1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/stacktrace.h>
38 #include <linux/prefetch.h>
39 #include <linux/memcontrol.h>
40 #include <linux/random.h>
41 #include <kunit/test.h>
42 #include <kunit/test-bug.h>
43 #include <linux/sort.h>
44
45 #include <linux/debugfs.h>
46 #include <trace/events/kmem.h>
47
48 #include "internal.h"
49
50 /*
51 * Lock order:
52 * 1. slab_mutex (Global Mutex)
53 * 2. node->list_lock (Spinlock)
54 * 3. kmem_cache->cpu_slab->lock (Local lock)
55 * 4. slab_lock(slab) (Only on some arches)
56 * 5. object_map_lock (Only for debugging)
57 *
58 * slab_mutex
59 *
60 * The role of the slab_mutex is to protect the list of all the slabs
61 * and to synchronize major metadata changes to slab cache structures.
62 * Also synchronizes memory hotplug callbacks.
63 *
64 * slab_lock
65 *
66 * The slab_lock is a wrapper around the page lock, thus it is a bit
67 * spinlock.
68 *
69 * The slab_lock is only used on arches that do not have the ability
70 * to do a cmpxchg_double. It only protects:
71 *
72 * A. slab->freelist -> List of free objects in a slab
73 * B. slab->inuse -> Number of objects in use
74 * C. slab->objects -> Number of objects in slab
75 * D. slab->frozen -> frozen state
76 *
77 * Frozen slabs
78 *
79 * If a slab is frozen then it is exempt from list management. It is not
80 * on any list except per cpu partial list. The processor that froze the
81 * slab is the one who can perform list operations on the slab. Other
82 * processors may put objects onto the freelist but the processor that
83 * froze the slab is the only one that can retrieve the objects from the
84 * slab's freelist.
85 *
86 * list_lock
87 *
88 * The list_lock protects the partial and full list on each node and
89 * the partial slab counter. If taken then no new slabs may be added or
90 * removed from the lists nor make the number of partial slabs be modified.
91 * (Note that the total number of slabs is an atomic value that may be
92 * modified without taking the list lock).
93 *
94 * The list_lock is a centralized lock and thus we avoid taking it as
95 * much as possible. As long as SLUB does not have to handle partial
96 * slabs, operations can continue without any centralized lock. F.e.
97 * allocating a long series of objects that fill up slabs does not require
98 * the list lock.
99 *
100 * For debug caches, all allocations are forced to go through a list_lock
101 * protected region to serialize against concurrent validation.
102 *
103 * cpu_slab->lock local lock
104 *
105 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
106 * except the stat counters. This is a percpu structure manipulated only by
107 * the local cpu, so the lock protects against being preempted or interrupted
108 * by an irq. Fast path operations rely on lockless operations instead.
109 *
110 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
111 * which means the lockless fastpath cannot be used as it might interfere with
112 * an in-progress slow path operations. In this case the local lock is always
113 * taken but it still utilizes the freelist for the common operations.
114 *
115 * lockless fastpaths
116 *
117 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
118 * are fully lockless when satisfied from the percpu slab (and when
119 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
120 * They also don't disable preemption or migration or irqs. They rely on
121 * the transaction id (tid) field to detect being preempted or moved to
122 * another cpu.
123 *
124 * irq, preemption, migration considerations
125 *
126 * Interrupts are disabled as part of list_lock or local_lock operations, or
127 * around the slab_lock operation, in order to make the slab allocator safe
128 * to use in the context of an irq.
129 *
130 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
131 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
132 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
133 * doesn't have to be revalidated in each section protected by the local lock.
134 *
135 * SLUB assigns one slab for allocation to each processor.
136 * Allocations only occur from these slabs called cpu slabs.
137 *
138 * Slabs with free elements are kept on a partial list and during regular
139 * operations no list for full slabs is used. If an object in a full slab is
140 * freed then the slab will show up again on the partial lists.
141 * We track full slabs for debugging purposes though because otherwise we
142 * cannot scan all objects.
143 *
144 * Slabs are freed when they become empty. Teardown and setup is
145 * minimal so we rely on the page allocators per cpu caches for
146 * fast frees and allocs.
147 *
148 * slab->frozen The slab is frozen and exempt from list processing.
149 * This means that the slab is dedicated to a purpose
150 * such as satisfying allocations for a specific
151 * processor. Objects may be freed in the slab while
152 * it is frozen but slab_free will then skip the usual
153 * list operations. It is up to the processor holding
154 * the slab to integrate the slab into the slab lists
155 * when the slab is no longer needed.
156 *
157 * One use of this flag is to mark slabs that are
158 * used for allocations. Then such a slab becomes a cpu
159 * slab. The cpu slab may be equipped with an additional
160 * freelist that allows lockless access to
161 * free objects in addition to the regular freelist
162 * that requires the slab lock.
163 *
164 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
165 * options set. This moves slab handling out of
166 * the fast path and disables lockless freelists.
167 */
168
169 /*
170 * We could simply use migrate_disable()/enable() but as long as it's a
171 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
172 */
173 #ifndef CONFIG_PREEMPT_RT
174 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
175 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
176 #define USE_LOCKLESS_FAST_PATH() (true)
177 #else
178 #define slub_get_cpu_ptr(var) \
179 ({ \
180 migrate_disable(); \
181 this_cpu_ptr(var); \
182 })
183 #define slub_put_cpu_ptr(var) \
184 do { \
185 (void)(var); \
186 migrate_enable(); \
187 } while (0)
188 #define USE_LOCKLESS_FAST_PATH() (false)
189 #endif
190
191 #ifndef CONFIG_SLUB_TINY
192 #define __fastpath_inline __always_inline
193 #else
194 #define __fastpath_inline
195 #endif
196
197 #ifdef CONFIG_SLUB_DEBUG
198 #ifdef CONFIG_SLUB_DEBUG_ON
199 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
200 #else
201 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
202 #endif
203 #endif /* CONFIG_SLUB_DEBUG */
204
205 /* Structure holding parameters for get_partial() call chain */
206 struct partial_context {
207 struct slab **slab;
208 gfp_t flags;
209 unsigned int orig_size;
210 };
211
kmem_cache_debug(struct kmem_cache * s)212 static inline bool kmem_cache_debug(struct kmem_cache *s)
213 {
214 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
215 }
216
slub_debug_orig_size(struct kmem_cache * s)217 static inline bool slub_debug_orig_size(struct kmem_cache *s)
218 {
219 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
220 (s->flags & SLAB_KMALLOC));
221 }
222
fixup_red_left(struct kmem_cache * s,void * p)223 void *fixup_red_left(struct kmem_cache *s, void *p)
224 {
225 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
226 p += s->red_left_pad;
227
228 return p;
229 }
230
kmem_cache_has_cpu_partial(struct kmem_cache * s)231 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
232 {
233 #ifdef CONFIG_SLUB_CPU_PARTIAL
234 return !kmem_cache_debug(s);
235 #else
236 return false;
237 #endif
238 }
239
240 /*
241 * Issues still to be resolved:
242 *
243 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
244 *
245 * - Variable sizing of the per node arrays
246 */
247
248 /* Enable to log cmpxchg failures */
249 #undef SLUB_DEBUG_CMPXCHG
250
251 #ifndef CONFIG_SLUB_TINY
252 /*
253 * Minimum number of partial slabs. These will be left on the partial
254 * lists even if they are empty. kmem_cache_shrink may reclaim them.
255 */
256 #define MIN_PARTIAL 5
257
258 /*
259 * Maximum number of desirable partial slabs.
260 * The existence of more partial slabs makes kmem_cache_shrink
261 * sort the partial list by the number of objects in use.
262 */
263 #define MAX_PARTIAL 10
264 #else
265 #define MIN_PARTIAL 0
266 #define MAX_PARTIAL 0
267 #endif
268
269 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
270 SLAB_POISON | SLAB_STORE_USER)
271
272 /*
273 * These debug flags cannot use CMPXCHG because there might be consistency
274 * issues when checking or reading debug information
275 */
276 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
277 SLAB_TRACE)
278
279
280 /*
281 * Debugging flags that require metadata to be stored in the slab. These get
282 * disabled when slub_debug=O is used and a cache's min order increases with
283 * metadata.
284 */
285 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
286
287 #define OO_SHIFT 16
288 #define OO_MASK ((1 << OO_SHIFT) - 1)
289 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
290
291 /* Internal SLUB flags */
292 /* Poison object */
293 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
294 /* Use cmpxchg_double */
295
296 #ifdef system_has_freelist_aba
297 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
298 #else
299 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0U)
300 #endif
301
302 /*
303 * Tracking user of a slab.
304 */
305 #define TRACK_ADDRS_COUNT 16
306 struct track {
307 unsigned long addr; /* Called from address */
308 #ifdef CONFIG_STACKDEPOT
309 depot_stack_handle_t handle;
310 #endif
311 int cpu; /* Was running on cpu */
312 int pid; /* Pid context */
313 unsigned long when; /* When did the operation occur */
314 };
315
316 enum track_item { TRACK_ALLOC, TRACK_FREE };
317
318 #ifdef SLAB_SUPPORTS_SYSFS
319 static int sysfs_slab_add(struct kmem_cache *);
320 static int sysfs_slab_alias(struct kmem_cache *, const char *);
321 #else
sysfs_slab_add(struct kmem_cache * s)322 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)323 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
324 { return 0; }
325 #endif
326
327 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
328 static void debugfs_slab_add(struct kmem_cache *);
329 #else
debugfs_slab_add(struct kmem_cache * s)330 static inline void debugfs_slab_add(struct kmem_cache *s) { }
331 #endif
332
stat(const struct kmem_cache * s,enum stat_item si)333 static inline void stat(const struct kmem_cache *s, enum stat_item si)
334 {
335 #ifdef CONFIG_SLUB_STATS
336 /*
337 * The rmw is racy on a preemptible kernel but this is acceptable, so
338 * avoid this_cpu_add()'s irq-disable overhead.
339 */
340 raw_cpu_inc(s->cpu_slab->stat[si]);
341 #endif
342 }
343
344 /*
345 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
346 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
347 * differ during memory hotplug/hotremove operations.
348 * Protected by slab_mutex.
349 */
350 static nodemask_t slab_nodes;
351
352 #ifndef CONFIG_SLUB_TINY
353 /*
354 * Workqueue used for flush_cpu_slab().
355 */
356 static struct workqueue_struct *flushwq;
357 #endif
358
359 /********************************************************************
360 * Core slab cache functions
361 *******************************************************************/
362
363 /*
364 * freeptr_t represents a SLUB freelist pointer, which might be encoded
365 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
366 */
367 typedef struct { unsigned long v; } freeptr_t;
368
369 /*
370 * Returns freelist pointer (ptr). With hardening, this is obfuscated
371 * with an XOR of the address where the pointer is held and a per-cache
372 * random number.
373 */
freelist_ptr_encode(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)374 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
375 void *ptr, unsigned long ptr_addr)
376 {
377 unsigned long encoded;
378
379 #ifdef CONFIG_SLAB_FREELIST_HARDENED
380 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
381 #else
382 encoded = (unsigned long)ptr;
383 #endif
384 return (freeptr_t){.v = encoded};
385 }
386
freelist_ptr_decode(const struct kmem_cache * s,freeptr_t ptr,unsigned long ptr_addr)387 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
388 freeptr_t ptr, unsigned long ptr_addr)
389 {
390 void *decoded;
391
392 #ifdef CONFIG_SLAB_FREELIST_HARDENED
393 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
394 #else
395 decoded = (void *)ptr.v;
396 #endif
397 return decoded;
398 }
399
get_freepointer(struct kmem_cache * s,void * object)400 static inline void *get_freepointer(struct kmem_cache *s, void *object)
401 {
402 unsigned long ptr_addr;
403 freeptr_t p;
404
405 object = kasan_reset_tag(object);
406 ptr_addr = (unsigned long)object + s->offset;
407 p = *(freeptr_t *)(ptr_addr);
408 return freelist_ptr_decode(s, p, ptr_addr);
409 }
410
411 #ifndef CONFIG_SLUB_TINY
prefetch_freepointer(const struct kmem_cache * s,void * object)412 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
413 {
414 prefetchw(object + s->offset);
415 }
416 #endif
417
418 /*
419 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
420 * pointer value in the case the current thread loses the race for the next
421 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
422 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
423 * KMSAN will still check all arguments of cmpxchg because of imperfect
424 * handling of inline assembly.
425 * To work around this problem, we apply __no_kmsan_checks to ensure that
426 * get_freepointer_safe() returns initialized memory.
427 */
428 __no_kmsan_checks
get_freepointer_safe(struct kmem_cache * s,void * object)429 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
430 {
431 unsigned long freepointer_addr;
432 freeptr_t p;
433
434 if (!debug_pagealloc_enabled_static())
435 return get_freepointer(s, object);
436
437 object = kasan_reset_tag(object);
438 freepointer_addr = (unsigned long)object + s->offset;
439 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
440 return freelist_ptr_decode(s, p, freepointer_addr);
441 }
442
set_freepointer(struct kmem_cache * s,void * object,void * fp)443 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
444 {
445 unsigned long freeptr_addr = (unsigned long)object + s->offset;
446
447 #ifdef CONFIG_SLAB_FREELIST_HARDENED
448 BUG_ON(object == fp); /* naive detection of double free or corruption */
449 #endif
450
451 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
452 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
453 }
454
455 /* Loop over all objects in a slab */
456 #define for_each_object(__p, __s, __addr, __objects) \
457 for (__p = fixup_red_left(__s, __addr); \
458 __p < (__addr) + (__objects) * (__s)->size; \
459 __p += (__s)->size)
460
order_objects(unsigned int order,unsigned int size)461 static inline unsigned int order_objects(unsigned int order, unsigned int size)
462 {
463 return ((unsigned int)PAGE_SIZE << order) / size;
464 }
465
oo_make(unsigned int order,unsigned int size)466 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
467 unsigned int size)
468 {
469 struct kmem_cache_order_objects x = {
470 (order << OO_SHIFT) + order_objects(order, size)
471 };
472
473 return x;
474 }
475
oo_order(struct kmem_cache_order_objects x)476 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
477 {
478 return x.x >> OO_SHIFT;
479 }
480
oo_objects(struct kmem_cache_order_objects x)481 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
482 {
483 return x.x & OO_MASK;
484 }
485
486 #ifdef CONFIG_SLUB_CPU_PARTIAL
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)487 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
488 {
489 unsigned int nr_slabs;
490
491 s->cpu_partial = nr_objects;
492
493 /*
494 * We take the number of objects but actually limit the number of
495 * slabs on the per cpu partial list, in order to limit excessive
496 * growth of the list. For simplicity we assume that the slabs will
497 * be half-full.
498 */
499 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
500 s->cpu_partial_slabs = nr_slabs;
501 }
502 #else
503 static inline void
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)504 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
505 {
506 }
507 #endif /* CONFIG_SLUB_CPU_PARTIAL */
508
509 /*
510 * Per slab locking using the pagelock
511 */
slab_lock(struct slab * slab)512 static __always_inline void slab_lock(struct slab *slab)
513 {
514 struct page *page = slab_page(slab);
515
516 VM_BUG_ON_PAGE(PageTail(page), page);
517 bit_spin_lock(PG_locked, &page->flags);
518 }
519
slab_unlock(struct slab * slab)520 static __always_inline void slab_unlock(struct slab *slab)
521 {
522 struct page *page = slab_page(slab);
523
524 VM_BUG_ON_PAGE(PageTail(page), page);
525 __bit_spin_unlock(PG_locked, &page->flags);
526 }
527
528 static inline bool
__update_freelist_fast(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)529 __update_freelist_fast(struct slab *slab,
530 void *freelist_old, unsigned long counters_old,
531 void *freelist_new, unsigned long counters_new)
532 {
533 #ifdef system_has_freelist_aba
534 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
535 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
536
537 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
538 #else
539 return false;
540 #endif
541 }
542
543 static inline bool
__update_freelist_slow(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)544 __update_freelist_slow(struct slab *slab,
545 void *freelist_old, unsigned long counters_old,
546 void *freelist_new, unsigned long counters_new)
547 {
548 bool ret = false;
549
550 slab_lock(slab);
551 if (slab->freelist == freelist_old &&
552 slab->counters == counters_old) {
553 slab->freelist = freelist_new;
554 slab->counters = counters_new;
555 ret = true;
556 }
557 slab_unlock(slab);
558
559 return ret;
560 }
561
562 /*
563 * Interrupts must be disabled (for the fallback code to work right), typically
564 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
565 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
566 * allocation/ free operation in hardirq context. Therefore nothing can
567 * interrupt the operation.
568 */
__slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)569 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
570 void *freelist_old, unsigned long counters_old,
571 void *freelist_new, unsigned long counters_new,
572 const char *n)
573 {
574 bool ret;
575
576 if (USE_LOCKLESS_FAST_PATH())
577 lockdep_assert_irqs_disabled();
578
579 if (s->flags & __CMPXCHG_DOUBLE) {
580 ret = __update_freelist_fast(slab, freelist_old, counters_old,
581 freelist_new, counters_new);
582 } else {
583 ret = __update_freelist_slow(slab, freelist_old, counters_old,
584 freelist_new, counters_new);
585 }
586 if (likely(ret))
587 return true;
588
589 cpu_relax();
590 stat(s, CMPXCHG_DOUBLE_FAIL);
591
592 #ifdef SLUB_DEBUG_CMPXCHG
593 pr_info("%s %s: cmpxchg double redo ", n, s->name);
594 #endif
595
596 return false;
597 }
598
slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)599 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
600 void *freelist_old, unsigned long counters_old,
601 void *freelist_new, unsigned long counters_new,
602 const char *n)
603 {
604 bool ret;
605
606 if (s->flags & __CMPXCHG_DOUBLE) {
607 ret = __update_freelist_fast(slab, freelist_old, counters_old,
608 freelist_new, counters_new);
609 } else {
610 unsigned long flags;
611
612 local_irq_save(flags);
613 ret = __update_freelist_slow(slab, freelist_old, counters_old,
614 freelist_new, counters_new);
615 local_irq_restore(flags);
616 }
617 if (likely(ret))
618 return true;
619
620 cpu_relax();
621 stat(s, CMPXCHG_DOUBLE_FAIL);
622
623 #ifdef SLUB_DEBUG_CMPXCHG
624 pr_info("%s %s: cmpxchg double redo ", n, s->name);
625 #endif
626
627 return false;
628 }
629
630 #ifdef CONFIG_SLUB_DEBUG
631 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
632 static DEFINE_SPINLOCK(object_map_lock);
633
__fill_map(unsigned long * obj_map,struct kmem_cache * s,struct slab * slab)634 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
635 struct slab *slab)
636 {
637 void *addr = slab_address(slab);
638 void *p;
639
640 bitmap_zero(obj_map, slab->objects);
641
642 for (p = slab->freelist; p; p = get_freepointer(s, p))
643 set_bit(__obj_to_index(s, addr, p), obj_map);
644 }
645
646 #if IS_ENABLED(CONFIG_KUNIT)
slab_add_kunit_errors(void)647 static bool slab_add_kunit_errors(void)
648 {
649 struct kunit_resource *resource;
650
651 if (!kunit_get_current_test())
652 return false;
653
654 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
655 if (!resource)
656 return false;
657
658 (*(int *)resource->data)++;
659 kunit_put_resource(resource);
660 return true;
661 }
662 #else
slab_add_kunit_errors(void)663 static inline bool slab_add_kunit_errors(void) { return false; }
664 #endif
665
size_from_object(struct kmem_cache * s)666 static inline unsigned int size_from_object(struct kmem_cache *s)
667 {
668 if (s->flags & SLAB_RED_ZONE)
669 return s->size - s->red_left_pad;
670
671 return s->size;
672 }
673
restore_red_left(struct kmem_cache * s,void * p)674 static inline void *restore_red_left(struct kmem_cache *s, void *p)
675 {
676 if (s->flags & SLAB_RED_ZONE)
677 p -= s->red_left_pad;
678
679 return p;
680 }
681
682 /*
683 * Debug settings:
684 */
685 #if defined(CONFIG_SLUB_DEBUG_ON)
686 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
687 #else
688 static slab_flags_t slub_debug;
689 #endif
690
691 static char *slub_debug_string;
692 static int disable_higher_order_debug;
693
694 /*
695 * slub is about to manipulate internal object metadata. This memory lies
696 * outside the range of the allocated object, so accessing it would normally
697 * be reported by kasan as a bounds error. metadata_access_enable() is used
698 * to tell kasan that these accesses are OK.
699 */
metadata_access_enable(void)700 static inline void metadata_access_enable(void)
701 {
702 kasan_disable_current();
703 }
704
metadata_access_disable(void)705 static inline void metadata_access_disable(void)
706 {
707 kasan_enable_current();
708 }
709
710 /*
711 * Object debugging
712 */
713
714 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct slab * slab,void * object)715 static inline int check_valid_pointer(struct kmem_cache *s,
716 struct slab *slab, void *object)
717 {
718 void *base;
719
720 if (!object)
721 return 1;
722
723 base = slab_address(slab);
724 object = kasan_reset_tag(object);
725 object = restore_red_left(s, object);
726 if (object < base || object >= base + slab->objects * s->size ||
727 (object - base) % s->size) {
728 return 0;
729 }
730
731 return 1;
732 }
733
print_section(char * level,char * text,u8 * addr,unsigned int length)734 static void print_section(char *level, char *text, u8 *addr,
735 unsigned int length)
736 {
737 metadata_access_enable();
738 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
739 16, 1, kasan_reset_tag((void *)addr), length, 1);
740 metadata_access_disable();
741 }
742
743 /*
744 * See comment in calculate_sizes().
745 */
freeptr_outside_object(struct kmem_cache * s)746 static inline bool freeptr_outside_object(struct kmem_cache *s)
747 {
748 return s->offset >= s->inuse;
749 }
750
751 /*
752 * Return offset of the end of info block which is inuse + free pointer if
753 * not overlapping with object.
754 */
get_info_end(struct kmem_cache * s)755 static inline unsigned int get_info_end(struct kmem_cache *s)
756 {
757 if (freeptr_outside_object(s))
758 return s->inuse + sizeof(void *);
759 else
760 return s->inuse;
761 }
762
get_track(struct kmem_cache * s,void * object,enum track_item alloc)763 static struct track *get_track(struct kmem_cache *s, void *object,
764 enum track_item alloc)
765 {
766 struct track *p;
767
768 p = object + get_info_end(s);
769
770 return kasan_reset_tag(p + alloc);
771 }
772
773 #ifdef CONFIG_STACKDEPOT
set_track_prepare(void)774 static noinline depot_stack_handle_t set_track_prepare(void)
775 {
776 depot_stack_handle_t handle;
777 unsigned long entries[TRACK_ADDRS_COUNT];
778 unsigned int nr_entries;
779
780 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
781 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
782
783 return handle;
784 }
785 #else
set_track_prepare(void)786 static inline depot_stack_handle_t set_track_prepare(void)
787 {
788 return 0;
789 }
790 #endif
791
set_track_update(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,depot_stack_handle_t handle)792 static void set_track_update(struct kmem_cache *s, void *object,
793 enum track_item alloc, unsigned long addr,
794 depot_stack_handle_t handle)
795 {
796 struct track *p = get_track(s, object, alloc);
797
798 #ifdef CONFIG_STACKDEPOT
799 p->handle = handle;
800 #endif
801 p->addr = addr;
802 p->cpu = smp_processor_id();
803 p->pid = current->pid;
804 p->when = jiffies;
805 }
806
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)807 static __always_inline void set_track(struct kmem_cache *s, void *object,
808 enum track_item alloc, unsigned long addr)
809 {
810 depot_stack_handle_t handle = set_track_prepare();
811
812 set_track_update(s, object, alloc, addr, handle);
813 }
814
init_tracking(struct kmem_cache * s,void * object)815 static void init_tracking(struct kmem_cache *s, void *object)
816 {
817 struct track *p;
818
819 if (!(s->flags & SLAB_STORE_USER))
820 return;
821
822 p = get_track(s, object, TRACK_ALLOC);
823 memset(p, 0, 2*sizeof(struct track));
824 }
825
print_track(const char * s,struct track * t,unsigned long pr_time)826 static void print_track(const char *s, struct track *t, unsigned long pr_time)
827 {
828 depot_stack_handle_t handle __maybe_unused;
829
830 if (!t->addr)
831 return;
832
833 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
834 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
835 #ifdef CONFIG_STACKDEPOT
836 handle = READ_ONCE(t->handle);
837 if (handle)
838 stack_depot_print(handle);
839 else
840 pr_err("object allocation/free stack trace missing\n");
841 #endif
842 }
843
print_tracking(struct kmem_cache * s,void * object)844 void print_tracking(struct kmem_cache *s, void *object)
845 {
846 unsigned long pr_time = jiffies;
847 if (!(s->flags & SLAB_STORE_USER))
848 return;
849
850 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
851 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
852 }
853
print_slab_info(const struct slab * slab)854 static void print_slab_info(const struct slab *slab)
855 {
856 struct folio *folio = (struct folio *)slab_folio(slab);
857
858 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
859 slab, slab->objects, slab->inuse, slab->freelist,
860 folio_flags(folio, 0));
861 }
862
863 /*
864 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
865 * family will round up the real request size to these fixed ones, so
866 * there could be an extra area than what is requested. Save the original
867 * request size in the meta data area, for better debug and sanity check.
868 */
set_orig_size(struct kmem_cache * s,void * object,unsigned int orig_size)869 static inline void set_orig_size(struct kmem_cache *s,
870 void *object, unsigned int orig_size)
871 {
872 void *p = kasan_reset_tag(object);
873
874 if (!slub_debug_orig_size(s))
875 return;
876
877 #ifdef CONFIG_KASAN_GENERIC
878 /*
879 * KASAN could save its free meta data in object's data area at
880 * offset 0, if the size is larger than 'orig_size', it will
881 * overlap the data redzone in [orig_size+1, object_size], and
882 * the check should be skipped.
883 */
884 if (kasan_metadata_size(s, true) > orig_size)
885 orig_size = s->object_size;
886 #endif
887
888 p += get_info_end(s);
889 p += sizeof(struct track) * 2;
890
891 *(unsigned int *)p = orig_size;
892 }
893
get_orig_size(struct kmem_cache * s,void * object)894 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
895 {
896 void *p = kasan_reset_tag(object);
897
898 if (!slub_debug_orig_size(s))
899 return s->object_size;
900
901 p += get_info_end(s);
902 p += sizeof(struct track) * 2;
903
904 return *(unsigned int *)p;
905 }
906
skip_orig_size_check(struct kmem_cache * s,const void * object)907 void skip_orig_size_check(struct kmem_cache *s, const void *object)
908 {
909 set_orig_size(s, (void *)object, s->object_size);
910 }
911
slab_bug(struct kmem_cache * s,char * fmt,...)912 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
913 {
914 struct va_format vaf;
915 va_list args;
916
917 va_start(args, fmt);
918 vaf.fmt = fmt;
919 vaf.va = &args;
920 pr_err("=============================================================================\n");
921 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
922 pr_err("-----------------------------------------------------------------------------\n\n");
923 va_end(args);
924 }
925
926 __printf(2, 3)
slab_fix(struct kmem_cache * s,char * fmt,...)927 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
928 {
929 struct va_format vaf;
930 va_list args;
931
932 if (slab_add_kunit_errors())
933 return;
934
935 va_start(args, fmt);
936 vaf.fmt = fmt;
937 vaf.va = &args;
938 pr_err("FIX %s: %pV\n", s->name, &vaf);
939 va_end(args);
940 }
941
print_trailer(struct kmem_cache * s,struct slab * slab,u8 * p)942 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
943 {
944 unsigned int off; /* Offset of last byte */
945 u8 *addr = slab_address(slab);
946
947 print_tracking(s, p);
948
949 print_slab_info(slab);
950
951 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
952 p, p - addr, get_freepointer(s, p));
953
954 if (s->flags & SLAB_RED_ZONE)
955 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
956 s->red_left_pad);
957 else if (p > addr + 16)
958 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
959
960 print_section(KERN_ERR, "Object ", p,
961 min_t(unsigned int, s->object_size, PAGE_SIZE));
962 if (s->flags & SLAB_RED_ZONE)
963 print_section(KERN_ERR, "Redzone ", p + s->object_size,
964 s->inuse - s->object_size);
965
966 off = get_info_end(s);
967
968 if (s->flags & SLAB_STORE_USER)
969 off += 2 * sizeof(struct track);
970
971 if (slub_debug_orig_size(s))
972 off += sizeof(unsigned int);
973
974 off += kasan_metadata_size(s, false);
975
976 if (off != size_from_object(s))
977 /* Beginning of the filler is the free pointer */
978 print_section(KERN_ERR, "Padding ", p + off,
979 size_from_object(s) - off);
980
981 dump_stack();
982 }
983
object_err(struct kmem_cache * s,struct slab * slab,u8 * object,char * reason)984 static void object_err(struct kmem_cache *s, struct slab *slab,
985 u8 *object, char *reason)
986 {
987 if (slab_add_kunit_errors())
988 return;
989
990 slab_bug(s, "%s", reason);
991 print_trailer(s, slab, object);
992 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
993 }
994
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)995 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
996 void **freelist, void *nextfree)
997 {
998 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
999 !check_valid_pointer(s, slab, nextfree) && freelist) {
1000 object_err(s, slab, *freelist, "Freechain corrupt");
1001 *freelist = NULL;
1002 slab_fix(s, "Isolate corrupted freechain");
1003 return true;
1004 }
1005
1006 return false;
1007 }
1008
slab_err(struct kmem_cache * s,struct slab * slab,const char * fmt,...)1009 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1010 const char *fmt, ...)
1011 {
1012 va_list args;
1013 char buf[100];
1014
1015 if (slab_add_kunit_errors())
1016 return;
1017
1018 va_start(args, fmt);
1019 vsnprintf(buf, sizeof(buf), fmt, args);
1020 va_end(args);
1021 slab_bug(s, "%s", buf);
1022 print_slab_info(slab);
1023 dump_stack();
1024 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1025 }
1026
init_object(struct kmem_cache * s,void * object,u8 val)1027 static void init_object(struct kmem_cache *s, void *object, u8 val)
1028 {
1029 u8 *p = kasan_reset_tag(object);
1030 unsigned int poison_size = s->object_size;
1031
1032 if (s->flags & SLAB_RED_ZONE) {
1033 memset(p - s->red_left_pad, val, s->red_left_pad);
1034
1035 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1036 /*
1037 * Redzone the extra allocated space by kmalloc than
1038 * requested, and the poison size will be limited to
1039 * the original request size accordingly.
1040 */
1041 poison_size = get_orig_size(s, object);
1042 }
1043 }
1044
1045 if (s->flags & __OBJECT_POISON) {
1046 memset(p, POISON_FREE, poison_size - 1);
1047 p[poison_size - 1] = POISON_END;
1048 }
1049
1050 if (s->flags & SLAB_RED_ZONE)
1051 memset(p + poison_size, val, s->inuse - poison_size);
1052 }
1053
restore_bytes(struct kmem_cache * s,char * message,u8 data,void * from,void * to)1054 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1055 void *from, void *to)
1056 {
1057 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1058 memset(from, data, to - from);
1059 }
1060
check_bytes_and_report(struct kmem_cache * s,struct slab * slab,u8 * object,char * what,u8 * start,unsigned int value,unsigned int bytes)1061 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1062 u8 *object, char *what,
1063 u8 *start, unsigned int value, unsigned int bytes)
1064 {
1065 u8 *fault;
1066 u8 *end;
1067 u8 *addr = slab_address(slab);
1068
1069 metadata_access_enable();
1070 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1071 metadata_access_disable();
1072 if (!fault)
1073 return 1;
1074
1075 end = start + bytes;
1076 while (end > fault && end[-1] == value)
1077 end--;
1078
1079 if (slab_add_kunit_errors())
1080 goto skip_bug_print;
1081
1082 slab_bug(s, "%s overwritten", what);
1083 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1084 fault, end - 1, fault - addr,
1085 fault[0], value);
1086 print_trailer(s, slab, object);
1087 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1088
1089 skip_bug_print:
1090 restore_bytes(s, what, value, fault, end);
1091 return 0;
1092 }
1093
1094 /*
1095 * Object layout:
1096 *
1097 * object address
1098 * Bytes of the object to be managed.
1099 * If the freepointer may overlay the object then the free
1100 * pointer is at the middle of the object.
1101 *
1102 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1103 * 0xa5 (POISON_END)
1104 *
1105 * object + s->object_size
1106 * Padding to reach word boundary. This is also used for Redzoning.
1107 * Padding is extended by another word if Redzoning is enabled and
1108 * object_size == inuse.
1109 *
1110 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1111 * 0xcc (RED_ACTIVE) for objects in use.
1112 *
1113 * object + s->inuse
1114 * Meta data starts here.
1115 *
1116 * A. Free pointer (if we cannot overwrite object on free)
1117 * B. Tracking data for SLAB_STORE_USER
1118 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1119 * D. Padding to reach required alignment boundary or at minimum
1120 * one word if debugging is on to be able to detect writes
1121 * before the word boundary.
1122 *
1123 * Padding is done using 0x5a (POISON_INUSE)
1124 *
1125 * object + s->size
1126 * Nothing is used beyond s->size.
1127 *
1128 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1129 * ignored. And therefore no slab options that rely on these boundaries
1130 * may be used with merged slabcaches.
1131 */
1132
check_pad_bytes(struct kmem_cache * s,struct slab * slab,u8 * p)1133 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1134 {
1135 unsigned long off = get_info_end(s); /* The end of info */
1136
1137 if (s->flags & SLAB_STORE_USER) {
1138 /* We also have user information there */
1139 off += 2 * sizeof(struct track);
1140
1141 if (s->flags & SLAB_KMALLOC)
1142 off += sizeof(unsigned int);
1143 }
1144
1145 off += kasan_metadata_size(s, false);
1146
1147 if (size_from_object(s) == off)
1148 return 1;
1149
1150 return check_bytes_and_report(s, slab, p, "Object padding",
1151 p + off, POISON_INUSE, size_from_object(s) - off);
1152 }
1153
1154 /* Check the pad bytes at the end of a slab page */
slab_pad_check(struct kmem_cache * s,struct slab * slab)1155 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1156 {
1157 u8 *start;
1158 u8 *fault;
1159 u8 *end;
1160 u8 *pad;
1161 int length;
1162 int remainder;
1163
1164 if (!(s->flags & SLAB_POISON))
1165 return;
1166
1167 start = slab_address(slab);
1168 length = slab_size(slab);
1169 end = start + length;
1170 remainder = length % s->size;
1171 if (!remainder)
1172 return;
1173
1174 pad = end - remainder;
1175 metadata_access_enable();
1176 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1177 metadata_access_disable();
1178 if (!fault)
1179 return;
1180 while (end > fault && end[-1] == POISON_INUSE)
1181 end--;
1182
1183 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1184 fault, end - 1, fault - start);
1185 print_section(KERN_ERR, "Padding ", pad, remainder);
1186
1187 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1188 }
1189
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1190 static int check_object(struct kmem_cache *s, struct slab *slab,
1191 void *object, u8 val)
1192 {
1193 u8 *p = object;
1194 u8 *endobject = object + s->object_size;
1195 unsigned int orig_size;
1196
1197 if (s->flags & SLAB_RED_ZONE) {
1198 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1199 object - s->red_left_pad, val, s->red_left_pad))
1200 return 0;
1201
1202 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1203 endobject, val, s->inuse - s->object_size))
1204 return 0;
1205
1206 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1207 orig_size = get_orig_size(s, object);
1208
1209 if (s->object_size > orig_size &&
1210 !check_bytes_and_report(s, slab, object,
1211 "kmalloc Redzone", p + orig_size,
1212 val, s->object_size - orig_size)) {
1213 return 0;
1214 }
1215 }
1216 } else {
1217 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1218 check_bytes_and_report(s, slab, p, "Alignment padding",
1219 endobject, POISON_INUSE,
1220 s->inuse - s->object_size);
1221 }
1222 }
1223
1224 if (s->flags & SLAB_POISON) {
1225 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1226 (!check_bytes_and_report(s, slab, p, "Poison", p,
1227 POISON_FREE, s->object_size - 1) ||
1228 !check_bytes_and_report(s, slab, p, "End Poison",
1229 p + s->object_size - 1, POISON_END, 1)))
1230 return 0;
1231 /*
1232 * check_pad_bytes cleans up on its own.
1233 */
1234 check_pad_bytes(s, slab, p);
1235 }
1236
1237 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1238 /*
1239 * Object and freepointer overlap. Cannot check
1240 * freepointer while object is allocated.
1241 */
1242 return 1;
1243
1244 /* Check free pointer validity */
1245 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1246 object_err(s, slab, p, "Freepointer corrupt");
1247 /*
1248 * No choice but to zap it and thus lose the remainder
1249 * of the free objects in this slab. May cause
1250 * another error because the object count is now wrong.
1251 */
1252 set_freepointer(s, p, NULL);
1253 return 0;
1254 }
1255 return 1;
1256 }
1257
check_slab(struct kmem_cache * s,struct slab * slab)1258 static int check_slab(struct kmem_cache *s, struct slab *slab)
1259 {
1260 int maxobj;
1261
1262 if (!folio_test_slab(slab_folio(slab))) {
1263 slab_err(s, slab, "Not a valid slab page");
1264 return 0;
1265 }
1266
1267 maxobj = order_objects(slab_order(slab), s->size);
1268 if (slab->objects > maxobj) {
1269 slab_err(s, slab, "objects %u > max %u",
1270 slab->objects, maxobj);
1271 return 0;
1272 }
1273 if (slab->inuse > slab->objects) {
1274 slab_err(s, slab, "inuse %u > max %u",
1275 slab->inuse, slab->objects);
1276 return 0;
1277 }
1278 if (slab->frozen) {
1279 slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1280 return 0;
1281 }
1282
1283 /* Slab_pad_check fixes things up after itself */
1284 slab_pad_check(s, slab);
1285 return 1;
1286 }
1287
1288 /*
1289 * Determine if a certain object in a slab is on the freelist. Must hold the
1290 * slab lock to guarantee that the chains are in a consistent state.
1291 */
on_freelist(struct kmem_cache * s,struct slab * slab,void * search)1292 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1293 {
1294 int nr = 0;
1295 void *fp;
1296 void *object = NULL;
1297 int max_objects;
1298
1299 fp = slab->freelist;
1300 while (fp && nr <= slab->objects) {
1301 if (fp == search)
1302 return 1;
1303 if (!check_valid_pointer(s, slab, fp)) {
1304 if (object) {
1305 object_err(s, slab, object,
1306 "Freechain corrupt");
1307 set_freepointer(s, object, NULL);
1308 } else {
1309 slab_err(s, slab, "Freepointer corrupt");
1310 slab->freelist = NULL;
1311 slab->inuse = slab->objects;
1312 slab_fix(s, "Freelist cleared");
1313 return 0;
1314 }
1315 break;
1316 }
1317 object = fp;
1318 fp = get_freepointer(s, object);
1319 nr++;
1320 }
1321
1322 max_objects = order_objects(slab_order(slab), s->size);
1323 if (max_objects > MAX_OBJS_PER_PAGE)
1324 max_objects = MAX_OBJS_PER_PAGE;
1325
1326 if (slab->objects != max_objects) {
1327 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1328 slab->objects, max_objects);
1329 slab->objects = max_objects;
1330 slab_fix(s, "Number of objects adjusted");
1331 }
1332 if (slab->inuse != slab->objects - nr) {
1333 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1334 slab->inuse, slab->objects - nr);
1335 slab->inuse = slab->objects - nr;
1336 slab_fix(s, "Object count adjusted");
1337 }
1338 return search == NULL;
1339 }
1340
trace(struct kmem_cache * s,struct slab * slab,void * object,int alloc)1341 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1342 int alloc)
1343 {
1344 if (s->flags & SLAB_TRACE) {
1345 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1346 s->name,
1347 alloc ? "alloc" : "free",
1348 object, slab->inuse,
1349 slab->freelist);
1350
1351 if (!alloc)
1352 print_section(KERN_INFO, "Object ", (void *)object,
1353 s->object_size);
1354
1355 dump_stack();
1356 }
1357 }
1358
1359 /*
1360 * Tracking of fully allocated slabs for debugging purposes.
1361 */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1362 static void add_full(struct kmem_cache *s,
1363 struct kmem_cache_node *n, struct slab *slab)
1364 {
1365 if (!(s->flags & SLAB_STORE_USER))
1366 return;
1367
1368 lockdep_assert_held(&n->list_lock);
1369 list_add(&slab->slab_list, &n->full);
1370 }
1371
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1372 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1373 {
1374 if (!(s->flags & SLAB_STORE_USER))
1375 return;
1376
1377 lockdep_assert_held(&n->list_lock);
1378 list_del(&slab->slab_list);
1379 }
1380
node_nr_slabs(struct kmem_cache_node * n)1381 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1382 {
1383 return atomic_long_read(&n->nr_slabs);
1384 }
1385
inc_slabs_node(struct kmem_cache * s,int node,int objects)1386 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1387 {
1388 struct kmem_cache_node *n = get_node(s, node);
1389
1390 /*
1391 * May be called early in order to allocate a slab for the
1392 * kmem_cache_node structure. Solve the chicken-egg
1393 * dilemma by deferring the increment of the count during
1394 * bootstrap (see early_kmem_cache_node_alloc).
1395 */
1396 if (likely(n)) {
1397 atomic_long_inc(&n->nr_slabs);
1398 atomic_long_add(objects, &n->total_objects);
1399 }
1400 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1401 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1402 {
1403 struct kmem_cache_node *n = get_node(s, node);
1404
1405 atomic_long_dec(&n->nr_slabs);
1406 atomic_long_sub(objects, &n->total_objects);
1407 }
1408
1409 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,void * object)1410 static void setup_object_debug(struct kmem_cache *s, void *object)
1411 {
1412 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1413 return;
1414
1415 init_object(s, object, SLUB_RED_INACTIVE);
1416 init_tracking(s, object);
1417 }
1418
1419 static
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1420 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1421 {
1422 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1423 return;
1424
1425 metadata_access_enable();
1426 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1427 metadata_access_disable();
1428 }
1429
alloc_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object)1430 static inline int alloc_consistency_checks(struct kmem_cache *s,
1431 struct slab *slab, void *object)
1432 {
1433 if (!check_slab(s, slab))
1434 return 0;
1435
1436 if (!check_valid_pointer(s, slab, object)) {
1437 object_err(s, slab, object, "Freelist Pointer check fails");
1438 return 0;
1439 }
1440
1441 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1442 return 0;
1443
1444 return 1;
1445 }
1446
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1447 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1448 struct slab *slab, void *object, int orig_size)
1449 {
1450 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1451 if (!alloc_consistency_checks(s, slab, object))
1452 goto bad;
1453 }
1454
1455 /* Success. Perform special debug activities for allocs */
1456 trace(s, slab, object, 1);
1457 set_orig_size(s, object, orig_size);
1458 init_object(s, object, SLUB_RED_ACTIVE);
1459 return true;
1460
1461 bad:
1462 if (folio_test_slab(slab_folio(slab))) {
1463 /*
1464 * If this is a slab page then lets do the best we can
1465 * to avoid issues in the future. Marking all objects
1466 * as used avoids touching the remaining objects.
1467 */
1468 slab_fix(s, "Marking all objects used");
1469 slab->inuse = slab->objects;
1470 slab->freelist = NULL;
1471 slab->frozen = 1; /* mark consistency-failed slab as frozen */
1472 }
1473 return false;
1474 }
1475
free_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)1476 static inline int free_consistency_checks(struct kmem_cache *s,
1477 struct slab *slab, void *object, unsigned long addr)
1478 {
1479 if (!check_valid_pointer(s, slab, object)) {
1480 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1481 return 0;
1482 }
1483
1484 if (on_freelist(s, slab, object)) {
1485 object_err(s, slab, object, "Object already free");
1486 return 0;
1487 }
1488
1489 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1490 return 0;
1491
1492 if (unlikely(s != slab->slab_cache)) {
1493 if (!folio_test_slab(slab_folio(slab))) {
1494 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1495 object);
1496 } else if (!slab->slab_cache) {
1497 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1498 object);
1499 dump_stack();
1500 } else
1501 object_err(s, slab, object,
1502 "page slab pointer corrupt.");
1503 return 0;
1504 }
1505 return 1;
1506 }
1507
1508 /*
1509 * Parse a block of slub_debug options. Blocks are delimited by ';'
1510 *
1511 * @str: start of block
1512 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1513 * @slabs: return start of list of slabs, or NULL when there's no list
1514 * @init: assume this is initial parsing and not per-kmem-create parsing
1515 *
1516 * returns the start of next block if there's any, or NULL
1517 */
1518 static char *
parse_slub_debug_flags(char * str,slab_flags_t * flags,char ** slabs,bool init)1519 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1520 {
1521 bool higher_order_disable = false;
1522
1523 /* Skip any completely empty blocks */
1524 while (*str && *str == ';')
1525 str++;
1526
1527 if (*str == ',') {
1528 /*
1529 * No options but restriction on slabs. This means full
1530 * debugging for slabs matching a pattern.
1531 */
1532 *flags = DEBUG_DEFAULT_FLAGS;
1533 goto check_slabs;
1534 }
1535 *flags = 0;
1536
1537 /* Determine which debug features should be switched on */
1538 for (; *str && *str != ',' && *str != ';'; str++) {
1539 switch (tolower(*str)) {
1540 case '-':
1541 *flags = 0;
1542 break;
1543 case 'f':
1544 *flags |= SLAB_CONSISTENCY_CHECKS;
1545 break;
1546 case 'z':
1547 *flags |= SLAB_RED_ZONE;
1548 break;
1549 case 'p':
1550 *flags |= SLAB_POISON;
1551 break;
1552 case 'u':
1553 *flags |= SLAB_STORE_USER;
1554 break;
1555 case 't':
1556 *flags |= SLAB_TRACE;
1557 break;
1558 case 'a':
1559 *flags |= SLAB_FAILSLAB;
1560 break;
1561 case 'o':
1562 /*
1563 * Avoid enabling debugging on caches if its minimum
1564 * order would increase as a result.
1565 */
1566 higher_order_disable = true;
1567 break;
1568 default:
1569 if (init)
1570 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1571 }
1572 }
1573 check_slabs:
1574 if (*str == ',')
1575 *slabs = ++str;
1576 else
1577 *slabs = NULL;
1578
1579 /* Skip over the slab list */
1580 while (*str && *str != ';')
1581 str++;
1582
1583 /* Skip any completely empty blocks */
1584 while (*str && *str == ';')
1585 str++;
1586
1587 if (init && higher_order_disable)
1588 disable_higher_order_debug = 1;
1589
1590 if (*str)
1591 return str;
1592 else
1593 return NULL;
1594 }
1595
setup_slub_debug(char * str)1596 static int __init setup_slub_debug(char *str)
1597 {
1598 slab_flags_t flags;
1599 slab_flags_t global_flags;
1600 char *saved_str;
1601 char *slab_list;
1602 bool global_slub_debug_changed = false;
1603 bool slab_list_specified = false;
1604
1605 global_flags = DEBUG_DEFAULT_FLAGS;
1606 if (*str++ != '=' || !*str)
1607 /*
1608 * No options specified. Switch on full debugging.
1609 */
1610 goto out;
1611
1612 saved_str = str;
1613 while (str) {
1614 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1615
1616 if (!slab_list) {
1617 global_flags = flags;
1618 global_slub_debug_changed = true;
1619 } else {
1620 slab_list_specified = true;
1621 if (flags & SLAB_STORE_USER)
1622 stack_depot_request_early_init();
1623 }
1624 }
1625
1626 /*
1627 * For backwards compatibility, a single list of flags with list of
1628 * slabs means debugging is only changed for those slabs, so the global
1629 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1630 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1631 * long as there is no option specifying flags without a slab list.
1632 */
1633 if (slab_list_specified) {
1634 if (!global_slub_debug_changed)
1635 global_flags = slub_debug;
1636 slub_debug_string = saved_str;
1637 }
1638 out:
1639 slub_debug = global_flags;
1640 if (slub_debug & SLAB_STORE_USER)
1641 stack_depot_request_early_init();
1642 if (slub_debug != 0 || slub_debug_string)
1643 static_branch_enable(&slub_debug_enabled);
1644 else
1645 static_branch_disable(&slub_debug_enabled);
1646 if ((static_branch_unlikely(&init_on_alloc) ||
1647 static_branch_unlikely(&init_on_free)) &&
1648 (slub_debug & SLAB_POISON))
1649 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1650 return 1;
1651 }
1652
1653 __setup("slub_debug", setup_slub_debug);
1654
1655 /*
1656 * kmem_cache_flags - apply debugging options to the cache
1657 * @object_size: the size of an object without meta data
1658 * @flags: flags to set
1659 * @name: name of the cache
1660 *
1661 * Debug option(s) are applied to @flags. In addition to the debug
1662 * option(s), if a slab name (or multiple) is specified i.e.
1663 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1664 * then only the select slabs will receive the debug option(s).
1665 */
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name)1666 slab_flags_t kmem_cache_flags(unsigned int object_size,
1667 slab_flags_t flags, const char *name)
1668 {
1669 char *iter;
1670 size_t len;
1671 char *next_block;
1672 slab_flags_t block_flags;
1673 slab_flags_t slub_debug_local = slub_debug;
1674
1675 if (flags & SLAB_NO_USER_FLAGS)
1676 return flags;
1677
1678 /*
1679 * If the slab cache is for debugging (e.g. kmemleak) then
1680 * don't store user (stack trace) information by default,
1681 * but let the user enable it via the command line below.
1682 */
1683 if (flags & SLAB_NOLEAKTRACE)
1684 slub_debug_local &= ~SLAB_STORE_USER;
1685
1686 len = strlen(name);
1687 next_block = slub_debug_string;
1688 /* Go through all blocks of debug options, see if any matches our slab's name */
1689 while (next_block) {
1690 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1691 if (!iter)
1692 continue;
1693 /* Found a block that has a slab list, search it */
1694 while (*iter) {
1695 char *end, *glob;
1696 size_t cmplen;
1697
1698 end = strchrnul(iter, ',');
1699 if (next_block && next_block < end)
1700 end = next_block - 1;
1701
1702 glob = strnchr(iter, end - iter, '*');
1703 if (glob)
1704 cmplen = glob - iter;
1705 else
1706 cmplen = max_t(size_t, len, (end - iter));
1707
1708 if (!strncmp(name, iter, cmplen)) {
1709 flags |= block_flags;
1710 return flags;
1711 }
1712
1713 if (!*end || *end == ';')
1714 break;
1715 iter = end + 1;
1716 }
1717 }
1718
1719 return flags | slub_debug_local;
1720 }
1721 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,void * object)1722 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1723 static inline
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1724 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1725
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1726 static inline bool alloc_debug_processing(struct kmem_cache *s,
1727 struct slab *slab, void *object, int orig_size) { return true; }
1728
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)1729 static inline bool free_debug_processing(struct kmem_cache *s,
1730 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1731 unsigned long addr, depot_stack_handle_t handle) { return true; }
1732
slab_pad_check(struct kmem_cache * s,struct slab * slab)1733 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1734 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1735 void *object, u8 val) { return 1; }
set_track_prepare(void)1736 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)1737 static inline void set_track(struct kmem_cache *s, void *object,
1738 enum track_item alloc, unsigned long addr) {}
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1739 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1740 struct slab *slab) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1741 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1742 struct slab *slab) {}
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name)1743 slab_flags_t kmem_cache_flags(unsigned int object_size,
1744 slab_flags_t flags, const char *name)
1745 {
1746 return flags;
1747 }
1748 #define slub_debug 0
1749
1750 #define disable_higher_order_debug 0
1751
node_nr_slabs(struct kmem_cache_node * n)1752 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1753 { return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)1754 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1755 int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)1756 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1757 int objects) {}
1758
1759 #ifndef CONFIG_SLUB_TINY
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1760 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1761 void **freelist, void *nextfree)
1762 {
1763 return false;
1764 }
1765 #endif
1766 #endif /* CONFIG_SLUB_DEBUG */
1767
1768 /*
1769 * Hooks for other subsystems that check memory allocations. In a typical
1770 * production configuration these hooks all should produce no code at all.
1771 */
slab_free_hook(struct kmem_cache * s,void * x,bool init)1772 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1773 void *x, bool init)
1774 {
1775 kmemleak_free_recursive(x, s->flags);
1776 kmsan_slab_free(s, x);
1777
1778 debug_check_no_locks_freed(x, s->object_size);
1779
1780 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1781 debug_check_no_obj_freed(x, s->object_size);
1782
1783 /* Use KCSAN to help debug racy use-after-free. */
1784 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1785 __kcsan_check_access(x, s->object_size,
1786 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1787
1788 /*
1789 * As memory initialization might be integrated into KASAN,
1790 * kasan_slab_free and initialization memset's must be
1791 * kept together to avoid discrepancies in behavior.
1792 *
1793 * The initialization memset's clear the object and the metadata,
1794 * but don't touch the SLAB redzone.
1795 */
1796 if (init) {
1797 int rsize;
1798
1799 if (!kasan_has_integrated_init())
1800 memset(kasan_reset_tag(x), 0, s->object_size);
1801 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1802 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1803 s->size - s->inuse - rsize);
1804 }
1805 /* KASAN might put x into memory quarantine, delaying its reuse. */
1806 return kasan_slab_free(s, x, init);
1807 }
1808
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)1809 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1810 void **head, void **tail,
1811 int *cnt)
1812 {
1813
1814 void *object;
1815 void *next = *head;
1816 void *old_tail = *tail ? *tail : *head;
1817
1818 if (is_kfence_address(next)) {
1819 slab_free_hook(s, next, false);
1820 return true;
1821 }
1822
1823 /* Head and tail of the reconstructed freelist */
1824 *head = NULL;
1825 *tail = NULL;
1826
1827 do {
1828 object = next;
1829 next = get_freepointer(s, object);
1830
1831 /* If object's reuse doesn't have to be delayed */
1832 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1833 /* Move object to the new freelist */
1834 set_freepointer(s, object, *head);
1835 *head = object;
1836 if (!*tail)
1837 *tail = object;
1838 } else {
1839 /*
1840 * Adjust the reconstructed freelist depth
1841 * accordingly if object's reuse is delayed.
1842 */
1843 --(*cnt);
1844 }
1845 } while (object != old_tail);
1846
1847 if (*head == *tail)
1848 *tail = NULL;
1849
1850 return *head != NULL;
1851 }
1852
setup_object(struct kmem_cache * s,void * object)1853 static void *setup_object(struct kmem_cache *s, void *object)
1854 {
1855 setup_object_debug(s, object);
1856 object = kasan_init_slab_obj(s, object);
1857 if (unlikely(s->ctor)) {
1858 kasan_unpoison_object_data(s, object);
1859 s->ctor(object);
1860 kasan_poison_object_data(s, object);
1861 }
1862 return object;
1863 }
1864
1865 /*
1866 * Slab allocation and freeing
1867 */
alloc_slab_page(gfp_t flags,int node,struct kmem_cache_order_objects oo)1868 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1869 struct kmem_cache_order_objects oo)
1870 {
1871 struct folio *folio;
1872 struct slab *slab;
1873 unsigned int order = oo_order(oo);
1874
1875 if (node == NUMA_NO_NODE)
1876 folio = (struct folio *)alloc_pages(flags, order);
1877 else
1878 folio = (struct folio *)__alloc_pages_node(node, flags, order);
1879
1880 if (!folio)
1881 return NULL;
1882
1883 slab = folio_slab(folio);
1884 __folio_set_slab(folio);
1885 /* Make the flag visible before any changes to folio->mapping */
1886 smp_wmb();
1887 if (folio_is_pfmemalloc(folio))
1888 slab_set_pfmemalloc(slab);
1889
1890 return slab;
1891 }
1892
1893 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1894 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)1895 static int init_cache_random_seq(struct kmem_cache *s)
1896 {
1897 unsigned int count = oo_objects(s->oo);
1898 int err;
1899
1900 /* Bailout if already initialised */
1901 if (s->random_seq)
1902 return 0;
1903
1904 err = cache_random_seq_create(s, count, GFP_KERNEL);
1905 if (err) {
1906 pr_err("SLUB: Unable to initialize free list for %s\n",
1907 s->name);
1908 return err;
1909 }
1910
1911 /* Transform to an offset on the set of pages */
1912 if (s->random_seq) {
1913 unsigned int i;
1914
1915 for (i = 0; i < count; i++)
1916 s->random_seq[i] *= s->size;
1917 }
1918 return 0;
1919 }
1920
1921 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)1922 static void __init init_freelist_randomization(void)
1923 {
1924 struct kmem_cache *s;
1925
1926 mutex_lock(&slab_mutex);
1927
1928 list_for_each_entry(s, &slab_caches, list)
1929 init_cache_random_seq(s);
1930
1931 mutex_unlock(&slab_mutex);
1932 }
1933
1934 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,struct slab * slab,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)1935 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1936 unsigned long *pos, void *start,
1937 unsigned long page_limit,
1938 unsigned long freelist_count)
1939 {
1940 unsigned int idx;
1941
1942 /*
1943 * If the target page allocation failed, the number of objects on the
1944 * page might be smaller than the usual size defined by the cache.
1945 */
1946 do {
1947 idx = s->random_seq[*pos];
1948 *pos += 1;
1949 if (*pos >= freelist_count)
1950 *pos = 0;
1951 } while (unlikely(idx >= page_limit));
1952
1953 return (char *)start + idx;
1954 }
1955
1956 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct slab * slab)1957 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1958 {
1959 void *start;
1960 void *cur;
1961 void *next;
1962 unsigned long idx, pos, page_limit, freelist_count;
1963
1964 if (slab->objects < 2 || !s->random_seq)
1965 return false;
1966
1967 freelist_count = oo_objects(s->oo);
1968 pos = get_random_u32_below(freelist_count);
1969
1970 page_limit = slab->objects * s->size;
1971 start = fixup_red_left(s, slab_address(slab));
1972
1973 /* First entry is used as the base of the freelist */
1974 cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1975 freelist_count);
1976 cur = setup_object(s, cur);
1977 slab->freelist = cur;
1978
1979 for (idx = 1; idx < slab->objects; idx++) {
1980 next = next_freelist_entry(s, slab, &pos, start, page_limit,
1981 freelist_count);
1982 next = setup_object(s, next);
1983 set_freepointer(s, cur, next);
1984 cur = next;
1985 }
1986 set_freepointer(s, cur, NULL);
1987
1988 return true;
1989 }
1990 #else
init_cache_random_seq(struct kmem_cache * s)1991 static inline int init_cache_random_seq(struct kmem_cache *s)
1992 {
1993 return 0;
1994 }
init_freelist_randomization(void)1995 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct slab * slab)1996 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1997 {
1998 return false;
1999 }
2000 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2001
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)2002 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2003 {
2004 struct slab *slab;
2005 struct kmem_cache_order_objects oo = s->oo;
2006 gfp_t alloc_gfp;
2007 void *start, *p, *next;
2008 int idx;
2009 bool shuffle;
2010
2011 flags &= gfp_allowed_mask;
2012
2013 flags |= s->allocflags;
2014
2015 /*
2016 * Let the initial higher-order allocation fail under memory pressure
2017 * so we fall-back to the minimum order allocation.
2018 */
2019 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2020 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2021 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2022
2023 slab = alloc_slab_page(alloc_gfp, node, oo);
2024 if (unlikely(!slab)) {
2025 oo = s->min;
2026 alloc_gfp = flags;
2027 /*
2028 * Allocation may have failed due to fragmentation.
2029 * Try a lower order alloc if possible
2030 */
2031 slab = alloc_slab_page(alloc_gfp, node, oo);
2032 if (unlikely(!slab))
2033 return NULL;
2034 stat(s, ORDER_FALLBACK);
2035 }
2036
2037 slab->objects = oo_objects(oo);
2038 slab->inuse = 0;
2039 slab->frozen = 0;
2040
2041 account_slab(slab, oo_order(oo), s, flags);
2042
2043 slab->slab_cache = s;
2044
2045 kasan_poison_slab(slab);
2046
2047 start = slab_address(slab);
2048
2049 setup_slab_debug(s, slab, start);
2050
2051 shuffle = shuffle_freelist(s, slab);
2052
2053 if (!shuffle) {
2054 start = fixup_red_left(s, start);
2055 start = setup_object(s, start);
2056 slab->freelist = start;
2057 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2058 next = p + s->size;
2059 next = setup_object(s, next);
2060 set_freepointer(s, p, next);
2061 p = next;
2062 }
2063 set_freepointer(s, p, NULL);
2064 }
2065
2066 return slab;
2067 }
2068
new_slab(struct kmem_cache * s,gfp_t flags,int node)2069 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2070 {
2071 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2072 flags = kmalloc_fix_flags(flags);
2073
2074 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2075
2076 return allocate_slab(s,
2077 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2078 }
2079
__free_slab(struct kmem_cache * s,struct slab * slab)2080 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2081 {
2082 struct folio *folio = slab_folio(slab);
2083 int order = folio_order(folio);
2084 int pages = 1 << order;
2085
2086 __slab_clear_pfmemalloc(slab);
2087 folio->mapping = NULL;
2088 /* Make the mapping reset visible before clearing the flag */
2089 smp_wmb();
2090 __folio_clear_slab(folio);
2091 mm_account_reclaimed_pages(pages);
2092 unaccount_slab(slab, order, s);
2093 __free_pages(&folio->page, order);
2094 }
2095
rcu_free_slab(struct rcu_head * h)2096 static void rcu_free_slab(struct rcu_head *h)
2097 {
2098 struct slab *slab = container_of(h, struct slab, rcu_head);
2099
2100 __free_slab(slab->slab_cache, slab);
2101 }
2102
free_slab(struct kmem_cache * s,struct slab * slab)2103 static void free_slab(struct kmem_cache *s, struct slab *slab)
2104 {
2105 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2106 void *p;
2107
2108 slab_pad_check(s, slab);
2109 for_each_object(p, s, slab_address(slab), slab->objects)
2110 check_object(s, slab, p, SLUB_RED_INACTIVE);
2111 }
2112
2113 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2114 call_rcu(&slab->rcu_head, rcu_free_slab);
2115 else
2116 __free_slab(s, slab);
2117 }
2118
discard_slab(struct kmem_cache * s,struct slab * slab)2119 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2120 {
2121 dec_slabs_node(s, slab_nid(slab), slab->objects);
2122 free_slab(s, slab);
2123 }
2124
2125 /*
2126 * Management of partially allocated slabs.
2127 */
2128 static inline void
__add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2129 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2130 {
2131 n->nr_partial++;
2132 if (tail == DEACTIVATE_TO_TAIL)
2133 list_add_tail(&slab->slab_list, &n->partial);
2134 else
2135 list_add(&slab->slab_list, &n->partial);
2136 }
2137
add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2138 static inline void add_partial(struct kmem_cache_node *n,
2139 struct slab *slab, int tail)
2140 {
2141 lockdep_assert_held(&n->list_lock);
2142 __add_partial(n, slab, tail);
2143 }
2144
remove_partial(struct kmem_cache_node * n,struct slab * slab)2145 static inline void remove_partial(struct kmem_cache_node *n,
2146 struct slab *slab)
2147 {
2148 lockdep_assert_held(&n->list_lock);
2149 list_del(&slab->slab_list);
2150 n->nr_partial--;
2151 }
2152
2153 /*
2154 * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2155 * slab from the n->partial list. Remove only a single object from the slab, do
2156 * the alloc_debug_processing() checks and leave the slab on the list, or move
2157 * it to full list if it was the last free object.
2158 */
alloc_single_from_partial(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab,int orig_size)2159 static void *alloc_single_from_partial(struct kmem_cache *s,
2160 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2161 {
2162 void *object;
2163
2164 lockdep_assert_held(&n->list_lock);
2165
2166 object = slab->freelist;
2167 slab->freelist = get_freepointer(s, object);
2168 slab->inuse++;
2169
2170 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2171 if (folio_test_slab(slab_folio(slab)))
2172 remove_partial(n, slab);
2173 return NULL;
2174 }
2175
2176 if (slab->inuse == slab->objects) {
2177 remove_partial(n, slab);
2178 add_full(s, n, slab);
2179 }
2180
2181 return object;
2182 }
2183
2184 /*
2185 * Called only for kmem_cache_debug() caches to allocate from a freshly
2186 * allocated slab. Allocate a single object instead of whole freelist
2187 * and put the slab to the partial (or full) list.
2188 */
alloc_single_from_new_slab(struct kmem_cache * s,struct slab * slab,int orig_size)2189 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2190 struct slab *slab, int orig_size)
2191 {
2192 int nid = slab_nid(slab);
2193 struct kmem_cache_node *n = get_node(s, nid);
2194 unsigned long flags;
2195 void *object;
2196
2197
2198 object = slab->freelist;
2199 slab->freelist = get_freepointer(s, object);
2200 slab->inuse = 1;
2201
2202 if (!alloc_debug_processing(s, slab, object, orig_size))
2203 /*
2204 * It's not really expected that this would fail on a
2205 * freshly allocated slab, but a concurrent memory
2206 * corruption in theory could cause that.
2207 */
2208 return NULL;
2209
2210 spin_lock_irqsave(&n->list_lock, flags);
2211
2212 if (slab->inuse == slab->objects)
2213 add_full(s, n, slab);
2214 else
2215 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2216
2217 inc_slabs_node(s, nid, slab->objects);
2218 spin_unlock_irqrestore(&n->list_lock, flags);
2219
2220 return object;
2221 }
2222
2223 /*
2224 * Remove slab from the partial list, freeze it and
2225 * return the pointer to the freelist.
2226 *
2227 * Returns a list of objects or NULL if it fails.
2228 */
acquire_slab(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab,int mode)2229 static inline void *acquire_slab(struct kmem_cache *s,
2230 struct kmem_cache_node *n, struct slab *slab,
2231 int mode)
2232 {
2233 void *freelist;
2234 unsigned long counters;
2235 struct slab new;
2236
2237 lockdep_assert_held(&n->list_lock);
2238
2239 /*
2240 * Zap the freelist and set the frozen bit.
2241 * The old freelist is the list of objects for the
2242 * per cpu allocation list.
2243 */
2244 freelist = slab->freelist;
2245 counters = slab->counters;
2246 new.counters = counters;
2247 if (mode) {
2248 new.inuse = slab->objects;
2249 new.freelist = NULL;
2250 } else {
2251 new.freelist = freelist;
2252 }
2253
2254 VM_BUG_ON(new.frozen);
2255 new.frozen = 1;
2256
2257 if (!__slab_update_freelist(s, slab,
2258 freelist, counters,
2259 new.freelist, new.counters,
2260 "acquire_slab"))
2261 return NULL;
2262
2263 remove_partial(n, slab);
2264 WARN_ON(!freelist);
2265 return freelist;
2266 }
2267
2268 #ifdef CONFIG_SLUB_CPU_PARTIAL
2269 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2270 #else
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)2271 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2272 int drain) { }
2273 #endif
2274 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2275
2276 /*
2277 * Try to allocate a partial slab from a specific node.
2278 */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct partial_context * pc)2279 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2280 struct partial_context *pc)
2281 {
2282 struct slab *slab, *slab2;
2283 void *object = NULL;
2284 unsigned long flags;
2285 unsigned int partial_slabs = 0;
2286
2287 /*
2288 * Racy check. If we mistakenly see no partial slabs then we
2289 * just allocate an empty slab. If we mistakenly try to get a
2290 * partial slab and there is none available then get_partial()
2291 * will return NULL.
2292 */
2293 if (!n || !n->nr_partial)
2294 return NULL;
2295
2296 spin_lock_irqsave(&n->list_lock, flags);
2297 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2298 void *t;
2299
2300 if (!pfmemalloc_match(slab, pc->flags))
2301 continue;
2302
2303 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2304 object = alloc_single_from_partial(s, n, slab,
2305 pc->orig_size);
2306 if (object)
2307 break;
2308 continue;
2309 }
2310
2311 t = acquire_slab(s, n, slab, object == NULL);
2312 if (!t)
2313 break;
2314
2315 if (!object) {
2316 *pc->slab = slab;
2317 stat(s, ALLOC_FROM_PARTIAL);
2318 object = t;
2319 } else {
2320 put_cpu_partial(s, slab, 0);
2321 stat(s, CPU_PARTIAL_NODE);
2322 partial_slabs++;
2323 }
2324 #ifdef CONFIG_SLUB_CPU_PARTIAL
2325 if (!kmem_cache_has_cpu_partial(s)
2326 || partial_slabs > s->cpu_partial_slabs / 2)
2327 break;
2328 #else
2329 break;
2330 #endif
2331
2332 }
2333 spin_unlock_irqrestore(&n->list_lock, flags);
2334 return object;
2335 }
2336
2337 /*
2338 * Get a slab from somewhere. Search in increasing NUMA distances.
2339 */
get_any_partial(struct kmem_cache * s,struct partial_context * pc)2340 static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
2341 {
2342 #ifdef CONFIG_NUMA
2343 struct zonelist *zonelist;
2344 struct zoneref *z;
2345 struct zone *zone;
2346 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2347 void *object;
2348 unsigned int cpuset_mems_cookie;
2349
2350 /*
2351 * The defrag ratio allows a configuration of the tradeoffs between
2352 * inter node defragmentation and node local allocations. A lower
2353 * defrag_ratio increases the tendency to do local allocations
2354 * instead of attempting to obtain partial slabs from other nodes.
2355 *
2356 * If the defrag_ratio is set to 0 then kmalloc() always
2357 * returns node local objects. If the ratio is higher then kmalloc()
2358 * may return off node objects because partial slabs are obtained
2359 * from other nodes and filled up.
2360 *
2361 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2362 * (which makes defrag_ratio = 1000) then every (well almost)
2363 * allocation will first attempt to defrag slab caches on other nodes.
2364 * This means scanning over all nodes to look for partial slabs which
2365 * may be expensive if we do it every time we are trying to find a slab
2366 * with available objects.
2367 */
2368 if (!s->remote_node_defrag_ratio ||
2369 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2370 return NULL;
2371
2372 do {
2373 cpuset_mems_cookie = read_mems_allowed_begin();
2374 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2375 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2376 struct kmem_cache_node *n;
2377
2378 n = get_node(s, zone_to_nid(zone));
2379
2380 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2381 n->nr_partial > s->min_partial) {
2382 object = get_partial_node(s, n, pc);
2383 if (object) {
2384 /*
2385 * Don't check read_mems_allowed_retry()
2386 * here - if mems_allowed was updated in
2387 * parallel, that was a harmless race
2388 * between allocation and the cpuset
2389 * update
2390 */
2391 return object;
2392 }
2393 }
2394 }
2395 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2396 #endif /* CONFIG_NUMA */
2397 return NULL;
2398 }
2399
2400 /*
2401 * Get a partial slab, lock it and return it.
2402 */
get_partial(struct kmem_cache * s,int node,struct partial_context * pc)2403 static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
2404 {
2405 void *object;
2406 int searchnode = node;
2407
2408 if (node == NUMA_NO_NODE)
2409 searchnode = numa_mem_id();
2410
2411 object = get_partial_node(s, get_node(s, searchnode), pc);
2412 if (object || node != NUMA_NO_NODE)
2413 return object;
2414
2415 return get_any_partial(s, pc);
2416 }
2417
2418 #ifndef CONFIG_SLUB_TINY
2419
2420 #ifdef CONFIG_PREEMPTION
2421 /*
2422 * Calculate the next globally unique transaction for disambiguation
2423 * during cmpxchg. The transactions start with the cpu number and are then
2424 * incremented by CONFIG_NR_CPUS.
2425 */
2426 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2427 #else
2428 /*
2429 * No preemption supported therefore also no need to check for
2430 * different cpus.
2431 */
2432 #define TID_STEP 1
2433 #endif /* CONFIG_PREEMPTION */
2434
next_tid(unsigned long tid)2435 static inline unsigned long next_tid(unsigned long tid)
2436 {
2437 return tid + TID_STEP;
2438 }
2439
2440 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)2441 static inline unsigned int tid_to_cpu(unsigned long tid)
2442 {
2443 return tid % TID_STEP;
2444 }
2445
tid_to_event(unsigned long tid)2446 static inline unsigned long tid_to_event(unsigned long tid)
2447 {
2448 return tid / TID_STEP;
2449 }
2450 #endif
2451
init_tid(int cpu)2452 static inline unsigned int init_tid(int cpu)
2453 {
2454 return cpu;
2455 }
2456
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)2457 static inline void note_cmpxchg_failure(const char *n,
2458 const struct kmem_cache *s, unsigned long tid)
2459 {
2460 #ifdef SLUB_DEBUG_CMPXCHG
2461 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2462
2463 pr_info("%s %s: cmpxchg redo ", n, s->name);
2464
2465 #ifdef CONFIG_PREEMPTION
2466 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2467 pr_warn("due to cpu change %d -> %d\n",
2468 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2469 else
2470 #endif
2471 if (tid_to_event(tid) != tid_to_event(actual_tid))
2472 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2473 tid_to_event(tid), tid_to_event(actual_tid));
2474 else
2475 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2476 actual_tid, tid, next_tid(tid));
2477 #endif
2478 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2479 }
2480
init_kmem_cache_cpus(struct kmem_cache * s)2481 static void init_kmem_cache_cpus(struct kmem_cache *s)
2482 {
2483 int cpu;
2484 struct kmem_cache_cpu *c;
2485
2486 for_each_possible_cpu(cpu) {
2487 c = per_cpu_ptr(s->cpu_slab, cpu);
2488 local_lock_init(&c->lock);
2489 c->tid = init_tid(cpu);
2490 }
2491 }
2492
2493 /*
2494 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2495 * unfreezes the slabs and puts it on the proper list.
2496 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2497 * by the caller.
2498 */
deactivate_slab(struct kmem_cache * s,struct slab * slab,void * freelist)2499 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2500 void *freelist)
2501 {
2502 enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST };
2503 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2504 int free_delta = 0;
2505 enum slab_modes mode = M_NONE;
2506 void *nextfree, *freelist_iter, *freelist_tail;
2507 int tail = DEACTIVATE_TO_HEAD;
2508 unsigned long flags = 0;
2509 struct slab new;
2510 struct slab old;
2511
2512 if (slab->freelist) {
2513 stat(s, DEACTIVATE_REMOTE_FREES);
2514 tail = DEACTIVATE_TO_TAIL;
2515 }
2516
2517 /*
2518 * Stage one: Count the objects on cpu's freelist as free_delta and
2519 * remember the last object in freelist_tail for later splicing.
2520 */
2521 freelist_tail = NULL;
2522 freelist_iter = freelist;
2523 while (freelist_iter) {
2524 nextfree = get_freepointer(s, freelist_iter);
2525
2526 /*
2527 * If 'nextfree' is invalid, it is possible that the object at
2528 * 'freelist_iter' is already corrupted. So isolate all objects
2529 * starting at 'freelist_iter' by skipping them.
2530 */
2531 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2532 break;
2533
2534 freelist_tail = freelist_iter;
2535 free_delta++;
2536
2537 freelist_iter = nextfree;
2538 }
2539
2540 /*
2541 * Stage two: Unfreeze the slab while splicing the per-cpu
2542 * freelist to the head of slab's freelist.
2543 *
2544 * Ensure that the slab is unfrozen while the list presence
2545 * reflects the actual number of objects during unfreeze.
2546 *
2547 * We first perform cmpxchg holding lock and insert to list
2548 * when it succeed. If there is mismatch then the slab is not
2549 * unfrozen and number of objects in the slab may have changed.
2550 * Then release lock and retry cmpxchg again.
2551 */
2552 redo:
2553
2554 old.freelist = READ_ONCE(slab->freelist);
2555 old.counters = READ_ONCE(slab->counters);
2556 VM_BUG_ON(!old.frozen);
2557
2558 /* Determine target state of the slab */
2559 new.counters = old.counters;
2560 if (freelist_tail) {
2561 new.inuse -= free_delta;
2562 set_freepointer(s, freelist_tail, old.freelist);
2563 new.freelist = freelist;
2564 } else
2565 new.freelist = old.freelist;
2566
2567 new.frozen = 0;
2568
2569 if (!new.inuse && n->nr_partial >= s->min_partial) {
2570 mode = M_FREE;
2571 } else if (new.freelist) {
2572 mode = M_PARTIAL;
2573 /*
2574 * Taking the spinlock removes the possibility that
2575 * acquire_slab() will see a slab that is frozen
2576 */
2577 spin_lock_irqsave(&n->list_lock, flags);
2578 } else {
2579 mode = M_FULL_NOLIST;
2580 }
2581
2582
2583 if (!slab_update_freelist(s, slab,
2584 old.freelist, old.counters,
2585 new.freelist, new.counters,
2586 "unfreezing slab")) {
2587 if (mode == M_PARTIAL)
2588 spin_unlock_irqrestore(&n->list_lock, flags);
2589 goto redo;
2590 }
2591
2592
2593 if (mode == M_PARTIAL) {
2594 add_partial(n, slab, tail);
2595 spin_unlock_irqrestore(&n->list_lock, flags);
2596 stat(s, tail);
2597 } else if (mode == M_FREE) {
2598 stat(s, DEACTIVATE_EMPTY);
2599 discard_slab(s, slab);
2600 stat(s, FREE_SLAB);
2601 } else if (mode == M_FULL_NOLIST) {
2602 stat(s, DEACTIVATE_FULL);
2603 }
2604 }
2605
2606 #ifdef CONFIG_SLUB_CPU_PARTIAL
__unfreeze_partials(struct kmem_cache * s,struct slab * partial_slab)2607 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2608 {
2609 struct kmem_cache_node *n = NULL, *n2 = NULL;
2610 struct slab *slab, *slab_to_discard = NULL;
2611 unsigned long flags = 0;
2612
2613 while (partial_slab) {
2614 struct slab new;
2615 struct slab old;
2616
2617 slab = partial_slab;
2618 partial_slab = slab->next;
2619
2620 n2 = get_node(s, slab_nid(slab));
2621 if (n != n2) {
2622 if (n)
2623 spin_unlock_irqrestore(&n->list_lock, flags);
2624
2625 n = n2;
2626 spin_lock_irqsave(&n->list_lock, flags);
2627 }
2628
2629 do {
2630
2631 old.freelist = slab->freelist;
2632 old.counters = slab->counters;
2633 VM_BUG_ON(!old.frozen);
2634
2635 new.counters = old.counters;
2636 new.freelist = old.freelist;
2637
2638 new.frozen = 0;
2639
2640 } while (!__slab_update_freelist(s, slab,
2641 old.freelist, old.counters,
2642 new.freelist, new.counters,
2643 "unfreezing slab"));
2644
2645 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2646 slab->next = slab_to_discard;
2647 slab_to_discard = slab;
2648 } else {
2649 add_partial(n, slab, DEACTIVATE_TO_TAIL);
2650 stat(s, FREE_ADD_PARTIAL);
2651 }
2652 }
2653
2654 if (n)
2655 spin_unlock_irqrestore(&n->list_lock, flags);
2656
2657 while (slab_to_discard) {
2658 slab = slab_to_discard;
2659 slab_to_discard = slab_to_discard->next;
2660
2661 stat(s, DEACTIVATE_EMPTY);
2662 discard_slab(s, slab);
2663 stat(s, FREE_SLAB);
2664 }
2665 }
2666
2667 /*
2668 * Unfreeze all the cpu partial slabs.
2669 */
unfreeze_partials(struct kmem_cache * s)2670 static void unfreeze_partials(struct kmem_cache *s)
2671 {
2672 struct slab *partial_slab;
2673 unsigned long flags;
2674
2675 local_lock_irqsave(&s->cpu_slab->lock, flags);
2676 partial_slab = this_cpu_read(s->cpu_slab->partial);
2677 this_cpu_write(s->cpu_slab->partial, NULL);
2678 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2679
2680 if (partial_slab)
2681 __unfreeze_partials(s, partial_slab);
2682 }
2683
unfreeze_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)2684 static void unfreeze_partials_cpu(struct kmem_cache *s,
2685 struct kmem_cache_cpu *c)
2686 {
2687 struct slab *partial_slab;
2688
2689 partial_slab = slub_percpu_partial(c);
2690 c->partial = NULL;
2691
2692 if (partial_slab)
2693 __unfreeze_partials(s, partial_slab);
2694 }
2695
2696 /*
2697 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2698 * partial slab slot if available.
2699 *
2700 * If we did not find a slot then simply move all the partials to the
2701 * per node partial list.
2702 */
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)2703 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2704 {
2705 struct slab *oldslab;
2706 struct slab *slab_to_unfreeze = NULL;
2707 unsigned long flags;
2708 int slabs = 0;
2709
2710 local_lock_irqsave(&s->cpu_slab->lock, flags);
2711
2712 oldslab = this_cpu_read(s->cpu_slab->partial);
2713
2714 if (oldslab) {
2715 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2716 /*
2717 * Partial array is full. Move the existing set to the
2718 * per node partial list. Postpone the actual unfreezing
2719 * outside of the critical section.
2720 */
2721 slab_to_unfreeze = oldslab;
2722 oldslab = NULL;
2723 } else {
2724 slabs = oldslab->slabs;
2725 }
2726 }
2727
2728 slabs++;
2729
2730 slab->slabs = slabs;
2731 slab->next = oldslab;
2732
2733 this_cpu_write(s->cpu_slab->partial, slab);
2734
2735 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2736
2737 if (slab_to_unfreeze) {
2738 __unfreeze_partials(s, slab_to_unfreeze);
2739 stat(s, CPU_PARTIAL_DRAIN);
2740 }
2741 }
2742
2743 #else /* CONFIG_SLUB_CPU_PARTIAL */
2744
unfreeze_partials(struct kmem_cache * s)2745 static inline void unfreeze_partials(struct kmem_cache *s) { }
unfreeze_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)2746 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2747 struct kmem_cache_cpu *c) { }
2748
2749 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2750
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)2751 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2752 {
2753 unsigned long flags;
2754 struct slab *slab;
2755 void *freelist;
2756
2757 local_lock_irqsave(&s->cpu_slab->lock, flags);
2758
2759 slab = c->slab;
2760 freelist = c->freelist;
2761
2762 c->slab = NULL;
2763 c->freelist = NULL;
2764 c->tid = next_tid(c->tid);
2765
2766 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2767
2768 if (slab) {
2769 deactivate_slab(s, slab, freelist);
2770 stat(s, CPUSLAB_FLUSH);
2771 }
2772 }
2773
__flush_cpu_slab(struct kmem_cache * s,int cpu)2774 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2775 {
2776 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2777 void *freelist = c->freelist;
2778 struct slab *slab = c->slab;
2779
2780 c->slab = NULL;
2781 c->freelist = NULL;
2782 c->tid = next_tid(c->tid);
2783
2784 if (slab) {
2785 deactivate_slab(s, slab, freelist);
2786 stat(s, CPUSLAB_FLUSH);
2787 }
2788
2789 unfreeze_partials_cpu(s, c);
2790 }
2791
2792 struct slub_flush_work {
2793 struct work_struct work;
2794 struct kmem_cache *s;
2795 bool skip;
2796 };
2797
2798 /*
2799 * Flush cpu slab.
2800 *
2801 * Called from CPU work handler with migration disabled.
2802 */
flush_cpu_slab(struct work_struct * w)2803 static void flush_cpu_slab(struct work_struct *w)
2804 {
2805 struct kmem_cache *s;
2806 struct kmem_cache_cpu *c;
2807 struct slub_flush_work *sfw;
2808
2809 sfw = container_of(w, struct slub_flush_work, work);
2810
2811 s = sfw->s;
2812 c = this_cpu_ptr(s->cpu_slab);
2813
2814 if (c->slab)
2815 flush_slab(s, c);
2816
2817 unfreeze_partials(s);
2818 }
2819
has_cpu_slab(int cpu,struct kmem_cache * s)2820 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2821 {
2822 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2823
2824 return c->slab || slub_percpu_partial(c);
2825 }
2826
2827 static DEFINE_MUTEX(flush_lock);
2828 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2829
flush_all_cpus_locked(struct kmem_cache * s)2830 static void flush_all_cpus_locked(struct kmem_cache *s)
2831 {
2832 struct slub_flush_work *sfw;
2833 unsigned int cpu;
2834
2835 lockdep_assert_cpus_held();
2836 mutex_lock(&flush_lock);
2837
2838 for_each_online_cpu(cpu) {
2839 sfw = &per_cpu(slub_flush, cpu);
2840 if (!has_cpu_slab(cpu, s)) {
2841 sfw->skip = true;
2842 continue;
2843 }
2844 INIT_WORK(&sfw->work, flush_cpu_slab);
2845 sfw->skip = false;
2846 sfw->s = s;
2847 queue_work_on(cpu, flushwq, &sfw->work);
2848 }
2849
2850 for_each_online_cpu(cpu) {
2851 sfw = &per_cpu(slub_flush, cpu);
2852 if (sfw->skip)
2853 continue;
2854 flush_work(&sfw->work);
2855 }
2856
2857 mutex_unlock(&flush_lock);
2858 }
2859
flush_all(struct kmem_cache * s)2860 static void flush_all(struct kmem_cache *s)
2861 {
2862 cpus_read_lock();
2863 flush_all_cpus_locked(s);
2864 cpus_read_unlock();
2865 }
2866
2867 /*
2868 * Use the cpu notifier to insure that the cpu slabs are flushed when
2869 * necessary.
2870 */
slub_cpu_dead(unsigned int cpu)2871 static int slub_cpu_dead(unsigned int cpu)
2872 {
2873 struct kmem_cache *s;
2874
2875 mutex_lock(&slab_mutex);
2876 list_for_each_entry(s, &slab_caches, list)
2877 __flush_cpu_slab(s, cpu);
2878 mutex_unlock(&slab_mutex);
2879 return 0;
2880 }
2881
2882 #else /* CONFIG_SLUB_TINY */
flush_all_cpus_locked(struct kmem_cache * s)2883 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
flush_all(struct kmem_cache * s)2884 static inline void flush_all(struct kmem_cache *s) { }
__flush_cpu_slab(struct kmem_cache * s,int cpu)2885 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
slub_cpu_dead(unsigned int cpu)2886 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
2887 #endif /* CONFIG_SLUB_TINY */
2888
2889 /*
2890 * Check if the objects in a per cpu structure fit numa
2891 * locality expectations.
2892 */
node_match(struct slab * slab,int node)2893 static inline int node_match(struct slab *slab, int node)
2894 {
2895 #ifdef CONFIG_NUMA
2896 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2897 return 0;
2898 #endif
2899 return 1;
2900 }
2901
2902 #ifdef CONFIG_SLUB_DEBUG
count_free(struct slab * slab)2903 static int count_free(struct slab *slab)
2904 {
2905 return slab->objects - slab->inuse;
2906 }
2907
node_nr_objs(struct kmem_cache_node * n)2908 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2909 {
2910 return atomic_long_read(&n->total_objects);
2911 }
2912
2913 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)2914 static inline bool free_debug_processing(struct kmem_cache *s,
2915 struct slab *slab, void *head, void *tail, int *bulk_cnt,
2916 unsigned long addr, depot_stack_handle_t handle)
2917 {
2918 bool checks_ok = false;
2919 void *object = head;
2920 int cnt = 0;
2921
2922 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2923 if (!check_slab(s, slab))
2924 goto out;
2925 }
2926
2927 if (slab->inuse < *bulk_cnt) {
2928 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
2929 slab->inuse, *bulk_cnt);
2930 goto out;
2931 }
2932
2933 next_object:
2934
2935 if (++cnt > *bulk_cnt)
2936 goto out_cnt;
2937
2938 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2939 if (!free_consistency_checks(s, slab, object, addr))
2940 goto out;
2941 }
2942
2943 if (s->flags & SLAB_STORE_USER)
2944 set_track_update(s, object, TRACK_FREE, addr, handle);
2945 trace(s, slab, object, 0);
2946 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2947 init_object(s, object, SLUB_RED_INACTIVE);
2948
2949 /* Reached end of constructed freelist yet? */
2950 if (object != tail) {
2951 object = get_freepointer(s, object);
2952 goto next_object;
2953 }
2954 checks_ok = true;
2955
2956 out_cnt:
2957 if (cnt != *bulk_cnt) {
2958 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
2959 *bulk_cnt, cnt);
2960 *bulk_cnt = cnt;
2961 }
2962
2963 out:
2964
2965 if (!checks_ok)
2966 slab_fix(s, "Object at 0x%p not freed", object);
2967
2968 return checks_ok;
2969 }
2970 #endif /* CONFIG_SLUB_DEBUG */
2971
2972 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct slab *))2973 static unsigned long count_partial(struct kmem_cache_node *n,
2974 int (*get_count)(struct slab *))
2975 {
2976 unsigned long flags;
2977 unsigned long x = 0;
2978 struct slab *slab;
2979
2980 spin_lock_irqsave(&n->list_lock, flags);
2981 list_for_each_entry(slab, &n->partial, slab_list)
2982 x += get_count(slab);
2983 spin_unlock_irqrestore(&n->list_lock, flags);
2984 return x;
2985 }
2986 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
2987
2988 #ifdef CONFIG_SLUB_DEBUG
2989 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)2990 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2991 {
2992 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2993 DEFAULT_RATELIMIT_BURST);
2994 int node;
2995 struct kmem_cache_node *n;
2996
2997 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2998 return;
2999
3000 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3001 nid, gfpflags, &gfpflags);
3002 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3003 s->name, s->object_size, s->size, oo_order(s->oo),
3004 oo_order(s->min));
3005
3006 if (oo_order(s->min) > get_order(s->object_size))
3007 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
3008 s->name);
3009
3010 for_each_kmem_cache_node(s, node, n) {
3011 unsigned long nr_slabs;
3012 unsigned long nr_objs;
3013 unsigned long nr_free;
3014
3015 nr_free = count_partial(n, count_free);
3016 nr_slabs = node_nr_slabs(n);
3017 nr_objs = node_nr_objs(n);
3018
3019 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
3020 node, nr_slabs, nr_objs, nr_free);
3021 }
3022 }
3023 #else /* CONFIG_SLUB_DEBUG */
3024 static inline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)3025 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3026 #endif
3027
pfmemalloc_match(struct slab * slab,gfp_t gfpflags)3028 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3029 {
3030 if (unlikely(slab_test_pfmemalloc(slab)))
3031 return gfp_pfmemalloc_allowed(gfpflags);
3032
3033 return true;
3034 }
3035
3036 #ifndef CONFIG_SLUB_TINY
3037 static inline bool
__update_cpu_freelist_fast(struct kmem_cache * s,void * freelist_old,void * freelist_new,unsigned long tid)3038 __update_cpu_freelist_fast(struct kmem_cache *s,
3039 void *freelist_old, void *freelist_new,
3040 unsigned long tid)
3041 {
3042 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3043 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3044
3045 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3046 &old.full, new.full);
3047 }
3048
3049 /*
3050 * Check the slab->freelist and either transfer the freelist to the
3051 * per cpu freelist or deactivate the slab.
3052 *
3053 * The slab is still frozen if the return value is not NULL.
3054 *
3055 * If this function returns NULL then the slab has been unfrozen.
3056 */
get_freelist(struct kmem_cache * s,struct slab * slab)3057 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3058 {
3059 struct slab new;
3060 unsigned long counters;
3061 void *freelist;
3062
3063 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3064
3065 do {
3066 freelist = slab->freelist;
3067 counters = slab->counters;
3068
3069 new.counters = counters;
3070 VM_BUG_ON(!new.frozen);
3071
3072 new.inuse = slab->objects;
3073 new.frozen = freelist != NULL;
3074
3075 } while (!__slab_update_freelist(s, slab,
3076 freelist, counters,
3077 NULL, new.counters,
3078 "get_freelist"));
3079
3080 return freelist;
3081 }
3082
3083 /*
3084 * Slow path. The lockless freelist is empty or we need to perform
3085 * debugging duties.
3086 *
3087 * Processing is still very fast if new objects have been freed to the
3088 * regular freelist. In that case we simply take over the regular freelist
3089 * as the lockless freelist and zap the regular freelist.
3090 *
3091 * If that is not working then we fall back to the partial lists. We take the
3092 * first element of the freelist as the object to allocate now and move the
3093 * rest of the freelist to the lockless freelist.
3094 *
3095 * And if we were unable to get a new slab from the partial slab lists then
3096 * we need to allocate a new slab. This is the slowest path since it involves
3097 * a call to the page allocator and the setup of a new slab.
3098 *
3099 * Version of __slab_alloc to use when we know that preemption is
3100 * already disabled (which is the case for bulk allocation).
3101 */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3102 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3103 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3104 {
3105 void *freelist;
3106 struct slab *slab;
3107 unsigned long flags;
3108 struct partial_context pc;
3109
3110 stat(s, ALLOC_SLOWPATH);
3111
3112 reread_slab:
3113
3114 slab = READ_ONCE(c->slab);
3115 if (!slab) {
3116 /*
3117 * if the node is not online or has no normal memory, just
3118 * ignore the node constraint
3119 */
3120 if (unlikely(node != NUMA_NO_NODE &&
3121 !node_isset(node, slab_nodes)))
3122 node = NUMA_NO_NODE;
3123 goto new_slab;
3124 }
3125 redo:
3126
3127 if (unlikely(!node_match(slab, node))) {
3128 /*
3129 * same as above but node_match() being false already
3130 * implies node != NUMA_NO_NODE
3131 */
3132 if (!node_isset(node, slab_nodes)) {
3133 node = NUMA_NO_NODE;
3134 } else {
3135 stat(s, ALLOC_NODE_MISMATCH);
3136 goto deactivate_slab;
3137 }
3138 }
3139
3140 /*
3141 * By rights, we should be searching for a slab page that was
3142 * PFMEMALLOC but right now, we are losing the pfmemalloc
3143 * information when the page leaves the per-cpu allocator
3144 */
3145 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3146 goto deactivate_slab;
3147
3148 /* must check again c->slab in case we got preempted and it changed */
3149 local_lock_irqsave(&s->cpu_slab->lock, flags);
3150 if (unlikely(slab != c->slab)) {
3151 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3152 goto reread_slab;
3153 }
3154 freelist = c->freelist;
3155 if (freelist)
3156 goto load_freelist;
3157
3158 freelist = get_freelist(s, slab);
3159
3160 if (!freelist) {
3161 c->slab = NULL;
3162 c->tid = next_tid(c->tid);
3163 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3164 stat(s, DEACTIVATE_BYPASS);
3165 goto new_slab;
3166 }
3167
3168 stat(s, ALLOC_REFILL);
3169
3170 load_freelist:
3171
3172 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3173
3174 /*
3175 * freelist is pointing to the list of objects to be used.
3176 * slab is pointing to the slab from which the objects are obtained.
3177 * That slab must be frozen for per cpu allocations to work.
3178 */
3179 VM_BUG_ON(!c->slab->frozen);
3180 c->freelist = get_freepointer(s, freelist);
3181 c->tid = next_tid(c->tid);
3182 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3183 return freelist;
3184
3185 deactivate_slab:
3186
3187 local_lock_irqsave(&s->cpu_slab->lock, flags);
3188 if (slab != c->slab) {
3189 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3190 goto reread_slab;
3191 }
3192 freelist = c->freelist;
3193 c->slab = NULL;
3194 c->freelist = NULL;
3195 c->tid = next_tid(c->tid);
3196 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3197 deactivate_slab(s, slab, freelist);
3198
3199 new_slab:
3200
3201 if (slub_percpu_partial(c)) {
3202 local_lock_irqsave(&s->cpu_slab->lock, flags);
3203 if (unlikely(c->slab)) {
3204 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3205 goto reread_slab;
3206 }
3207 if (unlikely(!slub_percpu_partial(c))) {
3208 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3209 /* we were preempted and partial list got empty */
3210 goto new_objects;
3211 }
3212
3213 slab = c->slab = slub_percpu_partial(c);
3214 slub_set_percpu_partial(c, slab);
3215 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3216 stat(s, CPU_PARTIAL_ALLOC);
3217 goto redo;
3218 }
3219
3220 new_objects:
3221
3222 pc.flags = gfpflags;
3223 pc.slab = &slab;
3224 pc.orig_size = orig_size;
3225 freelist = get_partial(s, node, &pc);
3226 if (freelist)
3227 goto check_new_slab;
3228
3229 slub_put_cpu_ptr(s->cpu_slab);
3230 slab = new_slab(s, gfpflags, node);
3231 c = slub_get_cpu_ptr(s->cpu_slab);
3232
3233 if (unlikely(!slab)) {
3234 slab_out_of_memory(s, gfpflags, node);
3235 return NULL;
3236 }
3237
3238 stat(s, ALLOC_SLAB);
3239
3240 if (kmem_cache_debug(s)) {
3241 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3242
3243 if (unlikely(!freelist))
3244 goto new_objects;
3245
3246 if (s->flags & SLAB_STORE_USER)
3247 set_track(s, freelist, TRACK_ALLOC, addr);
3248
3249 return freelist;
3250 }
3251
3252 /*
3253 * No other reference to the slab yet so we can
3254 * muck around with it freely without cmpxchg
3255 */
3256 freelist = slab->freelist;
3257 slab->freelist = NULL;
3258 slab->inuse = slab->objects;
3259 slab->frozen = 1;
3260
3261 inc_slabs_node(s, slab_nid(slab), slab->objects);
3262
3263 check_new_slab:
3264
3265 if (kmem_cache_debug(s)) {
3266 /*
3267 * For debug caches here we had to go through
3268 * alloc_single_from_partial() so just store the tracking info
3269 * and return the object
3270 */
3271 if (s->flags & SLAB_STORE_USER)
3272 set_track(s, freelist, TRACK_ALLOC, addr);
3273
3274 return freelist;
3275 }
3276
3277 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3278 /*
3279 * For !pfmemalloc_match() case we don't load freelist so that
3280 * we don't make further mismatched allocations easier.
3281 */
3282 deactivate_slab(s, slab, get_freepointer(s, freelist));
3283 return freelist;
3284 }
3285
3286 retry_load_slab:
3287
3288 local_lock_irqsave(&s->cpu_slab->lock, flags);
3289 if (unlikely(c->slab)) {
3290 void *flush_freelist = c->freelist;
3291 struct slab *flush_slab = c->slab;
3292
3293 c->slab = NULL;
3294 c->freelist = NULL;
3295 c->tid = next_tid(c->tid);
3296
3297 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3298
3299 deactivate_slab(s, flush_slab, flush_freelist);
3300
3301 stat(s, CPUSLAB_FLUSH);
3302
3303 goto retry_load_slab;
3304 }
3305 c->slab = slab;
3306
3307 goto load_freelist;
3308 }
3309
3310 /*
3311 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3312 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3313 * pointer.
3314 */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3315 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3316 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3317 {
3318 void *p;
3319
3320 #ifdef CONFIG_PREEMPT_COUNT
3321 /*
3322 * We may have been preempted and rescheduled on a different
3323 * cpu before disabling preemption. Need to reload cpu area
3324 * pointer.
3325 */
3326 c = slub_get_cpu_ptr(s->cpu_slab);
3327 #endif
3328
3329 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3330 #ifdef CONFIG_PREEMPT_COUNT
3331 slub_put_cpu_ptr(s->cpu_slab);
3332 #endif
3333 return p;
3334 }
3335
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)3336 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3337 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3338 {
3339 struct kmem_cache_cpu *c;
3340 struct slab *slab;
3341 unsigned long tid;
3342 void *object;
3343
3344 redo:
3345 /*
3346 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3347 * enabled. We may switch back and forth between cpus while
3348 * reading from one cpu area. That does not matter as long
3349 * as we end up on the original cpu again when doing the cmpxchg.
3350 *
3351 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3352 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3353 * the tid. If we are preempted and switched to another cpu between the
3354 * two reads, it's OK as the two are still associated with the same cpu
3355 * and cmpxchg later will validate the cpu.
3356 */
3357 c = raw_cpu_ptr(s->cpu_slab);
3358 tid = READ_ONCE(c->tid);
3359
3360 /*
3361 * Irqless object alloc/free algorithm used here depends on sequence
3362 * of fetching cpu_slab's data. tid should be fetched before anything
3363 * on c to guarantee that object and slab associated with previous tid
3364 * won't be used with current tid. If we fetch tid first, object and
3365 * slab could be one associated with next tid and our alloc/free
3366 * request will be failed. In this case, we will retry. So, no problem.
3367 */
3368 barrier();
3369
3370 /*
3371 * The transaction ids are globally unique per cpu and per operation on
3372 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3373 * occurs on the right processor and that there was no operation on the
3374 * linked list in between.
3375 */
3376
3377 object = c->freelist;
3378 slab = c->slab;
3379
3380 if (!USE_LOCKLESS_FAST_PATH() ||
3381 unlikely(!object || !slab || !node_match(slab, node))) {
3382 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3383 } else {
3384 void *next_object = get_freepointer_safe(s, object);
3385
3386 /*
3387 * The cmpxchg will only match if there was no additional
3388 * operation and if we are on the right processor.
3389 *
3390 * The cmpxchg does the following atomically (without lock
3391 * semantics!)
3392 * 1. Relocate first pointer to the current per cpu area.
3393 * 2. Verify that tid and freelist have not been changed
3394 * 3. If they were not changed replace tid and freelist
3395 *
3396 * Since this is without lock semantics the protection is only
3397 * against code executing on this cpu *not* from access by
3398 * other cpus.
3399 */
3400 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3401 note_cmpxchg_failure("slab_alloc", s, tid);
3402 goto redo;
3403 }
3404 prefetch_freepointer(s, next_object);
3405 stat(s, ALLOC_FASTPATH);
3406 }
3407
3408 return object;
3409 }
3410 #else /* CONFIG_SLUB_TINY */
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)3411 static void *__slab_alloc_node(struct kmem_cache *s,
3412 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3413 {
3414 struct partial_context pc;
3415 struct slab *slab;
3416 void *object;
3417
3418 pc.flags = gfpflags;
3419 pc.slab = &slab;
3420 pc.orig_size = orig_size;
3421 object = get_partial(s, node, &pc);
3422
3423 if (object)
3424 return object;
3425
3426 slab = new_slab(s, gfpflags, node);
3427 if (unlikely(!slab)) {
3428 slab_out_of_memory(s, gfpflags, node);
3429 return NULL;
3430 }
3431
3432 object = alloc_single_from_new_slab(s, slab, orig_size);
3433
3434 return object;
3435 }
3436 #endif /* CONFIG_SLUB_TINY */
3437
3438 /*
3439 * If the object has been wiped upon free, make sure it's fully initialized by
3440 * zeroing out freelist pointer.
3441 */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)3442 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3443 void *obj)
3444 {
3445 if (unlikely(slab_want_init_on_free(s)) && obj)
3446 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3447 0, sizeof(void *));
3448 }
3449
3450 /*
3451 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3452 * have the fastpath folded into their functions. So no function call
3453 * overhead for requests that can be satisfied on the fastpath.
3454 *
3455 * The fastpath works by first checking if the lockless freelist can be used.
3456 * If not then __slab_alloc is called for slow processing.
3457 *
3458 * Otherwise we can simply pick the next object from the lockless free list.
3459 */
slab_alloc_node(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)3460 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3461 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3462 {
3463 void *object;
3464 struct obj_cgroup *objcg = NULL;
3465 bool init = false;
3466
3467 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3468 if (!s)
3469 return NULL;
3470
3471 object = kfence_alloc(s, orig_size, gfpflags);
3472 if (unlikely(object))
3473 goto out;
3474
3475 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3476
3477 maybe_wipe_obj_freeptr(s, object);
3478 init = slab_want_init_on_alloc(gfpflags, s);
3479
3480 out:
3481 /*
3482 * When init equals 'true', like for kzalloc() family, only
3483 * @orig_size bytes might be zeroed instead of s->object_size
3484 */
3485 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3486
3487 return object;
3488 }
3489
slab_alloc(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags,unsigned long addr,size_t orig_size)3490 static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3491 gfp_t gfpflags, unsigned long addr, size_t orig_size)
3492 {
3493 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3494 }
3495
3496 static __fastpath_inline
__kmem_cache_alloc_lru(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags)3497 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3498 gfp_t gfpflags)
3499 {
3500 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3501
3502 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3503
3504 return ret;
3505 }
3506
kmem_cache_alloc(struct kmem_cache * s,gfp_t gfpflags)3507 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3508 {
3509 return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3510 }
3511 EXPORT_SYMBOL(kmem_cache_alloc);
3512
kmem_cache_alloc_lru(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags)3513 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3514 gfp_t gfpflags)
3515 {
3516 return __kmem_cache_alloc_lru(s, lru, gfpflags);
3517 }
3518 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3519
__kmem_cache_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,size_t orig_size,unsigned long caller)3520 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3521 int node, size_t orig_size,
3522 unsigned long caller)
3523 {
3524 return slab_alloc_node(s, NULL, gfpflags, node,
3525 caller, orig_size);
3526 }
3527
kmem_cache_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node)3528 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3529 {
3530 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3531
3532 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3533
3534 return ret;
3535 }
3536 EXPORT_SYMBOL(kmem_cache_alloc_node);
3537
free_to_partial_list(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int bulk_cnt,unsigned long addr)3538 static noinline void free_to_partial_list(
3539 struct kmem_cache *s, struct slab *slab,
3540 void *head, void *tail, int bulk_cnt,
3541 unsigned long addr)
3542 {
3543 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3544 struct slab *slab_free = NULL;
3545 int cnt = bulk_cnt;
3546 unsigned long flags;
3547 depot_stack_handle_t handle = 0;
3548
3549 if (s->flags & SLAB_STORE_USER)
3550 handle = set_track_prepare();
3551
3552 spin_lock_irqsave(&n->list_lock, flags);
3553
3554 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
3555 void *prior = slab->freelist;
3556
3557 /* Perform the actual freeing while we still hold the locks */
3558 slab->inuse -= cnt;
3559 set_freepointer(s, tail, prior);
3560 slab->freelist = head;
3561
3562 /*
3563 * If the slab is empty, and node's partial list is full,
3564 * it should be discarded anyway no matter it's on full or
3565 * partial list.
3566 */
3567 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
3568 slab_free = slab;
3569
3570 if (!prior) {
3571 /* was on full list */
3572 remove_full(s, n, slab);
3573 if (!slab_free) {
3574 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3575 stat(s, FREE_ADD_PARTIAL);
3576 }
3577 } else if (slab_free) {
3578 remove_partial(n, slab);
3579 stat(s, FREE_REMOVE_PARTIAL);
3580 }
3581 }
3582
3583 if (slab_free) {
3584 /*
3585 * Update the counters while still holding n->list_lock to
3586 * prevent spurious validation warnings
3587 */
3588 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
3589 }
3590
3591 spin_unlock_irqrestore(&n->list_lock, flags);
3592
3593 if (slab_free) {
3594 stat(s, FREE_SLAB);
3595 free_slab(s, slab_free);
3596 }
3597 }
3598
3599 /*
3600 * Slow path handling. This may still be called frequently since objects
3601 * have a longer lifetime than the cpu slabs in most processing loads.
3602 *
3603 * So we still attempt to reduce cache line usage. Just take the slab
3604 * lock and free the item. If there is no additional partial slab
3605 * handling required then we can return immediately.
3606 */
__slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)3607 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3608 void *head, void *tail, int cnt,
3609 unsigned long addr)
3610
3611 {
3612 void *prior;
3613 int was_frozen;
3614 struct slab new;
3615 unsigned long counters;
3616 struct kmem_cache_node *n = NULL;
3617 unsigned long flags;
3618
3619 stat(s, FREE_SLOWPATH);
3620
3621 if (kfence_free(head))
3622 return;
3623
3624 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3625 free_to_partial_list(s, slab, head, tail, cnt, addr);
3626 return;
3627 }
3628
3629 do {
3630 if (unlikely(n)) {
3631 spin_unlock_irqrestore(&n->list_lock, flags);
3632 n = NULL;
3633 }
3634 prior = slab->freelist;
3635 counters = slab->counters;
3636 set_freepointer(s, tail, prior);
3637 new.counters = counters;
3638 was_frozen = new.frozen;
3639 new.inuse -= cnt;
3640 if ((!new.inuse || !prior) && !was_frozen) {
3641
3642 if (kmem_cache_has_cpu_partial(s) && !prior) {
3643
3644 /*
3645 * Slab was on no list before and will be
3646 * partially empty
3647 * We can defer the list move and instead
3648 * freeze it.
3649 */
3650 new.frozen = 1;
3651
3652 } else { /* Needs to be taken off a list */
3653
3654 n = get_node(s, slab_nid(slab));
3655 /*
3656 * Speculatively acquire the list_lock.
3657 * If the cmpxchg does not succeed then we may
3658 * drop the list_lock without any processing.
3659 *
3660 * Otherwise the list_lock will synchronize with
3661 * other processors updating the list of slabs.
3662 */
3663 spin_lock_irqsave(&n->list_lock, flags);
3664
3665 }
3666 }
3667
3668 } while (!slab_update_freelist(s, slab,
3669 prior, counters,
3670 head, new.counters,
3671 "__slab_free"));
3672
3673 if (likely(!n)) {
3674
3675 if (likely(was_frozen)) {
3676 /*
3677 * The list lock was not taken therefore no list
3678 * activity can be necessary.
3679 */
3680 stat(s, FREE_FROZEN);
3681 } else if (new.frozen) {
3682 /*
3683 * If we just froze the slab then put it onto the
3684 * per cpu partial list.
3685 */
3686 put_cpu_partial(s, slab, 1);
3687 stat(s, CPU_PARTIAL_FREE);
3688 }
3689
3690 return;
3691 }
3692
3693 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3694 goto slab_empty;
3695
3696 /*
3697 * Objects left in the slab. If it was not on the partial list before
3698 * then add it.
3699 */
3700 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3701 remove_full(s, n, slab);
3702 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3703 stat(s, FREE_ADD_PARTIAL);
3704 }
3705 spin_unlock_irqrestore(&n->list_lock, flags);
3706 return;
3707
3708 slab_empty:
3709 if (prior) {
3710 /*
3711 * Slab on the partial list.
3712 */
3713 remove_partial(n, slab);
3714 stat(s, FREE_REMOVE_PARTIAL);
3715 } else {
3716 /* Slab must be on the full list */
3717 remove_full(s, n, slab);
3718 }
3719
3720 spin_unlock_irqrestore(&n->list_lock, flags);
3721 stat(s, FREE_SLAB);
3722 discard_slab(s, slab);
3723 }
3724
3725 #ifndef CONFIG_SLUB_TINY
3726 /*
3727 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3728 * can perform fastpath freeing without additional function calls.
3729 *
3730 * The fastpath is only possible if we are freeing to the current cpu slab
3731 * of this processor. This typically the case if we have just allocated
3732 * the item before.
3733 *
3734 * If fastpath is not possible then fall back to __slab_free where we deal
3735 * with all sorts of special processing.
3736 *
3737 * Bulk free of a freelist with several objects (all pointing to the
3738 * same slab) possible by specifying head and tail ptr, plus objects
3739 * count (cnt). Bulk free indicated by tail pointer being set.
3740 */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)3741 static __always_inline void do_slab_free(struct kmem_cache *s,
3742 struct slab *slab, void *head, void *tail,
3743 int cnt, unsigned long addr)
3744 {
3745 void *tail_obj = tail ? : head;
3746 struct kmem_cache_cpu *c;
3747 unsigned long tid;
3748 void **freelist;
3749
3750 redo:
3751 /*
3752 * Determine the currently cpus per cpu slab.
3753 * The cpu may change afterward. However that does not matter since
3754 * data is retrieved via this pointer. If we are on the same cpu
3755 * during the cmpxchg then the free will succeed.
3756 */
3757 c = raw_cpu_ptr(s->cpu_slab);
3758 tid = READ_ONCE(c->tid);
3759
3760 /* Same with comment on barrier() in slab_alloc_node() */
3761 barrier();
3762
3763 if (unlikely(slab != c->slab)) {
3764 __slab_free(s, slab, head, tail_obj, cnt, addr);
3765 return;
3766 }
3767
3768 if (USE_LOCKLESS_FAST_PATH()) {
3769 freelist = READ_ONCE(c->freelist);
3770
3771 set_freepointer(s, tail_obj, freelist);
3772
3773 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
3774 note_cmpxchg_failure("slab_free", s, tid);
3775 goto redo;
3776 }
3777 } else {
3778 /* Update the free list under the local lock */
3779 local_lock(&s->cpu_slab->lock);
3780 c = this_cpu_ptr(s->cpu_slab);
3781 if (unlikely(slab != c->slab)) {
3782 local_unlock(&s->cpu_slab->lock);
3783 goto redo;
3784 }
3785 tid = c->tid;
3786 freelist = c->freelist;
3787
3788 set_freepointer(s, tail_obj, freelist);
3789 c->freelist = head;
3790 c->tid = next_tid(tid);
3791
3792 local_unlock(&s->cpu_slab->lock);
3793 }
3794 stat(s, FREE_FASTPATH);
3795 }
3796 #else /* CONFIG_SLUB_TINY */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)3797 static void do_slab_free(struct kmem_cache *s,
3798 struct slab *slab, void *head, void *tail,
3799 int cnt, unsigned long addr)
3800 {
3801 void *tail_obj = tail ? : head;
3802
3803 __slab_free(s, slab, head, tail_obj, cnt, addr);
3804 }
3805 #endif /* CONFIG_SLUB_TINY */
3806
slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,void ** p,int cnt,unsigned long addr)3807 static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3808 void *head, void *tail, void **p, int cnt,
3809 unsigned long addr)
3810 {
3811 memcg_slab_free_hook(s, slab, p, cnt);
3812 /*
3813 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3814 * to remove objects, whose reuse must be delayed.
3815 */
3816 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3817 do_slab_free(s, slab, head, tail, cnt, addr);
3818 }
3819
3820 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)3821 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3822 {
3823 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3824 }
3825 #endif
3826
__kmem_cache_free(struct kmem_cache * s,void * x,unsigned long caller)3827 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3828 {
3829 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3830 }
3831
kmem_cache_free(struct kmem_cache * s,void * x)3832 void kmem_cache_free(struct kmem_cache *s, void *x)
3833 {
3834 s = cache_from_obj(s, x);
3835 if (!s)
3836 return;
3837 trace_kmem_cache_free(_RET_IP_, x, s);
3838 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3839 }
3840 EXPORT_SYMBOL(kmem_cache_free);
3841
3842 struct detached_freelist {
3843 struct slab *slab;
3844 void *tail;
3845 void *freelist;
3846 int cnt;
3847 struct kmem_cache *s;
3848 };
3849
3850 /*
3851 * This function progressively scans the array with free objects (with
3852 * a limited look ahead) and extract objects belonging to the same
3853 * slab. It builds a detached freelist directly within the given
3854 * slab/objects. This can happen without any need for
3855 * synchronization, because the objects are owned by running process.
3856 * The freelist is build up as a single linked list in the objects.
3857 * The idea is, that this detached freelist can then be bulk
3858 * transferred to the real freelist(s), but only requiring a single
3859 * synchronization primitive. Look ahead in the array is limited due
3860 * to performance reasons.
3861 */
3862 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)3863 int build_detached_freelist(struct kmem_cache *s, size_t size,
3864 void **p, struct detached_freelist *df)
3865 {
3866 int lookahead = 3;
3867 void *object;
3868 struct folio *folio;
3869 size_t same;
3870
3871 object = p[--size];
3872 folio = virt_to_folio(object);
3873 if (!s) {
3874 /* Handle kalloc'ed objects */
3875 if (unlikely(!folio_test_slab(folio))) {
3876 free_large_kmalloc(folio, object);
3877 df->slab = NULL;
3878 return size;
3879 }
3880 /* Derive kmem_cache from object */
3881 df->slab = folio_slab(folio);
3882 df->s = df->slab->slab_cache;
3883 } else {
3884 df->slab = folio_slab(folio);
3885 df->s = cache_from_obj(s, object); /* Support for memcg */
3886 }
3887
3888 /* Start new detached freelist */
3889 df->tail = object;
3890 df->freelist = object;
3891 df->cnt = 1;
3892
3893 if (is_kfence_address(object))
3894 return size;
3895
3896 set_freepointer(df->s, object, NULL);
3897
3898 same = size;
3899 while (size) {
3900 object = p[--size];
3901 /* df->slab is always set at this point */
3902 if (df->slab == virt_to_slab(object)) {
3903 /* Opportunity build freelist */
3904 set_freepointer(df->s, object, df->freelist);
3905 df->freelist = object;
3906 df->cnt++;
3907 same--;
3908 if (size != same)
3909 swap(p[size], p[same]);
3910 continue;
3911 }
3912
3913 /* Limit look ahead search */
3914 if (!--lookahead)
3915 break;
3916 }
3917
3918 return same;
3919 }
3920
3921 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)3922 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3923 {
3924 if (!size)
3925 return;
3926
3927 do {
3928 struct detached_freelist df;
3929
3930 size = build_detached_freelist(s, size, p, &df);
3931 if (!df.slab)
3932 continue;
3933
3934 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3935 _RET_IP_);
3936 } while (likely(size));
3937 }
3938 EXPORT_SYMBOL(kmem_cache_free_bulk);
3939
3940 #ifndef CONFIG_SLUB_TINY
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p,struct obj_cgroup * objcg)3941 static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3942 size_t size, void **p, struct obj_cgroup *objcg)
3943 {
3944 struct kmem_cache_cpu *c;
3945 unsigned long irqflags;
3946 int i;
3947
3948 /*
3949 * Drain objects in the per cpu slab, while disabling local
3950 * IRQs, which protects against PREEMPT and interrupts
3951 * handlers invoking normal fastpath.
3952 */
3953 c = slub_get_cpu_ptr(s->cpu_slab);
3954 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3955
3956 for (i = 0; i < size; i++) {
3957 void *object = kfence_alloc(s, s->object_size, flags);
3958
3959 if (unlikely(object)) {
3960 p[i] = object;
3961 continue;
3962 }
3963
3964 object = c->freelist;
3965 if (unlikely(!object)) {
3966 /*
3967 * We may have removed an object from c->freelist using
3968 * the fastpath in the previous iteration; in that case,
3969 * c->tid has not been bumped yet.
3970 * Since ___slab_alloc() may reenable interrupts while
3971 * allocating memory, we should bump c->tid now.
3972 */
3973 c->tid = next_tid(c->tid);
3974
3975 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3976
3977 /*
3978 * Invoking slow path likely have side-effect
3979 * of re-populating per CPU c->freelist
3980 */
3981 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3982 _RET_IP_, c, s->object_size);
3983 if (unlikely(!p[i]))
3984 goto error;
3985
3986 c = this_cpu_ptr(s->cpu_slab);
3987 maybe_wipe_obj_freeptr(s, p[i]);
3988
3989 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3990
3991 continue; /* goto for-loop */
3992 }
3993 c->freelist = get_freepointer(s, object);
3994 p[i] = object;
3995 maybe_wipe_obj_freeptr(s, p[i]);
3996 }
3997 c->tid = next_tid(c->tid);
3998 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3999 slub_put_cpu_ptr(s->cpu_slab);
4000
4001 return i;
4002
4003 error:
4004 slub_put_cpu_ptr(s->cpu_slab);
4005 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
4006 kmem_cache_free_bulk(s, i, p);
4007 return 0;
4008
4009 }
4010 #else /* CONFIG_SLUB_TINY */
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p,struct obj_cgroup * objcg)4011 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4012 size_t size, void **p, struct obj_cgroup *objcg)
4013 {
4014 int i;
4015
4016 for (i = 0; i < size; i++) {
4017 void *object = kfence_alloc(s, s->object_size, flags);
4018
4019 if (unlikely(object)) {
4020 p[i] = object;
4021 continue;
4022 }
4023
4024 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4025 _RET_IP_, s->object_size);
4026 if (unlikely(!p[i]))
4027 goto error;
4028
4029 maybe_wipe_obj_freeptr(s, p[i]);
4030 }
4031
4032 return i;
4033
4034 error:
4035 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
4036 kmem_cache_free_bulk(s, i, p);
4037 return 0;
4038 }
4039 #endif /* CONFIG_SLUB_TINY */
4040
4041 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)4042 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4043 void **p)
4044 {
4045 int i;
4046 struct obj_cgroup *objcg = NULL;
4047
4048 if (!size)
4049 return 0;
4050
4051 /* memcg and kmem_cache debug support */
4052 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4053 if (unlikely(!s))
4054 return 0;
4055
4056 i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg);
4057
4058 /*
4059 * memcg and kmem_cache debug support and memory initialization.
4060 * Done outside of the IRQ disabled fastpath loop.
4061 */
4062 if (i != 0)
4063 slab_post_alloc_hook(s, objcg, flags, size, p,
4064 slab_want_init_on_alloc(flags, s), s->object_size);
4065 return i;
4066 }
4067 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4068
4069
4070 /*
4071 * Object placement in a slab is made very easy because we always start at
4072 * offset 0. If we tune the size of the object to the alignment then we can
4073 * get the required alignment by putting one properly sized object after
4074 * another.
4075 *
4076 * Notice that the allocation order determines the sizes of the per cpu
4077 * caches. Each processor has always one slab available for allocations.
4078 * Increasing the allocation order reduces the number of times that slabs
4079 * must be moved on and off the partial lists and is therefore a factor in
4080 * locking overhead.
4081 */
4082
4083 /*
4084 * Minimum / Maximum order of slab pages. This influences locking overhead
4085 * and slab fragmentation. A higher order reduces the number of partial slabs
4086 * and increases the number of allocations possible without having to
4087 * take the list_lock.
4088 */
4089 static unsigned int slub_min_order;
4090 static unsigned int slub_max_order =
4091 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4092 static unsigned int slub_min_objects;
4093
4094 /*
4095 * Calculate the order of allocation given an slab object size.
4096 *
4097 * The order of allocation has significant impact on performance and other
4098 * system components. Generally order 0 allocations should be preferred since
4099 * order 0 does not cause fragmentation in the page allocator. Larger objects
4100 * be problematic to put into order 0 slabs because there may be too much
4101 * unused space left. We go to a higher order if more than 1/16th of the slab
4102 * would be wasted.
4103 *
4104 * In order to reach satisfactory performance we must ensure that a minimum
4105 * number of objects is in one slab. Otherwise we may generate too much
4106 * activity on the partial lists which requires taking the list_lock. This is
4107 * less a concern for large slabs though which are rarely used.
4108 *
4109 * slub_max_order specifies the order where we begin to stop considering the
4110 * number of objects in a slab as critical. If we reach slub_max_order then
4111 * we try to keep the page order as low as possible. So we accept more waste
4112 * of space in favor of a small page order.
4113 *
4114 * Higher order allocations also allow the placement of more objects in a
4115 * slab and thereby reduce object handling overhead. If the user has
4116 * requested a higher minimum order then we start with that one instead of
4117 * the smallest order which will fit the object.
4118 */
calc_slab_order(unsigned int size,unsigned int min_objects,unsigned int max_order,unsigned int fract_leftover)4119 static inline unsigned int calc_slab_order(unsigned int size,
4120 unsigned int min_objects, unsigned int max_order,
4121 unsigned int fract_leftover)
4122 {
4123 unsigned int min_order = slub_min_order;
4124 unsigned int order;
4125
4126 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4127 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4128
4129 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
4130 order <= max_order; order++) {
4131
4132 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4133 unsigned int rem;
4134
4135 rem = slab_size % size;
4136
4137 if (rem <= slab_size / fract_leftover)
4138 break;
4139 }
4140
4141 return order;
4142 }
4143
calculate_order(unsigned int size)4144 static inline int calculate_order(unsigned int size)
4145 {
4146 unsigned int order;
4147 unsigned int min_objects;
4148 unsigned int max_objects;
4149 unsigned int nr_cpus;
4150
4151 /*
4152 * Attempt to find best configuration for a slab. This
4153 * works by first attempting to generate a layout with
4154 * the best configuration and backing off gradually.
4155 *
4156 * First we increase the acceptable waste in a slab. Then
4157 * we reduce the minimum objects required in a slab.
4158 */
4159 min_objects = slub_min_objects;
4160 if (!min_objects) {
4161 /*
4162 * Some architectures will only update present cpus when
4163 * onlining them, so don't trust the number if it's just 1. But
4164 * we also don't want to use nr_cpu_ids always, as on some other
4165 * architectures, there can be many possible cpus, but never
4166 * onlined. Here we compromise between trying to avoid too high
4167 * order on systems that appear larger than they are, and too
4168 * low order on systems that appear smaller than they are.
4169 */
4170 nr_cpus = num_present_cpus();
4171 if (nr_cpus <= 1)
4172 nr_cpus = nr_cpu_ids;
4173 min_objects = 4 * (fls(nr_cpus) + 1);
4174 }
4175 max_objects = order_objects(slub_max_order, size);
4176 min_objects = min(min_objects, max_objects);
4177
4178 while (min_objects > 1) {
4179 unsigned int fraction;
4180
4181 fraction = 16;
4182 while (fraction >= 4) {
4183 order = calc_slab_order(size, min_objects,
4184 slub_max_order, fraction);
4185 if (order <= slub_max_order)
4186 return order;
4187 fraction /= 2;
4188 }
4189 min_objects--;
4190 }
4191
4192 /*
4193 * We were unable to place multiple objects in a slab. Now
4194 * lets see if we can place a single object there.
4195 */
4196 order = calc_slab_order(size, 1, slub_max_order, 1);
4197 if (order <= slub_max_order)
4198 return order;
4199
4200 /*
4201 * Doh this slab cannot be placed using slub_max_order.
4202 */
4203 order = calc_slab_order(size, 1, MAX_ORDER, 1);
4204 if (order <= MAX_ORDER)
4205 return order;
4206 return -ENOSYS;
4207 }
4208
4209 static void
init_kmem_cache_node(struct kmem_cache_node * n)4210 init_kmem_cache_node(struct kmem_cache_node *n)
4211 {
4212 n->nr_partial = 0;
4213 spin_lock_init(&n->list_lock);
4214 INIT_LIST_HEAD(&n->partial);
4215 #ifdef CONFIG_SLUB_DEBUG
4216 atomic_long_set(&n->nr_slabs, 0);
4217 atomic_long_set(&n->total_objects, 0);
4218 INIT_LIST_HEAD(&n->full);
4219 #endif
4220 }
4221
4222 #ifndef CONFIG_SLUB_TINY
alloc_kmem_cache_cpus(struct kmem_cache * s)4223 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4224 {
4225 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4226 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4227 sizeof(struct kmem_cache_cpu));
4228
4229 /*
4230 * Must align to double word boundary for the double cmpxchg
4231 * instructions to work; see __pcpu_double_call_return_bool().
4232 */
4233 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4234 2 * sizeof(void *));
4235
4236 if (!s->cpu_slab)
4237 return 0;
4238
4239 init_kmem_cache_cpus(s);
4240
4241 return 1;
4242 }
4243 #else
alloc_kmem_cache_cpus(struct kmem_cache * s)4244 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4245 {
4246 return 1;
4247 }
4248 #endif /* CONFIG_SLUB_TINY */
4249
4250 static struct kmem_cache *kmem_cache_node;
4251
4252 /*
4253 * No kmalloc_node yet so do it by hand. We know that this is the first
4254 * slab on the node for this slabcache. There are no concurrent accesses
4255 * possible.
4256 *
4257 * Note that this function only works on the kmem_cache_node
4258 * when allocating for the kmem_cache_node. This is used for bootstrapping
4259 * memory on a fresh node that has no slab structures yet.
4260 */
early_kmem_cache_node_alloc(int node)4261 static void early_kmem_cache_node_alloc(int node)
4262 {
4263 struct slab *slab;
4264 struct kmem_cache_node *n;
4265
4266 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4267
4268 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4269
4270 BUG_ON(!slab);
4271 inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4272 if (slab_nid(slab) != node) {
4273 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4274 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4275 }
4276
4277 n = slab->freelist;
4278 BUG_ON(!n);
4279 #ifdef CONFIG_SLUB_DEBUG
4280 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4281 init_tracking(kmem_cache_node, n);
4282 #endif
4283 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4284 slab->freelist = get_freepointer(kmem_cache_node, n);
4285 slab->inuse = 1;
4286 kmem_cache_node->node[node] = n;
4287 init_kmem_cache_node(n);
4288 inc_slabs_node(kmem_cache_node, node, slab->objects);
4289
4290 /*
4291 * No locks need to be taken here as it has just been
4292 * initialized and there is no concurrent access.
4293 */
4294 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
4295 }
4296
free_kmem_cache_nodes(struct kmem_cache * s)4297 static void free_kmem_cache_nodes(struct kmem_cache *s)
4298 {
4299 int node;
4300 struct kmem_cache_node *n;
4301
4302 for_each_kmem_cache_node(s, node, n) {
4303 s->node[node] = NULL;
4304 kmem_cache_free(kmem_cache_node, n);
4305 }
4306 }
4307
__kmem_cache_release(struct kmem_cache * s)4308 void __kmem_cache_release(struct kmem_cache *s)
4309 {
4310 cache_random_seq_destroy(s);
4311 #ifndef CONFIG_SLUB_TINY
4312 free_percpu(s->cpu_slab);
4313 #endif
4314 free_kmem_cache_nodes(s);
4315 }
4316
init_kmem_cache_nodes(struct kmem_cache * s)4317 static int init_kmem_cache_nodes(struct kmem_cache *s)
4318 {
4319 int node;
4320
4321 for_each_node_mask(node, slab_nodes) {
4322 struct kmem_cache_node *n;
4323
4324 if (slab_state == DOWN) {
4325 early_kmem_cache_node_alloc(node);
4326 continue;
4327 }
4328 n = kmem_cache_alloc_node(kmem_cache_node,
4329 GFP_KERNEL, node);
4330
4331 if (!n) {
4332 free_kmem_cache_nodes(s);
4333 return 0;
4334 }
4335
4336 init_kmem_cache_node(n);
4337 s->node[node] = n;
4338 }
4339 return 1;
4340 }
4341
set_cpu_partial(struct kmem_cache * s)4342 static void set_cpu_partial(struct kmem_cache *s)
4343 {
4344 #ifdef CONFIG_SLUB_CPU_PARTIAL
4345 unsigned int nr_objects;
4346
4347 /*
4348 * cpu_partial determined the maximum number of objects kept in the
4349 * per cpu partial lists of a processor.
4350 *
4351 * Per cpu partial lists mainly contain slabs that just have one
4352 * object freed. If they are used for allocation then they can be
4353 * filled up again with minimal effort. The slab will never hit the
4354 * per node partial lists and therefore no locking will be required.
4355 *
4356 * For backwards compatibility reasons, this is determined as number
4357 * of objects, even though we now limit maximum number of pages, see
4358 * slub_set_cpu_partial()
4359 */
4360 if (!kmem_cache_has_cpu_partial(s))
4361 nr_objects = 0;
4362 else if (s->size >= PAGE_SIZE)
4363 nr_objects = 6;
4364 else if (s->size >= 1024)
4365 nr_objects = 24;
4366 else if (s->size >= 256)
4367 nr_objects = 52;
4368 else
4369 nr_objects = 120;
4370
4371 slub_set_cpu_partial(s, nr_objects);
4372 #endif
4373 }
4374
4375 /*
4376 * calculate_sizes() determines the order and the distribution of data within
4377 * a slab object.
4378 */
calculate_sizes(struct kmem_cache * s)4379 static int calculate_sizes(struct kmem_cache *s)
4380 {
4381 slab_flags_t flags = s->flags;
4382 unsigned int size = s->object_size;
4383 unsigned int order;
4384
4385 /*
4386 * Round up object size to the next word boundary. We can only
4387 * place the free pointer at word boundaries and this determines
4388 * the possible location of the free pointer.
4389 */
4390 size = ALIGN(size, sizeof(void *));
4391
4392 #ifdef CONFIG_SLUB_DEBUG
4393 /*
4394 * Determine if we can poison the object itself. If the user of
4395 * the slab may touch the object after free or before allocation
4396 * then we should never poison the object itself.
4397 */
4398 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4399 !s->ctor)
4400 s->flags |= __OBJECT_POISON;
4401 else
4402 s->flags &= ~__OBJECT_POISON;
4403
4404
4405 /*
4406 * If we are Redzoning then check if there is some space between the
4407 * end of the object and the free pointer. If not then add an
4408 * additional word to have some bytes to store Redzone information.
4409 */
4410 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4411 size += sizeof(void *);
4412 #endif
4413
4414 /*
4415 * With that we have determined the number of bytes in actual use
4416 * by the object and redzoning.
4417 */
4418 s->inuse = size;
4419
4420 if (slub_debug_orig_size(s) ||
4421 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4422 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4423 s->ctor) {
4424 /*
4425 * Relocate free pointer after the object if it is not
4426 * permitted to overwrite the first word of the object on
4427 * kmem_cache_free.
4428 *
4429 * This is the case if we do RCU, have a constructor or
4430 * destructor, are poisoning the objects, or are
4431 * redzoning an object smaller than sizeof(void *).
4432 *
4433 * The assumption that s->offset >= s->inuse means free
4434 * pointer is outside of the object is used in the
4435 * freeptr_outside_object() function. If that is no
4436 * longer true, the function needs to be modified.
4437 */
4438 s->offset = size;
4439 size += sizeof(void *);
4440 } else {
4441 /*
4442 * Store freelist pointer near middle of object to keep
4443 * it away from the edges of the object to avoid small
4444 * sized over/underflows from neighboring allocations.
4445 */
4446 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4447 }
4448
4449 #ifdef CONFIG_SLUB_DEBUG
4450 if (flags & SLAB_STORE_USER) {
4451 /*
4452 * Need to store information about allocs and frees after
4453 * the object.
4454 */
4455 size += 2 * sizeof(struct track);
4456
4457 /* Save the original kmalloc request size */
4458 if (flags & SLAB_KMALLOC)
4459 size += sizeof(unsigned int);
4460 }
4461 #endif
4462
4463 kasan_cache_create(s, &size, &s->flags);
4464 #ifdef CONFIG_SLUB_DEBUG
4465 if (flags & SLAB_RED_ZONE) {
4466 /*
4467 * Add some empty padding so that we can catch
4468 * overwrites from earlier objects rather than let
4469 * tracking information or the free pointer be
4470 * corrupted if a user writes before the start
4471 * of the object.
4472 */
4473 size += sizeof(void *);
4474
4475 s->red_left_pad = sizeof(void *);
4476 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4477 size += s->red_left_pad;
4478 }
4479 #endif
4480
4481 /*
4482 * SLUB stores one object immediately after another beginning from
4483 * offset 0. In order to align the objects we have to simply size
4484 * each object to conform to the alignment.
4485 */
4486 size = ALIGN(size, s->align);
4487 s->size = size;
4488 s->reciprocal_size = reciprocal_value(size);
4489 order = calculate_order(size);
4490
4491 if ((int)order < 0)
4492 return 0;
4493
4494 s->allocflags = 0;
4495 if (order)
4496 s->allocflags |= __GFP_COMP;
4497
4498 if (s->flags & SLAB_CACHE_DMA)
4499 s->allocflags |= GFP_DMA;
4500
4501 if (s->flags & SLAB_CACHE_DMA32)
4502 s->allocflags |= GFP_DMA32;
4503
4504 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4505 s->allocflags |= __GFP_RECLAIMABLE;
4506
4507 /*
4508 * Determine the number of objects per slab
4509 */
4510 s->oo = oo_make(order, size);
4511 s->min = oo_make(get_order(size), size);
4512
4513 return !!oo_objects(s->oo);
4514 }
4515
kmem_cache_open(struct kmem_cache * s,slab_flags_t flags)4516 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4517 {
4518 s->flags = kmem_cache_flags(s->size, flags, s->name);
4519 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4520 s->random = get_random_long();
4521 #endif
4522
4523 if (!calculate_sizes(s))
4524 goto error;
4525 if (disable_higher_order_debug) {
4526 /*
4527 * Disable debugging flags that store metadata if the min slab
4528 * order increased.
4529 */
4530 if (get_order(s->size) > get_order(s->object_size)) {
4531 s->flags &= ~DEBUG_METADATA_FLAGS;
4532 s->offset = 0;
4533 if (!calculate_sizes(s))
4534 goto error;
4535 }
4536 }
4537
4538 #ifdef system_has_freelist_aba
4539 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
4540 /* Enable fast mode */
4541 s->flags |= __CMPXCHG_DOUBLE;
4542 }
4543 #endif
4544
4545 /*
4546 * The larger the object size is, the more slabs we want on the partial
4547 * list to avoid pounding the page allocator excessively.
4548 */
4549 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4550 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4551
4552 set_cpu_partial(s);
4553
4554 #ifdef CONFIG_NUMA
4555 s->remote_node_defrag_ratio = 1000;
4556 #endif
4557
4558 /* Initialize the pre-computed randomized freelist if slab is up */
4559 if (slab_state >= UP) {
4560 if (init_cache_random_seq(s))
4561 goto error;
4562 }
4563
4564 if (!init_kmem_cache_nodes(s))
4565 goto error;
4566
4567 if (alloc_kmem_cache_cpus(s))
4568 return 0;
4569
4570 error:
4571 __kmem_cache_release(s);
4572 return -EINVAL;
4573 }
4574
list_slab_objects(struct kmem_cache * s,struct slab * slab,const char * text)4575 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4576 const char *text)
4577 {
4578 #ifdef CONFIG_SLUB_DEBUG
4579 void *addr = slab_address(slab);
4580 void *p;
4581
4582 slab_err(s, slab, text, s->name);
4583
4584 spin_lock(&object_map_lock);
4585 __fill_map(object_map, s, slab);
4586
4587 for_each_object(p, s, addr, slab->objects) {
4588
4589 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
4590 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4591 print_tracking(s, p);
4592 }
4593 }
4594 spin_unlock(&object_map_lock);
4595 #endif
4596 }
4597
4598 /*
4599 * Attempt to free all partial slabs on a node.
4600 * This is called from __kmem_cache_shutdown(). We must take list_lock
4601 * because sysfs file might still access partial list after the shutdowning.
4602 */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)4603 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4604 {
4605 LIST_HEAD(discard);
4606 struct slab *slab, *h;
4607
4608 BUG_ON(irqs_disabled());
4609 spin_lock_irq(&n->list_lock);
4610 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4611 if (!slab->inuse) {
4612 remove_partial(n, slab);
4613 list_add(&slab->slab_list, &discard);
4614 } else {
4615 list_slab_objects(s, slab,
4616 "Objects remaining in %s on __kmem_cache_shutdown()");
4617 }
4618 }
4619 spin_unlock_irq(&n->list_lock);
4620
4621 list_for_each_entry_safe(slab, h, &discard, slab_list)
4622 discard_slab(s, slab);
4623 }
4624
__kmem_cache_empty(struct kmem_cache * s)4625 bool __kmem_cache_empty(struct kmem_cache *s)
4626 {
4627 int node;
4628 struct kmem_cache_node *n;
4629
4630 for_each_kmem_cache_node(s, node, n)
4631 if (n->nr_partial || node_nr_slabs(n))
4632 return false;
4633 return true;
4634 }
4635
4636 /*
4637 * Release all resources used by a slab cache.
4638 */
__kmem_cache_shutdown(struct kmem_cache * s)4639 int __kmem_cache_shutdown(struct kmem_cache *s)
4640 {
4641 int node;
4642 struct kmem_cache_node *n;
4643
4644 flush_all_cpus_locked(s);
4645 /* Attempt to free all objects */
4646 for_each_kmem_cache_node(s, node, n) {
4647 free_partial(s, n);
4648 if (n->nr_partial || node_nr_slabs(n))
4649 return 1;
4650 }
4651 return 0;
4652 }
4653
4654 #ifdef CONFIG_PRINTK
__kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)4655 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4656 {
4657 void *base;
4658 int __maybe_unused i;
4659 unsigned int objnr;
4660 void *objp;
4661 void *objp0;
4662 struct kmem_cache *s = slab->slab_cache;
4663 struct track __maybe_unused *trackp;
4664
4665 kpp->kp_ptr = object;
4666 kpp->kp_slab = slab;
4667 kpp->kp_slab_cache = s;
4668 base = slab_address(slab);
4669 objp0 = kasan_reset_tag(object);
4670 #ifdef CONFIG_SLUB_DEBUG
4671 objp = restore_red_left(s, objp0);
4672 #else
4673 objp = objp0;
4674 #endif
4675 objnr = obj_to_index(s, slab, objp);
4676 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4677 objp = base + s->size * objnr;
4678 kpp->kp_objp = objp;
4679 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4680 || (objp - base) % s->size) ||
4681 !(s->flags & SLAB_STORE_USER))
4682 return;
4683 #ifdef CONFIG_SLUB_DEBUG
4684 objp = fixup_red_left(s, objp);
4685 trackp = get_track(s, objp, TRACK_ALLOC);
4686 kpp->kp_ret = (void *)trackp->addr;
4687 #ifdef CONFIG_STACKDEPOT
4688 {
4689 depot_stack_handle_t handle;
4690 unsigned long *entries;
4691 unsigned int nr_entries;
4692
4693 handle = READ_ONCE(trackp->handle);
4694 if (handle) {
4695 nr_entries = stack_depot_fetch(handle, &entries);
4696 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4697 kpp->kp_stack[i] = (void *)entries[i];
4698 }
4699
4700 trackp = get_track(s, objp, TRACK_FREE);
4701 handle = READ_ONCE(trackp->handle);
4702 if (handle) {
4703 nr_entries = stack_depot_fetch(handle, &entries);
4704 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4705 kpp->kp_free_stack[i] = (void *)entries[i];
4706 }
4707 }
4708 #endif
4709 #endif
4710 }
4711 #endif
4712
4713 /********************************************************************
4714 * Kmalloc subsystem
4715 *******************************************************************/
4716
setup_slub_min_order(char * str)4717 static int __init setup_slub_min_order(char *str)
4718 {
4719 get_option(&str, (int *)&slub_min_order);
4720
4721 return 1;
4722 }
4723
4724 __setup("slub_min_order=", setup_slub_min_order);
4725
setup_slub_max_order(char * str)4726 static int __init setup_slub_max_order(char *str)
4727 {
4728 get_option(&str, (int *)&slub_max_order);
4729 slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER);
4730
4731 return 1;
4732 }
4733
4734 __setup("slub_max_order=", setup_slub_max_order);
4735
setup_slub_min_objects(char * str)4736 static int __init setup_slub_min_objects(char *str)
4737 {
4738 get_option(&str, (int *)&slub_min_objects);
4739
4740 return 1;
4741 }
4742
4743 __setup("slub_min_objects=", setup_slub_min_objects);
4744
4745 #ifdef CONFIG_HARDENED_USERCOPY
4746 /*
4747 * Rejects incorrectly sized objects and objects that are to be copied
4748 * to/from userspace but do not fall entirely within the containing slab
4749 * cache's usercopy region.
4750 *
4751 * Returns NULL if check passes, otherwise const char * to name of cache
4752 * to indicate an error.
4753 */
__check_heap_object(const void * ptr,unsigned long n,const struct slab * slab,bool to_user)4754 void __check_heap_object(const void *ptr, unsigned long n,
4755 const struct slab *slab, bool to_user)
4756 {
4757 struct kmem_cache *s;
4758 unsigned int offset;
4759 bool is_kfence = is_kfence_address(ptr);
4760
4761 ptr = kasan_reset_tag(ptr);
4762
4763 /* Find object and usable object size. */
4764 s = slab->slab_cache;
4765
4766 /* Reject impossible pointers. */
4767 if (ptr < slab_address(slab))
4768 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4769 to_user, 0, n);
4770
4771 /* Find offset within object. */
4772 if (is_kfence)
4773 offset = ptr - kfence_object_start(ptr);
4774 else
4775 offset = (ptr - slab_address(slab)) % s->size;
4776
4777 /* Adjust for redzone and reject if within the redzone. */
4778 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4779 if (offset < s->red_left_pad)
4780 usercopy_abort("SLUB object in left red zone",
4781 s->name, to_user, offset, n);
4782 offset -= s->red_left_pad;
4783 }
4784
4785 /* Allow address range falling entirely within usercopy region. */
4786 if (offset >= s->useroffset &&
4787 offset - s->useroffset <= s->usersize &&
4788 n <= s->useroffset - offset + s->usersize)
4789 return;
4790
4791 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4792 }
4793 #endif /* CONFIG_HARDENED_USERCOPY */
4794
4795 #define SHRINK_PROMOTE_MAX 32
4796
4797 /*
4798 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4799 * up most to the head of the partial lists. New allocations will then
4800 * fill those up and thus they can be removed from the partial lists.
4801 *
4802 * The slabs with the least items are placed last. This results in them
4803 * being allocated from last increasing the chance that the last objects
4804 * are freed in them.
4805 */
__kmem_cache_do_shrink(struct kmem_cache * s)4806 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4807 {
4808 int node;
4809 int i;
4810 struct kmem_cache_node *n;
4811 struct slab *slab;
4812 struct slab *t;
4813 struct list_head discard;
4814 struct list_head promote[SHRINK_PROMOTE_MAX];
4815 unsigned long flags;
4816 int ret = 0;
4817
4818 for_each_kmem_cache_node(s, node, n) {
4819 INIT_LIST_HEAD(&discard);
4820 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4821 INIT_LIST_HEAD(promote + i);
4822
4823 spin_lock_irqsave(&n->list_lock, flags);
4824
4825 /*
4826 * Build lists of slabs to discard or promote.
4827 *
4828 * Note that concurrent frees may occur while we hold the
4829 * list_lock. slab->inuse here is the upper limit.
4830 */
4831 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4832 int free = slab->objects - slab->inuse;
4833
4834 /* Do not reread slab->inuse */
4835 barrier();
4836
4837 /* We do not keep full slabs on the list */
4838 BUG_ON(free <= 0);
4839
4840 if (free == slab->objects) {
4841 list_move(&slab->slab_list, &discard);
4842 n->nr_partial--;
4843 dec_slabs_node(s, node, slab->objects);
4844 } else if (free <= SHRINK_PROMOTE_MAX)
4845 list_move(&slab->slab_list, promote + free - 1);
4846 }
4847
4848 /*
4849 * Promote the slabs filled up most to the head of the
4850 * partial list.
4851 */
4852 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4853 list_splice(promote + i, &n->partial);
4854
4855 spin_unlock_irqrestore(&n->list_lock, flags);
4856
4857 /* Release empty slabs */
4858 list_for_each_entry_safe(slab, t, &discard, slab_list)
4859 free_slab(s, slab);
4860
4861 if (node_nr_slabs(n))
4862 ret = 1;
4863 }
4864
4865 return ret;
4866 }
4867
__kmem_cache_shrink(struct kmem_cache * s)4868 int __kmem_cache_shrink(struct kmem_cache *s)
4869 {
4870 flush_all(s);
4871 return __kmem_cache_do_shrink(s);
4872 }
4873
slab_mem_going_offline_callback(void * arg)4874 static int slab_mem_going_offline_callback(void *arg)
4875 {
4876 struct kmem_cache *s;
4877
4878 mutex_lock(&slab_mutex);
4879 list_for_each_entry(s, &slab_caches, list) {
4880 flush_all_cpus_locked(s);
4881 __kmem_cache_do_shrink(s);
4882 }
4883 mutex_unlock(&slab_mutex);
4884
4885 return 0;
4886 }
4887
slab_mem_offline_callback(void * arg)4888 static void slab_mem_offline_callback(void *arg)
4889 {
4890 struct memory_notify *marg = arg;
4891 int offline_node;
4892
4893 offline_node = marg->status_change_nid_normal;
4894
4895 /*
4896 * If the node still has available memory. we need kmem_cache_node
4897 * for it yet.
4898 */
4899 if (offline_node < 0)
4900 return;
4901
4902 mutex_lock(&slab_mutex);
4903 node_clear(offline_node, slab_nodes);
4904 /*
4905 * We no longer free kmem_cache_node structures here, as it would be
4906 * racy with all get_node() users, and infeasible to protect them with
4907 * slab_mutex.
4908 */
4909 mutex_unlock(&slab_mutex);
4910 }
4911
slab_mem_going_online_callback(void * arg)4912 static int slab_mem_going_online_callback(void *arg)
4913 {
4914 struct kmem_cache_node *n;
4915 struct kmem_cache *s;
4916 struct memory_notify *marg = arg;
4917 int nid = marg->status_change_nid_normal;
4918 int ret = 0;
4919
4920 /*
4921 * If the node's memory is already available, then kmem_cache_node is
4922 * already created. Nothing to do.
4923 */
4924 if (nid < 0)
4925 return 0;
4926
4927 /*
4928 * We are bringing a node online. No memory is available yet. We must
4929 * allocate a kmem_cache_node structure in order to bring the node
4930 * online.
4931 */
4932 mutex_lock(&slab_mutex);
4933 list_for_each_entry(s, &slab_caches, list) {
4934 /*
4935 * The structure may already exist if the node was previously
4936 * onlined and offlined.
4937 */
4938 if (get_node(s, nid))
4939 continue;
4940 /*
4941 * XXX: kmem_cache_alloc_node will fallback to other nodes
4942 * since memory is not yet available from the node that
4943 * is brought up.
4944 */
4945 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4946 if (!n) {
4947 ret = -ENOMEM;
4948 goto out;
4949 }
4950 init_kmem_cache_node(n);
4951 s->node[nid] = n;
4952 }
4953 /*
4954 * Any cache created after this point will also have kmem_cache_node
4955 * initialized for the new node.
4956 */
4957 node_set(nid, slab_nodes);
4958 out:
4959 mutex_unlock(&slab_mutex);
4960 return ret;
4961 }
4962
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)4963 static int slab_memory_callback(struct notifier_block *self,
4964 unsigned long action, void *arg)
4965 {
4966 int ret = 0;
4967
4968 switch (action) {
4969 case MEM_GOING_ONLINE:
4970 ret = slab_mem_going_online_callback(arg);
4971 break;
4972 case MEM_GOING_OFFLINE:
4973 ret = slab_mem_going_offline_callback(arg);
4974 break;
4975 case MEM_OFFLINE:
4976 case MEM_CANCEL_ONLINE:
4977 slab_mem_offline_callback(arg);
4978 break;
4979 case MEM_ONLINE:
4980 case MEM_CANCEL_OFFLINE:
4981 break;
4982 }
4983 if (ret)
4984 ret = notifier_from_errno(ret);
4985 else
4986 ret = NOTIFY_OK;
4987 return ret;
4988 }
4989
4990 /********************************************************************
4991 * Basic setup of slabs
4992 *******************************************************************/
4993
4994 /*
4995 * Used for early kmem_cache structures that were allocated using
4996 * the page allocator. Allocate them properly then fix up the pointers
4997 * that may be pointing to the wrong kmem_cache structure.
4998 */
4999
bootstrap(struct kmem_cache * static_cache)5000 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5001 {
5002 int node;
5003 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5004 struct kmem_cache_node *n;
5005
5006 memcpy(s, static_cache, kmem_cache->object_size);
5007
5008 /*
5009 * This runs very early, and only the boot processor is supposed to be
5010 * up. Even if it weren't true, IRQs are not up so we couldn't fire
5011 * IPIs around.
5012 */
5013 __flush_cpu_slab(s, smp_processor_id());
5014 for_each_kmem_cache_node(s, node, n) {
5015 struct slab *p;
5016
5017 list_for_each_entry(p, &n->partial, slab_list)
5018 p->slab_cache = s;
5019
5020 #ifdef CONFIG_SLUB_DEBUG
5021 list_for_each_entry(p, &n->full, slab_list)
5022 p->slab_cache = s;
5023 #endif
5024 }
5025 list_add(&s->list, &slab_caches);
5026 return s;
5027 }
5028
kmem_cache_init(void)5029 void __init kmem_cache_init(void)
5030 {
5031 static __initdata struct kmem_cache boot_kmem_cache,
5032 boot_kmem_cache_node;
5033 int node;
5034
5035 if (debug_guardpage_minorder())
5036 slub_max_order = 0;
5037
5038 /* Print slub debugging pointers without hashing */
5039 if (__slub_debug_enabled())
5040 no_hash_pointers_enable(NULL);
5041
5042 kmem_cache_node = &boot_kmem_cache_node;
5043 kmem_cache = &boot_kmem_cache;
5044
5045 /*
5046 * Initialize the nodemask for which we will allocate per node
5047 * structures. Here we don't need taking slab_mutex yet.
5048 */
5049 for_each_node_state(node, N_NORMAL_MEMORY)
5050 node_set(node, slab_nodes);
5051
5052 create_boot_cache(kmem_cache_node, "kmem_cache_node",
5053 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5054
5055 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5056
5057 /* Able to allocate the per node structures */
5058 slab_state = PARTIAL;
5059
5060 create_boot_cache(kmem_cache, "kmem_cache",
5061 offsetof(struct kmem_cache, node) +
5062 nr_node_ids * sizeof(struct kmem_cache_node *),
5063 SLAB_HWCACHE_ALIGN, 0, 0);
5064
5065 kmem_cache = bootstrap(&boot_kmem_cache);
5066 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5067
5068 /* Now we can use the kmem_cache to allocate kmalloc slabs */
5069 setup_kmalloc_cache_index_table();
5070 create_kmalloc_caches(0);
5071
5072 /* Setup random freelists for each cache */
5073 init_freelist_randomization();
5074
5075 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5076 slub_cpu_dead);
5077
5078 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5079 cache_line_size(),
5080 slub_min_order, slub_max_order, slub_min_objects,
5081 nr_cpu_ids, nr_node_ids);
5082 }
5083
kmem_cache_init_late(void)5084 void __init kmem_cache_init_late(void)
5085 {
5086 #ifndef CONFIG_SLUB_TINY
5087 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5088 WARN_ON(!flushwq);
5089 #endif
5090 }
5091
5092 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))5093 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5094 slab_flags_t flags, void (*ctor)(void *))
5095 {
5096 struct kmem_cache *s;
5097
5098 s = find_mergeable(size, align, flags, name, ctor);
5099 if (s) {
5100 if (sysfs_slab_alias(s, name))
5101 return NULL;
5102
5103 s->refcount++;
5104
5105 /*
5106 * Adjust the object sizes so that we clear
5107 * the complete object on kzalloc.
5108 */
5109 s->object_size = max(s->object_size, size);
5110 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5111 }
5112
5113 return s;
5114 }
5115
__kmem_cache_create(struct kmem_cache * s,slab_flags_t flags)5116 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5117 {
5118 int err;
5119
5120 err = kmem_cache_open(s, flags);
5121 if (err)
5122 return err;
5123
5124 /* Mutex is not taken during early boot */
5125 if (slab_state <= UP)
5126 return 0;
5127
5128 err = sysfs_slab_add(s);
5129 if (err) {
5130 __kmem_cache_release(s);
5131 return err;
5132 }
5133
5134 if (s->flags & SLAB_STORE_USER)
5135 debugfs_slab_add(s);
5136
5137 return 0;
5138 }
5139
5140 #ifdef SLAB_SUPPORTS_SYSFS
count_inuse(struct slab * slab)5141 static int count_inuse(struct slab *slab)
5142 {
5143 return slab->inuse;
5144 }
5145
count_total(struct slab * slab)5146 static int count_total(struct slab *slab)
5147 {
5148 return slab->objects;
5149 }
5150 #endif
5151
5152 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct slab * slab,unsigned long * obj_map)5153 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5154 unsigned long *obj_map)
5155 {
5156 void *p;
5157 void *addr = slab_address(slab);
5158
5159 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5160 return;
5161
5162 /* Now we know that a valid freelist exists */
5163 __fill_map(obj_map, s, slab);
5164 for_each_object(p, s, addr, slab->objects) {
5165 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5166 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5167
5168 if (!check_object(s, slab, p, val))
5169 break;
5170 }
5171 }
5172
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n,unsigned long * obj_map)5173 static int validate_slab_node(struct kmem_cache *s,
5174 struct kmem_cache_node *n, unsigned long *obj_map)
5175 {
5176 unsigned long count = 0;
5177 struct slab *slab;
5178 unsigned long flags;
5179
5180 spin_lock_irqsave(&n->list_lock, flags);
5181
5182 list_for_each_entry(slab, &n->partial, slab_list) {
5183 validate_slab(s, slab, obj_map);
5184 count++;
5185 }
5186 if (count != n->nr_partial) {
5187 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5188 s->name, count, n->nr_partial);
5189 slab_add_kunit_errors();
5190 }
5191
5192 if (!(s->flags & SLAB_STORE_USER))
5193 goto out;
5194
5195 list_for_each_entry(slab, &n->full, slab_list) {
5196 validate_slab(s, slab, obj_map);
5197 count++;
5198 }
5199 if (count != node_nr_slabs(n)) {
5200 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5201 s->name, count, node_nr_slabs(n));
5202 slab_add_kunit_errors();
5203 }
5204
5205 out:
5206 spin_unlock_irqrestore(&n->list_lock, flags);
5207 return count;
5208 }
5209
validate_slab_cache(struct kmem_cache * s)5210 long validate_slab_cache(struct kmem_cache *s)
5211 {
5212 int node;
5213 unsigned long count = 0;
5214 struct kmem_cache_node *n;
5215 unsigned long *obj_map;
5216
5217 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5218 if (!obj_map)
5219 return -ENOMEM;
5220
5221 flush_all(s);
5222 for_each_kmem_cache_node(s, node, n)
5223 count += validate_slab_node(s, n, obj_map);
5224
5225 bitmap_free(obj_map);
5226
5227 return count;
5228 }
5229 EXPORT_SYMBOL(validate_slab_cache);
5230
5231 #ifdef CONFIG_DEBUG_FS
5232 /*
5233 * Generate lists of code addresses where slabcache objects are allocated
5234 * and freed.
5235 */
5236
5237 struct location {
5238 depot_stack_handle_t handle;
5239 unsigned long count;
5240 unsigned long addr;
5241 unsigned long waste;
5242 long long sum_time;
5243 long min_time;
5244 long max_time;
5245 long min_pid;
5246 long max_pid;
5247 DECLARE_BITMAP(cpus, NR_CPUS);
5248 nodemask_t nodes;
5249 };
5250
5251 struct loc_track {
5252 unsigned long max;
5253 unsigned long count;
5254 struct location *loc;
5255 loff_t idx;
5256 };
5257
5258 static struct dentry *slab_debugfs_root;
5259
free_loc_track(struct loc_track * t)5260 static void free_loc_track(struct loc_track *t)
5261 {
5262 if (t->max)
5263 free_pages((unsigned long)t->loc,
5264 get_order(sizeof(struct location) * t->max));
5265 }
5266
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)5267 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5268 {
5269 struct location *l;
5270 int order;
5271
5272 order = get_order(sizeof(struct location) * max);
5273
5274 l = (void *)__get_free_pages(flags, order);
5275 if (!l)
5276 return 0;
5277
5278 if (t->count) {
5279 memcpy(l, t->loc, sizeof(struct location) * t->count);
5280 free_loc_track(t);
5281 }
5282 t->max = max;
5283 t->loc = l;
5284 return 1;
5285 }
5286
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track,unsigned int orig_size)5287 static int add_location(struct loc_track *t, struct kmem_cache *s,
5288 const struct track *track,
5289 unsigned int orig_size)
5290 {
5291 long start, end, pos;
5292 struct location *l;
5293 unsigned long caddr, chandle, cwaste;
5294 unsigned long age = jiffies - track->when;
5295 depot_stack_handle_t handle = 0;
5296 unsigned int waste = s->object_size - orig_size;
5297
5298 #ifdef CONFIG_STACKDEPOT
5299 handle = READ_ONCE(track->handle);
5300 #endif
5301 start = -1;
5302 end = t->count;
5303
5304 for ( ; ; ) {
5305 pos = start + (end - start + 1) / 2;
5306
5307 /*
5308 * There is nothing at "end". If we end up there
5309 * we need to add something to before end.
5310 */
5311 if (pos == end)
5312 break;
5313
5314 l = &t->loc[pos];
5315 caddr = l->addr;
5316 chandle = l->handle;
5317 cwaste = l->waste;
5318 if ((track->addr == caddr) && (handle == chandle) &&
5319 (waste == cwaste)) {
5320
5321 l->count++;
5322 if (track->when) {
5323 l->sum_time += age;
5324 if (age < l->min_time)
5325 l->min_time = age;
5326 if (age > l->max_time)
5327 l->max_time = age;
5328
5329 if (track->pid < l->min_pid)
5330 l->min_pid = track->pid;
5331 if (track->pid > l->max_pid)
5332 l->max_pid = track->pid;
5333
5334 cpumask_set_cpu(track->cpu,
5335 to_cpumask(l->cpus));
5336 }
5337 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5338 return 1;
5339 }
5340
5341 if (track->addr < caddr)
5342 end = pos;
5343 else if (track->addr == caddr && handle < chandle)
5344 end = pos;
5345 else if (track->addr == caddr && handle == chandle &&
5346 waste < cwaste)
5347 end = pos;
5348 else
5349 start = pos;
5350 }
5351
5352 /*
5353 * Not found. Insert new tracking element.
5354 */
5355 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5356 return 0;
5357
5358 l = t->loc + pos;
5359 if (pos < t->count)
5360 memmove(l + 1, l,
5361 (t->count - pos) * sizeof(struct location));
5362 t->count++;
5363 l->count = 1;
5364 l->addr = track->addr;
5365 l->sum_time = age;
5366 l->min_time = age;
5367 l->max_time = age;
5368 l->min_pid = track->pid;
5369 l->max_pid = track->pid;
5370 l->handle = handle;
5371 l->waste = waste;
5372 cpumask_clear(to_cpumask(l->cpus));
5373 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5374 nodes_clear(l->nodes);
5375 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5376 return 1;
5377 }
5378
process_slab(struct loc_track * t,struct kmem_cache * s,struct slab * slab,enum track_item alloc,unsigned long * obj_map)5379 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5380 struct slab *slab, enum track_item alloc,
5381 unsigned long *obj_map)
5382 {
5383 void *addr = slab_address(slab);
5384 bool is_alloc = (alloc == TRACK_ALLOC);
5385 void *p;
5386
5387 __fill_map(obj_map, s, slab);
5388
5389 for_each_object(p, s, addr, slab->objects)
5390 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5391 add_location(t, s, get_track(s, p, alloc),
5392 is_alloc ? get_orig_size(s, p) :
5393 s->object_size);
5394 }
5395 #endif /* CONFIG_DEBUG_FS */
5396 #endif /* CONFIG_SLUB_DEBUG */
5397
5398 #ifdef SLAB_SUPPORTS_SYSFS
5399 enum slab_stat_type {
5400 SL_ALL, /* All slabs */
5401 SL_PARTIAL, /* Only partially allocated slabs */
5402 SL_CPU, /* Only slabs used for cpu caches */
5403 SL_OBJECTS, /* Determine allocated objects not slabs */
5404 SL_TOTAL /* Determine object capacity not slabs */
5405 };
5406
5407 #define SO_ALL (1 << SL_ALL)
5408 #define SO_PARTIAL (1 << SL_PARTIAL)
5409 #define SO_CPU (1 << SL_CPU)
5410 #define SO_OBJECTS (1 << SL_OBJECTS)
5411 #define SO_TOTAL (1 << SL_TOTAL)
5412
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)5413 static ssize_t show_slab_objects(struct kmem_cache *s,
5414 char *buf, unsigned long flags)
5415 {
5416 unsigned long total = 0;
5417 int node;
5418 int x;
5419 unsigned long *nodes;
5420 int len = 0;
5421
5422 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5423 if (!nodes)
5424 return -ENOMEM;
5425
5426 if (flags & SO_CPU) {
5427 int cpu;
5428
5429 for_each_possible_cpu(cpu) {
5430 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5431 cpu);
5432 int node;
5433 struct slab *slab;
5434
5435 slab = READ_ONCE(c->slab);
5436 if (!slab)
5437 continue;
5438
5439 node = slab_nid(slab);
5440 if (flags & SO_TOTAL)
5441 x = slab->objects;
5442 else if (flags & SO_OBJECTS)
5443 x = slab->inuse;
5444 else
5445 x = 1;
5446
5447 total += x;
5448 nodes[node] += x;
5449
5450 #ifdef CONFIG_SLUB_CPU_PARTIAL
5451 slab = slub_percpu_partial_read_once(c);
5452 if (slab) {
5453 node = slab_nid(slab);
5454 if (flags & SO_TOTAL)
5455 WARN_ON_ONCE(1);
5456 else if (flags & SO_OBJECTS)
5457 WARN_ON_ONCE(1);
5458 else
5459 x = slab->slabs;
5460 total += x;
5461 nodes[node] += x;
5462 }
5463 #endif
5464 }
5465 }
5466
5467 /*
5468 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5469 * already held which will conflict with an existing lock order:
5470 *
5471 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5472 *
5473 * We don't really need mem_hotplug_lock (to hold off
5474 * slab_mem_going_offline_callback) here because slab's memory hot
5475 * unplug code doesn't destroy the kmem_cache->node[] data.
5476 */
5477
5478 #ifdef CONFIG_SLUB_DEBUG
5479 if (flags & SO_ALL) {
5480 struct kmem_cache_node *n;
5481
5482 for_each_kmem_cache_node(s, node, n) {
5483
5484 if (flags & SO_TOTAL)
5485 x = node_nr_objs(n);
5486 else if (flags & SO_OBJECTS)
5487 x = node_nr_objs(n) - count_partial(n, count_free);
5488 else
5489 x = node_nr_slabs(n);
5490 total += x;
5491 nodes[node] += x;
5492 }
5493
5494 } else
5495 #endif
5496 if (flags & SO_PARTIAL) {
5497 struct kmem_cache_node *n;
5498
5499 for_each_kmem_cache_node(s, node, n) {
5500 if (flags & SO_TOTAL)
5501 x = count_partial(n, count_total);
5502 else if (flags & SO_OBJECTS)
5503 x = count_partial(n, count_inuse);
5504 else
5505 x = n->nr_partial;
5506 total += x;
5507 nodes[node] += x;
5508 }
5509 }
5510
5511 len += sysfs_emit_at(buf, len, "%lu", total);
5512 #ifdef CONFIG_NUMA
5513 for (node = 0; node < nr_node_ids; node++) {
5514 if (nodes[node])
5515 len += sysfs_emit_at(buf, len, " N%d=%lu",
5516 node, nodes[node]);
5517 }
5518 #endif
5519 len += sysfs_emit_at(buf, len, "\n");
5520 kfree(nodes);
5521
5522 return len;
5523 }
5524
5525 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5526 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5527
5528 struct slab_attribute {
5529 struct attribute attr;
5530 ssize_t (*show)(struct kmem_cache *s, char *buf);
5531 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5532 };
5533
5534 #define SLAB_ATTR_RO(_name) \
5535 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5536
5537 #define SLAB_ATTR(_name) \
5538 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5539
slab_size_show(struct kmem_cache * s,char * buf)5540 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5541 {
5542 return sysfs_emit(buf, "%u\n", s->size);
5543 }
5544 SLAB_ATTR_RO(slab_size);
5545
align_show(struct kmem_cache * s,char * buf)5546 static ssize_t align_show(struct kmem_cache *s, char *buf)
5547 {
5548 return sysfs_emit(buf, "%u\n", s->align);
5549 }
5550 SLAB_ATTR_RO(align);
5551
object_size_show(struct kmem_cache * s,char * buf)5552 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5553 {
5554 return sysfs_emit(buf, "%u\n", s->object_size);
5555 }
5556 SLAB_ATTR_RO(object_size);
5557
objs_per_slab_show(struct kmem_cache * s,char * buf)5558 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5559 {
5560 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5561 }
5562 SLAB_ATTR_RO(objs_per_slab);
5563
order_show(struct kmem_cache * s,char * buf)5564 static ssize_t order_show(struct kmem_cache *s, char *buf)
5565 {
5566 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5567 }
5568 SLAB_ATTR_RO(order);
5569
min_partial_show(struct kmem_cache * s,char * buf)5570 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5571 {
5572 return sysfs_emit(buf, "%lu\n", s->min_partial);
5573 }
5574
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)5575 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5576 size_t length)
5577 {
5578 unsigned long min;
5579 int err;
5580
5581 err = kstrtoul(buf, 10, &min);
5582 if (err)
5583 return err;
5584
5585 s->min_partial = min;
5586 return length;
5587 }
5588 SLAB_ATTR(min_partial);
5589
cpu_partial_show(struct kmem_cache * s,char * buf)5590 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5591 {
5592 unsigned int nr_partial = 0;
5593 #ifdef CONFIG_SLUB_CPU_PARTIAL
5594 nr_partial = s->cpu_partial;
5595 #endif
5596
5597 return sysfs_emit(buf, "%u\n", nr_partial);
5598 }
5599
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)5600 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5601 size_t length)
5602 {
5603 unsigned int objects;
5604 int err;
5605
5606 err = kstrtouint(buf, 10, &objects);
5607 if (err)
5608 return err;
5609 if (objects && !kmem_cache_has_cpu_partial(s))
5610 return -EINVAL;
5611
5612 slub_set_cpu_partial(s, objects);
5613 flush_all(s);
5614 return length;
5615 }
5616 SLAB_ATTR(cpu_partial);
5617
ctor_show(struct kmem_cache * s,char * buf)5618 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5619 {
5620 if (!s->ctor)
5621 return 0;
5622 return sysfs_emit(buf, "%pS\n", s->ctor);
5623 }
5624 SLAB_ATTR_RO(ctor);
5625
aliases_show(struct kmem_cache * s,char * buf)5626 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5627 {
5628 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5629 }
5630 SLAB_ATTR_RO(aliases);
5631
partial_show(struct kmem_cache * s,char * buf)5632 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5633 {
5634 return show_slab_objects(s, buf, SO_PARTIAL);
5635 }
5636 SLAB_ATTR_RO(partial);
5637
cpu_slabs_show(struct kmem_cache * s,char * buf)5638 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5639 {
5640 return show_slab_objects(s, buf, SO_CPU);
5641 }
5642 SLAB_ATTR_RO(cpu_slabs);
5643
objects_partial_show(struct kmem_cache * s,char * buf)5644 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5645 {
5646 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5647 }
5648 SLAB_ATTR_RO(objects_partial);
5649
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)5650 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5651 {
5652 int objects = 0;
5653 int slabs = 0;
5654 int cpu __maybe_unused;
5655 int len = 0;
5656
5657 #ifdef CONFIG_SLUB_CPU_PARTIAL
5658 for_each_online_cpu(cpu) {
5659 struct slab *slab;
5660
5661 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5662
5663 if (slab)
5664 slabs += slab->slabs;
5665 }
5666 #endif
5667
5668 /* Approximate half-full slabs, see slub_set_cpu_partial() */
5669 objects = (slabs * oo_objects(s->oo)) / 2;
5670 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5671
5672 #ifdef CONFIG_SLUB_CPU_PARTIAL
5673 for_each_online_cpu(cpu) {
5674 struct slab *slab;
5675
5676 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5677 if (slab) {
5678 slabs = READ_ONCE(slab->slabs);
5679 objects = (slabs * oo_objects(s->oo)) / 2;
5680 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5681 cpu, objects, slabs);
5682 }
5683 }
5684 #endif
5685 len += sysfs_emit_at(buf, len, "\n");
5686
5687 return len;
5688 }
5689 SLAB_ATTR_RO(slabs_cpu_partial);
5690
reclaim_account_show(struct kmem_cache * s,char * buf)5691 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5692 {
5693 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5694 }
5695 SLAB_ATTR_RO(reclaim_account);
5696
hwcache_align_show(struct kmem_cache * s,char * buf)5697 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5698 {
5699 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5700 }
5701 SLAB_ATTR_RO(hwcache_align);
5702
5703 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)5704 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5705 {
5706 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5707 }
5708 SLAB_ATTR_RO(cache_dma);
5709 #endif
5710
5711 #ifdef CONFIG_HARDENED_USERCOPY
usersize_show(struct kmem_cache * s,char * buf)5712 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5713 {
5714 return sysfs_emit(buf, "%u\n", s->usersize);
5715 }
5716 SLAB_ATTR_RO(usersize);
5717 #endif
5718
destroy_by_rcu_show(struct kmem_cache * s,char * buf)5719 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5720 {
5721 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5722 }
5723 SLAB_ATTR_RO(destroy_by_rcu);
5724
5725 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)5726 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5727 {
5728 return show_slab_objects(s, buf, SO_ALL);
5729 }
5730 SLAB_ATTR_RO(slabs);
5731
total_objects_show(struct kmem_cache * s,char * buf)5732 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5733 {
5734 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5735 }
5736 SLAB_ATTR_RO(total_objects);
5737
objects_show(struct kmem_cache * s,char * buf)5738 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5739 {
5740 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5741 }
5742 SLAB_ATTR_RO(objects);
5743
sanity_checks_show(struct kmem_cache * s,char * buf)5744 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5745 {
5746 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5747 }
5748 SLAB_ATTR_RO(sanity_checks);
5749
trace_show(struct kmem_cache * s,char * buf)5750 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5751 {
5752 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5753 }
5754 SLAB_ATTR_RO(trace);
5755
red_zone_show(struct kmem_cache * s,char * buf)5756 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5757 {
5758 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5759 }
5760
5761 SLAB_ATTR_RO(red_zone);
5762
poison_show(struct kmem_cache * s,char * buf)5763 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5764 {
5765 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5766 }
5767
5768 SLAB_ATTR_RO(poison);
5769
store_user_show(struct kmem_cache * s,char * buf)5770 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5771 {
5772 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5773 }
5774
5775 SLAB_ATTR_RO(store_user);
5776
validate_show(struct kmem_cache * s,char * buf)5777 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5778 {
5779 return 0;
5780 }
5781
validate_store(struct kmem_cache * s,const char * buf,size_t length)5782 static ssize_t validate_store(struct kmem_cache *s,
5783 const char *buf, size_t length)
5784 {
5785 int ret = -EINVAL;
5786
5787 if (buf[0] == '1' && kmem_cache_debug(s)) {
5788 ret = validate_slab_cache(s);
5789 if (ret >= 0)
5790 ret = length;
5791 }
5792 return ret;
5793 }
5794 SLAB_ATTR(validate);
5795
5796 #endif /* CONFIG_SLUB_DEBUG */
5797
5798 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)5799 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5800 {
5801 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5802 }
5803
failslab_store(struct kmem_cache * s,const char * buf,size_t length)5804 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5805 size_t length)
5806 {
5807 if (s->refcount > 1)
5808 return -EINVAL;
5809
5810 if (buf[0] == '1')
5811 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
5812 else
5813 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
5814
5815 return length;
5816 }
5817 SLAB_ATTR(failslab);
5818 #endif
5819
shrink_show(struct kmem_cache * s,char * buf)5820 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5821 {
5822 return 0;
5823 }
5824
shrink_store(struct kmem_cache * s,const char * buf,size_t length)5825 static ssize_t shrink_store(struct kmem_cache *s,
5826 const char *buf, size_t length)
5827 {
5828 if (buf[0] == '1')
5829 kmem_cache_shrink(s);
5830 else
5831 return -EINVAL;
5832 return length;
5833 }
5834 SLAB_ATTR(shrink);
5835
5836 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)5837 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5838 {
5839 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5840 }
5841
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)5842 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5843 const char *buf, size_t length)
5844 {
5845 unsigned int ratio;
5846 int err;
5847
5848 err = kstrtouint(buf, 10, &ratio);
5849 if (err)
5850 return err;
5851 if (ratio > 100)
5852 return -ERANGE;
5853
5854 s->remote_node_defrag_ratio = ratio * 10;
5855
5856 return length;
5857 }
5858 SLAB_ATTR(remote_node_defrag_ratio);
5859 #endif
5860
5861 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)5862 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5863 {
5864 unsigned long sum = 0;
5865 int cpu;
5866 int len = 0;
5867 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5868
5869 if (!data)
5870 return -ENOMEM;
5871
5872 for_each_online_cpu(cpu) {
5873 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5874
5875 data[cpu] = x;
5876 sum += x;
5877 }
5878
5879 len += sysfs_emit_at(buf, len, "%lu", sum);
5880
5881 #ifdef CONFIG_SMP
5882 for_each_online_cpu(cpu) {
5883 if (data[cpu])
5884 len += sysfs_emit_at(buf, len, " C%d=%u",
5885 cpu, data[cpu]);
5886 }
5887 #endif
5888 kfree(data);
5889 len += sysfs_emit_at(buf, len, "\n");
5890
5891 return len;
5892 }
5893
clear_stat(struct kmem_cache * s,enum stat_item si)5894 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5895 {
5896 int cpu;
5897
5898 for_each_online_cpu(cpu)
5899 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5900 }
5901
5902 #define STAT_ATTR(si, text) \
5903 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5904 { \
5905 return show_stat(s, buf, si); \
5906 } \
5907 static ssize_t text##_store(struct kmem_cache *s, \
5908 const char *buf, size_t length) \
5909 { \
5910 if (buf[0] != '0') \
5911 return -EINVAL; \
5912 clear_stat(s, si); \
5913 return length; \
5914 } \
5915 SLAB_ATTR(text); \
5916
5917 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5918 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5919 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5920 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5921 STAT_ATTR(FREE_FROZEN, free_frozen);
5922 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5923 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5924 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5925 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5926 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5927 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5928 STAT_ATTR(FREE_SLAB, free_slab);
5929 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5930 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5931 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5932 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5933 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5934 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5935 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5936 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5937 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5938 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5939 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5940 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5941 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5942 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5943 #endif /* CONFIG_SLUB_STATS */
5944
5945 #ifdef CONFIG_KFENCE
skip_kfence_show(struct kmem_cache * s,char * buf)5946 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5947 {
5948 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5949 }
5950
skip_kfence_store(struct kmem_cache * s,const char * buf,size_t length)5951 static ssize_t skip_kfence_store(struct kmem_cache *s,
5952 const char *buf, size_t length)
5953 {
5954 int ret = length;
5955
5956 if (buf[0] == '0')
5957 s->flags &= ~SLAB_SKIP_KFENCE;
5958 else if (buf[0] == '1')
5959 s->flags |= SLAB_SKIP_KFENCE;
5960 else
5961 ret = -EINVAL;
5962
5963 return ret;
5964 }
5965 SLAB_ATTR(skip_kfence);
5966 #endif
5967
5968 static struct attribute *slab_attrs[] = {
5969 &slab_size_attr.attr,
5970 &object_size_attr.attr,
5971 &objs_per_slab_attr.attr,
5972 &order_attr.attr,
5973 &min_partial_attr.attr,
5974 &cpu_partial_attr.attr,
5975 &objects_partial_attr.attr,
5976 &partial_attr.attr,
5977 &cpu_slabs_attr.attr,
5978 &ctor_attr.attr,
5979 &aliases_attr.attr,
5980 &align_attr.attr,
5981 &hwcache_align_attr.attr,
5982 &reclaim_account_attr.attr,
5983 &destroy_by_rcu_attr.attr,
5984 &shrink_attr.attr,
5985 &slabs_cpu_partial_attr.attr,
5986 #ifdef CONFIG_SLUB_DEBUG
5987 &total_objects_attr.attr,
5988 &objects_attr.attr,
5989 &slabs_attr.attr,
5990 &sanity_checks_attr.attr,
5991 &trace_attr.attr,
5992 &red_zone_attr.attr,
5993 &poison_attr.attr,
5994 &store_user_attr.attr,
5995 &validate_attr.attr,
5996 #endif
5997 #ifdef CONFIG_ZONE_DMA
5998 &cache_dma_attr.attr,
5999 #endif
6000 #ifdef CONFIG_NUMA
6001 &remote_node_defrag_ratio_attr.attr,
6002 #endif
6003 #ifdef CONFIG_SLUB_STATS
6004 &alloc_fastpath_attr.attr,
6005 &alloc_slowpath_attr.attr,
6006 &free_fastpath_attr.attr,
6007 &free_slowpath_attr.attr,
6008 &free_frozen_attr.attr,
6009 &free_add_partial_attr.attr,
6010 &free_remove_partial_attr.attr,
6011 &alloc_from_partial_attr.attr,
6012 &alloc_slab_attr.attr,
6013 &alloc_refill_attr.attr,
6014 &alloc_node_mismatch_attr.attr,
6015 &free_slab_attr.attr,
6016 &cpuslab_flush_attr.attr,
6017 &deactivate_full_attr.attr,
6018 &deactivate_empty_attr.attr,
6019 &deactivate_to_head_attr.attr,
6020 &deactivate_to_tail_attr.attr,
6021 &deactivate_remote_frees_attr.attr,
6022 &deactivate_bypass_attr.attr,
6023 &order_fallback_attr.attr,
6024 &cmpxchg_double_fail_attr.attr,
6025 &cmpxchg_double_cpu_fail_attr.attr,
6026 &cpu_partial_alloc_attr.attr,
6027 &cpu_partial_free_attr.attr,
6028 &cpu_partial_node_attr.attr,
6029 &cpu_partial_drain_attr.attr,
6030 #endif
6031 #ifdef CONFIG_FAILSLAB
6032 &failslab_attr.attr,
6033 #endif
6034 #ifdef CONFIG_HARDENED_USERCOPY
6035 &usersize_attr.attr,
6036 #endif
6037 #ifdef CONFIG_KFENCE
6038 &skip_kfence_attr.attr,
6039 #endif
6040
6041 NULL
6042 };
6043
6044 static const struct attribute_group slab_attr_group = {
6045 .attrs = slab_attrs,
6046 };
6047
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)6048 static ssize_t slab_attr_show(struct kobject *kobj,
6049 struct attribute *attr,
6050 char *buf)
6051 {
6052 struct slab_attribute *attribute;
6053 struct kmem_cache *s;
6054
6055 attribute = to_slab_attr(attr);
6056 s = to_slab(kobj);
6057
6058 if (!attribute->show)
6059 return -EIO;
6060
6061 return attribute->show(s, buf);
6062 }
6063
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)6064 static ssize_t slab_attr_store(struct kobject *kobj,
6065 struct attribute *attr,
6066 const char *buf, size_t len)
6067 {
6068 struct slab_attribute *attribute;
6069 struct kmem_cache *s;
6070
6071 attribute = to_slab_attr(attr);
6072 s = to_slab(kobj);
6073
6074 if (!attribute->store)
6075 return -EIO;
6076
6077 return attribute->store(s, buf, len);
6078 }
6079
kmem_cache_release(struct kobject * k)6080 static void kmem_cache_release(struct kobject *k)
6081 {
6082 slab_kmem_cache_release(to_slab(k));
6083 }
6084
6085 static const struct sysfs_ops slab_sysfs_ops = {
6086 .show = slab_attr_show,
6087 .store = slab_attr_store,
6088 };
6089
6090 static const struct kobj_type slab_ktype = {
6091 .sysfs_ops = &slab_sysfs_ops,
6092 .release = kmem_cache_release,
6093 };
6094
6095 static struct kset *slab_kset;
6096
cache_kset(struct kmem_cache * s)6097 static inline struct kset *cache_kset(struct kmem_cache *s)
6098 {
6099 return slab_kset;
6100 }
6101
6102 #define ID_STR_LENGTH 32
6103
6104 /* Create a unique string id for a slab cache:
6105 *
6106 * Format :[flags-]size
6107 */
create_unique_id(struct kmem_cache * s)6108 static char *create_unique_id(struct kmem_cache *s)
6109 {
6110 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6111 char *p = name;
6112
6113 if (!name)
6114 return ERR_PTR(-ENOMEM);
6115
6116 *p++ = ':';
6117 /*
6118 * First flags affecting slabcache operations. We will only
6119 * get here for aliasable slabs so we do not need to support
6120 * too many flags. The flags here must cover all flags that
6121 * are matched during merging to guarantee that the id is
6122 * unique.
6123 */
6124 if (s->flags & SLAB_CACHE_DMA)
6125 *p++ = 'd';
6126 if (s->flags & SLAB_CACHE_DMA32)
6127 *p++ = 'D';
6128 if (s->flags & SLAB_RECLAIM_ACCOUNT)
6129 *p++ = 'a';
6130 if (s->flags & SLAB_CONSISTENCY_CHECKS)
6131 *p++ = 'F';
6132 if (s->flags & SLAB_ACCOUNT)
6133 *p++ = 'A';
6134 if (p != name + 1)
6135 *p++ = '-';
6136 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6137
6138 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6139 kfree(name);
6140 return ERR_PTR(-EINVAL);
6141 }
6142 kmsan_unpoison_memory(name, p - name);
6143 return name;
6144 }
6145
sysfs_slab_add(struct kmem_cache * s)6146 static int sysfs_slab_add(struct kmem_cache *s)
6147 {
6148 int err;
6149 const char *name;
6150 struct kset *kset = cache_kset(s);
6151 int unmergeable = slab_unmergeable(s);
6152
6153 if (!unmergeable && disable_higher_order_debug &&
6154 (slub_debug & DEBUG_METADATA_FLAGS))
6155 unmergeable = 1;
6156
6157 if (unmergeable) {
6158 /*
6159 * Slabcache can never be merged so we can use the name proper.
6160 * This is typically the case for debug situations. In that
6161 * case we can catch duplicate names easily.
6162 */
6163 sysfs_remove_link(&slab_kset->kobj, s->name);
6164 name = s->name;
6165 } else {
6166 /*
6167 * Create a unique name for the slab as a target
6168 * for the symlinks.
6169 */
6170 name = create_unique_id(s);
6171 if (IS_ERR(name))
6172 return PTR_ERR(name);
6173 }
6174
6175 s->kobj.kset = kset;
6176 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6177 if (err)
6178 goto out;
6179
6180 err = sysfs_create_group(&s->kobj, &slab_attr_group);
6181 if (err)
6182 goto out_del_kobj;
6183
6184 if (!unmergeable) {
6185 /* Setup first alias */
6186 sysfs_slab_alias(s, s->name);
6187 }
6188 out:
6189 if (!unmergeable)
6190 kfree(name);
6191 return err;
6192 out_del_kobj:
6193 kobject_del(&s->kobj);
6194 goto out;
6195 }
6196
sysfs_slab_unlink(struct kmem_cache * s)6197 void sysfs_slab_unlink(struct kmem_cache *s)
6198 {
6199 if (slab_state >= FULL)
6200 kobject_del(&s->kobj);
6201 }
6202
sysfs_slab_release(struct kmem_cache * s)6203 void sysfs_slab_release(struct kmem_cache *s)
6204 {
6205 if (slab_state >= FULL)
6206 kobject_put(&s->kobj);
6207 }
6208
6209 /*
6210 * Need to buffer aliases during bootup until sysfs becomes
6211 * available lest we lose that information.
6212 */
6213 struct saved_alias {
6214 struct kmem_cache *s;
6215 const char *name;
6216 struct saved_alias *next;
6217 };
6218
6219 static struct saved_alias *alias_list;
6220
sysfs_slab_alias(struct kmem_cache * s,const char * name)6221 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6222 {
6223 struct saved_alias *al;
6224
6225 if (slab_state == FULL) {
6226 /*
6227 * If we have a leftover link then remove it.
6228 */
6229 sysfs_remove_link(&slab_kset->kobj, name);
6230 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6231 }
6232
6233 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6234 if (!al)
6235 return -ENOMEM;
6236
6237 al->s = s;
6238 al->name = name;
6239 al->next = alias_list;
6240 alias_list = al;
6241 kmsan_unpoison_memory(al, sizeof(*al));
6242 return 0;
6243 }
6244
slab_sysfs_init(void)6245 static int __init slab_sysfs_init(void)
6246 {
6247 struct kmem_cache *s;
6248 int err;
6249
6250 mutex_lock(&slab_mutex);
6251
6252 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6253 if (!slab_kset) {
6254 mutex_unlock(&slab_mutex);
6255 pr_err("Cannot register slab subsystem.\n");
6256 return -ENOMEM;
6257 }
6258
6259 slab_state = FULL;
6260
6261 list_for_each_entry(s, &slab_caches, list) {
6262 err = sysfs_slab_add(s);
6263 if (err)
6264 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6265 s->name);
6266 }
6267
6268 while (alias_list) {
6269 struct saved_alias *al = alias_list;
6270
6271 alias_list = alias_list->next;
6272 err = sysfs_slab_alias(al->s, al->name);
6273 if (err)
6274 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6275 al->name);
6276 kfree(al);
6277 }
6278
6279 mutex_unlock(&slab_mutex);
6280 return 0;
6281 }
6282 late_initcall(slab_sysfs_init);
6283 #endif /* SLAB_SUPPORTS_SYSFS */
6284
6285 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
slab_debugfs_show(struct seq_file * seq,void * v)6286 static int slab_debugfs_show(struct seq_file *seq, void *v)
6287 {
6288 struct loc_track *t = seq->private;
6289 struct location *l;
6290 unsigned long idx;
6291
6292 idx = (unsigned long) t->idx;
6293 if (idx < t->count) {
6294 l = &t->loc[idx];
6295
6296 seq_printf(seq, "%7ld ", l->count);
6297
6298 if (l->addr)
6299 seq_printf(seq, "%pS", (void *)l->addr);
6300 else
6301 seq_puts(seq, "<not-available>");
6302
6303 if (l->waste)
6304 seq_printf(seq, " waste=%lu/%lu",
6305 l->count * l->waste, l->waste);
6306
6307 if (l->sum_time != l->min_time) {
6308 seq_printf(seq, " age=%ld/%llu/%ld",
6309 l->min_time, div_u64(l->sum_time, l->count),
6310 l->max_time);
6311 } else
6312 seq_printf(seq, " age=%ld", l->min_time);
6313
6314 if (l->min_pid != l->max_pid)
6315 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6316 else
6317 seq_printf(seq, " pid=%ld",
6318 l->min_pid);
6319
6320 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6321 seq_printf(seq, " cpus=%*pbl",
6322 cpumask_pr_args(to_cpumask(l->cpus)));
6323
6324 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6325 seq_printf(seq, " nodes=%*pbl",
6326 nodemask_pr_args(&l->nodes));
6327
6328 #ifdef CONFIG_STACKDEPOT
6329 {
6330 depot_stack_handle_t handle;
6331 unsigned long *entries;
6332 unsigned int nr_entries, j;
6333
6334 handle = READ_ONCE(l->handle);
6335 if (handle) {
6336 nr_entries = stack_depot_fetch(handle, &entries);
6337 seq_puts(seq, "\n");
6338 for (j = 0; j < nr_entries; j++)
6339 seq_printf(seq, " %pS\n", (void *)entries[j]);
6340 }
6341 }
6342 #endif
6343 seq_puts(seq, "\n");
6344 }
6345
6346 if (!idx && !t->count)
6347 seq_puts(seq, "No data\n");
6348
6349 return 0;
6350 }
6351
slab_debugfs_stop(struct seq_file * seq,void * v)6352 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6353 {
6354 }
6355
slab_debugfs_next(struct seq_file * seq,void * v,loff_t * ppos)6356 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6357 {
6358 struct loc_track *t = seq->private;
6359
6360 t->idx = ++(*ppos);
6361 if (*ppos <= t->count)
6362 return ppos;
6363
6364 return NULL;
6365 }
6366
cmp_loc_by_count(const void * a,const void * b,const void * data)6367 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6368 {
6369 struct location *loc1 = (struct location *)a;
6370 struct location *loc2 = (struct location *)b;
6371
6372 if (loc1->count > loc2->count)
6373 return -1;
6374 else
6375 return 1;
6376 }
6377
slab_debugfs_start(struct seq_file * seq,loff_t * ppos)6378 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6379 {
6380 struct loc_track *t = seq->private;
6381
6382 t->idx = *ppos;
6383 return ppos;
6384 }
6385
6386 static const struct seq_operations slab_debugfs_sops = {
6387 .start = slab_debugfs_start,
6388 .next = slab_debugfs_next,
6389 .stop = slab_debugfs_stop,
6390 .show = slab_debugfs_show,
6391 };
6392
slab_debug_trace_open(struct inode * inode,struct file * filep)6393 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6394 {
6395
6396 struct kmem_cache_node *n;
6397 enum track_item alloc;
6398 int node;
6399 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6400 sizeof(struct loc_track));
6401 struct kmem_cache *s = file_inode(filep)->i_private;
6402 unsigned long *obj_map;
6403
6404 if (!t)
6405 return -ENOMEM;
6406
6407 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6408 if (!obj_map) {
6409 seq_release_private(inode, filep);
6410 return -ENOMEM;
6411 }
6412
6413 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6414 alloc = TRACK_ALLOC;
6415 else
6416 alloc = TRACK_FREE;
6417
6418 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6419 bitmap_free(obj_map);
6420 seq_release_private(inode, filep);
6421 return -ENOMEM;
6422 }
6423
6424 for_each_kmem_cache_node(s, node, n) {
6425 unsigned long flags;
6426 struct slab *slab;
6427
6428 if (!node_nr_slabs(n))
6429 continue;
6430
6431 spin_lock_irqsave(&n->list_lock, flags);
6432 list_for_each_entry(slab, &n->partial, slab_list)
6433 process_slab(t, s, slab, alloc, obj_map);
6434 list_for_each_entry(slab, &n->full, slab_list)
6435 process_slab(t, s, slab, alloc, obj_map);
6436 spin_unlock_irqrestore(&n->list_lock, flags);
6437 }
6438
6439 /* Sort locations by count */
6440 sort_r(t->loc, t->count, sizeof(struct location),
6441 cmp_loc_by_count, NULL, NULL);
6442
6443 bitmap_free(obj_map);
6444 return 0;
6445 }
6446
slab_debug_trace_release(struct inode * inode,struct file * file)6447 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6448 {
6449 struct seq_file *seq = file->private_data;
6450 struct loc_track *t = seq->private;
6451
6452 free_loc_track(t);
6453 return seq_release_private(inode, file);
6454 }
6455
6456 static const struct file_operations slab_debugfs_fops = {
6457 .open = slab_debug_trace_open,
6458 .read = seq_read,
6459 .llseek = seq_lseek,
6460 .release = slab_debug_trace_release,
6461 };
6462
debugfs_slab_add(struct kmem_cache * s)6463 static void debugfs_slab_add(struct kmem_cache *s)
6464 {
6465 struct dentry *slab_cache_dir;
6466
6467 if (unlikely(!slab_debugfs_root))
6468 return;
6469
6470 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6471
6472 debugfs_create_file("alloc_traces", 0400,
6473 slab_cache_dir, s, &slab_debugfs_fops);
6474
6475 debugfs_create_file("free_traces", 0400,
6476 slab_cache_dir, s, &slab_debugfs_fops);
6477 }
6478
debugfs_slab_release(struct kmem_cache * s)6479 void debugfs_slab_release(struct kmem_cache *s)
6480 {
6481 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
6482 }
6483
slab_debugfs_init(void)6484 static int __init slab_debugfs_init(void)
6485 {
6486 struct kmem_cache *s;
6487
6488 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6489
6490 list_for_each_entry(s, &slab_caches, list)
6491 if (s->flags & SLAB_STORE_USER)
6492 debugfs_slab_add(s);
6493
6494 return 0;
6495
6496 }
6497 __initcall(slab_debugfs_init);
6498 #endif
6499 /*
6500 * The /proc/slabinfo ABI
6501 */
6502 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)6503 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6504 {
6505 unsigned long nr_slabs = 0;
6506 unsigned long nr_objs = 0;
6507 unsigned long nr_free = 0;
6508 int node;
6509 struct kmem_cache_node *n;
6510
6511 for_each_kmem_cache_node(s, node, n) {
6512 nr_slabs += node_nr_slabs(n);
6513 nr_objs += node_nr_objs(n);
6514 nr_free += count_partial(n, count_free);
6515 }
6516
6517 sinfo->active_objs = nr_objs - nr_free;
6518 sinfo->num_objs = nr_objs;
6519 sinfo->active_slabs = nr_slabs;
6520 sinfo->num_slabs = nr_slabs;
6521 sinfo->objects_per_slab = oo_objects(s->oo);
6522 sinfo->cache_order = oo_order(s->oo);
6523 }
6524
slabinfo_show_stats(struct seq_file * m,struct kmem_cache * s)6525 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6526 {
6527 }
6528
slabinfo_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)6529 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6530 size_t count, loff_t *ppos)
6531 {
6532 return -EIO;
6533 }
6534 #endif /* CONFIG_SLUB_DEBUG */
6535