1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/ima.h>
31 #include <linux/syscalls.h>
32 #include <linux/mount.h>
33 #include <linux/audit.h>
34 #include <linux/capability.h>
35 #include <linux/file.h>
36 #include <linux/fcntl.h>
37 #include <linux/device_cgroup.h>
38 #include <linux/fs_struct.h>
39 #include <linux/posix_acl.h>
40 #include <linux/hash.h>
41 #include <linux/bitops.h>
42 #include <linux/init_task.h>
43 #include <linux/uaccess.h>
44
45 #include "internal.h"
46 #include "mount.h"
47
48 /* [Feb-1997 T. Schoebel-Theuer]
49 * Fundamental changes in the pathname lookup mechanisms (namei)
50 * were necessary because of omirr. The reason is that omirr needs
51 * to know the _real_ pathname, not the user-supplied one, in case
52 * of symlinks (and also when transname replacements occur).
53 *
54 * The new code replaces the old recursive symlink resolution with
55 * an iterative one (in case of non-nested symlink chains). It does
56 * this with calls to <fs>_follow_link().
57 * As a side effect, dir_namei(), _namei() and follow_link() are now
58 * replaced with a single function lookup_dentry() that can handle all
59 * the special cases of the former code.
60 *
61 * With the new dcache, the pathname is stored at each inode, at least as
62 * long as the refcount of the inode is positive. As a side effect, the
63 * size of the dcache depends on the inode cache and thus is dynamic.
64 *
65 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
66 * resolution to correspond with current state of the code.
67 *
68 * Note that the symlink resolution is not *completely* iterative.
69 * There is still a significant amount of tail- and mid- recursion in
70 * the algorithm. Also, note that <fs>_readlink() is not used in
71 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
72 * may return different results than <fs>_follow_link(). Many virtual
73 * filesystems (including /proc) exhibit this behavior.
74 */
75
76 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
77 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
78 * and the name already exists in form of a symlink, try to create the new
79 * name indicated by the symlink. The old code always complained that the
80 * name already exists, due to not following the symlink even if its target
81 * is nonexistent. The new semantics affects also mknod() and link() when
82 * the name is a symlink pointing to a non-existent name.
83 *
84 * I don't know which semantics is the right one, since I have no access
85 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
86 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
87 * "old" one. Personally, I think the new semantics is much more logical.
88 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
89 * file does succeed in both HP-UX and SunOs, but not in Solaris
90 * and in the old Linux semantics.
91 */
92
93 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
94 * semantics. See the comments in "open_namei" and "do_link" below.
95 *
96 * [10-Sep-98 Alan Modra] Another symlink change.
97 */
98
99 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
100 * inside the path - always follow.
101 * in the last component in creation/removal/renaming - never follow.
102 * if LOOKUP_FOLLOW passed - follow.
103 * if the pathname has trailing slashes - follow.
104 * otherwise - don't follow.
105 * (applied in that order).
106 *
107 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
108 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
109 * During the 2.4 we need to fix the userland stuff depending on it -
110 * hopefully we will be able to get rid of that wart in 2.5. So far only
111 * XEmacs seems to be relying on it...
112 */
113 /*
114 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
115 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
116 * any extra contention...
117 */
118
119 /* In order to reduce some races, while at the same time doing additional
120 * checking and hopefully speeding things up, we copy filenames to the
121 * kernel data space before using them..
122 *
123 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
124 * PATH_MAX includes the nul terminator --RR.
125 */
126
127 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
128
129 struct filename *
getname_flags(const char __user * filename,int flags,int * empty)130 getname_flags(const char __user *filename, int flags, int *empty)
131 {
132 struct filename *result;
133 char *kname;
134 int len;
135
136 result = audit_reusename(filename);
137 if (result)
138 return result;
139
140 result = __getname();
141 if (unlikely(!result))
142 return ERR_PTR(-ENOMEM);
143
144 /*
145 * First, try to embed the struct filename inside the names_cache
146 * allocation
147 */
148 kname = (char *)result->iname;
149 result->name = kname;
150
151 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
152 if (unlikely(len < 0)) {
153 __putname(result);
154 return ERR_PTR(len);
155 }
156
157 /*
158 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
159 * separate struct filename so we can dedicate the entire
160 * names_cache allocation for the pathname, and re-do the copy from
161 * userland.
162 */
163 if (unlikely(len == EMBEDDED_NAME_MAX)) {
164 const size_t size = offsetof(struct filename, iname[1]);
165 kname = (char *)result;
166
167 /*
168 * size is chosen that way we to guarantee that
169 * result->iname[0] is within the same object and that
170 * kname can't be equal to result->iname, no matter what.
171 */
172 result = kzalloc(size, GFP_KERNEL);
173 if (unlikely(!result)) {
174 __putname(kname);
175 return ERR_PTR(-ENOMEM);
176 }
177 result->name = kname;
178 len = strncpy_from_user(kname, filename, PATH_MAX);
179 if (unlikely(len < 0)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(len);
183 }
184 if (unlikely(len == PATH_MAX)) {
185 __putname(kname);
186 kfree(result);
187 return ERR_PTR(-ENAMETOOLONG);
188 }
189 }
190
191 atomic_set(&result->refcnt, 1);
192 /* The empty path is special. */
193 if (unlikely(!len)) {
194 if (empty)
195 *empty = 1;
196 if (!(flags & LOOKUP_EMPTY)) {
197 putname(result);
198 return ERR_PTR(-ENOENT);
199 }
200 }
201
202 result->uptr = filename;
203 result->aname = NULL;
204 audit_getname(result);
205 return result;
206 }
207
208 struct filename *
getname_uflags(const char __user * filename,int uflags)209 getname_uflags(const char __user *filename, int uflags)
210 {
211 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
212
213 return getname_flags(filename, flags, NULL);
214 }
215
216 struct filename *
getname(const char __user * filename)217 getname(const char __user * filename)
218 {
219 return getname_flags(filename, 0, NULL);
220 }
221
222 struct filename *
getname_kernel(const char * filename)223 getname_kernel(const char * filename)
224 {
225 struct filename *result;
226 int len = strlen(filename) + 1;
227
228 result = __getname();
229 if (unlikely(!result))
230 return ERR_PTR(-ENOMEM);
231
232 if (len <= EMBEDDED_NAME_MAX) {
233 result->name = (char *)result->iname;
234 } else if (len <= PATH_MAX) {
235 const size_t size = offsetof(struct filename, iname[1]);
236 struct filename *tmp;
237
238 tmp = kmalloc(size, GFP_KERNEL);
239 if (unlikely(!tmp)) {
240 __putname(result);
241 return ERR_PTR(-ENOMEM);
242 }
243 tmp->name = (char *)result;
244 result = tmp;
245 } else {
246 __putname(result);
247 return ERR_PTR(-ENAMETOOLONG);
248 }
249 memcpy((char *)result->name, filename, len);
250 result->uptr = NULL;
251 result->aname = NULL;
252 atomic_set(&result->refcnt, 1);
253 audit_getname(result);
254
255 return result;
256 }
257 EXPORT_SYMBOL(getname_kernel);
258
putname(struct filename * name)259 void putname(struct filename *name)
260 {
261 if (IS_ERR(name))
262 return;
263
264 if (WARN_ON_ONCE(!atomic_read(&name->refcnt)))
265 return;
266
267 if (!atomic_dec_and_test(&name->refcnt))
268 return;
269
270 if (name->name != name->iname) {
271 __putname(name->name);
272 kfree(name);
273 } else
274 __putname(name);
275 }
276 EXPORT_SYMBOL(putname);
277
278 /**
279 * check_acl - perform ACL permission checking
280 * @idmap: idmap of the mount the inode was found from
281 * @inode: inode to check permissions on
282 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
283 *
284 * This function performs the ACL permission checking. Since this function
285 * retrieve POSIX acls it needs to know whether it is called from a blocking or
286 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
287 *
288 * If the inode has been found through an idmapped mount the idmap of
289 * the vfsmount must be passed through @idmap. This function will then take
290 * care to map the inode according to @idmap before checking permissions.
291 * On non-idmapped mounts or if permission checking is to be performed on the
292 * raw inode simply passs @nop_mnt_idmap.
293 */
check_acl(struct mnt_idmap * idmap,struct inode * inode,int mask)294 static int check_acl(struct mnt_idmap *idmap,
295 struct inode *inode, int mask)
296 {
297 #ifdef CONFIG_FS_POSIX_ACL
298 struct posix_acl *acl;
299
300 if (mask & MAY_NOT_BLOCK) {
301 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
302 if (!acl)
303 return -EAGAIN;
304 /* no ->get_inode_acl() calls in RCU mode... */
305 if (is_uncached_acl(acl))
306 return -ECHILD;
307 return posix_acl_permission(idmap, inode, acl, mask);
308 }
309
310 acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
311 if (IS_ERR(acl))
312 return PTR_ERR(acl);
313 if (acl) {
314 int error = posix_acl_permission(idmap, inode, acl, mask);
315 posix_acl_release(acl);
316 return error;
317 }
318 #endif
319
320 return -EAGAIN;
321 }
322
323 /**
324 * acl_permission_check - perform basic UNIX permission checking
325 * @idmap: idmap of the mount the inode was found from
326 * @inode: inode to check permissions on
327 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
328 *
329 * This function performs the basic UNIX permission checking. Since this
330 * function may retrieve POSIX acls it needs to know whether it is called from a
331 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
332 *
333 * If the inode has been found through an idmapped mount the idmap of
334 * the vfsmount must be passed through @idmap. This function will then take
335 * care to map the inode according to @idmap before checking permissions.
336 * On non-idmapped mounts or if permission checking is to be performed on the
337 * raw inode simply passs @nop_mnt_idmap.
338 */
acl_permission_check(struct mnt_idmap * idmap,struct inode * inode,int mask)339 static int acl_permission_check(struct mnt_idmap *idmap,
340 struct inode *inode, int mask)
341 {
342 unsigned int mode = inode->i_mode;
343 vfsuid_t vfsuid;
344
345 /* Are we the owner? If so, ACL's don't matter */
346 vfsuid = i_uid_into_vfsuid(idmap, inode);
347 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
348 mask &= 7;
349 mode >>= 6;
350 return (mask & ~mode) ? -EACCES : 0;
351 }
352
353 /* Do we have ACL's? */
354 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
355 int error = check_acl(idmap, inode, mask);
356 if (error != -EAGAIN)
357 return error;
358 }
359
360 /* Only RWX matters for group/other mode bits */
361 mask &= 7;
362
363 /*
364 * Are the group permissions different from
365 * the other permissions in the bits we care
366 * about? Need to check group ownership if so.
367 */
368 if (mask & (mode ^ (mode >> 3))) {
369 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
370 if (vfsgid_in_group_p(vfsgid))
371 mode >>= 3;
372 }
373
374 /* Bits in 'mode' clear that we require? */
375 return (mask & ~mode) ? -EACCES : 0;
376 }
377
378 /**
379 * generic_permission - check for access rights on a Posix-like filesystem
380 * @idmap: idmap of the mount the inode was found from
381 * @inode: inode to check access rights for
382 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
383 * %MAY_NOT_BLOCK ...)
384 *
385 * Used to check for read/write/execute permissions on a file.
386 * We use "fsuid" for this, letting us set arbitrary permissions
387 * for filesystem access without changing the "normal" uids which
388 * are used for other things.
389 *
390 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
391 * request cannot be satisfied (eg. requires blocking or too much complexity).
392 * It would then be called again in ref-walk mode.
393 *
394 * If the inode has been found through an idmapped mount the idmap of
395 * the vfsmount must be passed through @idmap. This function will then take
396 * care to map the inode according to @idmap before checking permissions.
397 * On non-idmapped mounts or if permission checking is to be performed on the
398 * raw inode simply passs @nop_mnt_idmap.
399 */
generic_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)400 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
401 int mask)
402 {
403 int ret;
404
405 /*
406 * Do the basic permission checks.
407 */
408 ret = acl_permission_check(idmap, inode, mask);
409 if (ret != -EACCES)
410 return ret;
411
412 if (S_ISDIR(inode->i_mode)) {
413 /* DACs are overridable for directories */
414 if (!(mask & MAY_WRITE))
415 if (capable_wrt_inode_uidgid(idmap, inode,
416 CAP_DAC_READ_SEARCH))
417 return 0;
418 if (capable_wrt_inode_uidgid(idmap, inode,
419 CAP_DAC_OVERRIDE))
420 return 0;
421 return -EACCES;
422 }
423
424 /*
425 * Searching includes executable on directories, else just read.
426 */
427 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
428 if (mask == MAY_READ)
429 if (capable_wrt_inode_uidgid(idmap, inode,
430 CAP_DAC_READ_SEARCH))
431 return 0;
432 /*
433 * Read/write DACs are always overridable.
434 * Executable DACs are overridable when there is
435 * at least one exec bit set.
436 */
437 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
438 if (capable_wrt_inode_uidgid(idmap, inode,
439 CAP_DAC_OVERRIDE))
440 return 0;
441
442 return -EACCES;
443 }
444 EXPORT_SYMBOL(generic_permission);
445
446 /**
447 * do_inode_permission - UNIX permission checking
448 * @idmap: idmap of the mount the inode was found from
449 * @inode: inode to check permissions on
450 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
451 *
452 * We _really_ want to just do "generic_permission()" without
453 * even looking at the inode->i_op values. So we keep a cache
454 * flag in inode->i_opflags, that says "this has not special
455 * permission function, use the fast case".
456 */
do_inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)457 static inline int do_inode_permission(struct mnt_idmap *idmap,
458 struct inode *inode, int mask)
459 {
460 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
461 if (likely(inode->i_op->permission))
462 return inode->i_op->permission(idmap, inode, mask);
463
464 /* This gets set once for the inode lifetime */
465 spin_lock(&inode->i_lock);
466 inode->i_opflags |= IOP_FASTPERM;
467 spin_unlock(&inode->i_lock);
468 }
469 return generic_permission(idmap, inode, mask);
470 }
471
472 /**
473 * sb_permission - Check superblock-level permissions
474 * @sb: Superblock of inode to check permission on
475 * @inode: Inode to check permission on
476 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
477 *
478 * Separate out file-system wide checks from inode-specific permission checks.
479 */
sb_permission(struct super_block * sb,struct inode * inode,int mask)480 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
481 {
482 if (unlikely(mask & MAY_WRITE)) {
483 umode_t mode = inode->i_mode;
484
485 /* Nobody gets write access to a read-only fs. */
486 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
487 return -EROFS;
488 }
489 return 0;
490 }
491
492 /**
493 * inode_permission - Check for access rights to a given inode
494 * @idmap: idmap of the mount the inode was found from
495 * @inode: Inode to check permission on
496 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
497 *
498 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
499 * this, letting us set arbitrary permissions for filesystem access without
500 * changing the "normal" UIDs which are used for other things.
501 *
502 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
503 */
inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)504 int inode_permission(struct mnt_idmap *idmap,
505 struct inode *inode, int mask)
506 {
507 int retval;
508
509 retval = sb_permission(inode->i_sb, inode, mask);
510 if (retval)
511 return retval;
512
513 if (unlikely(mask & MAY_WRITE)) {
514 /*
515 * Nobody gets write access to an immutable file.
516 */
517 if (IS_IMMUTABLE(inode))
518 return -EPERM;
519
520 /*
521 * Updating mtime will likely cause i_uid and i_gid to be
522 * written back improperly if their true value is unknown
523 * to the vfs.
524 */
525 if (HAS_UNMAPPED_ID(idmap, inode))
526 return -EACCES;
527 }
528
529 retval = do_inode_permission(idmap, inode, mask);
530 if (retval)
531 return retval;
532
533 retval = devcgroup_inode_permission(inode, mask);
534 if (retval)
535 return retval;
536
537 return security_inode_permission(inode, mask);
538 }
539 EXPORT_SYMBOL(inode_permission);
540
541 /**
542 * path_get - get a reference to a path
543 * @path: path to get the reference to
544 *
545 * Given a path increment the reference count to the dentry and the vfsmount.
546 */
path_get(const struct path * path)547 void path_get(const struct path *path)
548 {
549 mntget(path->mnt);
550 dget(path->dentry);
551 }
552 EXPORT_SYMBOL(path_get);
553
554 /**
555 * path_put - put a reference to a path
556 * @path: path to put the reference to
557 *
558 * Given a path decrement the reference count to the dentry and the vfsmount.
559 */
path_put(const struct path * path)560 void path_put(const struct path *path)
561 {
562 dput(path->dentry);
563 mntput(path->mnt);
564 }
565 EXPORT_SYMBOL(path_put);
566
567 #define EMBEDDED_LEVELS 2
568 struct nameidata {
569 struct path path;
570 struct qstr last;
571 struct path root;
572 struct inode *inode; /* path.dentry.d_inode */
573 unsigned int flags, state;
574 unsigned seq, next_seq, m_seq, r_seq;
575 int last_type;
576 unsigned depth;
577 int total_link_count;
578 struct saved {
579 struct path link;
580 struct delayed_call done;
581 const char *name;
582 unsigned seq;
583 } *stack, internal[EMBEDDED_LEVELS];
584 struct filename *name;
585 struct nameidata *saved;
586 unsigned root_seq;
587 int dfd;
588 vfsuid_t dir_vfsuid;
589 umode_t dir_mode;
590 } __randomize_layout;
591
592 #define ND_ROOT_PRESET 1
593 #define ND_ROOT_GRABBED 2
594 #define ND_JUMPED 4
595
__set_nameidata(struct nameidata * p,int dfd,struct filename * name)596 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
597 {
598 struct nameidata *old = current->nameidata;
599 p->stack = p->internal;
600 p->depth = 0;
601 p->dfd = dfd;
602 p->name = name;
603 p->path.mnt = NULL;
604 p->path.dentry = NULL;
605 p->total_link_count = old ? old->total_link_count : 0;
606 p->saved = old;
607 current->nameidata = p;
608 }
609
set_nameidata(struct nameidata * p,int dfd,struct filename * name,const struct path * root)610 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
611 const struct path *root)
612 {
613 __set_nameidata(p, dfd, name);
614 p->state = 0;
615 if (unlikely(root)) {
616 p->state = ND_ROOT_PRESET;
617 p->root = *root;
618 }
619 }
620
restore_nameidata(void)621 static void restore_nameidata(void)
622 {
623 struct nameidata *now = current->nameidata, *old = now->saved;
624
625 current->nameidata = old;
626 if (old)
627 old->total_link_count = now->total_link_count;
628 if (now->stack != now->internal)
629 kfree(now->stack);
630 }
631
nd_alloc_stack(struct nameidata * nd)632 static bool nd_alloc_stack(struct nameidata *nd)
633 {
634 struct saved *p;
635
636 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
637 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
638 if (unlikely(!p))
639 return false;
640 memcpy(p, nd->internal, sizeof(nd->internal));
641 nd->stack = p;
642 return true;
643 }
644
645 /**
646 * path_connected - Verify that a dentry is below mnt.mnt_root
647 * @mnt: The mountpoint to check.
648 * @dentry: The dentry to check.
649 *
650 * Rename can sometimes move a file or directory outside of a bind
651 * mount, path_connected allows those cases to be detected.
652 */
path_connected(struct vfsmount * mnt,struct dentry * dentry)653 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
654 {
655 struct super_block *sb = mnt->mnt_sb;
656
657 /* Bind mounts can have disconnected paths */
658 if (mnt->mnt_root == sb->s_root)
659 return true;
660
661 return is_subdir(dentry, mnt->mnt_root);
662 }
663
drop_links(struct nameidata * nd)664 static void drop_links(struct nameidata *nd)
665 {
666 int i = nd->depth;
667 while (i--) {
668 struct saved *last = nd->stack + i;
669 do_delayed_call(&last->done);
670 clear_delayed_call(&last->done);
671 }
672 }
673
leave_rcu(struct nameidata * nd)674 static void leave_rcu(struct nameidata *nd)
675 {
676 nd->flags &= ~LOOKUP_RCU;
677 nd->seq = nd->next_seq = 0;
678 rcu_read_unlock();
679 }
680
terminate_walk(struct nameidata * nd)681 static void terminate_walk(struct nameidata *nd)
682 {
683 drop_links(nd);
684 if (!(nd->flags & LOOKUP_RCU)) {
685 int i;
686 path_put(&nd->path);
687 for (i = 0; i < nd->depth; i++)
688 path_put(&nd->stack[i].link);
689 if (nd->state & ND_ROOT_GRABBED) {
690 path_put(&nd->root);
691 nd->state &= ~ND_ROOT_GRABBED;
692 }
693 } else {
694 leave_rcu(nd);
695 }
696 nd->depth = 0;
697 nd->path.mnt = NULL;
698 nd->path.dentry = NULL;
699 }
700
701 /* path_put is needed afterwards regardless of success or failure */
__legitimize_path(struct path * path,unsigned seq,unsigned mseq)702 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
703 {
704 int res = __legitimize_mnt(path->mnt, mseq);
705 if (unlikely(res)) {
706 if (res > 0)
707 path->mnt = NULL;
708 path->dentry = NULL;
709 return false;
710 }
711 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
712 path->dentry = NULL;
713 return false;
714 }
715 return !read_seqcount_retry(&path->dentry->d_seq, seq);
716 }
717
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)718 static inline bool legitimize_path(struct nameidata *nd,
719 struct path *path, unsigned seq)
720 {
721 return __legitimize_path(path, seq, nd->m_seq);
722 }
723
legitimize_links(struct nameidata * nd)724 static bool legitimize_links(struct nameidata *nd)
725 {
726 int i;
727 if (unlikely(nd->flags & LOOKUP_CACHED)) {
728 drop_links(nd);
729 nd->depth = 0;
730 return false;
731 }
732 for (i = 0; i < nd->depth; i++) {
733 struct saved *last = nd->stack + i;
734 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
735 drop_links(nd);
736 nd->depth = i + 1;
737 return false;
738 }
739 }
740 return true;
741 }
742
legitimize_root(struct nameidata * nd)743 static bool legitimize_root(struct nameidata *nd)
744 {
745 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
746 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
747 return true;
748 nd->state |= ND_ROOT_GRABBED;
749 return legitimize_path(nd, &nd->root, nd->root_seq);
750 }
751
752 /*
753 * Path walking has 2 modes, rcu-walk and ref-walk (see
754 * Documentation/filesystems/path-lookup.txt). In situations when we can't
755 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
756 * normal reference counts on dentries and vfsmounts to transition to ref-walk
757 * mode. Refcounts are grabbed at the last known good point before rcu-walk
758 * got stuck, so ref-walk may continue from there. If this is not successful
759 * (eg. a seqcount has changed), then failure is returned and it's up to caller
760 * to restart the path walk from the beginning in ref-walk mode.
761 */
762
763 /**
764 * try_to_unlazy - try to switch to ref-walk mode.
765 * @nd: nameidata pathwalk data
766 * Returns: true on success, false on failure
767 *
768 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
769 * for ref-walk mode.
770 * Must be called from rcu-walk context.
771 * Nothing should touch nameidata between try_to_unlazy() failure and
772 * terminate_walk().
773 */
try_to_unlazy(struct nameidata * nd)774 static bool try_to_unlazy(struct nameidata *nd)
775 {
776 struct dentry *parent = nd->path.dentry;
777
778 BUG_ON(!(nd->flags & LOOKUP_RCU));
779
780 if (unlikely(!legitimize_links(nd)))
781 goto out1;
782 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
783 goto out;
784 if (unlikely(!legitimize_root(nd)))
785 goto out;
786 leave_rcu(nd);
787 BUG_ON(nd->inode != parent->d_inode);
788 return true;
789
790 out1:
791 nd->path.mnt = NULL;
792 nd->path.dentry = NULL;
793 out:
794 leave_rcu(nd);
795 return false;
796 }
797
798 /**
799 * try_to_unlazy_next - try to switch to ref-walk mode.
800 * @nd: nameidata pathwalk data
801 * @dentry: next dentry to step into
802 * Returns: true on success, false on failure
803 *
804 * Similar to try_to_unlazy(), but here we have the next dentry already
805 * picked by rcu-walk and want to legitimize that in addition to the current
806 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
807 * Nothing should touch nameidata between try_to_unlazy_next() failure and
808 * terminate_walk().
809 */
try_to_unlazy_next(struct nameidata * nd,struct dentry * dentry)810 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
811 {
812 int res;
813 BUG_ON(!(nd->flags & LOOKUP_RCU));
814
815 if (unlikely(!legitimize_links(nd)))
816 goto out2;
817 res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
818 if (unlikely(res)) {
819 if (res > 0)
820 goto out2;
821 goto out1;
822 }
823 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
824 goto out1;
825
826 /*
827 * We need to move both the parent and the dentry from the RCU domain
828 * to be properly refcounted. And the sequence number in the dentry
829 * validates *both* dentry counters, since we checked the sequence
830 * number of the parent after we got the child sequence number. So we
831 * know the parent must still be valid if the child sequence number is
832 */
833 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
834 goto out;
835 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
836 goto out_dput;
837 /*
838 * Sequence counts matched. Now make sure that the root is
839 * still valid and get it if required.
840 */
841 if (unlikely(!legitimize_root(nd)))
842 goto out_dput;
843 leave_rcu(nd);
844 return true;
845
846 out2:
847 nd->path.mnt = NULL;
848 out1:
849 nd->path.dentry = NULL;
850 out:
851 leave_rcu(nd);
852 return false;
853 out_dput:
854 leave_rcu(nd);
855 dput(dentry);
856 return false;
857 }
858
d_revalidate(struct dentry * dentry,unsigned int flags)859 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
860 {
861 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
862 return dentry->d_op->d_revalidate(dentry, flags);
863 else
864 return 1;
865 }
866
867 /**
868 * complete_walk - successful completion of path walk
869 * @nd: pointer nameidata
870 *
871 * If we had been in RCU mode, drop out of it and legitimize nd->path.
872 * Revalidate the final result, unless we'd already done that during
873 * the path walk or the filesystem doesn't ask for it. Return 0 on
874 * success, -error on failure. In case of failure caller does not
875 * need to drop nd->path.
876 */
complete_walk(struct nameidata * nd)877 static int complete_walk(struct nameidata *nd)
878 {
879 struct dentry *dentry = nd->path.dentry;
880 int status;
881
882 if (nd->flags & LOOKUP_RCU) {
883 /*
884 * We don't want to zero nd->root for scoped-lookups or
885 * externally-managed nd->root.
886 */
887 if (!(nd->state & ND_ROOT_PRESET))
888 if (!(nd->flags & LOOKUP_IS_SCOPED))
889 nd->root.mnt = NULL;
890 nd->flags &= ~LOOKUP_CACHED;
891 if (!try_to_unlazy(nd))
892 return -ECHILD;
893 }
894
895 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
896 /*
897 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
898 * ever step outside the root during lookup" and should already
899 * be guaranteed by the rest of namei, we want to avoid a namei
900 * BUG resulting in userspace being given a path that was not
901 * scoped within the root at some point during the lookup.
902 *
903 * So, do a final sanity-check to make sure that in the
904 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
905 * we won't silently return an fd completely outside of the
906 * requested root to userspace.
907 *
908 * Userspace could move the path outside the root after this
909 * check, but as discussed elsewhere this is not a concern (the
910 * resolved file was inside the root at some point).
911 */
912 if (!path_is_under(&nd->path, &nd->root))
913 return -EXDEV;
914 }
915
916 if (likely(!(nd->state & ND_JUMPED)))
917 return 0;
918
919 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
920 return 0;
921
922 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
923 if (status > 0)
924 return 0;
925
926 if (!status)
927 status = -ESTALE;
928
929 return status;
930 }
931
set_root(struct nameidata * nd)932 static int set_root(struct nameidata *nd)
933 {
934 struct fs_struct *fs = current->fs;
935
936 /*
937 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
938 * still have to ensure it doesn't happen because it will cause a breakout
939 * from the dirfd.
940 */
941 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
942 return -ENOTRECOVERABLE;
943
944 if (nd->flags & LOOKUP_RCU) {
945 unsigned seq;
946
947 do {
948 seq = read_seqcount_begin(&fs->seq);
949 nd->root = fs->root;
950 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
951 } while (read_seqcount_retry(&fs->seq, seq));
952 } else {
953 get_fs_root(fs, &nd->root);
954 nd->state |= ND_ROOT_GRABBED;
955 }
956 return 0;
957 }
958
nd_jump_root(struct nameidata * nd)959 static int nd_jump_root(struct nameidata *nd)
960 {
961 if (unlikely(nd->flags & LOOKUP_BENEATH))
962 return -EXDEV;
963 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
964 /* Absolute path arguments to path_init() are allowed. */
965 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
966 return -EXDEV;
967 }
968 if (!nd->root.mnt) {
969 int error = set_root(nd);
970 if (error)
971 return error;
972 }
973 if (nd->flags & LOOKUP_RCU) {
974 struct dentry *d;
975 nd->path = nd->root;
976 d = nd->path.dentry;
977 nd->inode = d->d_inode;
978 nd->seq = nd->root_seq;
979 if (read_seqcount_retry(&d->d_seq, nd->seq))
980 return -ECHILD;
981 } else {
982 path_put(&nd->path);
983 nd->path = nd->root;
984 path_get(&nd->path);
985 nd->inode = nd->path.dentry->d_inode;
986 }
987 nd->state |= ND_JUMPED;
988 return 0;
989 }
990
991 /*
992 * Helper to directly jump to a known parsed path from ->get_link,
993 * caller must have taken a reference to path beforehand.
994 */
nd_jump_link(const struct path * path)995 int nd_jump_link(const struct path *path)
996 {
997 int error = -ELOOP;
998 struct nameidata *nd = current->nameidata;
999
1000 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1001 goto err;
1002
1003 error = -EXDEV;
1004 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1005 if (nd->path.mnt != path->mnt)
1006 goto err;
1007 }
1008 /* Not currently safe for scoped-lookups. */
1009 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1010 goto err;
1011
1012 path_put(&nd->path);
1013 nd->path = *path;
1014 nd->inode = nd->path.dentry->d_inode;
1015 nd->state |= ND_JUMPED;
1016 return 0;
1017
1018 err:
1019 path_put(path);
1020 return error;
1021 }
1022
put_link(struct nameidata * nd)1023 static inline void put_link(struct nameidata *nd)
1024 {
1025 struct saved *last = nd->stack + --nd->depth;
1026 do_delayed_call(&last->done);
1027 if (!(nd->flags & LOOKUP_RCU))
1028 path_put(&last->link);
1029 }
1030
1031 static int sysctl_protected_symlinks __read_mostly;
1032 static int sysctl_protected_hardlinks __read_mostly;
1033 static int sysctl_protected_fifos __read_mostly;
1034 static int sysctl_protected_regular __read_mostly;
1035
1036 #ifdef CONFIG_SYSCTL
1037 static struct ctl_table namei_sysctls[] = {
1038 {
1039 .procname = "protected_symlinks",
1040 .data = &sysctl_protected_symlinks,
1041 .maxlen = sizeof(int),
1042 .mode = 0644,
1043 .proc_handler = proc_dointvec_minmax,
1044 .extra1 = SYSCTL_ZERO,
1045 .extra2 = SYSCTL_ONE,
1046 },
1047 {
1048 .procname = "protected_hardlinks",
1049 .data = &sysctl_protected_hardlinks,
1050 .maxlen = sizeof(int),
1051 .mode = 0644,
1052 .proc_handler = proc_dointvec_minmax,
1053 .extra1 = SYSCTL_ZERO,
1054 .extra2 = SYSCTL_ONE,
1055 },
1056 {
1057 .procname = "protected_fifos",
1058 .data = &sysctl_protected_fifos,
1059 .maxlen = sizeof(int),
1060 .mode = 0644,
1061 .proc_handler = proc_dointvec_minmax,
1062 .extra1 = SYSCTL_ZERO,
1063 .extra2 = SYSCTL_TWO,
1064 },
1065 {
1066 .procname = "protected_regular",
1067 .data = &sysctl_protected_regular,
1068 .maxlen = sizeof(int),
1069 .mode = 0644,
1070 .proc_handler = proc_dointvec_minmax,
1071 .extra1 = SYSCTL_ZERO,
1072 .extra2 = SYSCTL_TWO,
1073 },
1074 { }
1075 };
1076
init_fs_namei_sysctls(void)1077 static int __init init_fs_namei_sysctls(void)
1078 {
1079 register_sysctl_init("fs", namei_sysctls);
1080 return 0;
1081 }
1082 fs_initcall(init_fs_namei_sysctls);
1083
1084 #endif /* CONFIG_SYSCTL */
1085
1086 /**
1087 * may_follow_link - Check symlink following for unsafe situations
1088 * @nd: nameidata pathwalk data
1089 * @inode: Used for idmapping.
1090 *
1091 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1092 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1093 * in a sticky world-writable directory. This is to protect privileged
1094 * processes from failing races against path names that may change out
1095 * from under them by way of other users creating malicious symlinks.
1096 * It will permit symlinks to be followed only when outside a sticky
1097 * world-writable directory, or when the uid of the symlink and follower
1098 * match, or when the directory owner matches the symlink's owner.
1099 *
1100 * Returns 0 if following the symlink is allowed, -ve on error.
1101 */
may_follow_link(struct nameidata * nd,const struct inode * inode)1102 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1103 {
1104 struct mnt_idmap *idmap;
1105 vfsuid_t vfsuid;
1106
1107 if (!sysctl_protected_symlinks)
1108 return 0;
1109
1110 idmap = mnt_idmap(nd->path.mnt);
1111 vfsuid = i_uid_into_vfsuid(idmap, inode);
1112 /* Allowed if owner and follower match. */
1113 if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1114 return 0;
1115
1116 /* Allowed if parent directory not sticky and world-writable. */
1117 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1118 return 0;
1119
1120 /* Allowed if parent directory and link owner match. */
1121 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1122 return 0;
1123
1124 if (nd->flags & LOOKUP_RCU)
1125 return -ECHILD;
1126
1127 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1128 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1129 return -EACCES;
1130 }
1131
1132 /**
1133 * safe_hardlink_source - Check for safe hardlink conditions
1134 * @idmap: idmap of the mount the inode was found from
1135 * @inode: the source inode to hardlink from
1136 *
1137 * Return false if at least one of the following conditions:
1138 * - inode is not a regular file
1139 * - inode is setuid
1140 * - inode is setgid and group-exec
1141 * - access failure for read and write
1142 *
1143 * Otherwise returns true.
1144 */
safe_hardlink_source(struct mnt_idmap * idmap,struct inode * inode)1145 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1146 struct inode *inode)
1147 {
1148 umode_t mode = inode->i_mode;
1149
1150 /* Special files should not get pinned to the filesystem. */
1151 if (!S_ISREG(mode))
1152 return false;
1153
1154 /* Setuid files should not get pinned to the filesystem. */
1155 if (mode & S_ISUID)
1156 return false;
1157
1158 /* Executable setgid files should not get pinned to the filesystem. */
1159 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1160 return false;
1161
1162 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1163 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1164 return false;
1165
1166 return true;
1167 }
1168
1169 /**
1170 * may_linkat - Check permissions for creating a hardlink
1171 * @idmap: idmap of the mount the inode was found from
1172 * @link: the source to hardlink from
1173 *
1174 * Block hardlink when all of:
1175 * - sysctl_protected_hardlinks enabled
1176 * - fsuid does not match inode
1177 * - hardlink source is unsafe (see safe_hardlink_source() above)
1178 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1179 *
1180 * If the inode has been found through an idmapped mount the idmap of
1181 * the vfsmount must be passed through @idmap. This function will then take
1182 * care to map the inode according to @idmap before checking permissions.
1183 * On non-idmapped mounts or if permission checking is to be performed on the
1184 * raw inode simply pass @nop_mnt_idmap.
1185 *
1186 * Returns 0 if successful, -ve on error.
1187 */
may_linkat(struct mnt_idmap * idmap,const struct path * link)1188 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1189 {
1190 struct inode *inode = link->dentry->d_inode;
1191
1192 /* Inode writeback is not safe when the uid or gid are invalid. */
1193 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1194 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1195 return -EOVERFLOW;
1196
1197 if (!sysctl_protected_hardlinks)
1198 return 0;
1199
1200 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1201 * otherwise, it must be a safe source.
1202 */
1203 if (safe_hardlink_source(idmap, inode) ||
1204 inode_owner_or_capable(idmap, inode))
1205 return 0;
1206
1207 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1208 return -EPERM;
1209 }
1210
1211 /**
1212 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1213 * should be allowed, or not, on files that already
1214 * exist.
1215 * @idmap: idmap of the mount the inode was found from
1216 * @nd: nameidata pathwalk data
1217 * @inode: the inode of the file to open
1218 *
1219 * Block an O_CREAT open of a FIFO (or a regular file) when:
1220 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1221 * - the file already exists
1222 * - we are in a sticky directory
1223 * - we don't own the file
1224 * - the owner of the directory doesn't own the file
1225 * - the directory is world writable
1226 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1227 * the directory doesn't have to be world writable: being group writable will
1228 * be enough.
1229 *
1230 * If the inode has been found through an idmapped mount the idmap of
1231 * the vfsmount must be passed through @idmap. This function will then take
1232 * care to map the inode according to @idmap before checking permissions.
1233 * On non-idmapped mounts or if permission checking is to be performed on the
1234 * raw inode simply pass @nop_mnt_idmap.
1235 *
1236 * Returns 0 if the open is allowed, -ve on error.
1237 */
may_create_in_sticky(struct mnt_idmap * idmap,struct nameidata * nd,struct inode * const inode)1238 static int may_create_in_sticky(struct mnt_idmap *idmap,
1239 struct nameidata *nd, struct inode *const inode)
1240 {
1241 umode_t dir_mode = nd->dir_mode;
1242 vfsuid_t dir_vfsuid = nd->dir_vfsuid;
1243
1244 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1245 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1246 likely(!(dir_mode & S_ISVTX)) ||
1247 vfsuid_eq(i_uid_into_vfsuid(idmap, inode), dir_vfsuid) ||
1248 vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), current_fsuid()))
1249 return 0;
1250
1251 if (likely(dir_mode & 0002) ||
1252 (dir_mode & 0020 &&
1253 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1254 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1255 const char *operation = S_ISFIFO(inode->i_mode) ?
1256 "sticky_create_fifo" :
1257 "sticky_create_regular";
1258 audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1259 return -EACCES;
1260 }
1261 return 0;
1262 }
1263
1264 /*
1265 * follow_up - Find the mountpoint of path's vfsmount
1266 *
1267 * Given a path, find the mountpoint of its source file system.
1268 * Replace @path with the path of the mountpoint in the parent mount.
1269 * Up is towards /.
1270 *
1271 * Return 1 if we went up a level and 0 if we were already at the
1272 * root.
1273 */
follow_up(struct path * path)1274 int follow_up(struct path *path)
1275 {
1276 struct mount *mnt = real_mount(path->mnt);
1277 struct mount *parent;
1278 struct dentry *mountpoint;
1279
1280 read_seqlock_excl(&mount_lock);
1281 parent = mnt->mnt_parent;
1282 if (parent == mnt) {
1283 read_sequnlock_excl(&mount_lock);
1284 return 0;
1285 }
1286 mntget(&parent->mnt);
1287 mountpoint = dget(mnt->mnt_mountpoint);
1288 read_sequnlock_excl(&mount_lock);
1289 dput(path->dentry);
1290 path->dentry = mountpoint;
1291 mntput(path->mnt);
1292 path->mnt = &parent->mnt;
1293 return 1;
1294 }
1295 EXPORT_SYMBOL(follow_up);
1296
choose_mountpoint_rcu(struct mount * m,const struct path * root,struct path * path,unsigned * seqp)1297 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1298 struct path *path, unsigned *seqp)
1299 {
1300 while (mnt_has_parent(m)) {
1301 struct dentry *mountpoint = m->mnt_mountpoint;
1302
1303 m = m->mnt_parent;
1304 if (unlikely(root->dentry == mountpoint &&
1305 root->mnt == &m->mnt))
1306 break;
1307 if (mountpoint != m->mnt.mnt_root) {
1308 path->mnt = &m->mnt;
1309 path->dentry = mountpoint;
1310 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1311 return true;
1312 }
1313 }
1314 return false;
1315 }
1316
choose_mountpoint(struct mount * m,const struct path * root,struct path * path)1317 static bool choose_mountpoint(struct mount *m, const struct path *root,
1318 struct path *path)
1319 {
1320 bool found;
1321
1322 rcu_read_lock();
1323 while (1) {
1324 unsigned seq, mseq = read_seqbegin(&mount_lock);
1325
1326 found = choose_mountpoint_rcu(m, root, path, &seq);
1327 if (unlikely(!found)) {
1328 if (!read_seqretry(&mount_lock, mseq))
1329 break;
1330 } else {
1331 if (likely(__legitimize_path(path, seq, mseq)))
1332 break;
1333 rcu_read_unlock();
1334 path_put(path);
1335 rcu_read_lock();
1336 }
1337 }
1338 rcu_read_unlock();
1339 return found;
1340 }
1341
1342 /*
1343 * Perform an automount
1344 * - return -EISDIR to tell follow_managed() to stop and return the path we
1345 * were called with.
1346 */
follow_automount(struct path * path,int * count,unsigned lookup_flags)1347 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1348 {
1349 struct dentry *dentry = path->dentry;
1350
1351 /* We don't want to mount if someone's just doing a stat -
1352 * unless they're stat'ing a directory and appended a '/' to
1353 * the name.
1354 *
1355 * We do, however, want to mount if someone wants to open or
1356 * create a file of any type under the mountpoint, wants to
1357 * traverse through the mountpoint or wants to open the
1358 * mounted directory. Also, autofs may mark negative dentries
1359 * as being automount points. These will need the attentions
1360 * of the daemon to instantiate them before they can be used.
1361 */
1362 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1363 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1364 dentry->d_inode)
1365 return -EISDIR;
1366
1367 if (count && (*count)++ >= MAXSYMLINKS)
1368 return -ELOOP;
1369
1370 return finish_automount(dentry->d_op->d_automount(path), path);
1371 }
1372
1373 /*
1374 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1375 * dentries are pinned but not locked here, so negative dentry can go
1376 * positive right under us. Use of smp_load_acquire() provides a barrier
1377 * sufficient for ->d_inode and ->d_flags consistency.
1378 */
__traverse_mounts(struct path * path,unsigned flags,bool * jumped,int * count,unsigned lookup_flags)1379 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1380 int *count, unsigned lookup_flags)
1381 {
1382 struct vfsmount *mnt = path->mnt;
1383 bool need_mntput = false;
1384 int ret = 0;
1385
1386 while (flags & DCACHE_MANAGED_DENTRY) {
1387 /* Allow the filesystem to manage the transit without i_mutex
1388 * being held. */
1389 if (flags & DCACHE_MANAGE_TRANSIT) {
1390 ret = path->dentry->d_op->d_manage(path, false);
1391 flags = smp_load_acquire(&path->dentry->d_flags);
1392 if (ret < 0)
1393 break;
1394 }
1395
1396 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1397 struct vfsmount *mounted = lookup_mnt(path);
1398 if (mounted) { // ... in our namespace
1399 dput(path->dentry);
1400 if (need_mntput)
1401 mntput(path->mnt);
1402 path->mnt = mounted;
1403 path->dentry = dget(mounted->mnt_root);
1404 // here we know it's positive
1405 flags = path->dentry->d_flags;
1406 need_mntput = true;
1407 continue;
1408 }
1409 }
1410
1411 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1412 break;
1413
1414 // uncovered automount point
1415 ret = follow_automount(path, count, lookup_flags);
1416 flags = smp_load_acquire(&path->dentry->d_flags);
1417 if (ret < 0)
1418 break;
1419 }
1420
1421 if (ret == -EISDIR)
1422 ret = 0;
1423 // possible if you race with several mount --move
1424 if (need_mntput && path->mnt == mnt)
1425 mntput(path->mnt);
1426 if (!ret && unlikely(d_flags_negative(flags)))
1427 ret = -ENOENT;
1428 *jumped = need_mntput;
1429 return ret;
1430 }
1431
traverse_mounts(struct path * path,bool * jumped,int * count,unsigned lookup_flags)1432 static inline int traverse_mounts(struct path *path, bool *jumped,
1433 int *count, unsigned lookup_flags)
1434 {
1435 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1436
1437 /* fastpath */
1438 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1439 *jumped = false;
1440 if (unlikely(d_flags_negative(flags)))
1441 return -ENOENT;
1442 return 0;
1443 }
1444 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1445 }
1446
follow_down_one(struct path * path)1447 int follow_down_one(struct path *path)
1448 {
1449 struct vfsmount *mounted;
1450
1451 mounted = lookup_mnt(path);
1452 if (mounted) {
1453 dput(path->dentry);
1454 mntput(path->mnt);
1455 path->mnt = mounted;
1456 path->dentry = dget(mounted->mnt_root);
1457 return 1;
1458 }
1459 return 0;
1460 }
1461 EXPORT_SYMBOL(follow_down_one);
1462
1463 /*
1464 * Follow down to the covering mount currently visible to userspace. At each
1465 * point, the filesystem owning that dentry may be queried as to whether the
1466 * caller is permitted to proceed or not.
1467 */
follow_down(struct path * path,unsigned int flags)1468 int follow_down(struct path *path, unsigned int flags)
1469 {
1470 struct vfsmount *mnt = path->mnt;
1471 bool jumped;
1472 int ret = traverse_mounts(path, &jumped, NULL, flags);
1473
1474 if (path->mnt != mnt)
1475 mntput(mnt);
1476 return ret;
1477 }
1478 EXPORT_SYMBOL(follow_down);
1479
1480 /*
1481 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1482 * we meet a managed dentry that would need blocking.
1483 */
__follow_mount_rcu(struct nameidata * nd,struct path * path)1484 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1485 {
1486 struct dentry *dentry = path->dentry;
1487 unsigned int flags = dentry->d_flags;
1488
1489 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1490 return true;
1491
1492 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1493 return false;
1494
1495 for (;;) {
1496 /*
1497 * Don't forget we might have a non-mountpoint managed dentry
1498 * that wants to block transit.
1499 */
1500 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1501 int res = dentry->d_op->d_manage(path, true);
1502 if (res)
1503 return res == -EISDIR;
1504 flags = dentry->d_flags;
1505 }
1506
1507 if (flags & DCACHE_MOUNTED) {
1508 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1509 if (mounted) {
1510 path->mnt = &mounted->mnt;
1511 dentry = path->dentry = mounted->mnt.mnt_root;
1512 nd->state |= ND_JUMPED;
1513 nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1514 flags = dentry->d_flags;
1515 // makes sure that non-RCU pathwalk could reach
1516 // this state.
1517 if (read_seqretry(&mount_lock, nd->m_seq))
1518 return false;
1519 continue;
1520 }
1521 if (read_seqretry(&mount_lock, nd->m_seq))
1522 return false;
1523 }
1524 return !(flags & DCACHE_NEED_AUTOMOUNT);
1525 }
1526 }
1527
handle_mounts(struct nameidata * nd,struct dentry * dentry,struct path * path)1528 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1529 struct path *path)
1530 {
1531 bool jumped;
1532 int ret;
1533
1534 path->mnt = nd->path.mnt;
1535 path->dentry = dentry;
1536 if (nd->flags & LOOKUP_RCU) {
1537 unsigned int seq = nd->next_seq;
1538 if (likely(__follow_mount_rcu(nd, path)))
1539 return 0;
1540 // *path and nd->next_seq might've been clobbered
1541 path->mnt = nd->path.mnt;
1542 path->dentry = dentry;
1543 nd->next_seq = seq;
1544 if (!try_to_unlazy_next(nd, dentry))
1545 return -ECHILD;
1546 }
1547 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1548 if (jumped) {
1549 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1550 ret = -EXDEV;
1551 else
1552 nd->state |= ND_JUMPED;
1553 }
1554 if (unlikely(ret)) {
1555 dput(path->dentry);
1556 if (path->mnt != nd->path.mnt)
1557 mntput(path->mnt);
1558 }
1559 return ret;
1560 }
1561
1562 /*
1563 * This looks up the name in dcache and possibly revalidates the found dentry.
1564 * NULL is returned if the dentry does not exist in the cache.
1565 */
lookup_dcache(const struct qstr * name,struct dentry * dir,unsigned int flags)1566 static struct dentry *lookup_dcache(const struct qstr *name,
1567 struct dentry *dir,
1568 unsigned int flags)
1569 {
1570 struct dentry *dentry = d_lookup(dir, name);
1571 if (dentry) {
1572 int error = d_revalidate(dentry, flags);
1573 if (unlikely(error <= 0)) {
1574 if (!error)
1575 d_invalidate(dentry);
1576 dput(dentry);
1577 return ERR_PTR(error);
1578 }
1579 }
1580 return dentry;
1581 }
1582
1583 /*
1584 * Parent directory has inode locked exclusive. This is one
1585 * and only case when ->lookup() gets called on non in-lookup
1586 * dentries - as the matter of fact, this only gets called
1587 * when directory is guaranteed to have no in-lookup children
1588 * at all.
1589 */
lookup_one_qstr_excl(const struct qstr * name,struct dentry * base,unsigned int flags)1590 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1591 struct dentry *base,
1592 unsigned int flags)
1593 {
1594 struct dentry *dentry = lookup_dcache(name, base, flags);
1595 struct dentry *old;
1596 struct inode *dir = base->d_inode;
1597
1598 if (dentry)
1599 return dentry;
1600
1601 /* Don't create child dentry for a dead directory. */
1602 if (unlikely(IS_DEADDIR(dir)))
1603 return ERR_PTR(-ENOENT);
1604
1605 dentry = d_alloc(base, name);
1606 if (unlikely(!dentry))
1607 return ERR_PTR(-ENOMEM);
1608
1609 old = dir->i_op->lookup(dir, dentry, flags);
1610 if (unlikely(old)) {
1611 dput(dentry);
1612 dentry = old;
1613 }
1614 return dentry;
1615 }
1616 EXPORT_SYMBOL(lookup_one_qstr_excl);
1617
lookup_fast(struct nameidata * nd)1618 static struct dentry *lookup_fast(struct nameidata *nd)
1619 {
1620 struct dentry *dentry, *parent = nd->path.dentry;
1621 int status = 1;
1622
1623 /*
1624 * Rename seqlock is not required here because in the off chance
1625 * of a false negative due to a concurrent rename, the caller is
1626 * going to fall back to non-racy lookup.
1627 */
1628 if (nd->flags & LOOKUP_RCU) {
1629 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1630 if (unlikely(!dentry)) {
1631 if (!try_to_unlazy(nd))
1632 return ERR_PTR(-ECHILD);
1633 return NULL;
1634 }
1635
1636 /*
1637 * This sequence count validates that the parent had no
1638 * changes while we did the lookup of the dentry above.
1639 */
1640 if (read_seqcount_retry(&parent->d_seq, nd->seq))
1641 return ERR_PTR(-ECHILD);
1642
1643 status = d_revalidate(dentry, nd->flags);
1644 if (likely(status > 0))
1645 return dentry;
1646 if (!try_to_unlazy_next(nd, dentry))
1647 return ERR_PTR(-ECHILD);
1648 if (status == -ECHILD)
1649 /* we'd been told to redo it in non-rcu mode */
1650 status = d_revalidate(dentry, nd->flags);
1651 } else {
1652 dentry = __d_lookup(parent, &nd->last);
1653 if (unlikely(!dentry))
1654 return NULL;
1655 status = d_revalidate(dentry, nd->flags);
1656 }
1657 if (unlikely(status <= 0)) {
1658 if (!status)
1659 d_invalidate(dentry);
1660 dput(dentry);
1661 return ERR_PTR(status);
1662 }
1663 return dentry;
1664 }
1665
1666 /* Fast lookup failed, do it the slow way */
__lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1667 static struct dentry *__lookup_slow(const struct qstr *name,
1668 struct dentry *dir,
1669 unsigned int flags)
1670 {
1671 struct dentry *dentry, *old;
1672 struct inode *inode = dir->d_inode;
1673 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1674
1675 /* Don't go there if it's already dead */
1676 if (unlikely(IS_DEADDIR(inode)))
1677 return ERR_PTR(-ENOENT);
1678 again:
1679 dentry = d_alloc_parallel(dir, name, &wq);
1680 if (IS_ERR(dentry))
1681 return dentry;
1682 if (unlikely(!d_in_lookup(dentry))) {
1683 int error = d_revalidate(dentry, flags);
1684 if (unlikely(error <= 0)) {
1685 if (!error) {
1686 d_invalidate(dentry);
1687 dput(dentry);
1688 goto again;
1689 }
1690 dput(dentry);
1691 dentry = ERR_PTR(error);
1692 }
1693 } else {
1694 old = inode->i_op->lookup(inode, dentry, flags);
1695 d_lookup_done(dentry);
1696 if (unlikely(old)) {
1697 dput(dentry);
1698 dentry = old;
1699 }
1700 }
1701 return dentry;
1702 }
1703
lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1704 static struct dentry *lookup_slow(const struct qstr *name,
1705 struct dentry *dir,
1706 unsigned int flags)
1707 {
1708 struct inode *inode = dir->d_inode;
1709 struct dentry *res;
1710 inode_lock_shared(inode);
1711 res = __lookup_slow(name, dir, flags);
1712 inode_unlock_shared(inode);
1713 return res;
1714 }
1715
may_lookup(struct mnt_idmap * idmap,struct nameidata * nd)1716 static inline int may_lookup(struct mnt_idmap *idmap,
1717 struct nameidata *nd)
1718 {
1719 if (nd->flags & LOOKUP_RCU) {
1720 int err = inode_permission(idmap, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1721 if (err != -ECHILD || !try_to_unlazy(nd))
1722 return err;
1723 }
1724 return inode_permission(idmap, nd->inode, MAY_EXEC);
1725 }
1726
reserve_stack(struct nameidata * nd,struct path * link)1727 static int reserve_stack(struct nameidata *nd, struct path *link)
1728 {
1729 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1730 return -ELOOP;
1731
1732 if (likely(nd->depth != EMBEDDED_LEVELS))
1733 return 0;
1734 if (likely(nd->stack != nd->internal))
1735 return 0;
1736 if (likely(nd_alloc_stack(nd)))
1737 return 0;
1738
1739 if (nd->flags & LOOKUP_RCU) {
1740 // we need to grab link before we do unlazy. And we can't skip
1741 // unlazy even if we fail to grab the link - cleanup needs it
1742 bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1743
1744 if (!try_to_unlazy(nd) || !grabbed_link)
1745 return -ECHILD;
1746
1747 if (nd_alloc_stack(nd))
1748 return 0;
1749 }
1750 return -ENOMEM;
1751 }
1752
1753 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1754
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,int flags)1755 static const char *pick_link(struct nameidata *nd, struct path *link,
1756 struct inode *inode, int flags)
1757 {
1758 struct saved *last;
1759 const char *res;
1760 int error = reserve_stack(nd, link);
1761
1762 if (unlikely(error)) {
1763 if (!(nd->flags & LOOKUP_RCU))
1764 path_put(link);
1765 return ERR_PTR(error);
1766 }
1767 last = nd->stack + nd->depth++;
1768 last->link = *link;
1769 clear_delayed_call(&last->done);
1770 last->seq = nd->next_seq;
1771
1772 if (flags & WALK_TRAILING) {
1773 error = may_follow_link(nd, inode);
1774 if (unlikely(error))
1775 return ERR_PTR(error);
1776 }
1777
1778 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1779 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1780 return ERR_PTR(-ELOOP);
1781
1782 if (!(nd->flags & LOOKUP_RCU)) {
1783 touch_atime(&last->link);
1784 cond_resched();
1785 } else if (atime_needs_update(&last->link, inode)) {
1786 if (!try_to_unlazy(nd))
1787 return ERR_PTR(-ECHILD);
1788 touch_atime(&last->link);
1789 }
1790
1791 error = security_inode_follow_link(link->dentry, inode,
1792 nd->flags & LOOKUP_RCU);
1793 if (unlikely(error))
1794 return ERR_PTR(error);
1795
1796 res = READ_ONCE(inode->i_link);
1797 if (!res) {
1798 const char * (*get)(struct dentry *, struct inode *,
1799 struct delayed_call *);
1800 get = inode->i_op->get_link;
1801 if (nd->flags & LOOKUP_RCU) {
1802 res = get(NULL, inode, &last->done);
1803 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1804 res = get(link->dentry, inode, &last->done);
1805 } else {
1806 res = get(link->dentry, inode, &last->done);
1807 }
1808 if (!res)
1809 goto all_done;
1810 if (IS_ERR(res))
1811 return res;
1812 }
1813 if (*res == '/') {
1814 error = nd_jump_root(nd);
1815 if (unlikely(error))
1816 return ERR_PTR(error);
1817 while (unlikely(*++res == '/'))
1818 ;
1819 }
1820 if (*res)
1821 return res;
1822 all_done: // pure jump
1823 put_link(nd);
1824 return NULL;
1825 }
1826
1827 /*
1828 * Do we need to follow links? We _really_ want to be able
1829 * to do this check without having to look at inode->i_op,
1830 * so we keep a cache of "no, this doesn't need follow_link"
1831 * for the common case.
1832 *
1833 * NOTE: dentry must be what nd->next_seq had been sampled from.
1834 */
step_into(struct nameidata * nd,int flags,struct dentry * dentry)1835 static const char *step_into(struct nameidata *nd, int flags,
1836 struct dentry *dentry)
1837 {
1838 struct path path;
1839 struct inode *inode;
1840 int err = handle_mounts(nd, dentry, &path);
1841
1842 if (err < 0)
1843 return ERR_PTR(err);
1844 inode = path.dentry->d_inode;
1845 if (likely(!d_is_symlink(path.dentry)) ||
1846 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1847 (flags & WALK_NOFOLLOW)) {
1848 /* not a symlink or should not follow */
1849 if (nd->flags & LOOKUP_RCU) {
1850 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1851 return ERR_PTR(-ECHILD);
1852 if (unlikely(!inode))
1853 return ERR_PTR(-ENOENT);
1854 } else {
1855 dput(nd->path.dentry);
1856 if (nd->path.mnt != path.mnt)
1857 mntput(nd->path.mnt);
1858 }
1859 nd->path = path;
1860 nd->inode = inode;
1861 nd->seq = nd->next_seq;
1862 return NULL;
1863 }
1864 if (nd->flags & LOOKUP_RCU) {
1865 /* make sure that d_is_symlink above matches inode */
1866 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1867 return ERR_PTR(-ECHILD);
1868 } else {
1869 if (path.mnt == nd->path.mnt)
1870 mntget(path.mnt);
1871 }
1872 return pick_link(nd, &path, inode, flags);
1873 }
1874
follow_dotdot_rcu(struct nameidata * nd)1875 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1876 {
1877 struct dentry *parent, *old;
1878
1879 if (path_equal(&nd->path, &nd->root))
1880 goto in_root;
1881 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1882 struct path path;
1883 unsigned seq;
1884 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1885 &nd->root, &path, &seq))
1886 goto in_root;
1887 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1888 return ERR_PTR(-ECHILD);
1889 nd->path = path;
1890 nd->inode = path.dentry->d_inode;
1891 nd->seq = seq;
1892 // makes sure that non-RCU pathwalk could reach this state
1893 if (read_seqretry(&mount_lock, nd->m_seq))
1894 return ERR_PTR(-ECHILD);
1895 /* we know that mountpoint was pinned */
1896 }
1897 old = nd->path.dentry;
1898 parent = old->d_parent;
1899 nd->next_seq = read_seqcount_begin(&parent->d_seq);
1900 // makes sure that non-RCU pathwalk could reach this state
1901 if (read_seqcount_retry(&old->d_seq, nd->seq))
1902 return ERR_PTR(-ECHILD);
1903 if (unlikely(!path_connected(nd->path.mnt, parent)))
1904 return ERR_PTR(-ECHILD);
1905 return parent;
1906 in_root:
1907 if (read_seqretry(&mount_lock, nd->m_seq))
1908 return ERR_PTR(-ECHILD);
1909 if (unlikely(nd->flags & LOOKUP_BENEATH))
1910 return ERR_PTR(-ECHILD);
1911 nd->next_seq = nd->seq;
1912 return nd->path.dentry;
1913 }
1914
follow_dotdot(struct nameidata * nd)1915 static struct dentry *follow_dotdot(struct nameidata *nd)
1916 {
1917 struct dentry *parent;
1918
1919 if (path_equal(&nd->path, &nd->root))
1920 goto in_root;
1921 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1922 struct path path;
1923
1924 if (!choose_mountpoint(real_mount(nd->path.mnt),
1925 &nd->root, &path))
1926 goto in_root;
1927 path_put(&nd->path);
1928 nd->path = path;
1929 nd->inode = path.dentry->d_inode;
1930 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1931 return ERR_PTR(-EXDEV);
1932 }
1933 /* rare case of legitimate dget_parent()... */
1934 parent = dget_parent(nd->path.dentry);
1935 if (unlikely(!path_connected(nd->path.mnt, parent))) {
1936 dput(parent);
1937 return ERR_PTR(-ENOENT);
1938 }
1939 return parent;
1940
1941 in_root:
1942 if (unlikely(nd->flags & LOOKUP_BENEATH))
1943 return ERR_PTR(-EXDEV);
1944 return dget(nd->path.dentry);
1945 }
1946
handle_dots(struct nameidata * nd,int type)1947 static const char *handle_dots(struct nameidata *nd, int type)
1948 {
1949 if (type == LAST_DOTDOT) {
1950 const char *error = NULL;
1951 struct dentry *parent;
1952
1953 if (!nd->root.mnt) {
1954 error = ERR_PTR(set_root(nd));
1955 if (error)
1956 return error;
1957 }
1958 if (nd->flags & LOOKUP_RCU)
1959 parent = follow_dotdot_rcu(nd);
1960 else
1961 parent = follow_dotdot(nd);
1962 if (IS_ERR(parent))
1963 return ERR_CAST(parent);
1964 error = step_into(nd, WALK_NOFOLLOW, parent);
1965 if (unlikely(error))
1966 return error;
1967
1968 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1969 /*
1970 * If there was a racing rename or mount along our
1971 * path, then we can't be sure that ".." hasn't jumped
1972 * above nd->root (and so userspace should retry or use
1973 * some fallback).
1974 */
1975 smp_rmb();
1976 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
1977 return ERR_PTR(-EAGAIN);
1978 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
1979 return ERR_PTR(-EAGAIN);
1980 }
1981 }
1982 return NULL;
1983 }
1984
walk_component(struct nameidata * nd,int flags)1985 static const char *walk_component(struct nameidata *nd, int flags)
1986 {
1987 struct dentry *dentry;
1988 /*
1989 * "." and ".." are special - ".." especially so because it has
1990 * to be able to know about the current root directory and
1991 * parent relationships.
1992 */
1993 if (unlikely(nd->last_type != LAST_NORM)) {
1994 if (!(flags & WALK_MORE) && nd->depth)
1995 put_link(nd);
1996 return handle_dots(nd, nd->last_type);
1997 }
1998 dentry = lookup_fast(nd);
1999 if (IS_ERR(dentry))
2000 return ERR_CAST(dentry);
2001 if (unlikely(!dentry)) {
2002 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2003 if (IS_ERR(dentry))
2004 return ERR_CAST(dentry);
2005 }
2006 if (!(flags & WALK_MORE) && nd->depth)
2007 put_link(nd);
2008 return step_into(nd, flags, dentry);
2009 }
2010
2011 /*
2012 * We can do the critical dentry name comparison and hashing
2013 * operations one word at a time, but we are limited to:
2014 *
2015 * - Architectures with fast unaligned word accesses. We could
2016 * do a "get_unaligned()" if this helps and is sufficiently
2017 * fast.
2018 *
2019 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2020 * do not trap on the (extremely unlikely) case of a page
2021 * crossing operation.
2022 *
2023 * - Furthermore, we need an efficient 64-bit compile for the
2024 * 64-bit case in order to generate the "number of bytes in
2025 * the final mask". Again, that could be replaced with a
2026 * efficient population count instruction or similar.
2027 */
2028 #ifdef CONFIG_DCACHE_WORD_ACCESS
2029
2030 #include <asm/word-at-a-time.h>
2031
2032 #ifdef HASH_MIX
2033
2034 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2035
2036 #elif defined(CONFIG_64BIT)
2037 /*
2038 * Register pressure in the mixing function is an issue, particularly
2039 * on 32-bit x86, but almost any function requires one state value and
2040 * one temporary. Instead, use a function designed for two state values
2041 * and no temporaries.
2042 *
2043 * This function cannot create a collision in only two iterations, so
2044 * we have two iterations to achieve avalanche. In those two iterations,
2045 * we have six layers of mixing, which is enough to spread one bit's
2046 * influence out to 2^6 = 64 state bits.
2047 *
2048 * Rotate constants are scored by considering either 64 one-bit input
2049 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2050 * probability of that delta causing a change to each of the 128 output
2051 * bits, using a sample of random initial states.
2052 *
2053 * The Shannon entropy of the computed probabilities is then summed
2054 * to produce a score. Ideally, any input change has a 50% chance of
2055 * toggling any given output bit.
2056 *
2057 * Mixing scores (in bits) for (12,45):
2058 * Input delta: 1-bit 2-bit
2059 * 1 round: 713.3 42542.6
2060 * 2 rounds: 2753.7 140389.8
2061 * 3 rounds: 5954.1 233458.2
2062 * 4 rounds: 7862.6 256672.2
2063 * Perfect: 8192 258048
2064 * (64*128) (64*63/2 * 128)
2065 */
2066 #define HASH_MIX(x, y, a) \
2067 ( x ^= (a), \
2068 y ^= x, x = rol64(x,12),\
2069 x += y, y = rol64(y,45),\
2070 y *= 9 )
2071
2072 /*
2073 * Fold two longs into one 32-bit hash value. This must be fast, but
2074 * latency isn't quite as critical, as there is a fair bit of additional
2075 * work done before the hash value is used.
2076 */
fold_hash(unsigned long x,unsigned long y)2077 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2078 {
2079 y ^= x * GOLDEN_RATIO_64;
2080 y *= GOLDEN_RATIO_64;
2081 return y >> 32;
2082 }
2083
2084 #else /* 32-bit case */
2085
2086 /*
2087 * Mixing scores (in bits) for (7,20):
2088 * Input delta: 1-bit 2-bit
2089 * 1 round: 330.3 9201.6
2090 * 2 rounds: 1246.4 25475.4
2091 * 3 rounds: 1907.1 31295.1
2092 * 4 rounds: 2042.3 31718.6
2093 * Perfect: 2048 31744
2094 * (32*64) (32*31/2 * 64)
2095 */
2096 #define HASH_MIX(x, y, a) \
2097 ( x ^= (a), \
2098 y ^= x, x = rol32(x, 7),\
2099 x += y, y = rol32(y,20),\
2100 y *= 9 )
2101
fold_hash(unsigned long x,unsigned long y)2102 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2103 {
2104 /* Use arch-optimized multiply if one exists */
2105 return __hash_32(y ^ __hash_32(x));
2106 }
2107
2108 #endif
2109
2110 /*
2111 * Return the hash of a string of known length. This is carfully
2112 * designed to match hash_name(), which is the more critical function.
2113 * In particular, we must end by hashing a final word containing 0..7
2114 * payload bytes, to match the way that hash_name() iterates until it
2115 * finds the delimiter after the name.
2116 */
full_name_hash(const void * salt,const char * name,unsigned int len)2117 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2118 {
2119 unsigned long a, x = 0, y = (unsigned long)salt;
2120
2121 for (;;) {
2122 if (!len)
2123 goto done;
2124 a = load_unaligned_zeropad(name);
2125 if (len < sizeof(unsigned long))
2126 break;
2127 HASH_MIX(x, y, a);
2128 name += sizeof(unsigned long);
2129 len -= sizeof(unsigned long);
2130 }
2131 x ^= a & bytemask_from_count(len);
2132 done:
2133 return fold_hash(x, y);
2134 }
2135 EXPORT_SYMBOL(full_name_hash);
2136
2137 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2138 u64 hashlen_string(const void *salt, const char *name)
2139 {
2140 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2141 unsigned long adata, mask, len;
2142 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2143
2144 len = 0;
2145 goto inside;
2146
2147 do {
2148 HASH_MIX(x, y, a);
2149 len += sizeof(unsigned long);
2150 inside:
2151 a = load_unaligned_zeropad(name+len);
2152 } while (!has_zero(a, &adata, &constants));
2153
2154 adata = prep_zero_mask(a, adata, &constants);
2155 mask = create_zero_mask(adata);
2156 x ^= a & zero_bytemask(mask);
2157
2158 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2159 }
2160 EXPORT_SYMBOL(hashlen_string);
2161
2162 /*
2163 * Calculate the length and hash of the path component, and
2164 * return the "hash_len" as the result.
2165 */
hash_name(const void * salt,const char * name)2166 static inline u64 hash_name(const void *salt, const char *name)
2167 {
2168 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2169 unsigned long adata, bdata, mask, len;
2170 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2171
2172 len = 0;
2173 goto inside;
2174
2175 do {
2176 HASH_MIX(x, y, a);
2177 len += sizeof(unsigned long);
2178 inside:
2179 a = load_unaligned_zeropad(name+len);
2180 b = a ^ REPEAT_BYTE('/');
2181 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2182
2183 adata = prep_zero_mask(a, adata, &constants);
2184 bdata = prep_zero_mask(b, bdata, &constants);
2185 mask = create_zero_mask(adata | bdata);
2186 x ^= a & zero_bytemask(mask);
2187
2188 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2189 }
2190
2191 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2192
2193 /* Return the hash of a string of known length */
full_name_hash(const void * salt,const char * name,unsigned int len)2194 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2195 {
2196 unsigned long hash = init_name_hash(salt);
2197 while (len--)
2198 hash = partial_name_hash((unsigned char)*name++, hash);
2199 return end_name_hash(hash);
2200 }
2201 EXPORT_SYMBOL(full_name_hash);
2202
2203 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2204 u64 hashlen_string(const void *salt, const char *name)
2205 {
2206 unsigned long hash = init_name_hash(salt);
2207 unsigned long len = 0, c;
2208
2209 c = (unsigned char)*name;
2210 while (c) {
2211 len++;
2212 hash = partial_name_hash(c, hash);
2213 c = (unsigned char)name[len];
2214 }
2215 return hashlen_create(end_name_hash(hash), len);
2216 }
2217 EXPORT_SYMBOL(hashlen_string);
2218
2219 /*
2220 * We know there's a real path component here of at least
2221 * one character.
2222 */
hash_name(const void * salt,const char * name)2223 static inline u64 hash_name(const void *salt, const char *name)
2224 {
2225 unsigned long hash = init_name_hash(salt);
2226 unsigned long len = 0, c;
2227
2228 c = (unsigned char)*name;
2229 do {
2230 len++;
2231 hash = partial_name_hash(c, hash);
2232 c = (unsigned char)name[len];
2233 } while (c && c != '/');
2234 return hashlen_create(end_name_hash(hash), len);
2235 }
2236
2237 #endif
2238
2239 /*
2240 * Name resolution.
2241 * This is the basic name resolution function, turning a pathname into
2242 * the final dentry. We expect 'base' to be positive and a directory.
2243 *
2244 * Returns 0 and nd will have valid dentry and mnt on success.
2245 * Returns error and drops reference to input namei data on failure.
2246 */
link_path_walk(const char * name,struct nameidata * nd)2247 static int link_path_walk(const char *name, struct nameidata *nd)
2248 {
2249 int depth = 0; // depth <= nd->depth
2250 int err;
2251
2252 nd->last_type = LAST_ROOT;
2253 nd->flags |= LOOKUP_PARENT;
2254 if (IS_ERR(name))
2255 return PTR_ERR(name);
2256 while (*name=='/')
2257 name++;
2258 if (!*name) {
2259 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2260 return 0;
2261 }
2262
2263 /* At this point we know we have a real path component. */
2264 for(;;) {
2265 struct mnt_idmap *idmap;
2266 const char *link;
2267 u64 hash_len;
2268 int type;
2269
2270 idmap = mnt_idmap(nd->path.mnt);
2271 err = may_lookup(idmap, nd);
2272 if (err)
2273 return err;
2274
2275 hash_len = hash_name(nd->path.dentry, name);
2276
2277 type = LAST_NORM;
2278 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2279 case 2:
2280 if (name[1] == '.') {
2281 type = LAST_DOTDOT;
2282 nd->state |= ND_JUMPED;
2283 }
2284 break;
2285 case 1:
2286 type = LAST_DOT;
2287 }
2288 if (likely(type == LAST_NORM)) {
2289 struct dentry *parent = nd->path.dentry;
2290 nd->state &= ~ND_JUMPED;
2291 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2292 struct qstr this = { { .hash_len = hash_len }, .name = name };
2293 err = parent->d_op->d_hash(parent, &this);
2294 if (err < 0)
2295 return err;
2296 hash_len = this.hash_len;
2297 name = this.name;
2298 }
2299 }
2300
2301 nd->last.hash_len = hash_len;
2302 nd->last.name = name;
2303 nd->last_type = type;
2304
2305 name += hashlen_len(hash_len);
2306 if (!*name)
2307 goto OK;
2308 /*
2309 * If it wasn't NUL, we know it was '/'. Skip that
2310 * slash, and continue until no more slashes.
2311 */
2312 do {
2313 name++;
2314 } while (unlikely(*name == '/'));
2315 if (unlikely(!*name)) {
2316 OK:
2317 /* pathname or trailing symlink, done */
2318 if (!depth) {
2319 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2320 nd->dir_mode = nd->inode->i_mode;
2321 nd->flags &= ~LOOKUP_PARENT;
2322 return 0;
2323 }
2324 /* last component of nested symlink */
2325 name = nd->stack[--depth].name;
2326 link = walk_component(nd, 0);
2327 } else {
2328 /* not the last component */
2329 link = walk_component(nd, WALK_MORE);
2330 }
2331 if (unlikely(link)) {
2332 if (IS_ERR(link))
2333 return PTR_ERR(link);
2334 /* a symlink to follow */
2335 nd->stack[depth++].name = name;
2336 name = link;
2337 continue;
2338 }
2339 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2340 if (nd->flags & LOOKUP_RCU) {
2341 if (!try_to_unlazy(nd))
2342 return -ECHILD;
2343 }
2344 return -ENOTDIR;
2345 }
2346 }
2347 }
2348
2349 /* must be paired with terminate_walk() */
path_init(struct nameidata * nd,unsigned flags)2350 static const char *path_init(struct nameidata *nd, unsigned flags)
2351 {
2352 int error;
2353 const char *s = nd->name->name;
2354
2355 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2356 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2357 return ERR_PTR(-EAGAIN);
2358
2359 if (!*s)
2360 flags &= ~LOOKUP_RCU;
2361 if (flags & LOOKUP_RCU)
2362 rcu_read_lock();
2363 else
2364 nd->seq = nd->next_seq = 0;
2365
2366 nd->flags = flags;
2367 nd->state |= ND_JUMPED;
2368
2369 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2370 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2371 smp_rmb();
2372
2373 if (nd->state & ND_ROOT_PRESET) {
2374 struct dentry *root = nd->root.dentry;
2375 struct inode *inode = root->d_inode;
2376 if (*s && unlikely(!d_can_lookup(root)))
2377 return ERR_PTR(-ENOTDIR);
2378 nd->path = nd->root;
2379 nd->inode = inode;
2380 if (flags & LOOKUP_RCU) {
2381 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2382 nd->root_seq = nd->seq;
2383 } else {
2384 path_get(&nd->path);
2385 }
2386 return s;
2387 }
2388
2389 nd->root.mnt = NULL;
2390
2391 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2392 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2393 error = nd_jump_root(nd);
2394 if (unlikely(error))
2395 return ERR_PTR(error);
2396 return s;
2397 }
2398
2399 /* Relative pathname -- get the starting-point it is relative to. */
2400 if (nd->dfd == AT_FDCWD) {
2401 if (flags & LOOKUP_RCU) {
2402 struct fs_struct *fs = current->fs;
2403 unsigned seq;
2404
2405 do {
2406 seq = read_seqcount_begin(&fs->seq);
2407 nd->path = fs->pwd;
2408 nd->inode = nd->path.dentry->d_inode;
2409 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2410 } while (read_seqcount_retry(&fs->seq, seq));
2411 } else {
2412 get_fs_pwd(current->fs, &nd->path);
2413 nd->inode = nd->path.dentry->d_inode;
2414 }
2415 } else {
2416 /* Caller must check execute permissions on the starting path component */
2417 struct fd f = fdget_raw(nd->dfd);
2418 struct dentry *dentry;
2419
2420 if (!f.file)
2421 return ERR_PTR(-EBADF);
2422
2423 dentry = f.file->f_path.dentry;
2424
2425 if (*s && unlikely(!d_can_lookup(dentry))) {
2426 fdput(f);
2427 return ERR_PTR(-ENOTDIR);
2428 }
2429
2430 nd->path = f.file->f_path;
2431 if (flags & LOOKUP_RCU) {
2432 nd->inode = nd->path.dentry->d_inode;
2433 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2434 } else {
2435 path_get(&nd->path);
2436 nd->inode = nd->path.dentry->d_inode;
2437 }
2438 fdput(f);
2439 }
2440
2441 /* For scoped-lookups we need to set the root to the dirfd as well. */
2442 if (flags & LOOKUP_IS_SCOPED) {
2443 nd->root = nd->path;
2444 if (flags & LOOKUP_RCU) {
2445 nd->root_seq = nd->seq;
2446 } else {
2447 path_get(&nd->root);
2448 nd->state |= ND_ROOT_GRABBED;
2449 }
2450 }
2451 return s;
2452 }
2453
lookup_last(struct nameidata * nd)2454 static inline const char *lookup_last(struct nameidata *nd)
2455 {
2456 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2457 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2458
2459 return walk_component(nd, WALK_TRAILING);
2460 }
2461
handle_lookup_down(struct nameidata * nd)2462 static int handle_lookup_down(struct nameidata *nd)
2463 {
2464 if (!(nd->flags & LOOKUP_RCU))
2465 dget(nd->path.dentry);
2466 nd->next_seq = nd->seq;
2467 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2468 }
2469
2470 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2471 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2472 {
2473 const char *s = path_init(nd, flags);
2474 int err;
2475
2476 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2477 err = handle_lookup_down(nd);
2478 if (unlikely(err < 0))
2479 s = ERR_PTR(err);
2480 }
2481
2482 while (!(err = link_path_walk(s, nd)) &&
2483 (s = lookup_last(nd)) != NULL)
2484 ;
2485 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2486 err = handle_lookup_down(nd);
2487 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2488 }
2489 if (!err)
2490 err = complete_walk(nd);
2491
2492 if (!err && nd->flags & LOOKUP_DIRECTORY)
2493 if (!d_can_lookup(nd->path.dentry))
2494 err = -ENOTDIR;
2495 if (!err) {
2496 *path = nd->path;
2497 nd->path.mnt = NULL;
2498 nd->path.dentry = NULL;
2499 }
2500 terminate_walk(nd);
2501 return err;
2502 }
2503
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,struct path * root)2504 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2505 struct path *path, struct path *root)
2506 {
2507 int retval;
2508 struct nameidata nd;
2509 if (IS_ERR(name))
2510 return PTR_ERR(name);
2511 set_nameidata(&nd, dfd, name, root);
2512 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2513 if (unlikely(retval == -ECHILD))
2514 retval = path_lookupat(&nd, flags, path);
2515 if (unlikely(retval == -ESTALE))
2516 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2517
2518 if (likely(!retval))
2519 audit_inode(name, path->dentry,
2520 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2521 restore_nameidata();
2522 return retval;
2523 }
2524
2525 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2526 static int path_parentat(struct nameidata *nd, unsigned flags,
2527 struct path *parent)
2528 {
2529 const char *s = path_init(nd, flags);
2530 int err = link_path_walk(s, nd);
2531 if (!err)
2532 err = complete_walk(nd);
2533 if (!err) {
2534 *parent = nd->path;
2535 nd->path.mnt = NULL;
2536 nd->path.dentry = NULL;
2537 }
2538 terminate_walk(nd);
2539 return err;
2540 }
2541
2542 /* Note: this does not consume "name" */
__filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2543 static int __filename_parentat(int dfd, struct filename *name,
2544 unsigned int flags, struct path *parent,
2545 struct qstr *last, int *type,
2546 const struct path *root)
2547 {
2548 int retval;
2549 struct nameidata nd;
2550
2551 if (IS_ERR(name))
2552 return PTR_ERR(name);
2553 set_nameidata(&nd, dfd, name, root);
2554 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2555 if (unlikely(retval == -ECHILD))
2556 retval = path_parentat(&nd, flags, parent);
2557 if (unlikely(retval == -ESTALE))
2558 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2559 if (likely(!retval)) {
2560 *last = nd.last;
2561 *type = nd.last_type;
2562 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2563 }
2564 restore_nameidata();
2565 return retval;
2566 }
2567
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2568 static int filename_parentat(int dfd, struct filename *name,
2569 unsigned int flags, struct path *parent,
2570 struct qstr *last, int *type)
2571 {
2572 return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2573 }
2574
2575 /* does lookup, returns the object with parent locked */
__kern_path_locked(struct filename * name,struct path * path)2576 static struct dentry *__kern_path_locked(struct filename *name, struct path *path)
2577 {
2578 struct dentry *d;
2579 struct qstr last;
2580 int type, error;
2581
2582 error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type);
2583 if (error)
2584 return ERR_PTR(error);
2585 if (unlikely(type != LAST_NORM)) {
2586 path_put(path);
2587 return ERR_PTR(-EINVAL);
2588 }
2589 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2590 d = lookup_one_qstr_excl(&last, path->dentry, 0);
2591 if (IS_ERR(d)) {
2592 inode_unlock(path->dentry->d_inode);
2593 path_put(path);
2594 }
2595 return d;
2596 }
2597
kern_path_locked(const char * name,struct path * path)2598 struct dentry *kern_path_locked(const char *name, struct path *path)
2599 {
2600 struct filename *filename = getname_kernel(name);
2601 struct dentry *res = __kern_path_locked(filename, path);
2602
2603 putname(filename);
2604 return res;
2605 }
2606
kern_path(const char * name,unsigned int flags,struct path * path)2607 int kern_path(const char *name, unsigned int flags, struct path *path)
2608 {
2609 struct filename *filename = getname_kernel(name);
2610 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2611
2612 putname(filename);
2613 return ret;
2614
2615 }
2616 EXPORT_SYMBOL(kern_path);
2617
2618 /**
2619 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2620 * @filename: filename structure
2621 * @flags: lookup flags
2622 * @parent: pointer to struct path to fill
2623 * @last: last component
2624 * @type: type of the last component
2625 * @root: pointer to struct path of the base directory
2626 */
vfs_path_parent_lookup(struct filename * filename,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2627 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2628 struct path *parent, struct qstr *last, int *type,
2629 const struct path *root)
2630 {
2631 return __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2632 type, root);
2633 }
2634 EXPORT_SYMBOL(vfs_path_parent_lookup);
2635
2636 /**
2637 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2638 * @dentry: pointer to dentry of the base directory
2639 * @mnt: pointer to vfs mount of the base directory
2640 * @name: pointer to file name
2641 * @flags: lookup flags
2642 * @path: pointer to struct path to fill
2643 */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2644 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2645 const char *name, unsigned int flags,
2646 struct path *path)
2647 {
2648 struct filename *filename;
2649 struct path root = {.mnt = mnt, .dentry = dentry};
2650 int ret;
2651
2652 filename = getname_kernel(name);
2653 /* the first argument of filename_lookup() is ignored with root */
2654 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2655 putname(filename);
2656 return ret;
2657 }
2658 EXPORT_SYMBOL(vfs_path_lookup);
2659
lookup_one_common(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len,struct qstr * this)2660 static int lookup_one_common(struct mnt_idmap *idmap,
2661 const char *name, struct dentry *base, int len,
2662 struct qstr *this)
2663 {
2664 this->name = name;
2665 this->len = len;
2666 this->hash = full_name_hash(base, name, len);
2667 if (!len)
2668 return -EACCES;
2669
2670 if (is_dot_dotdot(name, len))
2671 return -EACCES;
2672
2673 while (len--) {
2674 unsigned int c = *(const unsigned char *)name++;
2675 if (c == '/' || c == '\0')
2676 return -EACCES;
2677 }
2678 /*
2679 * See if the low-level filesystem might want
2680 * to use its own hash..
2681 */
2682 if (base->d_flags & DCACHE_OP_HASH) {
2683 int err = base->d_op->d_hash(base, this);
2684 if (err < 0)
2685 return err;
2686 }
2687
2688 return inode_permission(idmap, base->d_inode, MAY_EXEC);
2689 }
2690
2691 /**
2692 * try_lookup_one_len - filesystem helper to lookup single pathname component
2693 * @name: pathname component to lookup
2694 * @base: base directory to lookup from
2695 * @len: maximum length @len should be interpreted to
2696 *
2697 * Look up a dentry by name in the dcache, returning NULL if it does not
2698 * currently exist. The function does not try to create a dentry.
2699 *
2700 * Note that this routine is purely a helper for filesystem usage and should
2701 * not be called by generic code.
2702 *
2703 * The caller must hold base->i_mutex.
2704 */
try_lookup_one_len(const char * name,struct dentry * base,int len)2705 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2706 {
2707 struct qstr this;
2708 int err;
2709
2710 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2711
2712 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2713 if (err)
2714 return ERR_PTR(err);
2715
2716 return lookup_dcache(&this, base, 0);
2717 }
2718 EXPORT_SYMBOL(try_lookup_one_len);
2719
2720 /**
2721 * lookup_one_len - filesystem helper to lookup single pathname component
2722 * @name: pathname component to lookup
2723 * @base: base directory to lookup from
2724 * @len: maximum length @len should be interpreted to
2725 *
2726 * Note that this routine is purely a helper for filesystem usage and should
2727 * not be called by generic code.
2728 *
2729 * The caller must hold base->i_mutex.
2730 */
lookup_one_len(const char * name,struct dentry * base,int len)2731 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2732 {
2733 struct dentry *dentry;
2734 struct qstr this;
2735 int err;
2736
2737 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2738
2739 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2740 if (err)
2741 return ERR_PTR(err);
2742
2743 dentry = lookup_dcache(&this, base, 0);
2744 return dentry ? dentry : __lookup_slow(&this, base, 0);
2745 }
2746 EXPORT_SYMBOL(lookup_one_len);
2747
2748 /**
2749 * lookup_one - filesystem helper to lookup single pathname component
2750 * @idmap: idmap of the mount the lookup is performed from
2751 * @name: pathname component to lookup
2752 * @base: base directory to lookup from
2753 * @len: maximum length @len should be interpreted to
2754 *
2755 * Note that this routine is purely a helper for filesystem usage and should
2756 * not be called by generic code.
2757 *
2758 * The caller must hold base->i_mutex.
2759 */
lookup_one(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len)2760 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2761 struct dentry *base, int len)
2762 {
2763 struct dentry *dentry;
2764 struct qstr this;
2765 int err;
2766
2767 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2768
2769 err = lookup_one_common(idmap, name, base, len, &this);
2770 if (err)
2771 return ERR_PTR(err);
2772
2773 dentry = lookup_dcache(&this, base, 0);
2774 return dentry ? dentry : __lookup_slow(&this, base, 0);
2775 }
2776 EXPORT_SYMBOL(lookup_one);
2777
2778 /**
2779 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2780 * @idmap: idmap of the mount the lookup is performed from
2781 * @name: pathname component to lookup
2782 * @base: base directory to lookup from
2783 * @len: maximum length @len should be interpreted to
2784 *
2785 * Note that this routine is purely a helper for filesystem usage and should
2786 * not be called by generic code.
2787 *
2788 * Unlike lookup_one_len, it should be called without the parent
2789 * i_mutex held, and will take the i_mutex itself if necessary.
2790 */
lookup_one_unlocked(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len)2791 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2792 const char *name, struct dentry *base,
2793 int len)
2794 {
2795 struct qstr this;
2796 int err;
2797 struct dentry *ret;
2798
2799 err = lookup_one_common(idmap, name, base, len, &this);
2800 if (err)
2801 return ERR_PTR(err);
2802
2803 ret = lookup_dcache(&this, base, 0);
2804 if (!ret)
2805 ret = lookup_slow(&this, base, 0);
2806 return ret;
2807 }
2808 EXPORT_SYMBOL(lookup_one_unlocked);
2809
2810 /**
2811 * lookup_one_positive_unlocked - filesystem helper to lookup single
2812 * pathname component
2813 * @idmap: idmap of the mount the lookup is performed from
2814 * @name: pathname component to lookup
2815 * @base: base directory to lookup from
2816 * @len: maximum length @len should be interpreted to
2817 *
2818 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2819 * known positive or ERR_PTR(). This is what most of the users want.
2820 *
2821 * Note that pinned negative with unlocked parent _can_ become positive at any
2822 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2823 * positives have >d_inode stable, so this one avoids such problems.
2824 *
2825 * Note that this routine is purely a helper for filesystem usage and should
2826 * not be called by generic code.
2827 *
2828 * The helper should be called without i_mutex held.
2829 */
lookup_one_positive_unlocked(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len)2830 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
2831 const char *name,
2832 struct dentry *base, int len)
2833 {
2834 struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
2835
2836 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2837 dput(ret);
2838 ret = ERR_PTR(-ENOENT);
2839 }
2840 return ret;
2841 }
2842 EXPORT_SYMBOL(lookup_one_positive_unlocked);
2843
2844 /**
2845 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2846 * @name: pathname component to lookup
2847 * @base: base directory to lookup from
2848 * @len: maximum length @len should be interpreted to
2849 *
2850 * Note that this routine is purely a helper for filesystem usage and should
2851 * not be called by generic code.
2852 *
2853 * Unlike lookup_one_len, it should be called without the parent
2854 * i_mutex held, and will take the i_mutex itself if necessary.
2855 */
lookup_one_len_unlocked(const char * name,struct dentry * base,int len)2856 struct dentry *lookup_one_len_unlocked(const char *name,
2857 struct dentry *base, int len)
2858 {
2859 return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
2860 }
2861 EXPORT_SYMBOL(lookup_one_len_unlocked);
2862
2863 /*
2864 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2865 * on negatives. Returns known positive or ERR_PTR(); that's what
2866 * most of the users want. Note that pinned negative with unlocked parent
2867 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2868 * need to be very careful; pinned positives have ->d_inode stable, so
2869 * this one avoids such problems.
2870 */
lookup_positive_unlocked(const char * name,struct dentry * base,int len)2871 struct dentry *lookup_positive_unlocked(const char *name,
2872 struct dentry *base, int len)
2873 {
2874 return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
2875 }
2876 EXPORT_SYMBOL(lookup_positive_unlocked);
2877
2878 #ifdef CONFIG_UNIX98_PTYS
path_pts(struct path * path)2879 int path_pts(struct path *path)
2880 {
2881 /* Find something mounted on "pts" in the same directory as
2882 * the input path.
2883 */
2884 struct dentry *parent = dget_parent(path->dentry);
2885 struct dentry *child;
2886 struct qstr this = QSTR_INIT("pts", 3);
2887
2888 if (unlikely(!path_connected(path->mnt, parent))) {
2889 dput(parent);
2890 return -ENOENT;
2891 }
2892 dput(path->dentry);
2893 path->dentry = parent;
2894 child = d_hash_and_lookup(parent, &this);
2895 if (IS_ERR_OR_NULL(child))
2896 return -ENOENT;
2897
2898 path->dentry = child;
2899 dput(parent);
2900 follow_down(path, 0);
2901 return 0;
2902 }
2903 #endif
2904
user_path_at_empty(int dfd,const char __user * name,unsigned flags,struct path * path,int * empty)2905 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2906 struct path *path, int *empty)
2907 {
2908 struct filename *filename = getname_flags(name, flags, empty);
2909 int ret = filename_lookup(dfd, filename, flags, path, NULL);
2910
2911 putname(filename);
2912 return ret;
2913 }
2914 EXPORT_SYMBOL(user_path_at_empty);
2915
__check_sticky(struct mnt_idmap * idmap,struct inode * dir,struct inode * inode)2916 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
2917 struct inode *inode)
2918 {
2919 kuid_t fsuid = current_fsuid();
2920
2921 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
2922 return 0;
2923 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
2924 return 0;
2925 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
2926 }
2927 EXPORT_SYMBOL(__check_sticky);
2928
2929 /*
2930 * Check whether we can remove a link victim from directory dir, check
2931 * whether the type of victim is right.
2932 * 1. We can't do it if dir is read-only (done in permission())
2933 * 2. We should have write and exec permissions on dir
2934 * 3. We can't remove anything from append-only dir
2935 * 4. We can't do anything with immutable dir (done in permission())
2936 * 5. If the sticky bit on dir is set we should either
2937 * a. be owner of dir, or
2938 * b. be owner of victim, or
2939 * c. have CAP_FOWNER capability
2940 * 6. If the victim is append-only or immutable we can't do antyhing with
2941 * links pointing to it.
2942 * 7. If the victim has an unknown uid or gid we can't change the inode.
2943 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2944 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2945 * 10. We can't remove a root or mountpoint.
2946 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2947 * nfs_async_unlink().
2948 */
may_delete(struct mnt_idmap * idmap,struct inode * dir,struct dentry * victim,bool isdir)2949 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
2950 struct dentry *victim, bool isdir)
2951 {
2952 struct inode *inode = d_backing_inode(victim);
2953 int error;
2954
2955 if (d_is_negative(victim))
2956 return -ENOENT;
2957 BUG_ON(!inode);
2958
2959 BUG_ON(victim->d_parent->d_inode != dir);
2960
2961 /* Inode writeback is not safe when the uid or gid are invalid. */
2962 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
2963 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
2964 return -EOVERFLOW;
2965
2966 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2967
2968 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
2969 if (error)
2970 return error;
2971 if (IS_APPEND(dir))
2972 return -EPERM;
2973
2974 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
2975 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2976 HAS_UNMAPPED_ID(idmap, inode))
2977 return -EPERM;
2978 if (isdir) {
2979 if (!d_is_dir(victim))
2980 return -ENOTDIR;
2981 if (IS_ROOT(victim))
2982 return -EBUSY;
2983 } else if (d_is_dir(victim))
2984 return -EISDIR;
2985 if (IS_DEADDIR(dir))
2986 return -ENOENT;
2987 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2988 return -EBUSY;
2989 return 0;
2990 }
2991
2992 /* Check whether we can create an object with dentry child in directory
2993 * dir.
2994 * 1. We can't do it if child already exists (open has special treatment for
2995 * this case, but since we are inlined it's OK)
2996 * 2. We can't do it if dir is read-only (done in permission())
2997 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2998 * 4. We should have write and exec permissions on dir
2999 * 5. We can't do it if dir is immutable (done in permission())
3000 */
may_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * child)3001 static inline int may_create(struct mnt_idmap *idmap,
3002 struct inode *dir, struct dentry *child)
3003 {
3004 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3005 if (child->d_inode)
3006 return -EEXIST;
3007 if (IS_DEADDIR(dir))
3008 return -ENOENT;
3009 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3010 return -EOVERFLOW;
3011
3012 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3013 }
3014
lock_two_directories(struct dentry * p1,struct dentry * p2)3015 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3016 {
3017 struct dentry *p;
3018
3019 p = d_ancestor(p2, p1);
3020 if (p) {
3021 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3022 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3023 return p;
3024 }
3025
3026 p = d_ancestor(p1, p2);
3027 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3028 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3029 return p;
3030 }
3031
3032 /*
3033 * p1 and p2 should be directories on the same fs.
3034 */
lock_rename(struct dentry * p1,struct dentry * p2)3035 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3036 {
3037 if (p1 == p2) {
3038 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3039 return NULL;
3040 }
3041
3042 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3043 return lock_two_directories(p1, p2);
3044 }
3045 EXPORT_SYMBOL(lock_rename);
3046
3047 /*
3048 * c1 and p2 should be on the same fs.
3049 */
lock_rename_child(struct dentry * c1,struct dentry * p2)3050 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3051 {
3052 if (READ_ONCE(c1->d_parent) == p2) {
3053 /*
3054 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3055 */
3056 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3057 /*
3058 * now that p2 is locked, nobody can move in or out of it,
3059 * so the test below is safe.
3060 */
3061 if (likely(c1->d_parent == p2))
3062 return NULL;
3063
3064 /*
3065 * c1 got moved out of p2 while we'd been taking locks;
3066 * unlock and fall back to slow case.
3067 */
3068 inode_unlock(p2->d_inode);
3069 }
3070
3071 mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3072 /*
3073 * nobody can move out of any directories on this fs.
3074 */
3075 if (likely(c1->d_parent != p2))
3076 return lock_two_directories(c1->d_parent, p2);
3077
3078 /*
3079 * c1 got moved into p2 while we were taking locks;
3080 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3081 * for consistency with lock_rename().
3082 */
3083 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3084 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3085 return NULL;
3086 }
3087 EXPORT_SYMBOL(lock_rename_child);
3088
unlock_rename(struct dentry * p1,struct dentry * p2)3089 void unlock_rename(struct dentry *p1, struct dentry *p2)
3090 {
3091 inode_unlock(p1->d_inode);
3092 if (p1 != p2) {
3093 inode_unlock(p2->d_inode);
3094 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3095 }
3096 }
3097 EXPORT_SYMBOL(unlock_rename);
3098
3099 /**
3100 * mode_strip_umask - handle vfs umask stripping
3101 * @dir: parent directory of the new inode
3102 * @mode: mode of the new inode to be created in @dir
3103 *
3104 * Umask stripping depends on whether or not the filesystem supports POSIX
3105 * ACLs. If the filesystem doesn't support it umask stripping is done directly
3106 * in here. If the filesystem does support POSIX ACLs umask stripping is
3107 * deferred until the filesystem calls posix_acl_create().
3108 *
3109 * Returns: mode
3110 */
mode_strip_umask(const struct inode * dir,umode_t mode)3111 static inline umode_t mode_strip_umask(const struct inode *dir, umode_t mode)
3112 {
3113 if (!IS_POSIXACL(dir))
3114 mode &= ~current_umask();
3115 return mode;
3116 }
3117
3118 /**
3119 * vfs_prepare_mode - prepare the mode to be used for a new inode
3120 * @idmap: idmap of the mount the inode was found from
3121 * @dir: parent directory of the new inode
3122 * @mode: mode of the new inode
3123 * @mask_perms: allowed permission by the vfs
3124 * @type: type of file to be created
3125 *
3126 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3127 * object to be created.
3128 *
3129 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3130 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3131 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3132 * POSIX ACL supporting filesystems.
3133 *
3134 * Note that it's currently valid for @type to be 0 if a directory is created.
3135 * Filesystems raise that flag individually and we need to check whether each
3136 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3137 * non-zero type.
3138 *
3139 * Returns: mode to be passed to the filesystem
3140 */
vfs_prepare_mode(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode,umode_t mask_perms,umode_t type)3141 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3142 const struct inode *dir, umode_t mode,
3143 umode_t mask_perms, umode_t type)
3144 {
3145 mode = mode_strip_sgid(idmap, dir, mode);
3146 mode = mode_strip_umask(dir, mode);
3147
3148 /*
3149 * Apply the vfs mandated allowed permission mask and set the type of
3150 * file to be created before we call into the filesystem.
3151 */
3152 mode &= (mask_perms & ~S_IFMT);
3153 mode |= (type & S_IFMT);
3154
3155 return mode;
3156 }
3157
3158 /**
3159 * vfs_create - create new file
3160 * @idmap: idmap of the mount the inode was found from
3161 * @dir: inode of @dentry
3162 * @dentry: pointer to dentry of the base directory
3163 * @mode: mode of the new file
3164 * @want_excl: whether the file must not yet exist
3165 *
3166 * Create a new file.
3167 *
3168 * If the inode has been found through an idmapped mount the idmap of
3169 * the vfsmount must be passed through @idmap. This function will then take
3170 * care to map the inode according to @idmap before checking permissions.
3171 * On non-idmapped mounts or if permission checking is to be performed on the
3172 * raw inode simply passs @nop_mnt_idmap.
3173 */
vfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)3174 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3175 struct dentry *dentry, umode_t mode, bool want_excl)
3176 {
3177 int error;
3178
3179 error = may_create(idmap, dir, dentry);
3180 if (error)
3181 return error;
3182
3183 if (!dir->i_op->create)
3184 return -EACCES; /* shouldn't it be ENOSYS? */
3185
3186 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3187 error = security_inode_create(dir, dentry, mode);
3188 if (error)
3189 return error;
3190 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3191 if (!error)
3192 fsnotify_create(dir, dentry);
3193 return error;
3194 }
3195 EXPORT_SYMBOL(vfs_create);
3196
vfs_mkobj(struct dentry * dentry,umode_t mode,int (* f)(struct dentry *,umode_t,void *),void * arg)3197 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3198 int (*f)(struct dentry *, umode_t, void *),
3199 void *arg)
3200 {
3201 struct inode *dir = dentry->d_parent->d_inode;
3202 int error = may_create(&nop_mnt_idmap, dir, dentry);
3203 if (error)
3204 return error;
3205
3206 mode &= S_IALLUGO;
3207 mode |= S_IFREG;
3208 error = security_inode_create(dir, dentry, mode);
3209 if (error)
3210 return error;
3211 error = f(dentry, mode, arg);
3212 if (!error)
3213 fsnotify_create(dir, dentry);
3214 return error;
3215 }
3216 EXPORT_SYMBOL(vfs_mkobj);
3217
may_open_dev(const struct path * path)3218 bool may_open_dev(const struct path *path)
3219 {
3220 return !(path->mnt->mnt_flags & MNT_NODEV) &&
3221 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3222 }
3223
may_open(struct mnt_idmap * idmap,const struct path * path,int acc_mode,int flag)3224 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3225 int acc_mode, int flag)
3226 {
3227 struct dentry *dentry = path->dentry;
3228 struct inode *inode = dentry->d_inode;
3229 int error;
3230
3231 if (!inode)
3232 return -ENOENT;
3233
3234 switch (inode->i_mode & S_IFMT) {
3235 case S_IFLNK:
3236 return -ELOOP;
3237 case S_IFDIR:
3238 if (acc_mode & MAY_WRITE)
3239 return -EISDIR;
3240 if (acc_mode & MAY_EXEC)
3241 return -EACCES;
3242 break;
3243 case S_IFBLK:
3244 case S_IFCHR:
3245 if (!may_open_dev(path))
3246 return -EACCES;
3247 fallthrough;
3248 case S_IFIFO:
3249 case S_IFSOCK:
3250 if (acc_mode & MAY_EXEC)
3251 return -EACCES;
3252 flag &= ~O_TRUNC;
3253 break;
3254 case S_IFREG:
3255 if ((acc_mode & MAY_EXEC) && path_noexec(path))
3256 return -EACCES;
3257 break;
3258 }
3259
3260 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3261 if (error)
3262 return error;
3263
3264 /*
3265 * An append-only file must be opened in append mode for writing.
3266 */
3267 if (IS_APPEND(inode)) {
3268 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3269 return -EPERM;
3270 if (flag & O_TRUNC)
3271 return -EPERM;
3272 }
3273
3274 /* O_NOATIME can only be set by the owner or superuser */
3275 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3276 return -EPERM;
3277
3278 return 0;
3279 }
3280
handle_truncate(struct mnt_idmap * idmap,struct file * filp)3281 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3282 {
3283 const struct path *path = &filp->f_path;
3284 struct inode *inode = path->dentry->d_inode;
3285 int error = get_write_access(inode);
3286 if (error)
3287 return error;
3288
3289 error = security_file_truncate(filp);
3290 if (!error) {
3291 error = do_truncate(idmap, path->dentry, 0,
3292 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3293 filp);
3294 }
3295 put_write_access(inode);
3296 return error;
3297 }
3298
open_to_namei_flags(int flag)3299 static inline int open_to_namei_flags(int flag)
3300 {
3301 if ((flag & O_ACCMODE) == 3)
3302 flag--;
3303 return flag;
3304 }
3305
may_o_create(struct mnt_idmap * idmap,const struct path * dir,struct dentry * dentry,umode_t mode)3306 static int may_o_create(struct mnt_idmap *idmap,
3307 const struct path *dir, struct dentry *dentry,
3308 umode_t mode)
3309 {
3310 int error = security_path_mknod(dir, dentry, mode, 0);
3311 if (error)
3312 return error;
3313
3314 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3315 return -EOVERFLOW;
3316
3317 error = inode_permission(idmap, dir->dentry->d_inode,
3318 MAY_WRITE | MAY_EXEC);
3319 if (error)
3320 return error;
3321
3322 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3323 }
3324
3325 /*
3326 * Attempt to atomically look up, create and open a file from a negative
3327 * dentry.
3328 *
3329 * Returns 0 if successful. The file will have been created and attached to
3330 * @file by the filesystem calling finish_open().
3331 *
3332 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3333 * be set. The caller will need to perform the open themselves. @path will
3334 * have been updated to point to the new dentry. This may be negative.
3335 *
3336 * Returns an error code otherwise.
3337 */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct file * file,int open_flag,umode_t mode)3338 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3339 struct file *file,
3340 int open_flag, umode_t mode)
3341 {
3342 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3343 struct inode *dir = nd->path.dentry->d_inode;
3344 int error;
3345
3346 if (nd->flags & LOOKUP_DIRECTORY)
3347 open_flag |= O_DIRECTORY;
3348
3349 file->f_path.dentry = DENTRY_NOT_SET;
3350 file->f_path.mnt = nd->path.mnt;
3351 error = dir->i_op->atomic_open(dir, dentry, file,
3352 open_to_namei_flags(open_flag), mode);
3353 d_lookup_done(dentry);
3354 if (!error) {
3355 if (file->f_mode & FMODE_OPENED) {
3356 if (unlikely(dentry != file->f_path.dentry)) {
3357 dput(dentry);
3358 dentry = dget(file->f_path.dentry);
3359 }
3360 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3361 error = -EIO;
3362 } else {
3363 if (file->f_path.dentry) {
3364 dput(dentry);
3365 dentry = file->f_path.dentry;
3366 }
3367 if (unlikely(d_is_negative(dentry)))
3368 error = -ENOENT;
3369 }
3370 }
3371 if (error) {
3372 dput(dentry);
3373 dentry = ERR_PTR(error);
3374 }
3375 return dentry;
3376 }
3377
3378 /*
3379 * Look up and maybe create and open the last component.
3380 *
3381 * Must be called with parent locked (exclusive in O_CREAT case).
3382 *
3383 * Returns 0 on success, that is, if
3384 * the file was successfully atomically created (if necessary) and opened, or
3385 * the file was not completely opened at this time, though lookups and
3386 * creations were performed.
3387 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3388 * In the latter case dentry returned in @path might be negative if O_CREAT
3389 * hadn't been specified.
3390 *
3391 * An error code is returned on failure.
3392 */
lookup_open(struct nameidata * nd,struct file * file,const struct open_flags * op,bool got_write)3393 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3394 const struct open_flags *op,
3395 bool got_write)
3396 {
3397 struct mnt_idmap *idmap;
3398 struct dentry *dir = nd->path.dentry;
3399 struct inode *dir_inode = dir->d_inode;
3400 int open_flag = op->open_flag;
3401 struct dentry *dentry;
3402 int error, create_error = 0;
3403 umode_t mode = op->mode;
3404 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3405
3406 if (unlikely(IS_DEADDIR(dir_inode)))
3407 return ERR_PTR(-ENOENT);
3408
3409 file->f_mode &= ~FMODE_CREATED;
3410 dentry = d_lookup(dir, &nd->last);
3411 for (;;) {
3412 if (!dentry) {
3413 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3414 if (IS_ERR(dentry))
3415 return dentry;
3416 }
3417 if (d_in_lookup(dentry))
3418 break;
3419
3420 error = d_revalidate(dentry, nd->flags);
3421 if (likely(error > 0))
3422 break;
3423 if (error)
3424 goto out_dput;
3425 d_invalidate(dentry);
3426 dput(dentry);
3427 dentry = NULL;
3428 }
3429 if (dentry->d_inode) {
3430 /* Cached positive dentry: will open in f_op->open */
3431 return dentry;
3432 }
3433
3434 /*
3435 * Checking write permission is tricky, bacuse we don't know if we are
3436 * going to actually need it: O_CREAT opens should work as long as the
3437 * file exists. But checking existence breaks atomicity. The trick is
3438 * to check access and if not granted clear O_CREAT from the flags.
3439 *
3440 * Another problem is returing the "right" error value (e.g. for an
3441 * O_EXCL open we want to return EEXIST not EROFS).
3442 */
3443 if (unlikely(!got_write))
3444 open_flag &= ~O_TRUNC;
3445 idmap = mnt_idmap(nd->path.mnt);
3446 if (open_flag & O_CREAT) {
3447 if (open_flag & O_EXCL)
3448 open_flag &= ~O_TRUNC;
3449 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3450 if (likely(got_write))
3451 create_error = may_o_create(idmap, &nd->path,
3452 dentry, mode);
3453 else
3454 create_error = -EROFS;
3455 }
3456 if (create_error)
3457 open_flag &= ~O_CREAT;
3458 if (dir_inode->i_op->atomic_open) {
3459 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3460 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3461 dentry = ERR_PTR(create_error);
3462 return dentry;
3463 }
3464
3465 if (d_in_lookup(dentry)) {
3466 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3467 nd->flags);
3468 d_lookup_done(dentry);
3469 if (unlikely(res)) {
3470 if (IS_ERR(res)) {
3471 error = PTR_ERR(res);
3472 goto out_dput;
3473 }
3474 dput(dentry);
3475 dentry = res;
3476 }
3477 }
3478
3479 /* Negative dentry, just create the file */
3480 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3481 file->f_mode |= FMODE_CREATED;
3482 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3483 if (!dir_inode->i_op->create) {
3484 error = -EACCES;
3485 goto out_dput;
3486 }
3487
3488 error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3489 mode, open_flag & O_EXCL);
3490 if (error)
3491 goto out_dput;
3492 }
3493 if (unlikely(create_error) && !dentry->d_inode) {
3494 error = create_error;
3495 goto out_dput;
3496 }
3497 return dentry;
3498
3499 out_dput:
3500 dput(dentry);
3501 return ERR_PTR(error);
3502 }
3503
open_last_lookups(struct nameidata * nd,struct file * file,const struct open_flags * op)3504 static const char *open_last_lookups(struct nameidata *nd,
3505 struct file *file, const struct open_flags *op)
3506 {
3507 struct dentry *dir = nd->path.dentry;
3508 int open_flag = op->open_flag;
3509 bool got_write = false;
3510 struct dentry *dentry;
3511 const char *res;
3512
3513 nd->flags |= op->intent;
3514
3515 if (nd->last_type != LAST_NORM) {
3516 if (nd->depth)
3517 put_link(nd);
3518 return handle_dots(nd, nd->last_type);
3519 }
3520
3521 if (!(open_flag & O_CREAT)) {
3522 if (nd->last.name[nd->last.len])
3523 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3524 /* we _can_ be in RCU mode here */
3525 dentry = lookup_fast(nd);
3526 if (IS_ERR(dentry))
3527 return ERR_CAST(dentry);
3528 if (likely(dentry))
3529 goto finish_lookup;
3530
3531 BUG_ON(nd->flags & LOOKUP_RCU);
3532 } else {
3533 /* create side of things */
3534 if (nd->flags & LOOKUP_RCU) {
3535 if (!try_to_unlazy(nd))
3536 return ERR_PTR(-ECHILD);
3537 }
3538 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3539 /* trailing slashes? */
3540 if (unlikely(nd->last.name[nd->last.len]))
3541 return ERR_PTR(-EISDIR);
3542 }
3543
3544 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3545 got_write = !mnt_want_write(nd->path.mnt);
3546 /*
3547 * do _not_ fail yet - we might not need that or fail with
3548 * a different error; let lookup_open() decide; we'll be
3549 * dropping this one anyway.
3550 */
3551 }
3552 if (open_flag & O_CREAT)
3553 inode_lock(dir->d_inode);
3554 else
3555 inode_lock_shared(dir->d_inode);
3556 dentry = lookup_open(nd, file, op, got_write);
3557 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3558 fsnotify_create(dir->d_inode, dentry);
3559 if (open_flag & O_CREAT)
3560 inode_unlock(dir->d_inode);
3561 else
3562 inode_unlock_shared(dir->d_inode);
3563
3564 if (got_write)
3565 mnt_drop_write(nd->path.mnt);
3566
3567 if (IS_ERR(dentry))
3568 return ERR_CAST(dentry);
3569
3570 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3571 dput(nd->path.dentry);
3572 nd->path.dentry = dentry;
3573 return NULL;
3574 }
3575
3576 finish_lookup:
3577 if (nd->depth)
3578 put_link(nd);
3579 res = step_into(nd, WALK_TRAILING, dentry);
3580 if (unlikely(res))
3581 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3582 return res;
3583 }
3584
3585 /*
3586 * Handle the last step of open()
3587 */
do_open(struct nameidata * nd,struct file * file,const struct open_flags * op)3588 static int do_open(struct nameidata *nd,
3589 struct file *file, const struct open_flags *op)
3590 {
3591 struct mnt_idmap *idmap;
3592 int open_flag = op->open_flag;
3593 bool do_truncate;
3594 int acc_mode;
3595 int error;
3596
3597 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3598 error = complete_walk(nd);
3599 if (error)
3600 return error;
3601 }
3602 if (!(file->f_mode & FMODE_CREATED))
3603 audit_inode(nd->name, nd->path.dentry, 0);
3604 idmap = mnt_idmap(nd->path.mnt);
3605 if (open_flag & O_CREAT) {
3606 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3607 return -EEXIST;
3608 if (d_is_dir(nd->path.dentry))
3609 return -EISDIR;
3610 error = may_create_in_sticky(idmap, nd,
3611 d_backing_inode(nd->path.dentry));
3612 if (unlikely(error))
3613 return error;
3614 }
3615 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3616 return -ENOTDIR;
3617
3618 do_truncate = false;
3619 acc_mode = op->acc_mode;
3620 if (file->f_mode & FMODE_CREATED) {
3621 /* Don't check for write permission, don't truncate */
3622 open_flag &= ~O_TRUNC;
3623 acc_mode = 0;
3624 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3625 error = mnt_want_write(nd->path.mnt);
3626 if (error)
3627 return error;
3628 do_truncate = true;
3629 }
3630 error = may_open(idmap, &nd->path, acc_mode, open_flag);
3631 if (!error && !(file->f_mode & FMODE_OPENED))
3632 error = vfs_open(&nd->path, file);
3633 if (!error)
3634 error = ima_file_check(file, op->acc_mode);
3635 if (!error && do_truncate)
3636 error = handle_truncate(idmap, file);
3637 if (unlikely(error > 0)) {
3638 WARN_ON(1);
3639 error = -EINVAL;
3640 }
3641 if (do_truncate)
3642 mnt_drop_write(nd->path.mnt);
3643 return error;
3644 }
3645
3646 /**
3647 * vfs_tmpfile - create tmpfile
3648 * @idmap: idmap of the mount the inode was found from
3649 * @parentpath: pointer to the path of the base directory
3650 * @file: file descriptor of the new tmpfile
3651 * @mode: mode of the new tmpfile
3652 *
3653 * Create a temporary file.
3654 *
3655 * If the inode has been found through an idmapped mount the idmap of
3656 * the vfsmount must be passed through @idmap. This function will then take
3657 * care to map the inode according to @idmap before checking permissions.
3658 * On non-idmapped mounts or if permission checking is to be performed on the
3659 * raw inode simply passs @nop_mnt_idmap.
3660 */
vfs_tmpfile(struct mnt_idmap * idmap,const struct path * parentpath,struct file * file,umode_t mode)3661 static int vfs_tmpfile(struct mnt_idmap *idmap,
3662 const struct path *parentpath,
3663 struct file *file, umode_t mode)
3664 {
3665 struct dentry *child;
3666 struct inode *dir = d_inode(parentpath->dentry);
3667 struct inode *inode;
3668 int error;
3669 int open_flag = file->f_flags;
3670
3671 /* we want directory to be writable */
3672 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3673 if (error)
3674 return error;
3675 if (!dir->i_op->tmpfile)
3676 return -EOPNOTSUPP;
3677 child = d_alloc(parentpath->dentry, &slash_name);
3678 if (unlikely(!child))
3679 return -ENOMEM;
3680 file->f_path.mnt = parentpath->mnt;
3681 file->f_path.dentry = child;
3682 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3683 error = dir->i_op->tmpfile(idmap, dir, file, mode);
3684 dput(child);
3685 if (error)
3686 return error;
3687 /* Don't check for other permissions, the inode was just created */
3688 error = may_open(idmap, &file->f_path, 0, file->f_flags);
3689 if (error)
3690 return error;
3691 inode = file_inode(file);
3692 if (!(open_flag & O_EXCL)) {
3693 spin_lock(&inode->i_lock);
3694 inode->i_state |= I_LINKABLE;
3695 spin_unlock(&inode->i_lock);
3696 }
3697 ima_post_create_tmpfile(idmap, inode);
3698 return 0;
3699 }
3700
3701 /**
3702 * kernel_tmpfile_open - open a tmpfile for kernel internal use
3703 * @idmap: idmap of the mount the inode was found from
3704 * @parentpath: path of the base directory
3705 * @mode: mode of the new tmpfile
3706 * @open_flag: flags
3707 * @cred: credentials for open
3708 *
3709 * Create and open a temporary file. The file is not accounted in nr_files,
3710 * hence this is only for kernel internal use, and must not be installed into
3711 * file tables or such.
3712 */
kernel_tmpfile_open(struct mnt_idmap * idmap,const struct path * parentpath,umode_t mode,int open_flag,const struct cred * cred)3713 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3714 const struct path *parentpath,
3715 umode_t mode, int open_flag,
3716 const struct cred *cred)
3717 {
3718 struct file *file;
3719 int error;
3720
3721 file = alloc_empty_file_noaccount(open_flag, cred);
3722 if (IS_ERR(file))
3723 return file;
3724
3725 error = vfs_tmpfile(idmap, parentpath, file, mode);
3726 if (error) {
3727 fput(file);
3728 file = ERR_PTR(error);
3729 }
3730 return file;
3731 }
3732 EXPORT_SYMBOL(kernel_tmpfile_open);
3733
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file)3734 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3735 const struct open_flags *op,
3736 struct file *file)
3737 {
3738 struct path path;
3739 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3740
3741 if (unlikely(error))
3742 return error;
3743 error = mnt_want_write(path.mnt);
3744 if (unlikely(error))
3745 goto out;
3746 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
3747 if (error)
3748 goto out2;
3749 audit_inode(nd->name, file->f_path.dentry, 0);
3750 out2:
3751 mnt_drop_write(path.mnt);
3752 out:
3753 path_put(&path);
3754 return error;
3755 }
3756
do_o_path(struct nameidata * nd,unsigned flags,struct file * file)3757 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3758 {
3759 struct path path;
3760 int error = path_lookupat(nd, flags, &path);
3761 if (!error) {
3762 audit_inode(nd->name, path.dentry, 0);
3763 error = vfs_open(&path, file);
3764 path_put(&path);
3765 }
3766 return error;
3767 }
3768
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)3769 static struct file *path_openat(struct nameidata *nd,
3770 const struct open_flags *op, unsigned flags)
3771 {
3772 struct file *file;
3773 int error;
3774
3775 file = alloc_empty_file(op->open_flag, current_cred());
3776 if (IS_ERR(file))
3777 return file;
3778
3779 if (unlikely(file->f_flags & __O_TMPFILE)) {
3780 error = do_tmpfile(nd, flags, op, file);
3781 } else if (unlikely(file->f_flags & O_PATH)) {
3782 error = do_o_path(nd, flags, file);
3783 } else {
3784 const char *s = path_init(nd, flags);
3785 while (!(error = link_path_walk(s, nd)) &&
3786 (s = open_last_lookups(nd, file, op)) != NULL)
3787 ;
3788 if (!error)
3789 error = do_open(nd, file, op);
3790 terminate_walk(nd);
3791 }
3792 if (likely(!error)) {
3793 if (likely(file->f_mode & FMODE_OPENED))
3794 return file;
3795 WARN_ON(1);
3796 error = -EINVAL;
3797 }
3798 fput(file);
3799 if (error == -EOPENSTALE) {
3800 if (flags & LOOKUP_RCU)
3801 error = -ECHILD;
3802 else
3803 error = -ESTALE;
3804 }
3805 return ERR_PTR(error);
3806 }
3807
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)3808 struct file *do_filp_open(int dfd, struct filename *pathname,
3809 const struct open_flags *op)
3810 {
3811 struct nameidata nd;
3812 int flags = op->lookup_flags;
3813 struct file *filp;
3814
3815 set_nameidata(&nd, dfd, pathname, NULL);
3816 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3817 if (unlikely(filp == ERR_PTR(-ECHILD)))
3818 filp = path_openat(&nd, op, flags);
3819 if (unlikely(filp == ERR_PTR(-ESTALE)))
3820 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3821 restore_nameidata();
3822 return filp;
3823 }
3824
do_file_open_root(const struct path * root,const char * name,const struct open_flags * op)3825 struct file *do_file_open_root(const struct path *root,
3826 const char *name, const struct open_flags *op)
3827 {
3828 struct nameidata nd;
3829 struct file *file;
3830 struct filename *filename;
3831 int flags = op->lookup_flags;
3832
3833 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3834 return ERR_PTR(-ELOOP);
3835
3836 filename = getname_kernel(name);
3837 if (IS_ERR(filename))
3838 return ERR_CAST(filename);
3839
3840 set_nameidata(&nd, -1, filename, root);
3841 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3842 if (unlikely(file == ERR_PTR(-ECHILD)))
3843 file = path_openat(&nd, op, flags);
3844 if (unlikely(file == ERR_PTR(-ESTALE)))
3845 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3846 restore_nameidata();
3847 putname(filename);
3848 return file;
3849 }
3850
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)3851 static struct dentry *filename_create(int dfd, struct filename *name,
3852 struct path *path, unsigned int lookup_flags)
3853 {
3854 struct dentry *dentry = ERR_PTR(-EEXIST);
3855 struct qstr last;
3856 bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3857 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3858 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3859 int type;
3860 int err2;
3861 int error;
3862
3863 error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3864 if (error)
3865 return ERR_PTR(error);
3866
3867 /*
3868 * Yucky last component or no last component at all?
3869 * (foo/., foo/.., /////)
3870 */
3871 if (unlikely(type != LAST_NORM))
3872 goto out;
3873
3874 /* don't fail immediately if it's r/o, at least try to report other errors */
3875 err2 = mnt_want_write(path->mnt);
3876 /*
3877 * Do the final lookup. Suppress 'create' if there is a trailing
3878 * '/', and a directory wasn't requested.
3879 */
3880 if (last.name[last.len] && !want_dir)
3881 create_flags = 0;
3882 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3883 dentry = lookup_one_qstr_excl(&last, path->dentry,
3884 reval_flag | create_flags);
3885 if (IS_ERR(dentry))
3886 goto unlock;
3887
3888 error = -EEXIST;
3889 if (d_is_positive(dentry))
3890 goto fail;
3891
3892 /*
3893 * Special case - lookup gave negative, but... we had foo/bar/
3894 * From the vfs_mknod() POV we just have a negative dentry -
3895 * all is fine. Let's be bastards - you had / on the end, you've
3896 * been asking for (non-existent) directory. -ENOENT for you.
3897 */
3898 if (unlikely(!create_flags)) {
3899 error = -ENOENT;
3900 goto fail;
3901 }
3902 if (unlikely(err2)) {
3903 error = err2;
3904 goto fail;
3905 }
3906 return dentry;
3907 fail:
3908 dput(dentry);
3909 dentry = ERR_PTR(error);
3910 unlock:
3911 inode_unlock(path->dentry->d_inode);
3912 if (!err2)
3913 mnt_drop_write(path->mnt);
3914 out:
3915 path_put(path);
3916 return dentry;
3917 }
3918
kern_path_create(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)3919 struct dentry *kern_path_create(int dfd, const char *pathname,
3920 struct path *path, unsigned int lookup_flags)
3921 {
3922 struct filename *filename = getname_kernel(pathname);
3923 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3924
3925 putname(filename);
3926 return res;
3927 }
3928 EXPORT_SYMBOL(kern_path_create);
3929
done_path_create(struct path * path,struct dentry * dentry)3930 void done_path_create(struct path *path, struct dentry *dentry)
3931 {
3932 dput(dentry);
3933 inode_unlock(path->dentry->d_inode);
3934 mnt_drop_write(path->mnt);
3935 path_put(path);
3936 }
3937 EXPORT_SYMBOL(done_path_create);
3938
user_path_create(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)3939 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3940 struct path *path, unsigned int lookup_flags)
3941 {
3942 struct filename *filename = getname(pathname);
3943 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3944
3945 putname(filename);
3946 return res;
3947 }
3948 EXPORT_SYMBOL(user_path_create);
3949
3950 /**
3951 * vfs_mknod - create device node or file
3952 * @idmap: idmap of the mount the inode was found from
3953 * @dir: inode of @dentry
3954 * @dentry: pointer to dentry of the base directory
3955 * @mode: mode of the new device node or file
3956 * @dev: device number of device to create
3957 *
3958 * Create a device node or file.
3959 *
3960 * If the inode has been found through an idmapped mount the idmap of
3961 * the vfsmount must be passed through @idmap. This function will then take
3962 * care to map the inode according to @idmap before checking permissions.
3963 * On non-idmapped mounts or if permission checking is to be performed on the
3964 * raw inode simply passs @nop_mnt_idmap.
3965 */
vfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3966 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
3967 struct dentry *dentry, umode_t mode, dev_t dev)
3968 {
3969 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3970 int error = may_create(idmap, dir, dentry);
3971
3972 if (error)
3973 return error;
3974
3975 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3976 !capable(CAP_MKNOD))
3977 return -EPERM;
3978
3979 if (!dir->i_op->mknod)
3980 return -EPERM;
3981
3982 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3983 error = devcgroup_inode_mknod(mode, dev);
3984 if (error)
3985 return error;
3986
3987 error = security_inode_mknod(dir, dentry, mode, dev);
3988 if (error)
3989 return error;
3990
3991 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
3992 if (!error)
3993 fsnotify_create(dir, dentry);
3994 return error;
3995 }
3996 EXPORT_SYMBOL(vfs_mknod);
3997
may_mknod(umode_t mode)3998 static int may_mknod(umode_t mode)
3999 {
4000 switch (mode & S_IFMT) {
4001 case S_IFREG:
4002 case S_IFCHR:
4003 case S_IFBLK:
4004 case S_IFIFO:
4005 case S_IFSOCK:
4006 case 0: /* zero mode translates to S_IFREG */
4007 return 0;
4008 case S_IFDIR:
4009 return -EPERM;
4010 default:
4011 return -EINVAL;
4012 }
4013 }
4014
do_mknodat(int dfd,struct filename * name,umode_t mode,unsigned int dev)4015 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4016 unsigned int dev)
4017 {
4018 struct mnt_idmap *idmap;
4019 struct dentry *dentry;
4020 struct path path;
4021 int error;
4022 unsigned int lookup_flags = 0;
4023
4024 error = may_mknod(mode);
4025 if (error)
4026 goto out1;
4027 retry:
4028 dentry = filename_create(dfd, name, &path, lookup_flags);
4029 error = PTR_ERR(dentry);
4030 if (IS_ERR(dentry))
4031 goto out1;
4032
4033 error = security_path_mknod(&path, dentry,
4034 mode_strip_umask(path.dentry->d_inode, mode), dev);
4035 if (error)
4036 goto out2;
4037
4038 idmap = mnt_idmap(path.mnt);
4039 switch (mode & S_IFMT) {
4040 case 0: case S_IFREG:
4041 error = vfs_create(idmap, path.dentry->d_inode,
4042 dentry, mode, true);
4043 if (!error)
4044 ima_post_path_mknod(idmap, dentry);
4045 break;
4046 case S_IFCHR: case S_IFBLK:
4047 error = vfs_mknod(idmap, path.dentry->d_inode,
4048 dentry, mode, new_decode_dev(dev));
4049 break;
4050 case S_IFIFO: case S_IFSOCK:
4051 error = vfs_mknod(idmap, path.dentry->d_inode,
4052 dentry, mode, 0);
4053 break;
4054 }
4055 out2:
4056 done_path_create(&path, dentry);
4057 if (retry_estale(error, lookup_flags)) {
4058 lookup_flags |= LOOKUP_REVAL;
4059 goto retry;
4060 }
4061 out1:
4062 putname(name);
4063 return error;
4064 }
4065
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned int,dev)4066 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4067 unsigned int, dev)
4068 {
4069 return do_mknodat(dfd, getname(filename), mode, dev);
4070 }
4071
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)4072 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4073 {
4074 return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4075 }
4076
4077 /**
4078 * vfs_mkdir - create directory
4079 * @idmap: idmap of the mount the inode was found from
4080 * @dir: inode of @dentry
4081 * @dentry: pointer to dentry of the base directory
4082 * @mode: mode of the new directory
4083 *
4084 * Create a directory.
4085 *
4086 * If the inode has been found through an idmapped mount the idmap of
4087 * the vfsmount must be passed through @idmap. This function will then take
4088 * care to map the inode according to @idmap before checking permissions.
4089 * On non-idmapped mounts or if permission checking is to be performed on the
4090 * raw inode simply passs @nop_mnt_idmap.
4091 */
vfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)4092 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4093 struct dentry *dentry, umode_t mode)
4094 {
4095 int error;
4096 unsigned max_links = dir->i_sb->s_max_links;
4097
4098 error = may_create(idmap, dir, dentry);
4099 if (error)
4100 return error;
4101
4102 if (!dir->i_op->mkdir)
4103 return -EPERM;
4104
4105 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4106 error = security_inode_mkdir(dir, dentry, mode);
4107 if (error)
4108 return error;
4109
4110 if (max_links && dir->i_nlink >= max_links)
4111 return -EMLINK;
4112
4113 error = dir->i_op->mkdir(idmap, dir, dentry, mode);
4114 if (!error)
4115 fsnotify_mkdir(dir, dentry);
4116 return error;
4117 }
4118 EXPORT_SYMBOL(vfs_mkdir);
4119
do_mkdirat(int dfd,struct filename * name,umode_t mode)4120 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4121 {
4122 struct dentry *dentry;
4123 struct path path;
4124 int error;
4125 unsigned int lookup_flags = LOOKUP_DIRECTORY;
4126
4127 retry:
4128 dentry = filename_create(dfd, name, &path, lookup_flags);
4129 error = PTR_ERR(dentry);
4130 if (IS_ERR(dentry))
4131 goto out_putname;
4132
4133 error = security_path_mkdir(&path, dentry,
4134 mode_strip_umask(path.dentry->d_inode, mode));
4135 if (!error) {
4136 error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4137 dentry, mode);
4138 }
4139 done_path_create(&path, dentry);
4140 if (retry_estale(error, lookup_flags)) {
4141 lookup_flags |= LOOKUP_REVAL;
4142 goto retry;
4143 }
4144 out_putname:
4145 putname(name);
4146 return error;
4147 }
4148
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)4149 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4150 {
4151 return do_mkdirat(dfd, getname(pathname), mode);
4152 }
4153
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)4154 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4155 {
4156 return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4157 }
4158
4159 /**
4160 * vfs_rmdir - remove directory
4161 * @idmap: idmap of the mount the inode was found from
4162 * @dir: inode of @dentry
4163 * @dentry: pointer to dentry of the base directory
4164 *
4165 * Remove a directory.
4166 *
4167 * If the inode has been found through an idmapped mount the idmap of
4168 * the vfsmount must be passed through @idmap. This function will then take
4169 * care to map the inode according to @idmap before checking permissions.
4170 * On non-idmapped mounts or if permission checking is to be performed on the
4171 * raw inode simply passs @nop_mnt_idmap.
4172 */
vfs_rmdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry)4173 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4174 struct dentry *dentry)
4175 {
4176 int error = may_delete(idmap, dir, dentry, 1);
4177
4178 if (error)
4179 return error;
4180
4181 if (!dir->i_op->rmdir)
4182 return -EPERM;
4183
4184 dget(dentry);
4185 inode_lock(dentry->d_inode);
4186
4187 error = -EBUSY;
4188 if (is_local_mountpoint(dentry) ||
4189 (dentry->d_inode->i_flags & S_KERNEL_FILE))
4190 goto out;
4191
4192 error = security_inode_rmdir(dir, dentry);
4193 if (error)
4194 goto out;
4195
4196 error = dir->i_op->rmdir(dir, dentry);
4197 if (error)
4198 goto out;
4199
4200 shrink_dcache_parent(dentry);
4201 dentry->d_inode->i_flags |= S_DEAD;
4202 dont_mount(dentry);
4203 detach_mounts(dentry);
4204
4205 out:
4206 inode_unlock(dentry->d_inode);
4207 dput(dentry);
4208 if (!error)
4209 d_delete_notify(dir, dentry);
4210 return error;
4211 }
4212 EXPORT_SYMBOL(vfs_rmdir);
4213
do_rmdir(int dfd,struct filename * name)4214 int do_rmdir(int dfd, struct filename *name)
4215 {
4216 int error;
4217 struct dentry *dentry;
4218 struct path path;
4219 struct qstr last;
4220 int type;
4221 unsigned int lookup_flags = 0;
4222 retry:
4223 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4224 if (error)
4225 goto exit1;
4226
4227 switch (type) {
4228 case LAST_DOTDOT:
4229 error = -ENOTEMPTY;
4230 goto exit2;
4231 case LAST_DOT:
4232 error = -EINVAL;
4233 goto exit2;
4234 case LAST_ROOT:
4235 error = -EBUSY;
4236 goto exit2;
4237 }
4238
4239 error = mnt_want_write(path.mnt);
4240 if (error)
4241 goto exit2;
4242
4243 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4244 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4245 error = PTR_ERR(dentry);
4246 if (IS_ERR(dentry))
4247 goto exit3;
4248 if (!dentry->d_inode) {
4249 error = -ENOENT;
4250 goto exit4;
4251 }
4252 error = security_path_rmdir(&path, dentry);
4253 if (error)
4254 goto exit4;
4255 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4256 exit4:
4257 dput(dentry);
4258 exit3:
4259 inode_unlock(path.dentry->d_inode);
4260 mnt_drop_write(path.mnt);
4261 exit2:
4262 path_put(&path);
4263 if (retry_estale(error, lookup_flags)) {
4264 lookup_flags |= LOOKUP_REVAL;
4265 goto retry;
4266 }
4267 exit1:
4268 putname(name);
4269 return error;
4270 }
4271
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)4272 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4273 {
4274 return do_rmdir(AT_FDCWD, getname(pathname));
4275 }
4276
4277 /**
4278 * vfs_unlink - unlink a filesystem object
4279 * @idmap: idmap of the mount the inode was found from
4280 * @dir: parent directory
4281 * @dentry: victim
4282 * @delegated_inode: returns victim inode, if the inode is delegated.
4283 *
4284 * The caller must hold dir->i_mutex.
4285 *
4286 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4287 * return a reference to the inode in delegated_inode. The caller
4288 * should then break the delegation on that inode and retry. Because
4289 * breaking a delegation may take a long time, the caller should drop
4290 * dir->i_mutex before doing so.
4291 *
4292 * Alternatively, a caller may pass NULL for delegated_inode. This may
4293 * be appropriate for callers that expect the underlying filesystem not
4294 * to be NFS exported.
4295 *
4296 * If the inode has been found through an idmapped mount the idmap of
4297 * the vfsmount must be passed through @idmap. This function will then take
4298 * care to map the inode according to @idmap before checking permissions.
4299 * On non-idmapped mounts or if permission checking is to be performed on the
4300 * raw inode simply passs @nop_mnt_idmap.
4301 */
vfs_unlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)4302 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4303 struct dentry *dentry, struct inode **delegated_inode)
4304 {
4305 struct inode *target = dentry->d_inode;
4306 int error = may_delete(idmap, dir, dentry, 0);
4307
4308 if (error)
4309 return error;
4310
4311 if (!dir->i_op->unlink)
4312 return -EPERM;
4313
4314 inode_lock(target);
4315 if (IS_SWAPFILE(target))
4316 error = -EPERM;
4317 else if (is_local_mountpoint(dentry))
4318 error = -EBUSY;
4319 else {
4320 error = security_inode_unlink(dir, dentry);
4321 if (!error) {
4322 error = try_break_deleg(target, delegated_inode);
4323 if (error)
4324 goto out;
4325 error = dir->i_op->unlink(dir, dentry);
4326 if (!error) {
4327 dont_mount(dentry);
4328 detach_mounts(dentry);
4329 }
4330 }
4331 }
4332 out:
4333 inode_unlock(target);
4334
4335 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4336 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4337 fsnotify_unlink(dir, dentry);
4338 } else if (!error) {
4339 fsnotify_link_count(target);
4340 d_delete_notify(dir, dentry);
4341 }
4342
4343 return error;
4344 }
4345 EXPORT_SYMBOL(vfs_unlink);
4346
4347 /*
4348 * Make sure that the actual truncation of the file will occur outside its
4349 * directory's i_mutex. Truncate can take a long time if there is a lot of
4350 * writeout happening, and we don't want to prevent access to the directory
4351 * while waiting on the I/O.
4352 */
do_unlinkat(int dfd,struct filename * name)4353 int do_unlinkat(int dfd, struct filename *name)
4354 {
4355 int error;
4356 struct dentry *dentry;
4357 struct path path;
4358 struct qstr last;
4359 int type;
4360 struct inode *inode = NULL;
4361 struct inode *delegated_inode = NULL;
4362 unsigned int lookup_flags = 0;
4363 retry:
4364 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4365 if (error)
4366 goto exit1;
4367
4368 error = -EISDIR;
4369 if (type != LAST_NORM)
4370 goto exit2;
4371
4372 error = mnt_want_write(path.mnt);
4373 if (error)
4374 goto exit2;
4375 retry_deleg:
4376 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4377 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4378 error = PTR_ERR(dentry);
4379 if (!IS_ERR(dentry)) {
4380
4381 /* Why not before? Because we want correct error value */
4382 if (last.name[last.len])
4383 goto slashes;
4384 inode = dentry->d_inode;
4385 if (d_is_negative(dentry))
4386 goto slashes;
4387 ihold(inode);
4388 error = security_path_unlink(&path, dentry);
4389 if (error)
4390 goto exit3;
4391 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4392 dentry, &delegated_inode);
4393 exit3:
4394 dput(dentry);
4395 }
4396 inode_unlock(path.dentry->d_inode);
4397 if (inode)
4398 iput(inode); /* truncate the inode here */
4399 inode = NULL;
4400 if (delegated_inode) {
4401 error = break_deleg_wait(&delegated_inode);
4402 if (!error)
4403 goto retry_deleg;
4404 }
4405 mnt_drop_write(path.mnt);
4406 exit2:
4407 path_put(&path);
4408 if (retry_estale(error, lookup_flags)) {
4409 lookup_flags |= LOOKUP_REVAL;
4410 inode = NULL;
4411 goto retry;
4412 }
4413 exit1:
4414 putname(name);
4415 return error;
4416
4417 slashes:
4418 if (d_is_negative(dentry))
4419 error = -ENOENT;
4420 else if (d_is_dir(dentry))
4421 error = -EISDIR;
4422 else
4423 error = -ENOTDIR;
4424 goto exit3;
4425 }
4426
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)4427 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4428 {
4429 if ((flag & ~AT_REMOVEDIR) != 0)
4430 return -EINVAL;
4431
4432 if (flag & AT_REMOVEDIR)
4433 return do_rmdir(dfd, getname(pathname));
4434 return do_unlinkat(dfd, getname(pathname));
4435 }
4436
SYSCALL_DEFINE1(unlink,const char __user *,pathname)4437 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4438 {
4439 return do_unlinkat(AT_FDCWD, getname(pathname));
4440 }
4441
4442 /**
4443 * vfs_symlink - create symlink
4444 * @idmap: idmap of the mount the inode was found from
4445 * @dir: inode of @dentry
4446 * @dentry: pointer to dentry of the base directory
4447 * @oldname: name of the file to link to
4448 *
4449 * Create a symlink.
4450 *
4451 * If the inode has been found through an idmapped mount the idmap of
4452 * the vfsmount must be passed through @idmap. This function will then take
4453 * care to map the inode according to @idmap before checking permissions.
4454 * On non-idmapped mounts or if permission checking is to be performed on the
4455 * raw inode simply passs @nop_mnt_idmap.
4456 */
vfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * oldname)4457 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4458 struct dentry *dentry, const char *oldname)
4459 {
4460 int error;
4461
4462 error = may_create(idmap, dir, dentry);
4463 if (error)
4464 return error;
4465
4466 if (!dir->i_op->symlink)
4467 return -EPERM;
4468
4469 error = security_inode_symlink(dir, dentry, oldname);
4470 if (error)
4471 return error;
4472
4473 error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4474 if (!error)
4475 fsnotify_create(dir, dentry);
4476 return error;
4477 }
4478 EXPORT_SYMBOL(vfs_symlink);
4479
do_symlinkat(struct filename * from,int newdfd,struct filename * to)4480 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4481 {
4482 int error;
4483 struct dentry *dentry;
4484 struct path path;
4485 unsigned int lookup_flags = 0;
4486
4487 if (IS_ERR(from)) {
4488 error = PTR_ERR(from);
4489 goto out_putnames;
4490 }
4491 retry:
4492 dentry = filename_create(newdfd, to, &path, lookup_flags);
4493 error = PTR_ERR(dentry);
4494 if (IS_ERR(dentry))
4495 goto out_putnames;
4496
4497 error = security_path_symlink(&path, dentry, from->name);
4498 if (!error)
4499 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4500 dentry, from->name);
4501 done_path_create(&path, dentry);
4502 if (retry_estale(error, lookup_flags)) {
4503 lookup_flags |= LOOKUP_REVAL;
4504 goto retry;
4505 }
4506 out_putnames:
4507 putname(to);
4508 putname(from);
4509 return error;
4510 }
4511
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)4512 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4513 int, newdfd, const char __user *, newname)
4514 {
4515 return do_symlinkat(getname(oldname), newdfd, getname(newname));
4516 }
4517
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)4518 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4519 {
4520 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4521 }
4522
4523 /**
4524 * vfs_link - create a new link
4525 * @old_dentry: object to be linked
4526 * @idmap: idmap of the mount
4527 * @dir: new parent
4528 * @new_dentry: where to create the new link
4529 * @delegated_inode: returns inode needing a delegation break
4530 *
4531 * The caller must hold dir->i_mutex
4532 *
4533 * If vfs_link discovers a delegation on the to-be-linked file in need
4534 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4535 * inode in delegated_inode. The caller should then break the delegation
4536 * and retry. Because breaking a delegation may take a long time, the
4537 * caller should drop the i_mutex before doing so.
4538 *
4539 * Alternatively, a caller may pass NULL for delegated_inode. This may
4540 * be appropriate for callers that expect the underlying filesystem not
4541 * to be NFS exported.
4542 *
4543 * If the inode has been found through an idmapped mount the idmap of
4544 * the vfsmount must be passed through @idmap. This function will then take
4545 * care to map the inode according to @idmap before checking permissions.
4546 * On non-idmapped mounts or if permission checking is to be performed on the
4547 * raw inode simply passs @nop_mnt_idmap.
4548 */
vfs_link(struct dentry * old_dentry,struct mnt_idmap * idmap,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4549 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4550 struct inode *dir, struct dentry *new_dentry,
4551 struct inode **delegated_inode)
4552 {
4553 struct inode *inode = old_dentry->d_inode;
4554 unsigned max_links = dir->i_sb->s_max_links;
4555 int error;
4556
4557 if (!inode)
4558 return -ENOENT;
4559
4560 error = may_create(idmap, dir, new_dentry);
4561 if (error)
4562 return error;
4563
4564 if (dir->i_sb != inode->i_sb)
4565 return -EXDEV;
4566
4567 /*
4568 * A link to an append-only or immutable file cannot be created.
4569 */
4570 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4571 return -EPERM;
4572 /*
4573 * Updating the link count will likely cause i_uid and i_gid to
4574 * be writen back improperly if their true value is unknown to
4575 * the vfs.
4576 */
4577 if (HAS_UNMAPPED_ID(idmap, inode))
4578 return -EPERM;
4579 if (!dir->i_op->link)
4580 return -EPERM;
4581 if (S_ISDIR(inode->i_mode))
4582 return -EPERM;
4583
4584 error = security_inode_link(old_dentry, dir, new_dentry);
4585 if (error)
4586 return error;
4587
4588 inode_lock(inode);
4589 /* Make sure we don't allow creating hardlink to an unlinked file */
4590 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4591 error = -ENOENT;
4592 else if (max_links && inode->i_nlink >= max_links)
4593 error = -EMLINK;
4594 else {
4595 error = try_break_deleg(inode, delegated_inode);
4596 if (!error)
4597 error = dir->i_op->link(old_dentry, dir, new_dentry);
4598 }
4599
4600 if (!error && (inode->i_state & I_LINKABLE)) {
4601 spin_lock(&inode->i_lock);
4602 inode->i_state &= ~I_LINKABLE;
4603 spin_unlock(&inode->i_lock);
4604 }
4605 inode_unlock(inode);
4606 if (!error)
4607 fsnotify_link(dir, inode, new_dentry);
4608 return error;
4609 }
4610 EXPORT_SYMBOL(vfs_link);
4611
4612 /*
4613 * Hardlinks are often used in delicate situations. We avoid
4614 * security-related surprises by not following symlinks on the
4615 * newname. --KAB
4616 *
4617 * We don't follow them on the oldname either to be compatible
4618 * with linux 2.0, and to avoid hard-linking to directories
4619 * and other special files. --ADM
4620 */
do_linkat(int olddfd,struct filename * old,int newdfd,struct filename * new,int flags)4621 int do_linkat(int olddfd, struct filename *old, int newdfd,
4622 struct filename *new, int flags)
4623 {
4624 struct mnt_idmap *idmap;
4625 struct dentry *new_dentry;
4626 struct path old_path, new_path;
4627 struct inode *delegated_inode = NULL;
4628 int how = 0;
4629 int error;
4630
4631 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4632 error = -EINVAL;
4633 goto out_putnames;
4634 }
4635 /*
4636 * To use null names we require CAP_DAC_READ_SEARCH
4637 * This ensures that not everyone will be able to create
4638 * handlink using the passed filedescriptor.
4639 */
4640 if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4641 error = -ENOENT;
4642 goto out_putnames;
4643 }
4644
4645 if (flags & AT_SYMLINK_FOLLOW)
4646 how |= LOOKUP_FOLLOW;
4647 retry:
4648 error = filename_lookup(olddfd, old, how, &old_path, NULL);
4649 if (error)
4650 goto out_putnames;
4651
4652 new_dentry = filename_create(newdfd, new, &new_path,
4653 (how & LOOKUP_REVAL));
4654 error = PTR_ERR(new_dentry);
4655 if (IS_ERR(new_dentry))
4656 goto out_putpath;
4657
4658 error = -EXDEV;
4659 if (old_path.mnt != new_path.mnt)
4660 goto out_dput;
4661 idmap = mnt_idmap(new_path.mnt);
4662 error = may_linkat(idmap, &old_path);
4663 if (unlikely(error))
4664 goto out_dput;
4665 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4666 if (error)
4667 goto out_dput;
4668 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4669 new_dentry, &delegated_inode);
4670 out_dput:
4671 done_path_create(&new_path, new_dentry);
4672 if (delegated_inode) {
4673 error = break_deleg_wait(&delegated_inode);
4674 if (!error) {
4675 path_put(&old_path);
4676 goto retry;
4677 }
4678 }
4679 if (retry_estale(error, how)) {
4680 path_put(&old_path);
4681 how |= LOOKUP_REVAL;
4682 goto retry;
4683 }
4684 out_putpath:
4685 path_put(&old_path);
4686 out_putnames:
4687 putname(old);
4688 putname(new);
4689
4690 return error;
4691 }
4692
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)4693 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4694 int, newdfd, const char __user *, newname, int, flags)
4695 {
4696 return do_linkat(olddfd, getname_uflags(oldname, flags),
4697 newdfd, getname(newname), flags);
4698 }
4699
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)4700 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4701 {
4702 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4703 }
4704
4705 /**
4706 * vfs_rename - rename a filesystem object
4707 * @rd: pointer to &struct renamedata info
4708 *
4709 * The caller must hold multiple mutexes--see lock_rename()).
4710 *
4711 * If vfs_rename discovers a delegation in need of breaking at either
4712 * the source or destination, it will return -EWOULDBLOCK and return a
4713 * reference to the inode in delegated_inode. The caller should then
4714 * break the delegation and retry. Because breaking a delegation may
4715 * take a long time, the caller should drop all locks before doing
4716 * so.
4717 *
4718 * Alternatively, a caller may pass NULL for delegated_inode. This may
4719 * be appropriate for callers that expect the underlying filesystem not
4720 * to be NFS exported.
4721 *
4722 * The worst of all namespace operations - renaming directory. "Perverted"
4723 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4724 * Problems:
4725 *
4726 * a) we can get into loop creation.
4727 * b) race potential - two innocent renames can create a loop together.
4728 * That's where 4.4BSD screws up. Current fix: serialization on
4729 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4730 * story.
4731 * c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4732 * and source (if it's a non-directory or a subdirectory that moves to
4733 * different parent).
4734 * And that - after we got ->i_mutex on parents (until then we don't know
4735 * whether the target exists). Solution: try to be smart with locking
4736 * order for inodes. We rely on the fact that tree topology may change
4737 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4738 * move will be locked. Thus we can rank directories by the tree
4739 * (ancestors first) and rank all non-directories after them.
4740 * That works since everybody except rename does "lock parent, lookup,
4741 * lock child" and rename is under ->s_vfs_rename_mutex.
4742 * HOWEVER, it relies on the assumption that any object with ->lookup()
4743 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4744 * we'd better make sure that there's no link(2) for them.
4745 * d) conversion from fhandle to dentry may come in the wrong moment - when
4746 * we are removing the target. Solution: we will have to grab ->i_mutex
4747 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4748 * ->i_mutex on parents, which works but leads to some truly excessive
4749 * locking].
4750 */
vfs_rename(struct renamedata * rd)4751 int vfs_rename(struct renamedata *rd)
4752 {
4753 int error;
4754 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4755 struct dentry *old_dentry = rd->old_dentry;
4756 struct dentry *new_dentry = rd->new_dentry;
4757 struct inode **delegated_inode = rd->delegated_inode;
4758 unsigned int flags = rd->flags;
4759 bool is_dir = d_is_dir(old_dentry);
4760 struct inode *source = old_dentry->d_inode;
4761 struct inode *target = new_dentry->d_inode;
4762 bool new_is_dir = false;
4763 unsigned max_links = new_dir->i_sb->s_max_links;
4764 struct name_snapshot old_name;
4765 bool lock_old_subdir, lock_new_subdir;
4766
4767 if (source == target)
4768 return 0;
4769
4770 error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
4771 if (error)
4772 return error;
4773
4774 if (!target) {
4775 error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
4776 } else {
4777 new_is_dir = d_is_dir(new_dentry);
4778
4779 if (!(flags & RENAME_EXCHANGE))
4780 error = may_delete(rd->new_mnt_idmap, new_dir,
4781 new_dentry, is_dir);
4782 else
4783 error = may_delete(rd->new_mnt_idmap, new_dir,
4784 new_dentry, new_is_dir);
4785 }
4786 if (error)
4787 return error;
4788
4789 if (!old_dir->i_op->rename)
4790 return -EPERM;
4791
4792 /*
4793 * If we are going to change the parent - check write permissions,
4794 * we'll need to flip '..'.
4795 */
4796 if (new_dir != old_dir) {
4797 if (is_dir) {
4798 error = inode_permission(rd->old_mnt_idmap, source,
4799 MAY_WRITE);
4800 if (error)
4801 return error;
4802 }
4803 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4804 error = inode_permission(rd->new_mnt_idmap, target,
4805 MAY_WRITE);
4806 if (error)
4807 return error;
4808 }
4809 }
4810
4811 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4812 flags);
4813 if (error)
4814 return error;
4815
4816 take_dentry_name_snapshot(&old_name, old_dentry);
4817 dget(new_dentry);
4818 /*
4819 * Lock children.
4820 * The source subdirectory needs to be locked on cross-directory
4821 * rename or cross-directory exchange since its parent changes.
4822 * The target subdirectory needs to be locked on cross-directory
4823 * exchange due to parent change and on any rename due to becoming
4824 * a victim.
4825 * Non-directories need locking in all cases (for NFS reasons);
4826 * they get locked after any subdirectories (in inode address order).
4827 *
4828 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
4829 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
4830 */
4831 lock_old_subdir = new_dir != old_dir;
4832 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
4833 if (is_dir) {
4834 if (lock_old_subdir)
4835 inode_lock_nested(source, I_MUTEX_CHILD);
4836 if (target && (!new_is_dir || lock_new_subdir))
4837 inode_lock(target);
4838 } else if (new_is_dir) {
4839 if (lock_new_subdir)
4840 inode_lock_nested(target, I_MUTEX_CHILD);
4841 inode_lock(source);
4842 } else {
4843 lock_two_nondirectories(source, target);
4844 }
4845
4846 error = -EPERM;
4847 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4848 goto out;
4849
4850 error = -EBUSY;
4851 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4852 goto out;
4853
4854 if (max_links && new_dir != old_dir) {
4855 error = -EMLINK;
4856 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4857 goto out;
4858 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4859 old_dir->i_nlink >= max_links)
4860 goto out;
4861 }
4862 if (!is_dir) {
4863 error = try_break_deleg(source, delegated_inode);
4864 if (error)
4865 goto out;
4866 }
4867 if (target && !new_is_dir) {
4868 error = try_break_deleg(target, delegated_inode);
4869 if (error)
4870 goto out;
4871 }
4872 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
4873 new_dir, new_dentry, flags);
4874 if (error)
4875 goto out;
4876
4877 if (!(flags & RENAME_EXCHANGE) && target) {
4878 if (is_dir) {
4879 shrink_dcache_parent(new_dentry);
4880 target->i_flags |= S_DEAD;
4881 }
4882 dont_mount(new_dentry);
4883 detach_mounts(new_dentry);
4884 }
4885 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4886 if (!(flags & RENAME_EXCHANGE))
4887 d_move(old_dentry, new_dentry);
4888 else
4889 d_exchange(old_dentry, new_dentry);
4890 }
4891 out:
4892 if (!is_dir || lock_old_subdir)
4893 inode_unlock(source);
4894 if (target && (!new_is_dir || lock_new_subdir))
4895 inode_unlock(target);
4896 dput(new_dentry);
4897 if (!error) {
4898 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4899 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4900 if (flags & RENAME_EXCHANGE) {
4901 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4902 new_is_dir, NULL, new_dentry);
4903 }
4904 }
4905 release_dentry_name_snapshot(&old_name);
4906
4907 return error;
4908 }
4909 EXPORT_SYMBOL(vfs_rename);
4910
do_renameat2(int olddfd,struct filename * from,int newdfd,struct filename * to,unsigned int flags)4911 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4912 struct filename *to, unsigned int flags)
4913 {
4914 struct renamedata rd;
4915 struct dentry *old_dentry, *new_dentry;
4916 struct dentry *trap;
4917 struct path old_path, new_path;
4918 struct qstr old_last, new_last;
4919 int old_type, new_type;
4920 struct inode *delegated_inode = NULL;
4921 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4922 bool should_retry = false;
4923 int error = -EINVAL;
4924
4925 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4926 goto put_names;
4927
4928 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4929 (flags & RENAME_EXCHANGE))
4930 goto put_names;
4931
4932 if (flags & RENAME_EXCHANGE)
4933 target_flags = 0;
4934
4935 retry:
4936 error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4937 &old_last, &old_type);
4938 if (error)
4939 goto put_names;
4940
4941 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4942 &new_type);
4943 if (error)
4944 goto exit1;
4945
4946 error = -EXDEV;
4947 if (old_path.mnt != new_path.mnt)
4948 goto exit2;
4949
4950 error = -EBUSY;
4951 if (old_type != LAST_NORM)
4952 goto exit2;
4953
4954 if (flags & RENAME_NOREPLACE)
4955 error = -EEXIST;
4956 if (new_type != LAST_NORM)
4957 goto exit2;
4958
4959 error = mnt_want_write(old_path.mnt);
4960 if (error)
4961 goto exit2;
4962
4963 retry_deleg:
4964 trap = lock_rename(new_path.dentry, old_path.dentry);
4965
4966 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
4967 lookup_flags);
4968 error = PTR_ERR(old_dentry);
4969 if (IS_ERR(old_dentry))
4970 goto exit3;
4971 /* source must exist */
4972 error = -ENOENT;
4973 if (d_is_negative(old_dentry))
4974 goto exit4;
4975 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
4976 lookup_flags | target_flags);
4977 error = PTR_ERR(new_dentry);
4978 if (IS_ERR(new_dentry))
4979 goto exit4;
4980 error = -EEXIST;
4981 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4982 goto exit5;
4983 if (flags & RENAME_EXCHANGE) {
4984 error = -ENOENT;
4985 if (d_is_negative(new_dentry))
4986 goto exit5;
4987
4988 if (!d_is_dir(new_dentry)) {
4989 error = -ENOTDIR;
4990 if (new_last.name[new_last.len])
4991 goto exit5;
4992 }
4993 }
4994 /* unless the source is a directory trailing slashes give -ENOTDIR */
4995 if (!d_is_dir(old_dentry)) {
4996 error = -ENOTDIR;
4997 if (old_last.name[old_last.len])
4998 goto exit5;
4999 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5000 goto exit5;
5001 }
5002 /* source should not be ancestor of target */
5003 error = -EINVAL;
5004 if (old_dentry == trap)
5005 goto exit5;
5006 /* target should not be an ancestor of source */
5007 if (!(flags & RENAME_EXCHANGE))
5008 error = -ENOTEMPTY;
5009 if (new_dentry == trap)
5010 goto exit5;
5011
5012 error = security_path_rename(&old_path, old_dentry,
5013 &new_path, new_dentry, flags);
5014 if (error)
5015 goto exit5;
5016
5017 rd.old_dir = old_path.dentry->d_inode;
5018 rd.old_dentry = old_dentry;
5019 rd.old_mnt_idmap = mnt_idmap(old_path.mnt);
5020 rd.new_dir = new_path.dentry->d_inode;
5021 rd.new_dentry = new_dentry;
5022 rd.new_mnt_idmap = mnt_idmap(new_path.mnt);
5023 rd.delegated_inode = &delegated_inode;
5024 rd.flags = flags;
5025 error = vfs_rename(&rd);
5026 exit5:
5027 dput(new_dentry);
5028 exit4:
5029 dput(old_dentry);
5030 exit3:
5031 unlock_rename(new_path.dentry, old_path.dentry);
5032 if (delegated_inode) {
5033 error = break_deleg_wait(&delegated_inode);
5034 if (!error)
5035 goto retry_deleg;
5036 }
5037 mnt_drop_write(old_path.mnt);
5038 exit2:
5039 if (retry_estale(error, lookup_flags))
5040 should_retry = true;
5041 path_put(&new_path);
5042 exit1:
5043 path_put(&old_path);
5044 if (should_retry) {
5045 should_retry = false;
5046 lookup_flags |= LOOKUP_REVAL;
5047 goto retry;
5048 }
5049 put_names:
5050 putname(from);
5051 putname(to);
5052 return error;
5053 }
5054
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)5055 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5056 int, newdfd, const char __user *, newname, unsigned int, flags)
5057 {
5058 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5059 flags);
5060 }
5061
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)5062 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5063 int, newdfd, const char __user *, newname)
5064 {
5065 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5066 0);
5067 }
5068
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)5069 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5070 {
5071 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5072 getname(newname), 0);
5073 }
5074
readlink_copy(char __user * buffer,int buflen,const char * link)5075 int readlink_copy(char __user *buffer, int buflen, const char *link)
5076 {
5077 int len = PTR_ERR(link);
5078 if (IS_ERR(link))
5079 goto out;
5080
5081 len = strlen(link);
5082 if (len > (unsigned) buflen)
5083 len = buflen;
5084 if (copy_to_user(buffer, link, len))
5085 len = -EFAULT;
5086 out:
5087 return len;
5088 }
5089
5090 /**
5091 * vfs_readlink - copy symlink body into userspace buffer
5092 * @dentry: dentry on which to get symbolic link
5093 * @buffer: user memory pointer
5094 * @buflen: size of buffer
5095 *
5096 * Does not touch atime. That's up to the caller if necessary
5097 *
5098 * Does not call security hook.
5099 */
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen)5100 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5101 {
5102 struct inode *inode = d_inode(dentry);
5103 DEFINE_DELAYED_CALL(done);
5104 const char *link;
5105 int res;
5106
5107 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5108 if (unlikely(inode->i_op->readlink))
5109 return inode->i_op->readlink(dentry, buffer, buflen);
5110
5111 if (!d_is_symlink(dentry))
5112 return -EINVAL;
5113
5114 spin_lock(&inode->i_lock);
5115 inode->i_opflags |= IOP_DEFAULT_READLINK;
5116 spin_unlock(&inode->i_lock);
5117 }
5118
5119 link = READ_ONCE(inode->i_link);
5120 if (!link) {
5121 link = inode->i_op->get_link(dentry, inode, &done);
5122 if (IS_ERR(link))
5123 return PTR_ERR(link);
5124 }
5125 res = readlink_copy(buffer, buflen, link);
5126 do_delayed_call(&done);
5127 return res;
5128 }
5129 EXPORT_SYMBOL(vfs_readlink);
5130
5131 /**
5132 * vfs_get_link - get symlink body
5133 * @dentry: dentry on which to get symbolic link
5134 * @done: caller needs to free returned data with this
5135 *
5136 * Calls security hook and i_op->get_link() on the supplied inode.
5137 *
5138 * It does not touch atime. That's up to the caller if necessary.
5139 *
5140 * Does not work on "special" symlinks like /proc/$$/fd/N
5141 */
vfs_get_link(struct dentry * dentry,struct delayed_call * done)5142 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5143 {
5144 const char *res = ERR_PTR(-EINVAL);
5145 struct inode *inode = d_inode(dentry);
5146
5147 if (d_is_symlink(dentry)) {
5148 res = ERR_PTR(security_inode_readlink(dentry));
5149 if (!res)
5150 res = inode->i_op->get_link(dentry, inode, done);
5151 }
5152 return res;
5153 }
5154 EXPORT_SYMBOL(vfs_get_link);
5155
5156 /* get the link contents into pagecache */
page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5157 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5158 struct delayed_call *callback)
5159 {
5160 char *kaddr;
5161 struct page *page;
5162 struct address_space *mapping = inode->i_mapping;
5163
5164 if (!dentry) {
5165 page = find_get_page(mapping, 0);
5166 if (!page)
5167 return ERR_PTR(-ECHILD);
5168 if (!PageUptodate(page)) {
5169 put_page(page);
5170 return ERR_PTR(-ECHILD);
5171 }
5172 } else {
5173 page = read_mapping_page(mapping, 0, NULL);
5174 if (IS_ERR(page))
5175 return (char*)page;
5176 }
5177 set_delayed_call(callback, page_put_link, page);
5178 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5179 kaddr = page_address(page);
5180 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5181 return kaddr;
5182 }
5183
5184 EXPORT_SYMBOL(page_get_link);
5185
page_put_link(void * arg)5186 void page_put_link(void *arg)
5187 {
5188 put_page(arg);
5189 }
5190 EXPORT_SYMBOL(page_put_link);
5191
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)5192 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5193 {
5194 DEFINE_DELAYED_CALL(done);
5195 int res = readlink_copy(buffer, buflen,
5196 page_get_link(dentry, d_inode(dentry),
5197 &done));
5198 do_delayed_call(&done);
5199 return res;
5200 }
5201 EXPORT_SYMBOL(page_readlink);
5202
page_symlink(struct inode * inode,const char * symname,int len)5203 int page_symlink(struct inode *inode, const char *symname, int len)
5204 {
5205 struct address_space *mapping = inode->i_mapping;
5206 const struct address_space_operations *aops = mapping->a_ops;
5207 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5208 struct page *page;
5209 void *fsdata = NULL;
5210 int err;
5211 unsigned int flags;
5212
5213 retry:
5214 if (nofs)
5215 flags = memalloc_nofs_save();
5216 err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata);
5217 if (nofs)
5218 memalloc_nofs_restore(flags);
5219 if (err)
5220 goto fail;
5221
5222 memcpy(page_address(page), symname, len-1);
5223
5224 err = aops->write_end(NULL, mapping, 0, len-1, len-1,
5225 page, fsdata);
5226 if (err < 0)
5227 goto fail;
5228 if (err < len-1)
5229 goto retry;
5230
5231 mark_inode_dirty(inode);
5232 return 0;
5233 fail:
5234 return err;
5235 }
5236 EXPORT_SYMBOL(page_symlink);
5237
5238 const struct inode_operations page_symlink_inode_operations = {
5239 .get_link = page_get_link,
5240 };
5241 EXPORT_SYMBOL(page_symlink_inode_operations);
5242