1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/kernel/setup.c
4 *
5 * Copyright (C) 1995-2001 Russell King
6 */
7 #include <linux/efi.h>
8 #include <linux/export.h>
9 #include <linux/kernel.h>
10 #include <linux/stddef.h>
11 #include <linux/ioport.h>
12 #include <linux/delay.h>
13 #include <linux/utsname.h>
14 #include <linux/initrd.h>
15 #include <linux/console.h>
16 #include <linux/seq_file.h>
17 #include <linux/screen_info.h>
18 #include <linux/of_platform.h>
19 #include <linux/init.h>
20 #include <linux/kexec.h>
21 #include <linux/libfdt.h>
22 #include <linux/of_fdt.h>
23 #include <linux/cpu.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/proc_fs.h>
27 #include <linux/memblock.h>
28 #include <linux/bug.h>
29 #include <linux/compiler.h>
30 #include <linux/sort.h>
31 #include <linux/psci.h>
32
33 #include <asm/unified.h>
34 #include <asm/cp15.h>
35 #include <asm/cpu.h>
36 #include <asm/cputype.h>
37 #include <asm/efi.h>
38 #include <asm/elf.h>
39 #include <asm/early_ioremap.h>
40 #include <asm/fixmap.h>
41 #include <asm/procinfo.h>
42 #include <asm/psci.h>
43 #include <asm/sections.h>
44 #include <asm/setup.h>
45 #include <asm/smp_plat.h>
46 #include <asm/mach-types.h>
47 #include <asm/cacheflush.h>
48 #include <asm/cachetype.h>
49 #include <asm/tlbflush.h>
50 #include <asm/xen/hypervisor.h>
51
52 #include <asm/prom.h>
53 #include <asm/mach/arch.h>
54 #include <asm/mach/irq.h>
55 #include <asm/mach/time.h>
56 #include <asm/system_info.h>
57 #include <asm/system_misc.h>
58 #include <asm/traps.h>
59 #include <asm/unwind.h>
60 #include <asm/memblock.h>
61 #include <asm/virt.h>
62 #include <asm/kasan.h>
63
64 #include "atags.h"
65
66
67 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
68 char fpe_type[8];
69
fpe_setup(char * line)70 static int __init fpe_setup(char *line)
71 {
72 memcpy(fpe_type, line, 8);
73 return 1;
74 }
75
76 __setup("fpe=", fpe_setup);
77 #endif
78
79 unsigned int processor_id;
80 EXPORT_SYMBOL(processor_id);
81 unsigned int __machine_arch_type __read_mostly;
82 EXPORT_SYMBOL(__machine_arch_type);
83 unsigned int cacheid __read_mostly;
84 EXPORT_SYMBOL(cacheid);
85
86 unsigned int __atags_pointer __initdata;
87
88 unsigned int system_rev;
89 EXPORT_SYMBOL(system_rev);
90
91 const char *system_serial;
92 EXPORT_SYMBOL(system_serial);
93
94 unsigned int system_serial_low;
95 EXPORT_SYMBOL(system_serial_low);
96
97 unsigned int system_serial_high;
98 EXPORT_SYMBOL(system_serial_high);
99
100 unsigned int elf_hwcap __read_mostly;
101 EXPORT_SYMBOL(elf_hwcap);
102
103 unsigned int elf_hwcap2 __read_mostly;
104 EXPORT_SYMBOL(elf_hwcap2);
105
106
107 #ifdef MULTI_CPU
108 struct processor processor __ro_after_init;
109 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
110 struct processor *cpu_vtable[NR_CPUS] = {
111 [0] = &processor,
112 };
113 #endif
114 #endif
115 #ifdef MULTI_TLB
116 struct cpu_tlb_fns cpu_tlb __ro_after_init;
117 #endif
118 #ifdef MULTI_USER
119 struct cpu_user_fns cpu_user __ro_after_init;
120 #endif
121 #ifdef MULTI_CACHE
122 struct cpu_cache_fns cpu_cache __ro_after_init;
123 #endif
124 #ifdef CONFIG_OUTER_CACHE
125 struct outer_cache_fns outer_cache __ro_after_init;
126 EXPORT_SYMBOL(outer_cache);
127 #endif
128
129 /*
130 * Cached cpu_architecture() result for use by assembler code.
131 * C code should use the cpu_architecture() function instead of accessing this
132 * variable directly.
133 */
134 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
135
136 struct stack {
137 u32 irq[4];
138 u32 abt[4];
139 u32 und[4];
140 u32 fiq[4];
141 } ____cacheline_aligned;
142
143 #ifndef CONFIG_CPU_V7M
144 static struct stack stacks[NR_CPUS];
145 #endif
146
147 char elf_platform[ELF_PLATFORM_SIZE];
148 EXPORT_SYMBOL(elf_platform);
149
150 static const char *cpu_name;
151 static const char *machine_name;
152 static char __initdata cmd_line[COMMAND_LINE_SIZE];
153 const struct machine_desc *machine_desc __initdata;
154
155 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
156 #define ENDIANNESS ((char)endian_test.l)
157
158 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
159
160 /*
161 * Standard memory resources
162 */
163 static struct resource mem_res[] = {
164 {
165 .name = "Video RAM",
166 .start = 0,
167 .end = 0,
168 .flags = IORESOURCE_MEM
169 },
170 {
171 .name = "Kernel code",
172 .start = 0,
173 .end = 0,
174 .flags = IORESOURCE_SYSTEM_RAM
175 },
176 {
177 .name = "Kernel data",
178 .start = 0,
179 .end = 0,
180 .flags = IORESOURCE_SYSTEM_RAM
181 }
182 };
183
184 #define video_ram mem_res[0]
185 #define kernel_code mem_res[1]
186 #define kernel_data mem_res[2]
187
188 static struct resource io_res[] = {
189 {
190 .name = "reserved",
191 .start = 0x3bc,
192 .end = 0x3be,
193 .flags = IORESOURCE_IO | IORESOURCE_BUSY
194 },
195 {
196 .name = "reserved",
197 .start = 0x378,
198 .end = 0x37f,
199 .flags = IORESOURCE_IO | IORESOURCE_BUSY
200 },
201 {
202 .name = "reserved",
203 .start = 0x278,
204 .end = 0x27f,
205 .flags = IORESOURCE_IO | IORESOURCE_BUSY
206 }
207 };
208
209 #define lp0 io_res[0]
210 #define lp1 io_res[1]
211 #define lp2 io_res[2]
212
213 static const char *proc_arch[] = {
214 "undefined/unknown",
215 "3",
216 "4",
217 "4T",
218 "5",
219 "5T",
220 "5TE",
221 "5TEJ",
222 "6TEJ",
223 "7",
224 "7M",
225 "?(12)",
226 "?(13)",
227 "?(14)",
228 "?(15)",
229 "?(16)",
230 "?(17)",
231 };
232
233 #ifdef CONFIG_CPU_V7M
__get_cpu_architecture(void)234 static int __get_cpu_architecture(void)
235 {
236 return CPU_ARCH_ARMv7M;
237 }
238 #else
__get_cpu_architecture(void)239 static int __get_cpu_architecture(void)
240 {
241 int cpu_arch;
242
243 if ((read_cpuid_id() & 0x0008f000) == 0) {
244 cpu_arch = CPU_ARCH_UNKNOWN;
245 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
246 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
247 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
248 cpu_arch = (read_cpuid_id() >> 16) & 7;
249 if (cpu_arch)
250 cpu_arch += CPU_ARCH_ARMv3;
251 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
252 /* Revised CPUID format. Read the Memory Model Feature
253 * Register 0 and check for VMSAv7 or PMSAv7 */
254 unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
255 if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
256 (mmfr0 & 0x000000f0) >= 0x00000030)
257 cpu_arch = CPU_ARCH_ARMv7;
258 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
259 (mmfr0 & 0x000000f0) == 0x00000020)
260 cpu_arch = CPU_ARCH_ARMv6;
261 else
262 cpu_arch = CPU_ARCH_UNKNOWN;
263 } else
264 cpu_arch = CPU_ARCH_UNKNOWN;
265
266 return cpu_arch;
267 }
268 #endif
269
cpu_architecture(void)270 int __pure cpu_architecture(void)
271 {
272 BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
273
274 return __cpu_architecture;
275 }
276
cpu_has_aliasing_icache(unsigned int arch)277 static int cpu_has_aliasing_icache(unsigned int arch)
278 {
279 int aliasing_icache;
280 unsigned int id_reg, num_sets, line_size;
281
282 /* PIPT caches never alias. */
283 if (icache_is_pipt())
284 return 0;
285
286 /* arch specifies the register format */
287 switch (arch) {
288 case CPU_ARCH_ARMv7:
289 set_csselr(CSSELR_ICACHE | CSSELR_L1);
290 isb();
291 id_reg = read_ccsidr();
292 line_size = 4 << ((id_reg & 0x7) + 2);
293 num_sets = ((id_reg >> 13) & 0x7fff) + 1;
294 aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
295 break;
296 case CPU_ARCH_ARMv6:
297 aliasing_icache = read_cpuid_cachetype() & (1 << 11);
298 break;
299 default:
300 /* I-cache aliases will be handled by D-cache aliasing code */
301 aliasing_icache = 0;
302 }
303
304 return aliasing_icache;
305 }
306
cacheid_init(void)307 static void __init cacheid_init(void)
308 {
309 unsigned int arch = cpu_architecture();
310
311 if (arch >= CPU_ARCH_ARMv6) {
312 unsigned int cachetype = read_cpuid_cachetype();
313
314 if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
315 cacheid = 0;
316 } else if ((cachetype & (7 << 29)) == 4 << 29) {
317 /* ARMv7 register format */
318 arch = CPU_ARCH_ARMv7;
319 cacheid = CACHEID_VIPT_NONALIASING;
320 switch (cachetype & (3 << 14)) {
321 case (1 << 14):
322 cacheid |= CACHEID_ASID_TAGGED;
323 break;
324 case (3 << 14):
325 cacheid |= CACHEID_PIPT;
326 break;
327 }
328 } else {
329 arch = CPU_ARCH_ARMv6;
330 if (cachetype & (1 << 23))
331 cacheid = CACHEID_VIPT_ALIASING;
332 else
333 cacheid = CACHEID_VIPT_NONALIASING;
334 }
335 if (cpu_has_aliasing_icache(arch))
336 cacheid |= CACHEID_VIPT_I_ALIASING;
337 } else {
338 cacheid = CACHEID_VIVT;
339 }
340
341 pr_info("CPU: %s data cache, %s instruction cache\n",
342 cache_is_vivt() ? "VIVT" :
343 cache_is_vipt_aliasing() ? "VIPT aliasing" :
344 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
345 cache_is_vivt() ? "VIVT" :
346 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
347 icache_is_vipt_aliasing() ? "VIPT aliasing" :
348 icache_is_pipt() ? "PIPT" :
349 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
350 }
351
352 /*
353 * These functions re-use the assembly code in head.S, which
354 * already provide the required functionality.
355 */
356 extern struct proc_info_list *lookup_processor_type(unsigned int);
357
early_print(const char * str,...)358 void __init early_print(const char *str, ...)
359 {
360 extern void printascii(const char *);
361 char buf[256];
362 va_list ap;
363
364 va_start(ap, str);
365 vsnprintf(buf, sizeof(buf), str, ap);
366 va_end(ap);
367
368 #ifdef CONFIG_DEBUG_LL
369 printascii(buf);
370 #endif
371 printk("%s", buf);
372 }
373
374 #ifdef CONFIG_ARM_PATCH_IDIV
375
sdiv_instruction(void)376 static inline u32 __attribute_const__ sdiv_instruction(void)
377 {
378 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
379 /* "sdiv r0, r0, r1" */
380 u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
381 return __opcode_to_mem_thumb32(insn);
382 }
383
384 /* "sdiv r0, r0, r1" */
385 return __opcode_to_mem_arm(0xe710f110);
386 }
387
udiv_instruction(void)388 static inline u32 __attribute_const__ udiv_instruction(void)
389 {
390 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
391 /* "udiv r0, r0, r1" */
392 u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
393 return __opcode_to_mem_thumb32(insn);
394 }
395
396 /* "udiv r0, r0, r1" */
397 return __opcode_to_mem_arm(0xe730f110);
398 }
399
bx_lr_instruction(void)400 static inline u32 __attribute_const__ bx_lr_instruction(void)
401 {
402 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
403 /* "bx lr; nop" */
404 u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
405 return __opcode_to_mem_thumb32(insn);
406 }
407
408 /* "bx lr" */
409 return __opcode_to_mem_arm(0xe12fff1e);
410 }
411
patch_aeabi_idiv(void)412 static void __init patch_aeabi_idiv(void)
413 {
414 extern void __aeabi_uidiv(void);
415 extern void __aeabi_idiv(void);
416 uintptr_t fn_addr;
417 unsigned int mask;
418
419 mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
420 if (!(elf_hwcap & mask))
421 return;
422
423 pr_info("CPU: div instructions available: patching division code\n");
424
425 fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
426 asm ("" : "+g" (fn_addr));
427 ((u32 *)fn_addr)[0] = udiv_instruction();
428 ((u32 *)fn_addr)[1] = bx_lr_instruction();
429 flush_icache_range(fn_addr, fn_addr + 8);
430
431 fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
432 asm ("" : "+g" (fn_addr));
433 ((u32 *)fn_addr)[0] = sdiv_instruction();
434 ((u32 *)fn_addr)[1] = bx_lr_instruction();
435 flush_icache_range(fn_addr, fn_addr + 8);
436 }
437
438 #else
patch_aeabi_idiv(void)439 static inline void patch_aeabi_idiv(void) { }
440 #endif
441
cpuid_init_hwcaps(void)442 static void __init cpuid_init_hwcaps(void)
443 {
444 int block;
445 u32 isar5;
446 u32 isar6;
447 u32 pfr2;
448
449 if (cpu_architecture() < CPU_ARCH_ARMv7)
450 return;
451
452 block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
453 if (block >= 2)
454 elf_hwcap |= HWCAP_IDIVA;
455 if (block >= 1)
456 elf_hwcap |= HWCAP_IDIVT;
457
458 /* LPAE implies atomic ldrd/strd instructions */
459 block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
460 if (block >= 5)
461 elf_hwcap |= HWCAP_LPAE;
462
463 /* check for supported v8 Crypto instructions */
464 isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
465
466 block = cpuid_feature_extract_field(isar5, 4);
467 if (block >= 2)
468 elf_hwcap2 |= HWCAP2_PMULL;
469 if (block >= 1)
470 elf_hwcap2 |= HWCAP2_AES;
471
472 block = cpuid_feature_extract_field(isar5, 8);
473 if (block >= 1)
474 elf_hwcap2 |= HWCAP2_SHA1;
475
476 block = cpuid_feature_extract_field(isar5, 12);
477 if (block >= 1)
478 elf_hwcap2 |= HWCAP2_SHA2;
479
480 block = cpuid_feature_extract_field(isar5, 16);
481 if (block >= 1)
482 elf_hwcap2 |= HWCAP2_CRC32;
483
484 /* Check for Speculation barrier instruction */
485 isar6 = read_cpuid_ext(CPUID_EXT_ISAR6);
486 block = cpuid_feature_extract_field(isar6, 12);
487 if (block >= 1)
488 elf_hwcap2 |= HWCAP2_SB;
489
490 /* Check for Speculative Store Bypassing control */
491 pfr2 = read_cpuid_ext(CPUID_EXT_PFR2);
492 block = cpuid_feature_extract_field(pfr2, 4);
493 if (block >= 1)
494 elf_hwcap2 |= HWCAP2_SSBS;
495 }
496
elf_hwcap_fixup(void)497 static void __init elf_hwcap_fixup(void)
498 {
499 unsigned id = read_cpuid_id();
500
501 /*
502 * HWCAP_TLS is available only on 1136 r1p0 and later,
503 * see also kuser_get_tls_init.
504 */
505 if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
506 ((id >> 20) & 3) == 0) {
507 elf_hwcap &= ~HWCAP_TLS;
508 return;
509 }
510
511 /* Verify if CPUID scheme is implemented */
512 if ((id & 0x000f0000) != 0x000f0000)
513 return;
514
515 /*
516 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
517 * avoid advertising SWP; it may not be atomic with
518 * multiprocessing cores.
519 */
520 if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
521 (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
522 cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
523 elf_hwcap &= ~HWCAP_SWP;
524 }
525
526 /*
527 * cpu_init - initialise one CPU.
528 *
529 * cpu_init sets up the per-CPU stacks.
530 */
cpu_init(void)531 void notrace cpu_init(void)
532 {
533 #ifndef CONFIG_CPU_V7M
534 unsigned int cpu = smp_processor_id();
535 struct stack *stk = &stacks[cpu];
536
537 if (cpu >= NR_CPUS) {
538 pr_crit("CPU%u: bad primary CPU number\n", cpu);
539 BUG();
540 }
541
542 /*
543 * This only works on resume and secondary cores. For booting on the
544 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
545 */
546 set_my_cpu_offset(per_cpu_offset(cpu));
547
548 cpu_proc_init();
549
550 /*
551 * Define the placement constraint for the inline asm directive below.
552 * In Thumb-2, msr with an immediate value is not allowed.
553 */
554 #ifdef CONFIG_THUMB2_KERNEL
555 #define PLC_l "l"
556 #define PLC_r "r"
557 #else
558 #define PLC_l "I"
559 #define PLC_r "I"
560 #endif
561
562 /*
563 * setup stacks for re-entrant exception handlers
564 */
565 __asm__ (
566 "msr cpsr_c, %1\n\t"
567 "add r14, %0, %2\n\t"
568 "mov sp, r14\n\t"
569 "msr cpsr_c, %3\n\t"
570 "add r14, %0, %4\n\t"
571 "mov sp, r14\n\t"
572 "msr cpsr_c, %5\n\t"
573 "add r14, %0, %6\n\t"
574 "mov sp, r14\n\t"
575 "msr cpsr_c, %7\n\t"
576 "add r14, %0, %8\n\t"
577 "mov sp, r14\n\t"
578 "msr cpsr_c, %9"
579 :
580 : "r" (stk),
581 PLC_r (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
582 "I" (offsetof(struct stack, irq[0])),
583 PLC_r (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
584 "I" (offsetof(struct stack, abt[0])),
585 PLC_r (PSR_F_BIT | PSR_I_BIT | UND_MODE),
586 "I" (offsetof(struct stack, und[0])),
587 PLC_r (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
588 "I" (offsetof(struct stack, fiq[0])),
589 PLC_l (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
590 : "r14");
591 #endif
592 }
593
594 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
595
smp_setup_processor_id(void)596 void __init smp_setup_processor_id(void)
597 {
598 int i;
599 u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
600 u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
601
602 cpu_logical_map(0) = cpu;
603 for (i = 1; i < nr_cpu_ids; ++i)
604 cpu_logical_map(i) = i == cpu ? 0 : i;
605
606 /*
607 * clear __my_cpu_offset on boot CPU to avoid hang caused by
608 * using percpu variable early, for example, lockdep will
609 * access percpu variable inside lock_release
610 */
611 set_my_cpu_offset(0);
612
613 pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
614 }
615
616 struct mpidr_hash mpidr_hash;
617 #ifdef CONFIG_SMP
618 /**
619 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
620 * level in order to build a linear index from an
621 * MPIDR value. Resulting algorithm is a collision
622 * free hash carried out through shifting and ORing
623 */
smp_build_mpidr_hash(void)624 static void __init smp_build_mpidr_hash(void)
625 {
626 u32 i, affinity;
627 u32 fs[3], bits[3], ls, mask = 0;
628 /*
629 * Pre-scan the list of MPIDRS and filter out bits that do
630 * not contribute to affinity levels, ie they never toggle.
631 */
632 for_each_possible_cpu(i)
633 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
634 pr_debug("mask of set bits 0x%x\n", mask);
635 /*
636 * Find and stash the last and first bit set at all affinity levels to
637 * check how many bits are required to represent them.
638 */
639 for (i = 0; i < 3; i++) {
640 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
641 /*
642 * Find the MSB bit and LSB bits position
643 * to determine how many bits are required
644 * to express the affinity level.
645 */
646 ls = fls(affinity);
647 fs[i] = affinity ? ffs(affinity) - 1 : 0;
648 bits[i] = ls - fs[i];
649 }
650 /*
651 * An index can be created from the MPIDR by isolating the
652 * significant bits at each affinity level and by shifting
653 * them in order to compress the 24 bits values space to a
654 * compressed set of values. This is equivalent to hashing
655 * the MPIDR through shifting and ORing. It is a collision free
656 * hash though not minimal since some levels might contain a number
657 * of CPUs that is not an exact power of 2 and their bit
658 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
659 */
660 mpidr_hash.shift_aff[0] = fs[0];
661 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
662 mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
663 (bits[1] + bits[0]);
664 mpidr_hash.mask = mask;
665 mpidr_hash.bits = bits[2] + bits[1] + bits[0];
666 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
667 mpidr_hash.shift_aff[0],
668 mpidr_hash.shift_aff[1],
669 mpidr_hash.shift_aff[2],
670 mpidr_hash.mask,
671 mpidr_hash.bits);
672 /*
673 * 4x is an arbitrary value used to warn on a hash table much bigger
674 * than expected on most systems.
675 */
676 if (mpidr_hash_size() > 4 * num_possible_cpus())
677 pr_warn("Large number of MPIDR hash buckets detected\n");
678 sync_cache_w(&mpidr_hash);
679 }
680 #endif
681
682 /*
683 * locate processor in the list of supported processor types. The linker
684 * builds this table for us from the entries in arch/arm/mm/proc-*.S
685 */
lookup_processor(u32 midr)686 struct proc_info_list *lookup_processor(u32 midr)
687 {
688 struct proc_info_list *list = lookup_processor_type(midr);
689
690 if (!list) {
691 pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n",
692 smp_processor_id(), midr);
693 while (1)
694 /* can't use cpu_relax() here as it may require MMU setup */;
695 }
696
697 return list;
698 }
699
setup_processor(void)700 static void __init setup_processor(void)
701 {
702 unsigned int midr = read_cpuid_id();
703 struct proc_info_list *list = lookup_processor(midr);
704
705 cpu_name = list->cpu_name;
706 __cpu_architecture = __get_cpu_architecture();
707
708 init_proc_vtable(list->proc);
709 #ifdef MULTI_TLB
710 cpu_tlb = *list->tlb;
711 #endif
712 #ifdef MULTI_USER
713 cpu_user = *list->user;
714 #endif
715 #ifdef MULTI_CACHE
716 cpu_cache = *list->cache;
717 #endif
718
719 pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
720 list->cpu_name, midr, midr & 15,
721 proc_arch[cpu_architecture()], get_cr());
722
723 snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
724 list->arch_name, ENDIANNESS);
725 snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
726 list->elf_name, ENDIANNESS);
727 elf_hwcap = list->elf_hwcap;
728
729 cpuid_init_hwcaps();
730 patch_aeabi_idiv();
731
732 #ifndef CONFIG_ARM_THUMB
733 elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
734 #endif
735 #ifdef CONFIG_MMU
736 init_default_cache_policy(list->__cpu_mm_mmu_flags);
737 #endif
738 erratum_a15_798181_init();
739
740 elf_hwcap_fixup();
741
742 cacheid_init();
743 cpu_init();
744 }
745
dump_machine_table(void)746 void __init dump_machine_table(void)
747 {
748 const struct machine_desc *p;
749
750 early_print("Available machine support:\n\nID (hex)\tNAME\n");
751 for_each_machine_desc(p)
752 early_print("%08x\t%s\n", p->nr, p->name);
753
754 early_print("\nPlease check your kernel config and/or bootloader.\n");
755
756 while (true)
757 /* can't use cpu_relax() here as it may require MMU setup */;
758 }
759
arm_add_memory(u64 start,u64 size)760 int __init arm_add_memory(u64 start, u64 size)
761 {
762 u64 aligned_start;
763
764 /*
765 * Ensure that start/size are aligned to a page boundary.
766 * Size is rounded down, start is rounded up.
767 */
768 aligned_start = PAGE_ALIGN(start);
769 if (aligned_start > start + size)
770 size = 0;
771 else
772 size -= aligned_start - start;
773
774 #ifndef CONFIG_PHYS_ADDR_T_64BIT
775 if (aligned_start > ULONG_MAX) {
776 pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
777 start);
778 return -EINVAL;
779 }
780
781 if (aligned_start + size > ULONG_MAX) {
782 pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
783 (long long)start);
784 /*
785 * To ensure bank->start + bank->size is representable in
786 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
787 * This means we lose a page after masking.
788 */
789 size = ULONG_MAX - aligned_start;
790 }
791 #endif
792
793 if (aligned_start < PHYS_OFFSET) {
794 if (aligned_start + size <= PHYS_OFFSET) {
795 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
796 aligned_start, aligned_start + size);
797 return -EINVAL;
798 }
799
800 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
801 aligned_start, (u64)PHYS_OFFSET);
802
803 size -= PHYS_OFFSET - aligned_start;
804 aligned_start = PHYS_OFFSET;
805 }
806
807 start = aligned_start;
808 size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
809
810 /*
811 * Check whether this memory region has non-zero size or
812 * invalid node number.
813 */
814 if (size == 0)
815 return -EINVAL;
816
817 memblock_add(start, size);
818 return 0;
819 }
820
821 /*
822 * Pick out the memory size. We look for mem=size@start,
823 * where start and size are "size[KkMm]"
824 */
825
early_mem(char * p)826 static int __init early_mem(char *p)
827 {
828 static int usermem __initdata = 0;
829 u64 size;
830 u64 start;
831 char *endp;
832
833 /*
834 * If the user specifies memory size, we
835 * blow away any automatically generated
836 * size.
837 */
838 if (usermem == 0) {
839 usermem = 1;
840 memblock_remove(memblock_start_of_DRAM(),
841 memblock_end_of_DRAM() - memblock_start_of_DRAM());
842 }
843
844 start = PHYS_OFFSET;
845 size = memparse(p, &endp);
846 if (*endp == '@')
847 start = memparse(endp + 1, NULL);
848
849 arm_add_memory(start, size);
850
851 return 0;
852 }
853 early_param("mem", early_mem);
854
request_standard_resources(const struct machine_desc * mdesc)855 static void __init request_standard_resources(const struct machine_desc *mdesc)
856 {
857 phys_addr_t start, end, res_end;
858 struct resource *res;
859 u64 i;
860
861 kernel_code.start = virt_to_phys(_text);
862 kernel_code.end = virt_to_phys(__init_begin - 1);
863 kernel_data.start = virt_to_phys(_sdata);
864 kernel_data.end = virt_to_phys(_end - 1);
865
866 for_each_mem_range(i, &start, &end) {
867 unsigned long boot_alias_start;
868
869 /*
870 * In memblock, end points to the first byte after the
871 * range while in resourses, end points to the last byte in
872 * the range.
873 */
874 res_end = end - 1;
875
876 /*
877 * Some systems have a special memory alias which is only
878 * used for booting. We need to advertise this region to
879 * kexec-tools so they know where bootable RAM is located.
880 */
881 boot_alias_start = phys_to_idmap(start);
882 if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
883 res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
884 if (!res)
885 panic("%s: Failed to allocate %zu bytes\n",
886 __func__, sizeof(*res));
887 res->name = "System RAM (boot alias)";
888 res->start = boot_alias_start;
889 res->end = phys_to_idmap(res_end);
890 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
891 request_resource(&iomem_resource, res);
892 }
893
894 res = memblock_alloc(sizeof(*res), SMP_CACHE_BYTES);
895 if (!res)
896 panic("%s: Failed to allocate %zu bytes\n", __func__,
897 sizeof(*res));
898 res->name = "System RAM";
899 res->start = start;
900 res->end = res_end;
901 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
902
903 request_resource(&iomem_resource, res);
904
905 if (kernel_code.start >= res->start &&
906 kernel_code.end <= res->end)
907 request_resource(res, &kernel_code);
908 if (kernel_data.start >= res->start &&
909 kernel_data.end <= res->end)
910 request_resource(res, &kernel_data);
911 }
912
913 if (mdesc->video_start) {
914 video_ram.start = mdesc->video_start;
915 video_ram.end = mdesc->video_end;
916 request_resource(&iomem_resource, &video_ram);
917 }
918
919 /*
920 * Some machines don't have the possibility of ever
921 * possessing lp0, lp1 or lp2
922 */
923 if (mdesc->reserve_lp0)
924 request_resource(&ioport_resource, &lp0);
925 if (mdesc->reserve_lp1)
926 request_resource(&ioport_resource, &lp1);
927 if (mdesc->reserve_lp2)
928 request_resource(&ioport_resource, &lp2);
929 }
930
931 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
932 defined(CONFIG_EFI)
933 struct screen_info screen_info = {
934 .orig_video_lines = 30,
935 .orig_video_cols = 80,
936 .orig_video_mode = 0,
937 .orig_video_ega_bx = 0,
938 .orig_video_isVGA = 1,
939 .orig_video_points = 8
940 };
941 #endif
942
customize_machine(void)943 static int __init customize_machine(void)
944 {
945 /*
946 * customizes platform devices, or adds new ones
947 * On DT based machines, we fall back to populating the
948 * machine from the device tree, if no callback is provided,
949 * otherwise we would always need an init_machine callback.
950 */
951 if (machine_desc->init_machine)
952 machine_desc->init_machine();
953
954 return 0;
955 }
956 arch_initcall(customize_machine);
957
init_machine_late(void)958 static int __init init_machine_late(void)
959 {
960 struct device_node *root;
961 int ret;
962
963 if (machine_desc->init_late)
964 machine_desc->init_late();
965
966 root = of_find_node_by_path("/");
967 if (root) {
968 ret = of_property_read_string(root, "serial-number",
969 &system_serial);
970 if (ret)
971 system_serial = NULL;
972 }
973
974 if (!system_serial)
975 system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
976 system_serial_high,
977 system_serial_low);
978
979 return 0;
980 }
981 late_initcall(init_machine_late);
982
983 #ifdef CONFIG_KEXEC
984 /*
985 * The crash region must be aligned to 128MB to avoid
986 * zImage relocating below the reserved region.
987 */
988 #define CRASH_ALIGN (128 << 20)
989
get_total_mem(void)990 static inline unsigned long long get_total_mem(void)
991 {
992 unsigned long total;
993
994 total = max_low_pfn - min_low_pfn;
995 return total << PAGE_SHIFT;
996 }
997
998 /**
999 * reserve_crashkernel() - reserves memory are for crash kernel
1000 *
1001 * This function reserves memory area given in "crashkernel=" kernel command
1002 * line parameter. The memory reserved is used by a dump capture kernel when
1003 * primary kernel is crashing.
1004 */
reserve_crashkernel(void)1005 static void __init reserve_crashkernel(void)
1006 {
1007 unsigned long long crash_size, crash_base;
1008 unsigned long long total_mem;
1009 int ret;
1010
1011 total_mem = get_total_mem();
1012 ret = parse_crashkernel(boot_command_line, total_mem,
1013 &crash_size, &crash_base);
1014 /* invalid value specified or crashkernel=0 */
1015 if (ret || !crash_size)
1016 return;
1017
1018 if (crash_base <= 0) {
1019 unsigned long long crash_max = idmap_to_phys((u32)~0);
1020 unsigned long long lowmem_max = __pa(high_memory - 1) + 1;
1021 if (crash_max > lowmem_max)
1022 crash_max = lowmem_max;
1023
1024 crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN,
1025 CRASH_ALIGN, crash_max);
1026 if (!crash_base) {
1027 pr_err("crashkernel reservation failed - No suitable area found.\n");
1028 return;
1029 }
1030 } else {
1031 unsigned long long crash_max = crash_base + crash_size;
1032 unsigned long long start;
1033
1034 start = memblock_phys_alloc_range(crash_size, SECTION_SIZE,
1035 crash_base, crash_max);
1036 if (!start) {
1037 pr_err("crashkernel reservation failed - memory is in use.\n");
1038 return;
1039 }
1040 }
1041
1042 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1043 (unsigned long)(crash_size >> 20),
1044 (unsigned long)(crash_base >> 20),
1045 (unsigned long)(total_mem >> 20));
1046
1047 /* The crashk resource must always be located in normal mem */
1048 crashk_res.start = crash_base;
1049 crashk_res.end = crash_base + crash_size - 1;
1050 insert_resource(&iomem_resource, &crashk_res);
1051
1052 if (arm_has_idmap_alias()) {
1053 /*
1054 * If we have a special RAM alias for use at boot, we
1055 * need to advertise to kexec tools where the alias is.
1056 */
1057 static struct resource crashk_boot_res = {
1058 .name = "Crash kernel (boot alias)",
1059 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1060 };
1061
1062 crashk_boot_res.start = phys_to_idmap(crash_base);
1063 crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1064 insert_resource(&iomem_resource, &crashk_boot_res);
1065 }
1066 }
1067 #else
reserve_crashkernel(void)1068 static inline void reserve_crashkernel(void) {}
1069 #endif /* CONFIG_KEXEC */
1070
hyp_mode_check(void)1071 void __init hyp_mode_check(void)
1072 {
1073 #ifdef CONFIG_ARM_VIRT_EXT
1074 sync_boot_mode();
1075
1076 if (is_hyp_mode_available()) {
1077 pr_info("CPU: All CPU(s) started in HYP mode.\n");
1078 pr_info("CPU: Virtualization extensions available.\n");
1079 } else if (is_hyp_mode_mismatched()) {
1080 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1081 __boot_cpu_mode & MODE_MASK);
1082 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1083 } else
1084 pr_info("CPU: All CPU(s) started in SVC mode.\n");
1085 #endif
1086 }
1087
1088 static void (*__arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
1089
arm_restart(struct notifier_block * nb,unsigned long action,void * data)1090 static int arm_restart(struct notifier_block *nb, unsigned long action,
1091 void *data)
1092 {
1093 __arm_pm_restart(action, data);
1094 return NOTIFY_DONE;
1095 }
1096
1097 static struct notifier_block arm_restart_nb = {
1098 .notifier_call = arm_restart,
1099 .priority = 128,
1100 };
1101
setup_arch(char ** cmdline_p)1102 void __init setup_arch(char **cmdline_p)
1103 {
1104 const struct machine_desc *mdesc = NULL;
1105 void *atags_vaddr = NULL;
1106
1107 if (__atags_pointer)
1108 atags_vaddr = FDT_VIRT_BASE(__atags_pointer);
1109
1110 setup_processor();
1111 if (atags_vaddr) {
1112 mdesc = setup_machine_fdt(atags_vaddr);
1113 if (mdesc)
1114 memblock_reserve(__atags_pointer,
1115 fdt_totalsize(atags_vaddr));
1116 }
1117 if (!mdesc)
1118 mdesc = setup_machine_tags(atags_vaddr, __machine_arch_type);
1119 if (!mdesc) {
1120 early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
1121 early_print(" r1=0x%08x, r2=0x%08x\n", __machine_arch_type,
1122 __atags_pointer);
1123 if (__atags_pointer)
1124 early_print(" r2[]=%*ph\n", 16, atags_vaddr);
1125 dump_machine_table();
1126 }
1127
1128 machine_desc = mdesc;
1129 machine_name = mdesc->name;
1130 dump_stack_set_arch_desc("%s", mdesc->name);
1131
1132 if (mdesc->reboot_mode != REBOOT_HARD)
1133 reboot_mode = mdesc->reboot_mode;
1134
1135 setup_initial_init_mm(_text, _etext, _edata, _end);
1136
1137 /* populate cmd_line too for later use, preserving boot_command_line */
1138 strscpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1139 *cmdline_p = cmd_line;
1140
1141 early_fixmap_init();
1142 early_ioremap_init();
1143
1144 parse_early_param();
1145
1146 #ifdef CONFIG_MMU
1147 early_mm_init(mdesc);
1148 #endif
1149 setup_dma_zone(mdesc);
1150 xen_early_init();
1151 arm_efi_init();
1152 /*
1153 * Make sure the calculation for lowmem/highmem is set appropriately
1154 * before reserving/allocating any memory
1155 */
1156 adjust_lowmem_bounds();
1157 arm_memblock_init(mdesc);
1158 /* Memory may have been removed so recalculate the bounds. */
1159 adjust_lowmem_bounds();
1160
1161 early_ioremap_reset();
1162
1163 paging_init(mdesc);
1164 kasan_init();
1165 request_standard_resources(mdesc);
1166
1167 if (mdesc->restart) {
1168 __arm_pm_restart = mdesc->restart;
1169 register_restart_handler(&arm_restart_nb);
1170 }
1171
1172 unflatten_device_tree();
1173
1174 arm_dt_init_cpu_maps();
1175 psci_dt_init();
1176 #ifdef CONFIG_SMP
1177 if (is_smp()) {
1178 if (!mdesc->smp_init || !mdesc->smp_init()) {
1179 if (psci_smp_available())
1180 smp_set_ops(&psci_smp_ops);
1181 else if (mdesc->smp)
1182 smp_set_ops(mdesc->smp);
1183 }
1184 smp_init_cpus();
1185 smp_build_mpidr_hash();
1186 }
1187 #endif
1188
1189 if (!is_smp())
1190 hyp_mode_check();
1191
1192 reserve_crashkernel();
1193
1194 #ifdef CONFIG_VT
1195 #if defined(CONFIG_VGA_CONSOLE)
1196 conswitchp = &vga_con;
1197 #endif
1198 #endif
1199
1200 if (mdesc->init_early)
1201 mdesc->init_early();
1202 }
1203
1204
topology_init(void)1205 static int __init topology_init(void)
1206 {
1207 int cpu;
1208
1209 for_each_possible_cpu(cpu) {
1210 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1211 cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1212 register_cpu(&cpuinfo->cpu, cpu);
1213 }
1214
1215 return 0;
1216 }
1217 subsys_initcall(topology_init);
1218
1219 #ifdef CONFIG_HAVE_PROC_CPU
proc_cpu_init(void)1220 static int __init proc_cpu_init(void)
1221 {
1222 struct proc_dir_entry *res;
1223
1224 res = proc_mkdir("cpu", NULL);
1225 if (!res)
1226 return -ENOMEM;
1227 return 0;
1228 }
1229 fs_initcall(proc_cpu_init);
1230 #endif
1231
1232 static const char *hwcap_str[] = {
1233 "swp",
1234 "half",
1235 "thumb",
1236 "26bit",
1237 "fastmult",
1238 "fpa",
1239 "vfp",
1240 "edsp",
1241 "java",
1242 "iwmmxt",
1243 "crunch",
1244 "thumbee",
1245 "neon",
1246 "vfpv3",
1247 "vfpv3d16",
1248 "tls",
1249 "vfpv4",
1250 "idiva",
1251 "idivt",
1252 "vfpd32",
1253 "lpae",
1254 "evtstrm",
1255 "fphp",
1256 "asimdhp",
1257 "asimddp",
1258 "asimdfhm",
1259 "asimdbf16",
1260 "i8mm",
1261 NULL
1262 };
1263
1264 static const char *hwcap2_str[] = {
1265 "aes",
1266 "pmull",
1267 "sha1",
1268 "sha2",
1269 "crc32",
1270 "sb",
1271 "ssbs",
1272 NULL
1273 };
1274
c_show(struct seq_file * m,void * v)1275 static int c_show(struct seq_file *m, void *v)
1276 {
1277 int i, j;
1278 u32 cpuid;
1279
1280 for_each_online_cpu(i) {
1281 /*
1282 * glibc reads /proc/cpuinfo to determine the number of
1283 * online processors, looking for lines beginning with
1284 * "processor". Give glibc what it expects.
1285 */
1286 seq_printf(m, "processor\t: %d\n", i);
1287 cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1288 seq_printf(m, "model name\t: %s rev %d (%s)\n",
1289 cpu_name, cpuid & 15, elf_platform);
1290
1291 #if defined(CONFIG_SMP)
1292 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1293 per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1294 (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1295 #else
1296 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1297 loops_per_jiffy / (500000/HZ),
1298 (loops_per_jiffy / (5000/HZ)) % 100);
1299 #endif
1300 /* dump out the processor features */
1301 seq_puts(m, "Features\t: ");
1302
1303 for (j = 0; hwcap_str[j]; j++)
1304 if (elf_hwcap & (1 << j))
1305 seq_printf(m, "%s ", hwcap_str[j]);
1306
1307 for (j = 0; hwcap2_str[j]; j++)
1308 if (elf_hwcap2 & (1 << j))
1309 seq_printf(m, "%s ", hwcap2_str[j]);
1310
1311 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1312 seq_printf(m, "CPU architecture: %s\n",
1313 proc_arch[cpu_architecture()]);
1314
1315 if ((cpuid & 0x0008f000) == 0x00000000) {
1316 /* pre-ARM7 */
1317 seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1318 } else {
1319 if ((cpuid & 0x0008f000) == 0x00007000) {
1320 /* ARM7 */
1321 seq_printf(m, "CPU variant\t: 0x%02x\n",
1322 (cpuid >> 16) & 127);
1323 } else {
1324 /* post-ARM7 */
1325 seq_printf(m, "CPU variant\t: 0x%x\n",
1326 (cpuid >> 20) & 15);
1327 }
1328 seq_printf(m, "CPU part\t: 0x%03x\n",
1329 (cpuid >> 4) & 0xfff);
1330 }
1331 seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1332 }
1333
1334 seq_printf(m, "Hardware\t: %s\n", machine_name);
1335 seq_printf(m, "Revision\t: %04x\n", system_rev);
1336 seq_printf(m, "Serial\t\t: %s\n", system_serial);
1337
1338 return 0;
1339 }
1340
c_start(struct seq_file * m,loff_t * pos)1341 static void *c_start(struct seq_file *m, loff_t *pos)
1342 {
1343 return *pos < 1 ? (void *)1 : NULL;
1344 }
1345
c_next(struct seq_file * m,void * v,loff_t * pos)1346 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1347 {
1348 ++*pos;
1349 return NULL;
1350 }
1351
c_stop(struct seq_file * m,void * v)1352 static void c_stop(struct seq_file *m, void *v)
1353 {
1354 }
1355
1356 const struct seq_operations cpuinfo_op = {
1357 .start = c_start,
1358 .next = c_next,
1359 .stop = c_stop,
1360 .show = c_show
1361 };
1362