xref: /openbmc/linux/drivers/regulator/helpers.c (revision b181f7029bd71238ac2754ce7052dffd69432085)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  //
3  // helpers.c  --  Voltage/Current Regulator framework helper functions.
4  //
5  // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6  // Copyright 2008 SlimLogic Ltd.
7  
8  #include <linux/bitops.h>
9  #include <linux/delay.h>
10  #include <linux/err.h>
11  #include <linux/export.h>
12  #include <linux/kernel.h>
13  #include <linux/regmap.h>
14  #include <linux/regulator/consumer.h>
15  #include <linux/regulator/driver.h>
16  
17  #include "internal.h"
18  
19  /**
20   * regulator_is_enabled_regmap - standard is_enabled() for regmap users
21   *
22   * @rdev: regulator to operate on
23   *
24   * Regulators that use regmap for their register I/O can set the
25   * enable_reg and enable_mask fields in their descriptor and then use
26   * this as their is_enabled operation, saving some code.
27   */
regulator_is_enabled_regmap(struct regulator_dev * rdev)28  int regulator_is_enabled_regmap(struct regulator_dev *rdev)
29  {
30  	unsigned int val;
31  	int ret;
32  
33  	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
34  	if (ret != 0)
35  		return ret;
36  
37  	val &= rdev->desc->enable_mask;
38  
39  	if (rdev->desc->enable_is_inverted) {
40  		if (rdev->desc->enable_val)
41  			return val != rdev->desc->enable_val;
42  		return val == 0;
43  	} else {
44  		if (rdev->desc->enable_val)
45  			return val == rdev->desc->enable_val;
46  		return val != 0;
47  	}
48  }
49  EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
50  
51  /**
52   * regulator_enable_regmap - standard enable() for regmap users
53   *
54   * @rdev: regulator to operate on
55   *
56   * Regulators that use regmap for their register I/O can set the
57   * enable_reg and enable_mask fields in their descriptor and then use
58   * this as their enable() operation, saving some code.
59   */
regulator_enable_regmap(struct regulator_dev * rdev)60  int regulator_enable_regmap(struct regulator_dev *rdev)
61  {
62  	unsigned int val;
63  
64  	if (rdev->desc->enable_is_inverted) {
65  		val = rdev->desc->disable_val;
66  	} else {
67  		val = rdev->desc->enable_val;
68  		if (!val)
69  			val = rdev->desc->enable_mask;
70  	}
71  
72  	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
73  				  rdev->desc->enable_mask, val);
74  }
75  EXPORT_SYMBOL_GPL(regulator_enable_regmap);
76  
77  /**
78   * regulator_disable_regmap - standard disable() for regmap users
79   *
80   * @rdev: regulator to operate on
81   *
82   * Regulators that use regmap for their register I/O can set the
83   * enable_reg and enable_mask fields in their descriptor and then use
84   * this as their disable() operation, saving some code.
85   */
regulator_disable_regmap(struct regulator_dev * rdev)86  int regulator_disable_regmap(struct regulator_dev *rdev)
87  {
88  	unsigned int val;
89  
90  	if (rdev->desc->enable_is_inverted) {
91  		val = rdev->desc->enable_val;
92  		if (!val)
93  			val = rdev->desc->enable_mask;
94  	} else {
95  		val = rdev->desc->disable_val;
96  	}
97  
98  	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
99  				  rdev->desc->enable_mask, val);
100  }
101  EXPORT_SYMBOL_GPL(regulator_disable_regmap);
102  
regulator_range_selector_to_index(struct regulator_dev * rdev,unsigned int rval)103  static int regulator_range_selector_to_index(struct regulator_dev *rdev,
104  					     unsigned int rval)
105  {
106  	int i;
107  
108  	if (!rdev->desc->linear_range_selectors_bitfield)
109  		return -EINVAL;
110  
111  	rval &= rdev->desc->vsel_range_mask;
112  	rval >>= ffs(rdev->desc->vsel_range_mask) - 1;
113  
114  	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
115  		if (rdev->desc->linear_range_selectors_bitfield[i] == rval)
116  			return i;
117  	}
118  	return -EINVAL;
119  }
120  
121  /**
122   * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
123   *
124   * @rdev: regulator to operate on
125   *
126   * Regulators that use regmap for their register I/O and use pickable
127   * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
128   * fields in their descriptor and then use this as their get_voltage_vsel
129   * operation, saving some code.
130   */
regulator_get_voltage_sel_pickable_regmap(struct regulator_dev * rdev)131  int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
132  {
133  	unsigned int r_val;
134  	int range;
135  	unsigned int val;
136  	int ret;
137  	unsigned int voltages = 0;
138  	const struct linear_range *r = rdev->desc->linear_ranges;
139  
140  	if (!r)
141  		return -EINVAL;
142  
143  	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
144  	if (ret != 0)
145  		return ret;
146  
147  	ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
148  	if (ret != 0)
149  		return ret;
150  
151  	val &= rdev->desc->vsel_mask;
152  	val >>= ffs(rdev->desc->vsel_mask) - 1;
153  
154  	range = regulator_range_selector_to_index(rdev, r_val);
155  	if (range < 0)
156  		return -EINVAL;
157  
158  	voltages = linear_range_values_in_range_array(r, range);
159  
160  	return val + voltages;
161  }
162  EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
163  
write_separate_vsel_and_range(struct regulator_dev * rdev,unsigned int sel,unsigned int range)164  static int write_separate_vsel_and_range(struct regulator_dev *rdev,
165  					 unsigned int sel, unsigned int range)
166  {
167  	bool range_updated;
168  	int ret;
169  
170  	ret = regmap_update_bits_base(rdev->regmap, rdev->desc->vsel_range_reg,
171  				      rdev->desc->vsel_range_mask,
172  				      range, &range_updated, false, false);
173  	if (ret)
174  		return ret;
175  
176  	/*
177  	 * Some PMICs treat the vsel_reg same as apply-bit. Force it to be
178  	 * written if the range changed, even if the old selector was same as
179  	 * the new one
180  	 */
181  	if (rdev->desc->range_applied_by_vsel && range_updated)
182  		return regmap_write_bits(rdev->regmap,
183  					rdev->desc->vsel_reg,
184  					rdev->desc->vsel_mask, sel);
185  
186  	return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
187  				  rdev->desc->vsel_mask, sel);
188  }
189  
190  /**
191   * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
192   *
193   * @rdev: regulator to operate on
194   * @sel: Selector to set
195   *
196   * Regulators that use regmap for their register I/O and use pickable
197   * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
198   * fields in their descriptor and then use this as their set_voltage_vsel
199   * operation, saving some code.
200   */
regulator_set_voltage_sel_pickable_regmap(struct regulator_dev * rdev,unsigned int sel)201  int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
202  					      unsigned int sel)
203  {
204  	unsigned int range;
205  	int ret, i;
206  	unsigned int voltages_in_range = 0;
207  
208  	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
209  		const struct linear_range *r;
210  
211  		r = &rdev->desc->linear_ranges[i];
212  		voltages_in_range = linear_range_values_in_range(r);
213  
214  		if (sel < voltages_in_range)
215  			break;
216  		sel -= voltages_in_range;
217  	}
218  
219  	if (i == rdev->desc->n_linear_ranges)
220  		return -EINVAL;
221  
222  	sel <<= ffs(rdev->desc->vsel_mask) - 1;
223  	sel += rdev->desc->linear_ranges[i].min_sel;
224  
225  	range = rdev->desc->linear_range_selectors_bitfield[i];
226  	range <<= ffs(rdev->desc->vsel_range_mask) - 1;
227  
228  	if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg)
229  		ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
230  					 rdev->desc->vsel_range_mask |
231  					 rdev->desc->vsel_mask, sel | range);
232  	else
233  		ret = write_separate_vsel_and_range(rdev, sel, range);
234  
235  	if (ret)
236  		return ret;
237  
238  	if (rdev->desc->apply_bit)
239  		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
240  					 rdev->desc->apply_bit,
241  					 rdev->desc->apply_bit);
242  	return ret;
243  }
244  EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
245  
246  /**
247   * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
248   *
249   * @rdev: regulator to operate on
250   *
251   * Regulators that use regmap for their register I/O can set the
252   * vsel_reg and vsel_mask fields in their descriptor and then use this
253   * as their get_voltage_vsel operation, saving some code.
254   */
regulator_get_voltage_sel_regmap(struct regulator_dev * rdev)255  int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
256  {
257  	unsigned int val;
258  	int ret;
259  
260  	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
261  	if (ret != 0)
262  		return ret;
263  
264  	val &= rdev->desc->vsel_mask;
265  	val >>= ffs(rdev->desc->vsel_mask) - 1;
266  
267  	return val;
268  }
269  EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
270  
271  /**
272   * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
273   *
274   * @rdev: regulator to operate on
275   * @sel: Selector to set
276   *
277   * Regulators that use regmap for their register I/O can set the
278   * vsel_reg and vsel_mask fields in their descriptor and then use this
279   * as their set_voltage_vsel operation, saving some code.
280   */
regulator_set_voltage_sel_regmap(struct regulator_dev * rdev,unsigned sel)281  int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
282  {
283  	int ret;
284  
285  	sel <<= ffs(rdev->desc->vsel_mask) - 1;
286  
287  	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
288  				  rdev->desc->vsel_mask, sel);
289  	if (ret)
290  		return ret;
291  
292  	if (rdev->desc->apply_bit)
293  		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
294  					 rdev->desc->apply_bit,
295  					 rdev->desc->apply_bit);
296  	return ret;
297  }
298  EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
299  
300  /**
301   * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
302   *
303   * @rdev: Regulator to operate on
304   * @min_uV: Lower bound for voltage
305   * @max_uV: Upper bound for voltage
306   *
307   * Drivers implementing set_voltage_sel() and list_voltage() can use
308   * this as their map_voltage() operation.  It will find a suitable
309   * voltage by calling list_voltage() until it gets something in bounds
310   * for the requested voltages.
311   */
regulator_map_voltage_iterate(struct regulator_dev * rdev,int min_uV,int max_uV)312  int regulator_map_voltage_iterate(struct regulator_dev *rdev,
313  				  int min_uV, int max_uV)
314  {
315  	int best_val = INT_MAX;
316  	int selector = 0;
317  	int i, ret;
318  
319  	/* Find the smallest voltage that falls within the specified
320  	 * range.
321  	 */
322  	for (i = 0; i < rdev->desc->n_voltages; i++) {
323  		ret = rdev->desc->ops->list_voltage(rdev, i);
324  		if (ret < 0)
325  			continue;
326  
327  		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
328  			best_val = ret;
329  			selector = i;
330  		}
331  	}
332  
333  	if (best_val != INT_MAX)
334  		return selector;
335  	else
336  		return -EINVAL;
337  }
338  EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
339  
340  /**
341   * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
342   *
343   * @rdev: Regulator to operate on
344   * @min_uV: Lower bound for voltage
345   * @max_uV: Upper bound for voltage
346   *
347   * Drivers that have ascendant voltage list can use this as their
348   * map_voltage() operation.
349   */
regulator_map_voltage_ascend(struct regulator_dev * rdev,int min_uV,int max_uV)350  int regulator_map_voltage_ascend(struct regulator_dev *rdev,
351  				 int min_uV, int max_uV)
352  {
353  	int i, ret;
354  
355  	for (i = 0; i < rdev->desc->n_voltages; i++) {
356  		ret = rdev->desc->ops->list_voltage(rdev, i);
357  		if (ret < 0)
358  			continue;
359  
360  		if (ret > max_uV)
361  			break;
362  
363  		if (ret >= min_uV && ret <= max_uV)
364  			return i;
365  	}
366  
367  	return -EINVAL;
368  }
369  EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
370  
371  /**
372   * regulator_map_voltage_linear - map_voltage() for simple linear mappings
373   *
374   * @rdev: Regulator to operate on
375   * @min_uV: Lower bound for voltage
376   * @max_uV: Upper bound for voltage
377   *
378   * Drivers providing min_uV and uV_step in their regulator_desc can
379   * use this as their map_voltage() operation.
380   */
regulator_map_voltage_linear(struct regulator_dev * rdev,int min_uV,int max_uV)381  int regulator_map_voltage_linear(struct regulator_dev *rdev,
382  				 int min_uV, int max_uV)
383  {
384  	int ret, voltage;
385  
386  	/* Allow uV_step to be 0 for fixed voltage */
387  	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
388  		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
389  			return 0;
390  		else
391  			return -EINVAL;
392  	}
393  
394  	if (!rdev->desc->uV_step) {
395  		BUG_ON(!rdev->desc->uV_step);
396  		return -EINVAL;
397  	}
398  
399  	if (min_uV < rdev->desc->min_uV)
400  		min_uV = rdev->desc->min_uV;
401  
402  	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
403  	if (ret < 0)
404  		return ret;
405  
406  	ret += rdev->desc->linear_min_sel;
407  
408  	/* Map back into a voltage to verify we're still in bounds */
409  	voltage = rdev->desc->ops->list_voltage(rdev, ret);
410  	if (voltage < min_uV || voltage > max_uV)
411  		return -EINVAL;
412  
413  	return ret;
414  }
415  EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
416  
417  /**
418   * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
419   *
420   * @rdev: Regulator to operate on
421   * @min_uV: Lower bound for voltage
422   * @max_uV: Upper bound for voltage
423   *
424   * Drivers providing linear_ranges in their descriptor can use this as
425   * their map_voltage() callback.
426   */
regulator_map_voltage_linear_range(struct regulator_dev * rdev,int min_uV,int max_uV)427  int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
428  				       int min_uV, int max_uV)
429  {
430  	const struct linear_range *range;
431  	int ret = -EINVAL;
432  	unsigned int sel;
433  	bool found;
434  	int voltage, i;
435  
436  	if (!rdev->desc->n_linear_ranges) {
437  		BUG_ON(!rdev->desc->n_linear_ranges);
438  		return -EINVAL;
439  	}
440  
441  	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
442  		range = &rdev->desc->linear_ranges[i];
443  
444  		ret = linear_range_get_selector_high(range, min_uV, &sel,
445  						     &found);
446  		if (ret)
447  			continue;
448  		ret = sel;
449  
450  		/*
451  		 * Map back into a voltage to verify we're still in bounds.
452  		 * If we are not, then continue checking rest of the ranges.
453  		 */
454  		voltage = rdev->desc->ops->list_voltage(rdev, sel);
455  		if (voltage >= min_uV && voltage <= max_uV)
456  			break;
457  	}
458  
459  	if (i == rdev->desc->n_linear_ranges)
460  		return -EINVAL;
461  
462  	return ret;
463  }
464  EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
465  
466  /**
467   * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
468   *
469   * @rdev: Regulator to operate on
470   * @min_uV: Lower bound for voltage
471   * @max_uV: Upper bound for voltage
472   *
473   * Drivers providing pickable linear_ranges in their descriptor can use
474   * this as their map_voltage() callback.
475   */
regulator_map_voltage_pickable_linear_range(struct regulator_dev * rdev,int min_uV,int max_uV)476  int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
477  						int min_uV, int max_uV)
478  {
479  	const struct linear_range *range;
480  	int ret = -EINVAL;
481  	int voltage, i;
482  	unsigned int selector = 0;
483  
484  	if (!rdev->desc->n_linear_ranges) {
485  		BUG_ON(!rdev->desc->n_linear_ranges);
486  		return -EINVAL;
487  	}
488  
489  	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
490  		int linear_max_uV;
491  		bool found;
492  		unsigned int sel;
493  
494  		range = &rdev->desc->linear_ranges[i];
495  		linear_max_uV = linear_range_get_max_value(range);
496  
497  		if (!(min_uV <= linear_max_uV && max_uV >= range->min)) {
498  			selector += linear_range_values_in_range(range);
499  			continue;
500  		}
501  
502  		ret = linear_range_get_selector_high(range, min_uV, &sel,
503  						     &found);
504  		if (ret) {
505  			selector += linear_range_values_in_range(range);
506  			continue;
507  		}
508  
509  		ret = selector + sel - range->min_sel;
510  
511  		voltage = rdev->desc->ops->list_voltage(rdev, ret);
512  
513  		/*
514  		 * Map back into a voltage to verify we're still in bounds.
515  		 * We may have overlapping voltage ranges. Hence we don't
516  		 * exit but retry until we have checked all ranges.
517  		 */
518  		if (voltage < min_uV || voltage > max_uV)
519  			selector += linear_range_values_in_range(range);
520  		else
521  			break;
522  	}
523  
524  	if (i == rdev->desc->n_linear_ranges)
525  		return -EINVAL;
526  
527  	return ret;
528  }
529  EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
530  
531  /**
532   * regulator_desc_list_voltage_linear - List voltages with simple calculation
533   *
534   * @desc: Regulator desc for regulator which volatges are to be listed
535   * @selector: Selector to convert into a voltage
536   *
537   * Regulators with a simple linear mapping between voltages and
538   * selectors can set min_uV and uV_step in the regulator descriptor
539   * and then use this function prior regulator registration to list
540   * the voltages. This is useful when voltages need to be listed during
541   * device-tree parsing.
542   */
regulator_desc_list_voltage_linear(const struct regulator_desc * desc,unsigned int selector)543  int regulator_desc_list_voltage_linear(const struct regulator_desc *desc,
544  				       unsigned int selector)
545  {
546  	if (selector >= desc->n_voltages)
547  		return -EINVAL;
548  
549  	if (selector < desc->linear_min_sel)
550  		return 0;
551  
552  	selector -= desc->linear_min_sel;
553  
554  	return desc->min_uV + (desc->uV_step * selector);
555  }
556  EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear);
557  
558  /**
559   * regulator_list_voltage_linear - List voltages with simple calculation
560   *
561   * @rdev: Regulator device
562   * @selector: Selector to convert into a voltage
563   *
564   * Regulators with a simple linear mapping between voltages and
565   * selectors can set min_uV and uV_step in the regulator descriptor
566   * and then use this function as their list_voltage() operation,
567   */
regulator_list_voltage_linear(struct regulator_dev * rdev,unsigned int selector)568  int regulator_list_voltage_linear(struct regulator_dev *rdev,
569  				  unsigned int selector)
570  {
571  	return regulator_desc_list_voltage_linear(rdev->desc, selector);
572  }
573  EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
574  
575  /**
576   * regulator_list_voltage_pickable_linear_range - pickable range list voltages
577   *
578   * @rdev: Regulator device
579   * @selector: Selector to convert into a voltage
580   *
581   * list_voltage() operation, intended to be used by drivers utilizing pickable
582   * ranges helpers.
583   */
regulator_list_voltage_pickable_linear_range(struct regulator_dev * rdev,unsigned int selector)584  int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
585  						 unsigned int selector)
586  {
587  	const struct linear_range *range;
588  	int i;
589  	unsigned int all_sels = 0;
590  
591  	if (!rdev->desc->n_linear_ranges) {
592  		BUG_ON(!rdev->desc->n_linear_ranges);
593  		return -EINVAL;
594  	}
595  
596  	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
597  		unsigned int sel_indexes;
598  
599  		range = &rdev->desc->linear_ranges[i];
600  
601  		sel_indexes = linear_range_values_in_range(range) - 1;
602  
603  		if (all_sels + sel_indexes >= selector) {
604  			selector -= all_sels;
605  			/*
606  			 * As we see here, pickable ranges work only as
607  			 * long as the first selector for each pickable
608  			 * range is 0, and the each subsequent range for
609  			 * this 'pick' follow immediately at next unused
610  			 * selector (Eg. there is no gaps between ranges).
611  			 * I think this is fine but it probably should be
612  			 * documented. OTOH, whole pickable range stuff
613  			 * might benefit from some documentation
614  			 */
615  			return range->min + (range->step * selector);
616  		}
617  
618  		all_sels += (sel_indexes + 1);
619  	}
620  
621  	return -EINVAL;
622  }
623  EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
624  
625  /**
626   * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
627   *
628   * @desc: Regulator desc for regulator which volatges are to be listed
629   * @selector: Selector to convert into a voltage
630   *
631   * Regulators with a series of simple linear mappings between voltages
632   * and selectors who have set linear_ranges in the regulator descriptor
633   * can use this function prior regulator registration to list voltages.
634   * This is useful when voltages need to be listed during device-tree
635   * parsing.
636   */
regulator_desc_list_voltage_linear_range(const struct regulator_desc * desc,unsigned int selector)637  int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
638  					     unsigned int selector)
639  {
640  	unsigned int val;
641  	int ret;
642  
643  	BUG_ON(!desc->n_linear_ranges);
644  
645  	ret = linear_range_get_value_array(desc->linear_ranges,
646  					   desc->n_linear_ranges, selector,
647  					   &val);
648  	if (ret)
649  		return ret;
650  
651  	return val;
652  }
653  EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
654  
655  /**
656   * regulator_list_voltage_linear_range - List voltages for linear ranges
657   *
658   * @rdev: Regulator device
659   * @selector: Selector to convert into a voltage
660   *
661   * Regulators with a series of simple linear mappings between voltages
662   * and selectors can set linear_ranges in the regulator descriptor and
663   * then use this function as their list_voltage() operation,
664   */
regulator_list_voltage_linear_range(struct regulator_dev * rdev,unsigned int selector)665  int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
666  					unsigned int selector)
667  {
668  	return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
669  }
670  EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
671  
672  /**
673   * regulator_list_voltage_table - List voltages with table based mapping
674   *
675   * @rdev: Regulator device
676   * @selector: Selector to convert into a voltage
677   *
678   * Regulators with table based mapping between voltages and
679   * selectors can set volt_table in the regulator descriptor
680   * and then use this function as their list_voltage() operation.
681   */
regulator_list_voltage_table(struct regulator_dev * rdev,unsigned int selector)682  int regulator_list_voltage_table(struct regulator_dev *rdev,
683  				 unsigned int selector)
684  {
685  	if (!rdev->desc->volt_table) {
686  		BUG_ON(!rdev->desc->volt_table);
687  		return -EINVAL;
688  	}
689  
690  	if (selector >= rdev->desc->n_voltages)
691  		return -EINVAL;
692  	if (selector < rdev->desc->linear_min_sel)
693  		return 0;
694  
695  	return rdev->desc->volt_table[selector];
696  }
697  EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
698  
699  /**
700   * regulator_set_bypass_regmap - Default set_bypass() using regmap
701   *
702   * @rdev: device to operate on.
703   * @enable: state to set.
704   */
regulator_set_bypass_regmap(struct regulator_dev * rdev,bool enable)705  int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
706  {
707  	unsigned int val;
708  
709  	if (enable) {
710  		val = rdev->desc->bypass_val_on;
711  		if (!val)
712  			val = rdev->desc->bypass_mask;
713  	} else {
714  		val = rdev->desc->bypass_val_off;
715  	}
716  
717  	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
718  				  rdev->desc->bypass_mask, val);
719  }
720  EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
721  
722  /**
723   * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
724   *
725   * @rdev: device to operate on.
726   */
regulator_set_soft_start_regmap(struct regulator_dev * rdev)727  int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
728  {
729  	unsigned int val;
730  
731  	val = rdev->desc->soft_start_val_on;
732  	if (!val)
733  		val = rdev->desc->soft_start_mask;
734  
735  	return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
736  				  rdev->desc->soft_start_mask, val);
737  }
738  EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
739  
740  /**
741   * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
742   *
743   * @rdev: device to operate on.
744   */
regulator_set_pull_down_regmap(struct regulator_dev * rdev)745  int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
746  {
747  	unsigned int val;
748  
749  	val = rdev->desc->pull_down_val_on;
750  	if (!val)
751  		val = rdev->desc->pull_down_mask;
752  
753  	return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
754  				  rdev->desc->pull_down_mask, val);
755  }
756  EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
757  
758  /**
759   * regulator_get_bypass_regmap - Default get_bypass() using regmap
760   *
761   * @rdev: device to operate on.
762   * @enable: current state.
763   */
regulator_get_bypass_regmap(struct regulator_dev * rdev,bool * enable)764  int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
765  {
766  	unsigned int val;
767  	unsigned int val_on = rdev->desc->bypass_val_on;
768  	int ret;
769  
770  	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
771  	if (ret != 0)
772  		return ret;
773  
774  	if (!val_on)
775  		val_on = rdev->desc->bypass_mask;
776  
777  	*enable = (val & rdev->desc->bypass_mask) == val_on;
778  
779  	return 0;
780  }
781  EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
782  
783  /**
784   * regulator_set_active_discharge_regmap - Default set_active_discharge()
785   *					   using regmap
786   *
787   * @rdev: device to operate on.
788   * @enable: state to set, 0 to disable and 1 to enable.
789   */
regulator_set_active_discharge_regmap(struct regulator_dev * rdev,bool enable)790  int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
791  					  bool enable)
792  {
793  	unsigned int val;
794  
795  	if (enable)
796  		val = rdev->desc->active_discharge_on;
797  	else
798  		val = rdev->desc->active_discharge_off;
799  
800  	return regmap_update_bits(rdev->regmap,
801  				  rdev->desc->active_discharge_reg,
802  				  rdev->desc->active_discharge_mask, val);
803  }
804  EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
805  
806  /**
807   * regulator_set_current_limit_regmap - set_current_limit for regmap users
808   *
809   * @rdev: regulator to operate on
810   * @min_uA: Lower bound for current limit
811   * @max_uA: Upper bound for current limit
812   *
813   * Regulators that use regmap for their register I/O can set curr_table,
814   * csel_reg and csel_mask fields in their descriptor and then use this
815   * as their set_current_limit operation, saving some code.
816   */
regulator_set_current_limit_regmap(struct regulator_dev * rdev,int min_uA,int max_uA)817  int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
818  				       int min_uA, int max_uA)
819  {
820  	unsigned int n_currents = rdev->desc->n_current_limits;
821  	int i, sel = -1;
822  
823  	if (n_currents == 0)
824  		return -EINVAL;
825  
826  	if (rdev->desc->curr_table) {
827  		const unsigned int *curr_table = rdev->desc->curr_table;
828  		bool ascend = curr_table[n_currents - 1] > curr_table[0];
829  
830  		/* search for closest to maximum */
831  		if (ascend) {
832  			for (i = n_currents - 1; i >= 0; i--) {
833  				if (min_uA <= curr_table[i] &&
834  				    curr_table[i] <= max_uA) {
835  					sel = i;
836  					break;
837  				}
838  			}
839  		} else {
840  			for (i = 0; i < n_currents; i++) {
841  				if (min_uA <= curr_table[i] &&
842  				    curr_table[i] <= max_uA) {
843  					sel = i;
844  					break;
845  				}
846  			}
847  		}
848  	}
849  
850  	if (sel < 0)
851  		return -EINVAL;
852  
853  	sel <<= ffs(rdev->desc->csel_mask) - 1;
854  
855  	return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
856  				  rdev->desc->csel_mask, sel);
857  }
858  EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
859  
860  /**
861   * regulator_get_current_limit_regmap - get_current_limit for regmap users
862   *
863   * @rdev: regulator to operate on
864   *
865   * Regulators that use regmap for their register I/O can set the
866   * csel_reg and csel_mask fields in their descriptor and then use this
867   * as their get_current_limit operation, saving some code.
868   */
regulator_get_current_limit_regmap(struct regulator_dev * rdev)869  int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
870  {
871  	unsigned int val;
872  	int ret;
873  
874  	ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
875  	if (ret != 0)
876  		return ret;
877  
878  	val &= rdev->desc->csel_mask;
879  	val >>= ffs(rdev->desc->csel_mask) - 1;
880  
881  	if (rdev->desc->curr_table) {
882  		if (val >= rdev->desc->n_current_limits)
883  			return -EINVAL;
884  
885  		return rdev->desc->curr_table[val];
886  	}
887  
888  	return -EINVAL;
889  }
890  EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);
891  
892  /**
893   * regulator_bulk_set_supply_names - initialize the 'supply' fields in an array
894   *                                   of regulator_bulk_data structs
895   *
896   * @consumers: array of regulator_bulk_data entries to initialize
897   * @supply_names: array of supply name strings
898   * @num_supplies: number of supply names to initialize
899   *
900   * Note: the 'consumers' array must be the size of 'num_supplies'.
901   */
regulator_bulk_set_supply_names(struct regulator_bulk_data * consumers,const char * const * supply_names,unsigned int num_supplies)902  void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers,
903  				     const char *const *supply_names,
904  				     unsigned int num_supplies)
905  {
906  	unsigned int i;
907  
908  	for (i = 0; i < num_supplies; i++)
909  		consumers[i].supply = supply_names[i];
910  }
911  EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names);
912  
913  /**
914   * regulator_is_equal - test whether two regulators are the same
915   *
916   * @reg1: first regulator to operate on
917   * @reg2: second regulator to operate on
918   */
regulator_is_equal(struct regulator * reg1,struct regulator * reg2)919  bool regulator_is_equal(struct regulator *reg1, struct regulator *reg2)
920  {
921  	return reg1->rdev == reg2->rdev;
922  }
923  EXPORT_SYMBOL_GPL(regulator_is_equal);
924  
925  /**
926   * regulator_find_closest_bigger - helper to find offset in ramp delay table
927   *
928   * @target: targeted ramp_delay
929   * @table: table with supported ramp delays
930   * @num_sel: number of entries in the table
931   * @sel: Pointer to store table offset
932   *
933   * This is the internal helper used by regulator_set_ramp_delay_regmap to
934   * map ramp delay to register value. It should only be used directly if
935   * regulator_set_ramp_delay_regmap cannot handle a specific device setup
936   * (e.g. because the value is split over multiple registers).
937   */
regulator_find_closest_bigger(unsigned int target,const unsigned int * table,unsigned int num_sel,unsigned int * sel)938  int regulator_find_closest_bigger(unsigned int target, const unsigned int *table,
939  				  unsigned int num_sel, unsigned int *sel)
940  {
941  	unsigned int s, tmp, max, maxsel = 0;
942  	bool found = false;
943  
944  	max = table[0];
945  
946  	for (s = 0; s < num_sel; s++) {
947  		if (table[s] > max) {
948  			max = table[s];
949  			maxsel = s;
950  		}
951  		if (table[s] >= target) {
952  			if (!found || table[s] - target < tmp - target) {
953  				tmp = table[s];
954  				*sel = s;
955  				found = true;
956  				if (tmp == target)
957  					break;
958  			}
959  		}
960  	}
961  
962  	if (!found) {
963  		*sel = maxsel;
964  		return -EINVAL;
965  	}
966  
967  	return 0;
968  }
969  EXPORT_SYMBOL_GPL(regulator_find_closest_bigger);
970  
971  /**
972   * regulator_set_ramp_delay_regmap - set_ramp_delay() helper
973   *
974   * @rdev: regulator to operate on
975   * @ramp_delay: ramp-rate value given in units V/S (uV/uS)
976   *
977   * Regulators that use regmap for their register I/O can set the ramp_reg
978   * and ramp_mask fields in their descriptor and then use this as their
979   * set_ramp_delay operation, saving some code.
980   */
regulator_set_ramp_delay_regmap(struct regulator_dev * rdev,int ramp_delay)981  int regulator_set_ramp_delay_regmap(struct regulator_dev *rdev, int ramp_delay)
982  {
983  	int ret;
984  	unsigned int sel;
985  
986  	if (WARN_ON(!rdev->desc->n_ramp_values || !rdev->desc->ramp_delay_table))
987  		return -EINVAL;
988  
989  	ret = regulator_find_closest_bigger(ramp_delay, rdev->desc->ramp_delay_table,
990  					    rdev->desc->n_ramp_values, &sel);
991  
992  	if (ret) {
993  		dev_warn(rdev_get_dev(rdev),
994  			 "Can't set ramp-delay %u, setting %u\n", ramp_delay,
995  			 rdev->desc->ramp_delay_table[sel]);
996  	}
997  
998  	sel <<= ffs(rdev->desc->ramp_mask) - 1;
999  
1000  	return regmap_update_bits(rdev->regmap, rdev->desc->ramp_reg,
1001  				  rdev->desc->ramp_mask, sel);
1002  }
1003  EXPORT_SYMBOL_GPL(regulator_set_ramp_delay_regmap);
1004