1 /*
2 * QEMU PowerPC PowerNV (POWER9) PHB4 model
3 *
4 * Copyright (c) 2018-2020, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qapi/visitor.h"
12 #include "qapi/error.h"
13 #include "target/ppc/cpu.h"
14 #include "hw/pci-host/pnv_phb4_regs.h"
15 #include "hw/pci-host/pnv_phb4.h"
16 #include "hw/pci/pcie_host.h"
17 #include "hw/pci/pcie_port.h"
18 #include "hw/ppc/pnv.h"
19 #include "hw/ppc/pnv_xscom.h"
20 #include "hw/irq.h"
21 #include "hw/qdev-properties.h"
22 #include "qom/object.h"
23 #include "trace.h"
24
25 #define phb_error(phb, fmt, ...) \
26 qemu_log_mask(LOG_GUEST_ERROR, "phb4[%d:%d]: " fmt "\n", \
27 (phb)->chip_id, (phb)->phb_id, ## __VA_ARGS__)
28
29 #define phb_pec_error(pec, fmt, ...) \
30 qemu_log_mask(LOG_GUEST_ERROR, "phb4_pec[%d:%d]: " fmt "\n", \
31 (pec)->chip_id, (pec)->index, ## __VA_ARGS__)
32
pnv_phb4_find_cfg_dev(PnvPHB4 * phb)33 static PCIDevice *pnv_phb4_find_cfg_dev(PnvPHB4 *phb)
34 {
35 PCIHostState *pci = PCI_HOST_BRIDGE(phb->phb_base);
36 uint64_t addr = phb->regs[PHB_CONFIG_ADDRESS >> 3];
37 uint8_t bus, devfn;
38
39 if (!(addr >> 63)) {
40 return NULL;
41 }
42 bus = (addr >> 52) & 0xff;
43 devfn = (addr >> 44) & 0xff;
44
45 /* We don't access the root complex this way */
46 if (bus == 0 && devfn == 0) {
47 return NULL;
48 }
49 return pci_find_device(pci->bus, bus, devfn);
50 }
51
52 /*
53 * The CONFIG_DATA register expects little endian accesses, but as the
54 * region is big endian, we have to swap the value.
55 */
pnv_phb4_config_write(PnvPHB4 * phb,unsigned off,unsigned size,uint64_t val)56 static void pnv_phb4_config_write(PnvPHB4 *phb, unsigned off,
57 unsigned size, uint64_t val)
58 {
59 uint32_t cfg_addr, limit;
60 PCIDevice *pdev;
61
62 pdev = pnv_phb4_find_cfg_dev(phb);
63 if (!pdev) {
64 return;
65 }
66 cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
67 cfg_addr |= off;
68 limit = pci_config_size(pdev);
69 if (limit <= cfg_addr) {
70 /*
71 * conventional pci device can be behind pcie-to-pci bridge.
72 * 256 <= addr < 4K has no effects.
73 */
74 return;
75 }
76 switch (size) {
77 case 1:
78 break;
79 case 2:
80 val = bswap16(val);
81 break;
82 case 4:
83 val = bswap32(val);
84 break;
85 default:
86 g_assert_not_reached();
87 }
88 pci_host_config_write_common(pdev, cfg_addr, limit, val, size);
89 }
90
pnv_phb4_config_read(PnvPHB4 * phb,unsigned off,unsigned size)91 static uint64_t pnv_phb4_config_read(PnvPHB4 *phb, unsigned off,
92 unsigned size)
93 {
94 uint32_t cfg_addr, limit;
95 PCIDevice *pdev;
96 uint64_t val;
97
98 pdev = pnv_phb4_find_cfg_dev(phb);
99 if (!pdev) {
100 return ~0ull;
101 }
102 cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
103 cfg_addr |= off;
104 limit = pci_config_size(pdev);
105 if (limit <= cfg_addr) {
106 /*
107 * conventional pci device can be behind pcie-to-pci bridge.
108 * 256 <= addr < 4K has no effects.
109 */
110 return ~0ull;
111 }
112 val = pci_host_config_read_common(pdev, cfg_addr, limit, size);
113 switch (size) {
114 case 1:
115 return val;
116 case 2:
117 return bswap16(val);
118 case 4:
119 return bswap32(val);
120 default:
121 g_assert_not_reached();
122 }
123 }
124
125 /*
126 * Root complex register accesses are memory mapped.
127 */
pnv_phb4_rc_config_write(PnvPHB4 * phb,unsigned off,unsigned size,uint64_t val)128 static void pnv_phb4_rc_config_write(PnvPHB4 *phb, unsigned off,
129 unsigned size, uint64_t val)
130 {
131 PCIHostState *pci = PCI_HOST_BRIDGE(phb->phb_base);
132 PCIDevice *pdev;
133
134 if (size != 4) {
135 phb_error(phb, "rc_config_write invalid size %d", size);
136 return;
137 }
138
139 pdev = pci_find_device(pci->bus, 0, 0);
140 if (!pdev) {
141 phb_error(phb, "rc_config_write device not found");
142 return;
143 }
144
145 pci_host_config_write_common(pdev, off, PHB_RC_CONFIG_SIZE,
146 bswap32(val), 4);
147 }
148
pnv_phb4_rc_config_read(PnvPHB4 * phb,unsigned off,unsigned size)149 static uint64_t pnv_phb4_rc_config_read(PnvPHB4 *phb, unsigned off,
150 unsigned size)
151 {
152 PCIHostState *pci = PCI_HOST_BRIDGE(phb->phb_base);
153 PCIDevice *pdev;
154 uint64_t val;
155
156 if (size != 4) {
157 phb_error(phb, "rc_config_read invalid size %d", size);
158 return ~0ull;
159 }
160
161 pdev = pci_find_device(pci->bus, 0, 0);
162 if (!pdev) {
163 phb_error(phb, "rc_config_read device not found");
164 return ~0ull;
165 }
166
167 val = pci_host_config_read_common(pdev, off, PHB_RC_CONFIG_SIZE, 4);
168 return bswap32(val);
169 }
170
pnv_phb4_check_mbt(PnvPHB4 * phb,uint32_t index)171 static void pnv_phb4_check_mbt(PnvPHB4 *phb, uint32_t index)
172 {
173 uint64_t base, start, size, mbe0, mbe1;
174 MemoryRegion *parent;
175 char name[64];
176
177 /* Unmap first */
178 if (memory_region_is_mapped(&phb->mr_mmio[index])) {
179 /* Should we destroy it in RCU friendly way... ? */
180 memory_region_del_subregion(phb->mr_mmio[index].container,
181 &phb->mr_mmio[index]);
182 }
183
184 /* Get table entry */
185 mbe0 = phb->ioda_MBT[(index << 1)];
186 mbe1 = phb->ioda_MBT[(index << 1) + 1];
187
188 if (!(mbe0 & IODA3_MBT0_ENABLE)) {
189 return;
190 }
191
192 /* Grab geometry from registers */
193 base = GETFIELD(IODA3_MBT0_BASE_ADDR, mbe0) << 12;
194 size = GETFIELD(IODA3_MBT1_MASK, mbe1) << 12;
195 size |= 0xff00000000000000ull;
196 size = ~size + 1;
197
198 /* Calculate PCI side start address based on M32/M64 window type */
199 if (mbe0 & IODA3_MBT0_TYPE_M32) {
200 start = phb->regs[PHB_M32_START_ADDR >> 3];
201 if ((start + size) > 0x100000000ull) {
202 phb_error(phb, "M32 set beyond 4GB boundary !");
203 size = 0x100000000 - start;
204 }
205 } else {
206 start = base | (phb->regs[PHB_M64_UPPER_BITS >> 3]);
207 }
208
209 /* TODO: Figure out how to implement/decode AOMASK */
210
211 /* Check if it matches an enabled MMIO region in the PEC stack */
212 if (memory_region_is_mapped(&phb->mmbar0) &&
213 base >= phb->mmio0_base &&
214 (base + size) <= (phb->mmio0_base + phb->mmio0_size)) {
215 parent = &phb->mmbar0;
216 base -= phb->mmio0_base;
217 } else if (memory_region_is_mapped(&phb->mmbar1) &&
218 base >= phb->mmio1_base &&
219 (base + size) <= (phb->mmio1_base + phb->mmio1_size)) {
220 parent = &phb->mmbar1;
221 base -= phb->mmio1_base;
222 } else {
223 phb_error(phb, "PHB MBAR %d out of parent bounds", index);
224 return;
225 }
226
227 /* Create alias (better name ?) */
228 snprintf(name, sizeof(name), "phb4-mbar%d", index);
229 memory_region_init_alias(&phb->mr_mmio[index], OBJECT(phb), name,
230 &phb->pci_mmio, start, size);
231 memory_region_add_subregion(parent, base, &phb->mr_mmio[index]);
232 }
233
pnv_phb4_check_all_mbt(PnvPHB4 * phb)234 static void pnv_phb4_check_all_mbt(PnvPHB4 *phb)
235 {
236 uint64_t i;
237 uint32_t num_windows = phb->big_phb ? PNV_PHB4_MAX_MMIO_WINDOWS :
238 PNV_PHB4_MIN_MMIO_WINDOWS;
239
240 for (i = 0; i < num_windows; i++) {
241 pnv_phb4_check_mbt(phb, i);
242 }
243 }
244
pnv_phb4_ioda_access(PnvPHB4 * phb,unsigned * out_table,unsigned * out_idx)245 static uint64_t *pnv_phb4_ioda_access(PnvPHB4 *phb,
246 unsigned *out_table, unsigned *out_idx)
247 {
248 uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
249 unsigned int index = GETFIELD(PHB_IODA_AD_TADR, adreg);
250 unsigned int table = GETFIELD(PHB_IODA_AD_TSEL, adreg);
251 unsigned int mask;
252 uint64_t *tptr = NULL;
253
254 switch (table) {
255 case IODA3_TBL_LIST:
256 tptr = phb->ioda_LIST;
257 mask = 7;
258 break;
259 case IODA3_TBL_MIST:
260 tptr = phb->ioda_MIST;
261 mask = phb->big_phb ? PNV_PHB4_MAX_MIST : (PNV_PHB4_MAX_MIST >> 1);
262 mask -= 1;
263 break;
264 case IODA3_TBL_RCAM:
265 mask = phb->big_phb ? 127 : 63;
266 break;
267 case IODA3_TBL_MRT:
268 mask = phb->big_phb ? 15 : 7;
269 break;
270 case IODA3_TBL_PESTA:
271 case IODA3_TBL_PESTB:
272 mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
273 mask -= 1;
274 break;
275 case IODA3_TBL_TVT:
276 tptr = phb->ioda_TVT;
277 mask = phb->big_phb ? PNV_PHB4_MAX_TVEs : (PNV_PHB4_MAX_TVEs >> 1);
278 mask -= 1;
279 break;
280 case IODA3_TBL_TCR:
281 case IODA3_TBL_TDR:
282 mask = phb->big_phb ? 1023 : 511;
283 break;
284 case IODA3_TBL_MBT:
285 tptr = phb->ioda_MBT;
286 mask = phb->big_phb ? PNV_PHB4_MAX_MBEs : (PNV_PHB4_MAX_MBEs >> 1);
287 mask -= 1;
288 break;
289 case IODA3_TBL_MDT:
290 tptr = phb->ioda_MDT;
291 mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
292 mask -= 1;
293 break;
294 case IODA3_TBL_PEEV:
295 tptr = phb->ioda_PEEV;
296 mask = phb->big_phb ? PNV_PHB4_MAX_PEEVs : (PNV_PHB4_MAX_PEEVs >> 1);
297 mask -= 1;
298 break;
299 default:
300 phb_error(phb, "invalid IODA table %d", table);
301 return NULL;
302 }
303 index &= mask;
304 if (out_idx) {
305 *out_idx = index;
306 }
307 if (out_table) {
308 *out_table = table;
309 }
310 if (tptr) {
311 tptr += index;
312 }
313 if (adreg & PHB_IODA_AD_AUTOINC) {
314 index = (index + 1) & mask;
315 adreg = SETFIELD(PHB_IODA_AD_TADR, adreg, index);
316 }
317
318 phb->regs[PHB_IODA_ADDR >> 3] = adreg;
319 return tptr;
320 }
321
pnv_phb4_ioda_read(PnvPHB4 * phb)322 static uint64_t pnv_phb4_ioda_read(PnvPHB4 *phb)
323 {
324 unsigned table, idx;
325 uint64_t *tptr;
326
327 tptr = pnv_phb4_ioda_access(phb, &table, &idx);
328 if (!tptr) {
329 /* Special PESTA case */
330 if (table == IODA3_TBL_PESTA) {
331 return ((uint64_t)(phb->ioda_PEST_AB[idx] & 1)) << 63;
332 } else if (table == IODA3_TBL_PESTB) {
333 return ((uint64_t)(phb->ioda_PEST_AB[idx] & 2)) << 62;
334 }
335 /* Return 0 on unsupported tables, not ff's */
336 return 0;
337 }
338 return *tptr;
339 }
340
pnv_phb4_ioda_write(PnvPHB4 * phb,uint64_t val)341 static void pnv_phb4_ioda_write(PnvPHB4 *phb, uint64_t val)
342 {
343 unsigned table, idx;
344 uint64_t *tptr;
345
346 tptr = pnv_phb4_ioda_access(phb, &table, &idx);
347 if (!tptr) {
348 /* Special PESTA case */
349 if (table == IODA3_TBL_PESTA) {
350 phb->ioda_PEST_AB[idx] &= ~1;
351 phb->ioda_PEST_AB[idx] |= (val >> 63) & 1;
352 } else if (table == IODA3_TBL_PESTB) {
353 phb->ioda_PEST_AB[idx] &= ~2;
354 phb->ioda_PEST_AB[idx] |= (val >> 62) & 2;
355 }
356 return;
357 }
358
359 /* Handle side effects */
360 switch (table) {
361 case IODA3_TBL_LIST:
362 break;
363 case IODA3_TBL_MIST: {
364 /* Special mask for MIST partial write */
365 uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
366 uint32_t mmask = GETFIELD(PHB_IODA_AD_MIST_PWV, adreg);
367 uint64_t v = *tptr;
368 if (mmask == 0) {
369 mmask = 0xf;
370 }
371 if (mmask & 8) {
372 v &= 0x0000ffffffffffffull;
373 v |= 0xcfff000000000000ull & val;
374 }
375 if (mmask & 4) {
376 v &= 0xffff0000ffffffffull;
377 v |= 0x0000cfff00000000ull & val;
378 }
379 if (mmask & 2) {
380 v &= 0xffffffff0000ffffull;
381 v |= 0x00000000cfff0000ull & val;
382 }
383 if (mmask & 1) {
384 v &= 0xffffffffffff0000ull;
385 v |= 0x000000000000cfffull & val;
386 }
387 *tptr = v;
388 break;
389 }
390 case IODA3_TBL_MBT:
391 *tptr = val;
392
393 /* Copy across the valid bit to the other half */
394 phb->ioda_MBT[idx ^ 1] &= 0x7fffffffffffffffull;
395 phb->ioda_MBT[idx ^ 1] |= 0x8000000000000000ull & val;
396
397 /* Update mappings */
398 pnv_phb4_check_mbt(phb, idx >> 1);
399 break;
400 default:
401 *tptr = val;
402 }
403 }
404
pnv_phb4_rtc_invalidate(PnvPHB4 * phb,uint64_t val)405 static void pnv_phb4_rtc_invalidate(PnvPHB4 *phb, uint64_t val)
406 {
407 PnvPhb4DMASpace *ds;
408
409 /* Always invalidate all for now ... */
410 QLIST_FOREACH(ds, &phb->dma_spaces, list) {
411 ds->pe_num = PHB_INVALID_PE;
412 }
413 }
414
pnv_phb4_update_msi_regions(PnvPhb4DMASpace * ds)415 static void pnv_phb4_update_msi_regions(PnvPhb4DMASpace *ds)
416 {
417 uint64_t cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];
418
419 if (cfg & PHB_PHB4C_32BIT_MSI_EN) {
420 if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
421 memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
422 0xffff0000, &ds->msi32_mr);
423 }
424 } else {
425 if (memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
426 memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
427 &ds->msi32_mr);
428 }
429 }
430
431 if (cfg & PHB_PHB4C_64BIT_MSI_EN) {
432 if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
433 memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
434 (1ull << 60), &ds->msi64_mr);
435 }
436 } else {
437 if (memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
438 memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
439 &ds->msi64_mr);
440 }
441 }
442 }
443
pnv_phb4_update_all_msi_regions(PnvPHB4 * phb)444 static void pnv_phb4_update_all_msi_regions(PnvPHB4 *phb)
445 {
446 PnvPhb4DMASpace *ds;
447
448 QLIST_FOREACH(ds, &phb->dma_spaces, list) {
449 pnv_phb4_update_msi_regions(ds);
450 }
451 }
452
pnv_phb4_update_xsrc(PnvPHB4 * phb)453 static void pnv_phb4_update_xsrc(PnvPHB4 *phb)
454 {
455 int shift, flags, i, lsi_base;
456 XiveSource *xsrc = &phb->xsrc;
457
458 /* The XIVE source characteristics can be set at run time */
459 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PGSZ_64K) {
460 shift = XIVE_ESB_64K;
461 } else {
462 shift = XIVE_ESB_4K;
463 }
464 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_STORE_EOI) {
465 flags = XIVE_SRC_STORE_EOI;
466 } else {
467 flags = 0;
468 }
469
470 /*
471 * When the PQ disable configuration bit is set, the check on the
472 * PQ state bits is disabled on the PHB side (for MSI only) and it
473 * is performed on the IC side instead.
474 */
475 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PQ_DISABLE) {
476 flags |= XIVE_SRC_PQ_DISABLE;
477 }
478
479 phb->xsrc.esb_shift = shift;
480 phb->xsrc.esb_flags = flags;
481
482 lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
483 lsi_base <<= 3;
484
485 /* TODO: handle reset values of PHB_LSI_SRC_ID */
486 if (!lsi_base) {
487 return;
488 }
489
490 /* TODO: need a xive_source_irq_reset_lsi() */
491 bitmap_zero(xsrc->lsi_map, xsrc->nr_irqs);
492
493 for (i = 0; i < xsrc->nr_irqs; i++) {
494 bool msi = (i < lsi_base || i >= (lsi_base + 8));
495 if (!msi) {
496 xive_source_irq_set_lsi(xsrc, i);
497 }
498 }
499 }
500
pnv_phb4_reg_write(void * opaque,hwaddr off,uint64_t val,unsigned size)501 static void pnv_phb4_reg_write(void *opaque, hwaddr off, uint64_t val,
502 unsigned size)
503 {
504 PnvPHB4 *phb = PNV_PHB4(opaque);
505 bool changed;
506
507 /* Special case outbound configuration data */
508 if ((off & 0xfffc) == PHB_CONFIG_DATA) {
509 pnv_phb4_config_write(phb, off & 0x3, size, val);
510 return;
511 }
512
513 /* Special case RC configuration space */
514 if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
515 pnv_phb4_rc_config_write(phb, off & 0x7ff, size, val);
516 return;
517 }
518
519 /* Other registers are 64-bit only */
520 if (size != 8 || off & 0x7) {
521 phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
522 off, size);
523 return;
524 }
525
526 /* Handle masking */
527 switch (off) {
528 case PHB_LSI_SOURCE_ID:
529 val &= PHB_LSI_SRC_ID;
530 break;
531 case PHB_M64_UPPER_BITS:
532 val &= 0xff00000000000000ull;
533 break;
534 /* TCE Kill */
535 case PHB_TCE_KILL:
536 /* Clear top 3 bits which HW does to indicate successful queuing */
537 val &= ~(PHB_TCE_KILL_ALL | PHB_TCE_KILL_PE | PHB_TCE_KILL_ONE);
538 break;
539 case PHB_Q_DMA_R:
540 /*
541 * This is enough logic to make SW happy but we aren't
542 * actually quiescing the DMAs
543 */
544 if (val & PHB_Q_DMA_R_AUTORESET) {
545 val = 0;
546 } else {
547 val &= PHB_Q_DMA_R_QUIESCE_DMA;
548 }
549 break;
550 /* LEM stuff */
551 case PHB_LEM_FIR_AND_MASK:
552 phb->regs[PHB_LEM_FIR_ACCUM >> 3] &= val;
553 return;
554 case PHB_LEM_FIR_OR_MASK:
555 phb->regs[PHB_LEM_FIR_ACCUM >> 3] |= val;
556 return;
557 case PHB_LEM_ERROR_AND_MASK:
558 phb->regs[PHB_LEM_ERROR_MASK >> 3] &= val;
559 return;
560 case PHB_LEM_ERROR_OR_MASK:
561 phb->regs[PHB_LEM_ERROR_MASK >> 3] |= val;
562 return;
563 case PHB_LEM_WOF:
564 val = 0;
565 break;
566 /* TODO: More regs ..., maybe create a table with masks... */
567
568 /* Read only registers */
569 case PHB_CPU_LOADSTORE_STATUS:
570 case PHB_ETU_ERR_SUMMARY:
571 case PHB_PHB4_GEN_CAP:
572 case PHB_PHB4_TCE_CAP:
573 case PHB_PHB4_IRQ_CAP:
574 case PHB_PHB4_EEH_CAP:
575 return;
576 }
577
578 /* Record whether it changed */
579 changed = phb->regs[off >> 3] != val;
580
581 /* Store in register cache first */
582 phb->regs[off >> 3] = val;
583
584 /* Handle side effects */
585 switch (off) {
586 case PHB_PHB4_CONFIG:
587 if (changed) {
588 pnv_phb4_update_all_msi_regions(phb);
589 }
590 break;
591 case PHB_M32_START_ADDR:
592 case PHB_M64_UPPER_BITS:
593 if (changed) {
594 pnv_phb4_check_all_mbt(phb);
595 }
596 break;
597
598 /* IODA table accesses */
599 case PHB_IODA_DATA0:
600 pnv_phb4_ioda_write(phb, val);
601 break;
602
603 /* RTC invalidation */
604 case PHB_RTC_INVALIDATE:
605 pnv_phb4_rtc_invalidate(phb, val);
606 break;
607
608 /* PHB Control (Affects XIVE source) */
609 case PHB_CTRLR:
610 case PHB_LSI_SOURCE_ID:
611 pnv_phb4_update_xsrc(phb);
612 break;
613
614 /* Silent simple writes */
615 case PHB_ASN_CMPM:
616 case PHB_CONFIG_ADDRESS:
617 case PHB_IODA_ADDR:
618 case PHB_TCE_KILL:
619 case PHB_TCE_SPEC_CTL:
620 case PHB_PEST_BAR:
621 case PHB_PELTV_BAR:
622 case PHB_RTT_BAR:
623 case PHB_LEM_FIR_ACCUM:
624 case PHB_LEM_ERROR_MASK:
625 case PHB_LEM_ACTION0:
626 case PHB_LEM_ACTION1:
627 case PHB_TCE_TAG_ENABLE:
628 case PHB_INT_NOTIFY_ADDR:
629 case PHB_INT_NOTIFY_INDEX:
630 case PHB_DMARD_SYNC:
631 break;
632
633 /* Noise on anything else */
634 default:
635 qemu_log_mask(LOG_UNIMP, "phb4: reg_write 0x%"PRIx64"=%"PRIx64"\n",
636 off, val);
637 }
638 }
639
pnv_phb4_reg_read(void * opaque,hwaddr off,unsigned size)640 static uint64_t pnv_phb4_reg_read(void *opaque, hwaddr off, unsigned size)
641 {
642 PnvPHB4 *phb = PNV_PHB4(opaque);
643 uint64_t val;
644
645 if ((off & 0xfffc) == PHB_CONFIG_DATA) {
646 return pnv_phb4_config_read(phb, off & 0x3, size);
647 }
648
649 /* Special case RC configuration space */
650 if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
651 return pnv_phb4_rc_config_read(phb, off & 0x7ff, size);
652 }
653
654 /* Other registers are 64-bit only */
655 if (size != 8 || off & 0x7) {
656 phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
657 off, size);
658 return ~0ull;
659 }
660
661 /* Default read from cache */
662 val = phb->regs[off >> 3];
663
664 switch (off) {
665 case PHB_VERSION:
666 return PNV_PHB4_PEC_GET_CLASS(phb->pec)->version;
667
668 /* Read-only */
669 case PHB_PHB4_GEN_CAP:
670 return 0xe4b8000000000000ull;
671 case PHB_PHB4_TCE_CAP:
672 return phb->big_phb ? 0x4008440000000400ull : 0x2008440000000200ull;
673 case PHB_PHB4_IRQ_CAP:
674 return phb->big_phb ? 0x0800000000001000ull : 0x0800000000000800ull;
675 case PHB_PHB4_EEH_CAP:
676 return phb->big_phb ? 0x2000000000000000ull : 0x1000000000000000ull;
677
678 /* IODA table accesses */
679 case PHB_IODA_DATA0:
680 return pnv_phb4_ioda_read(phb);
681
682 /* Link training always appears trained */
683 case PHB_PCIE_DLP_TRAIN_CTL:
684 /* TODO: Do something sensible with speed ? */
685 return PHB_PCIE_DLP_INBAND_PRESENCE | PHB_PCIE_DLP_TL_LINKACT;
686
687 /* DMA read sync: make it look like it's complete */
688 case PHB_DMARD_SYNC:
689 return PHB_DMARD_SYNC_COMPLETE;
690
691 /* Silent simple reads */
692 case PHB_LSI_SOURCE_ID:
693 case PHB_CPU_LOADSTORE_STATUS:
694 case PHB_ASN_CMPM:
695 case PHB_PHB4_CONFIG:
696 case PHB_M32_START_ADDR:
697 case PHB_CONFIG_ADDRESS:
698 case PHB_IODA_ADDR:
699 case PHB_RTC_INVALIDATE:
700 case PHB_TCE_KILL:
701 case PHB_TCE_SPEC_CTL:
702 case PHB_PEST_BAR:
703 case PHB_PELTV_BAR:
704 case PHB_RTT_BAR:
705 case PHB_M64_UPPER_BITS:
706 case PHB_CTRLR:
707 case PHB_LEM_FIR_ACCUM:
708 case PHB_LEM_ERROR_MASK:
709 case PHB_LEM_ACTION0:
710 case PHB_LEM_ACTION1:
711 case PHB_TCE_TAG_ENABLE:
712 case PHB_INT_NOTIFY_ADDR:
713 case PHB_INT_NOTIFY_INDEX:
714 case PHB_Q_DMA_R:
715 case PHB_ETU_ERR_SUMMARY:
716 break;
717
718 /* Noise on anything else */
719 default:
720 qemu_log_mask(LOG_UNIMP, "phb4: reg_read 0x%"PRIx64"=%"PRIx64"\n",
721 off, val);
722 }
723 return val;
724 }
725
726 static const MemoryRegionOps pnv_phb4_reg_ops = {
727 .read = pnv_phb4_reg_read,
728 .write = pnv_phb4_reg_write,
729 .valid.min_access_size = 1,
730 .valid.max_access_size = 8,
731 .impl.min_access_size = 1,
732 .impl.max_access_size = 8,
733 .endianness = DEVICE_BIG_ENDIAN,
734 };
735
pnv_phb4_xscom_read(void * opaque,hwaddr addr,unsigned size)736 static uint64_t pnv_phb4_xscom_read(void *opaque, hwaddr addr, unsigned size)
737 {
738 PnvPHB4 *phb = PNV_PHB4(opaque);
739 uint32_t reg = addr >> 3;
740 uint64_t val;
741 hwaddr offset;
742
743 switch (reg) {
744 case PHB_SCOM_HV_IND_ADDR:
745 return phb->scom_hv_ind_addr_reg;
746
747 case PHB_SCOM_HV_IND_DATA:
748 if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
749 phb_error(phb, "Invalid indirect address");
750 return ~0ull;
751 }
752 size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
753 offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
754 val = pnv_phb4_reg_read(phb, offset, size);
755 if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
756 offset += size;
757 offset &= 0x3fff;
758 phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
759 phb->scom_hv_ind_addr_reg,
760 offset);
761 }
762 return val;
763 case PHB_SCOM_ETU_LEM_FIR:
764 case PHB_SCOM_ETU_LEM_FIR_AND:
765 case PHB_SCOM_ETU_LEM_FIR_OR:
766 case PHB_SCOM_ETU_LEM_FIR_MSK:
767 case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
768 case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
769 case PHB_SCOM_ETU_LEM_ACT0:
770 case PHB_SCOM_ETU_LEM_ACT1:
771 case PHB_SCOM_ETU_LEM_WOF:
772 offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
773 return pnv_phb4_reg_read(phb, offset, size);
774 case PHB_SCOM_ETU_PMON_CONFIG:
775 case PHB_SCOM_ETU_PMON_CTR0:
776 case PHB_SCOM_ETU_PMON_CTR1:
777 case PHB_SCOM_ETU_PMON_CTR2:
778 case PHB_SCOM_ETU_PMON_CTR3:
779 offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
780 return pnv_phb4_reg_read(phb, offset, size);
781
782 default:
783 qemu_log_mask(LOG_UNIMP, "phb4: xscom_read 0x%"HWADDR_PRIx"\n", addr);
784 return ~0ull;
785 }
786 }
787
pnv_phb4_xscom_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)788 static void pnv_phb4_xscom_write(void *opaque, hwaddr addr,
789 uint64_t val, unsigned size)
790 {
791 PnvPHB4 *phb = PNV_PHB4(opaque);
792 uint32_t reg = addr >> 3;
793 hwaddr offset;
794
795 switch (reg) {
796 case PHB_SCOM_HV_IND_ADDR:
797 phb->scom_hv_ind_addr_reg = val & 0xe000000000001fff;
798 break;
799 case PHB_SCOM_HV_IND_DATA:
800 if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
801 phb_error(phb, "Invalid indirect address");
802 break;
803 }
804 size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
805 offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
806 pnv_phb4_reg_write(phb, offset, val, size);
807 if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
808 offset += size;
809 offset &= 0x3fff;
810 phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
811 phb->scom_hv_ind_addr_reg,
812 offset);
813 }
814 break;
815 case PHB_SCOM_ETU_LEM_FIR:
816 case PHB_SCOM_ETU_LEM_FIR_AND:
817 case PHB_SCOM_ETU_LEM_FIR_OR:
818 case PHB_SCOM_ETU_LEM_FIR_MSK:
819 case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
820 case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
821 case PHB_SCOM_ETU_LEM_ACT0:
822 case PHB_SCOM_ETU_LEM_ACT1:
823 case PHB_SCOM_ETU_LEM_WOF:
824 offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
825 pnv_phb4_reg_write(phb, offset, val, size);
826 break;
827 case PHB_SCOM_ETU_PMON_CONFIG:
828 case PHB_SCOM_ETU_PMON_CTR0:
829 case PHB_SCOM_ETU_PMON_CTR1:
830 case PHB_SCOM_ETU_PMON_CTR2:
831 case PHB_SCOM_ETU_PMON_CTR3:
832 offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
833 pnv_phb4_reg_write(phb, offset, val, size);
834 break;
835 default:
836 qemu_log_mask(LOG_UNIMP, "phb4: xscom_write 0x%"HWADDR_PRIx
837 "=%"PRIx64"\n", addr, val);
838 }
839 }
840
841 const MemoryRegionOps pnv_phb4_xscom_ops = {
842 .read = pnv_phb4_xscom_read,
843 .write = pnv_phb4_xscom_write,
844 .valid.min_access_size = 8,
845 .valid.max_access_size = 8,
846 .impl.min_access_size = 8,
847 .impl.max_access_size = 8,
848 .endianness = DEVICE_BIG_ENDIAN,
849 };
850
pnv_pec_stk_nest_xscom_read(void * opaque,hwaddr addr,unsigned size)851 static uint64_t pnv_pec_stk_nest_xscom_read(void *opaque, hwaddr addr,
852 unsigned size)
853 {
854 PnvPHB4 *phb = PNV_PHB4(opaque);
855 uint32_t reg = addr >> 3;
856
857 /* All registers are read-able */
858 return phb->nest_regs[reg];
859 }
860
861 /*
862 * Return the 'stack_no' of a PHB4. 'stack_no' is the order
863 * the PHB4 occupies in the PEC. This is the reverse of what
864 * pnv_phb4_pec_get_phb_id() does.
865 *
866 * E.g. a phb with phb_id = 4 and pec->index = 1 (PEC1) will
867 * be the second phb (stack_no = 1) of the PEC.
868 */
pnv_phb4_get_phb_stack_no(PnvPHB4 * phb)869 static int pnv_phb4_get_phb_stack_no(PnvPHB4 *phb)
870 {
871 PnvPhb4PecState *pec = phb->pec;
872 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
873 int index = pec->index;
874 int stack_no = phb->phb_id;
875
876 while (index--) {
877 stack_no -= pecc->num_phbs[index];
878 }
879
880 return stack_no;
881 }
882
pnv_phb4_update_regions(PnvPHB4 * phb)883 static void pnv_phb4_update_regions(PnvPHB4 *phb)
884 {
885 /* Unmap first always */
886 if (memory_region_is_mapped(&phb->mr_regs)) {
887 memory_region_del_subregion(&phb->phbbar, &phb->mr_regs);
888 }
889 if (memory_region_is_mapped(&phb->xsrc.esb_mmio)) {
890 memory_region_del_subregion(&phb->intbar, &phb->xsrc.esb_mmio);
891 }
892
893 /* Map registers if enabled */
894 if (memory_region_is_mapped(&phb->phbbar)) {
895 memory_region_add_subregion(&phb->phbbar, 0, &phb->mr_regs);
896 }
897
898 /* Map ESB if enabled */
899 if (memory_region_is_mapped(&phb->intbar)) {
900 memory_region_add_subregion(&phb->intbar, 0, &phb->xsrc.esb_mmio);
901 }
902
903 /* Check/update m32 */
904 pnv_phb4_check_all_mbt(phb);
905 }
906
pnv_pec_phb_update_map(PnvPHB4 * phb)907 static void pnv_pec_phb_update_map(PnvPHB4 *phb)
908 {
909 PnvPhb4PecState *pec = phb->pec;
910 MemoryRegion *sysmem = get_system_memory();
911 uint64_t bar_en = phb->nest_regs[PEC_NEST_STK_BAR_EN];
912 int stack_no = pnv_phb4_get_phb_stack_no(phb);
913 uint64_t bar, mask, size;
914 char name[64];
915
916 /*
917 * NOTE: This will really not work well if those are remapped
918 * after the PHB has created its sub regions. We could do better
919 * if we had a way to resize regions but we don't really care
920 * that much in practice as the stuff below really only happens
921 * once early during boot
922 */
923
924 /* Handle unmaps */
925 if (memory_region_is_mapped(&phb->mmbar0) &&
926 !(bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) {
927 memory_region_del_subregion(sysmem, &phb->mmbar0);
928 }
929 if (memory_region_is_mapped(&phb->mmbar1) &&
930 !(bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) {
931 memory_region_del_subregion(sysmem, &phb->mmbar1);
932 }
933 if (memory_region_is_mapped(&phb->phbbar) &&
934 !(bar_en & PEC_NEST_STK_BAR_EN_PHB)) {
935 memory_region_del_subregion(sysmem, &phb->phbbar);
936 }
937 if (memory_region_is_mapped(&phb->intbar) &&
938 !(bar_en & PEC_NEST_STK_BAR_EN_INT)) {
939 memory_region_del_subregion(sysmem, &phb->intbar);
940 }
941
942 /* Update PHB */
943 pnv_phb4_update_regions(phb);
944
945 /* Handle maps */
946 if (!memory_region_is_mapped(&phb->mmbar0) &&
947 (bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) {
948 bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0] >> 8;
949 mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0_MASK];
950 size = ((~mask) >> 8) + 1;
951 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio0",
952 pec->chip_id, pec->index, stack_no);
953 memory_region_init(&phb->mmbar0, OBJECT(phb), name, size);
954 memory_region_add_subregion(sysmem, bar, &phb->mmbar0);
955 phb->mmio0_base = bar;
956 phb->mmio0_size = size;
957 }
958 if (!memory_region_is_mapped(&phb->mmbar1) &&
959 (bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) {
960 bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1] >> 8;
961 mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1_MASK];
962 size = ((~mask) >> 8) + 1;
963 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio1",
964 pec->chip_id, pec->index, stack_no);
965 memory_region_init(&phb->mmbar1, OBJECT(phb), name, size);
966 memory_region_add_subregion(sysmem, bar, &phb->mmbar1);
967 phb->mmio1_base = bar;
968 phb->mmio1_size = size;
969 }
970 if (!memory_region_is_mapped(&phb->phbbar) &&
971 (bar_en & PEC_NEST_STK_BAR_EN_PHB)) {
972 bar = phb->nest_regs[PEC_NEST_STK_PHB_REGS_BAR] >> 8;
973 size = PNV_PHB4_NUM_REGS << 3;
974 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d",
975 pec->chip_id, pec->index, stack_no);
976 memory_region_init(&phb->phbbar, OBJECT(phb), name, size);
977 memory_region_add_subregion(sysmem, bar, &phb->phbbar);
978 }
979 if (!memory_region_is_mapped(&phb->intbar) &&
980 (bar_en & PEC_NEST_STK_BAR_EN_INT)) {
981 bar = phb->nest_regs[PEC_NEST_STK_INT_BAR] >> 8;
982 size = PNV_PHB4_MAX_INTs << 16;
983 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-int",
984 phb->pec->chip_id, phb->pec->index, stack_no);
985 memory_region_init(&phb->intbar, OBJECT(phb), name, size);
986 memory_region_add_subregion(sysmem, bar, &phb->intbar);
987 }
988
989 /* Update PHB */
990 pnv_phb4_update_regions(phb);
991 }
992
pnv_pec_stk_nest_xscom_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)993 static void pnv_pec_stk_nest_xscom_write(void *opaque, hwaddr addr,
994 uint64_t val, unsigned size)
995 {
996 PnvPHB4 *phb = PNV_PHB4(opaque);
997 PnvPhb4PecState *pec = phb->pec;
998 uint32_t reg = addr >> 3;
999
1000 switch (reg) {
1001 case PEC_NEST_STK_PCI_NEST_FIR:
1002 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] = val & PPC_BITMASK(0, 27);
1003 break;
1004 case PEC_NEST_STK_PCI_NEST_FIR_CLR:
1005 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] &= val;
1006 break;
1007 case PEC_NEST_STK_PCI_NEST_FIR_SET:
1008 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] |= val;
1009 break;
1010 case PEC_NEST_STK_PCI_NEST_FIR_MSK:
1011 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] = val &
1012 PPC_BITMASK(0, 27);
1013 break;
1014 case PEC_NEST_STK_PCI_NEST_FIR_MSKC:
1015 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] &= val;
1016 break;
1017 case PEC_NEST_STK_PCI_NEST_FIR_MSKS:
1018 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] |= val;
1019 break;
1020 case PEC_NEST_STK_PCI_NEST_FIR_ACT0:
1021 case PEC_NEST_STK_PCI_NEST_FIR_ACT1:
1022 phb->nest_regs[reg] = val & PPC_BITMASK(0, 27);
1023 break;
1024 case PEC_NEST_STK_PCI_NEST_FIR_WOF:
1025 phb->nest_regs[reg] = 0;
1026 break;
1027 case PEC_NEST_STK_ERR_REPORT_0:
1028 case PEC_NEST_STK_ERR_REPORT_1:
1029 case PEC_NEST_STK_PBCQ_GNRL_STATUS:
1030 /* Flag error ? */
1031 break;
1032 case PEC_NEST_STK_PBCQ_MODE:
1033 phb->nest_regs[reg] = val & PPC_BITMASK(0, 7);
1034 break;
1035 case PEC_NEST_STK_MMIO_BAR0:
1036 case PEC_NEST_STK_MMIO_BAR0_MASK:
1037 case PEC_NEST_STK_MMIO_BAR1:
1038 case PEC_NEST_STK_MMIO_BAR1_MASK:
1039 if (phb->nest_regs[PEC_NEST_STK_BAR_EN] &
1040 (PEC_NEST_STK_BAR_EN_MMIO0 |
1041 PEC_NEST_STK_BAR_EN_MMIO1)) {
1042 phb_pec_error(pec, "Changing enabled BAR unsupported");
1043 }
1044 phb->nest_regs[reg] = val & PPC_BITMASK(0, 39);
1045 break;
1046 case PEC_NEST_STK_PHB_REGS_BAR:
1047 if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_PHB) {
1048 phb_pec_error(pec, "Changing enabled BAR unsupported");
1049 }
1050 phb->nest_regs[reg] = val & PPC_BITMASK(0, 41);
1051 break;
1052 case PEC_NEST_STK_INT_BAR:
1053 if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_INT) {
1054 phb_pec_error(pec, "Changing enabled BAR unsupported");
1055 }
1056 phb->nest_regs[reg] = val & PPC_BITMASK(0, 27);
1057 break;
1058 case PEC_NEST_STK_BAR_EN:
1059 phb->nest_regs[reg] = val & PPC_BITMASK(0, 3);
1060 pnv_pec_phb_update_map(phb);
1061 break;
1062 case PEC_NEST_STK_DATA_FRZ_TYPE:
1063 /* Not used for now */
1064 phb->nest_regs[reg] = val & PPC_BITMASK(0, 27);
1065 break;
1066 case PEC_NEST_STK_PBCQ_SPARSE_PAGE:
1067 phb->nest_regs[reg] = val & PPC_BITMASK(3, 5);
1068 break;
1069 case PEC_NEST_STK_PBCQ_CACHE_INJ:
1070 phb->nest_regs[reg] = val & PPC_BITMASK(0, 7);
1071 break;
1072 default:
1073 qemu_log_mask(LOG_UNIMP, "phb4_pec: nest_xscom_write 0x%"HWADDR_PRIx
1074 "=%"PRIx64"\n", addr, val);
1075 }
1076 }
1077
1078 static const MemoryRegionOps pnv_pec_stk_nest_xscom_ops = {
1079 .read = pnv_pec_stk_nest_xscom_read,
1080 .write = pnv_pec_stk_nest_xscom_write,
1081 .valid.min_access_size = 8,
1082 .valid.max_access_size = 8,
1083 .impl.min_access_size = 8,
1084 .impl.max_access_size = 8,
1085 .endianness = DEVICE_BIG_ENDIAN,
1086 };
1087
pnv_pec_stk_pci_xscom_read(void * opaque,hwaddr addr,unsigned size)1088 static uint64_t pnv_pec_stk_pci_xscom_read(void *opaque, hwaddr addr,
1089 unsigned size)
1090 {
1091 PnvPHB4 *phb = PNV_PHB4(opaque);
1092 uint32_t reg = addr >> 3;
1093
1094 /* All registers are read-able */
1095 return phb->pci_regs[reg];
1096 }
1097
pnv_pec_stk_pci_xscom_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)1098 static void pnv_pec_stk_pci_xscom_write(void *opaque, hwaddr addr,
1099 uint64_t val, unsigned size)
1100 {
1101 PnvPHB4 *phb = PNV_PHB4(opaque);
1102 uint32_t reg = addr >> 3;
1103 switch (reg) {
1104 case PEC_PCI_STK_PCI_FIR:
1105 phb->pci_regs[reg] = val & PPC_BITMASK(0, 5);
1106 break;
1107 case PEC_PCI_STK_PCI_FIR_CLR:
1108 phb->pci_regs[PEC_PCI_STK_PCI_FIR] &= val;
1109 break;
1110 case PEC_PCI_STK_PCI_FIR_SET:
1111 phb->pci_regs[PEC_PCI_STK_PCI_FIR] |= val;
1112 break;
1113 case PEC_PCI_STK_PCI_FIR_MSK:
1114 phb->pci_regs[reg] = val & PPC_BITMASK(0, 5);
1115 break;
1116 case PEC_PCI_STK_PCI_FIR_MSKC:
1117 phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] &= val;
1118 break;
1119 case PEC_PCI_STK_PCI_FIR_MSKS:
1120 phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] |= val;
1121 break;
1122 case PEC_PCI_STK_PCI_FIR_ACT0:
1123 case PEC_PCI_STK_PCI_FIR_ACT1:
1124 phb->pci_regs[reg] = val & PPC_BITMASK(0, 5);
1125 break;
1126 case PEC_PCI_STK_PCI_FIR_WOF:
1127 phb->pci_regs[reg] = 0;
1128 break;
1129 case PEC_PCI_STK_ETU_RESET:
1130 phb->pci_regs[reg] = val & PPC_BIT(0);
1131 /* TODO: Implement reset */
1132 break;
1133 case PEC_PCI_STK_PBAIB_ERR_REPORT:
1134 break;
1135 case PEC_PCI_STK_PBAIB_TX_CMD_CRED:
1136 phb->pci_regs[reg] = val &
1137 ((PPC_BITMASK(0, 2) | PPC_BITMASK(10, 18)
1138 | PPC_BITMASK(26, 34) | PPC_BITMASK(41, 50)
1139 | PPC_BITMASK(58, 63)));
1140 break;
1141 case PEC_PCI_STK_PBAIB_TX_DAT_CRED:
1142 phb->pci_regs[reg] = val & (PPC_BITMASK(33, 34) | PPC_BITMASK(44, 47));
1143 break;
1144 default:
1145 qemu_log_mask(LOG_UNIMP, "phb4_pec_stk: pci_xscom_write 0x%"HWADDR_PRIx
1146 "=%"PRIx64"\n", addr, val);
1147 }
1148 }
1149
1150 static const MemoryRegionOps pnv_pec_stk_pci_xscom_ops = {
1151 .read = pnv_pec_stk_pci_xscom_read,
1152 .write = pnv_pec_stk_pci_xscom_write,
1153 .valid.min_access_size = 8,
1154 .valid.max_access_size = 8,
1155 .impl.min_access_size = 8,
1156 .impl.max_access_size = 8,
1157 .endianness = DEVICE_BIG_ENDIAN,
1158 };
1159
pnv_phb4_map_irq(PCIDevice * pci_dev,int irq_num)1160 static int pnv_phb4_map_irq(PCIDevice *pci_dev, int irq_num)
1161 {
1162 /* Check that out properly ... */
1163 return irq_num & 3;
1164 }
1165
pnv_phb4_set_irq(void * opaque,int irq_num,int level)1166 static void pnv_phb4_set_irq(void *opaque, int irq_num, int level)
1167 {
1168 PnvPHB4 *phb = PNV_PHB4(opaque);
1169 uint32_t lsi_base;
1170
1171 /* LSI only ... */
1172 if (irq_num > 3) {
1173 phb_error(phb, "IRQ %x is not an LSI", irq_num);
1174 }
1175 lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
1176 lsi_base <<= 3;
1177 qemu_set_irq(phb->qirqs[lsi_base + irq_num], level);
1178 }
1179
pnv_phb4_resolve_pe(PnvPhb4DMASpace * ds)1180 static bool pnv_phb4_resolve_pe(PnvPhb4DMASpace *ds)
1181 {
1182 uint64_t rtt, addr;
1183 uint16_t rte;
1184 int bus_num;
1185 int num_PEs;
1186
1187 /* Already resolved ? */
1188 if (ds->pe_num != PHB_INVALID_PE) {
1189 return true;
1190 }
1191
1192 /* We need to lookup the RTT */
1193 rtt = ds->phb->regs[PHB_RTT_BAR >> 3];
1194 if (!(rtt & PHB_RTT_BAR_ENABLE)) {
1195 phb_error(ds->phb, "DMA with RTT BAR disabled !");
1196 /* Set error bits ? fence ? ... */
1197 return false;
1198 }
1199
1200 /* Read RTE */
1201 bus_num = pci_bus_num(ds->bus);
1202 addr = rtt & PHB_RTT_BASE_ADDRESS_MASK;
1203 addr += 2 * PCI_BUILD_BDF(bus_num, ds->devfn);
1204 if (dma_memory_read(&address_space_memory, addr, &rte,
1205 sizeof(rte), MEMTXATTRS_UNSPECIFIED)) {
1206 phb_error(ds->phb, "Failed to read RTT entry at 0x%"PRIx64, addr);
1207 /* Set error bits ? fence ? ... */
1208 return false;
1209 }
1210 rte = be16_to_cpu(rte);
1211
1212 /* Fail upon reading of invalid PE# */
1213 num_PEs = ds->phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
1214 if (rte >= num_PEs) {
1215 phb_error(ds->phb, "RTE for RID 0x%x invalid (%04x", ds->devfn, rte);
1216 rte &= num_PEs - 1;
1217 }
1218 ds->pe_num = rte;
1219 return true;
1220 }
1221
pnv_phb4_translate_tve(PnvPhb4DMASpace * ds,hwaddr addr,bool is_write,uint64_t tve,IOMMUTLBEntry * tlb)1222 static void pnv_phb4_translate_tve(PnvPhb4DMASpace *ds, hwaddr addr,
1223 bool is_write, uint64_t tve,
1224 IOMMUTLBEntry *tlb)
1225 {
1226 uint64_t tta = GETFIELD(IODA3_TVT_TABLE_ADDR, tve);
1227 int32_t lev = GETFIELD(IODA3_TVT_NUM_LEVELS, tve);
1228 uint32_t tts = GETFIELD(IODA3_TVT_TCE_TABLE_SIZE, tve);
1229 uint32_t tps = GETFIELD(IODA3_TVT_IO_PSIZE, tve);
1230
1231 /* Invalid levels */
1232 if (lev > 4) {
1233 phb_error(ds->phb, "Invalid #levels in TVE %d", lev);
1234 return;
1235 }
1236
1237 /* Invalid entry */
1238 if (tts == 0) {
1239 phb_error(ds->phb, "Access to invalid TVE");
1240 return;
1241 }
1242
1243 /* IO Page Size of 0 means untranslated, else use TCEs */
1244 if (tps == 0) {
1245 /* TODO: Handle boundaries */
1246
1247 /* Use 4k pages like q35 ... for now */
1248 tlb->iova = addr & 0xfffffffffffff000ull;
1249 tlb->translated_addr = addr & 0x0003fffffffff000ull;
1250 tlb->addr_mask = 0xfffull;
1251 tlb->perm = IOMMU_RW;
1252 } else {
1253 uint32_t tce_shift, tbl_shift, sh;
1254 uint64_t base, taddr, tce, tce_mask;
1255
1256 /* Address bits per bottom level TCE entry */
1257 tce_shift = tps + 11;
1258
1259 /* Address bits per table level */
1260 tbl_shift = tts + 8;
1261
1262 /* Top level table base address */
1263 base = tta << 12;
1264
1265 /* Total shift to first level */
1266 sh = tbl_shift * lev + tce_shift;
1267
1268 /* TODO: Limit to support IO page sizes */
1269
1270 /* TODO: Multi-level untested */
1271 do {
1272 lev--;
1273
1274 /* Grab the TCE address */
1275 taddr = base | (((addr >> sh) & ((1ul << tbl_shift) - 1)) << 3);
1276 if (dma_memory_read(&address_space_memory, taddr, &tce,
1277 sizeof(tce), MEMTXATTRS_UNSPECIFIED)) {
1278 phb_error(ds->phb, "Failed to read TCE at 0x%"PRIx64, taddr);
1279 return;
1280 }
1281 tce = be64_to_cpu(tce);
1282
1283 /* Check permission for indirect TCE */
1284 if ((lev >= 0) && !(tce & 3)) {
1285 phb_error(ds->phb, "Invalid indirect TCE at 0x%"PRIx64, taddr);
1286 phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
1287 is_write ? 'W' : 'R', tve);
1288 phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
1289 tta, lev, tts, tps);
1290 return;
1291 }
1292 sh -= tbl_shift;
1293 base = tce & ~0xfffull;
1294 } while (lev >= 0);
1295
1296 /* We exit the loop with TCE being the final TCE */
1297 if ((is_write & !(tce & 2)) || ((!is_write) && !(tce & 1))) {
1298 phb_error(ds->phb, "TCE access fault at 0x%"PRIx64, taddr);
1299 phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
1300 is_write ? 'W' : 'R', tve);
1301 phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
1302 tta, lev, tts, tps);
1303 return;
1304 }
1305 tce_mask = ~((1ull << tce_shift) - 1);
1306 tlb->iova = addr & tce_mask;
1307 tlb->translated_addr = tce & tce_mask;
1308 tlb->addr_mask = ~tce_mask;
1309 tlb->perm = tce & 3;
1310 }
1311 }
1312
pnv_phb4_translate_iommu(IOMMUMemoryRegion * iommu,hwaddr addr,IOMMUAccessFlags flag,int iommu_idx)1313 static IOMMUTLBEntry pnv_phb4_translate_iommu(IOMMUMemoryRegion *iommu,
1314 hwaddr addr,
1315 IOMMUAccessFlags flag,
1316 int iommu_idx)
1317 {
1318 PnvPhb4DMASpace *ds = container_of(iommu, PnvPhb4DMASpace, dma_mr);
1319 int tve_sel;
1320 uint64_t tve, cfg;
1321 IOMMUTLBEntry ret = {
1322 .target_as = &address_space_memory,
1323 .iova = addr,
1324 .translated_addr = 0,
1325 .addr_mask = ~(hwaddr)0,
1326 .perm = IOMMU_NONE,
1327 };
1328
1329 /* Resolve PE# */
1330 if (!pnv_phb4_resolve_pe(ds)) {
1331 phb_error(ds->phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
1332 ds->bus, pci_bus_num(ds->bus), ds->devfn);
1333 return ret;
1334 }
1335
1336 /* Check top bits */
1337 switch (addr >> 60) {
1338 case 00:
1339 /* DMA or 32-bit MSI ? */
1340 cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];
1341 if ((cfg & PHB_PHB4C_32BIT_MSI_EN) &&
1342 ((addr & 0xffffffffffff0000ull) == 0xffff0000ull)) {
1343 phb_error(ds->phb, "xlate on 32-bit MSI region");
1344 return ret;
1345 }
1346 /* Choose TVE XXX Use PHB4 Control Register */
1347 tve_sel = (addr >> 59) & 1;
1348 tve = ds->phb->ioda_TVT[ds->pe_num * 2 + tve_sel];
1349 pnv_phb4_translate_tve(ds, addr, flag & IOMMU_WO, tve, &ret);
1350 break;
1351 case 01:
1352 phb_error(ds->phb, "xlate on 64-bit MSI region");
1353 break;
1354 default:
1355 phb_error(ds->phb, "xlate on unsupported address 0x%"PRIx64, addr);
1356 }
1357 return ret;
1358 }
1359
1360 #define TYPE_PNV_PHB4_IOMMU_MEMORY_REGION "pnv-phb4-iommu-memory-region"
DECLARE_INSTANCE_CHECKER(IOMMUMemoryRegion,PNV_PHB4_IOMMU_MEMORY_REGION,TYPE_PNV_PHB4_IOMMU_MEMORY_REGION)1361 DECLARE_INSTANCE_CHECKER(IOMMUMemoryRegion, PNV_PHB4_IOMMU_MEMORY_REGION,
1362 TYPE_PNV_PHB4_IOMMU_MEMORY_REGION)
1363
1364 static void pnv_phb4_iommu_memory_region_class_init(ObjectClass *klass,
1365 void *data)
1366 {
1367 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
1368
1369 imrc->translate = pnv_phb4_translate_iommu;
1370 }
1371
1372 static const TypeInfo pnv_phb4_iommu_memory_region_info = {
1373 .parent = TYPE_IOMMU_MEMORY_REGION,
1374 .name = TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
1375 .class_init = pnv_phb4_iommu_memory_region_class_init,
1376 };
1377
1378 /*
1379 * Return the index/phb-id of a PHB4 that belongs to a
1380 * pec->stacks[stack_index] stack.
1381 */
pnv_phb4_pec_get_phb_id(PnvPhb4PecState * pec,int stack_index)1382 int pnv_phb4_pec_get_phb_id(PnvPhb4PecState *pec, int stack_index)
1383 {
1384 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1385 int index = pec->index;
1386 int offset = 0;
1387
1388 while (index--) {
1389 offset += pecc->num_phbs[index];
1390 }
1391
1392 return offset + stack_index;
1393 }
1394
1395 /*
1396 * MSI/MSIX memory region implementation.
1397 * The handler handles both MSI and MSIX.
1398 */
pnv_phb4_msi_write(void * opaque,hwaddr addr,uint64_t data,unsigned size)1399 static void pnv_phb4_msi_write(void *opaque, hwaddr addr,
1400 uint64_t data, unsigned size)
1401 {
1402 PnvPhb4DMASpace *ds = opaque;
1403 PnvPHB4 *phb = ds->phb;
1404
1405 uint32_t src = ((addr >> 4) & 0xffff) | (data & 0x1f);
1406
1407 /* Resolve PE# */
1408 if (!pnv_phb4_resolve_pe(ds)) {
1409 phb_error(phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
1410 ds->bus, pci_bus_num(ds->bus), ds->devfn);
1411 return;
1412 }
1413
1414 /* TODO: Check it doesn't collide with LSIs */
1415 if (src >= phb->xsrc.nr_irqs) {
1416 phb_error(phb, "MSI %d out of bounds", src);
1417 return;
1418 }
1419
1420 /* TODO: check PE/MSI assignment */
1421
1422 qemu_irq_pulse(phb->qirqs[src]);
1423 }
1424
1425 /* There is no .read as the read result is undefined by PCI spec */
pnv_phb4_msi_read(void * opaque,hwaddr addr,unsigned size)1426 static uint64_t pnv_phb4_msi_read(void *opaque, hwaddr addr, unsigned size)
1427 {
1428 PnvPhb4DMASpace *ds = opaque;
1429
1430 phb_error(ds->phb, "Invalid MSI read @ 0x%" HWADDR_PRIx, addr);
1431 return -1;
1432 }
1433
1434 static const MemoryRegionOps pnv_phb4_msi_ops = {
1435 .read = pnv_phb4_msi_read,
1436 .write = pnv_phb4_msi_write,
1437 .endianness = DEVICE_LITTLE_ENDIAN
1438 };
1439
pnv_phb4_dma_find(PnvPHB4 * phb,PCIBus * bus,int devfn)1440 static PnvPhb4DMASpace *pnv_phb4_dma_find(PnvPHB4 *phb, PCIBus *bus, int devfn)
1441 {
1442 PnvPhb4DMASpace *ds;
1443
1444 QLIST_FOREACH(ds, &phb->dma_spaces, list) {
1445 if (ds->bus == bus && ds->devfn == devfn) {
1446 break;
1447 }
1448 }
1449 return ds;
1450 }
1451
pnv_phb4_dma_iommu(PCIBus * bus,void * opaque,int devfn)1452 static AddressSpace *pnv_phb4_dma_iommu(PCIBus *bus, void *opaque, int devfn)
1453 {
1454 PnvPHB4 *phb = opaque;
1455 PnvPhb4DMASpace *ds;
1456 char name[32];
1457
1458 ds = pnv_phb4_dma_find(phb, bus, devfn);
1459
1460 if (ds == NULL) {
1461 ds = g_new0(PnvPhb4DMASpace, 1);
1462 ds->bus = bus;
1463 ds->devfn = devfn;
1464 ds->pe_num = PHB_INVALID_PE;
1465 ds->phb = phb;
1466 snprintf(name, sizeof(name), "phb4-%d.%d-iommu", phb->chip_id,
1467 phb->phb_id);
1468 memory_region_init_iommu(&ds->dma_mr, sizeof(ds->dma_mr),
1469 TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
1470 OBJECT(phb), name, UINT64_MAX);
1471 address_space_init(&ds->dma_as, MEMORY_REGION(&ds->dma_mr),
1472 name);
1473 memory_region_init_io(&ds->msi32_mr, OBJECT(phb), &pnv_phb4_msi_ops,
1474 ds, "msi32", 0x10000);
1475 memory_region_init_io(&ds->msi64_mr, OBJECT(phb), &pnv_phb4_msi_ops,
1476 ds, "msi64", 0x100000);
1477 pnv_phb4_update_msi_regions(ds);
1478
1479 QLIST_INSERT_HEAD(&phb->dma_spaces, ds, list);
1480 }
1481 return &ds->dma_as;
1482 }
1483
pnv_phb4_xscom_realize(PnvPHB4 * phb)1484 static void pnv_phb4_xscom_realize(PnvPHB4 *phb)
1485 {
1486 PnvPhb4PecState *pec = phb->pec;
1487 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1488 int stack_no = pnv_phb4_get_phb_stack_no(phb);
1489 uint32_t pec_nest_base;
1490 uint32_t pec_pci_base;
1491 char name[64];
1492
1493 assert(pec);
1494
1495 /* Initialize the XSCOM regions for the stack registers */
1496 snprintf(name, sizeof(name), "xscom-pec-%d.%d-nest-phb-%d",
1497 pec->chip_id, pec->index, stack_no);
1498 pnv_xscom_region_init(&phb->nest_regs_mr, OBJECT(phb),
1499 &pnv_pec_stk_nest_xscom_ops, phb, name,
1500 PHB4_PEC_NEST_STK_REGS_COUNT);
1501
1502 snprintf(name, sizeof(name), "xscom-pec-%d.%d-pci-phb-%d",
1503 pec->chip_id, pec->index, stack_no);
1504 pnv_xscom_region_init(&phb->pci_regs_mr, OBJECT(phb),
1505 &pnv_pec_stk_pci_xscom_ops, phb, name,
1506 PHB4_PEC_PCI_STK_REGS_COUNT);
1507
1508 /* PHB pass-through */
1509 snprintf(name, sizeof(name), "xscom-pec-%d.%d-phb-%d",
1510 pec->chip_id, pec->index, stack_no);
1511 pnv_xscom_region_init(&phb->phb_regs_mr, OBJECT(phb),
1512 &pnv_phb4_xscom_ops, phb, name, 0x40);
1513
1514 pec_nest_base = pecc->xscom_nest_base(pec);
1515 pec_pci_base = pecc->xscom_pci_base(pec);
1516
1517 /* Populate the XSCOM address space. */
1518 pnv_xscom_add_subregion(pec->chip,
1519 pec_nest_base + 0x40 * (stack_no + 1),
1520 &phb->nest_regs_mr);
1521 pnv_xscom_add_subregion(pec->chip,
1522 pec_pci_base + 0x40 * (stack_no + 1),
1523 &phb->pci_regs_mr);
1524 pnv_xscom_add_subregion(pec->chip,
1525 pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1526 0x40 * stack_no,
1527 &phb->phb_regs_mr);
1528 }
1529
1530 static PCIIOMMUOps pnv_phb4_iommu_ops = {
1531 .get_address_space = pnv_phb4_dma_iommu,
1532 };
1533
pnv_phb4_instance_init(Object * obj)1534 static void pnv_phb4_instance_init(Object *obj)
1535 {
1536 PnvPHB4 *phb = PNV_PHB4(obj);
1537
1538 QLIST_INIT(&phb->dma_spaces);
1539
1540 /* XIVE interrupt source object */
1541 object_initialize_child(obj, "source", &phb->xsrc, TYPE_XIVE_SOURCE);
1542 }
1543
pnv_phb4_bus_init(DeviceState * dev,PnvPHB4 * phb)1544 void pnv_phb4_bus_init(DeviceState *dev, PnvPHB4 *phb)
1545 {
1546 PCIHostState *pci = PCI_HOST_BRIDGE(dev);
1547 char name[32];
1548
1549 /*
1550 * PHB4 doesn't support IO space. However, qemu gets very upset if
1551 * we don't have an IO region to anchor IO BARs onto so we just
1552 * initialize one which we never hook up to anything
1553 */
1554 snprintf(name, sizeof(name), "phb4-%d.%d-pci-io", phb->chip_id,
1555 phb->phb_id);
1556 memory_region_init(&phb->pci_io, OBJECT(phb), name, 0x10000);
1557
1558 snprintf(name, sizeof(name), "phb4-%d.%d-pci-mmio", phb->chip_id,
1559 phb->phb_id);
1560 memory_region_init(&phb->pci_mmio, OBJECT(phb), name,
1561 PCI_MMIO_TOTAL_SIZE);
1562
1563 pci->bus = pci_register_root_bus(dev, dev->id ? dev->id : NULL,
1564 pnv_phb4_set_irq, pnv_phb4_map_irq, phb,
1565 &phb->pci_mmio, &phb->pci_io,
1566 0, 4, TYPE_PNV_PHB4_ROOT_BUS);
1567
1568 object_property_set_int(OBJECT(pci->bus), "phb-id", phb->phb_id,
1569 &error_abort);
1570 object_property_set_int(OBJECT(pci->bus), "chip-id", phb->chip_id,
1571 &error_abort);
1572
1573 pci_setup_iommu(pci->bus, &pnv_phb4_iommu_ops, phb);
1574 pci->bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE;
1575 }
1576
pnv_phb4_realize(DeviceState * dev,Error ** errp)1577 static void pnv_phb4_realize(DeviceState *dev, Error **errp)
1578 {
1579 PnvPHB4 *phb = PNV_PHB4(dev);
1580 XiveSource *xsrc = &phb->xsrc;
1581 int nr_irqs;
1582 char name[32];
1583
1584 /* Set the "big_phb" flag */
1585 phb->big_phb = phb->phb_id == 0 || phb->phb_id == 3;
1586
1587 /* Controller Registers */
1588 snprintf(name, sizeof(name), "phb4-%d.%d-regs", phb->chip_id,
1589 phb->phb_id);
1590 memory_region_init_io(&phb->mr_regs, OBJECT(phb), &pnv_phb4_reg_ops, phb,
1591 name, 0x2000);
1592
1593 /* Setup XIVE Source */
1594 if (phb->big_phb) {
1595 nr_irqs = PNV_PHB4_MAX_INTs;
1596 } else {
1597 nr_irqs = PNV_PHB4_MAX_INTs >> 1;
1598 }
1599 object_property_set_int(OBJECT(xsrc), "nr-irqs", nr_irqs, &error_fatal);
1600 object_property_set_link(OBJECT(xsrc), "xive", OBJECT(phb), &error_fatal);
1601 if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
1602 return;
1603 }
1604
1605 pnv_phb4_update_xsrc(phb);
1606
1607 phb->qirqs = qemu_allocate_irqs(xive_source_set_irq, xsrc, xsrc->nr_irqs);
1608
1609 pnv_phb4_xscom_realize(phb);
1610 }
1611
1612 /*
1613 * Address base trigger mode (POWER10)
1614 *
1615 * Trigger directly the IC ESB page
1616 */
pnv_phb4_xive_notify_abt(PnvPHB4 * phb,uint32_t srcno,bool pq_checked)1617 static void pnv_phb4_xive_notify_abt(PnvPHB4 *phb, uint32_t srcno,
1618 bool pq_checked)
1619 {
1620 uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3];
1621 uint64_t data = 0; /* trigger data : don't care */
1622 hwaddr addr;
1623 MemTxResult result;
1624 int esb_shift;
1625
1626 if (notif_port & PHB_INT_NOTIFY_ADDR_64K) {
1627 esb_shift = 16;
1628 } else {
1629 esb_shift = 12;
1630 }
1631
1632 /* Compute the address of the IC ESB management page */
1633 addr = (notif_port & ~PHB_INT_NOTIFY_ADDR_64K);
1634 addr |= (1ull << (esb_shift + 1)) * srcno;
1635 addr |= (1ull << esb_shift);
1636
1637 /*
1638 * When the PQ state bits are checked on the PHB, the associated
1639 * PQ state bits on the IC should be ignored. Use the unconditional
1640 * trigger offset to inject a trigger on the IC. This is always
1641 * the case for LSIs
1642 */
1643 if (pq_checked) {
1644 addr |= XIVE_ESB_INJECT;
1645 }
1646
1647 trace_pnv_phb4_xive_notify_ic(addr, data);
1648
1649 address_space_stq_be(&address_space_memory, addr, data,
1650 MEMTXATTRS_UNSPECIFIED, &result);
1651 if (result != MEMTX_OK) {
1652 phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", addr);
1653 return;
1654 }
1655 }
1656
pnv_phb4_xive_notify_ic(PnvPHB4 * phb,uint32_t srcno,bool pq_checked)1657 static void pnv_phb4_xive_notify_ic(PnvPHB4 *phb, uint32_t srcno,
1658 bool pq_checked)
1659 {
1660 uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3];
1661 uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];
1662 uint64_t data = offset | srcno;
1663 MemTxResult result;
1664
1665 if (pq_checked) {
1666 data |= XIVE_TRIGGER_PQ;
1667 }
1668
1669 trace_pnv_phb4_xive_notify_ic(notif_port, data);
1670
1671 address_space_stq_be(&address_space_memory, notif_port, data,
1672 MEMTXATTRS_UNSPECIFIED, &result);
1673 if (result != MEMTX_OK) {
1674 phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", notif_port);
1675 return;
1676 }
1677 }
1678
pnv_phb4_xive_notify(XiveNotifier * xf,uint32_t srcno,bool pq_checked)1679 static void pnv_phb4_xive_notify(XiveNotifier *xf, uint32_t srcno,
1680 bool pq_checked)
1681 {
1682 PnvPHB4 *phb = PNV_PHB4(xf);
1683
1684 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_ABT_MODE) {
1685 pnv_phb4_xive_notify_abt(phb, srcno, pq_checked);
1686 } else {
1687 pnv_phb4_xive_notify_ic(phb, srcno, pq_checked);
1688 }
1689 }
1690
1691 static Property pnv_phb4_properties[] = {
1692 DEFINE_PROP_UINT32("index", PnvPHB4, phb_id, 0),
1693 DEFINE_PROP_UINT32("chip-id", PnvPHB4, chip_id, 0),
1694 DEFINE_PROP_LINK("pec", PnvPHB4, pec, TYPE_PNV_PHB4_PEC,
1695 PnvPhb4PecState *),
1696 DEFINE_PROP_LINK("phb-base", PnvPHB4, phb_base, TYPE_PNV_PHB, PnvPHB *),
1697 DEFINE_PROP_END_OF_LIST(),
1698 };
1699
pnv_phb4_class_init(ObjectClass * klass,void * data)1700 static void pnv_phb4_class_init(ObjectClass *klass, void *data)
1701 {
1702 DeviceClass *dc = DEVICE_CLASS(klass);
1703 XiveNotifierClass *xfc = XIVE_NOTIFIER_CLASS(klass);
1704
1705 dc->realize = pnv_phb4_realize;
1706 device_class_set_props(dc, pnv_phb4_properties);
1707 dc->user_creatable = false;
1708
1709 xfc->notify = pnv_phb4_xive_notify;
1710 }
1711
1712 static const TypeInfo pnv_phb4_type_info = {
1713 .name = TYPE_PNV_PHB4,
1714 .parent = TYPE_DEVICE,
1715 .instance_init = pnv_phb4_instance_init,
1716 .instance_size = sizeof(PnvPHB4),
1717 .class_init = pnv_phb4_class_init,
1718 .interfaces = (InterfaceInfo[]) {
1719 { TYPE_XIVE_NOTIFIER },
1720 { },
1721 }
1722 };
1723
1724 static const TypeInfo pnv_phb5_type_info = {
1725 .name = TYPE_PNV_PHB5,
1726 .parent = TYPE_PNV_PHB4,
1727 .instance_size = sizeof(PnvPHB4),
1728 };
1729
pnv_phb4_root_bus_get_prop(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1730 static void pnv_phb4_root_bus_get_prop(Object *obj, Visitor *v,
1731 const char *name,
1732 void *opaque, Error **errp)
1733 {
1734 PnvPHB4RootBus *bus = PNV_PHB4_ROOT_BUS(obj);
1735 uint64_t value = 0;
1736
1737 if (strcmp(name, "phb-id") == 0) {
1738 value = bus->phb_id;
1739 } else {
1740 value = bus->chip_id;
1741 }
1742
1743 visit_type_size(v, name, &value, errp);
1744 }
1745
pnv_phb4_root_bus_set_prop(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1746 static void pnv_phb4_root_bus_set_prop(Object *obj, Visitor *v,
1747 const char *name,
1748 void *opaque, Error **errp)
1749
1750 {
1751 PnvPHB4RootBus *bus = PNV_PHB4_ROOT_BUS(obj);
1752 uint64_t value;
1753
1754 if (!visit_type_size(v, name, &value, errp)) {
1755 return;
1756 }
1757
1758 if (strcmp(name, "phb-id") == 0) {
1759 bus->phb_id = value;
1760 } else {
1761 bus->chip_id = value;
1762 }
1763 }
1764
pnv_phb4_root_bus_class_init(ObjectClass * klass,void * data)1765 static void pnv_phb4_root_bus_class_init(ObjectClass *klass, void *data)
1766 {
1767 BusClass *k = BUS_CLASS(klass);
1768
1769 object_class_property_add(klass, "phb-id", "int",
1770 pnv_phb4_root_bus_get_prop,
1771 pnv_phb4_root_bus_set_prop,
1772 NULL, NULL);
1773
1774 object_class_property_add(klass, "chip-id", "int",
1775 pnv_phb4_root_bus_get_prop,
1776 pnv_phb4_root_bus_set_prop,
1777 NULL, NULL);
1778
1779 /*
1780 * PHB4 has only a single root complex. Enforce the limit on the
1781 * parent bus
1782 */
1783 k->max_dev = 1;
1784 }
1785
1786 static const TypeInfo pnv_phb4_root_bus_info = {
1787 .name = TYPE_PNV_PHB4_ROOT_BUS,
1788 .parent = TYPE_PCIE_BUS,
1789 .instance_size = sizeof(PnvPHB4RootBus),
1790 .class_init = pnv_phb4_root_bus_class_init,
1791 };
1792
pnv_phb4_register_types(void)1793 static void pnv_phb4_register_types(void)
1794 {
1795 type_register_static(&pnv_phb4_root_bus_info);
1796 type_register_static(&pnv_phb4_type_info);
1797 type_register_static(&pnv_phb5_type_info);
1798 type_register_static(&pnv_phb4_iommu_memory_region_info);
1799 }
1800
1801 type_init(pnv_phb4_register_types);
1802
pnv_phb4_pic_print_info(PnvPHB4 * phb,GString * buf)1803 void pnv_phb4_pic_print_info(PnvPHB4 *phb, GString *buf)
1804 {
1805 uint64_t notif_port =
1806 phb->regs[PHB_INT_NOTIFY_ADDR >> 3] & ~PHB_INT_NOTIFY_ADDR_64K;
1807 uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];
1808 bool abt = !!(phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_ABT_MODE);
1809
1810 g_string_append_printf(buf,
1811 "PHB4[%x:%x] Source %08x .. %08x "
1812 "%s @%"HWADDR_PRIx"\n",
1813 phb->chip_id, phb->phb_id,
1814 offset, offset + phb->xsrc.nr_irqs - 1,
1815 abt ? "ABT" : "",
1816 notif_port);
1817 xive_source_pic_print_info(&phb->xsrc, 0, buf);
1818 }
1819