsewhere, it can
5947 * unmap, and there is nothing we can do about it.
5948 * Alas, skip moving the page in this case.
5949 */
5950 if (!pte_present(ptent) && page_mapped(page)) {
5951 unlock_page(page);
5952 put_page(page);
5953 return ret;
5954 }
5955 }
5956
5957 if (!page && !ent.val)
5958 return ret;
5959 if (page) {
5960 /*
5961 * Do only loose check w/o serialization.
5962 * mem_cgroup_move_account() checks the page is valid or
5963 * not under LRU exclusion.
5964 */
5965 if (page_memcg(page) == mc.from) {
5966 ret = MC_TARGET_PAGE;
5967 if (is_device_private_page(page) ||
5968 is_device_coherent_page(page))
5969 ret = MC_TARGET_DEVICE;
5970 if (target)
5971 target->page = page;
5972 }
5973 if (!ret || !target) {
5974 if (target)
5975 unlock_page(page);
5976 put_page(page);
5977 }
5978 }
5979 /*
5980 * There is a swap entry and a page doesn't exist or isn't charged.
5981 * But we cannot move a tail-page in a THP.
5982 */
5983 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5984 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5985 ret = MC_TARGET_SWAP;
5986 if (target)
5987 target->ent = ent;
5988 }
5989 return ret;
5990 }
5991
5992 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5993 /*
5994 * We don't consider PMD mapped swapping or file mapped pages because THP does
5995 * not support them for now.
5996 * Caller should make sure that pmd_trans_huge(pmd) is true.
5997 */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5998 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5999 unsigned long addr, pmd_t pmd, union mc_target *target)
6000 {
6001 struct page *page = NULL;
6002 enum mc_target_type ret = MC_TARGET_NONE;
6003
6004 if (unlikely(is_swap_pmd(pmd))) {
6005 VM_BUG_ON(thp_migration_supported() &&
6006 !is_pmd_migration_entry(pmd));
6007 return ret;
6008 }
6009 page = pmd_page(pmd);
6010 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6011 if (!(mc.flags & MOVE_ANON))
6012 return ret;
6013 if (page_memcg(page) == mc.from) {
6014 ret = MC_TARGET_PAGE;
6015 if (target) {
6016 get_page(page);
6017 if (!trylock_page(page)) {
6018 put_page(page);
6019 return MC_TARGET_NONE;
6020 }
6021 target->page = page;
6022 }
6023 }
6024 return ret;
6025 }
6026 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)6027 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6028 unsigned long addr, pmd_t pmd, union mc_target *target)
6029 {
6030 return MC_TARGET_NONE;
6031 }
6032 #endif
6033
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)6034 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6035 unsigned long addr, unsigned long end,
6036 struct mm_walk *walk)
6037 {
6038 struct vm_area_struct *vma = walk->vma;
6039 pte_t *pte;
6040 spinlock_t *ptl;
6041
6042 ptl = pmd_trans_huge_lock(pmd, vma);
6043 if (ptl) {
6044 /*
6045 * Note their can not be MC_TARGET_DEVICE for now as we do not
6046 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6047 * this might change.
6048 */
6049 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6050 mc.precharge += HPAGE_PMD_NR;
6051 spin_unlock(ptl);
6052 return 0;
6053 }
6054
6055 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6056 if (!pte)
6057 return 0;
6058 for (; addr != end; pte++, addr += PAGE_SIZE)
6059 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6060 mc.precharge++; /* increment precharge temporarily */
6061 pte_unmap_unlock(pte - 1, ptl);
6062 cond_resched();
6063
6064 return 0;
6065 }
6066
6067 static const struct mm_walk_ops precharge_walk_ops = {
6068 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6069 .walk_lock = PGWALK_RDLOCK,
6070 };
6071
mem_cgroup_count_precharge(struct mm_struct * mm)6072 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6073 {
6074 unsigned long precharge;
6075
6076 mmap_read_lock(mm);
6077 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6078 mmap_read_unlock(mm);
6079
6080 precharge = mc.precharge;
6081 mc.precharge = 0;
6082
6083 return precharge;
6084 }
6085
mem_cgroup_precharge_mc(struct mm_struct * mm)6086 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6087 {
6088 unsigned long precharge = mem_cgroup_count_precharge(mm);
6089
6090 VM_BUG_ON(mc.moving_task);
6091 mc.moving_task = current;
6092 return mem_cgroup_do_precharge(precharge);
6093 }
6094
6095 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)6096 static void __mem_cgroup_clear_mc(void)
6097 {
6098 struct mem_cgroup *from = mc.from;
6099 struct mem_cgroup *to = mc.to;
6100
6101 /* we must uncharge all the leftover precharges from mc.to */
6102 if (mc.precharge) {
6103 cancel_charge(mc.to, mc.precharge);
6104 mc.precharge = 0;
6105 }
6106 /*
6107 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6108 * we must uncharge here.
6109 */
6110 if (mc.moved_charge) {
6111 cancel_charge(mc.from, mc.moved_charge);
6112 mc.moved_charge = 0;
6113 }
6114 /* we must fixup refcnts and charges */
6115 if (mc.moved_swap) {
6116 /* uncharge swap account from the old cgroup */
6117 if (!mem_cgroup_is_root(mc.from))
6118 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6119
6120 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6121
6122 /*
6123 * we charged both to->memory and to->memsw, so we
6124 * should uncharge to->memory.
6125 */
6126 if (!mem_cgroup_is_root(mc.to))
6127 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6128
6129 mc.moved_swap = 0;
6130 }
6131 memcg_oom_recover(from);
6132 memcg_oom_recover(to);
6133 wake_up_all(&mc.waitq);
6134 }
6135
mem_cgroup_clear_mc(void)6136 static void mem_cgroup_clear_mc(void)
6137 {
6138 struct mm_struct *mm = mc.mm;
6139
6140 /*
6141 * we must clear moving_task before waking up waiters at the end of
6142 * task migration.
6143 */
6144 mc.moving_task = NULL;
6145 __mem_cgroup_clear_mc();
6146 spin_lock(&mc.lock);
6147 mc.from = NULL;
6148 mc.to = NULL;
6149 mc.mm = NULL;
6150 spin_unlock(&mc.lock);
6151
6152 mmput(mm);
6153 }
6154
mem_cgroup_can_attach(struct cgroup_taskset * tset)6155 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6156 {
6157 struct cgroup_subsys_state *css;
6158 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6159 struct mem_cgroup *from;
6160 struct task_struct *leader, *p;
6161 struct mm_struct *mm;
6162 unsigned long move_flags;
6163 int ret = 0;
6164
6165 /* charge immigration isn't supported on the default hierarchy */
6166 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6167 return 0;
6168
6169 /*
6170 * Multi-process migrations only happen on the default hierarchy
6171 * where charge immigration is not used. Perform charge
6172 * immigration if @tset contains a leader and whine if there are
6173 * multiple.
6174 */
6175 p = NULL;
6176 cgroup_taskset_for_each_leader(leader, css, tset) {
6177 WARN_ON_ONCE(p);
6178 p = leader;
6179 memcg = mem_cgroup_from_css(css);
6180 }
6181 if (!p)
6182 return 0;
6183
6184 /*
6185 * We are now committed to this value whatever it is. Changes in this
6186 * tunable will only affect upcoming migrations, not the current one.
6187 * So we need to save it, and keep it going.
6188 */
6189 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6190 if (!move_flags)
6191 return 0;
6192
6193 from = mem_cgroup_from_task(p);
6194
6195 VM_BUG_ON(from == memcg);
6196
6197 mm = get_task_mm(p);
6198 if (!mm)
6199 return 0;
6200 /* We move charges only when we move a owner of the mm */
6201 if (mm->owner == p) {
6202 VM_BUG_ON(mc.from);
6203 VM_BUG_ON(mc.to);
6204 VM_BUG_ON(mc.precharge);
6205 VM_BUG_ON(mc.moved_charge);
6206 VM_BUG_ON(mc.moved_swap);
6207
6208 spin_lock(&mc.lock);
6209 mc.mm = mm;
6210 mc.from = from;
6211 mc.to = memcg;
6212 mc.flags = move_flags;
6213 spin_unlock(&mc.lock);
6214 /* We set mc.moving_task later */
6215
6216 ret = mem_cgroup_precharge_mc(mm);
6217 if (ret)
6218 mem_cgroup_clear_mc();
6219 } else {
6220 mmput(mm);
6221 }
6222 return ret;
6223 }
6224
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6225 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6226 {
6227 if (mc.to)
6228 mem_cgroup_clear_mc();
6229 }
6230
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)6231 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6232 unsigned long addr, unsigned long end,
6233 struct mm_walk *walk)
6234 {
6235 int ret = 0;
6236 struct vm_area_struct *vma = walk->vma;
6237 pte_t *pte;
6238 spinlock_t *ptl;
6239 enum mc_target_type target_type;
6240 union mc_target target;
6241 struct page *page;
6242 struct folio *folio;
6243 bool tried_split_before = false;
6244
6245 retry_pmd:
6246 ptl = pmd_trans_huge_lock(pmd, vma);
6247 if (ptl) {
6248 if (mc.precharge < HPAGE_PMD_NR) {
6249 spin_unlock(ptl);
6250 return 0;
6251 }
6252 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6253 if (target_type == MC_TARGET_PAGE) {
6254 page = target.page;
6255 folio = page_folio(page);
6256 /*
6257 * Deferred split queue locking depends on memcg,
6258 * and unqueue is unsafe unless folio refcount is 0:
6259 * split or skip if on the queue? first try to split.
6260 */
6261 if (!list_empty(&folio->_deferred_list)) {
6262 spin_unlock(ptl);
6263 if (!tried_split_before)
6264 split_folio(folio);
6265 folio_unlock(folio);
6266 folio_put(folio);
6267 if (tried_split_before)
6268 return 0;
6269 tried_split_before = true;
6270 goto retry_pmd;
6271 }
6272 /*
6273 * So long as that pmd lock is held, the folio cannot
6274 * be racily added to the _deferred_list, because
6275 * page_remove_rmap() will find it still pmdmapped.
6276 */
6277 if (isolate_lru_page(page)) {
6278 if (!mem_cgroup_move_account(page, true,
6279 mc.from, mc.to)) {
6280 mc.precharge -= HPAGE_PMD_NR;
6281 mc.moved_charge += HPAGE_PMD_NR;
6282 }
6283 putback_lru_page(page);
6284 }
6285 unlock_page(page);
6286 put_page(page);
6287 } else if (target_type == MC_TARGET_DEVICE) {
6288 page = target.page;
6289 if (!mem_cgroup_move_account(page, true,
6290 mc.from, mc.to)) {
6291 mc.precharge -= HPAGE_PMD_NR;
6292 mc.moved_charge += HPAGE_PMD_NR;
6293 }
6294 unlock_page(page);
6295 put_page(page);
6296 }
6297 spin_unlock(ptl);
6298 return 0;
6299 }
6300
6301 retry:
6302 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6303 if (!pte)
6304 return 0;
6305 for (; addr != end; addr += PAGE_SIZE) {
6306 pte_t ptent = ptep_get(pte++);
6307 bool device = false;
6308 swp_entry_t ent;
6309
6310 if (!mc.precharge)
6311 break;
6312
6313 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6314 case MC_TARGET_DEVICE:
6315 device = true;
6316 fallthrough;
6317 case MC_TARGET_PAGE:
6318 page = target.page;
6319 /*
6320 * We can have a part of the split pmd here. Moving it
6321 * can be done but it would be too convoluted so simply
6322 * ignore such a partial THP and keep it in original
6323 * memcg. There should be somebody mapping the head.
6324 */
6325 if (PageTransCompound(page))
6326 goto put;
6327 if (!device && !isolate_lru_page(page))
6328 goto put;
6329 if (!mem_cgroup_move_account(page, false,
6330 mc.from, mc.to)) {
6331 mc.precharge--;
6332 /* we uncharge from mc.from later. */
6333 mc.moved_charge++;
6334 }
6335 if (!device)
6336 putback_lru_page(page);
6337 put: /* get_mctgt_type() gets & locks the page */
6338 unlock_page(page);
6339 put_page(page);
6340 break;
6341 case MC_TARGET_SWAP:
6342 ent = target.ent;
6343 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6344 mc.precharge--;
6345 mem_cgroup_id_get_many(mc.to, 1);
6346 /* we fixup other refcnts and charges later. */
6347 mc.moved_swap++;
6348 }
6349 break;
6350 default:
6351 break;
6352 }
6353 }
6354 pte_unmap_unlock(pte - 1, ptl);
6355 cond_resched();
6356
6357 if (addr != end) {
6358 /*
6359 * We have consumed all precharges we got in can_attach().
6360 * We try charge one by one, but don't do any additional
6361 * charges to mc.to if we have failed in charge once in attach()
6362 * phase.
6363 */
6364 ret = mem_cgroup_do_precharge(1);
6365 if (!ret)
6366 goto retry;
6367 }
6368
6369 return ret;
6370 }
6371
6372 static const struct mm_walk_ops charge_walk_ops = {
6373 .pmd_entry = mem_cgroup_move_charge_pte_range,
6374 .walk_lock = PGWALK_RDLOCK,
6375 };
6376
mem_cgroup_move_charge(void)6377 static void mem_cgroup_move_charge(void)
6378 {
6379 lru_add_drain_all();
6380 /*
6381 * Signal folio_memcg_lock() to take the memcg's move_lock
6382 * while we're moving its pages to another memcg. Then wait
6383 * for already started RCU-only updates to finish.
6384 */
6385 atomic_inc(&mc.from->moving_account);
6386 synchronize_rcu();
6387 retry:
6388 if (unlikely(!mmap_read_trylock(mc.mm))) {
6389 /*
6390 * Someone who are holding the mmap_lock might be waiting in
6391 * waitq. So we cancel all extra charges, wake up all waiters,
6392 * and retry. Because we cancel precharges, we might not be able
6393 * to move enough charges, but moving charge is a best-effort
6394 * feature anyway, so it wouldn't be a big problem.
6395 */
6396 __mem_cgroup_clear_mc();
6397 cond_resched();
6398 goto retry;
6399 }
6400 /*
6401 * When we have consumed all precharges and failed in doing
6402 * additional charge, the page walk just aborts.
6403 */
6404 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6405 mmap_read_unlock(mc.mm);
6406 atomic_dec(&mc.from->moving_account);
6407 }
6408
mem_cgroup_move_task(void)6409 static void mem_cgroup_move_task(void)
6410 {
6411 if (mc.to) {
6412 mem_cgroup_move_charge();
6413 mem_cgroup_clear_mc();
6414 }
6415 }
6416 #else /* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset * tset)6417 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6418 {
6419 return 0;
6420 }
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6421 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6422 {
6423 }
mem_cgroup_move_task(void)6424 static void mem_cgroup_move_task(void)
6425 {
6426 }
6427 #endif
6428
6429 #ifdef CONFIG_LRU_GEN
mem_cgroup_attach(struct cgroup_taskset * tset)6430 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6431 {
6432 struct task_struct *task;
6433 struct cgroup_subsys_state *css;
6434
6435 /* find the first leader if there is any */
6436 cgroup_taskset_for_each_leader(task, css, tset)
6437 break;
6438
6439 if (!task)
6440 return;
6441
6442 task_lock(task);
6443 if (task->mm && READ_ONCE(task->mm->owner) == task)
6444 lru_gen_migrate_mm(task->mm);
6445 task_unlock(task);
6446 }
6447 #else
mem_cgroup_attach(struct cgroup_taskset * tset)6448 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6449 {
6450 }
6451 #endif /* CONFIG_LRU_GEN */
6452
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)6453 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6454 {
6455 if (value == PAGE_COUNTER_MAX)
6456 seq_puts(m, "max\n");
6457 else
6458 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6459
6460 return 0;
6461 }
6462
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)6463 static u64 memory_current_read(struct cgroup_subsys_state *css,
6464 struct cftype *cft)
6465 {
6466 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6467
6468 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6469 }
6470
memory_peak_read(struct cgroup_subsys_state * css,struct cftype * cft)6471 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6472 struct cftype *cft)
6473 {
6474 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6475
6476 return (u64)memcg->memory.watermark * PAGE_SIZE;
6477 }
6478
memory_min_show(struct seq_file * m,void * v)6479 static int memory_min_show(struct seq_file *m, void *v)
6480 {
6481 return seq_puts_memcg_tunable(m,
6482 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6483 }
6484
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6485 static ssize_t memory_min_write(struct kernfs_open_file *of,
6486 char *buf, size_t nbytes, loff_t off)
6487 {
6488 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6489 unsigned long min;
6490 int err;
6491
6492 buf = strstrip(buf);
6493 err = page_counter_memparse(buf, "max", &min);
6494 if (err)
6495 return err;
6496
6497 page_counter_set_min(&memcg->memory, min);
6498
6499 return nbytes;
6500 }
6501
memory_low_show(struct seq_file * m,void * v)6502 static int memory_low_show(struct seq_file *m, void *v)
6503 {
6504 return seq_puts_memcg_tunable(m,
6505 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6506 }
6507
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6508 static ssize_t memory_low_write(struct kernfs_open_file *of,
6509 char *buf, size_t nbytes, loff_t off)
6510 {
6511 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6512 unsigned long low;
6513 int err;
6514
6515 buf = strstrip(buf);
6516 err = page_counter_memparse(buf, "max", &low);
6517 if (err)
6518 return err;
6519
6520 page_counter_set_low(&memcg->memory, low);
6521
6522 return nbytes;
6523 }
6524
memory_high_show(struct seq_file * m,void * v)6525 static int memory_high_show(struct seq_file *m, void *v)
6526 {
6527 return seq_puts_memcg_tunable(m,
6528 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6529 }
6530
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6531 static ssize_t memory_high_write(struct kernfs_open_file *of,
6532 char *buf, size_t nbytes, loff_t off)
6533 {
6534 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6535 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6536 bool drained = false;
6537 unsigned long high;
6538 int err;
6539
6540 buf = strstrip(buf);
6541 err = page_counter_memparse(buf, "max", &high);
6542 if (err)
6543 return err;
6544
6545 page_counter_set_high(&memcg->memory, high);
6546
6547 for (;;) {
6548 unsigned long nr_pages = page_counter_read(&memcg->memory);
6549 unsigned long reclaimed;
6550
6551 if (nr_pages <= high)
6552 break;
6553
6554 if (signal_pending(current))
6555 break;
6556
6557 if (!drained) {
6558 drain_all_stock(memcg);
6559 drained = true;
6560 continue;
6561 }
6562
6563 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6564 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6565
6566 if (!reclaimed && !nr_retries--)
6567 break;
6568 }
6569
6570 memcg_wb_domain_size_changed(memcg);
6571 return nbytes;
6572 }
6573
memory_max_show(struct seq_file * m,void * v)6574 static int memory_max_show(struct seq_file *m, void *v)
6575 {
6576 return seq_puts_memcg_tunable(m,
6577 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6578 }
6579
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6580 static ssize_t memory_max_write(struct kernfs_open_file *of,
6581 char *buf, size_t nbytes, loff_t off)
6582 {
6583 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6584 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6585 bool drained = false;
6586 unsigned long max;
6587 int err;
6588
6589 buf = strstrip(buf);
6590 err = page_counter_memparse(buf, "max", &max);
6591 if (err)
6592 return err;
6593
6594 xchg(&memcg->memory.max, max);
6595
6596 for (;;) {
6597 unsigned long nr_pages = page_counter_read(&memcg->memory);
6598
6599 if (nr_pages <= max)
6600 break;
6601
6602 if (signal_pending(current))
6603 break;
6604
6605 if (!drained) {
6606 drain_all_stock(memcg);
6607 drained = true;
6608 continue;
6609 }
6610
6611 if (nr_reclaims) {
6612 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6613 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6614 nr_reclaims--;
6615 continue;
6616 }
6617
6618 memcg_memory_event(memcg, MEMCG_OOM);
6619 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6620 break;
6621 }
6622
6623 memcg_wb_domain_size_changed(memcg);
6624 return nbytes;
6625 }
6626
__memory_events_show(struct seq_file * m,atomic_long_t * events)6627 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6628 {
6629 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6630 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6631 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6632 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6633 seq_printf(m, "oom_kill %lu\n",
6634 atomic_long_read(&events[MEMCG_OOM_KILL]));
6635 seq_printf(m, "oom_group_kill %lu\n",
6636 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6637 }
6638
memory_events_show(struct seq_file * m,void * v)6639 static int memory_events_show(struct seq_file *m, void *v)
6640 {
6641 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6642
6643 __memory_events_show(m, memcg->memory_events);
6644 return 0;
6645 }
6646
memory_events_local_show(struct seq_file * m,void * v)6647 static int memory_events_local_show(struct seq_file *m, void *v)
6648 {
6649 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6650
6651 __memory_events_show(m, memcg->memory_events_local);
6652 return 0;
6653 }
6654
memory_stat_show(struct seq_file * m,void * v)6655 static int memory_stat_show(struct seq_file *m, void *v)
6656 {
6657 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6658 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6659 struct seq_buf s;
6660
6661 if (!buf)
6662 return -ENOMEM;
6663 seq_buf_init(&s, buf, PAGE_SIZE);
6664 memory_stat_format(memcg, &s);
6665 seq_puts(m, buf);
6666 kfree(buf);
6667 return 0;
6668 }
6669
6670 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec * lruvec,int item)6671 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6672 int item)
6673 {
6674 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6675 }
6676
memory_numa_stat_show(struct seq_file * m,void * v)6677 static int memory_numa_stat_show(struct seq_file *m, void *v)
6678 {
6679 int i;
6680 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6681
6682 mem_cgroup_flush_stats();
6683
6684 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6685 int nid;
6686
6687 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6688 continue;
6689
6690 seq_printf(m, "%s", memory_stats[i].name);
6691 for_each_node_state(nid, N_MEMORY) {
6692 u64 size;
6693 struct lruvec *lruvec;
6694
6695 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6696 size = lruvec_page_state_output(lruvec,
6697 memory_stats[i].idx);
6698 seq_printf(m, " N%d=%llu", nid, size);
6699 }
6700 seq_putc(m, '\n');
6701 }
6702
6703 return 0;
6704 }
6705 #endif
6706
memory_oom_group_show(struct seq_file * m,void * v)6707 static int memory_oom_group_show(struct seq_file *m, void *v)
6708 {
6709 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6710
6711 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6712
6713 return 0;
6714 }
6715
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6716 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6717 char *buf, size_t nbytes, loff_t off)
6718 {
6719 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6720 int ret, oom_group;
6721
6722 buf = strstrip(buf);
6723 if (!buf)
6724 return -EINVAL;
6725
6726 ret = kstrtoint(buf, 0, &oom_group);
6727 if (ret)
6728 return ret;
6729
6730 if (oom_group != 0 && oom_group != 1)
6731 return -EINVAL;
6732
6733 WRITE_ONCE(memcg->oom_group, oom_group);
6734
6735 return nbytes;
6736 }
6737
memory_reclaim(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6738 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6739 size_t nbytes, loff_t off)
6740 {
6741 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6742 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6743 unsigned long nr_to_reclaim, nr_reclaimed = 0;
6744 unsigned int reclaim_options;
6745 int err;
6746
6747 buf = strstrip(buf);
6748 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6749 if (err)
6750 return err;
6751
6752 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6753 while (nr_reclaimed < nr_to_reclaim) {
6754 unsigned long reclaimed;
6755
6756 if (signal_pending(current))
6757 return -EINTR;
6758
6759 /*
6760 * This is the final attempt, drain percpu lru caches in the
6761 * hope of introducing more evictable pages for
6762 * try_to_free_mem_cgroup_pages().
6763 */
6764 if (!nr_retries)
6765 lru_add_drain_all();
6766
6767 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6768 min(nr_to_reclaim - nr_reclaimed, SWAP_CLUSTER_MAX),
6769 GFP_KERNEL, reclaim_options);
6770
6771 if (!reclaimed && !nr_retries--)
6772 return -EAGAIN;
6773
6774 nr_reclaimed += reclaimed;
6775 }
6776
6777 return nbytes;
6778 }
6779
6780 static struct cftype memory_files[] = {
6781 {
6782 .name = "current",
6783 .flags = CFTYPE_NOT_ON_ROOT,
6784 .read_u64 = memory_current_read,
6785 },
6786 {
6787 .name = "peak",
6788 .flags = CFTYPE_NOT_ON_ROOT,
6789 .read_u64 = memory_peak_read,
6790 },
6791 {
6792 .name = "min",
6793 .flags = CFTYPE_NOT_ON_ROOT,
6794 .seq_show = memory_min_show,
6795 .write = memory_min_write,
6796 },
6797 {
6798 .name = "low",
6799 .flags = CFTYPE_NOT_ON_ROOT,
6800 .seq_show = memory_low_show,
6801 .write = memory_low_write,
6802 },
6803 {
6804 .name = "high",
6805 .flags = CFTYPE_NOT_ON_ROOT,
6806 .seq_show = memory_high_show,
6807 .write = memory_high_write,
6808 },
6809 {
6810 .name = "max",
6811 .flags = CFTYPE_NOT_ON_ROOT,
6812 .seq_show = memory_max_show,
6813 .write = memory_max_write,
6814 },
6815 {
6816 .name = "events",
6817 .flags = CFTYPE_NOT_ON_ROOT,
6818 .file_offset = offsetof(struct mem_cgroup, events_file),
6819 .seq_show = memory_events_show,
6820 },
6821 {
6822 .name = "events.local",
6823 .flags = CFTYPE_NOT_ON_ROOT,
6824 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6825 .seq_show = memory_events_local_show,
6826 },
6827 {
6828 .name = "stat",
6829 .seq_show = memory_stat_show,
6830 },
6831 #ifdef CONFIG_NUMA
6832 {
6833 .name = "numa_stat",
6834 .seq_show = memory_numa_stat_show,
6835 },
6836 #endif
6837 {
6838 .name = "oom.group",
6839 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6840 .seq_show = memory_oom_group_show,
6841 .write = memory_oom_group_write,
6842 },
6843 {
6844 .name = "reclaim",
6845 .flags = CFTYPE_NS_DELEGATABLE,
6846 .write = memory_reclaim,
6847 },
6848 { } /* terminate */
6849 };
6850
6851 struct cgroup_subsys memory_cgrp_subsys = {
6852 .css_alloc = mem_cgroup_css_alloc,
6853 .css_online = mem_cgroup_css_online,
6854 .css_offline = mem_cgroup_css_offline,
6855 .css_released = mem_cgroup_css_released,
6856 .css_free = mem_cgroup_css_free,
6857 .css_reset = mem_cgroup_css_reset,
6858 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6859 .can_attach = mem_cgroup_can_attach,
6860 .attach = mem_cgroup_attach,
6861 .cancel_attach = mem_cgroup_cancel_attach,
6862 .post_attach = mem_cgroup_move_task,
6863 .dfl_cftypes = memory_files,
6864 .legacy_cftypes = mem_cgroup_legacy_files,
6865 .early_init = 0,
6866 };
6867
6868 /*
6869 * This function calculates an individual cgroup's effective
6870 * protection which is derived from its own memory.min/low, its
6871 * parent's and siblings' settings, as well as the actual memory
6872 * distribution in the tree.
6873 *
6874 * The following rules apply to the effective protection values:
6875 *
6876 * 1. At the first level of reclaim, effective protection is equal to
6877 * the declared protection in memory.min and memory.low.
6878 *
6879 * 2. To enable safe delegation of the protection configuration, at
6880 * subsequent levels the effective protection is capped to the
6881 * parent's effective protection.
6882 *
6883 * 3. To make complex and dynamic subtrees easier to configure, the
6884 * user is allowed to overcommit the declared protection at a given
6885 * level. If that is the case, the parent's effective protection is
6886 * distributed to the children in proportion to how much protection
6887 * they have declared and how much of it they are utilizing.
6888 *
6889 * This makes distribution proportional, but also work-conserving:
6890 * if one cgroup claims much more protection than it uses memory,
6891 * the unused remainder is available to its siblings.
6892 *
6893 * 4. Conversely, when the declared protection is undercommitted at a
6894 * given level, the distribution of the larger parental protection
6895 * budget is NOT proportional. A cgroup's protection from a sibling
6896 * is capped to its own memory.min/low setting.
6897 *
6898 * 5. However, to allow protecting recursive subtrees from each other
6899 * without having to declare each individual cgroup's fixed share
6900 * of the ancestor's claim to protection, any unutilized -
6901 * "floating" - protection from up the tree is distributed in
6902 * proportion to each cgroup's *usage*. This makes the protection
6903 * neutral wrt sibling cgroups and lets them compete freely over
6904 * the shared parental protection budget, but it protects the
6905 * subtree as a whole from neighboring subtrees.
6906 *
6907 * Note that 4. and 5. are not in conflict: 4. is about protecting
6908 * against immediate siblings whereas 5. is about protecting against
6909 * neighboring subtrees.
6910 */
effective_protection(unsigned long usage,unsigned long parent_usage,unsigned long setting,unsigned long parent_effective,unsigned long siblings_protected)6911 static unsigned long effective_protection(unsigned long usage,
6912 unsigned long parent_usage,
6913 unsigned long setting,
6914 unsigned long parent_effective,
6915 unsigned long siblings_protected)
6916 {
6917 unsigned long protected;
6918 unsigned long ep;
6919
6920 protected = min(usage, setting);
6921 /*
6922 * If all cgroups at this level combined claim and use more
6923 * protection than what the parent affords them, distribute
6924 * shares in proportion to utilization.
6925 *
6926 * We are using actual utilization rather than the statically
6927 * claimed protection in order to be work-conserving: claimed
6928 * but unused protection is available to siblings that would
6929 * otherwise get a smaller chunk than what they claimed.
6930 */
6931 if (siblings_protected > parent_effective)
6932 return protected * parent_effective / siblings_protected;
6933
6934 /*
6935 * Ok, utilized protection of all children is within what the
6936 * parent affords them, so we know whatever this child claims
6937 * and utilizes is effectively protected.
6938 *
6939 * If there is unprotected usage beyond this value, reclaim
6940 * will apply pressure in proportion to that amount.
6941 *
6942 * If there is unutilized protection, the cgroup will be fully
6943 * shielded from reclaim, but we do return a smaller value for
6944 * protection than what the group could enjoy in theory. This
6945 * is okay. With the overcommit distribution above, effective
6946 * protection is always dependent on how memory is actually
6947 * consumed among the siblings anyway.
6948 */
6949 ep = protected;
6950
6951 /*
6952 * If the children aren't claiming (all of) the protection
6953 * afforded to them by the parent, distribute the remainder in
6954 * proportion to the (unprotected) memory of each cgroup. That
6955 * way, cgroups that aren't explicitly prioritized wrt each
6956 * other compete freely over the allowance, but they are
6957 * collectively protected from neighboring trees.
6958 *
6959 * We're using unprotected memory for the weight so that if
6960 * some cgroups DO claim explicit protection, we don't protect
6961 * the same bytes twice.
6962 *
6963 * Check both usage and parent_usage against the respective
6964 * protected values. One should imply the other, but they
6965 * aren't read atomically - make sure the division is sane.
6966 */
6967 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6968 return ep;
6969 if (parent_effective > siblings_protected &&
6970 parent_usage > siblings_protected &&
6971 usage > protected) {
6972 unsigned long unclaimed;
6973
6974 unclaimed = parent_effective - siblings_protected;
6975 unclaimed *= usage - protected;
6976 unclaimed /= parent_usage - siblings_protected;
6977
6978 ep += unclaimed;
6979 }
6980
6981 return ep;
6982 }
6983
6984 /**
6985 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6986 * @root: the top ancestor of the sub-tree being checked
6987 * @memcg: the memory cgroup to check
6988 *
6989 * WARNING: This function is not stateless! It can only be used as part
6990 * of a top-down tree iteration, not for isolated queries.
6991 */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)6992 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6993 struct mem_cgroup *memcg)
6994 {
6995 unsigned long usage, parent_usage;
6996 struct mem_cgroup *parent;
6997
6998 if (mem_cgroup_disabled())
6999 return;
7000
7001 if (!root)
7002 root = root_mem_cgroup;
7003
7004 /*
7005 * Effective values of the reclaim targets are ignored so they
7006 * can be stale. Have a look at mem_cgroup_protection for more
7007 * details.
7008 * TODO: calculation should be more robust so that we do not need
7009 * that special casing.
7010 */
7011 if (memcg == root)
7012 return;
7013
7014 usage = page_counter_read(&memcg->memory);
7015 if (!usage)
7016 return;
7017
7018 parent = parent_mem_cgroup(memcg);
7019
7020 if (parent == root) {
7021 memcg->memory.emin = READ_ONCE(memcg->memory.min);
7022 memcg->memory.elow = READ_ONCE(memcg->memory.low);
7023 return;
7024 }
7025
7026 parent_usage = page_counter_read(&parent->memory);
7027
7028 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
7029 READ_ONCE(memcg->memory.min),
7030 READ_ONCE(parent->memory.emin),
7031 atomic_long_read(&parent->memory.children_min_usage)));
7032
7033 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
7034 READ_ONCE(memcg->memory.low),
7035 READ_ONCE(parent->memory.elow),
7036 atomic_long_read(&parent->memory.children_low_usage)));
7037 }
7038
charge_memcg(struct folio * folio,struct mem_cgroup * memcg,gfp_t gfp)7039 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7040 gfp_t gfp)
7041 {
7042 long nr_pages = folio_nr_pages(folio);
7043 int ret;
7044
7045 ret = try_charge(memcg, gfp, nr_pages);
7046 if (ret)
7047 goto out;
7048
7049 css_get(&memcg->css);
7050 commit_charge(folio, memcg);
7051
7052 local_irq_disable();
7053 mem_cgroup_charge_statistics(memcg, nr_pages);
7054 memcg_check_events(memcg, folio_nid(folio));
7055 local_irq_enable();
7056 out:
7057 return ret;
7058 }
7059
__mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)7060 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7061 {
7062 struct mem_cgroup *memcg;
7063 int ret;
7064
7065 memcg = get_mem_cgroup_from_mm(mm);
7066 ret = charge_memcg(folio, memcg, gfp);
7067 css_put(&memcg->css);
7068
7069 return ret;
7070 }
7071
7072 /**
7073 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7074 * @folio: folio to charge.
7075 * @mm: mm context of the victim
7076 * @gfp: reclaim mode
7077 * @entry: swap entry for which the folio is allocated
7078 *
7079 * This function charges a folio allocated for swapin. Please call this before
7080 * adding the folio to the swapcache.
7081 *
7082 * Returns 0 on success. Otherwise, an error code is returned.
7083 */
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)7084 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7085 gfp_t gfp, swp_entry_t entry)
7086 {
7087 struct mem_cgroup *memcg;
7088 unsigned short id;
7089 int ret;
7090
7091 if (mem_cgroup_disabled())
7092 return 0;
7093
7094 id = lookup_swap_cgroup_id(entry);
7095 rcu_read_lock();
7096 memcg = mem_cgroup_from_id(id);
7097 if (!memcg || !css_tryget_online(&memcg->css))
7098 memcg = get_mem_cgroup_from_mm(mm);
7099 rcu_read_unlock();
7100
7101 ret = charge_memcg(folio, memcg, gfp);
7102
7103 css_put(&memcg->css);
7104 return ret;
7105 }
7106
7107 /*
7108 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7109 * @entry: swap entry for which the page is charged
7110 *
7111 * Call this function after successfully adding the charged page to swapcache.
7112 *
7113 * Note: This function assumes the page for which swap slot is being uncharged
7114 * is order 0 page.
7115 */
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)7116 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7117 {
7118 /*
7119 * Cgroup1's unified memory+swap counter has been charged with the
7120 * new swapcache page, finish the transfer by uncharging the swap
7121 * slot. The swap slot would also get uncharged when it dies, but
7122 * it can stick around indefinitely and we'd count the page twice
7123 * the entire time.
7124 *
7125 * Cgroup2 has separate resource counters for memory and swap,
7126 * so this is a non-issue here. Memory and swap charge lifetimes
7127 * correspond 1:1 to page and swap slot lifetimes: we charge the
7128 * page to memory here, and uncharge swap when the slot is freed.
7129 */
7130 if (!mem_cgroup_disabled() && do_memsw_account()) {
7131 /*
7132 * The swap entry might not get freed for a long time,
7133 * let's not wait for it. The page already received a
7134 * memory+swap charge, drop the swap entry duplicate.
7135 */
7136 mem_cgroup_uncharge_swap(entry, 1);
7137 }
7138 }
7139
7140 struct uncharge_gather {
7141 struct mem_cgroup *memcg;
7142 unsigned long nr_memory;
7143 unsigned long pgpgout;
7144 unsigned long nr_kmem;
7145 int nid;
7146 };
7147
uncharge_gather_clear(struct uncharge_gather * ug)7148 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7149 {
7150 memset(ug, 0, sizeof(*ug));
7151 }
7152
uncharge_batch(const struct uncharge_gather * ug)7153 static void uncharge_batch(const struct uncharge_gather *ug)
7154 {
7155 unsigned long flags;
7156
7157 if (ug->nr_memory) {
7158 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7159 if (do_memsw_account())
7160 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7161 if (ug->nr_kmem)
7162 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7163 memcg_oom_recover(ug->memcg);
7164 }
7165
7166 local_irq_save(flags);
7167 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7168 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7169 memcg_check_events(ug->memcg, ug->nid);
7170 local_irq_restore(flags);
7171
7172 /* drop reference from uncharge_folio */
7173 css_put(&ug->memcg->css);
7174 }
7175
uncharge_folio(struct folio * folio,struct uncharge_gather * ug)7176 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7177 {
7178 long nr_pages;
7179 struct mem_cgroup *memcg;
7180 struct obj_cgroup *objcg;
7181
7182 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7183
7184 /*
7185 * Nobody should be changing or seriously looking at
7186 * folio memcg or objcg at this point, we have fully
7187 * exclusive access to the folio.
7188 */
7189 if (folio_memcg_kmem(folio)) {
7190 objcg = __folio_objcg(folio);
7191 /*
7192 * This get matches the put at the end of the function and
7193 * kmem pages do not hold memcg references anymore.
7194 */
7195 memcg = get_mem_cgroup_from_objcg(objcg);
7196 } else {
7197 memcg = __folio_memcg(folio);
7198 }
7199
7200 if (!memcg)
7201 return;
7202
7203 if (ug->memcg != memcg) {
7204 if (ug->memcg) {
7205 uncharge_batch(ug);
7206 uncharge_gather_clear(ug);
7207 }
7208 ug->memcg = memcg;
7209 ug->nid = folio_nid(folio);
7210
7211 /* pairs with css_put in uncharge_batch */
7212 css_get(&memcg->css);
7213 }
7214
7215 nr_pages = folio_nr_pages(folio);
7216
7217 if (folio_memcg_kmem(folio)) {
7218 ug->nr_memory += nr_pages;
7219 ug->nr_kmem += nr_pages;
7220
7221 folio->memcg_data = 0;
7222 obj_cgroup_put(objcg);
7223 } else {
7224 /* LRU pages aren't accounted at the root level */
7225 if (!mem_cgroup_is_root(memcg))
7226 ug->nr_memory += nr_pages;
7227 ug->pgpgout++;
7228
7229 WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
7230 folio->memcg_data = 0;
7231 }
7232
7233 css_put(&memcg->css);
7234 }
7235
__mem_cgroup_uncharge(struct folio * folio)7236 void __mem_cgroup_uncharge(struct folio *folio)
7237 {
7238 struct uncharge_gather ug;
7239
7240 /* Don't touch folio->lru of any random page, pre-check: */
7241 if (!folio_memcg(folio))
7242 return;
7243
7244 uncharge_gather_clear(&ug);
7245 uncharge_folio(folio, &ug);
7246 uncharge_batch(&ug);
7247 }
7248
7249 /**
7250 * __mem_cgroup_uncharge_list - uncharge a list of page
7251 * @page_list: list of pages to uncharge
7252 *
7253 * Uncharge a list of pages previously charged with
7254 * __mem_cgroup_charge().
7255 */
__mem_cgroup_uncharge_list(struct list_head * page_list)7256 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7257 {
7258 struct uncharge_gather ug;
7259 struct folio *folio;
7260
7261 uncharge_gather_clear(&ug);
7262 list_for_each_entry(folio, page_list, lru)
7263 uncharge_folio(folio, &ug);
7264 if (ug.memcg)
7265 uncharge_batch(&ug);
7266 }
7267
7268 /**
7269 * mem_cgroup_migrate - Charge a folio's replacement.
7270 * @old: Currently circulating folio.
7271 * @new: Replacement folio.
7272 *
7273 * Charge @new as a replacement folio for @old. @old will
7274 * be uncharged upon free.
7275 *
7276 * Both folios must be locked, @new->mapping must be set up.
7277 */
mem_cgroup_migrate(struct folio * old,struct folio * new)7278 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7279 {
7280 struct mem_cgroup *memcg;
7281 long nr_pages = folio_nr_pages(new);
7282 unsigned long flags;
7283
7284 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7285 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7286 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7287 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7288
7289 if (mem_cgroup_disabled())
7290 return;
7291
7292 /* Page cache replacement: new folio already charged? */
7293 if (folio_memcg(new))
7294 return;
7295
7296 memcg = folio_memcg(old);
7297 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7298 if (!memcg)
7299 return;
7300
7301 /* Force-charge the new page. The old one will be freed soon */
7302 if (!mem_cgroup_is_root(memcg)) {
7303 page_counter_charge(&memcg->memory, nr_pages);
7304 if (do_memsw_account())
7305 page_counter_charge(&memcg->memsw, nr_pages);
7306 }
7307
7308 css_get(&memcg->css);
7309 commit_charge(new, memcg);
7310
7311 local_irq_save(flags);
7312 mem_cgroup_charge_statistics(memcg, nr_pages);
7313 memcg_check_events(memcg, folio_nid(new));
7314 local_irq_restore(flags);
7315 }
7316
7317 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7318 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7319
mem_cgroup_sk_alloc(struct sock * sk)7320 void mem_cgroup_sk_alloc(struct sock *sk)
7321 {
7322 struct mem_cgroup *memcg;
7323
7324 if (!mem_cgroup_sockets_enabled)
7325 return;
7326
7327 /* Do not associate the sock with unrelated interrupted task's memcg. */
7328 if (!in_task())
7329 return;
7330
7331 rcu_read_lock();
7332 memcg = mem_cgroup_from_task(current);
7333 if (mem_cgroup_is_root(memcg))
7334 goto out;
7335 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7336 goto out;
7337 if (css_tryget(&memcg->css))
7338 sk->sk_memcg = memcg;
7339 out:
7340 rcu_read_unlock();
7341 }
7342
mem_cgroup_sk_free(struct sock * sk)7343 void mem_cgroup_sk_free(struct sock *sk)
7344 {
7345 if (sk->sk_memcg)
7346 css_put(&sk->sk_memcg->css);
7347 }
7348
7349 /**
7350 * mem_cgroup_charge_skmem - charge socket memory
7351 * @memcg: memcg to charge
7352 * @nr_pages: number of pages to charge
7353 * @gfp_mask: reclaim mode
7354 *
7355 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7356 * @memcg's configured limit, %false if it doesn't.
7357 */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)7358 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7359 gfp_t gfp_mask)
7360 {
7361 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7362 struct page_counter *fail;
7363
7364 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7365 memcg->tcpmem_pressure = 0;
7366 return true;
7367 }
7368 memcg->tcpmem_pressure = 1;
7369 if (gfp_mask & __GFP_NOFAIL) {
7370 page_counter_charge(&memcg->tcpmem, nr_pages);
7371 return true;
7372 }
7373 return false;
7374 }
7375
7376 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7377 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7378 return true;
7379 }
7380
7381 return false;
7382 }
7383
7384 /**
7385 * mem_cgroup_uncharge_skmem - uncharge socket memory
7386 * @memcg: memcg to uncharge
7387 * @nr_pages: number of pages to uncharge
7388 */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)7389 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7390 {
7391 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7392 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7393 return;
7394 }
7395
7396 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7397
7398 refill_stock(memcg, nr_pages);
7399 }
7400
cgroup_memory(char * s)7401 static int __init cgroup_memory(char *s)
7402 {
7403 char *token;
7404
7405 while ((token = strsep(&s, ",")) != NULL) {
7406 if (!*token)
7407 continue;
7408 if (!strcmp(token, "nosocket"))
7409 cgroup_memory_nosocket = true;
7410 if (!strcmp(token, "nokmem"))
7411 cgroup_memory_nokmem = true;
7412 if (!strcmp(token, "nobpf"))
7413 cgroup_memory_nobpf = true;
7414 }
7415 return 1;
7416 }
7417 __setup("cgroup.memory=", cgroup_memory);
7418
7419 /*
7420 * subsys_initcall() for memory controller.
7421 *
7422 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7423 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7424 * basically everything that doesn't depend on a specific mem_cgroup structure
7425 * should be initialized from here.
7426 */
mem_cgroup_init(void)7427 static int __init mem_cgroup_init(void)
7428 {
7429 int cpu, node;
7430
7431 /*
7432 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7433 * used for per-memcg-per-cpu caching of per-node statistics. In order
7434 * to work fine, we should make sure that the overfill threshold can't
7435 * exceed S32_MAX / PAGE_SIZE.
7436 */
7437 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7438
7439 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7440 memcg_hotplug_cpu_dead);
7441
7442 for_each_possible_cpu(cpu)
7443 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7444 drain_local_stock);
7445
7446 for_each_node(node) {
7447 struct mem_cgroup_tree_per_node *rtpn;
7448
7449 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
7450
7451 rtpn->rb_root = RB_ROOT;
7452 rtpn->rb_rightmost = NULL;
7453 spin_lock_init(&rtpn->lock);
7454 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7455 }
7456
7457 return 0;
7458 }
7459 subsys_initcall(mem_cgroup_init);
7460
7461 #ifdef CONFIG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)7462 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7463 {
7464 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7465 /*
7466 * The root cgroup cannot be destroyed, so it's refcount must
7467 * always be >= 1.
7468 */
7469 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7470 VM_BUG_ON(1);
7471 break;
7472 }
7473 memcg = parent_mem_cgroup(memcg);
7474 if (!memcg)
7475 memcg = root_mem_cgroup;
7476 }
7477 return memcg;
7478 }
7479
7480 /**
7481 * mem_cgroup_swapout - transfer a memsw charge to swap
7482 * @folio: folio whose memsw charge to transfer
7483 * @entry: swap entry to move the charge to
7484 *
7485 * Transfer the memsw charge of @folio to @entry.
7486 */
mem_cgroup_swapout(struct folio * folio,swp_entry_t entry)7487 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7488 {
7489 struct mem_cgroup *memcg, *swap_memcg;
7490 unsigned int nr_entries;
7491 unsigned short oldid;
7492
7493 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7494 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7495
7496 if (mem_cgroup_disabled())
7497 return;
7498
7499 if (!do_memsw_account())
7500 return;
7501
7502 memcg = folio_memcg(folio);
7503
7504 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7505 if (!memcg)
7506 return;
7507
7508 /*
7509 * In case the memcg owning these pages has been offlined and doesn't
7510 * have an ID allocated to it anymore, charge the closest online
7511 * ancestor for the swap instead and transfer the memory+swap charge.
7512 */
7513 swap_memcg = mem_cgroup_id_get_online(memcg);
7514 nr_entries = folio_nr_pages(folio);
7515 /* Get references for the tail pages, too */
7516 if (nr_entries > 1)
7517 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7518 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7519 nr_entries);
7520 VM_BUG_ON_FOLIO(oldid, folio);
7521 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7522
7523 folio_unqueue_deferred_split(folio);
7524 folio->memcg_data = 0;
7525
7526 if (!mem_cgroup_is_root(memcg))
7527 page_counter_uncharge(&memcg->memory, nr_entries);
7528
7529 if (memcg != swap_memcg) {
7530 if (!mem_cgroup_is_root(swap_memcg))
7531 page_counter_charge(&swap_memcg->memsw, nr_entries);
7532 page_counter_uncharge(&memcg->memsw, nr_entries);
7533 }
7534
7535 /*
7536 * Interrupts should be disabled here because the caller holds the
7537 * i_pages lock which is taken with interrupts-off. It is
7538 * important here to have the interrupts disabled because it is the
7539 * only synchronisation we have for updating the per-CPU variables.
7540 */
7541 memcg_stats_lock();
7542 mem_cgroup_charge_statistics(memcg, -nr_entries);
7543 memcg_stats_unlock();
7544 memcg_check_events(memcg, folio_nid(folio));
7545
7546 css_put(&memcg->css);
7547 }
7548
7549 /**
7550 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7551 * @folio: folio being added to swap
7552 * @entry: swap entry to charge
7553 *
7554 * Try to charge @folio's memcg for the swap space at @entry.
7555 *
7556 * Returns 0 on success, -ENOMEM on failure.
7557 */
__mem_cgroup_try_charge_swap(struct folio * folio,swp_entry_t entry)7558 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7559 {
7560 unsigned int nr_pages = folio_nr_pages(folio);
7561 struct page_counter *counter;
7562 struct mem_cgroup *memcg;
7563 unsigned short oldid;
7564
7565 if (do_memsw_account())
7566 return 0;
7567
7568 memcg = folio_memcg(folio);
7569
7570 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7571 if (!memcg)
7572 return 0;
7573
7574 if (!entry.val) {
7575 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7576 return 0;
7577 }
7578
7579 memcg = mem_cgroup_id_get_online(memcg);
7580
7581 if (!mem_cgroup_is_root(memcg) &&
7582 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7583 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7584 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7585 mem_cgroup_id_put(memcg);
7586 return -ENOMEM;
7587 }
7588
7589 /* Get references for the tail pages, too */
7590 if (nr_pages > 1)
7591 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7592 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7593 VM_BUG_ON_FOLIO(oldid, folio);
7594 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7595
7596 return 0;
7597 }
7598
7599 /**
7600 * __mem_cgroup_uncharge_swap - uncharge swap space
7601 * @entry: swap entry to uncharge
7602 * @nr_pages: the amount of swap space to uncharge
7603 */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)7604 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7605 {
7606 struct mem_cgroup *memcg;
7607 unsigned short id;
7608
7609 id = swap_cgroup_record(entry, 0, nr_pages);
7610 rcu_read_lock();
7611 memcg = mem_cgroup_from_id(id);
7612 if (memcg) {
7613 if (!mem_cgroup_is_root(memcg)) {
7614 if (do_memsw_account())
7615 page_counter_uncharge(&memcg->memsw, nr_pages);
7616 else
7617 page_counter_uncharge(&memcg->swap, nr_pages);
7618 }
7619 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7620 mem_cgroup_id_put_many(memcg, nr_pages);
7621 }
7622 rcu_read_unlock();
7623 }
7624
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)7625 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7626 {
7627 long nr_swap_pages = get_nr_swap_pages();
7628
7629 if (mem_cgroup_disabled() || do_memsw_account())
7630 return nr_swap_pages;
7631 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7632 nr_swap_pages = min_t(long, nr_swap_pages,
7633 READ_ONCE(memcg->swap.max) -
7634 page_counter_read(&memcg->swap));
7635 return nr_swap_pages;
7636 }
7637
mem_cgroup_swap_full(struct folio * folio)7638 bool mem_cgroup_swap_full(struct folio *folio)
7639 {
7640 struct mem_cgroup *memcg;
7641
7642 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7643
7644 if (vm_swap_full())
7645 return true;
7646 if (do_memsw_account())
7647 return false;
7648
7649 memcg = folio_memcg(folio);
7650 if (!memcg)
7651 return false;
7652
7653 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7654 unsigned long usage = page_counter_read(&memcg->swap);
7655
7656 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7657 usage * 2 >= READ_ONCE(memcg->swap.max))
7658 return true;
7659 }
7660
7661 return false;
7662 }
7663
setup_swap_account(char * s)7664 static int __init setup_swap_account(char *s)
7665 {
7666 bool res;
7667
7668 if (!kstrtobool(s, &res) && !res)
7669 pr_warn_once("The swapaccount=0 commandline option is deprecated "
7670 "in favor of configuring swap control via cgroupfs. "
7671 "Please report your usecase to linux-mm@kvack.org if you "
7672 "depend on this functionality.\n");
7673 return 1;
7674 }
7675 __setup("swapaccount=", setup_swap_account);
7676
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7677 static u64 swap_current_read(struct cgroup_subsys_state *css,
7678 struct cftype *cft)
7679 {
7680 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7681
7682 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7683 }
7684
swap_peak_read(struct cgroup_subsys_state * css,struct cftype * cft)7685 static u64 swap_peak_read(struct cgroup_subsys_state *css,
7686 struct cftype *cft)
7687 {
7688 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7689
7690 return (u64)memcg->swap.watermark * PAGE_SIZE;
7691 }
7692
swap_high_show(struct seq_file * m,void * v)7693 static int swap_high_show(struct seq_file *m, void *v)
7694 {
7695 return seq_puts_memcg_tunable(m,
7696 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7697 }
7698
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7699 static ssize_t swap_high_write(struct kernfs_open_file *of,
7700 char *buf, size_t nbytes, loff_t off)
7701 {
7702 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7703 unsigned long high;
7704 int err;
7705
7706 buf = strstrip(buf);
7707 err = page_counter_memparse(buf, "max", &high);
7708 if (err)
7709 return err;
7710
7711 page_counter_set_high(&memcg->swap, high);
7712
7713 return nbytes;
7714 }
7715
swap_max_show(struct seq_file * m,void * v)7716 static int swap_max_show(struct seq_file *m, void *v)
7717 {
7718 return seq_puts_memcg_tunable(m,
7719 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7720 }
7721
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7722 static ssize_t swap_max_write(struct kernfs_open_file *of,
7723 char *buf, size_t nbytes, loff_t off)
7724 {
7725 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7726 unsigned long max;
7727 int err;
7728
7729 buf = strstrip(buf);
7730 err = page_counter_memparse(buf, "max", &max);
7731 if (err)
7732 return err;
7733
7734 xchg(&memcg->swap.max, max);
7735
7736 return nbytes;
7737 }
7738
swap_events_show(struct seq_file * m,void * v)7739 static int swap_events_show(struct seq_file *m, void *v)
7740 {
7741 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7742
7743 seq_printf(m, "high %lu\n",
7744 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7745 seq_printf(m, "max %lu\n",
7746 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7747 seq_printf(m, "fail %lu\n",
7748 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7749
7750 return 0;
7751 }
7752
7753 static struct cftype swap_files[] = {
7754 {
7755 .name = "swap.current",
7756 .flags = CFTYPE_NOT_ON_ROOT,
7757 .read_u64 = swap_current_read,
7758 },
7759 {
7760 .name = "swap.high",
7761 .flags = CFTYPE_NOT_ON_ROOT,
7762 .seq_show = swap_high_show,
7763 .write = swap_high_write,
7764 },
7765 {
7766 .name = "swap.max",
7767 .flags = CFTYPE_NOT_ON_ROOT,
7768 .seq_show = swap_max_show,
7769 .write = swap_max_write,
7770 },
7771 {
7772 .name = "swap.peak",
7773 .flags = CFTYPE_NOT_ON_ROOT,
7774 .read_u64 = swap_peak_read,
7775 },
7776 {
7777 .name = "swap.events",
7778 .flags = CFTYPE_NOT_ON_ROOT,
7779 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7780 .seq_show = swap_events_show,
7781 },
7782 { } /* terminate */
7783 };
7784
7785 static struct cftype memsw_files[] = {
7786 {
7787 .name = "memsw.usage_in_bytes",
7788 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7789 .read_u64 = mem_cgroup_read_u64,
7790 },
7791 {
7792 .name = "memsw.max_usage_in_bytes",
7793 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7794 .write = mem_cgroup_reset,
7795 .read_u64 = mem_cgroup_read_u64,
7796 },
7797 {
7798 .name = "memsw.limit_in_bytes",
7799 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7800 .write = mem_cgroup_write,
7801 .read_u64 = mem_cgroup_read_u64,
7802 },
7803 {
7804 .name = "memsw.failcnt",
7805 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7806 .write = mem_cgroup_reset,
7807 .read_u64 = mem_cgroup_read_u64,
7808 },
7809 { }, /* terminate */
7810 };
7811
7812 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7813 /**
7814 * obj_cgroup_may_zswap - check if this cgroup can zswap
7815 * @objcg: the object cgroup
7816 *
7817 * Check if the hierarchical zswap limit has been reached.
7818 *
7819 * This doesn't check for specific headroom, and it is not atomic
7820 * either. But with zswap, the size of the allocation is only known
7821 * once compression has occured, and this optimistic pre-check avoids
7822 * spending cycles on compression when there is already no room left
7823 * or zswap is disabled altogether somewhere in the hierarchy.
7824 */
obj_cgroup_may_zswap(struct obj_cgroup * objcg)7825 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7826 {
7827 struct mem_cgroup *memcg, *original_memcg;
7828 bool ret = true;
7829
7830 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7831 return true;
7832
7833 original_memcg = get_mem_cgroup_from_objcg(objcg);
7834 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7835 memcg = parent_mem_cgroup(memcg)) {
7836 unsigned long max = READ_ONCE(memcg->zswap_max);
7837 unsigned long pages;
7838
7839 if (max == PAGE_COUNTER_MAX)
7840 continue;
7841 if (max == 0) {
7842 ret = false;
7843 break;
7844 }
7845
7846 cgroup_rstat_flush(memcg->css.cgroup);
7847 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7848 if (pages < max)
7849 continue;
7850 ret = false;
7851 break;
7852 }
7853 mem_cgroup_put(original_memcg);
7854 return ret;
7855 }
7856
7857 /**
7858 * obj_cgroup_charge_zswap - charge compression backend memory
7859 * @objcg: the object cgroup
7860 * @size: size of compressed object
7861 *
7862 * This forces the charge after obj_cgroup_may_zswap() allowed
7863 * compression and storage in zwap for this cgroup to go ahead.
7864 */
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)7865 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7866 {
7867 struct mem_cgroup *memcg;
7868
7869 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7870 return;
7871
7872 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7873
7874 /* PF_MEMALLOC context, charging must succeed */
7875 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7876 VM_WARN_ON_ONCE(1);
7877
7878 rcu_read_lock();
7879 memcg = obj_cgroup_memcg(objcg);
7880 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7881 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7882 rcu_read_unlock();
7883 }
7884
7885 /**
7886 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7887 * @objcg: the object cgroup
7888 * @size: size of compressed object
7889 *
7890 * Uncharges zswap memory on page in.
7891 */
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)7892 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7893 {
7894 struct mem_cgroup *memcg;
7895
7896 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7897 return;
7898
7899 obj_cgroup_uncharge(objcg, size);
7900
7901 rcu_read_lock();
7902 memcg = obj_cgroup_memcg(objcg);
7903 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7904 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7905 rcu_read_unlock();
7906 }
7907
zswap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7908 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7909 struct cftype *cft)
7910 {
7911 cgroup_rstat_flush(css->cgroup);
7912 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7913 }
7914
zswap_max_show(struct seq_file * m,void * v)7915 static int zswap_max_show(struct seq_file *m, void *v)
7916 {
7917 return seq_puts_memcg_tunable(m,
7918 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7919 }
7920
zswap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7921 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7922 char *buf, size_t nbytes, loff_t off)
7923 {
7924 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7925 unsigned long max;
7926 int err;
7927
7928 buf = strstrip(buf);
7929 err = page_counter_memparse(buf, "max", &max);
7930 if (err)
7931 return err;
7932
7933 xchg(&memcg->zswap_max, max);
7934
7935 return nbytes;
7936 }
7937
7938 static struct cftype zswap_files[] = {
7939 {
7940 .name = "zswap.current",
7941 .flags = CFTYPE_NOT_ON_ROOT,
7942 .read_u64 = zswap_current_read,
7943 },
7944 {
7945 .name = "zswap.max",
7946 .flags = CFTYPE_NOT_ON_ROOT,
7947 .seq_show = zswap_max_show,
7948 .write = zswap_max_write,
7949 },
7950 { } /* terminate */
7951 };
7952 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7953
mem_cgroup_swap_init(void)7954 static int __init mem_cgroup_swap_init(void)
7955 {
7956 if (mem_cgroup_disabled())
7957 return 0;
7958
7959 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7960 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7961 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7962 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7963 #endif
7964 return 0;
7965 }
7966 subsys_initcall(mem_cgroup_swap_init);
7967
7968 #endif /* CONFIG_SWAP */
7969