1 #ifndef TARGET_ARM_TRANSLATE_H
2 #define TARGET_ARM_TRANSLATE_H
3
4 #include "cpu.h"
5 #include "tcg/tcg-op.h"
6 #include "tcg/tcg-op-gvec.h"
7 #include "exec/exec-all.h"
8 #include "exec/translator.h"
9 #include "exec/helper-gen.h"
10 #include "internals.h"
11 #include "cpu-features.h"
12
13 /* internal defines */
14
15 /*
16 * Save pc_save across a branch, so that we may restore the value from
17 * before the branch at the point the label is emitted.
18 */
19 typedef struct DisasLabel {
20 TCGLabel *label;
21 target_ulong pc_save;
22 } DisasLabel;
23
24 typedef struct DisasContext {
25 DisasContextBase base;
26 const ARMISARegisters *isar;
27
28 /* The address of the current instruction being translated. */
29 target_ulong pc_curr;
30 /*
31 * For CF_PCREL, the full value of cpu_pc is not known
32 * (although the page offset is known). For convenience, the
33 * translation loop uses the full virtual address that triggered
34 * the translation, from base.pc_start through pc_curr.
35 * For efficiency, we do not update cpu_pc for every instruction.
36 * Instead, pc_save has the value of pc_curr at the time of the
37 * last update to cpu_pc, which allows us to compute the addend
38 * needed to bring cpu_pc current: pc_curr - pc_save.
39 * If cpu_pc now contains the destination of an indirect branch,
40 * pc_save contains -1 to indicate that relative updates are no
41 * longer possible.
42 */
43 target_ulong pc_save;
44 target_ulong page_start;
45 uint32_t insn;
46 /* Nonzero if this instruction has been conditionally skipped. */
47 int condjmp;
48 /* The label that will be jumped to when the instruction is skipped. */
49 DisasLabel condlabel;
50 /* Thumb-2 conditional execution bits. */
51 int condexec_mask;
52 int condexec_cond;
53 /* M-profile ECI/ICI exception-continuable instruction state */
54 int eci;
55 /*
56 * trans_ functions for insns which are continuable should set this true
57 * after decode (ie after any UNDEF checks)
58 */
59 bool eci_handled;
60 int sctlr_b;
61 MemOp be_data;
62 #if !defined(CONFIG_USER_ONLY)
63 int user;
64 #endif
65 ARMMMUIdx mmu_idx; /* MMU index to use for normal loads/stores */
66 uint8_t tbii; /* TBI1|TBI0 for insns */
67 uint8_t tbid; /* TBI1|TBI0 for data */
68 uint8_t tcma; /* TCMA1|TCMA0 for MTE */
69 bool ns; /* Use non-secure CPREG bank on access */
70 int fp_excp_el; /* FP exception EL or 0 if enabled */
71 int sve_excp_el; /* SVE exception EL or 0 if enabled */
72 int sme_excp_el; /* SME exception EL or 0 if enabled */
73 int vl; /* current vector length in bytes */
74 int svl; /* current streaming vector length in bytes */
75 bool vfp_enabled; /* FP enabled via FPSCR.EN */
76 int vec_len;
77 int vec_stride;
78 bool v7m_handler_mode;
79 bool v8m_secure; /* true if v8M and we're in Secure mode */
80 bool v8m_stackcheck; /* true if we need to perform v8M stack limit checks */
81 bool v8m_fpccr_s_wrong; /* true if v8M FPCCR.S != v8m_secure */
82 bool v7m_new_fp_ctxt_needed; /* ASPEN set but no active FP context */
83 bool v7m_lspact; /* FPCCR.LSPACT set */
84 /* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI
85 * so that top level loop can generate correct syndrome information.
86 */
87 uint32_t svc_imm;
88 int current_el;
89 GHashTable *cp_regs;
90 uint64_t features; /* CPU features bits */
91 bool aarch64;
92 bool thumb;
93 bool lse2;
94 /* Because unallocated encodings generate different exception syndrome
95 * information from traps due to FP being disabled, we can't do a single
96 * "is fp access disabled" check at a high level in the decode tree.
97 * To help in catching bugs where the access check was forgotten in some
98 * code path, we set this flag when the access check is done, and assert
99 * that it is set at the point where we actually touch the FP regs.
100 */
101 bool fp_access_checked;
102 bool sve_access_checked;
103 /* ARMv8 single-step state (this is distinct from the QEMU gdbstub
104 * single-step support).
105 */
106 bool ss_active;
107 bool pstate_ss;
108 /* True if the insn just emitted was a load-exclusive instruction
109 * (necessary for syndrome information for single step exceptions),
110 * ie A64 LDX*, LDAX*, A32/T32 LDREX*, LDAEX*.
111 */
112 bool is_ldex;
113 /* True if AccType_UNPRIV should be used for LDTR et al */
114 bool unpriv;
115 /* True if v8.3-PAuth is active. */
116 bool pauth_active;
117 /* True if v8.5-MTE access to tags is enabled; index with is_unpriv. */
118 bool ata[2];
119 /* True if v8.5-MTE tag checks affect the PE; index with is_unpriv. */
120 bool mte_active[2];
121 /* True with v8.5-BTI and SCTLR_ELx.BT* set. */
122 bool bt;
123 /* True if any CP15 access is trapped by HSTR_EL2 */
124 bool hstr_active;
125 /* True if memory operations require alignment */
126 bool align_mem;
127 /* True if PSTATE.IL is set */
128 bool pstate_il;
129 /* True if PSTATE.SM is set. */
130 bool pstate_sm;
131 /* True if PSTATE.ZA is set. */
132 bool pstate_za;
133 /* True if non-streaming insns should raise an SME Streaming exception. */
134 bool sme_trap_nonstreaming;
135 /* True if the current instruction is non-streaming. */
136 bool is_nonstreaming;
137 /* True if MVE insns are definitely not predicated by VPR or LTPSIZE */
138 bool mve_no_pred;
139 /* True if fine-grained traps are active */
140 bool fgt_active;
141 /* True if fine-grained trap on SVC is enabled */
142 bool fgt_svc;
143 /* True if a trap on ERET is enabled (FGT or NV) */
144 bool trap_eret;
145 /* True if FEAT_LSE2 SCTLR_ELx.nAA is set */
146 bool naa;
147 /* True if FEAT_NV HCR_EL2.NV is enabled */
148 bool nv;
149 /* True if NV enabled and HCR_EL2.NV1 is set */
150 bool nv1;
151 /* True if NV enabled and HCR_EL2.NV2 is set */
152 bool nv2;
153 /* True if NV2 enabled and NV2 RAM accesses use EL2&0 translation regime */
154 bool nv2_mem_e20;
155 /* True if NV2 enabled and NV2 RAM accesses are big-endian */
156 bool nv2_mem_be;
157 /*
158 * >= 0, a copy of PSTATE.BTYPE, which will be 0 without v8.5-BTI.
159 * < 0, set by the current instruction.
160 */
161 int8_t btype;
162 /* A copy of cpu->dcz_blocksize. */
163 uint8_t dcz_blocksize;
164 /* A copy of cpu->gm_blocksize. */
165 uint8_t gm_blocksize;
166 /* True if the current insn_start has been updated. */
167 bool insn_start_updated;
168 /* True if this is the AArch32 Secure PL1&0 translation regime */
169 bool s_pl1_0;
170 /* Bottom two bits of XScale c15_cpar coprocessor access control reg */
171 int c15_cpar;
172 /* Offset from VNCR_EL2 when FEAT_NV2 redirects this reg to memory */
173 uint32_t nv2_redirect_offset;
174 } DisasContext;
175
176 typedef struct DisasCompare {
177 TCGCond cond;
178 TCGv_i32 value;
179 } DisasCompare;
180
181 /* Share the TCG temporaries common between 32 and 64 bit modes. */
182 extern TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF;
183 extern TCGv_i64 cpu_exclusive_addr;
184 extern TCGv_i64 cpu_exclusive_val;
185
186 /*
187 * Constant expanders for the decoders.
188 */
189
negate(DisasContext * s,int x)190 static inline int negate(DisasContext *s, int x)
191 {
192 return -x;
193 }
194
plus_1(DisasContext * s,int x)195 static inline int plus_1(DisasContext *s, int x)
196 {
197 return x + 1;
198 }
199
plus_2(DisasContext * s,int x)200 static inline int plus_2(DisasContext *s, int x)
201 {
202 return x + 2;
203 }
204
plus_12(DisasContext * s,int x)205 static inline int plus_12(DisasContext *s, int x)
206 {
207 return x + 12;
208 }
209
times_2(DisasContext * s,int x)210 static inline int times_2(DisasContext *s, int x)
211 {
212 return x * 2;
213 }
214
times_4(DisasContext * s,int x)215 static inline int times_4(DisasContext *s, int x)
216 {
217 return x * 4;
218 }
219
times_8(DisasContext * s,int x)220 static inline int times_8(DisasContext *s, int x)
221 {
222 return x * 8;
223 }
224
times_2_plus_1(DisasContext * s,int x)225 static inline int times_2_plus_1(DisasContext *s, int x)
226 {
227 return x * 2 + 1;
228 }
229
rsub_64(DisasContext * s,int x)230 static inline int rsub_64(DisasContext *s, int x)
231 {
232 return 64 - x;
233 }
234
rsub_32(DisasContext * s,int x)235 static inline int rsub_32(DisasContext *s, int x)
236 {
237 return 32 - x;
238 }
239
rsub_16(DisasContext * s,int x)240 static inline int rsub_16(DisasContext *s, int x)
241 {
242 return 16 - x;
243 }
244
rsub_8(DisasContext * s,int x)245 static inline int rsub_8(DisasContext *s, int x)
246 {
247 return 8 - x;
248 }
249
shl_12(DisasContext * s,int x)250 static inline int shl_12(DisasContext *s, int x)
251 {
252 return x << 12;
253 }
254
xor_2(DisasContext * s,int x)255 static inline int xor_2(DisasContext *s, int x)
256 {
257 return x ^ 2;
258 }
259
neon_3same_fp_size(DisasContext * s,int x)260 static inline int neon_3same_fp_size(DisasContext *s, int x)
261 {
262 /* Convert 0==fp32, 1==fp16 into a MO_* value */
263 return MO_32 - x;
264 }
265
arm_dc_feature(DisasContext * dc,int feature)266 static inline int arm_dc_feature(DisasContext *dc, int feature)
267 {
268 return (dc->features & (1ULL << feature)) != 0;
269 }
270
get_mem_index(DisasContext * s)271 static inline int get_mem_index(DisasContext *s)
272 {
273 return arm_to_core_mmu_idx(s->mmu_idx);
274 }
275
disas_set_insn_syndrome(DisasContext * s,uint32_t syn)276 static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn)
277 {
278 /* We don't need to save all of the syndrome so we mask and shift
279 * out unneeded bits to help the sleb128 encoder do a better job.
280 */
281 syn &= ARM_INSN_START_WORD2_MASK;
282 syn >>= ARM_INSN_START_WORD2_SHIFT;
283
284 /* Check for multiple updates. */
285 assert(!s->insn_start_updated);
286 s->insn_start_updated = true;
287 tcg_set_insn_start_param(s->base.insn_start, 2, syn);
288 }
289
curr_insn_len(DisasContext * s)290 static inline int curr_insn_len(DisasContext *s)
291 {
292 return s->base.pc_next - s->pc_curr;
293 }
294
295 /* is_jmp field values */
296 #define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */
297 /* CPU state was modified dynamically; exit to main loop for interrupts. */
298 #define DISAS_UPDATE_EXIT DISAS_TARGET_1
299 /* These instructions trap after executing, so the A32/T32 decoder must
300 * defer them until after the conditional execution state has been updated.
301 * WFI also needs special handling when single-stepping.
302 */
303 #define DISAS_WFI DISAS_TARGET_2
304 #define DISAS_SWI DISAS_TARGET_3
305 /* WFE */
306 #define DISAS_WFE DISAS_TARGET_4
307 #define DISAS_HVC DISAS_TARGET_5
308 #define DISAS_SMC DISAS_TARGET_6
309 #define DISAS_YIELD DISAS_TARGET_7
310 /* M profile branch which might be an exception return (and so needs
311 * custom end-of-TB code)
312 */
313 #define DISAS_BX_EXCRET DISAS_TARGET_8
314 /*
315 * For instructions which want an immediate exit to the main loop, as opposed
316 * to attempting to use lookup_and_goto_ptr. Unlike DISAS_UPDATE_EXIT, this
317 * doesn't write the PC on exiting the translation loop so you need to ensure
318 * something (gen_a64_update_pc or runtime helper) has done so before we reach
319 * return from cpu_tb_exec.
320 */
321 #define DISAS_EXIT DISAS_TARGET_9
322 /* CPU state was modified dynamically; no need to exit, but do not chain. */
323 #define DISAS_UPDATE_NOCHAIN DISAS_TARGET_10
324
325 #ifdef TARGET_AARCH64
326 void a64_translate_init(void);
327 void gen_a64_update_pc(DisasContext *s, target_long diff);
328 extern const TranslatorOps aarch64_translator_ops;
329 #else
a64_translate_init(void)330 static inline void a64_translate_init(void)
331 {
332 }
333
gen_a64_update_pc(DisasContext * s,target_long diff)334 static inline void gen_a64_update_pc(DisasContext *s, target_long diff)
335 {
336 }
337 #endif
338
339 void arm_test_cc(DisasCompare *cmp, int cc);
340 void arm_jump_cc(DisasCompare *cmp, TCGLabel *label);
341 void arm_gen_test_cc(int cc, TCGLabel *label);
342 MemOp pow2_align(unsigned i);
343 void unallocated_encoding(DisasContext *s);
344 void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp,
345 uint32_t syn, uint32_t target_el);
346 void gen_exception_insn(DisasContext *s, target_long pc_diff,
347 int excp, uint32_t syn);
348
349 /* Return state of Alternate Half-precision flag, caller frees result */
get_ahp_flag(void)350 static inline TCGv_i32 get_ahp_flag(void)
351 {
352 TCGv_i32 ret = tcg_temp_new_i32();
353
354 tcg_gen_ld_i32(ret, tcg_env, offsetoflow32(CPUARMState, vfp.fpcr));
355 tcg_gen_extract_i32(ret, ret, 26, 1);
356
357 return ret;
358 }
359
360 /* Set bits within PSTATE. */
set_pstate_bits(uint32_t bits)361 static inline void set_pstate_bits(uint32_t bits)
362 {
363 TCGv_i32 p = tcg_temp_new_i32();
364
365 tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
366
367 tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate));
368 tcg_gen_ori_i32(p, p, bits);
369 tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate));
370 }
371
372 /* Clear bits within PSTATE. */
clear_pstate_bits(uint32_t bits)373 static inline void clear_pstate_bits(uint32_t bits)
374 {
375 TCGv_i32 p = tcg_temp_new_i32();
376
377 tcg_debug_assert(!(bits & CACHED_PSTATE_BITS));
378
379 tcg_gen_ld_i32(p, tcg_env, offsetof(CPUARMState, pstate));
380 tcg_gen_andi_i32(p, p, ~bits);
381 tcg_gen_st_i32(p, tcg_env, offsetof(CPUARMState, pstate));
382 }
383
384 /* If the singlestep state is Active-not-pending, advance to Active-pending. */
gen_ss_advance(DisasContext * s)385 static inline void gen_ss_advance(DisasContext *s)
386 {
387 if (s->ss_active) {
388 s->pstate_ss = 0;
389 clear_pstate_bits(PSTATE_SS);
390 }
391 }
392
393 /* Generate an architectural singlestep exception */
gen_swstep_exception(DisasContext * s,int isv,int ex)394 static inline void gen_swstep_exception(DisasContext *s, int isv, int ex)
395 {
396 /* Fill in the same_el field of the syndrome in the helper. */
397 uint32_t syn = syn_swstep(false, isv, ex);
398 gen_helper_exception_swstep(tcg_env, tcg_constant_i32(syn));
399 }
400
401 /*
402 * Given a VFP floating point constant encoded into an 8 bit immediate in an
403 * instruction, expand it to the actual constant value of the specified
404 * size, as per the VFPExpandImm() pseudocode in the Arm ARM.
405 */
406 uint64_t vfp_expand_imm(int size, uint8_t imm8);
407
gen_vfp_absh(TCGv_i32 d,TCGv_i32 s)408 static inline void gen_vfp_absh(TCGv_i32 d, TCGv_i32 s)
409 {
410 tcg_gen_andi_i32(d, s, INT16_MAX);
411 }
412
gen_vfp_abss(TCGv_i32 d,TCGv_i32 s)413 static inline void gen_vfp_abss(TCGv_i32 d, TCGv_i32 s)
414 {
415 tcg_gen_andi_i32(d, s, INT32_MAX);
416 }
417
gen_vfp_absd(TCGv_i64 d,TCGv_i64 s)418 static inline void gen_vfp_absd(TCGv_i64 d, TCGv_i64 s)
419 {
420 tcg_gen_andi_i64(d, s, INT64_MAX);
421 }
422
gen_vfp_negh(TCGv_i32 d,TCGv_i32 s)423 static inline void gen_vfp_negh(TCGv_i32 d, TCGv_i32 s)
424 {
425 tcg_gen_xori_i32(d, s, 1u << 15);
426 }
427
gen_vfp_negs(TCGv_i32 d,TCGv_i32 s)428 static inline void gen_vfp_negs(TCGv_i32 d, TCGv_i32 s)
429 {
430 tcg_gen_xori_i32(d, s, 1u << 31);
431 }
432
gen_vfp_negd(TCGv_i64 d,TCGv_i64 s)433 static inline void gen_vfp_negd(TCGv_i64 d, TCGv_i64 s)
434 {
435 tcg_gen_xori_i64(d, s, 1ull << 63);
436 }
437
438 /* Vector operations shared between ARM and AArch64. */
439 void gen_gvec_ceq0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
440 uint32_t opr_sz, uint32_t max_sz);
441 void gen_gvec_clt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
442 uint32_t opr_sz, uint32_t max_sz);
443 void gen_gvec_cgt0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
444 uint32_t opr_sz, uint32_t max_sz);
445 void gen_gvec_cle0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
446 uint32_t opr_sz, uint32_t max_sz);
447 void gen_gvec_cge0(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
448 uint32_t opr_sz, uint32_t max_sz);
449
450 void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
451 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
452 void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
453 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
454
455 void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
456 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
457 void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
458 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
459 void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
460 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
461 void gen_gvec_srshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
462 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
463 void gen_gvec_urshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
464 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
465 void gen_neon_sqshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
466 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
467 void gen_neon_uqshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
468 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
469 void gen_neon_sqrshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
470 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
471 void gen_neon_uqrshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
472 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
473
474 void gen_gvec_shadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
475 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
476 void gen_gvec_uhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
477 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
478 void gen_gvec_shsub(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
479 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
480 void gen_gvec_uhsub(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
481 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
482 void gen_gvec_srhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
483 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
484 void gen_gvec_urhadd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
485 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
486
487 void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
488 void gen_ushl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
489 void gen_sshl_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b);
490 void gen_ushl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
491 void gen_sshl_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b);
492
493 void gen_uqadd_bhs(TCGv_i64 res, TCGv_i64 qc,
494 TCGv_i64 a, TCGv_i64 b, MemOp esz);
495 void gen_uqadd_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
496 void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
497 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
498
499 void gen_sqadd_bhs(TCGv_i64 res, TCGv_i64 qc,
500 TCGv_i64 a, TCGv_i64 b, MemOp esz);
501 void gen_sqadd_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
502 void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
503 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
504
505 void gen_uqsub_bhs(TCGv_i64 res, TCGv_i64 qc,
506 TCGv_i64 a, TCGv_i64 b, MemOp esz);
507 void gen_uqsub_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
508 void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
509 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
510
511 void gen_sqsub_bhs(TCGv_i64 res, TCGv_i64 qc,
512 TCGv_i64 a, TCGv_i64 b, MemOp esz);
513 void gen_sqsub_d(TCGv_i64 d, TCGv_i64 q, TCGv_i64 a, TCGv_i64 b);
514 void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
515 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
516
517 void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
518 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
519 void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
520 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
521
522 void gen_srshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh);
523 void gen_srshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh);
524 void gen_urshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh);
525 void gen_urshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh);
526
527 void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
528 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
529 void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
530 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
531 void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
532 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
533 void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
534 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
535
536 void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
537 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
538 void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
539 int64_t shift, uint32_t opr_sz, uint32_t max_sz);
540
541 void gen_gvec_sqdmulh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
542 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
543 void gen_gvec_sqrdmulh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
544 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
545 void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
546 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
547 void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
548 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
549
550 void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
551 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
552 void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
553 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
554
555 void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
556 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
557 void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
558 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
559
560 void gen_gvec_addp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
561 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
562 void gen_gvec_smaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
563 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
564 void gen_gvec_sminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
565 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
566 void gen_gvec_umaxp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
567 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
568 void gen_gvec_uminp(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
569 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
570
571 /*
572 * Forward to the isar_feature_* tests given a DisasContext pointer.
573 */
574 #define dc_isar_feature(name, ctx) \
575 ({ DisasContext *ctx_ = (ctx); isar_feature_##name(ctx_->isar); })
576
577 /* Note that the gvec expanders operate on offsets + sizes. */
578 typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t);
579 typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t,
580 uint32_t, uint32_t);
581 typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t,
582 uint32_t, uint32_t, uint32_t);
583 typedef void GVecGen4Fn(unsigned, uint32_t, uint32_t, uint32_t,
584 uint32_t, uint32_t, uint32_t);
585
586 /* Function prototype for gen_ functions for calling Neon helpers */
587 typedef void NeonGenOneOpFn(TCGv_i32, TCGv_i32);
588 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
589 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
590 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
591 typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32,
592 TCGv_i32, TCGv_i32);
593 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
594 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
595 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
596 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
597 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
598 typedef void NeonGenTwoOpWidenFn(TCGv_i64, TCGv_i32, TCGv_i32);
599 typedef void NeonGenOneSingleOpFn(TCGv_i32, TCGv_i32, TCGv_ptr);
600 typedef void NeonGenTwoSingleOpFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
601 typedef void NeonGenTwoDoubleOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
602 typedef void NeonGenOne64OpFn(TCGv_i64, TCGv_i64);
603 typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr);
604 typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32);
605 typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr);
606 typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, MemOp);
607 typedef void WideShiftImmFn(TCGv_i64, TCGv_i64, int64_t shift);
608 typedef void WideShiftFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i32);
609 typedef void ShiftImmFn(TCGv_i32, TCGv_i32, int32_t shift);
610 typedef void ShiftFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
611
612 /**
613 * arm_tbflags_from_tb:
614 * @tb: the TranslationBlock
615 *
616 * Extract the flag values from @tb.
617 */
arm_tbflags_from_tb(const TranslationBlock * tb)618 static inline CPUARMTBFlags arm_tbflags_from_tb(const TranslationBlock *tb)
619 {
620 return (CPUARMTBFlags){ tb->flags, tb->cs_base };
621 }
622
623 /*
624 * Enum for argument to fpstatus_ptr().
625 */
626 typedef enum ARMFPStatusFlavour {
627 FPST_FPCR,
628 FPST_FPCR_F16,
629 FPST_STD,
630 FPST_STD_F16,
631 } ARMFPStatusFlavour;
632
633 /**
634 * fpstatus_ptr: return TCGv_ptr to the specified fp_status field
635 *
636 * We have multiple softfloat float_status fields in the Arm CPU state struct
637 * (see the comment in cpu.h for details). Return a TCGv_ptr which has
638 * been set up to point to the requested field in the CPU state struct.
639 * The options are:
640 *
641 * FPST_FPCR
642 * for non-FP16 operations controlled by the FPCR
643 * FPST_FPCR_F16
644 * for operations controlled by the FPCR where FPCR.FZ16 is to be used
645 * FPST_STD
646 * for A32/T32 Neon operations using the "standard FPSCR value"
647 * FPST_STD_F16
648 * as FPST_STD, but where FPCR.FZ16 is to be used
649 */
fpstatus_ptr(ARMFPStatusFlavour flavour)650 static inline TCGv_ptr fpstatus_ptr(ARMFPStatusFlavour flavour)
651 {
652 TCGv_ptr statusptr = tcg_temp_new_ptr();
653 int offset;
654
655 switch (flavour) {
656 case FPST_FPCR:
657 offset = offsetof(CPUARMState, vfp.fp_status);
658 break;
659 case FPST_FPCR_F16:
660 offset = offsetof(CPUARMState, vfp.fp_status_f16);
661 break;
662 case FPST_STD:
663 offset = offsetof(CPUARMState, vfp.standard_fp_status);
664 break;
665 case FPST_STD_F16:
666 offset = offsetof(CPUARMState, vfp.standard_fp_status_f16);
667 break;
668 default:
669 g_assert_not_reached();
670 }
671 tcg_gen_addi_ptr(statusptr, tcg_env, offset);
672 return statusptr;
673 }
674
675 /**
676 * finalize_memop_atom:
677 * @s: DisasContext
678 * @opc: size+sign+align of the memory operation
679 * @atom: atomicity of the memory operation
680 *
681 * Build the complete MemOp for a memory operation, including alignment,
682 * endianness, and atomicity.
683 *
684 * If (op & MO_AMASK) then the operation already contains the required
685 * alignment, e.g. for AccType_ATOMIC. Otherwise, this an optionally
686 * unaligned operation, e.g. for AccType_NORMAL.
687 *
688 * In the latter case, there are configuration bits that require alignment,
689 * and this is applied here. Note that there is no way to indicate that
690 * no alignment should ever be enforced; this must be handled manually.
691 */
finalize_memop_atom(DisasContext * s,MemOp opc,MemOp atom)692 static inline MemOp finalize_memop_atom(DisasContext *s, MemOp opc, MemOp atom)
693 {
694 if (s->align_mem && !(opc & MO_AMASK)) {
695 opc |= MO_ALIGN;
696 }
697 return opc | atom | s->be_data;
698 }
699
700 /**
701 * finalize_memop:
702 * @s: DisasContext
703 * @opc: size+sign+align of the memory operation
704 *
705 * Like finalize_memop_atom, but with default atomicity.
706 */
finalize_memop(DisasContext * s,MemOp opc)707 static inline MemOp finalize_memop(DisasContext *s, MemOp opc)
708 {
709 MemOp atom = s->lse2 ? MO_ATOM_WITHIN16 : MO_ATOM_IFALIGN;
710 return finalize_memop_atom(s, opc, atom);
711 }
712
713 /**
714 * finalize_memop_pair:
715 * @s: DisasContext
716 * @opc: size+sign+align of the memory operation
717 *
718 * Like finalize_memop_atom, but with atomicity for a pair.
719 * C.f. Pseudocode for Mem[], operand ispair.
720 */
finalize_memop_pair(DisasContext * s,MemOp opc)721 static inline MemOp finalize_memop_pair(DisasContext *s, MemOp opc)
722 {
723 MemOp atom = s->lse2 ? MO_ATOM_WITHIN16_PAIR : MO_ATOM_IFALIGN_PAIR;
724 return finalize_memop_atom(s, opc, atom);
725 }
726
727 /**
728 * finalize_memop_asimd:
729 * @s: DisasContext
730 * @opc: size+sign+align of the memory operation
731 *
732 * Like finalize_memop_atom, but with atomicity of AccessType_ASIMD.
733 */
finalize_memop_asimd(DisasContext * s,MemOp opc)734 static inline MemOp finalize_memop_asimd(DisasContext *s, MemOp opc)
735 {
736 /*
737 * In the pseudocode for Mem[], with AccessType_ASIMD, size == 16,
738 * if IsAligned(8), the first case provides separate atomicity for
739 * the pair of 64-bit accesses. If !IsAligned(8), the middle cases
740 * do not apply, and we're left with the final case of no atomicity.
741 * Thus MO_ATOM_IFALIGN_PAIR.
742 *
743 * For other sizes, normal LSE2 rules apply.
744 */
745 if ((opc & MO_SIZE) == MO_128) {
746 return finalize_memop_atom(s, opc, MO_ATOM_IFALIGN_PAIR);
747 }
748 return finalize_memop(s, opc);
749 }
750
751 /**
752 * asimd_imm_const: Expand an encoded SIMD constant value
753 *
754 * Expand a SIMD constant value. This is essentially the pseudocode
755 * AdvSIMDExpandImm, except that we also perform the boolean NOT needed for
756 * VMVN and VBIC (when cmode < 14 && op == 1).
757 *
758 * The combination cmode == 15 op == 1 is a reserved encoding for AArch32;
759 * callers must catch this; we return the 64-bit constant value defined
760 * for AArch64.
761 *
762 * cmode = 2,3,4,5,6,7,10,11,12,13 imm=0 was UNPREDICTABLE in v7A but
763 * is either not unpredictable or merely CONSTRAINED UNPREDICTABLE in v8A;
764 * we produce an immediate constant value of 0 in these cases.
765 */
766 uint64_t asimd_imm_const(uint32_t imm, int cmode, int op);
767
768 /*
769 * gen_disas_label:
770 * Create a label and cache a copy of pc_save.
771 */
gen_disas_label(DisasContext * s)772 static inline DisasLabel gen_disas_label(DisasContext *s)
773 {
774 return (DisasLabel){
775 .label = gen_new_label(),
776 .pc_save = s->pc_save,
777 };
778 }
779
780 /*
781 * set_disas_label:
782 * Emit a label and restore the cached copy of pc_save.
783 */
set_disas_label(DisasContext * s,DisasLabel l)784 static inline void set_disas_label(DisasContext *s, DisasLabel l)
785 {
786 gen_set_label(l.label);
787 s->pc_save = l.pc_save;
788 }
789
gen_lookup_cp_reg(uint32_t key)790 static inline TCGv_ptr gen_lookup_cp_reg(uint32_t key)
791 {
792 TCGv_ptr ret = tcg_temp_new_ptr();
793 gen_helper_lookup_cp_reg(ret, tcg_env, tcg_constant_i32(key));
794 return ret;
795 }
796
797 /*
798 * Set and reset rounding mode around another operation.
799 */
gen_set_rmode(ARMFPRounding rmode,TCGv_ptr fpst)800 static inline TCGv_i32 gen_set_rmode(ARMFPRounding rmode, TCGv_ptr fpst)
801 {
802 TCGv_i32 new = tcg_constant_i32(arm_rmode_to_sf(rmode));
803 TCGv_i32 old = tcg_temp_new_i32();
804
805 gen_helper_set_rmode(old, new, fpst);
806 return old;
807 }
808
gen_restore_rmode(TCGv_i32 old,TCGv_ptr fpst)809 static inline void gen_restore_rmode(TCGv_i32 old, TCGv_ptr fpst)
810 {
811 gen_helper_set_rmode(old, old, fpst);
812 }
813
814 /*
815 * Helpers for implementing sets of trans_* functions.
816 * Defer the implementation of NAME to FUNC, with optional extra arguments.
817 */
818 #define TRANS(NAME, FUNC, ...) \
819 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
820 { return FUNC(s, __VA_ARGS__); }
821 #define TRANS_FEAT(NAME, FEAT, FUNC, ...) \
822 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
823 { return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); }
824
825 #define TRANS_FEAT_NONSTREAMING(NAME, FEAT, FUNC, ...) \
826 static bool trans_##NAME(DisasContext *s, arg_##NAME *a) \
827 { \
828 s->is_nonstreaming = true; \
829 return dc_isar_feature(FEAT, s) && FUNC(s, __VA_ARGS__); \
830 }
831
832 #endif /* TARGET_ARM_TRANSLATE_H */
833