xref: /openbmc/linux/drivers/hwmon/lm90.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
4   *          monitoring
5   * Copyright (C) 2003-2010  Jean Delvare <jdelvare@suse.de>
6   *
7   * Based on the lm83 driver. The LM90 is a sensor chip made by National
8   * Semiconductor. It reports up to two temperatures (its own plus up to
9   * one external one) with a 0.125 deg resolution (1 deg for local
10   * temperature) and a 3-4 deg accuracy.
11   *
12   * This driver also supports the LM89 and LM99, two other sensor chips
13   * made by National Semiconductor. Both have an increased remote
14   * temperature measurement accuracy (1 degree), and the LM99
15   * additionally shifts remote temperatures (measured and limits) by 16
16   * degrees, which allows for higher temperatures measurement.
17   * Note that there is no way to differentiate between both chips.
18   * When device is auto-detected, the driver will assume an LM99.
19   *
20   * This driver also supports the LM86, another sensor chip made by
21   * National Semiconductor. It is exactly similar to the LM90 except it
22   * has a higher accuracy.
23   *
24   * This driver also supports the ADM1032, a sensor chip made by Analog
25   * Devices. That chip is similar to the LM90, with a few differences
26   * that are not handled by this driver. Among others, it has a higher
27   * accuracy than the LM90, much like the LM86 does.
28   *
29   * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
30   * chips made by Maxim. These chips are similar to the LM86.
31   * Note that there is no easy way to differentiate between the three
32   * variants. We use the device address to detect MAX6659, which will result
33   * in a detection as max6657 if it is on address 0x4c. The extra address
34   * and features of the MAX6659 are only supported if the chip is configured
35   * explicitly as max6659, or if its address is not 0x4c.
36   * These chips lack the remote temperature offset feature.
37   *
38   * This driver also supports the MAX6654 chip made by Maxim. This chip can be
39   * at 9 different addresses, similar to MAX6680/MAX6681. The MAX6654 is similar
40   * to MAX6657/MAX6658/MAX6659, but does not support critical temperature
41   * limits. Extended range is available by setting the configuration register
42   * accordingly, and is done during initialization. Extended precision is only
43   * available at conversion rates of 1 Hz and slower. Note that extended
44   * precision is not enabled by default, as this driver initializes all chips
45   * to 2 Hz by design. The driver also supports MAX6690, which is practically
46   * identical to MAX6654.
47   *
48   * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and
49   * MAX6692 chips made by Maxim.  These are again similar to the LM86,
50   * but they use unsigned temperature values and can report temperatures
51   * from 0 to 145 degrees.
52   *
53   * This driver also supports the MAX6680 and MAX6681, two other sensor
54   * chips made by Maxim. These are quite similar to the other Maxim
55   * chips. The MAX6680 and MAX6681 only differ in the pinout so they can
56   * be treated identically.
57   *
58   * This driver also supports the MAX6695 and MAX6696, two other sensor
59   * chips made by Maxim. These are also quite similar to other Maxim
60   * chips, but support three temperature sensors instead of two. MAX6695
61   * and MAX6696 only differ in the pinout so they can be treated identically.
62   *
63   * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as
64   * NCT1008 from ON Semiconductor. The chips are supported in both compatibility
65   * and extended mode. They are mostly compatible with LM90 except for a data
66   * format difference for the temperature value registers.
67   *
68   * This driver also supports ADT7481, ADT7482, and ADT7483 from Analog Devices
69   * / ON Semiconductor. The chips are similar to ADT7461 but support two external
70   * temperature sensors.
71   *
72   * This driver also supports NCT72, NCT214, and NCT218 from ON Semiconductor.
73   * The chips are similar to ADT7461/ADT7461A but have full PEC support
74   * (undocumented).
75   *
76   * This driver also supports the SA56004 from Philips. This device is
77   * pin-compatible with the LM86, the ED/EDP parts are also address-compatible.
78   *
79   * This driver also supports the G781 from GMT. This device is compatible
80   * with the ADM1032.
81   *
82   * This driver also supports TMP451 and TMP461 from Texas Instruments.
83   * Those devices are supported in both compatibility and extended mode.
84   * They are mostly compatible with ADT7461 except for local temperature
85   * low byte register and max conversion rate.
86   *
87   * This driver also supports MAX1617 and various clones such as G767
88   * and NE1617. Such clones will be detected as MAX1617.
89   *
90   * This driver also supports NE1618 from Philips. It is similar to NE1617
91   * but supports 11 bit external temperature values.
92   *
93   * Since the LM90 was the first chipset supported by this driver, most
94   * comments will refer to this chipset, but are actually general and
95   * concern all supported chipsets, unless mentioned otherwise.
96   */
97  
98  #include <linux/bits.h>
99  #include <linux/device.h>
100  #include <linux/err.h>
101  #include <linux/i2c.h>
102  #include <linux/init.h>
103  #include <linux/interrupt.h>
104  #include <linux/jiffies.h>
105  #include <linux/hwmon.h>
106  #include <linux/kstrtox.h>
107  #include <linux/module.h>
108  #include <linux/mutex.h>
109  #include <linux/of.h>
110  #include <linux/regulator/consumer.h>
111  #include <linux/slab.h>
112  #include <linux/workqueue.h>
113  
114  /* The maximum number of channels currently supported */
115  #define MAX_CHANNELS	3
116  
117  /*
118   * Addresses to scan
119   * Address is fully defined internally and cannot be changed except for
120   * MAX6659, MAX6680 and MAX6681.
121   * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649,
122   * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c.
123   * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D
124   * have address 0x4d.
125   * MAX6647 has address 0x4e.
126   * MAX6659 can have address 0x4c, 0x4d or 0x4e.
127   * MAX6654, MAX6680, and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29,
128   * 0x2a, 0x2b, 0x4c, 0x4d or 0x4e.
129   * SA56004 can have address 0x48 through 0x4F.
130   */
131  
132  static const unsigned short normal_i2c[] = {
133  	0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
134  	0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
135  
136  enum chips { adm1023, adm1032, adt7461, adt7461a, adt7481,
137  	g781, lm84, lm90, lm99,
138  	max1617, max6642, max6646, max6648, max6654, max6657, max6659, max6680, max6696,
139  	nct210, nct72, ne1618, sa56004, tmp451, tmp461, w83l771,
140  };
141  
142  /*
143   * The LM90 registers
144   */
145  
146  #define LM90_REG_MAN_ID			0xFE
147  #define LM90_REG_CHIP_ID		0xFF
148  #define LM90_REG_CONFIG1		0x03
149  #define LM90_REG_CONFIG2		0xBF
150  #define LM90_REG_CONVRATE		0x04
151  #define LM90_REG_STATUS			0x02
152  #define LM90_REG_LOCAL_TEMP		0x00
153  #define LM90_REG_LOCAL_HIGH		0x05
154  #define LM90_REG_LOCAL_LOW		0x06
155  #define LM90_REG_LOCAL_CRIT		0x20
156  #define LM90_REG_REMOTE_TEMPH		0x01
157  #define LM90_REG_REMOTE_TEMPL		0x10
158  #define LM90_REG_REMOTE_OFFSH		0x11
159  #define LM90_REG_REMOTE_OFFSL		0x12
160  #define LM90_REG_REMOTE_HIGHH		0x07
161  #define LM90_REG_REMOTE_HIGHL		0x13
162  #define LM90_REG_REMOTE_LOWH		0x08
163  #define LM90_REG_REMOTE_LOWL		0x14
164  #define LM90_REG_REMOTE_CRIT		0x19
165  #define LM90_REG_TCRIT_HYST		0x21
166  
167  /* MAX6646/6647/6649/6654/6657/6658/6659/6695/6696 registers */
168  
169  #define MAX6657_REG_LOCAL_TEMPL		0x11
170  #define MAX6696_REG_STATUS2		0x12
171  #define MAX6659_REG_REMOTE_EMERG	0x16
172  #define MAX6659_REG_LOCAL_EMERG		0x17
173  
174  /*  SA56004 registers */
175  
176  #define SA56004_REG_LOCAL_TEMPL		0x22
177  
178  #define LM90_MAX_CONVRATE_MS	16000	/* Maximum conversion rate in ms */
179  
180  /* TMP451/TMP461 registers */
181  #define TMP451_REG_LOCAL_TEMPL		0x15
182  #define TMP451_REG_CONALERT		0x22
183  
184  #define TMP461_REG_CHEN			0x16
185  #define TMP461_REG_DFC			0x24
186  
187  /* ADT7481 registers */
188  #define ADT7481_REG_STATUS2		0x23
189  #define ADT7481_REG_CONFIG2		0x24
190  
191  #define ADT7481_REG_MAN_ID		0x3e
192  #define ADT7481_REG_CHIP_ID		0x3d
193  
194  /* Device features */
195  #define LM90_HAVE_EXTENDED_TEMP	BIT(0)	/* extended temperature support	*/
196  #define LM90_HAVE_OFFSET	BIT(1)	/* temperature offset register	*/
197  #define LM90_HAVE_UNSIGNED_TEMP	BIT(2)	/* temperatures are unsigned	*/
198  #define LM90_HAVE_REM_LIMIT_EXT	BIT(3)	/* extended remote limit	*/
199  #define LM90_HAVE_EMERGENCY	BIT(4)	/* 3rd upper (emergency) limit	*/
200  #define LM90_HAVE_EMERGENCY_ALARM BIT(5)/* emergency alarm		*/
201  #define LM90_HAVE_TEMP3		BIT(6)	/* 3rd temperature sensor	*/
202  #define LM90_HAVE_BROKEN_ALERT	BIT(7)	/* Broken alert			*/
203  #define LM90_PAUSE_FOR_CONFIG	BIT(8)	/* Pause conversion for config	*/
204  #define LM90_HAVE_CRIT		BIT(9)	/* Chip supports CRIT/OVERT register	*/
205  #define LM90_HAVE_CRIT_ALRM_SWP	BIT(10)	/* critical alarm bits swapped	*/
206  #define LM90_HAVE_PEC		BIT(11)	/* Chip supports PEC		*/
207  #define LM90_HAVE_PARTIAL_PEC	BIT(12)	/* Partial PEC support (adm1032)*/
208  #define LM90_HAVE_ALARMS	BIT(13)	/* Create 'alarms' attribute	*/
209  #define LM90_HAVE_EXT_UNSIGNED	BIT(14)	/* extended unsigned temperature*/
210  #define LM90_HAVE_LOW		BIT(15)	/* low limits			*/
211  #define LM90_HAVE_CONVRATE	BIT(16)	/* conversion rate		*/
212  #define LM90_HAVE_REMOTE_EXT	BIT(17)	/* extended remote temperature	*/
213  #define LM90_HAVE_FAULTQUEUE	BIT(18)	/* configurable samples count	*/
214  
215  /* LM90 status */
216  #define LM90_STATUS_LTHRM	BIT(0)	/* local THERM limit tripped */
217  #define LM90_STATUS_RTHRM	BIT(1)	/* remote THERM limit tripped */
218  #define LM90_STATUS_ROPEN	BIT(2)	/* remote is an open circuit */
219  #define LM90_STATUS_RLOW	BIT(3)	/* remote low temp limit tripped */
220  #define LM90_STATUS_RHIGH	BIT(4)	/* remote high temp limit tripped */
221  #define LM90_STATUS_LLOW	BIT(5)	/* local low temp limit tripped */
222  #define LM90_STATUS_LHIGH	BIT(6)	/* local high temp limit tripped */
223  #define LM90_STATUS_BUSY	BIT(7)	/* conversion is ongoing */
224  
225  /* MAX6695/6696 and ADT7481 2nd status register */
226  #define MAX6696_STATUS2_R2THRM	BIT(1)	/* remote2 THERM limit tripped */
227  #define MAX6696_STATUS2_R2OPEN	BIT(2)	/* remote2 is an open circuit */
228  #define MAX6696_STATUS2_R2LOW	BIT(3)	/* remote2 low temp limit tripped */
229  #define MAX6696_STATUS2_R2HIGH	BIT(4)	/* remote2 high temp limit tripped */
230  #define MAX6696_STATUS2_ROT2	BIT(5)	/* remote emergency limit tripped */
231  #define MAX6696_STATUS2_R2OT2	BIT(6)	/* remote2 emergency limit tripped */
232  #define MAX6696_STATUS2_LOT2	BIT(7)	/* local emergency limit tripped */
233  
234  /*
235   * Driver data (common to all clients)
236   */
237  
238  static const struct i2c_device_id lm90_id[] = {
239  	{ "adm1020", max1617 },
240  	{ "adm1021", max1617 },
241  	{ "adm1023", adm1023 },
242  	{ "adm1032", adm1032 },
243  	{ "adt7421", adt7461a },
244  	{ "adt7461", adt7461 },
245  	{ "adt7461a", adt7461a },
246  	{ "adt7481", adt7481 },
247  	{ "adt7482", adt7481 },
248  	{ "adt7483a", adt7481 },
249  	{ "g781", g781 },
250  	{ "gl523sm", max1617 },
251  	{ "lm84", lm84 },
252  	{ "lm86", lm90 },
253  	{ "lm89", lm90 },
254  	{ "lm90", lm90 },
255  	{ "lm99", lm99 },
256  	{ "max1617", max1617 },
257  	{ "max6642", max6642 },
258  	{ "max6646", max6646 },
259  	{ "max6647", max6646 },
260  	{ "max6648", max6648 },
261  	{ "max6649", max6646 },
262  	{ "max6654", max6654 },
263  	{ "max6657", max6657 },
264  	{ "max6658", max6657 },
265  	{ "max6659", max6659 },
266  	{ "max6680", max6680 },
267  	{ "max6681", max6680 },
268  	{ "max6690", max6654 },
269  	{ "max6692", max6648 },
270  	{ "max6695", max6696 },
271  	{ "max6696", max6696 },
272  	{ "mc1066", max1617 },
273  	{ "nct1008", adt7461a },
274  	{ "nct210", nct210 },
275  	{ "nct214", nct72 },
276  	{ "nct218", nct72 },
277  	{ "nct72", nct72 },
278  	{ "ne1618", ne1618 },
279  	{ "w83l771", w83l771 },
280  	{ "sa56004", sa56004 },
281  	{ "thmc10", max1617 },
282  	{ "tmp451", tmp451 },
283  	{ "tmp461", tmp461 },
284  	{ }
285  };
286  MODULE_DEVICE_TABLE(i2c, lm90_id);
287  
288  static const struct of_device_id __maybe_unused lm90_of_match[] = {
289  	{
290  		.compatible = "adi,adm1032",
291  		.data = (void *)adm1032
292  	},
293  	{
294  		.compatible = "adi,adt7461",
295  		.data = (void *)adt7461
296  	},
297  	{
298  		.compatible = "adi,adt7461a",
299  		.data = (void *)adt7461a
300  	},
301  	{
302  		.compatible = "adi,adt7481",
303  		.data = (void *)adt7481
304  	},
305  	{
306  		.compatible = "gmt,g781",
307  		.data = (void *)g781
308  	},
309  	{
310  		.compatible = "national,lm90",
311  		.data = (void *)lm90
312  	},
313  	{
314  		.compatible = "national,lm86",
315  		.data = (void *)lm90
316  	},
317  	{
318  		.compatible = "national,lm89",
319  		.data = (void *)lm90
320  	},
321  	{
322  		.compatible = "national,lm99",
323  		.data = (void *)lm99
324  	},
325  	{
326  		.compatible = "dallas,max6646",
327  		.data = (void *)max6646
328  	},
329  	{
330  		.compatible = "dallas,max6647",
331  		.data = (void *)max6646
332  	},
333  	{
334  		.compatible = "dallas,max6649",
335  		.data = (void *)max6646
336  	},
337  	{
338  		.compatible = "dallas,max6654",
339  		.data = (void *)max6654
340  	},
341  	{
342  		.compatible = "dallas,max6657",
343  		.data = (void *)max6657
344  	},
345  	{
346  		.compatible = "dallas,max6658",
347  		.data = (void *)max6657
348  	},
349  	{
350  		.compatible = "dallas,max6659",
351  		.data = (void *)max6659
352  	},
353  	{
354  		.compatible = "dallas,max6680",
355  		.data = (void *)max6680
356  	},
357  	{
358  		.compatible = "dallas,max6681",
359  		.data = (void *)max6680
360  	},
361  	{
362  		.compatible = "dallas,max6695",
363  		.data = (void *)max6696
364  	},
365  	{
366  		.compatible = "dallas,max6696",
367  		.data = (void *)max6696
368  	},
369  	{
370  		.compatible = "onnn,nct1008",
371  		.data = (void *)adt7461a
372  	},
373  	{
374  		.compatible = "onnn,nct214",
375  		.data = (void *)nct72
376  	},
377  	{
378  		.compatible = "onnn,nct218",
379  		.data = (void *)nct72
380  	},
381  	{
382  		.compatible = "onnn,nct72",
383  		.data = (void *)nct72
384  	},
385  	{
386  		.compatible = "winbond,w83l771",
387  		.data = (void *)w83l771
388  	},
389  	{
390  		.compatible = "nxp,sa56004",
391  		.data = (void *)sa56004
392  	},
393  	{
394  		.compatible = "ti,tmp451",
395  		.data = (void *)tmp451
396  	},
397  	{
398  		.compatible = "ti,tmp461",
399  		.data = (void *)tmp461
400  	},
401  	{ },
402  };
403  MODULE_DEVICE_TABLE(of, lm90_of_match);
404  
405  /*
406   * chip type specific parameters
407   */
408  struct lm90_params {
409  	u32 flags;		/* Capabilities */
410  	u16 alert_alarms;	/* Which alarm bits trigger ALERT# */
411  				/* Upper 8 bits for max6695/96 */
412  	u8 max_convrate;	/* Maximum conversion rate register value */
413  	u8 resolution;		/* 16-bit resolution (default 11 bit) */
414  	u8 reg_status2;		/* 2nd status register (optional) */
415  	u8 reg_local_ext;	/* Extended local temp register (optional) */
416  	u8 faultqueue_mask;	/* fault queue bit mask */
417  	u8 faultqueue_depth;	/* fault queue depth if mask is used */
418  };
419  
420  static const struct lm90_params lm90_params[] = {
421  	[adm1023] = {
422  		.flags = LM90_HAVE_ALARMS | LM90_HAVE_OFFSET | LM90_HAVE_BROKEN_ALERT
423  		  | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
424  		  | LM90_HAVE_REMOTE_EXT,
425  		.alert_alarms = 0x7c,
426  		.resolution = 8,
427  		.max_convrate = 7,
428  	},
429  	[adm1032] = {
430  		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
431  		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT
432  		  | LM90_HAVE_PARTIAL_PEC | LM90_HAVE_ALARMS
433  		  | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
434  		  | LM90_HAVE_FAULTQUEUE,
435  		.alert_alarms = 0x7c,
436  		.max_convrate = 10,
437  	},
438  	[adt7461] = {
439  		/*
440  		 * Standard temperature range is supposed to be unsigned,
441  		 * but that does not match reality. Negative temperatures
442  		 * are always reported.
443  		 */
444  		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
445  		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
446  		  | LM90_HAVE_CRIT | LM90_HAVE_PARTIAL_PEC
447  		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
448  		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
449  		.alert_alarms = 0x7c,
450  		.max_convrate = 10,
451  		.resolution = 10,
452  	},
453  	[adt7461a] = {
454  		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
455  		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
456  		  | LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_ALARMS
457  		  | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
458  		  | LM90_HAVE_FAULTQUEUE,
459  		.alert_alarms = 0x7c,
460  		.max_convrate = 10,
461  	},
462  	[adt7481] = {
463  		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
464  		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
465  		  | LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_PEC
466  		  | LM90_HAVE_TEMP3 | LM90_HAVE_CRIT | LM90_HAVE_LOW
467  		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
468  		  | LM90_HAVE_FAULTQUEUE,
469  		.alert_alarms = 0x1c7c,
470  		.max_convrate = 11,
471  		.resolution = 10,
472  		.reg_status2 = ADT7481_REG_STATUS2,
473  	},
474  	[g781] = {
475  		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
476  		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT
477  		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
478  		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
479  		.alert_alarms = 0x7c,
480  		.max_convrate = 7,
481  	},
482  	[lm84] = {
483  		.flags = LM90_HAVE_ALARMS,
484  		.resolution = 8,
485  	},
486  	[lm90] = {
487  		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
488  		  | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
489  		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
490  		  | LM90_HAVE_FAULTQUEUE,
491  		.alert_alarms = 0x7b,
492  		.max_convrate = 9,
493  		.faultqueue_mask = BIT(0),
494  		.faultqueue_depth = 3,
495  	},
496  	[lm99] = {
497  		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
498  		  | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
499  		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
500  		  | LM90_HAVE_FAULTQUEUE,
501  		.alert_alarms = 0x7b,
502  		.max_convrate = 9,
503  		.faultqueue_mask = BIT(0),
504  		.faultqueue_depth = 3,
505  	},
506  	[max1617] = {
507  		.flags = LM90_HAVE_CONVRATE | LM90_HAVE_BROKEN_ALERT |
508  		  LM90_HAVE_LOW | LM90_HAVE_ALARMS,
509  		.alert_alarms = 0x78,
510  		.resolution = 8,
511  		.max_convrate = 7,
512  	},
513  	[max6642] = {
514  		.flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXT_UNSIGNED
515  		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
516  		.alert_alarms = 0x50,
517  		.resolution = 10,
518  		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
519  		.faultqueue_mask = BIT(4),
520  		.faultqueue_depth = 2,
521  	},
522  	[max6646] = {
523  		.flags = LM90_HAVE_CRIT | LM90_HAVE_BROKEN_ALERT
524  		  | LM90_HAVE_EXT_UNSIGNED | LM90_HAVE_ALARMS | LM90_HAVE_LOW
525  		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
526  		.alert_alarms = 0x7c,
527  		.max_convrate = 6,
528  		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
529  	},
530  	[max6648] = {
531  		.flags = LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_CRIT
532  		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_LOW
533  		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
534  		.alert_alarms = 0x7c,
535  		.max_convrate = 6,
536  		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
537  	},
538  	[max6654] = {
539  		.flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
540  		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
541  		.alert_alarms = 0x7c,
542  		.max_convrate = 7,
543  		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
544  	},
545  	[max6657] = {
546  		.flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_CRIT
547  		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
548  		  | LM90_HAVE_REMOTE_EXT,
549  		.alert_alarms = 0x7c,
550  		.max_convrate = 8,
551  		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
552  	},
553  	[max6659] = {
554  		.flags = LM90_HAVE_EMERGENCY | LM90_HAVE_CRIT
555  		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
556  		  | LM90_HAVE_REMOTE_EXT,
557  		.alert_alarms = 0x7c,
558  		.max_convrate = 8,
559  		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
560  	},
561  	[max6680] = {
562  		/*
563  		 * Apparent temperatures of 128 degrees C or higher are reported
564  		 * and treated as negative temperatures (meaning min_alarm will
565  		 * be set).
566  		 */
567  		.flags = LM90_HAVE_OFFSET | LM90_HAVE_CRIT
568  		  | LM90_HAVE_CRIT_ALRM_SWP | LM90_HAVE_BROKEN_ALERT
569  		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
570  		  | LM90_HAVE_REMOTE_EXT,
571  		.alert_alarms = 0x7c,
572  		.max_convrate = 7,
573  	},
574  	[max6696] = {
575  		.flags = LM90_HAVE_EMERGENCY
576  		  | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3 | LM90_HAVE_CRIT
577  		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
578  		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
579  		.alert_alarms = 0x1c7c,
580  		.max_convrate = 6,
581  		.reg_status2 = MAX6696_REG_STATUS2,
582  		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
583  		.faultqueue_mask = BIT(5),
584  		.faultqueue_depth = 4,
585  	},
586  	[nct72] = {
587  		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
588  		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
589  		  | LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_UNSIGNED_TEMP
590  		  | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
591  		  | LM90_HAVE_FAULTQUEUE,
592  		.alert_alarms = 0x7c,
593  		.max_convrate = 10,
594  		.resolution = 10,
595  	},
596  	[nct210] = {
597  		.flags = LM90_HAVE_ALARMS | LM90_HAVE_BROKEN_ALERT
598  		  | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
599  		  | LM90_HAVE_REMOTE_EXT,
600  		.alert_alarms = 0x7c,
601  		.resolution = 11,
602  		.max_convrate = 7,
603  	},
604  	[ne1618] = {
605  		.flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_BROKEN_ALERT
606  		  | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
607  		.alert_alarms = 0x7c,
608  		.resolution = 11,
609  		.max_convrate = 7,
610  	},
611  	[w83l771] = {
612  		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT
613  		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
614  		  | LM90_HAVE_REMOTE_EXT,
615  		.alert_alarms = 0x7c,
616  		.max_convrate = 8,
617  	},
618  	[sa56004] = {
619  		/*
620  		 * Apparent temperatures of 128 degrees C or higher are reported
621  		 * and treated as negative temperatures (meaning min_alarm will
622  		 * be set).
623  		 */
624  		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT
625  		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
626  		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
627  		.alert_alarms = 0x7b,
628  		.max_convrate = 9,
629  		.reg_local_ext = SA56004_REG_LOCAL_TEMPL,
630  		.faultqueue_mask = BIT(0),
631  		.faultqueue_depth = 3,
632  	},
633  	[tmp451] = {
634  		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
635  		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT
636  		  | LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_ALARMS | LM90_HAVE_LOW
637  		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
638  		.alert_alarms = 0x7c,
639  		.max_convrate = 9,
640  		.resolution = 12,
641  		.reg_local_ext = TMP451_REG_LOCAL_TEMPL,
642  	},
643  	[tmp461] = {
644  		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
645  		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT
646  		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
647  		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
648  		.alert_alarms = 0x7c,
649  		.max_convrate = 9,
650  		.resolution = 12,
651  		.reg_local_ext = TMP451_REG_LOCAL_TEMPL,
652  	},
653  };
654  
655  /*
656   * temperature register index
657   */
658  enum lm90_temp_reg_index {
659  	LOCAL_LOW = 0,
660  	LOCAL_HIGH,
661  	LOCAL_CRIT,
662  	REMOTE_CRIT,
663  	LOCAL_EMERG,	/* max6659 and max6695/96 */
664  	REMOTE_EMERG,	/* max6659 and max6695/96 */
665  	REMOTE2_CRIT,	/* max6695/96 only */
666  	REMOTE2_EMERG,	/* max6695/96 only */
667  
668  	REMOTE_TEMP,
669  	REMOTE_LOW,
670  	REMOTE_HIGH,
671  	REMOTE_OFFSET,	/* except max6646, max6657/58/59, and max6695/96 */
672  	LOCAL_TEMP,
673  	REMOTE2_TEMP,	/* max6695/96 only */
674  	REMOTE2_LOW,	/* max6695/96 only */
675  	REMOTE2_HIGH,	/* max6695/96 only */
676  	REMOTE2_OFFSET,
677  
678  	TEMP_REG_NUM
679  };
680  
681  /*
682   * Client data (each client gets its own)
683   */
684  
685  struct lm90_data {
686  	struct i2c_client *client;
687  	struct device *hwmon_dev;
688  	u32 chip_config[2];
689  	u32 channel_config[MAX_CHANNELS + 1];
690  	const char *channel_label[MAX_CHANNELS];
691  	struct hwmon_channel_info chip_info;
692  	struct hwmon_channel_info temp_info;
693  	const struct hwmon_channel_info *info[3];
694  	struct hwmon_chip_info chip;
695  	struct mutex update_lock;
696  	struct delayed_work alert_work;
697  	struct work_struct report_work;
698  	bool valid;		/* true if register values are valid */
699  	bool alarms_valid;	/* true if status register values are valid */
700  	unsigned long last_updated; /* in jiffies */
701  	unsigned long alarms_updated; /* in jiffies */
702  	int kind;
703  	u32 flags;
704  
705  	unsigned int update_interval; /* in milliseconds */
706  
707  	u8 config;		/* Current configuration register value */
708  	u8 config_orig;		/* Original configuration register value */
709  	u8 convrate_orig;	/* Original conversion rate register value */
710  	u8 resolution;		/* temperature resolution in bit */
711  	u16 alert_alarms;	/* Which alarm bits trigger ALERT# */
712  				/* Upper 8 bits for max6695/96 */
713  	u8 max_convrate;	/* Maximum conversion rate */
714  	u8 reg_status2;		/* 2nd status register (optional) */
715  	u8 reg_local_ext;	/* local extension register offset */
716  	u8 reg_remote_ext;	/* remote temperature low byte */
717  	u8 faultqueue_mask;	/* fault queue mask */
718  	u8 faultqueue_depth;	/* fault queue mask */
719  
720  	/* registers values */
721  	u16 temp[TEMP_REG_NUM];
722  	u8 temp_hyst;
723  	u8 conalert;
724  	u16 reported_alarms;	/* alarms reported as sysfs/udev events */
725  	u16 current_alarms;	/* current alarms, reported by chip */
726  	u16 alarms;		/* alarms not yet reported to user */
727  };
728  
729  /*
730   * Support functions
731   */
732  
733  /*
734   * If the chip supports PEC but not on write byte transactions, we need
735   * to explicitly ask for a transaction without PEC.
736   */
lm90_write_no_pec(struct i2c_client * client,u8 value)737  static inline s32 lm90_write_no_pec(struct i2c_client *client, u8 value)
738  {
739  	return i2c_smbus_xfer(client->adapter, client->addr,
740  			      client->flags & ~I2C_CLIENT_PEC,
741  			      I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
742  }
743  
744  /*
745   * It is assumed that client->update_lock is held (unless we are in
746   * detection or initialization steps). This matters when PEC is enabled
747   * for chips with partial PEC support, because we don't want the address
748   * pointer to change between the write byte and the read byte transactions.
749   */
lm90_read_reg(struct i2c_client * client,u8 reg)750  static int lm90_read_reg(struct i2c_client *client, u8 reg)
751  {
752  	struct lm90_data *data = i2c_get_clientdata(client);
753  	bool partial_pec = (client->flags & I2C_CLIENT_PEC) &&
754  			(data->flags & LM90_HAVE_PARTIAL_PEC);
755  	int err;
756  
757  	if (partial_pec) {
758  		err = lm90_write_no_pec(client, reg);
759  		if (err)
760  			return err;
761  		return i2c_smbus_read_byte(client);
762  	}
763  	return i2c_smbus_read_byte_data(client, reg);
764  }
765  
766  /*
767   * Return register write address
768   *
769   * The write address for registers 0x03 .. 0x08 is the read address plus 6.
770   * For other registers the write address matches the read address.
771   */
lm90_write_reg_addr(u8 reg)772  static u8 lm90_write_reg_addr(u8 reg)
773  {
774  	if (reg >= LM90_REG_CONFIG1 && reg <= LM90_REG_REMOTE_LOWH)
775  		return reg + 6;
776  	return reg;
777  }
778  
779  /*
780   * Write into LM90 register.
781   * Convert register address to write address if needed, then execute the
782   * operation.
783   */
lm90_write_reg(struct i2c_client * client,u8 reg,u8 val)784  static int lm90_write_reg(struct i2c_client *client, u8 reg, u8 val)
785  {
786  	return i2c_smbus_write_byte_data(client, lm90_write_reg_addr(reg), val);
787  }
788  
789  /*
790   * Write into 16-bit LM90 register.
791   * Convert register addresses to write address if needed, then execute the
792   * operation.
793   */
lm90_write16(struct i2c_client * client,u8 regh,u8 regl,u16 val)794  static int lm90_write16(struct i2c_client *client, u8 regh, u8 regl, u16 val)
795  {
796  	int ret;
797  
798  	ret = lm90_write_reg(client, regh, val >> 8);
799  	if (ret < 0 || !regl)
800  		return ret;
801  	return lm90_write_reg(client, regl, val & 0xff);
802  }
803  
lm90_read16(struct i2c_client * client,u8 regh,u8 regl,bool is_volatile)804  static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl,
805  		       bool is_volatile)
806  {
807  	int oldh, newh, l;
808  
809  	oldh = lm90_read_reg(client, regh);
810  	if (oldh < 0)
811  		return oldh;
812  
813  	if (!regl)
814  		return oldh << 8;
815  
816  	l = lm90_read_reg(client, regl);
817  	if (l < 0)
818  		return l;
819  
820  	if (!is_volatile)
821  		return (oldh << 8) | l;
822  
823  	/*
824  	 * For volatile registers we have to use a trick.
825  	 * We have to read two registers to have the sensor temperature,
826  	 * but we have to beware a conversion could occur between the
827  	 * readings. The datasheet says we should either use
828  	 * the one-shot conversion register, which we don't want to do
829  	 * (disables hardware monitoring) or monitor the busy bit, which is
830  	 * impossible (we can't read the values and monitor that bit at the
831  	 * exact same time). So the solution used here is to read the high
832  	 * the high byte again. If the new high byte matches the old one,
833  	 * then we have a valid reading. Otherwise we have to read the low
834  	 * byte again, and now we believe we have a correct reading.
835  	 */
836  	newh = lm90_read_reg(client, regh);
837  	if (newh < 0)
838  		return newh;
839  	if (oldh != newh) {
840  		l = lm90_read_reg(client, regl);
841  		if (l < 0)
842  			return l;
843  	}
844  	return (newh << 8) | l;
845  }
846  
lm90_update_confreg(struct lm90_data * data,u8 config)847  static int lm90_update_confreg(struct lm90_data *data, u8 config)
848  {
849  	if (data->config != config) {
850  		int err;
851  
852  		err = lm90_write_reg(data->client, LM90_REG_CONFIG1, config);
853  		if (err)
854  			return err;
855  		data->config = config;
856  	}
857  	return 0;
858  }
859  
860  /*
861   * client->update_lock must be held when calling this function (unless we are
862   * in detection or initialization steps), and while a remote channel other
863   * than channel 0 is selected. Also, calling code must make sure to re-select
864   * external channel 0 before releasing the lock. This is necessary because
865   * various registers have different meanings as a result of selecting a
866   * non-default remote channel.
867   */
lm90_select_remote_channel(struct lm90_data * data,bool second)868  static int lm90_select_remote_channel(struct lm90_data *data, bool second)
869  {
870  	u8 config = data->config & ~0x08;
871  
872  	if (second)
873  		config |= 0x08;
874  
875  	return lm90_update_confreg(data, config);
876  }
877  
lm90_write_convrate(struct lm90_data * data,int val)878  static int lm90_write_convrate(struct lm90_data *data, int val)
879  {
880  	u8 config = data->config;
881  	int err;
882  
883  	/* Save config and pause conversion */
884  	if (data->flags & LM90_PAUSE_FOR_CONFIG) {
885  		err = lm90_update_confreg(data, config | 0x40);
886  		if (err < 0)
887  			return err;
888  	}
889  
890  	/* Set conv rate */
891  	err = lm90_write_reg(data->client, LM90_REG_CONVRATE, val);
892  
893  	/* Revert change to config */
894  	lm90_update_confreg(data, config);
895  
896  	return err;
897  }
898  
899  /*
900   * Set conversion rate.
901   * client->update_lock must be held when calling this function (unless we are
902   * in detection or initialization steps).
903   */
lm90_set_convrate(struct i2c_client * client,struct lm90_data * data,unsigned int interval)904  static int lm90_set_convrate(struct i2c_client *client, struct lm90_data *data,
905  			     unsigned int interval)
906  {
907  	unsigned int update_interval;
908  	int i, err;
909  
910  	/* Shift calculations to avoid rounding errors */
911  	interval <<= 6;
912  
913  	/* find the nearest update rate */
914  	for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6;
915  	     i < data->max_convrate; i++, update_interval >>= 1)
916  		if (interval >= update_interval * 3 / 4)
917  			break;
918  
919  	err = lm90_write_convrate(data, i);
920  	data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64);
921  	return err;
922  }
923  
lm90_set_faultqueue(struct i2c_client * client,struct lm90_data * data,int val)924  static int lm90_set_faultqueue(struct i2c_client *client,
925  			       struct lm90_data *data, int val)
926  {
927  	int err;
928  
929  	if (data->faultqueue_mask) {
930  		err = lm90_update_confreg(data, val <= data->faultqueue_depth / 2 ?
931  					  data->config & ~data->faultqueue_mask :
932  					  data->config | data->faultqueue_mask);
933  	} else {
934  		static const u8 values[4] = {0, 2, 6, 0x0e};
935  
936  		data->conalert = (data->conalert & 0xf1) | values[val - 1];
937  		err = lm90_write_reg(data->client, TMP451_REG_CONALERT,
938  				     data->conalert);
939  	}
940  
941  	return err;
942  }
943  
lm90_update_limits(struct device * dev)944  static int lm90_update_limits(struct device *dev)
945  {
946  	struct lm90_data *data = dev_get_drvdata(dev);
947  	struct i2c_client *client = data->client;
948  	int val;
949  
950  	if (data->flags & LM90_HAVE_CRIT) {
951  		val = lm90_read_reg(client, LM90_REG_LOCAL_CRIT);
952  		if (val < 0)
953  			return val;
954  		data->temp[LOCAL_CRIT] = val << 8;
955  
956  		val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT);
957  		if (val < 0)
958  			return val;
959  		data->temp[REMOTE_CRIT] = val << 8;
960  
961  		val = lm90_read_reg(client, LM90_REG_TCRIT_HYST);
962  		if (val < 0)
963  			return val;
964  		data->temp_hyst = val;
965  	}
966  	if ((data->flags & LM90_HAVE_FAULTQUEUE) && !data->faultqueue_mask) {
967  		val = lm90_read_reg(client, TMP451_REG_CONALERT);
968  		if (val < 0)
969  			return val;
970  		data->conalert = val;
971  	}
972  
973  	val = lm90_read16(client, LM90_REG_REMOTE_LOWH,
974  			  (data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_LOWL : 0,
975  			  false);
976  	if (val < 0)
977  		return val;
978  	data->temp[REMOTE_LOW] = val;
979  
980  	val = lm90_read16(client, LM90_REG_REMOTE_HIGHH,
981  			  (data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_HIGHL : 0,
982  			  false);
983  	if (val < 0)
984  		return val;
985  	data->temp[REMOTE_HIGH] = val;
986  
987  	if (data->flags & LM90_HAVE_OFFSET) {
988  		val = lm90_read16(client, LM90_REG_REMOTE_OFFSH,
989  				  LM90_REG_REMOTE_OFFSL, false);
990  		if (val < 0)
991  			return val;
992  		data->temp[REMOTE_OFFSET] = val;
993  	}
994  
995  	if (data->flags & LM90_HAVE_EMERGENCY) {
996  		val = lm90_read_reg(client, MAX6659_REG_LOCAL_EMERG);
997  		if (val < 0)
998  			return val;
999  		data->temp[LOCAL_EMERG] = val << 8;
1000  
1001  		val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG);
1002  		if (val < 0)
1003  			return val;
1004  		data->temp[REMOTE_EMERG] = val << 8;
1005  	}
1006  
1007  	if (data->flags & LM90_HAVE_TEMP3) {
1008  		val = lm90_select_remote_channel(data, true);
1009  		if (val < 0)
1010  			return val;
1011  
1012  		val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT);
1013  		if (val < 0)
1014  			return val;
1015  		data->temp[REMOTE2_CRIT] = val << 8;
1016  
1017  		if (data->flags & LM90_HAVE_EMERGENCY) {
1018  			val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG);
1019  			if (val < 0)
1020  				return val;
1021  			data->temp[REMOTE2_EMERG] = val << 8;
1022  		}
1023  
1024  		val = lm90_read_reg(client, LM90_REG_REMOTE_LOWH);
1025  		if (val < 0)
1026  			return val;
1027  		data->temp[REMOTE2_LOW] = val << 8;
1028  
1029  		val = lm90_read_reg(client, LM90_REG_REMOTE_HIGHH);
1030  		if (val < 0)
1031  			return val;
1032  		data->temp[REMOTE2_HIGH] = val << 8;
1033  
1034  		if (data->flags & LM90_HAVE_OFFSET) {
1035  			val = lm90_read16(client, LM90_REG_REMOTE_OFFSH,
1036  					  LM90_REG_REMOTE_OFFSL, false);
1037  			if (val < 0)
1038  				return val;
1039  			data->temp[REMOTE2_OFFSET] = val;
1040  		}
1041  
1042  		lm90_select_remote_channel(data, false);
1043  	}
1044  
1045  	return 0;
1046  }
1047  
lm90_report_alarms(struct work_struct * work)1048  static void lm90_report_alarms(struct work_struct *work)
1049  {
1050  	struct lm90_data *data = container_of(work, struct lm90_data, report_work);
1051  	u16 cleared_alarms, new_alarms, current_alarms;
1052  	struct device *hwmon_dev = data->hwmon_dev;
1053  	struct device *dev = &data->client->dev;
1054  	int st, st2;
1055  
1056  	current_alarms = data->current_alarms;
1057  	cleared_alarms = data->reported_alarms & ~current_alarms;
1058  	new_alarms = current_alarms & ~data->reported_alarms;
1059  
1060  	if (!cleared_alarms && !new_alarms)
1061  		return;
1062  
1063  	st = new_alarms & 0xff;
1064  	st2 = new_alarms >> 8;
1065  
1066  	if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) ||
1067  	    (st2 & MAX6696_STATUS2_LOT2))
1068  		dev_dbg(dev, "temp%d out of range, please check!\n", 1);
1069  	if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) ||
1070  	    (st2 & MAX6696_STATUS2_ROT2))
1071  		dev_dbg(dev, "temp%d out of range, please check!\n", 2);
1072  	if (st & LM90_STATUS_ROPEN)
1073  		dev_dbg(dev, "temp%d diode open, please check!\n", 2);
1074  	if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH |
1075  		   MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2))
1076  		dev_dbg(dev, "temp%d out of range, please check!\n", 3);
1077  	if (st2 & MAX6696_STATUS2_R2OPEN)
1078  		dev_dbg(dev, "temp%d diode open, please check!\n", 3);
1079  
1080  	st |= cleared_alarms & 0xff;
1081  	st2 |= cleared_alarms >> 8;
1082  
1083  	if (st & LM90_STATUS_LLOW)
1084  		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 0);
1085  	if (st & LM90_STATUS_RLOW)
1086  		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 1);
1087  	if (st2 & MAX6696_STATUS2_R2LOW)
1088  		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 2);
1089  
1090  	if (st & LM90_STATUS_LHIGH)
1091  		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 0);
1092  	if (st & LM90_STATUS_RHIGH)
1093  		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 1);
1094  	if (st2 & MAX6696_STATUS2_R2HIGH)
1095  		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 2);
1096  
1097  	if (st & LM90_STATUS_LTHRM)
1098  		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 0);
1099  	if (st & LM90_STATUS_RTHRM)
1100  		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 1);
1101  	if (st2 & MAX6696_STATUS2_R2THRM)
1102  		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 2);
1103  
1104  	if (st2 & MAX6696_STATUS2_LOT2)
1105  		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 0);
1106  	if (st2 & MAX6696_STATUS2_ROT2)
1107  		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 1);
1108  	if (st2 & MAX6696_STATUS2_R2OT2)
1109  		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 2);
1110  
1111  	data->reported_alarms = current_alarms;
1112  }
1113  
lm90_update_alarms_locked(struct lm90_data * data,bool force)1114  static int lm90_update_alarms_locked(struct lm90_data *data, bool force)
1115  {
1116  	if (force || !data->alarms_valid ||
1117  	    time_after(jiffies, data->alarms_updated + msecs_to_jiffies(data->update_interval))) {
1118  		struct i2c_client *client = data->client;
1119  		bool check_enable;
1120  		u16 alarms;
1121  		int val;
1122  
1123  		data->alarms_valid = false;
1124  
1125  		val = lm90_read_reg(client, LM90_REG_STATUS);
1126  		if (val < 0)
1127  			return val;
1128  		alarms = val & ~LM90_STATUS_BUSY;
1129  
1130  		if (data->reg_status2) {
1131  			val = lm90_read_reg(client, data->reg_status2);
1132  			if (val < 0)
1133  				return val;
1134  			alarms |= val << 8;
1135  		}
1136  		/*
1137  		 * If the update is forced (called from interrupt or alert
1138  		 * handler) and alarm data is valid, the alarms may have been
1139  		 * updated after the last update interval, and the status
1140  		 * register may still be cleared. Only add additional alarms
1141  		 * in this case. Alarms will be cleared later if appropriate.
1142  		 */
1143  		if (force && data->alarms_valid)
1144  			data->current_alarms |= alarms;
1145  		else
1146  			data->current_alarms = alarms;
1147  		data->alarms |= alarms;
1148  
1149  		check_enable = (client->irq || !(data->config_orig & 0x80)) &&
1150  			(data->config & 0x80);
1151  
1152  		if (force || check_enable)
1153  			schedule_work(&data->report_work);
1154  
1155  		/*
1156  		 * Re-enable ALERT# output if it was originally enabled, relevant
1157  		 * alarms are all clear, and alerts are currently disabled.
1158  		 * Otherwise (re)schedule worker if needed.
1159  		 */
1160  		if (check_enable) {
1161  			if (!(data->current_alarms & data->alert_alarms)) {
1162  				dev_dbg(&client->dev, "Re-enabling ALERT#\n");
1163  				lm90_update_confreg(data, data->config & ~0x80);
1164  				/*
1165  				 * We may have been called from the update handler.
1166  				 * If so, the worker, if scheduled, is no longer
1167  				 * needed. Cancel it. Don't synchronize because
1168  				 * it may already be running.
1169  				 */
1170  				cancel_delayed_work(&data->alert_work);
1171  			} else {
1172  				schedule_delayed_work(&data->alert_work,
1173  					max_t(int, HZ, msecs_to_jiffies(data->update_interval)));
1174  			}
1175  		}
1176  		data->alarms_updated = jiffies;
1177  		data->alarms_valid = true;
1178  	}
1179  	return 0;
1180  }
1181  
lm90_update_alarms(struct lm90_data * data,bool force)1182  static int lm90_update_alarms(struct lm90_data *data, bool force)
1183  {
1184  	int err;
1185  
1186  	mutex_lock(&data->update_lock);
1187  	err = lm90_update_alarms_locked(data, force);
1188  	mutex_unlock(&data->update_lock);
1189  
1190  	return err;
1191  }
1192  
lm90_alert_work(struct work_struct * __work)1193  static void lm90_alert_work(struct work_struct *__work)
1194  {
1195  	struct delayed_work *delayed_work = container_of(__work, struct delayed_work, work);
1196  	struct lm90_data *data = container_of(delayed_work, struct lm90_data, alert_work);
1197  
1198  	/* Nothing to do if alerts are enabled */
1199  	if (!(data->config & 0x80))
1200  		return;
1201  
1202  	lm90_update_alarms(data, true);
1203  }
1204  
lm90_update_device(struct device * dev)1205  static int lm90_update_device(struct device *dev)
1206  {
1207  	struct lm90_data *data = dev_get_drvdata(dev);
1208  	struct i2c_client *client = data->client;
1209  	unsigned long next_update;
1210  	int val;
1211  
1212  	if (!data->valid) {
1213  		val = lm90_update_limits(dev);
1214  		if (val < 0)
1215  			return val;
1216  	}
1217  
1218  	next_update = data->last_updated +
1219  		      msecs_to_jiffies(data->update_interval);
1220  	if (time_after(jiffies, next_update) || !data->valid) {
1221  		dev_dbg(&client->dev, "Updating lm90 data.\n");
1222  
1223  		data->valid = false;
1224  
1225  		val = lm90_read_reg(client, LM90_REG_LOCAL_LOW);
1226  		if (val < 0)
1227  			return val;
1228  		data->temp[LOCAL_LOW] = val << 8;
1229  
1230  		val = lm90_read_reg(client, LM90_REG_LOCAL_HIGH);
1231  		if (val < 0)
1232  			return val;
1233  		data->temp[LOCAL_HIGH] = val << 8;
1234  
1235  		val = lm90_read16(client, LM90_REG_LOCAL_TEMP,
1236  				  data->reg_local_ext, true);
1237  		if (val < 0)
1238  			return val;
1239  		data->temp[LOCAL_TEMP] = val;
1240  		val = lm90_read16(client, LM90_REG_REMOTE_TEMPH,
1241  				  data->reg_remote_ext, true);
1242  		if (val < 0)
1243  			return val;
1244  		data->temp[REMOTE_TEMP] = val;
1245  
1246  		if (data->flags & LM90_HAVE_TEMP3) {
1247  			val = lm90_select_remote_channel(data, true);
1248  			if (val < 0)
1249  				return val;
1250  
1251  			val = lm90_read16(client, LM90_REG_REMOTE_TEMPH,
1252  					  data->reg_remote_ext, true);
1253  			if (val < 0) {
1254  				lm90_select_remote_channel(data, false);
1255  				return val;
1256  			}
1257  			data->temp[REMOTE2_TEMP] = val;
1258  
1259  			lm90_select_remote_channel(data, false);
1260  		}
1261  
1262  		val = lm90_update_alarms_locked(data, false);
1263  		if (val < 0)
1264  			return val;
1265  
1266  		data->last_updated = jiffies;
1267  		data->valid = true;
1268  	}
1269  
1270  	return 0;
1271  }
1272  
1273  /* pec used for devices with PEC support */
pec_show(struct device * dev,struct device_attribute * dummy,char * buf)1274  static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
1275  			char *buf)
1276  {
1277  	struct i2c_client *client = to_i2c_client(dev);
1278  
1279  	return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
1280  }
1281  
pec_store(struct device * dev,struct device_attribute * dummy,const char * buf,size_t count)1282  static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
1283  			 const char *buf, size_t count)
1284  {
1285  	struct i2c_client *client = to_i2c_client(dev);
1286  	long val;
1287  	int err;
1288  
1289  	err = kstrtol(buf, 10, &val);
1290  	if (err < 0)
1291  		return err;
1292  
1293  	switch (val) {
1294  	case 0:
1295  		client->flags &= ~I2C_CLIENT_PEC;
1296  		break;
1297  	case 1:
1298  		client->flags |= I2C_CLIENT_PEC;
1299  		break;
1300  	default:
1301  		return -EINVAL;
1302  	}
1303  
1304  	return count;
1305  }
1306  
1307  static DEVICE_ATTR_RW(pec);
1308  
lm90_temp_get_resolution(struct lm90_data * data,int index)1309  static int lm90_temp_get_resolution(struct lm90_data *data, int index)
1310  {
1311  	switch (index) {
1312  	case REMOTE_TEMP:
1313  		if (data->reg_remote_ext)
1314  			return data->resolution;
1315  		return 8;
1316  	case REMOTE_OFFSET:
1317  	case REMOTE2_OFFSET:
1318  	case REMOTE2_TEMP:
1319  		return data->resolution;
1320  	case LOCAL_TEMP:
1321  		if (data->reg_local_ext)
1322  			return data->resolution;
1323  		return 8;
1324  	case REMOTE_LOW:
1325  	case REMOTE_HIGH:
1326  	case REMOTE2_LOW:
1327  	case REMOTE2_HIGH:
1328  		if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
1329  			return data->resolution;
1330  		return 8;
1331  	default:
1332  		return 8;
1333  	}
1334  }
1335  
lm90_temp_from_reg(u32 flags,u16 regval,u8 resolution)1336  static int lm90_temp_from_reg(u32 flags, u16 regval, u8 resolution)
1337  {
1338  	int val;
1339  
1340  	if (flags & LM90_HAVE_EXTENDED_TEMP)
1341  		val = regval - 0x4000;
1342  	else if (flags & (LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_EXT_UNSIGNED))
1343  		val = regval;
1344  	else
1345  		val = (s16)regval;
1346  
1347  	return ((val >> (16 - resolution)) * 1000) >> (resolution - 8);
1348  }
1349  
lm90_get_temp(struct lm90_data * data,int index,int channel)1350  static int lm90_get_temp(struct lm90_data *data, int index, int channel)
1351  {
1352  	int temp = lm90_temp_from_reg(data->flags, data->temp[index],
1353  				      lm90_temp_get_resolution(data, index));
1354  
1355  	/* +16 degrees offset for remote temperature on LM99 */
1356  	if (data->kind == lm99 && channel)
1357  		temp += 16000;
1358  
1359  	return temp;
1360  }
1361  
lm90_temp_to_reg(u32 flags,long val,u8 resolution)1362  static u16 lm90_temp_to_reg(u32 flags, long val, u8 resolution)
1363  {
1364  	int fraction = resolution > 8 ?
1365  			1000 - DIV_ROUND_CLOSEST(1000, BIT(resolution - 8)) : 0;
1366  
1367  	if (flags & LM90_HAVE_EXTENDED_TEMP) {
1368  		val = clamp_val(val, -64000, 191000 + fraction);
1369  		val += 64000;
1370  	} else if (flags & LM90_HAVE_EXT_UNSIGNED) {
1371  		val = clamp_val(val, 0, 255000 + fraction);
1372  	} else if (flags & LM90_HAVE_UNSIGNED_TEMP) {
1373  		val = clamp_val(val, 0, 127000 + fraction);
1374  	} else {
1375  		val = clamp_val(val, -128000, 127000 + fraction);
1376  	}
1377  
1378  	return DIV_ROUND_CLOSEST(val << (resolution - 8), 1000) << (16 - resolution);
1379  }
1380  
lm90_set_temp(struct lm90_data * data,int index,int channel,long val)1381  static int lm90_set_temp(struct lm90_data *data, int index, int channel, long val)
1382  {
1383  	static const u8 regs[] = {
1384  		[LOCAL_LOW] = LM90_REG_LOCAL_LOW,
1385  		[LOCAL_HIGH] = LM90_REG_LOCAL_HIGH,
1386  		[LOCAL_CRIT] = LM90_REG_LOCAL_CRIT,
1387  		[REMOTE_CRIT] = LM90_REG_REMOTE_CRIT,
1388  		[LOCAL_EMERG] = MAX6659_REG_LOCAL_EMERG,
1389  		[REMOTE_EMERG] = MAX6659_REG_REMOTE_EMERG,
1390  		[REMOTE2_CRIT] = LM90_REG_REMOTE_CRIT,
1391  		[REMOTE2_EMERG] = MAX6659_REG_REMOTE_EMERG,
1392  		[REMOTE_LOW] = LM90_REG_REMOTE_LOWH,
1393  		[REMOTE_HIGH] = LM90_REG_REMOTE_HIGHH,
1394  		[REMOTE2_LOW] = LM90_REG_REMOTE_LOWH,
1395  		[REMOTE2_HIGH] = LM90_REG_REMOTE_HIGHH,
1396  	};
1397  	struct i2c_client *client = data->client;
1398  	u8 regh = regs[index];
1399  	u8 regl = 0;
1400  	int err;
1401  
1402  	if (channel && (data->flags & LM90_HAVE_REM_LIMIT_EXT)) {
1403  		if (index == REMOTE_LOW || index == REMOTE2_LOW)
1404  			regl = LM90_REG_REMOTE_LOWL;
1405  		else if (index == REMOTE_HIGH || index == REMOTE2_HIGH)
1406  			regl = LM90_REG_REMOTE_HIGHL;
1407  	}
1408  
1409  	/* +16 degrees offset for remote temperature on LM99 */
1410  	if (data->kind == lm99 && channel) {
1411  		/* prevent integer underflow */
1412  		val = max(val, -128000l);
1413  		val -= 16000;
1414  	}
1415  
1416  	data->temp[index] = lm90_temp_to_reg(data->flags, val,
1417  					     lm90_temp_get_resolution(data, index));
1418  
1419  	if (channel > 1)
1420  		lm90_select_remote_channel(data, true);
1421  
1422  	err = lm90_write16(client, regh, regl, data->temp[index]);
1423  
1424  	if (channel > 1)
1425  		lm90_select_remote_channel(data, false);
1426  
1427  	return err;
1428  }
1429  
lm90_get_temphyst(struct lm90_data * data,int index,int channel)1430  static int lm90_get_temphyst(struct lm90_data *data, int index, int channel)
1431  {
1432  	int temp = lm90_get_temp(data, index, channel);
1433  
1434  	return temp - data->temp_hyst * 1000;
1435  }
1436  
lm90_set_temphyst(struct lm90_data * data,long val)1437  static int lm90_set_temphyst(struct lm90_data *data, long val)
1438  {
1439  	int temp = lm90_get_temp(data, LOCAL_CRIT, 0);
1440  
1441  	/* prevent integer overflow/underflow */
1442  	val = clamp_val(val, -128000l, 255000l);
1443  	data->temp_hyst = clamp_val(DIV_ROUND_CLOSEST(temp - val, 1000), 0, 31);
1444  
1445  	return lm90_write_reg(data->client, LM90_REG_TCRIT_HYST, data->temp_hyst);
1446  }
1447  
lm90_get_temp_offset(struct lm90_data * data,int index)1448  static int lm90_get_temp_offset(struct lm90_data *data, int index)
1449  {
1450  	int res = lm90_temp_get_resolution(data, index);
1451  
1452  	return lm90_temp_from_reg(0, data->temp[index], res);
1453  }
1454  
lm90_set_temp_offset(struct lm90_data * data,int index,int channel,long val)1455  static int lm90_set_temp_offset(struct lm90_data *data, int index, int channel, long val)
1456  {
1457  	int err;
1458  
1459  	val = lm90_temp_to_reg(0, val, lm90_temp_get_resolution(data, index));
1460  
1461  	/* For ADT7481 we can use the same registers for remote channel 1 and 2 */
1462  	if (channel > 1)
1463  		lm90_select_remote_channel(data, true);
1464  
1465  	err = lm90_write16(data->client, LM90_REG_REMOTE_OFFSH, LM90_REG_REMOTE_OFFSL, val);
1466  
1467  	if (channel > 1)
1468  		lm90_select_remote_channel(data, false);
1469  
1470  	if (err)
1471  		return err;
1472  
1473  	data->temp[index] = val;
1474  
1475  	return 0;
1476  }
1477  
1478  static const u8 lm90_temp_index[MAX_CHANNELS] = {
1479  	LOCAL_TEMP, REMOTE_TEMP, REMOTE2_TEMP
1480  };
1481  
1482  static const u8 lm90_temp_min_index[MAX_CHANNELS] = {
1483  	LOCAL_LOW, REMOTE_LOW, REMOTE2_LOW
1484  };
1485  
1486  static const u8 lm90_temp_max_index[MAX_CHANNELS] = {
1487  	LOCAL_HIGH, REMOTE_HIGH, REMOTE2_HIGH
1488  };
1489  
1490  static const u8 lm90_temp_crit_index[MAX_CHANNELS] = {
1491  	LOCAL_CRIT, REMOTE_CRIT, REMOTE2_CRIT
1492  };
1493  
1494  static const u8 lm90_temp_emerg_index[MAX_CHANNELS] = {
1495  	LOCAL_EMERG, REMOTE_EMERG, REMOTE2_EMERG
1496  };
1497  
1498  static const s8 lm90_temp_offset_index[MAX_CHANNELS] = {
1499  	-1, REMOTE_OFFSET, REMOTE2_OFFSET
1500  };
1501  
1502  static const u16 lm90_min_alarm_bits[MAX_CHANNELS] = { BIT(5), BIT(3), BIT(11) };
1503  static const u16 lm90_max_alarm_bits[MAX_CHANNELS] = { BIT(6), BIT(4), BIT(12) };
1504  static const u16 lm90_crit_alarm_bits[MAX_CHANNELS] = { BIT(0), BIT(1), BIT(9) };
1505  static const u16 lm90_crit_alarm_bits_swapped[MAX_CHANNELS] = { BIT(1), BIT(0), BIT(9) };
1506  static const u16 lm90_emergency_alarm_bits[MAX_CHANNELS] = { BIT(15), BIT(13), BIT(14) };
1507  static const u16 lm90_fault_bits[MAX_CHANNELS] = { BIT(0), BIT(2), BIT(10) };
1508  
lm90_temp_read(struct device * dev,u32 attr,int channel,long * val)1509  static int lm90_temp_read(struct device *dev, u32 attr, int channel, long *val)
1510  {
1511  	struct lm90_data *data = dev_get_drvdata(dev);
1512  	int err;
1513  	u16 bit;
1514  
1515  	mutex_lock(&data->update_lock);
1516  	err = lm90_update_device(dev);
1517  	mutex_unlock(&data->update_lock);
1518  	if (err)
1519  		return err;
1520  
1521  	switch (attr) {
1522  	case hwmon_temp_input:
1523  		*val = lm90_get_temp(data, lm90_temp_index[channel], channel);
1524  		break;
1525  	case hwmon_temp_min_alarm:
1526  	case hwmon_temp_max_alarm:
1527  	case hwmon_temp_crit_alarm:
1528  	case hwmon_temp_emergency_alarm:
1529  	case hwmon_temp_fault:
1530  		switch (attr) {
1531  		case hwmon_temp_min_alarm:
1532  			bit = lm90_min_alarm_bits[channel];
1533  			break;
1534  		case hwmon_temp_max_alarm:
1535  			bit = lm90_max_alarm_bits[channel];
1536  			break;
1537  		case hwmon_temp_crit_alarm:
1538  			if (data->flags & LM90_HAVE_CRIT_ALRM_SWP)
1539  				bit = lm90_crit_alarm_bits_swapped[channel];
1540  			else
1541  				bit = lm90_crit_alarm_bits[channel];
1542  			break;
1543  		case hwmon_temp_emergency_alarm:
1544  			bit = lm90_emergency_alarm_bits[channel];
1545  			break;
1546  		case hwmon_temp_fault:
1547  			bit = lm90_fault_bits[channel];
1548  			break;
1549  		}
1550  		*val = !!(data->alarms & bit);
1551  		data->alarms &= ~bit;
1552  		data->alarms |= data->current_alarms;
1553  		break;
1554  	case hwmon_temp_min:
1555  		*val = lm90_get_temp(data, lm90_temp_min_index[channel], channel);
1556  		break;
1557  	case hwmon_temp_max:
1558  		*val = lm90_get_temp(data, lm90_temp_max_index[channel], channel);
1559  		break;
1560  	case hwmon_temp_crit:
1561  		*val = lm90_get_temp(data, lm90_temp_crit_index[channel], channel);
1562  		break;
1563  	case hwmon_temp_crit_hyst:
1564  		*val = lm90_get_temphyst(data, lm90_temp_crit_index[channel], channel);
1565  		break;
1566  	case hwmon_temp_emergency:
1567  		*val = lm90_get_temp(data, lm90_temp_emerg_index[channel], channel);
1568  		break;
1569  	case hwmon_temp_emergency_hyst:
1570  		*val = lm90_get_temphyst(data, lm90_temp_emerg_index[channel], channel);
1571  		break;
1572  	case hwmon_temp_offset:
1573  		*val = lm90_get_temp_offset(data, lm90_temp_offset_index[channel]);
1574  		break;
1575  	default:
1576  		return -EOPNOTSUPP;
1577  	}
1578  	return 0;
1579  }
1580  
lm90_temp_write(struct device * dev,u32 attr,int channel,long val)1581  static int lm90_temp_write(struct device *dev, u32 attr, int channel, long val)
1582  {
1583  	struct lm90_data *data = dev_get_drvdata(dev);
1584  	int err;
1585  
1586  	mutex_lock(&data->update_lock);
1587  
1588  	err = lm90_update_device(dev);
1589  	if (err)
1590  		goto error;
1591  
1592  	switch (attr) {
1593  	case hwmon_temp_min:
1594  		err = lm90_set_temp(data, lm90_temp_min_index[channel],
1595  				    channel, val);
1596  		break;
1597  	case hwmon_temp_max:
1598  		err = lm90_set_temp(data, lm90_temp_max_index[channel],
1599  				    channel, val);
1600  		break;
1601  	case hwmon_temp_crit:
1602  		err = lm90_set_temp(data, lm90_temp_crit_index[channel],
1603  				    channel, val);
1604  		break;
1605  	case hwmon_temp_crit_hyst:
1606  		err = lm90_set_temphyst(data, val);
1607  		break;
1608  	case hwmon_temp_emergency:
1609  		err = lm90_set_temp(data, lm90_temp_emerg_index[channel],
1610  				    channel, val);
1611  		break;
1612  	case hwmon_temp_offset:
1613  		err = lm90_set_temp_offset(data, lm90_temp_offset_index[channel],
1614  					   channel, val);
1615  		break;
1616  	default:
1617  		err = -EOPNOTSUPP;
1618  		break;
1619  	}
1620  error:
1621  	mutex_unlock(&data->update_lock);
1622  
1623  	return err;
1624  }
1625  
lm90_temp_is_visible(const void * data,u32 attr,int channel)1626  static umode_t lm90_temp_is_visible(const void *data, u32 attr, int channel)
1627  {
1628  	switch (attr) {
1629  	case hwmon_temp_input:
1630  	case hwmon_temp_min_alarm:
1631  	case hwmon_temp_max_alarm:
1632  	case hwmon_temp_crit_alarm:
1633  	case hwmon_temp_emergency_alarm:
1634  	case hwmon_temp_emergency_hyst:
1635  	case hwmon_temp_fault:
1636  	case hwmon_temp_label:
1637  		return 0444;
1638  	case hwmon_temp_min:
1639  	case hwmon_temp_max:
1640  	case hwmon_temp_crit:
1641  	case hwmon_temp_emergency:
1642  	case hwmon_temp_offset:
1643  		return 0644;
1644  	case hwmon_temp_crit_hyst:
1645  		if (channel == 0)
1646  			return 0644;
1647  		return 0444;
1648  	default:
1649  		return 0;
1650  	}
1651  }
1652  
lm90_chip_read(struct device * dev,u32 attr,int channel,long * val)1653  static int lm90_chip_read(struct device *dev, u32 attr, int channel, long *val)
1654  {
1655  	struct lm90_data *data = dev_get_drvdata(dev);
1656  	int err;
1657  
1658  	mutex_lock(&data->update_lock);
1659  	err = lm90_update_device(dev);
1660  	mutex_unlock(&data->update_lock);
1661  	if (err)
1662  		return err;
1663  
1664  	switch (attr) {
1665  	case hwmon_chip_update_interval:
1666  		*val = data->update_interval;
1667  		break;
1668  	case hwmon_chip_alarms:
1669  		*val = data->alarms;
1670  		break;
1671  	case hwmon_chip_temp_samples:
1672  		if (data->faultqueue_mask) {
1673  			*val = (data->config & data->faultqueue_mask) ?
1674  				data->faultqueue_depth : 1;
1675  		} else {
1676  			switch (data->conalert & 0x0e) {
1677  			case 0x0:
1678  			default:
1679  				*val = 1;
1680  				break;
1681  			case 0x2:
1682  				*val = 2;
1683  				break;
1684  			case 0x6:
1685  				*val = 3;
1686  				break;
1687  			case 0xe:
1688  				*val = 4;
1689  				break;
1690  			}
1691  		}
1692  		break;
1693  	default:
1694  		return -EOPNOTSUPP;
1695  	}
1696  
1697  	return 0;
1698  }
1699  
lm90_chip_write(struct device * dev,u32 attr,int channel,long val)1700  static int lm90_chip_write(struct device *dev, u32 attr, int channel, long val)
1701  {
1702  	struct lm90_data *data = dev_get_drvdata(dev);
1703  	struct i2c_client *client = data->client;
1704  	int err;
1705  
1706  	mutex_lock(&data->update_lock);
1707  
1708  	err = lm90_update_device(dev);
1709  	if (err)
1710  		goto error;
1711  
1712  	switch (attr) {
1713  	case hwmon_chip_update_interval:
1714  		err = lm90_set_convrate(client, data,
1715  					clamp_val(val, 0, 100000));
1716  		break;
1717  	case hwmon_chip_temp_samples:
1718  		err = lm90_set_faultqueue(client, data, clamp_val(val, 1, 4));
1719  		break;
1720  	default:
1721  		err = -EOPNOTSUPP;
1722  		break;
1723  	}
1724  error:
1725  	mutex_unlock(&data->update_lock);
1726  
1727  	return err;
1728  }
1729  
lm90_chip_is_visible(const void * data,u32 attr,int channel)1730  static umode_t lm90_chip_is_visible(const void *data, u32 attr, int channel)
1731  {
1732  	switch (attr) {
1733  	case hwmon_chip_update_interval:
1734  	case hwmon_chip_temp_samples:
1735  		return 0644;
1736  	case hwmon_chip_alarms:
1737  		return 0444;
1738  	default:
1739  		return 0;
1740  	}
1741  }
1742  
lm90_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)1743  static int lm90_read(struct device *dev, enum hwmon_sensor_types type,
1744  		     u32 attr, int channel, long *val)
1745  {
1746  	switch (type) {
1747  	case hwmon_chip:
1748  		return lm90_chip_read(dev, attr, channel, val);
1749  	case hwmon_temp:
1750  		return lm90_temp_read(dev, attr, channel, val);
1751  	default:
1752  		return -EOPNOTSUPP;
1753  	}
1754  }
1755  
lm90_read_string(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)1756  static int lm90_read_string(struct device *dev, enum hwmon_sensor_types type,
1757  			    u32 attr, int channel, const char **str)
1758  {
1759  	struct lm90_data *data = dev_get_drvdata(dev);
1760  
1761  	*str = data->channel_label[channel];
1762  
1763  	return 0;
1764  }
1765  
lm90_write(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long val)1766  static int lm90_write(struct device *dev, enum hwmon_sensor_types type,
1767  		      u32 attr, int channel, long val)
1768  {
1769  	switch (type) {
1770  	case hwmon_chip:
1771  		return lm90_chip_write(dev, attr, channel, val);
1772  	case hwmon_temp:
1773  		return lm90_temp_write(dev, attr, channel, val);
1774  	default:
1775  		return -EOPNOTSUPP;
1776  	}
1777  }
1778  
lm90_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)1779  static umode_t lm90_is_visible(const void *data, enum hwmon_sensor_types type,
1780  			       u32 attr, int channel)
1781  {
1782  	switch (type) {
1783  	case hwmon_chip:
1784  		return lm90_chip_is_visible(data, attr, channel);
1785  	case hwmon_temp:
1786  		return lm90_temp_is_visible(data, attr, channel);
1787  	default:
1788  		return 0;
1789  	}
1790  }
1791  
lm90_detect_lm84(struct i2c_client * client)1792  static const char *lm90_detect_lm84(struct i2c_client *client)
1793  {
1794  	static const u8 regs[] = {
1795  		LM90_REG_STATUS, LM90_REG_LOCAL_TEMP, LM90_REG_LOCAL_HIGH,
1796  		LM90_REG_REMOTE_TEMPH, LM90_REG_REMOTE_HIGHH
1797  	};
1798  	int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1799  	int reg1, reg2, reg3, reg4;
1800  	bool nonzero = false;
1801  	u8 ff = 0xff;
1802  	int i;
1803  
1804  	if (status < 0 || (status & 0xab))
1805  		return NULL;
1806  
1807  	/*
1808  	 * For LM84, undefined registers return the most recent value.
1809  	 * Repeat several times, each time checking against a different
1810  	 * (presumably) existing register.
1811  	 */
1812  	for (i = 0; i < ARRAY_SIZE(regs); i++) {
1813  		reg1 = i2c_smbus_read_byte_data(client, regs[i]);
1814  		reg2 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL);
1815  		reg3 = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW);
1816  		reg4 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH);
1817  
1818  		if (reg1 < 0)
1819  			return NULL;
1820  
1821  		/* If any register has a different value, this is not an LM84 */
1822  		if (reg2 != reg1 || reg3 != reg1 || reg4 != reg1)
1823  			return NULL;
1824  
1825  		nonzero |= reg1 || reg2 || reg3 || reg4;
1826  		ff &= reg1;
1827  	}
1828  	/*
1829  	 * If all registers always returned 0 or 0xff, all bets are off,
1830  	 * and we can not make any predictions about the chip type.
1831  	 */
1832  	return nonzero && ff != 0xff ? "lm84" : NULL;
1833  }
1834  
lm90_detect_max1617(struct i2c_client * client,int config1)1835  static const char *lm90_detect_max1617(struct i2c_client *client, int config1)
1836  {
1837  	int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1838  	int llo, rlo, lhi, rhi;
1839  
1840  	if (status < 0 || (status & 0x03))
1841  		return NULL;
1842  
1843  	if (config1 & 0x3f)
1844  		return NULL;
1845  
1846  	/*
1847  	 * Fail if unsupported registers return anything but 0xff.
1848  	 * The calling code already checked man_id and chip_id.
1849  	 * A byte read operation repeats the most recent read operation
1850  	 * and should also return 0xff.
1851  	 */
1852  	if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) != 0xff ||
1853  	    i2c_smbus_read_byte_data(client, MAX6657_REG_LOCAL_TEMPL) != 0xff ||
1854  	    i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWL) != 0xff ||
1855  	    i2c_smbus_read_byte(client) != 0xff)
1856  		return NULL;
1857  
1858  	llo = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW);
1859  	rlo = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH);
1860  
1861  	lhi = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH);
1862  	rhi = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_HIGHH);
1863  
1864  	if (llo < 0 || rlo < 0)
1865  		return NULL;
1866  
1867  	/*
1868  	 * A byte read operation repeats the most recent read and should
1869  	 * return the same value.
1870  	 */
1871  	if (i2c_smbus_read_byte(client) != rhi)
1872  		return NULL;
1873  
1874  	/*
1875  	 * The following two checks are marginal since the checked values
1876  	 * are strictly speaking valid.
1877  	 */
1878  
1879  	/* fail for negative high limits; this also catches read errors */
1880  	if ((s8)lhi < 0 || (s8)rhi < 0)
1881  		return NULL;
1882  
1883  	/* fail if low limits are larger than or equal to high limits */
1884  	if ((s8)llo >= lhi || (s8)rlo >= rhi)
1885  		return NULL;
1886  
1887  	if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WORD_DATA)) {
1888  		/*
1889  		 * Word read operations return 0xff in second byte
1890  		 */
1891  		if (i2c_smbus_read_word_data(client, LM90_REG_REMOTE_TEMPL) !=
1892  						0xffff)
1893  			return NULL;
1894  		if (i2c_smbus_read_word_data(client, LM90_REG_CONFIG1) !=
1895  						(config1 | 0xff00))
1896  			return NULL;
1897  		if (i2c_smbus_read_word_data(client, LM90_REG_LOCAL_HIGH) !=
1898  						(lhi | 0xff00))
1899  			return NULL;
1900  	}
1901  
1902  	return "max1617";
1903  }
1904  
lm90_detect_national(struct i2c_client * client,int chip_id,int config1,int convrate)1905  static const char *lm90_detect_national(struct i2c_client *client, int chip_id,
1906  					int config1, int convrate)
1907  {
1908  	int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
1909  	int address = client->addr;
1910  	const char *name = NULL;
1911  
1912  	if (config2 < 0)
1913  		return NULL;
1914  
1915  	if ((config1 & 0x2a) || (config2 & 0xf8) || convrate > 0x09)
1916  		return NULL;
1917  
1918  	if (address != 0x4c && address != 0x4d)
1919  		return NULL;
1920  
1921  	switch (chip_id & 0xf0) {
1922  	case 0x10:	/* LM86 */
1923  		if (address == 0x4c)
1924  			name = "lm86";
1925  		break;
1926  	case 0x20:	/* LM90 */
1927  		if (address == 0x4c)
1928  			name = "lm90";
1929  		break;
1930  	case 0x30:	/* LM89/LM99 */
1931  		name = "lm99";	/* detect LM89 as LM99 */
1932  		break;
1933  	default:
1934  		break;
1935  	}
1936  
1937  	return name;
1938  }
1939  
lm90_detect_on(struct i2c_client * client,int chip_id,int config1,int convrate)1940  static const char *lm90_detect_on(struct i2c_client *client, int chip_id, int config1,
1941  				  int convrate)
1942  {
1943  	int address = client->addr;
1944  	const char *name = NULL;
1945  
1946  	switch (chip_id) {
1947  	case 0xca:		/* NCT218 */
1948  		if ((address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
1949  		    convrate <= 0x0a)
1950  			name = "nct218";
1951  		break;
1952  	default:
1953  		break;
1954  	}
1955  	return name;
1956  }
1957  
lm90_detect_analog(struct i2c_client * client,bool common_address,int chip_id,int config1,int convrate)1958  static const char *lm90_detect_analog(struct i2c_client *client, bool common_address,
1959  				      int chip_id, int config1, int convrate)
1960  {
1961  	int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1962  	int config2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CONFIG2);
1963  	int man_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_MAN_ID);
1964  	int chip_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CHIP_ID);
1965  	int address = client->addr;
1966  	const char *name = NULL;
1967  
1968  	if (status < 0 || config2 < 0 || man_id2 < 0 || chip_id2 < 0)
1969  		return NULL;
1970  
1971  	/*
1972  	 * The following chips should be detected by this function. Known
1973  	 * register values are listed. Registers 0x3d .. 0x3e are undocumented
1974  	 * for most of the chips, yet appear to return a well defined value.
1975  	 * Register 0xff is undocumented for some of the chips. Register 0x3f
1976  	 * is undocumented for all chips, but also returns a well defined value.
1977  	 * Values are as reported from real chips unless mentioned otherwise.
1978  	 * The code below checks values for registers 0x3d, 0x3e, and 0xff,
1979  	 * but not for register 0x3f.
1980  	 *
1981  	 * Chip			Register
1982  	 *		3d	3e	3f	fe	ff	Notes
1983  	 * ----------------------------------------------------------
1984  	 * adm1020	00	00	00	41	39
1985  	 * adm1021	00	00	00	41	03
1986  	 * adm1021a	00	00	00	41	3c
1987  	 * adm1023	00	00	00	41	3c	same as adm1021a
1988  	 * adm1032	00	00	00	41	42
1989  	 *
1990  	 * adt7421	21	41	04	41	04
1991  	 * adt7461	00	00	00	41	51
1992  	 * adt7461a	61	41	05	41	57
1993  	 * adt7481	81	41	02	41	62
1994  	 * adt7482	-	-	-	41	65	datasheet
1995  	 *		82	41	05	41	75	real chip
1996  	 * adt7483	83	41	04	41	94
1997  	 *
1998  	 * nct72	61	41	07	41	55
1999  	 * nct210	00	00	00	41	3f
2000  	 * nct214	61	41	08	41	5a
2001  	 * nct1008	-	-	-	41	57	datasheet rev. 3
2002  	 *		61	41	06	41	54	real chip
2003  	 *
2004  	 * nvt210	-	-	-	41	-	datasheet
2005  	 * nvt211	-	-	-	41	-	datasheet
2006  	 */
2007  	switch (chip_id) {
2008  	case 0x00 ... 0x03:	/* ADM1021 */
2009  	case 0x05 ... 0x0f:
2010  		if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2011  		    !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2012  			name = "adm1021";
2013  		break;
2014  	case 0x04:		/* ADT7421 (undocumented) */
2015  		if (man_id2 == 0x41 && chip_id2 == 0x21 &&
2016  		    (address == 0x4c || address == 0x4d) &&
2017  		    (config1 & 0x0b) == 0x08 && convrate <= 0x0a)
2018  			name = "adt7421";
2019  		break;
2020  	case 0x30 ... 0x38:	/* ADM1021A, ADM1023 */
2021  	case 0x3a ... 0x3e:
2022  		/*
2023  		 * ADM1021A and compatible chips will be mis-detected as
2024  		 * ADM1023. Chips labeled 'ADM1021A' and 'ADM1023' were both
2025  		 * found to have a Chip ID of 0x3c.
2026  		 * ADM1021A does not officially support low byte registers
2027  		 * (0x12 .. 0x14), but a chip labeled ADM1021A does support it.
2028  		 * Official support for the temperature offset high byte
2029  		 * register (0x11) was added to revision F of the ADM1021A
2030  		 * datasheet.
2031  		 * It is currently unknown if there is a means to distinguish
2032  		 * ADM1021A from ADM1023, and/or if revisions of ADM1021A exist
2033  		 * which differ in functionality from ADM1023.
2034  		 */
2035  		if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2036  		    !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2037  			name = "adm1023";
2038  		break;
2039  	case 0x39:		/* ADM1020 (undocumented) */
2040  		if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2041  		    (address == 0x4c || address == 0x4d || address == 0x4e) &&
2042  		    !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2043  			name = "adm1020";
2044  		break;
2045  	case 0x3f:		/* NCT210 */
2046  		if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2047  		    !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2048  			name = "nct210";
2049  		break;
2050  	case 0x40 ... 0x4f:	/* ADM1032 */
2051  		if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2052  		    (address == 0x4c || address == 0x4d) && !(config1 & 0x3f) &&
2053  		    convrate <= 0x0a)
2054  			name = "adm1032";
2055  		break;
2056  	case 0x51:	/* ADT7461 */
2057  		if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2058  		    (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2059  		    convrate <= 0x0a)
2060  			name = "adt7461";
2061  		break;
2062  	case 0x54:	/* NCT1008 */
2063  		if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2064  		    (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2065  		    convrate <= 0x0a)
2066  			name = "nct1008";
2067  		break;
2068  	case 0x55:	/* NCT72 */
2069  		if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2070  		    (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2071  		    convrate <= 0x0a)
2072  			name = "nct72";
2073  		break;
2074  	case 0x57:	/* ADT7461A, NCT1008 (datasheet rev. 3) */
2075  		if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2076  		    (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2077  		    convrate <= 0x0a)
2078  			name = "adt7461a";
2079  		break;
2080  	case 0x5a:	/* NCT214 */
2081  		if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2082  		    common_address && !(config1 & 0x1b) && convrate <= 0x0a)
2083  			name = "nct214";
2084  		break;
2085  	case 0x62:	/* ADT7481, undocumented */
2086  		if (man_id2 == 0x41 && chip_id2 == 0x81 &&
2087  		    (address == 0x4b || address == 0x4c) && !(config1 & 0x10) &&
2088  		    !(config2 & 0x7f) && (convrate & 0x0f) <= 0x0b) {
2089  			name = "adt7481";
2090  		}
2091  		break;
2092  	case 0x65:	/* ADT7482, datasheet */
2093  	case 0x75:	/* ADT7482, real chip */
2094  		if (man_id2 == 0x41 && chip_id2 == 0x82 &&
2095  		    address == 0x4c && !(config1 & 0x10) && !(config2 & 0x7f) &&
2096  		    convrate <= 0x0a)
2097  			name = "adt7482";
2098  		break;
2099  	case 0x94:	/* ADT7483 */
2100  		if (man_id2 == 0x41 && chip_id2 == 0x83 &&
2101  		    common_address &&
2102  		    ((address >= 0x18 && address <= 0x1a) ||
2103  		     (address >= 0x29 && address <= 0x2b) ||
2104  		     (address >= 0x4c && address <= 0x4e)) &&
2105  		    !(config1 & 0x10) && !(config2 & 0x7f) && convrate <= 0x0a)
2106  			name = "adt7483a";
2107  		break;
2108  	default:
2109  		break;
2110  	}
2111  
2112  	return name;
2113  }
2114  
lm90_detect_maxim(struct i2c_client * client,bool common_address,int chip_id,int config1,int convrate)2115  static const char *lm90_detect_maxim(struct i2c_client *client, bool common_address,
2116  				     int chip_id, int config1, int convrate)
2117  {
2118  	int man_id, emerg, emerg2, status2;
2119  	int address = client->addr;
2120  	const char *name = NULL;
2121  
2122  	switch (chip_id) {
2123  	case 0x01:
2124  		if (!common_address)
2125  			break;
2126  
2127  		/*
2128  		 * We read MAX6659_REG_REMOTE_EMERG twice, and re-read
2129  		 * LM90_REG_MAN_ID in between. If MAX6659_REG_REMOTE_EMERG
2130  		 * exists, both readings will reflect the same value. Otherwise,
2131  		 * the readings will be different.
2132  		 */
2133  		emerg = i2c_smbus_read_byte_data(client,
2134  						 MAX6659_REG_REMOTE_EMERG);
2135  		man_id = i2c_smbus_read_byte_data(client,
2136  						  LM90_REG_MAN_ID);
2137  		emerg2 = i2c_smbus_read_byte_data(client,
2138  						  MAX6659_REG_REMOTE_EMERG);
2139  		status2 = i2c_smbus_read_byte_data(client,
2140  						   MAX6696_REG_STATUS2);
2141  		if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0)
2142  			return NULL;
2143  
2144  		/*
2145  		 * Even though MAX6695 and MAX6696 do not have a chip ID
2146  		 * register, reading it returns 0x01. Bit 4 of the config1
2147  		 * register is unused and should return zero when read. Bit 0 of
2148  		 * the status2 register is unused and should return zero when
2149  		 * read.
2150  		 *
2151  		 * MAX6695 and MAX6696 have an additional set of temperature
2152  		 * limit registers. We can detect those chips by checking if
2153  		 * one of those registers exists.
2154  		 */
2155  		if (!(config1 & 0x10) && !(status2 & 0x01) && emerg == emerg2 &&
2156  		    convrate <= 0x07)
2157  			name = "max6696";
2158  		/*
2159  		 * The chip_id register of the MAX6680 and MAX6681 holds the
2160  		 * revision of the chip. The lowest bit of the config1 register
2161  		 * is unused and should return zero when read, so should the
2162  		 * second to last bit of config1 (software reset). Register
2163  		 * address 0x12 (LM90_REG_REMOTE_OFFSL) exists for this chip and
2164  		 * should differ from emerg2, and emerg2 should match man_id
2165  		 * since it does not exist.
2166  		 */
2167  		else if (!(config1 & 0x03) && convrate <= 0x07 &&
2168  			 emerg2 == man_id && emerg2 != status2)
2169  			name = "max6680";
2170  		/*
2171  		 * MAX1617A does not have any extended registers (register
2172  		 * address 0x10 or higher) except for manufacturer and
2173  		 * device ID registers. Unlike other chips of this series,
2174  		 * unsupported registers were observed to return a fixed value
2175  		 * of 0x01.
2176  		 * Note: Multiple chips with different markings labeled as
2177  		 * "MAX1617" (no "A") were observed to report manufacturer ID
2178  		 * 0x4d and device ID 0x01. It is unknown if other variants of
2179  		 * MAX1617/MAX617A with different behavior exist. The detection
2180  		 * code below works for those chips.
2181  		 */
2182  		else if (!(config1 & 0x03f) && convrate <= 0x07 &&
2183  			 emerg == 0x01 && emerg2 == 0x01 && status2 == 0x01)
2184  			name = "max1617";
2185  		break;
2186  	case 0x08:
2187  		/*
2188  		 * The chip_id of the MAX6654 holds the revision of the chip.
2189  		 * The lowest 3 bits of the config1 register are unused and
2190  		 * should return zero when read.
2191  		 */
2192  		if (common_address && !(config1 & 0x07) && convrate <= 0x07)
2193  			name = "max6654";
2194  		break;
2195  	case 0x09:
2196  		/*
2197  		 * The chip_id of the MAX6690 holds the revision of the chip.
2198  		 * The lowest 3 bits of the config1 register are unused and
2199  		 * should return zero when read.
2200  		 * Note that MAX6654 and MAX6690 are practically the same chips.
2201  		 * The only diference is the rated accuracy. Rev. 1 of the
2202  		 * MAX6690 datasheet lists a chip ID of 0x08, and a chip labeled
2203  		 * MAX6654 was observed to have a chip ID of 0x09.
2204  		 */
2205  		if (common_address && !(config1 & 0x07) && convrate <= 0x07)
2206  			name = "max6690";
2207  		break;
2208  	case 0x4d:
2209  		/*
2210  		 * MAX6642, MAX6657, MAX6658 and MAX6659 do NOT have a chip_id
2211  		 * register. Reading from that address will return the last
2212  		 * read value, which in our case is those of the man_id
2213  		 * register, or 0x4d.
2214  		 * MAX6642 does not have a conversion rate register, nor low
2215  		 * limit registers. Reading from those registers returns the
2216  		 * last read value.
2217  		 *
2218  		 * For MAX6657, MAX6658 and MAX6659, the config1 register lacks
2219  		 * a low nibble, so the value will be those of the previous
2220  		 * read, so in our case again those of the man_id register.
2221  		 * MAX6659 has a third set of upper temperature limit registers.
2222  		 * Those registers also return values on MAX6657 and MAX6658,
2223  		 * thus the only way to detect MAX6659 is by its address.
2224  		 * For this reason it will be mis-detected as MAX6657 if its
2225  		 * address is 0x4c.
2226  		 */
2227  		if (address >= 0x48 && address <= 0x4f && config1 == convrate &&
2228  		    !(config1 & 0x0f)) {
2229  			int regval;
2230  
2231  			/*
2232  			 * We know that this is not a MAX6657/58/59 because its
2233  			 * configuration register has the wrong value and it does
2234  			 * not appear to have a conversion rate register.
2235  			 */
2236  
2237  			/* re-read manufacturer ID to have a good baseline */
2238  			if (i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID) != 0x4d)
2239  				break;
2240  
2241  			/* check various non-existing registers */
2242  			if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != 0x4d ||
2243  			    i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != 0x4d ||
2244  			    i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != 0x4d)
2245  				break;
2246  
2247  			/* check for unused status register bits */
2248  			regval = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
2249  			if (regval < 0 || (regval & 0x2b))
2250  				break;
2251  
2252  			/* re-check unsupported registers */
2253  			if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != regval ||
2254  			    i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != regval ||
2255  			    i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != regval)
2256  				break;
2257  
2258  			name = "max6642";
2259  		} else if ((address == 0x4c || address == 0x4d || address == 0x4e) &&
2260  			   (config1 & 0x1f) == 0x0d && convrate <= 0x09) {
2261  			if (address == 0x4c)
2262  				name = "max6657";
2263  			else
2264  				name = "max6659";
2265  		}
2266  		break;
2267  	case 0x59:
2268  		/*
2269  		 * The chip_id register of the MAX6646/6647/6649 holds the
2270  		 * revision of the chip. The lowest 6 bits of the config1
2271  		 * register are unused and should return zero when read.
2272  		 * The I2C address of MAX6648/6692 is fixed at 0x4c.
2273  		 * MAX6646 is at address 0x4d, MAX6647 is at address 0x4e,
2274  		 * and MAX6649 is at address 0x4c. A slight difference between
2275  		 * the two sets of chips is that the remote temperature register
2276  		 * reports different values if the DXP pin is open or shorted.
2277  		 * We can use that information to help distinguish between the
2278  		 * chips. MAX6648 will be mis-detected as MAX6649 if the remote
2279  		 * diode is connected, but there isn't really anything we can
2280  		 * do about that.
2281  		 */
2282  		if (!(config1 & 0x3f) && convrate <= 0x07) {
2283  			int temp;
2284  
2285  			switch (address) {
2286  			case 0x4c:
2287  				/*
2288  				 * MAX6649 reports an external temperature
2289  				 * value of 0xff if DXP is open or shorted.
2290  				 * MAX6648 reports 0x80 in that case.
2291  				 */
2292  				temp = i2c_smbus_read_byte_data(client,
2293  								LM90_REG_REMOTE_TEMPH);
2294  				if (temp == 0x80)
2295  					name = "max6648";
2296  				else
2297  					name = "max6649";
2298  				break;
2299  			case 0x4d:
2300  				name = "max6646";
2301  				break;
2302  			case 0x4e:
2303  				name = "max6647";
2304  				break;
2305  			default:
2306  				break;
2307  			}
2308  		}
2309  		break;
2310  	default:
2311  		break;
2312  	}
2313  
2314  	return name;
2315  }
2316  
lm90_detect_nuvoton(struct i2c_client * client,int chip_id,int config1,int convrate)2317  static const char *lm90_detect_nuvoton(struct i2c_client *client, int chip_id,
2318  				       int config1, int convrate)
2319  {
2320  	int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
2321  	int address = client->addr;
2322  	const char *name = NULL;
2323  
2324  	if (config2 < 0)
2325  		return NULL;
2326  
2327  	if (address == 0x4c && !(config1 & 0x2a) && !(config2 & 0xf8)) {
2328  		if (chip_id == 0x01 && convrate <= 0x09) {
2329  			/* W83L771W/G */
2330  			name = "w83l771";
2331  		} else if ((chip_id & 0xfe) == 0x10 && convrate <= 0x08) {
2332  			/* W83L771AWG/ASG */
2333  			name = "w83l771";
2334  		}
2335  	}
2336  	return name;
2337  }
2338  
lm90_detect_nxp(struct i2c_client * client,bool common_address,int chip_id,int config1,int convrate)2339  static const char *lm90_detect_nxp(struct i2c_client *client, bool common_address,
2340  				   int chip_id, int config1, int convrate)
2341  {
2342  	int address = client->addr;
2343  	const char *name = NULL;
2344  	int config2;
2345  
2346  	switch (chip_id) {
2347  	case 0x00:
2348  		config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
2349  		if (config2 < 0)
2350  			return NULL;
2351  		if (address >= 0x48 && address <= 0x4f &&
2352  		    !(config1 & 0x2a) && !(config2 & 0xfe) && convrate <= 0x09)
2353  			name = "sa56004";
2354  		break;
2355  	case 0x80:
2356  		if (common_address && !(config1 & 0x3f) && convrate <= 0x07)
2357  			name = "ne1618";
2358  		break;
2359  	default:
2360  		break;
2361  	}
2362  	return name;
2363  }
2364  
lm90_detect_gmt(struct i2c_client * client,int chip_id,int config1,int convrate)2365  static const char *lm90_detect_gmt(struct i2c_client *client, int chip_id,
2366  				   int config1, int convrate)
2367  {
2368  	int address = client->addr;
2369  
2370  	/*
2371  	 * According to the datasheet, G781 is supposed to be at I2C Address
2372  	 * 0x4c and have a chip ID of 0x01. G781-1 is supposed to be at I2C
2373  	 * address 0x4d and have a chip ID of 0x03. However, when support
2374  	 * for G781 was added, chips at 0x4c and 0x4d were found to have a
2375  	 * chip ID of 0x01. A G781-1 at I2C address 0x4d was now found with
2376  	 * chip ID 0x03.
2377  	 * To avoid detection failures, accept chip ID 0x01 and 0x03 at both
2378  	 * addresses.
2379  	 * G784 reports manufacturer ID 0x47 and chip ID 0x01. A public
2380  	 * datasheet is not available. Extensive testing suggests that
2381  	 * the chip appears to be fully compatible with G781.
2382  	 * Available register dumps show that G751 also reports manufacturer
2383  	 * ID 0x47 and chip ID 0x01 even though that chip does not officially
2384  	 * support those registers. This makes chip detection somewhat
2385  	 * vulnerable. To improve detection quality, read the offset low byte
2386  	 * and alert fault queue registers and verify that only expected bits
2387  	 * are set.
2388  	 */
2389  	if ((chip_id == 0x01 || chip_id == 0x03) &&
2390  	    (address == 0x4c || address == 0x4d) &&
2391  	    !(config1 & 0x3f) && convrate <= 0x08) {
2392  		int reg;
2393  
2394  		reg = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_OFFSL);
2395  		if (reg < 0 || reg & 0x1f)
2396  			return NULL;
2397  		reg = i2c_smbus_read_byte_data(client, TMP451_REG_CONALERT);
2398  		if (reg < 0 || reg & 0xf1)
2399  			return NULL;
2400  
2401  		return "g781";
2402  	}
2403  
2404  	return NULL;
2405  }
2406  
lm90_detect_ti49(struct i2c_client * client,bool common_address,int chip_id,int config1,int convrate)2407  static const char *lm90_detect_ti49(struct i2c_client *client, bool common_address,
2408  				    int chip_id, int config1, int convrate)
2409  {
2410  	if (common_address && chip_id == 0x00 && !(config1 & 0x3f) && !(convrate & 0xf8)) {
2411  		/* THMC10: Unsupported registers return 0xff */
2412  		if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) == 0xff &&
2413  		    i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_CRIT) == 0xff)
2414  			return "thmc10";
2415  	}
2416  	return NULL;
2417  }
2418  
lm90_detect_ti(struct i2c_client * client,int chip_id,int config1,int convrate)2419  static const char *lm90_detect_ti(struct i2c_client *client, int chip_id,
2420  				  int config1, int convrate)
2421  {
2422  	int address = client->addr;
2423  	const char *name = NULL;
2424  
2425  	if (chip_id == 0x00 && !(config1 & 0x1b) && convrate <= 0x09) {
2426  		int local_ext, conalert, chen, dfc;
2427  
2428  		local_ext = i2c_smbus_read_byte_data(client,
2429  						     TMP451_REG_LOCAL_TEMPL);
2430  		conalert = i2c_smbus_read_byte_data(client,
2431  						    TMP451_REG_CONALERT);
2432  		chen = i2c_smbus_read_byte_data(client, TMP461_REG_CHEN);
2433  		dfc = i2c_smbus_read_byte_data(client, TMP461_REG_DFC);
2434  
2435  		if (!(local_ext & 0x0f) && (conalert & 0xf1) == 0x01 &&
2436  		    (chen & 0xfc) == 0x00 && (dfc & 0xfc) == 0x00) {
2437  			if (address == 0x4c && !(chen & 0x03))
2438  				name = "tmp451";
2439  			else if (address >= 0x48 && address <= 0x4f)
2440  				name = "tmp461";
2441  		}
2442  	}
2443  
2444  	return name;
2445  }
2446  
2447  /* Return 0 if detection is successful, -ENODEV otherwise */
lm90_detect(struct i2c_client * client,struct i2c_board_info * info)2448  static int lm90_detect(struct i2c_client *client, struct i2c_board_info *info)
2449  {
2450  	struct i2c_adapter *adapter = client->adapter;
2451  	int man_id, chip_id, config1, convrate, lhigh;
2452  	const char *name = NULL;
2453  	int address = client->addr;
2454  	bool common_address =
2455  			(address >= 0x18 && address <= 0x1a) ||
2456  			(address >= 0x29 && address <= 0x2b) ||
2457  			(address >= 0x4c && address <= 0x4e);
2458  
2459  	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
2460  		return -ENODEV;
2461  
2462  	/*
2463  	 * Get well defined register value for chips with neither man_id nor
2464  	 * chip_id registers.
2465  	 */
2466  	lhigh = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH);
2467  
2468  	/* detection and identification */
2469  	man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID);
2470  	chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID);
2471  	config1 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG1);
2472  	convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE);
2473  	if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0 || lhigh < 0)
2474  		return -ENODEV;
2475  
2476  	/* Bail out immediately if all register report the same value */
2477  	if (lhigh == man_id && lhigh == chip_id && lhigh == config1 && lhigh == convrate)
2478  		return -ENODEV;
2479  
2480  	/*
2481  	 * If reading man_id and chip_id both return the same value as lhigh,
2482  	 * the chip may not support those registers and return the most recent read
2483  	 * value. Check again with a different register and handle accordingly.
2484  	 */
2485  	if (man_id == lhigh && chip_id == lhigh) {
2486  		convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE);
2487  		man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID);
2488  		chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID);
2489  		if (convrate < 0 || man_id < 0 || chip_id < 0)
2490  			return -ENODEV;
2491  		if (man_id == convrate && chip_id == convrate)
2492  			man_id = -1;
2493  	}
2494  	switch (man_id) {
2495  	case -1:	/* Chip does not support man_id / chip_id */
2496  		if (common_address && !convrate && !(config1 & 0x7f))
2497  			name = lm90_detect_lm84(client);
2498  		break;
2499  	case 0x01:	/* National Semiconductor */
2500  		name = lm90_detect_national(client, chip_id, config1, convrate);
2501  		break;
2502  	case 0x1a:	/* ON */
2503  		name = lm90_detect_on(client, chip_id, config1, convrate);
2504  		break;
2505  	case 0x23:	/* Genesys Logic */
2506  		if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8))
2507  			name = "gl523sm";
2508  		break;
2509  	case 0x41:	/* Analog Devices */
2510  		name = lm90_detect_analog(client, common_address, chip_id, config1,
2511  					  convrate);
2512  		break;
2513  	case 0x47:	/* GMT */
2514  		name = lm90_detect_gmt(client, chip_id, config1, convrate);
2515  		break;
2516  	case 0x49:	/* TI */
2517  		name = lm90_detect_ti49(client, common_address, chip_id, config1, convrate);
2518  		break;
2519  	case 0x4d:	/* Maxim Integrated */
2520  		name = lm90_detect_maxim(client, common_address, chip_id,
2521  					 config1, convrate);
2522  		break;
2523  	case 0x54:	/* ON MC1066, Microchip TC1068, TCM1617 (originally TelCom) */
2524  		if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8))
2525  			name = "mc1066";
2526  		break;
2527  	case 0x55:	/* TI */
2528  		name = lm90_detect_ti(client, chip_id, config1, convrate);
2529  		break;
2530  	case 0x5c:	/* Winbond/Nuvoton */
2531  		name = lm90_detect_nuvoton(client, chip_id, config1, convrate);
2532  		break;
2533  	case 0xa1:	/*  NXP Semiconductor/Philips */
2534  		name = lm90_detect_nxp(client, common_address, chip_id, config1, convrate);
2535  		break;
2536  	case 0xff:	/* MAX1617, G767, NE1617 */
2537  		if (common_address && chip_id == 0xff && convrate < 8)
2538  			name = lm90_detect_max1617(client, config1);
2539  		break;
2540  	default:
2541  		break;
2542  	}
2543  
2544  	if (!name) {	/* identification failed */
2545  		dev_dbg(&adapter->dev,
2546  			"Unsupported chip at 0x%02x (man_id=0x%02X, chip_id=0x%02X)\n",
2547  			client->addr, man_id, chip_id);
2548  		return -ENODEV;
2549  	}
2550  
2551  	strscpy(info->type, name, I2C_NAME_SIZE);
2552  
2553  	return 0;
2554  }
2555  
lm90_restore_conf(void * _data)2556  static void lm90_restore_conf(void *_data)
2557  {
2558  	struct lm90_data *data = _data;
2559  	struct i2c_client *client = data->client;
2560  
2561  	cancel_delayed_work_sync(&data->alert_work);
2562  	cancel_work_sync(&data->report_work);
2563  
2564  	/* Restore initial configuration */
2565  	if (data->flags & LM90_HAVE_CONVRATE)
2566  		lm90_write_convrate(data, data->convrate_orig);
2567  	lm90_write_reg(client, LM90_REG_CONFIG1, data->config_orig);
2568  }
2569  
lm90_init_client(struct i2c_client * client,struct lm90_data * data)2570  static int lm90_init_client(struct i2c_client *client, struct lm90_data *data)
2571  {
2572  	struct device_node *np = client->dev.of_node;
2573  	int config, convrate;
2574  
2575  	if (data->flags & LM90_HAVE_CONVRATE) {
2576  		convrate = lm90_read_reg(client, LM90_REG_CONVRATE);
2577  		if (convrate < 0)
2578  			return convrate;
2579  		data->convrate_orig = convrate;
2580  		lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */
2581  	} else {
2582  		data->update_interval = 500;
2583  	}
2584  
2585  	/*
2586  	 * Start the conversions.
2587  	 */
2588  	config = lm90_read_reg(client, LM90_REG_CONFIG1);
2589  	if (config < 0)
2590  		return config;
2591  	data->config_orig = config;
2592  	data->config = config;
2593  
2594  	/* Check Temperature Range Select */
2595  	if (data->flags & LM90_HAVE_EXTENDED_TEMP) {
2596  		if (of_property_read_bool(np, "ti,extended-range-enable"))
2597  			config |= 0x04;
2598  		if (!(config & 0x04))
2599  			data->flags &= ~LM90_HAVE_EXTENDED_TEMP;
2600  	}
2601  
2602  	/*
2603  	 * Put MAX6680/MAX8881 into extended resolution (bit 0x10,
2604  	 * 0.125 degree resolution) and range (0x08, extend range
2605  	 * to -64 degree) mode for the remote temperature sensor.
2606  	 * Note that expeciments with an actual chip do not show a difference
2607  	 * if bit 3 is set or not.
2608  	 */
2609  	if (data->kind == max6680)
2610  		config |= 0x18;
2611  
2612  	/*
2613  	 * Put MAX6654 into extended range (0x20, extend minimum range from
2614  	 * 0 degrees to -64 degrees). Note that extended resolution is not
2615  	 * possible on the MAX6654 unless conversion rate is set to 1 Hz or
2616  	 * slower, which is intentionally not done by default.
2617  	 */
2618  	if (data->kind == max6654)
2619  		config |= 0x20;
2620  
2621  	/*
2622  	 * Select external channel 0 for devices with three sensors
2623  	 */
2624  	if (data->flags & LM90_HAVE_TEMP3)
2625  		config &= ~0x08;
2626  
2627  	/*
2628  	 * Interrupt is enabled by default on reset, but it may be disabled
2629  	 * by bootloader, unmask it.
2630  	 */
2631  	if (client->irq)
2632  		config &= ~0x80;
2633  
2634  	config &= 0xBF;	/* run */
2635  	lm90_update_confreg(data, config);
2636  
2637  	return devm_add_action_or_reset(&client->dev, lm90_restore_conf, data);
2638  }
2639  
lm90_is_tripped(struct i2c_client * client)2640  static bool lm90_is_tripped(struct i2c_client *client)
2641  {
2642  	struct lm90_data *data = i2c_get_clientdata(client);
2643  	int ret;
2644  
2645  	ret = lm90_update_alarms(data, true);
2646  	if (ret < 0)
2647  		return false;
2648  
2649  	return !!data->current_alarms;
2650  }
2651  
lm90_irq_thread(int irq,void * dev_id)2652  static irqreturn_t lm90_irq_thread(int irq, void *dev_id)
2653  {
2654  	struct i2c_client *client = dev_id;
2655  
2656  	if (lm90_is_tripped(client))
2657  		return IRQ_HANDLED;
2658  	else
2659  		return IRQ_NONE;
2660  }
2661  
lm90_remove_pec(void * dev)2662  static void lm90_remove_pec(void *dev)
2663  {
2664  	device_remove_file(dev, &dev_attr_pec);
2665  }
2666  
lm90_probe_channel_from_dt(struct i2c_client * client,struct device_node * child,struct lm90_data * data)2667  static int lm90_probe_channel_from_dt(struct i2c_client *client,
2668  				      struct device_node *child,
2669  				      struct lm90_data *data)
2670  {
2671  	u32 id;
2672  	s32 val;
2673  	int err;
2674  	struct device *dev = &client->dev;
2675  
2676  	err = of_property_read_u32(child, "reg", &id);
2677  	if (err) {
2678  		dev_err(dev, "missing reg property of %pOFn\n", child);
2679  		return err;
2680  	}
2681  
2682  	if (id >= MAX_CHANNELS) {
2683  		dev_err(dev, "invalid reg property value %d in %pOFn\n", id, child);
2684  		return -EINVAL;
2685  	}
2686  
2687  	err = of_property_read_string(child, "label", &data->channel_label[id]);
2688  	if (err == -ENODATA || err == -EILSEQ) {
2689  		dev_err(dev, "invalid label property in %pOFn\n", child);
2690  		return err;
2691  	}
2692  
2693  	if (data->channel_label[id])
2694  		data->channel_config[id] |= HWMON_T_LABEL;
2695  
2696  	err = of_property_read_s32(child, "temperature-offset-millicelsius", &val);
2697  	if (!err) {
2698  		if (id == 0) {
2699  			dev_err(dev, "temperature-offset-millicelsius can't be set for internal channel\n");
2700  			return -EINVAL;
2701  		}
2702  
2703  		err = lm90_set_temp_offset(data, lm90_temp_offset_index[id], id, val);
2704  		if (err) {
2705  			dev_err(dev, "can't set temperature offset %d for channel %d (%d)\n",
2706  				val, id, err);
2707  			return err;
2708  		}
2709  	}
2710  
2711  	return 0;
2712  }
2713  
lm90_parse_dt_channel_info(struct i2c_client * client,struct lm90_data * data)2714  static int lm90_parse_dt_channel_info(struct i2c_client *client,
2715  				      struct lm90_data *data)
2716  {
2717  	int err;
2718  	struct device_node *child;
2719  	struct device *dev = &client->dev;
2720  	const struct device_node *np = dev->of_node;
2721  
2722  	for_each_child_of_node(np, child) {
2723  		if (strcmp(child->name, "channel"))
2724  			continue;
2725  
2726  		err = lm90_probe_channel_from_dt(client, child, data);
2727  		if (err) {
2728  			of_node_put(child);
2729  			return err;
2730  		}
2731  	}
2732  
2733  	return 0;
2734  }
2735  
2736  static const struct hwmon_ops lm90_ops = {
2737  	.is_visible = lm90_is_visible,
2738  	.read = lm90_read,
2739  	.read_string = lm90_read_string,
2740  	.write = lm90_write,
2741  };
2742  
lm90_probe(struct i2c_client * client)2743  static int lm90_probe(struct i2c_client *client)
2744  {
2745  	struct device *dev = &client->dev;
2746  	struct i2c_adapter *adapter = client->adapter;
2747  	struct hwmon_channel_info *info;
2748  	struct device *hwmon_dev;
2749  	struct lm90_data *data;
2750  	int err;
2751  
2752  	err = devm_regulator_get_enable(dev, "vcc");
2753  	if (err)
2754  		return dev_err_probe(dev, err, "Failed to enable regulator\n");
2755  
2756  	data = devm_kzalloc(dev, sizeof(struct lm90_data), GFP_KERNEL);
2757  	if (!data)
2758  		return -ENOMEM;
2759  
2760  	data->client = client;
2761  	i2c_set_clientdata(client, data);
2762  	mutex_init(&data->update_lock);
2763  	INIT_DELAYED_WORK(&data->alert_work, lm90_alert_work);
2764  	INIT_WORK(&data->report_work, lm90_report_alarms);
2765  
2766  	/* Set the device type */
2767  	if (client->dev.of_node)
2768  		data->kind = (uintptr_t)of_device_get_match_data(&client->dev);
2769  	else
2770  		data->kind = i2c_match_id(lm90_id, client)->driver_data;
2771  
2772  	/*
2773  	 * Different devices have different alarm bits triggering the
2774  	 * ALERT# output
2775  	 */
2776  	data->alert_alarms = lm90_params[data->kind].alert_alarms;
2777  	data->resolution = lm90_params[data->kind].resolution ? : 11;
2778  
2779  	/* Set chip capabilities */
2780  	data->flags = lm90_params[data->kind].flags;
2781  
2782  	if ((data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC)) &&
2783  	    !i2c_check_functionality(adapter, I2C_FUNC_SMBUS_PEC))
2784  		data->flags &= ~(LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC);
2785  
2786  	if ((data->flags & LM90_HAVE_PARTIAL_PEC) &&
2787  	    !i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
2788  		data->flags &= ~LM90_HAVE_PARTIAL_PEC;
2789  
2790  	data->chip.ops = &lm90_ops;
2791  	data->chip.info = data->info;
2792  
2793  	data->info[0] = &data->chip_info;
2794  	info = &data->chip_info;
2795  	info->type = hwmon_chip;
2796  	info->config = data->chip_config;
2797  
2798  	data->chip_config[0] = HWMON_C_REGISTER_TZ;
2799  	if (data->flags & LM90_HAVE_ALARMS)
2800  		data->chip_config[0] |= HWMON_C_ALARMS;
2801  	if (data->flags & LM90_HAVE_CONVRATE)
2802  		data->chip_config[0] |= HWMON_C_UPDATE_INTERVAL;
2803  	if (data->flags & LM90_HAVE_FAULTQUEUE)
2804  		data->chip_config[0] |= HWMON_C_TEMP_SAMPLES;
2805  	data->info[1] = &data->temp_info;
2806  
2807  	info = &data->temp_info;
2808  	info->type = hwmon_temp;
2809  	info->config = data->channel_config;
2810  
2811  	data->channel_config[0] = HWMON_T_INPUT | HWMON_T_MAX |
2812  		HWMON_T_MAX_ALARM;
2813  	data->channel_config[1] = HWMON_T_INPUT | HWMON_T_MAX |
2814  		HWMON_T_MAX_ALARM | HWMON_T_FAULT;
2815  
2816  	if (data->flags & LM90_HAVE_LOW) {
2817  		data->channel_config[0] |= HWMON_T_MIN | HWMON_T_MIN_ALARM;
2818  		data->channel_config[1] |= HWMON_T_MIN | HWMON_T_MIN_ALARM;
2819  	}
2820  
2821  	if (data->flags & LM90_HAVE_CRIT) {
2822  		data->channel_config[0] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST;
2823  		data->channel_config[1] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST;
2824  	}
2825  
2826  	if (data->flags & LM90_HAVE_OFFSET)
2827  		data->channel_config[1] |= HWMON_T_OFFSET;
2828  
2829  	if (data->flags & LM90_HAVE_EMERGENCY) {
2830  		data->channel_config[0] |= HWMON_T_EMERGENCY |
2831  			HWMON_T_EMERGENCY_HYST;
2832  		data->channel_config[1] |= HWMON_T_EMERGENCY |
2833  			HWMON_T_EMERGENCY_HYST;
2834  	}
2835  
2836  	if (data->flags & LM90_HAVE_EMERGENCY_ALARM) {
2837  		data->channel_config[0] |= HWMON_T_EMERGENCY_ALARM;
2838  		data->channel_config[1] |= HWMON_T_EMERGENCY_ALARM;
2839  	}
2840  
2841  	if (data->flags & LM90_HAVE_TEMP3) {
2842  		data->channel_config[2] = HWMON_T_INPUT |
2843  			HWMON_T_MIN | HWMON_T_MAX |
2844  			HWMON_T_CRIT | HWMON_T_CRIT_HYST |
2845  			HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM |
2846  			HWMON_T_CRIT_ALARM | HWMON_T_FAULT;
2847  		if (data->flags & LM90_HAVE_EMERGENCY) {
2848  			data->channel_config[2] |= HWMON_T_EMERGENCY |
2849  				HWMON_T_EMERGENCY_HYST;
2850  		}
2851  		if (data->flags & LM90_HAVE_EMERGENCY_ALARM)
2852  			data->channel_config[2] |= HWMON_T_EMERGENCY_ALARM;
2853  		if (data->flags & LM90_HAVE_OFFSET)
2854  			data->channel_config[2] |= HWMON_T_OFFSET;
2855  	}
2856  
2857  	data->faultqueue_mask = lm90_params[data->kind].faultqueue_mask;
2858  	data->faultqueue_depth = lm90_params[data->kind].faultqueue_depth;
2859  	data->reg_local_ext = lm90_params[data->kind].reg_local_ext;
2860  	if (data->flags & LM90_HAVE_REMOTE_EXT)
2861  		data->reg_remote_ext = LM90_REG_REMOTE_TEMPL;
2862  	data->reg_status2 = lm90_params[data->kind].reg_status2;
2863  
2864  	/* Set maximum conversion rate */
2865  	data->max_convrate = lm90_params[data->kind].max_convrate;
2866  
2867  	/* Parse device-tree channel information */
2868  	if (client->dev.of_node) {
2869  		err = lm90_parse_dt_channel_info(client, data);
2870  		if (err)
2871  			return err;
2872  	}
2873  
2874  	/* Initialize the LM90 chip */
2875  	err = lm90_init_client(client, data);
2876  	if (err < 0) {
2877  		dev_err(dev, "Failed to initialize device\n");
2878  		return err;
2879  	}
2880  
2881  	/*
2882  	 * The 'pec' attribute is attached to the i2c device and thus created
2883  	 * separately.
2884  	 */
2885  	if (data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC)) {
2886  		err = device_create_file(dev, &dev_attr_pec);
2887  		if (err)
2888  			return err;
2889  		err = devm_add_action_or_reset(dev, lm90_remove_pec, dev);
2890  		if (err)
2891  			return err;
2892  	}
2893  
2894  	hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name,
2895  							 data, &data->chip,
2896  							 NULL);
2897  	if (IS_ERR(hwmon_dev))
2898  		return PTR_ERR(hwmon_dev);
2899  
2900  	data->hwmon_dev = hwmon_dev;
2901  
2902  	if (client->irq) {
2903  		dev_dbg(dev, "IRQ: %d\n", client->irq);
2904  		err = devm_request_threaded_irq(dev, client->irq,
2905  						NULL, lm90_irq_thread,
2906  						IRQF_ONESHOT, "lm90", client);
2907  		if (err < 0) {
2908  			dev_err(dev, "cannot request IRQ %d\n", client->irq);
2909  			return err;
2910  		}
2911  	}
2912  
2913  	return 0;
2914  }
2915  
lm90_alert(struct i2c_client * client,enum i2c_alert_protocol type,unsigned int flag)2916  static void lm90_alert(struct i2c_client *client, enum i2c_alert_protocol type,
2917  		       unsigned int flag)
2918  {
2919  	if (type != I2C_PROTOCOL_SMBUS_ALERT)
2920  		return;
2921  
2922  	if (lm90_is_tripped(client)) {
2923  		/*
2924  		 * Disable ALERT# output, because these chips don't implement
2925  		 * SMBus alert correctly; they should only hold the alert line
2926  		 * low briefly.
2927  		 */
2928  		struct lm90_data *data = i2c_get_clientdata(client);
2929  
2930  		if ((data->flags & LM90_HAVE_BROKEN_ALERT) &&
2931  		    (data->current_alarms & data->alert_alarms)) {
2932  			if (!(data->config & 0x80)) {
2933  				dev_dbg(&client->dev, "Disabling ALERT#\n");
2934  				lm90_update_confreg(data, data->config | 0x80);
2935  			}
2936  			schedule_delayed_work(&data->alert_work,
2937  				max_t(int, HZ, msecs_to_jiffies(data->update_interval)));
2938  		}
2939  	} else {
2940  		dev_dbg(&client->dev, "Everything OK\n");
2941  	}
2942  }
2943  
lm90_suspend(struct device * dev)2944  static int lm90_suspend(struct device *dev)
2945  {
2946  	struct lm90_data *data = dev_get_drvdata(dev);
2947  	struct i2c_client *client = data->client;
2948  
2949  	if (client->irq)
2950  		disable_irq(client->irq);
2951  
2952  	return 0;
2953  }
2954  
lm90_resume(struct device * dev)2955  static int lm90_resume(struct device *dev)
2956  {
2957  	struct lm90_data *data = dev_get_drvdata(dev);
2958  	struct i2c_client *client = data->client;
2959  
2960  	if (client->irq)
2961  		enable_irq(client->irq);
2962  
2963  	return 0;
2964  }
2965  
2966  static DEFINE_SIMPLE_DEV_PM_OPS(lm90_pm_ops, lm90_suspend, lm90_resume);
2967  
2968  static struct i2c_driver lm90_driver = {
2969  	.class		= I2C_CLASS_HWMON,
2970  	.driver = {
2971  		.name	= "lm90",
2972  		.of_match_table = of_match_ptr(lm90_of_match),
2973  		.pm	= pm_sleep_ptr(&lm90_pm_ops),
2974  	},
2975  	.probe		= lm90_probe,
2976  	.alert		= lm90_alert,
2977  	.id_table	= lm90_id,
2978  	.detect		= lm90_detect,
2979  	.address_list	= normal_i2c,
2980  };
2981  
2982  module_i2c_driver(lm90_driver);
2983  
2984  MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
2985  MODULE_DESCRIPTION("LM90/ADM1032 driver");
2986  MODULE_LICENSE("GPL");
2987