1 // SPDX-License-Identifier: GPL-2.0-only
2 /* linux/arch/arm/mach-exynos4/mct.c
3 *
4 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com
6 *
7 * Exynos4 MCT(Multi-Core Timer) support
8 */
9
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/err.h>
13 #include <linux/clk.h>
14 #include <linux/clockchips.h>
15 #include <linux/cpu.h>
16 #include <linux/delay.h>
17 #include <linux/percpu.h>
18 #include <linux/of.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_address.h>
21 #include <linux/clocksource.h>
22 #include <linux/sched_clock.h>
23
24 #define EXYNOS4_MCTREG(x) (x)
25 #define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
26 #define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
27 #define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
28 #define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
29 #define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
30 #define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
31 #define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
32 #define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
33 #define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
34 #define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
35 #define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
36 #define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * (x)))
37 #define EXYNOS4_MCT_L_MASK (0xffffff00)
38
39 #define MCT_L_TCNTB_OFFSET (0x00)
40 #define MCT_L_ICNTB_OFFSET (0x08)
41 #define MCT_L_TCON_OFFSET (0x20)
42 #define MCT_L_INT_CSTAT_OFFSET (0x30)
43 #define MCT_L_INT_ENB_OFFSET (0x34)
44 #define MCT_L_WSTAT_OFFSET (0x40)
45 #define MCT_G_TCON_START (1 << 8)
46 #define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
47 #define MCT_G_TCON_COMP0_ENABLE (1 << 0)
48 #define MCT_L_TCON_INTERVAL_MODE (1 << 2)
49 #define MCT_L_TCON_INT_START (1 << 1)
50 #define MCT_L_TCON_TIMER_START (1 << 0)
51
52 #define TICK_BASE_CNT 1
53
54 #ifdef CONFIG_ARM
55 /* Use values higher than ARM arch timer. See 6282edb72bed. */
56 #define MCT_CLKSOURCE_RATING 450
57 #define MCT_CLKEVENTS_RATING 500
58 #else
59 #define MCT_CLKSOURCE_RATING 350
60 #define MCT_CLKEVENTS_RATING 350
61 #endif
62
63 /* There are four Global timers starting with 0 offset */
64 #define MCT_G0_IRQ 0
65 /* Local timers count starts after global timer count */
66 #define MCT_L0_IRQ 4
67 /* Max number of IRQ as per DT binding document */
68 #define MCT_NR_IRQS 20
69 /* Max number of local timers */
70 #define MCT_NR_LOCAL (MCT_NR_IRQS - MCT_L0_IRQ)
71
72 enum {
73 MCT_INT_SPI,
74 MCT_INT_PPI
75 };
76
77 static void __iomem *reg_base;
78 static unsigned long clk_rate;
79 static unsigned int mct_int_type;
80 static int mct_irqs[MCT_NR_IRQS];
81
82 struct mct_clock_event_device {
83 struct clock_event_device evt;
84 unsigned long base;
85 /**
86 * The length of the name must be adjusted if number of
87 * local timer interrupts grow over two digits
88 */
89 char name[11];
90 };
91
exynos4_mct_write(unsigned int value,unsigned long offset)92 static void exynos4_mct_write(unsigned int value, unsigned long offset)
93 {
94 unsigned long stat_addr;
95 u32 mask;
96 u32 i;
97
98 writel_relaxed(value, reg_base + offset);
99
100 if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
101 stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
102 switch (offset & ~EXYNOS4_MCT_L_MASK) {
103 case MCT_L_TCON_OFFSET:
104 mask = 1 << 3; /* L_TCON write status */
105 break;
106 case MCT_L_ICNTB_OFFSET:
107 mask = 1 << 1; /* L_ICNTB write status */
108 break;
109 case MCT_L_TCNTB_OFFSET:
110 mask = 1 << 0; /* L_TCNTB write status */
111 break;
112 default:
113 return;
114 }
115 } else {
116 switch (offset) {
117 case EXYNOS4_MCT_G_TCON:
118 stat_addr = EXYNOS4_MCT_G_WSTAT;
119 mask = 1 << 16; /* G_TCON write status */
120 break;
121 case EXYNOS4_MCT_G_COMP0_L:
122 stat_addr = EXYNOS4_MCT_G_WSTAT;
123 mask = 1 << 0; /* G_COMP0_L write status */
124 break;
125 case EXYNOS4_MCT_G_COMP0_U:
126 stat_addr = EXYNOS4_MCT_G_WSTAT;
127 mask = 1 << 1; /* G_COMP0_U write status */
128 break;
129 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
130 stat_addr = EXYNOS4_MCT_G_WSTAT;
131 mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
132 break;
133 case EXYNOS4_MCT_G_CNT_L:
134 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
135 mask = 1 << 0; /* G_CNT_L write status */
136 break;
137 case EXYNOS4_MCT_G_CNT_U:
138 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
139 mask = 1 << 1; /* G_CNT_U write status */
140 break;
141 default:
142 return;
143 }
144 }
145
146 /* Wait maximum 1 ms until written values are applied */
147 for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
148 if (readl_relaxed(reg_base + stat_addr) & mask) {
149 writel_relaxed(mask, reg_base + stat_addr);
150 return;
151 }
152
153 panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
154 }
155
156 /* Clocksource handling */
exynos4_mct_frc_start(void)157 static void exynos4_mct_frc_start(void)
158 {
159 u32 reg;
160
161 reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
162 reg |= MCT_G_TCON_START;
163 exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
164 }
165
166 /**
167 * exynos4_read_count_64 - Read all 64-bits of the global counter
168 *
169 * This will read all 64-bits of the global counter taking care to make sure
170 * that the upper and lower half match. Note that reading the MCT can be quite
171 * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
172 * only) version when possible.
173 *
174 * Returns the number of cycles in the global counter.
175 */
exynos4_read_count_64(void)176 static u64 exynos4_read_count_64(void)
177 {
178 unsigned int lo, hi;
179 u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
180
181 do {
182 hi = hi2;
183 lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
184 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
185 } while (hi != hi2);
186
187 return ((u64)hi << 32) | lo;
188 }
189
190 /**
191 * exynos4_read_count_32 - Read the lower 32-bits of the global counter
192 *
193 * This will read just the lower 32-bits of the global counter. This is marked
194 * as notrace so it can be used by the scheduler clock.
195 *
196 * Returns the number of cycles in the global counter (lower 32 bits).
197 */
exynos4_read_count_32(void)198 static u32 notrace exynos4_read_count_32(void)
199 {
200 return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
201 }
202
exynos4_frc_read(struct clocksource * cs)203 static u64 exynos4_frc_read(struct clocksource *cs)
204 {
205 return exynos4_read_count_32();
206 }
207
exynos4_frc_resume(struct clocksource * cs)208 static void exynos4_frc_resume(struct clocksource *cs)
209 {
210 exynos4_mct_frc_start();
211 }
212
213 static struct clocksource mct_frc = {
214 .name = "mct-frc",
215 .rating = MCT_CLKSOURCE_RATING,
216 .read = exynos4_frc_read,
217 .mask = CLOCKSOURCE_MASK(32),
218 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
219 .resume = exynos4_frc_resume,
220 };
221
exynos4_read_sched_clock(void)222 static u64 notrace exynos4_read_sched_clock(void)
223 {
224 return exynos4_read_count_32();
225 }
226
227 #if defined(CONFIG_ARM)
228 static struct delay_timer exynos4_delay_timer;
229
exynos4_read_current_timer(void)230 static cycles_t exynos4_read_current_timer(void)
231 {
232 BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
233 "cycles_t needs to move to 32-bit for ARM64 usage");
234 return exynos4_read_count_32();
235 }
236 #endif
237
exynos4_clocksource_init(bool frc_shared)238 static int __init exynos4_clocksource_init(bool frc_shared)
239 {
240 /*
241 * When the frc is shared, the main processer should have already
242 * turned it on and we shouldn't be writing to TCON.
243 */
244 if (frc_shared)
245 mct_frc.resume = NULL;
246 else
247 exynos4_mct_frc_start();
248
249 #if defined(CONFIG_ARM)
250 exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
251 exynos4_delay_timer.freq = clk_rate;
252 register_current_timer_delay(&exynos4_delay_timer);
253 #endif
254
255 if (clocksource_register_hz(&mct_frc, clk_rate))
256 panic("%s: can't register clocksource\n", mct_frc.name);
257
258 sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
259
260 return 0;
261 }
262
exynos4_mct_comp0_stop(void)263 static void exynos4_mct_comp0_stop(void)
264 {
265 unsigned int tcon;
266
267 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
268 tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
269
270 exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
271 exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
272 }
273
exynos4_mct_comp0_start(bool periodic,unsigned long cycles)274 static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
275 {
276 unsigned int tcon;
277 u64 comp_cycle;
278
279 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
280
281 if (periodic) {
282 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
283 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
284 }
285
286 comp_cycle = exynos4_read_count_64() + cycles;
287 exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
288 exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
289
290 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
291
292 tcon |= MCT_G_TCON_COMP0_ENABLE;
293 exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
294 }
295
exynos4_comp_set_next_event(unsigned long cycles,struct clock_event_device * evt)296 static int exynos4_comp_set_next_event(unsigned long cycles,
297 struct clock_event_device *evt)
298 {
299 exynos4_mct_comp0_start(false, cycles);
300
301 return 0;
302 }
303
mct_set_state_shutdown(struct clock_event_device * evt)304 static int mct_set_state_shutdown(struct clock_event_device *evt)
305 {
306 exynos4_mct_comp0_stop();
307 return 0;
308 }
309
mct_set_state_periodic(struct clock_event_device * evt)310 static int mct_set_state_periodic(struct clock_event_device *evt)
311 {
312 unsigned long cycles_per_jiffy;
313
314 cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
315 >> evt->shift);
316 exynos4_mct_comp0_stop();
317 exynos4_mct_comp0_start(true, cycles_per_jiffy);
318 return 0;
319 }
320
321 static struct clock_event_device mct_comp_device = {
322 .name = "mct-comp",
323 .features = CLOCK_EVT_FEAT_PERIODIC |
324 CLOCK_EVT_FEAT_ONESHOT,
325 .rating = 250,
326 .set_next_event = exynos4_comp_set_next_event,
327 .set_state_periodic = mct_set_state_periodic,
328 .set_state_shutdown = mct_set_state_shutdown,
329 .set_state_oneshot = mct_set_state_shutdown,
330 .set_state_oneshot_stopped = mct_set_state_shutdown,
331 .tick_resume = mct_set_state_shutdown,
332 };
333
exynos4_mct_comp_isr(int irq,void * dev_id)334 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
335 {
336 struct clock_event_device *evt = dev_id;
337
338 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
339
340 evt->event_handler(evt);
341
342 return IRQ_HANDLED;
343 }
344
exynos4_clockevent_init(void)345 static int exynos4_clockevent_init(void)
346 {
347 mct_comp_device.cpumask = cpumask_of(0);
348 clockevents_config_and_register(&mct_comp_device, clk_rate,
349 0xf, 0xffffffff);
350 if (request_irq(mct_irqs[MCT_G0_IRQ], exynos4_mct_comp_isr,
351 IRQF_TIMER | IRQF_IRQPOLL, "mct_comp_irq",
352 &mct_comp_device))
353 pr_err("%s: request_irq() failed\n", "mct_comp_irq");
354
355 return 0;
356 }
357
358 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
359
360 /* Clock event handling */
exynos4_mct_tick_stop(struct mct_clock_event_device * mevt)361 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
362 {
363 unsigned long tmp;
364 unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
365 unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
366
367 tmp = readl_relaxed(reg_base + offset);
368 if (tmp & mask) {
369 tmp &= ~mask;
370 exynos4_mct_write(tmp, offset);
371 }
372 }
373
exynos4_mct_tick_start(unsigned long cycles,struct mct_clock_event_device * mevt)374 static void exynos4_mct_tick_start(unsigned long cycles,
375 struct mct_clock_event_device *mevt)
376 {
377 unsigned long tmp;
378
379 exynos4_mct_tick_stop(mevt);
380
381 tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
382
383 /* update interrupt count buffer */
384 exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
385
386 /* enable MCT tick interrupt */
387 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
388
389 tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
390 tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
391 MCT_L_TCON_INTERVAL_MODE;
392 exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
393 }
394
exynos4_mct_tick_clear(struct mct_clock_event_device * mevt)395 static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
396 {
397 /* Clear the MCT tick interrupt */
398 if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
399 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
400 }
401
exynos4_tick_set_next_event(unsigned long cycles,struct clock_event_device * evt)402 static int exynos4_tick_set_next_event(unsigned long cycles,
403 struct clock_event_device *evt)
404 {
405 struct mct_clock_event_device *mevt;
406
407 mevt = container_of(evt, struct mct_clock_event_device, evt);
408 exynos4_mct_tick_start(cycles, mevt);
409 return 0;
410 }
411
set_state_shutdown(struct clock_event_device * evt)412 static int set_state_shutdown(struct clock_event_device *evt)
413 {
414 struct mct_clock_event_device *mevt;
415
416 mevt = container_of(evt, struct mct_clock_event_device, evt);
417 exynos4_mct_tick_stop(mevt);
418 exynos4_mct_tick_clear(mevt);
419 return 0;
420 }
421
set_state_periodic(struct clock_event_device * evt)422 static int set_state_periodic(struct clock_event_device *evt)
423 {
424 struct mct_clock_event_device *mevt;
425 unsigned long cycles_per_jiffy;
426
427 mevt = container_of(evt, struct mct_clock_event_device, evt);
428 cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
429 >> evt->shift);
430 exynos4_mct_tick_stop(mevt);
431 exynos4_mct_tick_start(cycles_per_jiffy, mevt);
432 return 0;
433 }
434
exynos4_mct_tick_isr(int irq,void * dev_id)435 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
436 {
437 struct mct_clock_event_device *mevt = dev_id;
438 struct clock_event_device *evt = &mevt->evt;
439
440 /*
441 * This is for supporting oneshot mode.
442 * Mct would generate interrupt periodically
443 * without explicit stopping.
444 */
445 if (!clockevent_state_periodic(&mevt->evt))
446 exynos4_mct_tick_stop(mevt);
447
448 exynos4_mct_tick_clear(mevt);
449
450 evt->event_handler(evt);
451
452 return IRQ_HANDLED;
453 }
454
exynos4_mct_starting_cpu(unsigned int cpu)455 static int exynos4_mct_starting_cpu(unsigned int cpu)
456 {
457 struct mct_clock_event_device *mevt =
458 per_cpu_ptr(&percpu_mct_tick, cpu);
459 struct clock_event_device *evt = &mevt->evt;
460
461 snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
462
463 evt->name = mevt->name;
464 evt->cpumask = cpumask_of(cpu);
465 evt->set_next_event = exynos4_tick_set_next_event;
466 evt->set_state_periodic = set_state_periodic;
467 evt->set_state_shutdown = set_state_shutdown;
468 evt->set_state_oneshot = set_state_shutdown;
469 evt->set_state_oneshot_stopped = set_state_shutdown;
470 evt->tick_resume = set_state_shutdown;
471 evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
472 CLOCK_EVT_FEAT_PERCPU;
473 evt->rating = MCT_CLKEVENTS_RATING;
474
475 exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
476
477 if (mct_int_type == MCT_INT_SPI) {
478
479 if (evt->irq == -1)
480 return -EIO;
481
482 irq_force_affinity(evt->irq, cpumask_of(cpu));
483 enable_irq(evt->irq);
484 } else {
485 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
486 }
487 clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
488 0xf, 0x7fffffff);
489
490 return 0;
491 }
492
exynos4_mct_dying_cpu(unsigned int cpu)493 static int exynos4_mct_dying_cpu(unsigned int cpu)
494 {
495 struct mct_clock_event_device *mevt =
496 per_cpu_ptr(&percpu_mct_tick, cpu);
497 struct clock_event_device *evt = &mevt->evt;
498
499 evt->set_state_shutdown(evt);
500 if (mct_int_type == MCT_INT_SPI) {
501 if (evt->irq != -1)
502 disable_irq_nosync(evt->irq);
503 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
504 } else {
505 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
506 }
507 return 0;
508 }
509
exynos4_timer_resources(struct device_node * np)510 static int __init exynos4_timer_resources(struct device_node *np)
511 {
512 struct clk *mct_clk, *tick_clk;
513
514 reg_base = of_iomap(np, 0);
515 if (!reg_base)
516 panic("%s: unable to ioremap mct address space\n", __func__);
517
518 tick_clk = of_clk_get_by_name(np, "fin_pll");
519 if (IS_ERR(tick_clk))
520 panic("%s: unable to determine tick clock rate\n", __func__);
521 clk_rate = clk_get_rate(tick_clk);
522
523 mct_clk = of_clk_get_by_name(np, "mct");
524 if (IS_ERR(mct_clk))
525 panic("%s: unable to retrieve mct clock instance\n", __func__);
526 clk_prepare_enable(mct_clk);
527
528 return 0;
529 }
530
531 /**
532 * exynos4_timer_interrupts - initialize MCT interrupts
533 * @np: device node for MCT
534 * @int_type: interrupt type, MCT_INT_PPI or MCT_INT_SPI
535 * @local_idx: array mapping CPU numbers to local timer indices
536 * @nr_local: size of @local_idx array
537 */
exynos4_timer_interrupts(struct device_node * np,unsigned int int_type,const u32 * local_idx,size_t nr_local)538 static int __init exynos4_timer_interrupts(struct device_node *np,
539 unsigned int int_type,
540 const u32 *local_idx,
541 size_t nr_local)
542 {
543 int nr_irqs, i, err, cpu;
544
545 mct_int_type = int_type;
546
547 /* This driver uses only one global timer interrupt */
548 mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
549
550 /*
551 * Find out the number of local irqs specified. The local
552 * timer irqs are specified after the four global timer
553 * irqs are specified.
554 */
555 nr_irqs = of_irq_count(np);
556 if (nr_irqs > ARRAY_SIZE(mct_irqs)) {
557 pr_err("exynos-mct: too many (%d) interrupts configured in DT\n",
558 nr_irqs);
559 nr_irqs = ARRAY_SIZE(mct_irqs);
560 }
561 for (i = MCT_L0_IRQ; i < nr_irqs; i++)
562 mct_irqs[i] = irq_of_parse_and_map(np, i);
563
564 if (mct_int_type == MCT_INT_PPI) {
565
566 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
567 exynos4_mct_tick_isr, "MCT",
568 &percpu_mct_tick);
569 WARN(err, "MCT: can't request IRQ %d (%d)\n",
570 mct_irqs[MCT_L0_IRQ], err);
571 } else {
572 for_each_possible_cpu(cpu) {
573 int mct_irq;
574 unsigned int irq_idx;
575 struct mct_clock_event_device *pcpu_mevt =
576 per_cpu_ptr(&percpu_mct_tick, cpu);
577
578 if (cpu >= nr_local) {
579 err = -EINVAL;
580 goto out_irq;
581 }
582
583 irq_idx = MCT_L0_IRQ + local_idx[cpu];
584
585 pcpu_mevt->evt.irq = -1;
586 if (irq_idx >= ARRAY_SIZE(mct_irqs))
587 break;
588 mct_irq = mct_irqs[irq_idx];
589
590 irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
591 if (request_irq(mct_irq,
592 exynos4_mct_tick_isr,
593 IRQF_TIMER | IRQF_NOBALANCING,
594 pcpu_mevt->name, pcpu_mevt)) {
595 pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
596 cpu);
597
598 continue;
599 }
600 pcpu_mevt->evt.irq = mct_irq;
601 }
602 }
603
604 for_each_possible_cpu(cpu) {
605 struct mct_clock_event_device *mevt = per_cpu_ptr(&percpu_mct_tick, cpu);
606
607 if (cpu >= nr_local) {
608 err = -EINVAL;
609 goto out_irq;
610 }
611
612 mevt->base = EXYNOS4_MCT_L_BASE(local_idx[cpu]);
613 }
614
615 /* Install hotplug callbacks which configure the timer on this CPU */
616 err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
617 "clockevents/exynos4/mct_timer:starting",
618 exynos4_mct_starting_cpu,
619 exynos4_mct_dying_cpu);
620 if (err)
621 goto out_irq;
622
623 return 0;
624
625 out_irq:
626 if (mct_int_type == MCT_INT_PPI) {
627 free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
628 } else {
629 for_each_possible_cpu(cpu) {
630 struct mct_clock_event_device *pcpu_mevt =
631 per_cpu_ptr(&percpu_mct_tick, cpu);
632
633 if (pcpu_mevt->evt.irq != -1) {
634 free_irq(pcpu_mevt->evt.irq, pcpu_mevt);
635 pcpu_mevt->evt.irq = -1;
636 }
637 }
638 }
639 return err;
640 }
641
mct_init_dt(struct device_node * np,unsigned int int_type)642 static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
643 {
644 bool frc_shared = of_property_read_bool(np, "samsung,frc-shared");
645 u32 local_idx[MCT_NR_LOCAL] = {0};
646 int nr_local;
647 int ret;
648
649 nr_local = of_property_count_u32_elems(np, "samsung,local-timers");
650 if (nr_local == 0)
651 return -EINVAL;
652 if (nr_local > 0) {
653 if (nr_local > ARRAY_SIZE(local_idx))
654 return -EINVAL;
655
656 ret = of_property_read_u32_array(np, "samsung,local-timers",
657 local_idx, nr_local);
658 if (ret)
659 return ret;
660 } else {
661 int i;
662
663 nr_local = ARRAY_SIZE(local_idx);
664 for (i = 0; i < nr_local; i++)
665 local_idx[i] = i;
666 }
667
668 ret = exynos4_timer_resources(np);
669 if (ret)
670 return ret;
671
672 ret = exynos4_timer_interrupts(np, int_type, local_idx, nr_local);
673 if (ret)
674 return ret;
675
676 ret = exynos4_clocksource_init(frc_shared);
677 if (ret)
678 return ret;
679
680 /*
681 * When the FRC is shared with a main processor, this secondary
682 * processor cannot use the global comparator.
683 */
684 if (frc_shared)
685 return 0;
686
687 return exynos4_clockevent_init();
688 }
689
690
mct_init_spi(struct device_node * np)691 static int __init mct_init_spi(struct device_node *np)
692 {
693 return mct_init_dt(np, MCT_INT_SPI);
694 }
695
mct_init_ppi(struct device_node * np)696 static int __init mct_init_ppi(struct device_node *np)
697 {
698 return mct_init_dt(np, MCT_INT_PPI);
699 }
700 TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
701 TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
702