xref: /openbmc/linux/drivers/isdn/hardware/mISDN/hfcmulti.c (revision 7e24a55b2122746c2eef192296fc84624354f895)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * hfcmulti.c  low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
4   *
5   * Author	Andreas Eversberg (jolly@eversberg.eu)
6   * ported to mqueue mechanism:
7   *		Peter Sprenger (sprengermoving-bytes.de)
8   *
9   * inspired by existing hfc-pci driver:
10   * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
11   * Copyright 2008  by Karsten Keil (kkeil@suse.de)
12   * Copyright 2008  by Andreas Eversberg (jolly@eversberg.eu)
13   *
14   * Thanks to Cologne Chip AG for this great controller!
15   */
16  
17  /*
18   * module parameters:
19   * type:
20   *	By default (0), the card is automatically detected.
21   *	Or use the following combinations:
22   *	Bit 0-7   = 0x00001 = HFC-E1 (1 port)
23   * or	Bit 0-7   = 0x00004 = HFC-4S (4 ports)
24   * or	Bit 0-7   = 0x00008 = HFC-8S (8 ports)
25   *	Bit 8     = 0x00100 = uLaw (instead of aLaw)
26   *	Bit 9     = 0x00200 = Disable DTMF detect on all B-channels via hardware
27   *	Bit 10    = spare
28   *	Bit 11    = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
29   * or   Bit 12    = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
30   *	Bit 13	  = spare
31   *	Bit 14    = 0x04000 = Use external ram (128K)
32   *	Bit 15    = 0x08000 = Use external ram (512K)
33   *	Bit 16    = 0x10000 = Use 64 timeslots instead of 32
34   * or	Bit 17    = 0x20000 = Use 128 timeslots instead of anything else
35   *	Bit 18    = spare
36   *	Bit 19    = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
37   * (all other bits are reserved and shall be 0)
38   *	example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
39   *		 bus (PCM master)
40   *
41   * port: (optional or required for all ports on all installed cards)
42   *	HFC-4S/HFC-8S only bits:
43   *	Bit 0	  = 0x001 = Use master clock for this S/T interface
44   *			    (ony once per chip).
45   *	Bit 1     = 0x002 = transmitter line setup (non capacitive mode)
46   *			    Don't use this unless you know what you are doing!
47   *	Bit 2     = 0x004 = Disable E-channel. (No E-channel processing)
48   *	example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
49   *		 received from port 1
50   *
51   *	HFC-E1 only bits:
52   *	Bit 0     = 0x0001 = interface: 0=copper, 1=optical
53   *	Bit 1     = 0x0002 = reserved (later for 32 B-channels transparent mode)
54   *	Bit 2     = 0x0004 = Report LOS
55   *	Bit 3     = 0x0008 = Report AIS
56   *	Bit 4     = 0x0010 = Report SLIP
57   *	Bit 5     = 0x0020 = Report RDI
58   *	Bit 8     = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
59   *			     mode instead.
60   *	Bit 9	  = 0x0200 = Force get clock from interface, even in NT mode.
61   * or	Bit 10	  = 0x0400 = Force put clock to interface, even in TE mode.
62   *	Bit 11    = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
63   *			     (E1 only)
64   *	Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
65   *			     for default.
66   * (all other bits are reserved and shall be 0)
67   *
68   * debug:
69   *	NOTE: only one debug value must be given for all cards
70   *	enable debugging (see hfc_multi.h for debug options)
71   *
72   * poll:
73   *	NOTE: only one poll value must be given for all cards
74   *	Give the number of samples for each fifo process.
75   *	By default 128 is used. Decrease to reduce delay, increase to
76   *	reduce cpu load. If unsure, don't mess with it!
77   *	Valid is 8, 16, 32, 64, 128, 256.
78   *
79   * pcm:
80   *	NOTE: only one pcm value must be given for every card.
81   *	The PCM bus id tells the mISDNdsp module about the connected PCM bus.
82   *	By default (0), the PCM bus id is 100 for the card that is PCM master.
83   *	If multiple cards are PCM master (because they are not interconnected),
84   *	each card with PCM master will have increasing PCM id.
85   *	All PCM busses with the same ID are expected to be connected and have
86   *	common time slots slots.
87   *	Only one chip of the PCM bus must be master, the others slave.
88   *	-1 means no support of PCM bus not even.
89   *	Omit this value, if all cards are interconnected or none is connected.
90   *	If unsure, don't give this parameter.
91   *
92   * dmask and bmask:
93   *	NOTE: One dmask value must be given for every HFC-E1 card.
94   *	If omitted, the E1 card has D-channel on time slot 16, which is default.
95   *	dmask is a 32 bit mask. The bit must be set for an alternate time slot.
96   *	If multiple bits are set, multiple virtual card fragments are created.
97   *	For each bit set, a bmask value must be given. Each bit on the bmask
98   *	value stands for a B-channel. The bmask may not overlap with dmask or
99   *	with other bmask values for that card.
100   *	Example: dmask=0x00020002 bmask=0x0000fffc,0xfffc0000
101   *		This will create one fragment with D-channel on slot 1 with
102   *		B-channels on slots 2..15, and a second fragment with D-channel
103   *		on slot 17 with B-channels on slot 18..31. Slot 16 is unused.
104   *	If bit 0 is set (dmask=0x00000001) the D-channel is on slot 0 and will
105   *	not function.
106   *	Example: dmask=0x00000001 bmask=0xfffffffe
107   *		This will create a port with all 31 usable timeslots as
108   *		B-channels.
109   *	If no bits are set on bmask, no B-channel is created for that fragment.
110   *	Example: dmask=0xfffffffe bmask=0,0,0,0.... (31 0-values for bmask)
111   *		This will create 31 ports with one D-channel only.
112   *	If you don't know how to use it, you don't need it!
113   *
114   * iomode:
115   *	NOTE: only one mode value must be given for every card.
116   *	-> See hfc_multi.h for HFC_IO_MODE_* values
117   *	By default, the IO mode is pci memory IO (MEMIO).
118   *	Some cards require specific IO mode, so it cannot be changed.
119   *	It may be useful to set IO mode to register io (REGIO) to solve
120   *	PCI bridge problems.
121   *	If unsure, don't give this parameter.
122   *
123   * clockdelay_nt:
124   *	NOTE: only one clockdelay_nt value must be given once for all cards.
125   *	Give the value of the clock control register (A_ST_CLK_DLY)
126   *	of the S/T interfaces in NT mode.
127   *	This register is needed for the TBR3 certification, so don't change it.
128   *
129   * clockdelay_te:
130   *	NOTE: only one clockdelay_te value must be given once
131   *	Give the value of the clock control register (A_ST_CLK_DLY)
132   *	of the S/T interfaces in TE mode.
133   *	This register is needed for the TBR3 certification, so don't change it.
134   *
135   * clock:
136   *	NOTE: only one clock value must be given once
137   *	Selects interface with clock source for mISDN and applications.
138   *	Set to card number starting with 1. Set to -1 to disable.
139   *	By default, the first card is used as clock source.
140   *
141   * hwid:
142   *	NOTE: only one hwid value must be given once
143   *	Enable special embedded devices with XHFC controllers.
144   */
145  
146  /*
147   * debug register access (never use this, it will flood your system log)
148   * #define HFC_REGISTER_DEBUG
149   */
150  
151  #define HFC_MULTI_VERSION	"2.03"
152  
153  #include <linux/interrupt.h>
154  #include <linux/module.h>
155  #include <linux/slab.h>
156  #include <linux/pci.h>
157  #include <linux/delay.h>
158  #include <linux/mISDNhw.h>
159  #include <linux/mISDNdsp.h>
160  
161  /*
162    #define IRQCOUNT_DEBUG
163    #define IRQ_DEBUG
164  */
165  
166  #include "hfc_multi.h"
167  #ifdef ECHOPREP
168  #include "gaintab.h"
169  #endif
170  
171  #define	MAX_CARDS	8
172  #define	MAX_PORTS	(8 * MAX_CARDS)
173  #define	MAX_FRAGS	(32 * MAX_CARDS)
174  
175  static LIST_HEAD(HFClist);
176  static DEFINE_SPINLOCK(HFClock); /* global hfc list lock */
177  
178  static void ph_state_change(struct dchannel *);
179  
180  static struct hfc_multi *syncmaster;
181  static int plxsd_master; /* if we have a master card (yet) */
182  static DEFINE_SPINLOCK(plx_lock); /* may not acquire other lock inside */
183  
184  #define	TYP_E1		1
185  #define	TYP_4S		4
186  #define TYP_8S		8
187  
188  static int poll_timer = 6;	/* default = 128 samples = 16ms */
189  /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
190  static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30  };
191  #define	CLKDEL_TE	0x0f	/* CLKDEL in TE mode */
192  #define	CLKDEL_NT	0x6c	/* CLKDEL in NT mode
193  				   (0x60 MUST be included!) */
194  
195  #define	DIP_4S	0x1		/* DIP Switches for Beronet 1S/2S/4S cards */
196  #define	DIP_8S	0x2		/* DIP Switches for Beronet 8S+ cards */
197  #define	DIP_E1	0x3		/* DIP Switches for Beronet E1 cards */
198  
199  /*
200   * module stuff
201   */
202  
203  static uint	type[MAX_CARDS];
204  static int	pcm[MAX_CARDS];
205  static uint	dmask[MAX_CARDS];
206  static uint	bmask[MAX_FRAGS];
207  static uint	iomode[MAX_CARDS];
208  static uint	port[MAX_PORTS];
209  static uint	debug;
210  static uint	poll;
211  static int	clock;
212  static uint	timer;
213  static uint	clockdelay_te = CLKDEL_TE;
214  static uint	clockdelay_nt = CLKDEL_NT;
215  #define HWID_NONE	0
216  #define HWID_MINIP4	1
217  #define HWID_MINIP8	2
218  #define HWID_MINIP16	3
219  static uint	hwid = HWID_NONE;
220  
221  static int	HFC_cnt, E1_cnt, bmask_cnt, Port_cnt, PCM_cnt = 99;
222  
223  MODULE_AUTHOR("Andreas Eversberg");
224  MODULE_LICENSE("GPL");
225  MODULE_VERSION(HFC_MULTI_VERSION);
226  module_param(debug, uint, S_IRUGO | S_IWUSR);
227  module_param(poll, uint, S_IRUGO | S_IWUSR);
228  module_param(clock, int, S_IRUGO | S_IWUSR);
229  module_param(timer, uint, S_IRUGO | S_IWUSR);
230  module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
231  module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
232  module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
233  module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR);
234  module_param_array(dmask, uint, NULL, S_IRUGO | S_IWUSR);
235  module_param_array(bmask, uint, NULL, S_IRUGO | S_IWUSR);
236  module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
237  module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
238  module_param(hwid, uint, S_IRUGO | S_IWUSR); /* The hardware ID */
239  
240  #ifdef HFC_REGISTER_DEBUG
241  #define HFC_outb(hc, reg, val)					\
242  	(hc->HFC_outb(hc, reg, val, __func__, __LINE__))
243  #define HFC_outb_nodebug(hc, reg, val)					\
244  	(hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
245  #define HFC_inb(hc, reg)				\
246  	(hc->HFC_inb(hc, reg, __func__, __LINE__))
247  #define HFC_inb_nodebug(hc, reg)				\
248  	(hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
249  #define HFC_inw(hc, reg)				\
250  	(hc->HFC_inw(hc, reg, __func__, __LINE__))
251  #define HFC_inw_nodebug(hc, reg)				\
252  	(hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
253  #define HFC_wait(hc)				\
254  	(hc->HFC_wait(hc, __func__, __LINE__))
255  #define HFC_wait_nodebug(hc)				\
256  	(hc->HFC_wait_nodebug(hc, __func__, __LINE__))
257  #else
258  #define HFC_outb(hc, reg, val)		(hc->HFC_outb(hc, reg, val))
259  #define HFC_outb_nodebug(hc, reg, val)	(hc->HFC_outb_nodebug(hc, reg, val))
260  #define HFC_inb(hc, reg)		(hc->HFC_inb(hc, reg))
261  #define HFC_inb_nodebug(hc, reg)	(hc->HFC_inb_nodebug(hc, reg))
262  #define HFC_inw(hc, reg)		(hc->HFC_inw(hc, reg))
263  #define HFC_inw_nodebug(hc, reg)	(hc->HFC_inw_nodebug(hc, reg))
264  #define HFC_wait(hc)			(hc->HFC_wait(hc))
265  #define HFC_wait_nodebug(hc)		(hc->HFC_wait_nodebug(hc))
266  #endif
267  
268  #ifdef CONFIG_MISDN_HFCMULTI_8xx
269  #include "hfc_multi_8xx.h"
270  #endif
271  
272  /* HFC_IO_MODE_PCIMEM */
273  static void
274  #ifdef HFC_REGISTER_DEBUG
HFC_outb_pcimem(struct hfc_multi * hc,u_char reg,u_char val,const char * function,int line)275  HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
276  		const char *function, int line)
277  #else
278  	HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
279  #endif
280  {
281  	writeb(val, hc->pci_membase + reg);
282  }
283  static u_char
284  #ifdef HFC_REGISTER_DEBUG
HFC_inb_pcimem(struct hfc_multi * hc,u_char reg,const char * function,int line)285  HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
286  #else
287  	HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
288  #endif
289  {
290  	return readb(hc->pci_membase + reg);
291  }
292  static u_short
293  #ifdef HFC_REGISTER_DEBUG
HFC_inw_pcimem(struct hfc_multi * hc,u_char reg,const char * function,int line)294  HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
295  #else
296  	HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
297  #endif
298  {
299  	return readw(hc->pci_membase + reg);
300  }
301  static void
302  #ifdef HFC_REGISTER_DEBUG
HFC_wait_pcimem(struct hfc_multi * hc,const char * function,int line)303  HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
304  #else
305  	HFC_wait_pcimem(struct hfc_multi *hc)
306  #endif
307  {
308  	while (readb(hc->pci_membase + R_STATUS) & V_BUSY)
309  		cpu_relax();
310  }
311  
312  /* HFC_IO_MODE_REGIO */
313  static void
314  #ifdef HFC_REGISTER_DEBUG
HFC_outb_regio(struct hfc_multi * hc,u_char reg,u_char val,const char * function,int line)315  HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
316  	       const char *function, int line)
317  #else
318  	HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
319  #endif
320  {
321  	outb(reg, hc->pci_iobase + 4);
322  	outb(val, hc->pci_iobase);
323  }
324  static u_char
325  #ifdef HFC_REGISTER_DEBUG
HFC_inb_regio(struct hfc_multi * hc,u_char reg,const char * function,int line)326  HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
327  #else
328  	HFC_inb_regio(struct hfc_multi *hc, u_char reg)
329  #endif
330  {
331  	outb(reg, hc->pci_iobase + 4);
332  	return inb(hc->pci_iobase);
333  }
334  static u_short
335  #ifdef HFC_REGISTER_DEBUG
HFC_inw_regio(struct hfc_multi * hc,u_char reg,const char * function,int line)336  HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
337  #else
338  	HFC_inw_regio(struct hfc_multi *hc, u_char reg)
339  #endif
340  {
341  	outb(reg, hc->pci_iobase + 4);
342  	return inw(hc->pci_iobase);
343  }
344  static void
345  #ifdef HFC_REGISTER_DEBUG
HFC_wait_regio(struct hfc_multi * hc,const char * function,int line)346  HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
347  #else
348  	HFC_wait_regio(struct hfc_multi *hc)
349  #endif
350  {
351  	outb(R_STATUS, hc->pci_iobase + 4);
352  	while (inb(hc->pci_iobase) & V_BUSY)
353  		cpu_relax();
354  }
355  
356  #ifdef HFC_REGISTER_DEBUG
357  static void
HFC_outb_debug(struct hfc_multi * hc,u_char reg,u_char val,const char * function,int line)358  HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
359  	       const char *function, int line)
360  {
361  	char regname[256] = "", bits[9] = "xxxxxxxx";
362  	int i;
363  
364  	i = -1;
365  	while (hfc_register_names[++i].name) {
366  		if (hfc_register_names[i].reg == reg)
367  			strcat(regname, hfc_register_names[i].name);
368  	}
369  	if (regname[0] == '\0')
370  		strcpy(regname, "register");
371  
372  	bits[7] = '0' + (!!(val & 1));
373  	bits[6] = '0' + (!!(val & 2));
374  	bits[5] = '0' + (!!(val & 4));
375  	bits[4] = '0' + (!!(val & 8));
376  	bits[3] = '0' + (!!(val & 16));
377  	bits[2] = '0' + (!!(val & 32));
378  	bits[1] = '0' + (!!(val & 64));
379  	bits[0] = '0' + (!!(val & 128));
380  	printk(KERN_DEBUG
381  	       "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
382  	       hc->id, reg, regname, val, bits, function, line);
383  	HFC_outb_nodebug(hc, reg, val);
384  }
385  static u_char
HFC_inb_debug(struct hfc_multi * hc,u_char reg,const char * function,int line)386  HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
387  {
388  	char regname[256] = "", bits[9] = "xxxxxxxx";
389  	u_char val = HFC_inb_nodebug(hc, reg);
390  	int i;
391  
392  	i = 0;
393  	while (hfc_register_names[i++].name)
394  		;
395  	while (hfc_register_names[++i].name) {
396  		if (hfc_register_names[i].reg == reg)
397  			strcat(regname, hfc_register_names[i].name);
398  	}
399  	if (regname[0] == '\0')
400  		strcpy(regname, "register");
401  
402  	bits[7] = '0' + (!!(val & 1));
403  	bits[6] = '0' + (!!(val & 2));
404  	bits[5] = '0' + (!!(val & 4));
405  	bits[4] = '0' + (!!(val & 8));
406  	bits[3] = '0' + (!!(val & 16));
407  	bits[2] = '0' + (!!(val & 32));
408  	bits[1] = '0' + (!!(val & 64));
409  	bits[0] = '0' + (!!(val & 128));
410  	printk(KERN_DEBUG
411  	       "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
412  	       hc->id, reg, regname, val, bits, function, line);
413  	return val;
414  }
415  static u_short
HFC_inw_debug(struct hfc_multi * hc,u_char reg,const char * function,int line)416  HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
417  {
418  	char regname[256] = "";
419  	u_short val = HFC_inw_nodebug(hc, reg);
420  	int i;
421  
422  	i = 0;
423  	while (hfc_register_names[i++].name)
424  		;
425  	while (hfc_register_names[++i].name) {
426  		if (hfc_register_names[i].reg == reg)
427  			strcat(regname, hfc_register_names[i].name);
428  	}
429  	if (regname[0] == '\0')
430  		strcpy(regname, "register");
431  
432  	printk(KERN_DEBUG
433  	       "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
434  	       hc->id, reg, regname, val, function, line);
435  	return val;
436  }
437  static void
HFC_wait_debug(struct hfc_multi * hc,const char * function,int line)438  HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
439  {
440  	printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
441  	       hc->id, function, line);
442  	HFC_wait_nodebug(hc);
443  }
444  #endif
445  
446  /* write fifo data (REGIO) */
447  static void
write_fifo_regio(struct hfc_multi * hc,u_char * data,int len)448  write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
449  {
450  	outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
451  	while (len >> 2) {
452  		outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
453  		data += 4;
454  		len -= 4;
455  	}
456  	while (len >> 1) {
457  		outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
458  		data += 2;
459  		len -= 2;
460  	}
461  	while (len) {
462  		outb(*data, hc->pci_iobase);
463  		data++;
464  		len--;
465  	}
466  }
467  /* write fifo data (PCIMEM) */
468  static void
write_fifo_pcimem(struct hfc_multi * hc,u_char * data,int len)469  write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
470  {
471  	while (len >> 2) {
472  		writel(cpu_to_le32(*(u32 *)data),
473  		       hc->pci_membase + A_FIFO_DATA0);
474  		data += 4;
475  		len -= 4;
476  	}
477  	while (len >> 1) {
478  		writew(cpu_to_le16(*(u16 *)data),
479  		       hc->pci_membase + A_FIFO_DATA0);
480  		data += 2;
481  		len -= 2;
482  	}
483  	while (len) {
484  		writeb(*data, hc->pci_membase + A_FIFO_DATA0);
485  		data++;
486  		len--;
487  	}
488  }
489  
490  /* read fifo data (REGIO) */
491  static void
read_fifo_regio(struct hfc_multi * hc,u_char * data,int len)492  read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
493  {
494  	outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
495  	while (len >> 2) {
496  		*(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
497  		data += 4;
498  		len -= 4;
499  	}
500  	while (len >> 1) {
501  		*(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
502  		data += 2;
503  		len -= 2;
504  	}
505  	while (len) {
506  		*data = inb(hc->pci_iobase);
507  		data++;
508  		len--;
509  	}
510  }
511  
512  /* read fifo data (PCIMEM) */
513  static void
read_fifo_pcimem(struct hfc_multi * hc,u_char * data,int len)514  read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
515  {
516  	while (len >> 2) {
517  		*(u32 *)data =
518  			le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
519  		data += 4;
520  		len -= 4;
521  	}
522  	while (len >> 1) {
523  		*(u16 *)data =
524  			le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
525  		data += 2;
526  		len -= 2;
527  	}
528  	while (len) {
529  		*data = readb(hc->pci_membase + A_FIFO_DATA0);
530  		data++;
531  		len--;
532  	}
533  }
534  
535  static void
enable_hwirq(struct hfc_multi * hc)536  enable_hwirq(struct hfc_multi *hc)
537  {
538  	hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
539  	HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
540  }
541  
542  static void
disable_hwirq(struct hfc_multi * hc)543  disable_hwirq(struct hfc_multi *hc)
544  {
545  	hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
546  	HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
547  }
548  
549  #define	NUM_EC 2
550  #define	MAX_TDM_CHAN 32
551  
552  
553  static inline void
enablepcibridge(struct hfc_multi * c)554  enablepcibridge(struct hfc_multi *c)
555  {
556  	HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
557  }
558  
559  static inline void
disablepcibridge(struct hfc_multi * c)560  disablepcibridge(struct hfc_multi *c)
561  {
562  	HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
563  }
564  
565  static inline unsigned char
readpcibridge(struct hfc_multi * hc,unsigned char address)566  readpcibridge(struct hfc_multi *hc, unsigned char address)
567  {
568  	unsigned short cipv;
569  	unsigned char data;
570  
571  	if (!hc->pci_iobase)
572  		return 0;
573  
574  	/* slow down a PCI read access by 1 PCI clock cycle */
575  	HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
576  
577  	if (address == 0)
578  		cipv = 0x4000;
579  	else
580  		cipv = 0x5800;
581  
582  	/* select local bridge port address by writing to CIP port */
583  	/* data = HFC_inb(c, cipv); * was _io before */
584  	outw(cipv, hc->pci_iobase + 4);
585  	data = inb(hc->pci_iobase);
586  
587  	/* restore R_CTRL for normal PCI read cycle speed */
588  	HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
589  
590  	return data;
591  }
592  
593  static inline void
writepcibridge(struct hfc_multi * hc,unsigned char address,unsigned char data)594  writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
595  {
596  	unsigned short cipv;
597  	unsigned int datav;
598  
599  	if (!hc->pci_iobase)
600  		return;
601  
602  	if (address == 0)
603  		cipv = 0x4000;
604  	else
605  		cipv = 0x5800;
606  
607  	/* select local bridge port address by writing to CIP port */
608  	outw(cipv, hc->pci_iobase + 4);
609  	/* define a 32 bit dword with 4 identical bytes for write sequence */
610  	datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
611  		((__u32) data << 24);
612  
613  	/*
614  	 * write this 32 bit dword to the bridge data port
615  	 * this will initiate a write sequence of up to 4 writes to the same
616  	 * address on the local bus interface the number of write accesses
617  	 * is undefined but >=1 and depends on the next PCI transaction
618  	 * during write sequence on the local bus
619  	 */
620  	outl(datav, hc->pci_iobase);
621  }
622  
623  static inline void
cpld_set_reg(struct hfc_multi * hc,unsigned char reg)624  cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
625  {
626  	/* Do data pin read low byte */
627  	HFC_outb(hc, R_GPIO_OUT1, reg);
628  }
629  
630  static inline void
cpld_write_reg(struct hfc_multi * hc,unsigned char reg,unsigned char val)631  cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
632  {
633  	cpld_set_reg(hc, reg);
634  
635  	enablepcibridge(hc);
636  	writepcibridge(hc, 1, val);
637  	disablepcibridge(hc);
638  
639  	return;
640  }
641  
642  static inline void
vpm_write_address(struct hfc_multi * hc,unsigned short addr)643  vpm_write_address(struct hfc_multi *hc, unsigned short addr)
644  {
645  	cpld_write_reg(hc, 0, 0xff & addr);
646  	cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
647  }
648  
649  static inline unsigned char
vpm_in(struct hfc_multi * c,int which,unsigned short addr)650  vpm_in(struct hfc_multi *c, int which, unsigned short addr)
651  {
652  	unsigned char res;
653  
654  	vpm_write_address(c, addr);
655  
656  	if (!which)
657  		cpld_set_reg(c, 2);
658  	else
659  		cpld_set_reg(c, 3);
660  
661  	enablepcibridge(c);
662  	res = readpcibridge(c, 1);
663  	disablepcibridge(c);
664  
665  	cpld_set_reg(c, 0);
666  
667  	return res;
668  }
669  
670  static inline void
vpm_out(struct hfc_multi * c,int which,unsigned short addr,unsigned char data)671  vpm_out(struct hfc_multi *c, int which, unsigned short addr,
672  	unsigned char data)
673  {
674  	vpm_write_address(c, addr);
675  
676  	enablepcibridge(c);
677  
678  	if (!which)
679  		cpld_set_reg(c, 2);
680  	else
681  		cpld_set_reg(c, 3);
682  
683  	writepcibridge(c, 1, data);
684  
685  	cpld_set_reg(c, 0);
686  
687  	disablepcibridge(c);
688  
689  	{
690  		unsigned char regin;
691  		regin = vpm_in(c, which, addr);
692  		if (regin != data)
693  			printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
694  			       "0x%x\n", data, addr, regin);
695  	}
696  
697  }
698  
699  
700  static void
vpm_init(struct hfc_multi * wc)701  vpm_init(struct hfc_multi *wc)
702  {
703  	unsigned char reg;
704  	unsigned int mask;
705  	unsigned int i, x, y;
706  	unsigned int ver;
707  
708  	for (x = 0; x < NUM_EC; x++) {
709  		/* Setup GPIO's */
710  		if (!x) {
711  			ver = vpm_in(wc, x, 0x1a0);
712  			printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
713  		}
714  
715  		for (y = 0; y < 4; y++) {
716  			vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
717  			vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
718  			vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
719  		}
720  
721  		/* Setup TDM path - sets fsync and tdm_clk as inputs */
722  		reg = vpm_in(wc, x, 0x1a3); /* misc_con */
723  		vpm_out(wc, x, 0x1a3, reg & ~2);
724  
725  		/* Setup Echo length (256 taps) */
726  		vpm_out(wc, x, 0x022, 1);
727  		vpm_out(wc, x, 0x023, 0xff);
728  
729  		/* Setup timeslots */
730  		vpm_out(wc, x, 0x02f, 0x00);
731  		mask = 0x02020202 << (x * 4);
732  
733  		/* Setup the tdm channel masks for all chips */
734  		for (i = 0; i < 4; i++)
735  			vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
736  
737  		/* Setup convergence rate */
738  		printk(KERN_DEBUG "VPM: A-law mode\n");
739  		reg = 0x00 | 0x10 | 0x01;
740  		vpm_out(wc, x, 0x20, reg);
741  		printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
742  		/*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
743  
744  		vpm_out(wc, x, 0x24, 0x02);
745  		reg = vpm_in(wc, x, 0x24);
746  		printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
747  
748  		/* Initialize echo cans */
749  		for (i = 0; i < MAX_TDM_CHAN; i++) {
750  			if (mask & (0x00000001 << i))
751  				vpm_out(wc, x, i, 0x00);
752  		}
753  
754  		/*
755  		 * ARM arch at least disallows a udelay of
756  		 * more than 2ms... it gives a fake "__bad_udelay"
757  		 * reference at link-time.
758  		 * long delays in kernel code are pretty sucky anyway
759  		 * for now work around it using 5 x 2ms instead of 1 x 10ms
760  		 */
761  
762  		udelay(2000);
763  		udelay(2000);
764  		udelay(2000);
765  		udelay(2000);
766  		udelay(2000);
767  
768  		/* Put in bypass mode */
769  		for (i = 0; i < MAX_TDM_CHAN; i++) {
770  			if (mask & (0x00000001 << i))
771  				vpm_out(wc, x, i, 0x01);
772  		}
773  
774  		/* Enable bypass */
775  		for (i = 0; i < MAX_TDM_CHAN; i++) {
776  			if (mask & (0x00000001 << i))
777  				vpm_out(wc, x, 0x78 + i, 0x01);
778  		}
779  
780  	}
781  }
782  
783  #ifdef UNUSED
784  static void
vpm_check(struct hfc_multi * hctmp)785  vpm_check(struct hfc_multi *hctmp)
786  {
787  	unsigned char gpi2;
788  
789  	gpi2 = HFC_inb(hctmp, R_GPI_IN2);
790  
791  	if ((gpi2 & 0x3) != 0x3)
792  		printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
793  }
794  #endif /* UNUSED */
795  
796  
797  /*
798   * Interface to enable/disable the HW Echocan
799   *
800   * these functions are called within a spin_lock_irqsave on
801   * the channel instance lock, so we are not disturbed by irqs
802   *
803   * we can later easily change the interface to make  other
804   * things configurable, for now we configure the taps
805   *
806   */
807  
808  static void
vpm_echocan_on(struct hfc_multi * hc,int ch,int taps)809  vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
810  {
811  	unsigned int timeslot;
812  	unsigned int unit;
813  	struct bchannel *bch = hc->chan[ch].bch;
814  #ifdef TXADJ
815  	int txadj = -4;
816  	struct sk_buff *skb;
817  #endif
818  	if (hc->chan[ch].protocol != ISDN_P_B_RAW)
819  		return;
820  
821  	if (!bch)
822  		return;
823  
824  #ifdef TXADJ
825  	skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
826  			       sizeof(int), &txadj, GFP_ATOMIC);
827  	if (skb)
828  		recv_Bchannel_skb(bch, skb);
829  #endif
830  
831  	timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
832  	unit = ch % 4;
833  
834  	printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
835  	       taps, timeslot);
836  
837  	vpm_out(hc, unit, timeslot, 0x7e);
838  }
839  
840  static void
vpm_echocan_off(struct hfc_multi * hc,int ch)841  vpm_echocan_off(struct hfc_multi *hc, int ch)
842  {
843  	unsigned int timeslot;
844  	unsigned int unit;
845  	struct bchannel *bch = hc->chan[ch].bch;
846  #ifdef TXADJ
847  	int txadj = 0;
848  	struct sk_buff *skb;
849  #endif
850  
851  	if (hc->chan[ch].protocol != ISDN_P_B_RAW)
852  		return;
853  
854  	if (!bch)
855  		return;
856  
857  #ifdef TXADJ
858  	skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
859  			       sizeof(int), &txadj, GFP_ATOMIC);
860  	if (skb)
861  		recv_Bchannel_skb(bch, skb);
862  #endif
863  
864  	timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
865  	unit = ch % 4;
866  
867  	printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
868  	       timeslot);
869  	/* FILLME */
870  	vpm_out(hc, unit, timeslot, 0x01);
871  }
872  
873  
874  /*
875   * Speech Design resync feature
876   * NOTE: This is called sometimes outside interrupt handler.
877   * We must lock irqsave, so no other interrupt (other card) will occur!
878   * Also multiple interrupts may nest, so must lock each access (lists, card)!
879   */
880  static inline void
hfcmulti_resync(struct hfc_multi * locked,struct hfc_multi * newmaster,int rm)881  hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
882  {
883  	struct hfc_multi *hc, *next, *pcmmaster = NULL;
884  	void __iomem *plx_acc_32;
885  	u_int pv;
886  	u_long flags;
887  
888  	spin_lock_irqsave(&HFClock, flags);
889  	spin_lock(&plx_lock); /* must be locked inside other locks */
890  
891  	if (debug & DEBUG_HFCMULTI_PLXSD)
892  		printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
893  		       __func__, syncmaster);
894  
895  	/* select new master */
896  	if (newmaster) {
897  		if (debug & DEBUG_HFCMULTI_PLXSD)
898  			printk(KERN_DEBUG "using provided controller\n");
899  	} else {
900  		list_for_each_entry_safe(hc, next, &HFClist, list) {
901  			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
902  				if (hc->syncronized) {
903  					newmaster = hc;
904  					break;
905  				}
906  			}
907  		}
908  	}
909  
910  	/* Disable sync of all cards */
911  	list_for_each_entry_safe(hc, next, &HFClist, list) {
912  		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
913  			plx_acc_32 = hc->plx_membase + PLX_GPIOC;
914  			pv = readl(plx_acc_32);
915  			pv &= ~PLX_SYNC_O_EN;
916  			writel(pv, plx_acc_32);
917  			if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
918  				pcmmaster = hc;
919  				if (hc->ctype == HFC_TYPE_E1) {
920  					if (debug & DEBUG_HFCMULTI_PLXSD)
921  						printk(KERN_DEBUG
922  						       "Schedule SYNC_I\n");
923  					hc->e1_resync |= 1; /* get SYNC_I */
924  				}
925  			}
926  		}
927  	}
928  
929  	if (newmaster) {
930  		hc = newmaster;
931  		if (debug & DEBUG_HFCMULTI_PLXSD)
932  			printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
933  			       "interface.\n", hc->id, hc);
934  		/* Enable new sync master */
935  		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
936  		pv = readl(plx_acc_32);
937  		pv |= PLX_SYNC_O_EN;
938  		writel(pv, plx_acc_32);
939  		/* switch to jatt PLL, if not disabled by RX_SYNC */
940  		if (hc->ctype == HFC_TYPE_E1
941  		    && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
942  			if (debug & DEBUG_HFCMULTI_PLXSD)
943  				printk(KERN_DEBUG "Schedule jatt PLL\n");
944  			hc->e1_resync |= 2; /* switch to jatt */
945  		}
946  	} else {
947  		if (pcmmaster) {
948  			hc = pcmmaster;
949  			if (debug & DEBUG_HFCMULTI_PLXSD)
950  				printk(KERN_DEBUG
951  				       "id=%d (0x%p) = PCM master syncronized "
952  				       "with QUARTZ\n", hc->id, hc);
953  			if (hc->ctype == HFC_TYPE_E1) {
954  				/* Use the crystal clock for the PCM
955  				   master card */
956  				if (debug & DEBUG_HFCMULTI_PLXSD)
957  					printk(KERN_DEBUG
958  					       "Schedule QUARTZ for HFC-E1\n");
959  				hc->e1_resync |= 4; /* switch quartz */
960  			} else {
961  				if (debug & DEBUG_HFCMULTI_PLXSD)
962  					printk(KERN_DEBUG
963  					       "QUARTZ is automatically "
964  					       "enabled by HFC-%dS\n", hc->ctype);
965  			}
966  			plx_acc_32 = hc->plx_membase + PLX_GPIOC;
967  			pv = readl(plx_acc_32);
968  			pv |= PLX_SYNC_O_EN;
969  			writel(pv, plx_acc_32);
970  		} else
971  			if (!rm)
972  				printk(KERN_ERR "%s no pcm master, this MUST "
973  				       "not happen!\n", __func__);
974  	}
975  	syncmaster = newmaster;
976  
977  	spin_unlock(&plx_lock);
978  	spin_unlock_irqrestore(&HFClock, flags);
979  }
980  
981  /* This must be called AND hc must be locked irqsave!!! */
982  static inline void
plxsd_checksync(struct hfc_multi * hc,int rm)983  plxsd_checksync(struct hfc_multi *hc, int rm)
984  {
985  	if (hc->syncronized) {
986  		if (syncmaster == NULL) {
987  			if (debug & DEBUG_HFCMULTI_PLXSD)
988  				printk(KERN_DEBUG "%s: GOT sync on card %d"
989  				       " (id=%d)\n", __func__, hc->id + 1,
990  				       hc->id);
991  			hfcmulti_resync(hc, hc, rm);
992  		}
993  	} else {
994  		if (syncmaster == hc) {
995  			if (debug & DEBUG_HFCMULTI_PLXSD)
996  				printk(KERN_DEBUG "%s: LOST sync on card %d"
997  				       " (id=%d)\n", __func__, hc->id + 1,
998  				       hc->id);
999  			hfcmulti_resync(hc, NULL, rm);
1000  		}
1001  	}
1002  }
1003  
1004  
1005  /*
1006   * free hardware resources used by driver
1007   */
1008  static void
release_io_hfcmulti(struct hfc_multi * hc)1009  release_io_hfcmulti(struct hfc_multi *hc)
1010  {
1011  	void __iomem *plx_acc_32;
1012  	u_int	pv;
1013  	u_long	plx_flags;
1014  
1015  	if (debug & DEBUG_HFCMULTI_INIT)
1016  		printk(KERN_DEBUG "%s: entered\n", __func__);
1017  
1018  	/* soft reset also masks all interrupts */
1019  	hc->hw.r_cirm |= V_SRES;
1020  	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1021  	udelay(1000);
1022  	hc->hw.r_cirm &= ~V_SRES;
1023  	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1024  	udelay(1000); /* instead of 'wait' that may cause locking */
1025  
1026  	/* release Speech Design card, if PLX was initialized */
1027  	if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1028  		if (debug & DEBUG_HFCMULTI_PLXSD)
1029  			printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1030  			       __func__, hc->id + 1);
1031  		spin_lock_irqsave(&plx_lock, plx_flags);
1032  		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1033  		writel(PLX_GPIOC_INIT, plx_acc_32);
1034  		pv = readl(plx_acc_32);
1035  		/* Termination off */
1036  		pv &= ~PLX_TERM_ON;
1037  		/* Disconnect the PCM */
1038  		pv |= PLX_SLAVE_EN_N;
1039  		pv &= ~PLX_MASTER_EN;
1040  		pv &= ~PLX_SYNC_O_EN;
1041  		/* Put the DSP in Reset */
1042  		pv &= ~PLX_DSP_RES_N;
1043  		writel(pv, plx_acc_32);
1044  		if (debug & DEBUG_HFCMULTI_INIT)
1045  			printk(KERN_DEBUG "%s: PCM off: PLX_GPIO=%x\n",
1046  			       __func__, pv);
1047  		spin_unlock_irqrestore(&plx_lock, plx_flags);
1048  	}
1049  
1050  	/* disable memory mapped ports / io ports */
1051  	test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
1052  	if (hc->pci_dev)
1053  		pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
1054  	if (hc->pci_membase)
1055  		iounmap(hc->pci_membase);
1056  	if (hc->plx_membase)
1057  		iounmap(hc->plx_membase);
1058  	if (hc->pci_iobase)
1059  		release_region(hc->pci_iobase, 8);
1060  	if (hc->xhfc_membase)
1061  		iounmap((void *)hc->xhfc_membase);
1062  
1063  	if (hc->pci_dev) {
1064  		pci_disable_device(hc->pci_dev);
1065  		pci_set_drvdata(hc->pci_dev, NULL);
1066  	}
1067  	if (debug & DEBUG_HFCMULTI_INIT)
1068  		printk(KERN_DEBUG "%s: done\n", __func__);
1069  }
1070  
1071  /*
1072   * function called to reset the HFC chip. A complete software reset of chip
1073   * and fifos is done. All configuration of the chip is done.
1074   */
1075  
1076  static int
init_chip(struct hfc_multi * hc)1077  init_chip(struct hfc_multi *hc)
1078  {
1079  	u_long			flags, val, val2 = 0, rev;
1080  	int			i, err = 0;
1081  	u_char			r_conf_en, rval;
1082  	void __iomem		*plx_acc_32;
1083  	u_int			pv;
1084  	u_long			plx_flags, hfc_flags;
1085  	int			plx_count;
1086  	struct hfc_multi	*pos, *next, *plx_last_hc;
1087  
1088  	spin_lock_irqsave(&hc->lock, flags);
1089  	/* reset all registers */
1090  	memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1091  
1092  	/* revision check */
1093  	if (debug & DEBUG_HFCMULTI_INIT)
1094  		printk(KERN_DEBUG "%s: entered\n", __func__);
1095  	val = HFC_inb(hc, R_CHIP_ID);
1096  	if ((val >> 4) != 0x8 && (val >> 4) != 0xc && (val >> 4) != 0xe &&
1097  	    (val >> 1) != 0x31) {
1098  		printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1099  		err = -EIO;
1100  		goto out;
1101  	}
1102  	rev = HFC_inb(hc, R_CHIP_RV);
1103  	printk(KERN_INFO
1104  	       "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1105  	       val, rev, (rev == 0 && (hc->ctype != HFC_TYPE_XHFC)) ?
1106  	       " (old FIFO handling)" : "");
1107  	if (hc->ctype != HFC_TYPE_XHFC && rev == 0) {
1108  		test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1109  		printk(KERN_WARNING
1110  		       "HFC_multi: NOTE: Your chip is revision 0, "
1111  		       "ask Cologne Chip for update. Newer chips "
1112  		       "have a better FIFO handling. Old chips "
1113  		       "still work but may have slightly lower "
1114  		       "HDLC transmit performance.\n");
1115  	}
1116  	if (rev > 1) {
1117  		printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1118  		       "consider chip revision = %ld. The chip / "
1119  		       "bridge may not work.\n", rev);
1120  	}
1121  
1122  	/* set s-ram size */
1123  	hc->Flen = 0x10;
1124  	hc->Zmin = 0x80;
1125  	hc->Zlen = 384;
1126  	hc->DTMFbase = 0x1000;
1127  	if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1128  		if (debug & DEBUG_HFCMULTI_INIT)
1129  			printk(KERN_DEBUG "%s: changing to 128K external RAM\n",
1130  			       __func__);
1131  		hc->hw.r_ctrl |= V_EXT_RAM;
1132  		hc->hw.r_ram_sz = 1;
1133  		hc->Flen = 0x20;
1134  		hc->Zmin = 0xc0;
1135  		hc->Zlen = 1856;
1136  		hc->DTMFbase = 0x2000;
1137  	}
1138  	if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1139  		if (debug & DEBUG_HFCMULTI_INIT)
1140  			printk(KERN_DEBUG "%s: changing to 512K external RAM\n",
1141  			       __func__);
1142  		hc->hw.r_ctrl |= V_EXT_RAM;
1143  		hc->hw.r_ram_sz = 2;
1144  		hc->Flen = 0x20;
1145  		hc->Zmin = 0xc0;
1146  		hc->Zlen = 8000;
1147  		hc->DTMFbase = 0x2000;
1148  	}
1149  	if (hc->ctype == HFC_TYPE_XHFC) {
1150  		hc->Flen = 0x8;
1151  		hc->Zmin = 0x0;
1152  		hc->Zlen = 64;
1153  		hc->DTMFbase = 0x0;
1154  	}
1155  	hc->max_trans = poll << 1;
1156  	if (hc->max_trans > hc->Zlen)
1157  		hc->max_trans = hc->Zlen;
1158  
1159  	/* Speech Design PLX bridge */
1160  	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1161  		if (debug & DEBUG_HFCMULTI_PLXSD)
1162  			printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1163  			       __func__, hc->id + 1);
1164  		spin_lock_irqsave(&plx_lock, plx_flags);
1165  		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1166  		writel(PLX_GPIOC_INIT, plx_acc_32);
1167  		pv = readl(plx_acc_32);
1168  		/* The first and the last cards are terminating the PCM bus */
1169  		pv |= PLX_TERM_ON; /* hc is currently the last */
1170  		/* Disconnect the PCM */
1171  		pv |= PLX_SLAVE_EN_N;
1172  		pv &= ~PLX_MASTER_EN;
1173  		pv &= ~PLX_SYNC_O_EN;
1174  		/* Put the DSP in Reset */
1175  		pv &= ~PLX_DSP_RES_N;
1176  		writel(pv, plx_acc_32);
1177  		spin_unlock_irqrestore(&plx_lock, plx_flags);
1178  		if (debug & DEBUG_HFCMULTI_INIT)
1179  			printk(KERN_DEBUG "%s: slave/term: PLX_GPIO=%x\n",
1180  			       __func__, pv);
1181  		/*
1182  		 * If we are the 3rd PLXSD card or higher, we must turn
1183  		 * termination of last PLXSD card off.
1184  		 */
1185  		spin_lock_irqsave(&HFClock, hfc_flags);
1186  		plx_count = 0;
1187  		plx_last_hc = NULL;
1188  		list_for_each_entry_safe(pos, next, &HFClist, list) {
1189  			if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1190  				plx_count++;
1191  				if (pos != hc)
1192  					plx_last_hc = pos;
1193  			}
1194  		}
1195  		if (plx_count >= 3) {
1196  			if (debug & DEBUG_HFCMULTI_PLXSD)
1197  				printk(KERN_DEBUG "%s: card %d is between, so "
1198  				       "we disable termination\n",
1199  				       __func__, plx_last_hc->id + 1);
1200  			spin_lock_irqsave(&plx_lock, plx_flags);
1201  			plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC;
1202  			pv = readl(plx_acc_32);
1203  			pv &= ~PLX_TERM_ON;
1204  			writel(pv, plx_acc_32);
1205  			spin_unlock_irqrestore(&plx_lock, plx_flags);
1206  			if (debug & DEBUG_HFCMULTI_INIT)
1207  				printk(KERN_DEBUG
1208  				       "%s: term off: PLX_GPIO=%x\n",
1209  				       __func__, pv);
1210  		}
1211  		spin_unlock_irqrestore(&HFClock, hfc_flags);
1212  		hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1213  	}
1214  
1215  	if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1216  		hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1217  
1218  	/* we only want the real Z2 read-pointer for revision > 0 */
1219  	if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1220  		hc->hw.r_ram_sz |= V_FZ_MD;
1221  
1222  	/* select pcm mode */
1223  	if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1224  		if (debug & DEBUG_HFCMULTI_INIT)
1225  			printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1226  			       __func__);
1227  	} else
1228  		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1229  			if (debug & DEBUG_HFCMULTI_INIT)
1230  				printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1231  				       __func__);
1232  			hc->hw.r_pcm_md0 |= V_PCM_MD;
1233  		} else {
1234  			if (debug & DEBUG_HFCMULTI_INIT)
1235  				printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1236  				       __func__);
1237  		}
1238  
1239  	/* soft reset */
1240  	HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
1241  	if (hc->ctype == HFC_TYPE_XHFC)
1242  		HFC_outb(hc, 0x0C /* R_FIFO_THRES */,
1243  			 0x11 /* 16 Bytes TX/RX */);
1244  	else
1245  		HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1246  	HFC_outb(hc, R_FIFO_MD, 0);
1247  	if (hc->ctype == HFC_TYPE_XHFC)
1248  		hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES;
1249  	else
1250  		hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES
1251  			| V_RLD_EPR;
1252  	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1253  	udelay(100);
1254  	hc->hw.r_cirm = 0;
1255  	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1256  	udelay(100);
1257  	if (hc->ctype != HFC_TYPE_XHFC)
1258  		HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1259  
1260  	/* Speech Design PLX bridge pcm and sync mode */
1261  	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1262  		spin_lock_irqsave(&plx_lock, plx_flags);
1263  		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1264  		pv = readl(plx_acc_32);
1265  		/* Connect PCM */
1266  		if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1267  			pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1268  			pv |= PLX_SYNC_O_EN;
1269  			if (debug & DEBUG_HFCMULTI_INIT)
1270  				printk(KERN_DEBUG "%s: master: PLX_GPIO=%x\n",
1271  				       __func__, pv);
1272  		} else {
1273  			pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1274  			pv &= ~PLX_SYNC_O_EN;
1275  			if (debug & DEBUG_HFCMULTI_INIT)
1276  				printk(KERN_DEBUG "%s: slave: PLX_GPIO=%x\n",
1277  				       __func__, pv);
1278  		}
1279  		writel(pv, plx_acc_32);
1280  		spin_unlock_irqrestore(&plx_lock, plx_flags);
1281  	}
1282  
1283  	/* PCM setup */
1284  	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1285  	if (hc->slots == 32)
1286  		HFC_outb(hc, R_PCM_MD1, 0x00);
1287  	if (hc->slots == 64)
1288  		HFC_outb(hc, R_PCM_MD1, 0x10);
1289  	if (hc->slots == 128)
1290  		HFC_outb(hc, R_PCM_MD1, 0x20);
1291  	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1292  	if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1293  		HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
1294  	else if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1295  		HFC_outb(hc, R_PCM_MD2, 0x10); /* V_C2O_EN */
1296  	else
1297  		HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1298  	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1299  	for (i = 0; i < 256; i++) {
1300  		HFC_outb_nodebug(hc, R_SLOT, i);
1301  		HFC_outb_nodebug(hc, A_SL_CFG, 0);
1302  		if (hc->ctype != HFC_TYPE_XHFC)
1303  			HFC_outb_nodebug(hc, A_CONF, 0);
1304  		hc->slot_owner[i] = -1;
1305  	}
1306  
1307  	/* set clock speed */
1308  	if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1309  		if (debug & DEBUG_HFCMULTI_INIT)
1310  			printk(KERN_DEBUG
1311  			       "%s: setting double clock\n", __func__);
1312  		HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1313  	}
1314  
1315  	if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1316  		HFC_outb(hc, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */);
1317  
1318  	/* B410P GPIO */
1319  	if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1320  		printk(KERN_NOTICE "Setting GPIOs\n");
1321  		HFC_outb(hc, R_GPIO_SEL, 0x30);
1322  		HFC_outb(hc, R_GPIO_EN1, 0x3);
1323  		udelay(1000);
1324  		printk(KERN_NOTICE "calling vpm_init\n");
1325  		vpm_init(hc);
1326  	}
1327  
1328  	/* check if R_F0_CNT counts (8 kHz frame count) */
1329  	val = HFC_inb(hc, R_F0_CNTL);
1330  	val += HFC_inb(hc, R_F0_CNTH) << 8;
1331  	if (debug & DEBUG_HFCMULTI_INIT)
1332  		printk(KERN_DEBUG
1333  		       "HFC_multi F0_CNT %ld after reset\n", val);
1334  	spin_unlock_irqrestore(&hc->lock, flags);
1335  	set_current_state(TASK_UNINTERRUPTIBLE);
1336  	schedule_timeout((HZ / 100) ? : 1); /* Timeout minimum 10ms */
1337  	spin_lock_irqsave(&hc->lock, flags);
1338  	val2 = HFC_inb(hc, R_F0_CNTL);
1339  	val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1340  	if (debug & DEBUG_HFCMULTI_INIT)
1341  		printk(KERN_DEBUG
1342  		       "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1343  		       val2);
1344  	if (val2 >= val + 8) { /* 1 ms */
1345  		/* it counts, so we keep the pcm mode */
1346  		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1347  			printk(KERN_INFO "controller is PCM bus MASTER\n");
1348  		else
1349  			if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1350  				printk(KERN_INFO "controller is PCM bus SLAVE\n");
1351  			else {
1352  				test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1353  				printk(KERN_INFO "controller is PCM bus SLAVE "
1354  				       "(auto detected)\n");
1355  			}
1356  	} else {
1357  		/* does not count */
1358  		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1359  		controller_fail:
1360  			printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1361  			       "pulse. Seems that controller fails.\n");
1362  			err = -EIO;
1363  			goto out;
1364  		}
1365  		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1366  			printk(KERN_INFO "controller is PCM bus SLAVE "
1367  			       "(ignoring missing PCM clock)\n");
1368  		} else {
1369  			/* only one pcm master */
1370  			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1371  			    && plxsd_master) {
1372  				printk(KERN_ERR "HFC_multi ERROR, no clock "
1373  				       "on another Speech Design card found. "
1374  				       "Please be sure to connect PCM cable.\n");
1375  				err = -EIO;
1376  				goto out;
1377  			}
1378  			/* retry with master clock */
1379  			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1380  				spin_lock_irqsave(&plx_lock, plx_flags);
1381  				plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1382  				pv = readl(plx_acc_32);
1383  				pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1384  				pv |= PLX_SYNC_O_EN;
1385  				writel(pv, plx_acc_32);
1386  				spin_unlock_irqrestore(&plx_lock, plx_flags);
1387  				if (debug & DEBUG_HFCMULTI_INIT)
1388  					printk(KERN_DEBUG "%s: master: "
1389  					       "PLX_GPIO=%x\n", __func__, pv);
1390  			}
1391  			hc->hw.r_pcm_md0 |= V_PCM_MD;
1392  			HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1393  			spin_unlock_irqrestore(&hc->lock, flags);
1394  			set_current_state(TASK_UNINTERRUPTIBLE);
1395  			schedule_timeout((HZ / 100) ?: 1); /* Timeout min. 10ms */
1396  			spin_lock_irqsave(&hc->lock, flags);
1397  			val2 = HFC_inb(hc, R_F0_CNTL);
1398  			val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1399  			if (debug & DEBUG_HFCMULTI_INIT)
1400  				printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1401  				       "10 ms (2nd try)\n", val2);
1402  			if (val2 >= val + 8) { /* 1 ms */
1403  				test_and_set_bit(HFC_CHIP_PCM_MASTER,
1404  						 &hc->chip);
1405  				printk(KERN_INFO "controller is PCM bus MASTER "
1406  				       "(auto detected)\n");
1407  			} else
1408  				goto controller_fail;
1409  		}
1410  	}
1411  
1412  	/* Release the DSP Reset */
1413  	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1414  		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1415  			plxsd_master = 1;
1416  		spin_lock_irqsave(&plx_lock, plx_flags);
1417  		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1418  		pv = readl(plx_acc_32);
1419  		pv |=  PLX_DSP_RES_N;
1420  		writel(pv, plx_acc_32);
1421  		spin_unlock_irqrestore(&plx_lock, plx_flags);
1422  		if (debug & DEBUG_HFCMULTI_INIT)
1423  			printk(KERN_DEBUG "%s: reset off: PLX_GPIO=%x\n",
1424  			       __func__, pv);
1425  	}
1426  
1427  	/* pcm id */
1428  	if (hc->pcm)
1429  		printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1430  		       hc->pcm);
1431  	else {
1432  		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1433  		    || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1434  			PCM_cnt++; /* SD has proprietary bridging */
1435  		}
1436  		hc->pcm = PCM_cnt;
1437  		printk(KERN_INFO "controller has PCM BUS ID %d "
1438  		       "(auto selected)\n", hc->pcm);
1439  	}
1440  
1441  	/* set up timer */
1442  	HFC_outb(hc, R_TI_WD, poll_timer);
1443  	hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1444  
1445  	/* set E1 state machine IRQ */
1446  	if (hc->ctype == HFC_TYPE_E1)
1447  		hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1448  
1449  	/* set DTMF detection */
1450  	if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1451  		if (debug & DEBUG_HFCMULTI_INIT)
1452  			printk(KERN_DEBUG "%s: enabling DTMF detection "
1453  			       "for all B-channel\n", __func__);
1454  		hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1455  		if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1456  			hc->hw.r_dtmf |= V_ULAW_SEL;
1457  		HFC_outb(hc, R_DTMF_N, 102 - 1);
1458  		hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1459  	}
1460  
1461  	/* conference engine */
1462  	if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1463  		r_conf_en = V_CONF_EN | V_ULAW;
1464  	else
1465  		r_conf_en = V_CONF_EN;
1466  	if (hc->ctype != HFC_TYPE_XHFC)
1467  		HFC_outb(hc, R_CONF_EN, r_conf_en);
1468  
1469  	/* setting leds */
1470  	switch (hc->leds) {
1471  	case 1: /* HFC-E1 OEM */
1472  		if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1473  			HFC_outb(hc, R_GPIO_SEL, 0x32);
1474  		else
1475  			HFC_outb(hc, R_GPIO_SEL, 0x30);
1476  
1477  		HFC_outb(hc, R_GPIO_EN1, 0x0f);
1478  		HFC_outb(hc, R_GPIO_OUT1, 0x00);
1479  
1480  		HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1481  		break;
1482  
1483  	case 2: /* HFC-4S OEM */
1484  	case 3:
1485  		HFC_outb(hc, R_GPIO_SEL, 0xf0);
1486  		HFC_outb(hc, R_GPIO_EN1, 0xff);
1487  		HFC_outb(hc, R_GPIO_OUT1, 0x00);
1488  		break;
1489  	}
1490  
1491  	if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) {
1492  		hc->hw.r_st_sync = 0x10; /* V_AUTO_SYNCI */
1493  		HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1494  	}
1495  
1496  	/* set master clock */
1497  	if (hc->masterclk >= 0) {
1498  		if (debug & DEBUG_HFCMULTI_INIT)
1499  			printk(KERN_DEBUG "%s: setting ST master clock "
1500  			       "to port %d (0..%d)\n",
1501  			       __func__, hc->masterclk, hc->ports - 1);
1502  		hc->hw.r_st_sync |= (hc->masterclk | V_AUTO_SYNC);
1503  		HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1504  	}
1505  
1506  
1507  
1508  	/* setting misc irq */
1509  	HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1510  	if (debug & DEBUG_HFCMULTI_INIT)
1511  		printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1512  		       hc->hw.r_irqmsk_misc);
1513  
1514  	/* RAM access test */
1515  	HFC_outb(hc, R_RAM_ADDR0, 0);
1516  	HFC_outb(hc, R_RAM_ADDR1, 0);
1517  	HFC_outb(hc, R_RAM_ADDR2, 0);
1518  	for (i = 0; i < 256; i++) {
1519  		HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1520  		HFC_outb_nodebug(hc, R_RAM_DATA, ((i * 3) & 0xff));
1521  	}
1522  	for (i = 0; i < 256; i++) {
1523  		HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1524  		HFC_inb_nodebug(hc, R_RAM_DATA);
1525  		rval = HFC_inb_nodebug(hc, R_INT_DATA);
1526  		if (rval != ((i * 3) & 0xff)) {
1527  			printk(KERN_DEBUG
1528  			       "addr:%x val:%x should:%x\n", i, rval,
1529  			       (i * 3) & 0xff);
1530  			err++;
1531  		}
1532  	}
1533  	if (err) {
1534  		printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1535  		err = -EIO;
1536  		goto out;
1537  	}
1538  
1539  	if (debug & DEBUG_HFCMULTI_INIT)
1540  		printk(KERN_DEBUG "%s: done\n", __func__);
1541  out:
1542  	spin_unlock_irqrestore(&hc->lock, flags);
1543  	return err;
1544  }
1545  
1546  
1547  /*
1548   * control the watchdog
1549   */
1550  static void
hfcmulti_watchdog(struct hfc_multi * hc)1551  hfcmulti_watchdog(struct hfc_multi *hc)
1552  {
1553  	hc->wdcount++;
1554  
1555  	if (hc->wdcount > 10) {
1556  		hc->wdcount = 0;
1557  		hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1558  			V_GPIO_OUT3 : V_GPIO_OUT2;
1559  
1560  		/* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1561  		HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1562  		HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1563  	}
1564  }
1565  
1566  
1567  
1568  /*
1569   * output leds
1570   */
1571  static void
hfcmulti_leds(struct hfc_multi * hc)1572  hfcmulti_leds(struct hfc_multi *hc)
1573  {
1574  	unsigned long lled;
1575  	unsigned long leddw;
1576  	int i, state, active, leds;
1577  	struct dchannel *dch;
1578  	int led[4];
1579  
1580  	switch (hc->leds) {
1581  	case 1: /* HFC-E1 OEM */
1582  		/* 2 red steady:       LOS
1583  		 * 1 red steady:       L1 not active
1584  		 * 2 green steady:     L1 active
1585  		 * 1st green flashing: activity on TX
1586  		 * 2nd green flashing: activity on RX
1587  		 */
1588  		led[0] = 0;
1589  		led[1] = 0;
1590  		led[2] = 0;
1591  		led[3] = 0;
1592  		dch = hc->chan[hc->dnum[0]].dch;
1593  		if (dch) {
1594  			if (hc->chan[hc->dnum[0]].los)
1595  				led[1] = 1;
1596  			if (hc->e1_state != 1) {
1597  				led[0] = 1;
1598  				hc->flash[2] = 0;
1599  				hc->flash[3] = 0;
1600  			} else {
1601  				led[2] = 1;
1602  				led[3] = 1;
1603  				if (!hc->flash[2] && hc->activity_tx)
1604  					hc->flash[2] = poll;
1605  				if (!hc->flash[3] && hc->activity_rx)
1606  					hc->flash[3] = poll;
1607  				if (hc->flash[2] && hc->flash[2] < 1024)
1608  					led[2] = 0;
1609  				if (hc->flash[3] && hc->flash[3] < 1024)
1610  					led[3] = 0;
1611  				if (hc->flash[2] >= 2048)
1612  					hc->flash[2] = 0;
1613  				if (hc->flash[3] >= 2048)
1614  					hc->flash[3] = 0;
1615  				if (hc->flash[2])
1616  					hc->flash[2] += poll;
1617  				if (hc->flash[3])
1618  					hc->flash[3] += poll;
1619  			}
1620  		}
1621  		leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1622  		/* leds are inverted */
1623  		if (leds != (int)hc->ledstate) {
1624  			HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1625  			hc->ledstate = leds;
1626  		}
1627  		break;
1628  
1629  	case 2: /* HFC-4S OEM */
1630  		/* red steady:     PH_DEACTIVATE
1631  		 * green steady:   PH_ACTIVATE
1632  		 * green flashing: activity on TX
1633  		 */
1634  		for (i = 0; i < 4; i++) {
1635  			state = 0;
1636  			active = -1;
1637  			dch = hc->chan[(i << 2) | 2].dch;
1638  			if (dch) {
1639  				state = dch->state;
1640  				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1641  					active = 3;
1642  				else
1643  					active = 7;
1644  			}
1645  			if (state) {
1646  				if (state == active) {
1647  					led[i] = 1; /* led green */
1648  					hc->activity_tx |= hc->activity_rx;
1649  					if (!hc->flash[i] &&
1650  						(hc->activity_tx & (1 << i)))
1651  							hc->flash[i] = poll;
1652  					if (hc->flash[i] && hc->flash[i] < 1024)
1653  						led[i] = 0; /* led off */
1654  					if (hc->flash[i] >= 2048)
1655  						hc->flash[i] = 0;
1656  					if (hc->flash[i])
1657  						hc->flash[i] += poll;
1658  				} else {
1659  					led[i] = 2; /* led red */
1660  					hc->flash[i] = 0;
1661  				}
1662  			} else
1663  				led[i] = 0; /* led off */
1664  		}
1665  		if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1666  			leds = 0;
1667  			for (i = 0; i < 4; i++) {
1668  				if (led[i] == 1) {
1669  					/*green*/
1670  					leds |= (0x2 << (i * 2));
1671  				} else if (led[i] == 2) {
1672  					/*red*/
1673  					leds |= (0x1 << (i * 2));
1674  				}
1675  			}
1676  			if (leds != (int)hc->ledstate) {
1677  				vpm_out(hc, 0, 0x1a8 + 3, leds);
1678  				hc->ledstate = leds;
1679  			}
1680  		} else {
1681  			leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1682  				((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1683  				((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1684  				((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1685  			if (leds != (int)hc->ledstate) {
1686  				HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1687  				HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1688  				hc->ledstate = leds;
1689  			}
1690  		}
1691  		break;
1692  
1693  	case 3: /* HFC 1S/2S Beronet */
1694  		/* red steady:     PH_DEACTIVATE
1695  		 * green steady:   PH_ACTIVATE
1696  		 * green flashing: activity on TX
1697  		 */
1698  		for (i = 0; i < 2; i++) {
1699  			state = 0;
1700  			active = -1;
1701  			dch = hc->chan[(i << 2) | 2].dch;
1702  			if (dch) {
1703  				state = dch->state;
1704  				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1705  					active = 3;
1706  				else
1707  					active = 7;
1708  			}
1709  			if (state) {
1710  				if (state == active) {
1711  					led[i] = 1; /* led green */
1712  					hc->activity_tx |= hc->activity_rx;
1713  					if (!hc->flash[i] &&
1714  						(hc->activity_tx & (1 << i)))
1715  							hc->flash[i] = poll;
1716  					if (hc->flash[i] < 1024)
1717  						led[i] = 0; /* led off */
1718  					if (hc->flash[i] >= 2048)
1719  						hc->flash[i] = 0;
1720  					if (hc->flash[i])
1721  						hc->flash[i] += poll;
1722  				} else {
1723  					led[i] = 2; /* led red */
1724  					hc->flash[i] = 0;
1725  				}
1726  			} else
1727  				led[i] = 0; /* led off */
1728  		}
1729  		leds = (led[0] > 0) | ((led[1] > 0) << 1) | ((led[0]&1) << 2)
1730  			| ((led[1]&1) << 3);
1731  		if (leds != (int)hc->ledstate) {
1732  			HFC_outb_nodebug(hc, R_GPIO_EN1,
1733  					 ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1734  			HFC_outb_nodebug(hc, R_GPIO_OUT1,
1735  					 ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1736  			hc->ledstate = leds;
1737  		}
1738  		break;
1739  	case 8: /* HFC 8S+ Beronet */
1740  		/* off:      PH_DEACTIVATE
1741  		 * steady:   PH_ACTIVATE
1742  		 * flashing: activity on TX
1743  		 */
1744  		lled = 0xff; /* leds off */
1745  		for (i = 0; i < 8; i++) {
1746  			state = 0;
1747  			active = -1;
1748  			dch = hc->chan[(i << 2) | 2].dch;
1749  			if (dch) {
1750  				state = dch->state;
1751  				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1752  					active = 3;
1753  				else
1754  					active = 7;
1755  			}
1756  			if (state) {
1757  				if (state == active) {
1758  					lled &= ~(1 << i); /* led on */
1759  					hc->activity_tx |= hc->activity_rx;
1760  					if (!hc->flash[i] &&
1761  						(hc->activity_tx & (1 << i)))
1762  							hc->flash[i] = poll;
1763  					if (hc->flash[i] < 1024)
1764  						lled |= 1 << i; /* led off */
1765  					if (hc->flash[i] >= 2048)
1766  						hc->flash[i] = 0;
1767  					if (hc->flash[i])
1768  						hc->flash[i] += poll;
1769  				} else
1770  					hc->flash[i] = 0;
1771  			}
1772  		}
1773  		leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1774  		if (leddw != hc->ledstate) {
1775  			/* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1776  			   HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1777  			/* was _io before */
1778  			HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1779  			outw(0x4000, hc->pci_iobase + 4);
1780  			outl(leddw, hc->pci_iobase);
1781  			HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1782  			hc->ledstate = leddw;
1783  		}
1784  		break;
1785  	}
1786  	hc->activity_tx = 0;
1787  	hc->activity_rx = 0;
1788  }
1789  /*
1790   * read dtmf coefficients
1791   */
1792  
1793  static void
hfcmulti_dtmf(struct hfc_multi * hc)1794  hfcmulti_dtmf(struct hfc_multi *hc)
1795  {
1796  	s32		*coeff;
1797  	u_int		mantissa;
1798  	int		co, ch;
1799  	struct bchannel	*bch = NULL;
1800  	u8		exponent;
1801  	int		dtmf = 0;
1802  	int		addr;
1803  	u16		w_float;
1804  	struct sk_buff	*skb;
1805  	struct mISDNhead *hh;
1806  
1807  	if (debug & DEBUG_HFCMULTI_DTMF)
1808  		printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1809  	for (ch = 0; ch <= 31; ch++) {
1810  		/* only process enabled B-channels */
1811  		bch = hc->chan[ch].bch;
1812  		if (!bch)
1813  			continue;
1814  		if (!hc->created[hc->chan[ch].port])
1815  			continue;
1816  		if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1817  			continue;
1818  		if (debug & DEBUG_HFCMULTI_DTMF)
1819  			printk(KERN_DEBUG "%s: dtmf channel %d:",
1820  			       __func__, ch);
1821  		coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1822  		dtmf = 1;
1823  		for (co = 0; co < 8; co++) {
1824  			/* read W(n-1) coefficient */
1825  			addr = hc->DTMFbase + ((co << 7) | (ch << 2));
1826  			HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1827  			HFC_outb_nodebug(hc, R_RAM_ADDR1, addr >> 8);
1828  			HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr >> 16)
1829  					 | V_ADDR_INC);
1830  			w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1831  			w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1832  			if (debug & DEBUG_HFCMULTI_DTMF)
1833  				printk(" %04x", w_float);
1834  
1835  			/* decode float (see chip doc) */
1836  			mantissa = w_float & 0x0fff;
1837  			if (w_float & 0x8000)
1838  				mantissa |= 0xfffff000;
1839  			exponent = (w_float >> 12) & 0x7;
1840  			if (exponent) {
1841  				mantissa ^= 0x1000;
1842  				mantissa <<= (exponent - 1);
1843  			}
1844  
1845  			/* store coefficient */
1846  			coeff[co << 1] = mantissa;
1847  
1848  			/* read W(n) coefficient */
1849  			w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1850  			w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1851  			if (debug & DEBUG_HFCMULTI_DTMF)
1852  				printk(" %04x", w_float);
1853  
1854  			/* decode float (see chip doc) */
1855  			mantissa = w_float & 0x0fff;
1856  			if (w_float & 0x8000)
1857  				mantissa |= 0xfffff000;
1858  			exponent = (w_float >> 12) & 0x7;
1859  			if (exponent) {
1860  				mantissa ^= 0x1000;
1861  				mantissa <<= (exponent - 1);
1862  			}
1863  
1864  			/* store coefficient */
1865  			coeff[(co << 1) | 1] = mantissa;
1866  		}
1867  		if (debug & DEBUG_HFCMULTI_DTMF)
1868  			printk(" DTMF ready %08x %08x %08x %08x "
1869  			       "%08x %08x %08x %08x\n",
1870  			       coeff[0], coeff[1], coeff[2], coeff[3],
1871  			       coeff[4], coeff[5], coeff[6], coeff[7]);
1872  		hc->chan[ch].coeff_count++;
1873  		if (hc->chan[ch].coeff_count == 8) {
1874  			hc->chan[ch].coeff_count = 0;
1875  			skb = mI_alloc_skb(512, GFP_ATOMIC);
1876  			if (!skb) {
1877  				printk(KERN_DEBUG "%s: No memory for skb\n",
1878  				       __func__);
1879  				continue;
1880  			}
1881  			hh = mISDN_HEAD_P(skb);
1882  			hh->prim = PH_CONTROL_IND;
1883  			hh->id = DTMF_HFC_COEF;
1884  			skb_put_data(skb, hc->chan[ch].coeff, 512);
1885  			recv_Bchannel_skb(bch, skb);
1886  		}
1887  	}
1888  
1889  	/* restart DTMF processing */
1890  	hc->dtmf = dtmf;
1891  	if (dtmf)
1892  		HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1893  }
1894  
1895  
1896  /*
1897   * fill fifo as much as possible
1898   */
1899  
1900  static void
hfcmulti_tx(struct hfc_multi * hc,int ch)1901  hfcmulti_tx(struct hfc_multi *hc, int ch)
1902  {
1903  	int i, ii, temp, tmp_len, len = 0;
1904  	int Zspace, z1, z2; /* must be int for calculation */
1905  	int Fspace, f1, f2;
1906  	u_char *d;
1907  	int *txpending, slot_tx;
1908  	struct	bchannel *bch;
1909  	struct  dchannel *dch;
1910  	struct  sk_buff **sp = NULL;
1911  	int *idxp;
1912  
1913  	bch = hc->chan[ch].bch;
1914  	dch = hc->chan[ch].dch;
1915  	if ((!dch) && (!bch))
1916  		return;
1917  
1918  	txpending = &hc->chan[ch].txpending;
1919  	slot_tx = hc->chan[ch].slot_tx;
1920  	if (dch) {
1921  		if (!test_bit(FLG_ACTIVE, &dch->Flags))
1922  			return;
1923  		sp = &dch->tx_skb;
1924  		idxp = &dch->tx_idx;
1925  	} else {
1926  		if (!test_bit(FLG_ACTIVE, &bch->Flags))
1927  			return;
1928  		sp = &bch->tx_skb;
1929  		idxp = &bch->tx_idx;
1930  	}
1931  	if (*sp)
1932  		len = (*sp)->len;
1933  
1934  	if ((!len) && *txpending != 1)
1935  		return; /* no data */
1936  
1937  	if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1938  	    (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1939  	    (hc->chan[ch].slot_rx < 0) &&
1940  	    (hc->chan[ch].slot_tx < 0))
1941  		HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1942  	else
1943  		HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1944  	HFC_wait_nodebug(hc);
1945  
1946  	if (*txpending == 2) {
1947  		/* reset fifo */
1948  		HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1949  		HFC_wait_nodebug(hc);
1950  		HFC_outb(hc, A_SUBCH_CFG, 0);
1951  		*txpending = 1;
1952  	}
1953  next_frame:
1954  	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
1955  		f1 = HFC_inb_nodebug(hc, A_F1);
1956  		f2 = HFC_inb_nodebug(hc, A_F2);
1957  		while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
1958  			if (debug & DEBUG_HFCMULTI_FIFO)
1959  				printk(KERN_DEBUG
1960  				       "%s(card %d): reread f2 because %d!=%d\n",
1961  				       __func__, hc->id + 1, temp, f2);
1962  			f2 = temp; /* repeat until F2 is equal */
1963  		}
1964  		Fspace = f2 - f1 - 1;
1965  		if (Fspace < 0)
1966  			Fspace += hc->Flen;
1967  		/*
1968  		 * Old FIFO handling doesn't give us the current Z2 read
1969  		 * pointer, so we cannot send the next frame before the fifo
1970  		 * is empty. It makes no difference except for a slightly
1971  		 * lower performance.
1972  		 */
1973  		if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
1974  			if (f1 != f2)
1975  				Fspace = 0;
1976  			else
1977  				Fspace = 1;
1978  		}
1979  		/* one frame only for ST D-channels, to allow resending */
1980  		if (hc->ctype != HFC_TYPE_E1 && dch) {
1981  			if (f1 != f2)
1982  				Fspace = 0;
1983  		}
1984  		/* F-counter full condition */
1985  		if (Fspace == 0)
1986  			return;
1987  	}
1988  	z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
1989  	z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
1990  	while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
1991  		if (debug & DEBUG_HFCMULTI_FIFO)
1992  			printk(KERN_DEBUG "%s(card %d): reread z2 because "
1993  			       "%d!=%d\n", __func__, hc->id + 1, temp, z2);
1994  		z2 = temp; /* repeat unti Z2 is equal */
1995  	}
1996  	hc->chan[ch].Zfill = z1 - z2;
1997  	if (hc->chan[ch].Zfill < 0)
1998  		hc->chan[ch].Zfill += hc->Zlen;
1999  	Zspace = z2 - z1;
2000  	if (Zspace <= 0)
2001  		Zspace += hc->Zlen;
2002  	Zspace -= 4; /* keep not too full, so pointers will not overrun */
2003  	/* fill transparent data only to maxinum transparent load (minus 4) */
2004  	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2005  		Zspace = Zspace - hc->Zlen + hc->max_trans;
2006  	if (Zspace <= 0) /* no space of 4 bytes */
2007  		return;
2008  
2009  	/* if no data */
2010  	if (!len) {
2011  		if (z1 == z2) { /* empty */
2012  			/* if done with FIFO audio data during PCM connection */
2013  			if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
2014  			    *txpending && slot_tx >= 0) {
2015  				if (debug & DEBUG_HFCMULTI_MODE)
2016  					printk(KERN_DEBUG
2017  					       "%s: reconnecting PCM due to no "
2018  					       "more FIFO data: channel %d "
2019  					       "slot_tx %d\n",
2020  					       __func__, ch, slot_tx);
2021  				/* connect slot */
2022  				if (hc->ctype == HFC_TYPE_XHFC)
2023  					HFC_outb(hc, A_CON_HDLC, 0xc0
2024  						 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2025  				/* Enable FIFO, no interrupt */
2026  				else
2027  					HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2028  						 V_HDLC_TRP | V_IFF);
2029  				HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2030  				HFC_wait_nodebug(hc);
2031  				if (hc->ctype == HFC_TYPE_XHFC)
2032  					HFC_outb(hc, A_CON_HDLC, 0xc0
2033  						 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2034  				/* Enable FIFO, no interrupt */
2035  				else
2036  					HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2037  						 V_HDLC_TRP | V_IFF);
2038  				HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2039  				HFC_wait_nodebug(hc);
2040  			}
2041  			*txpending = 0;
2042  		}
2043  		return; /* no data */
2044  	}
2045  
2046  	/* "fill fifo if empty" feature */
2047  	if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags)
2048  	    && !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) {
2049  		if (debug & DEBUG_HFCMULTI_FILL)
2050  			printk(KERN_DEBUG "%s: buffer empty, so we have "
2051  			       "underrun\n", __func__);
2052  		/* fill buffer, to prevent future underrun */
2053  		hc->write_fifo(hc, hc->silence_data, poll >> 1);
2054  		Zspace -= (poll >> 1);
2055  	}
2056  
2057  	/* if audio data and connected slot */
2058  	if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
2059  	    && slot_tx >= 0) {
2060  		if (debug & DEBUG_HFCMULTI_MODE)
2061  			printk(KERN_DEBUG "%s: disconnecting PCM due to "
2062  			       "FIFO data: channel %d slot_tx %d\n",
2063  			       __func__, ch, slot_tx);
2064  		/* disconnect slot */
2065  		if (hc->ctype == HFC_TYPE_XHFC)
2066  			HFC_outb(hc, A_CON_HDLC, 0x80
2067  				 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2068  		/* Enable FIFO, no interrupt */
2069  		else
2070  			HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2071  				 V_HDLC_TRP | V_IFF);
2072  		HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2073  		HFC_wait_nodebug(hc);
2074  		if (hc->ctype == HFC_TYPE_XHFC)
2075  			HFC_outb(hc, A_CON_HDLC, 0x80
2076  				 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2077  		/* Enable FIFO, no interrupt */
2078  		else
2079  			HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2080  				 V_HDLC_TRP | V_IFF);
2081  		HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2082  		HFC_wait_nodebug(hc);
2083  	}
2084  	*txpending = 1;
2085  
2086  	/* show activity */
2087  	if (dch)
2088  		hc->activity_tx |= 1 << hc->chan[ch].port;
2089  
2090  	/* fill fifo to what we have left */
2091  	ii = len;
2092  	if (dch || test_bit(FLG_HDLC, &bch->Flags))
2093  		temp = 1;
2094  	else
2095  		temp = 0;
2096  	i = *idxp;
2097  	d = (*sp)->data + i;
2098  	if (ii - i > Zspace)
2099  		ii = Zspace + i;
2100  	if (debug & DEBUG_HFCMULTI_FIFO)
2101  		printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2102  		       "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2103  		       __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
2104  		       temp ? "HDLC" : "TRANS");
2105  
2106  	/* Have to prep the audio data */
2107  	hc->write_fifo(hc, d, ii - i);
2108  	hc->chan[ch].Zfill += ii - i;
2109  	*idxp = ii;
2110  
2111  	/* if not all data has been written */
2112  	if (ii != len) {
2113  		/* NOTE: fifo is started by the calling function */
2114  		return;
2115  	}
2116  
2117  	/* if all data has been written, terminate frame */
2118  	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2119  		/* increment f-counter */
2120  		HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2121  		HFC_wait_nodebug(hc);
2122  	}
2123  
2124  	tmp_len = (*sp)->len;
2125  	dev_kfree_skb(*sp);
2126  	/* check for next frame */
2127  	if (bch && get_next_bframe(bch)) {
2128  		len = tmp_len;
2129  		goto next_frame;
2130  	}
2131  	if (dch && get_next_dframe(dch)) {
2132  		len = tmp_len;
2133  		goto next_frame;
2134  	}
2135  
2136  	/*
2137  	 * now we have no more data, so in case of transparent,
2138  	 * we set the last byte in fifo to 'silence' in case we will get
2139  	 * no more data at all. this prevents sending an undefined value.
2140  	 */
2141  	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2142  		HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2143  }
2144  
2145  
2146  /* NOTE: only called if E1 card is in active state */
2147  static void
hfcmulti_rx(struct hfc_multi * hc,int ch)2148  hfcmulti_rx(struct hfc_multi *hc, int ch)
2149  {
2150  	int temp;
2151  	int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2152  	int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2153  	int again = 0;
2154  	struct	bchannel *bch;
2155  	struct  dchannel *dch = NULL;
2156  	struct sk_buff	*skb, **sp = NULL;
2157  	int	maxlen;
2158  
2159  	bch = hc->chan[ch].bch;
2160  	if (bch) {
2161  		if (!test_bit(FLG_ACTIVE, &bch->Flags))
2162  			return;
2163  	} else if (hc->chan[ch].dch) {
2164  		dch = hc->chan[ch].dch;
2165  		if (!test_bit(FLG_ACTIVE, &dch->Flags))
2166  			return;
2167  	} else {
2168  		return;
2169  	}
2170  next_frame:
2171  	/* on first AND before getting next valid frame, R_FIFO must be written
2172  	   to. */
2173  	if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2174  	    (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2175  	    (hc->chan[ch].slot_rx < 0) &&
2176  	    (hc->chan[ch].slot_tx < 0))
2177  		HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1) | 1);
2178  	else
2179  		HFC_outb_nodebug(hc, R_FIFO, (ch << 1) | 1);
2180  	HFC_wait_nodebug(hc);
2181  
2182  	/* ignore if rx is off BUT change fifo (above) to start pending TX */
2183  	if (hc->chan[ch].rx_off) {
2184  		if (bch)
2185  			bch->dropcnt += poll; /* not exact but fair enough */
2186  		return;
2187  	}
2188  
2189  	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2190  		f1 = HFC_inb_nodebug(hc, A_F1);
2191  		while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2192  			if (debug & DEBUG_HFCMULTI_FIFO)
2193  				printk(KERN_DEBUG
2194  				       "%s(card %d): reread f1 because %d!=%d\n",
2195  				       __func__, hc->id + 1, temp, f1);
2196  			f1 = temp; /* repeat until F1 is equal */
2197  		}
2198  		f2 = HFC_inb_nodebug(hc, A_F2);
2199  	}
2200  	z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2201  	while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2202  		if (debug & DEBUG_HFCMULTI_FIFO)
2203  			printk(KERN_DEBUG "%s(card %d): reread z2 because "
2204  			       "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2205  		z1 = temp; /* repeat until Z1 is equal */
2206  	}
2207  	z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2208  	Zsize = z1 - z2;
2209  	if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2210  		/* complete hdlc frame */
2211  		Zsize++;
2212  	if (Zsize < 0)
2213  		Zsize += hc->Zlen;
2214  	/* if buffer is empty */
2215  	if (Zsize <= 0)
2216  		return;
2217  
2218  	if (bch) {
2219  		maxlen = bchannel_get_rxbuf(bch, Zsize);
2220  		if (maxlen < 0) {
2221  			pr_warn("card%d.B%d: No bufferspace for %d bytes\n",
2222  				hc->id + 1, bch->nr, Zsize);
2223  			return;
2224  		}
2225  		sp = &bch->rx_skb;
2226  		maxlen = bch->maxlen;
2227  	} else { /* Dchannel */
2228  		sp = &dch->rx_skb;
2229  		maxlen = dch->maxlen + 3;
2230  		if (*sp == NULL) {
2231  			*sp = mI_alloc_skb(maxlen, GFP_ATOMIC);
2232  			if (*sp == NULL) {
2233  				pr_warn("card%d: No mem for dch rx_skb\n",
2234  					hc->id + 1);
2235  				return;
2236  			}
2237  		}
2238  	}
2239  	/* show activity */
2240  	if (dch)
2241  		hc->activity_rx |= 1 << hc->chan[ch].port;
2242  
2243  	/* empty fifo with what we have */
2244  	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2245  		if (debug & DEBUG_HFCMULTI_FIFO)
2246  			printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2247  			       "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2248  			       "got=%d (again %d)\n", __func__, hc->id + 1, ch,
2249  			       Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2250  			       f1, f2, Zsize + (*sp)->len, again);
2251  		/* HDLC */
2252  		if ((Zsize + (*sp)->len) > maxlen) {
2253  			if (debug & DEBUG_HFCMULTI_FIFO)
2254  				printk(KERN_DEBUG
2255  				       "%s(card %d): hdlc-frame too large.\n",
2256  				       __func__, hc->id + 1);
2257  			skb_trim(*sp, 0);
2258  			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2259  			HFC_wait_nodebug(hc);
2260  			return;
2261  		}
2262  
2263  		hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2264  
2265  		if (f1 != f2) {
2266  			/* increment Z2,F2-counter */
2267  			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2268  			HFC_wait_nodebug(hc);
2269  			/* check size */
2270  			if ((*sp)->len < 4) {
2271  				if (debug & DEBUG_HFCMULTI_FIFO)
2272  					printk(KERN_DEBUG
2273  					       "%s(card %d): Frame below minimum "
2274  					       "size\n", __func__, hc->id + 1);
2275  				skb_trim(*sp, 0);
2276  				goto next_frame;
2277  			}
2278  			/* there is at least one complete frame, check crc */
2279  			if ((*sp)->data[(*sp)->len - 1]) {
2280  				if (debug & DEBUG_HFCMULTI_CRC)
2281  					printk(KERN_DEBUG
2282  					       "%s: CRC-error\n", __func__);
2283  				skb_trim(*sp, 0);
2284  				goto next_frame;
2285  			}
2286  			skb_trim(*sp, (*sp)->len - 3);
2287  			if ((*sp)->len < MISDN_COPY_SIZE) {
2288  				skb = *sp;
2289  				*sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2290  				if (*sp) {
2291  					skb_put_data(*sp, skb->data, skb->len);
2292  					skb_trim(skb, 0);
2293  				} else {
2294  					printk(KERN_DEBUG "%s: No mem\n",
2295  					       __func__);
2296  					*sp = skb;
2297  					skb = NULL;
2298  				}
2299  			} else {
2300  				skb = NULL;
2301  			}
2302  			if (debug & DEBUG_HFCMULTI_FIFO) {
2303  				printk(KERN_DEBUG "%s(card %d):",
2304  				       __func__, hc->id + 1);
2305  				temp = 0;
2306  				while (temp < (*sp)->len)
2307  					printk(" %02x", (*sp)->data[temp++]);
2308  				printk("\n");
2309  			}
2310  			if (dch)
2311  				recv_Dchannel(dch);
2312  			else
2313  				recv_Bchannel(bch, MISDN_ID_ANY, false);
2314  			*sp = skb;
2315  			again++;
2316  			goto next_frame;
2317  		}
2318  		/* there is an incomplete frame */
2319  	} else {
2320  		/* transparent */
2321  		hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2322  		if (debug & DEBUG_HFCMULTI_FIFO)
2323  			printk(KERN_DEBUG
2324  			       "%s(card %d): fifo(%d) reading %d bytes "
2325  			       "(z1=%04x, z2=%04x) TRANS\n",
2326  			       __func__, hc->id + 1, ch, Zsize, z1, z2);
2327  		/* only bch is transparent */
2328  		recv_Bchannel(bch, hc->chan[ch].Zfill, false);
2329  	}
2330  }
2331  
2332  
2333  /*
2334   * Interrupt handler
2335   */
2336  static void
signal_state_up(struct dchannel * dch,int info,char * msg)2337  signal_state_up(struct dchannel *dch, int info, char *msg)
2338  {
2339  	struct sk_buff	*skb;
2340  	int		id, data = info;
2341  
2342  	if (debug & DEBUG_HFCMULTI_STATE)
2343  		printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2344  
2345  	id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2346  
2347  	skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2348  			       GFP_ATOMIC);
2349  	if (!skb)
2350  		return;
2351  	recv_Dchannel_skb(dch, skb);
2352  }
2353  
2354  static inline void
handle_timer_irq(struct hfc_multi * hc)2355  handle_timer_irq(struct hfc_multi *hc)
2356  {
2357  	int		ch, temp;
2358  	struct dchannel	*dch;
2359  	u_long		flags;
2360  
2361  	/* process queued resync jobs */
2362  	if (hc->e1_resync) {
2363  		/* lock, so e1_resync gets not changed */
2364  		spin_lock_irqsave(&HFClock, flags);
2365  		if (hc->e1_resync & 1) {
2366  			if (debug & DEBUG_HFCMULTI_PLXSD)
2367  				printk(KERN_DEBUG "Enable SYNC_I\n");
2368  			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2369  			/* disable JATT, if RX_SYNC is set */
2370  			if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2371  				HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2372  		}
2373  		if (hc->e1_resync & 2) {
2374  			if (debug & DEBUG_HFCMULTI_PLXSD)
2375  				printk(KERN_DEBUG "Enable jatt PLL\n");
2376  			HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2377  		}
2378  		if (hc->e1_resync & 4) {
2379  			if (debug & DEBUG_HFCMULTI_PLXSD)
2380  				printk(KERN_DEBUG
2381  				       "Enable QUARTZ for HFC-E1\n");
2382  			/* set jatt to quartz */
2383  			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2384  				 | V_JATT_OFF);
2385  			/* switch to JATT, in case it is not already */
2386  			HFC_outb(hc, R_SYNC_OUT, 0);
2387  		}
2388  		hc->e1_resync = 0;
2389  		spin_unlock_irqrestore(&HFClock, flags);
2390  	}
2391  
2392  	if (hc->ctype != HFC_TYPE_E1 || hc->e1_state == 1)
2393  		for (ch = 0; ch <= 31; ch++) {
2394  			if (hc->created[hc->chan[ch].port]) {
2395  				hfcmulti_tx(hc, ch);
2396  				/* fifo is started when switching to rx-fifo */
2397  				hfcmulti_rx(hc, ch);
2398  				if (hc->chan[ch].dch &&
2399  				    hc->chan[ch].nt_timer > -1) {
2400  					dch = hc->chan[ch].dch;
2401  					if (!(--hc->chan[ch].nt_timer)) {
2402  						schedule_event(dch,
2403  							       FLG_PHCHANGE);
2404  						if (debug &
2405  						    DEBUG_HFCMULTI_STATE)
2406  							printk(KERN_DEBUG
2407  							       "%s: nt_timer at "
2408  							       "state %x\n",
2409  							       __func__,
2410  							       dch->state);
2411  					}
2412  				}
2413  			}
2414  		}
2415  	if (hc->ctype == HFC_TYPE_E1 && hc->created[0]) {
2416  		dch = hc->chan[hc->dnum[0]].dch;
2417  		/* LOS */
2418  		temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2419  		hc->chan[hc->dnum[0]].los = temp;
2420  		if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
2421  			if (!temp && hc->chan[hc->dnum[0]].los)
2422  				signal_state_up(dch, L1_SIGNAL_LOS_ON,
2423  						"LOS detected");
2424  			if (temp && !hc->chan[hc->dnum[0]].los)
2425  				signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2426  						"LOS gone");
2427  		}
2428  		if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dnum[0]].cfg)) {
2429  			/* AIS */
2430  			temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2431  			if (!temp && hc->chan[hc->dnum[0]].ais)
2432  				signal_state_up(dch, L1_SIGNAL_AIS_ON,
2433  						"AIS detected");
2434  			if (temp && !hc->chan[hc->dnum[0]].ais)
2435  				signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2436  						"AIS gone");
2437  			hc->chan[hc->dnum[0]].ais = temp;
2438  		}
2439  		if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dnum[0]].cfg)) {
2440  			/* SLIP */
2441  			temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2442  			if (!temp && hc->chan[hc->dnum[0]].slip_rx)
2443  				signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2444  						" bit SLIP detected RX");
2445  			hc->chan[hc->dnum[0]].slip_rx = temp;
2446  			temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2447  			if (!temp && hc->chan[hc->dnum[0]].slip_tx)
2448  				signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2449  						" bit SLIP detected TX");
2450  			hc->chan[hc->dnum[0]].slip_tx = temp;
2451  		}
2452  		if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dnum[0]].cfg)) {
2453  			/* RDI */
2454  			temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2455  			if (!temp && hc->chan[hc->dnum[0]].rdi)
2456  				signal_state_up(dch, L1_SIGNAL_RDI_ON,
2457  						"RDI detected");
2458  			if (temp && !hc->chan[hc->dnum[0]].rdi)
2459  				signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2460  						"RDI gone");
2461  			hc->chan[hc->dnum[0]].rdi = temp;
2462  		}
2463  		temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2464  		switch (hc->chan[hc->dnum[0]].sync) {
2465  		case 0:
2466  			if ((temp & 0x60) == 0x60) {
2467  				if (debug & DEBUG_HFCMULTI_SYNC)
2468  					printk(KERN_DEBUG
2469  					       "%s: (id=%d) E1 now "
2470  					       "in clock sync\n",
2471  					       __func__, hc->id);
2472  				HFC_outb(hc, R_RX_OFF,
2473  				    hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2474  				HFC_outb(hc, R_TX_OFF,
2475  				    hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2476  				hc->chan[hc->dnum[0]].sync = 1;
2477  				goto check_framesync;
2478  			}
2479  			break;
2480  		case 1:
2481  			if ((temp & 0x60) != 0x60) {
2482  				if (debug & DEBUG_HFCMULTI_SYNC)
2483  					printk(KERN_DEBUG
2484  					       "%s: (id=%d) E1 "
2485  					       "lost clock sync\n",
2486  					       __func__, hc->id);
2487  				hc->chan[hc->dnum[0]].sync = 0;
2488  				break;
2489  			}
2490  		check_framesync:
2491  			temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2492  			if (temp == 0x27) {
2493  				if (debug & DEBUG_HFCMULTI_SYNC)
2494  					printk(KERN_DEBUG
2495  					       "%s: (id=%d) E1 "
2496  					       "now in frame sync\n",
2497  					       __func__, hc->id);
2498  				hc->chan[hc->dnum[0]].sync = 2;
2499  			}
2500  			break;
2501  		case 2:
2502  			if ((temp & 0x60) != 0x60) {
2503  				if (debug & DEBUG_HFCMULTI_SYNC)
2504  					printk(KERN_DEBUG
2505  					       "%s: (id=%d) E1 lost "
2506  					       "clock & frame sync\n",
2507  					       __func__, hc->id);
2508  				hc->chan[hc->dnum[0]].sync = 0;
2509  				break;
2510  			}
2511  			temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2512  			if (temp != 0x27) {
2513  				if (debug & DEBUG_HFCMULTI_SYNC)
2514  					printk(KERN_DEBUG
2515  					       "%s: (id=%d) E1 "
2516  					       "lost frame sync\n",
2517  					       __func__, hc->id);
2518  				hc->chan[hc->dnum[0]].sync = 1;
2519  			}
2520  			break;
2521  		}
2522  	}
2523  
2524  	if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2525  		hfcmulti_watchdog(hc);
2526  
2527  	if (hc->leds)
2528  		hfcmulti_leds(hc);
2529  }
2530  
2531  static void
ph_state_irq(struct hfc_multi * hc,u_char r_irq_statech)2532  ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2533  {
2534  	struct dchannel	*dch;
2535  	int		ch;
2536  	int		active;
2537  	u_char		st_status, temp;
2538  
2539  	/* state machine */
2540  	for (ch = 0; ch <= 31; ch++) {
2541  		if (hc->chan[ch].dch) {
2542  			dch = hc->chan[ch].dch;
2543  			if (r_irq_statech & 1) {
2544  				HFC_outb_nodebug(hc, R_ST_SEL,
2545  						 hc->chan[ch].port);
2546  				/* undocumented: delay after R_ST_SEL */
2547  				udelay(1);
2548  				/* undocumented: status changes during read */
2549  				st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2550  				while (st_status != (temp =
2551  						     HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2552  					if (debug & DEBUG_HFCMULTI_STATE)
2553  						printk(KERN_DEBUG "%s: reread "
2554  						       "STATE because %d!=%d\n",
2555  						       __func__, temp,
2556  						       st_status);
2557  					st_status = temp; /* repeat */
2558  				}
2559  
2560  				/* Speech Design TE-sync indication */
2561  				if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2562  				    dch->dev.D.protocol == ISDN_P_TE_S0) {
2563  					if (st_status & V_FR_SYNC_ST)
2564  						hc->syncronized |=
2565  							(1 << hc->chan[ch].port);
2566  					else
2567  						hc->syncronized &=
2568  							~(1 << hc->chan[ch].port);
2569  				}
2570  				dch->state = st_status & 0x0f;
2571  				if (dch->dev.D.protocol == ISDN_P_NT_S0)
2572  					active = 3;
2573  				else
2574  					active = 7;
2575  				if (dch->state == active) {
2576  					HFC_outb_nodebug(hc, R_FIFO,
2577  							 (ch << 1) | 1);
2578  					HFC_wait_nodebug(hc);
2579  					HFC_outb_nodebug(hc,
2580  							 R_INC_RES_FIFO, V_RES_F);
2581  					HFC_wait_nodebug(hc);
2582  					dch->tx_idx = 0;
2583  				}
2584  				schedule_event(dch, FLG_PHCHANGE);
2585  				if (debug & DEBUG_HFCMULTI_STATE)
2586  					printk(KERN_DEBUG
2587  					       "%s: S/T newstate %x port %d\n",
2588  					       __func__, dch->state,
2589  					       hc->chan[ch].port);
2590  			}
2591  			r_irq_statech >>= 1;
2592  		}
2593  	}
2594  	if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2595  		plxsd_checksync(hc, 0);
2596  }
2597  
2598  static void
fifo_irq(struct hfc_multi * hc,int block)2599  fifo_irq(struct hfc_multi *hc, int block)
2600  {
2601  	int	ch, j;
2602  	struct dchannel	*dch;
2603  	struct bchannel	*bch;
2604  	u_char r_irq_fifo_bl;
2605  
2606  	r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2607  	j = 0;
2608  	while (j < 8) {
2609  		ch = (block << 2) + (j >> 1);
2610  		dch = hc->chan[ch].dch;
2611  		bch = hc->chan[ch].bch;
2612  		if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2613  			j += 2;
2614  			continue;
2615  		}
2616  		if (dch && (r_irq_fifo_bl & (1 << j)) &&
2617  		    test_bit(FLG_ACTIVE, &dch->Flags)) {
2618  			hfcmulti_tx(hc, ch);
2619  			/* start fifo */
2620  			HFC_outb_nodebug(hc, R_FIFO, 0);
2621  			HFC_wait_nodebug(hc);
2622  		}
2623  		if (bch && (r_irq_fifo_bl & (1 << j)) &&
2624  		    test_bit(FLG_ACTIVE, &bch->Flags)) {
2625  			hfcmulti_tx(hc, ch);
2626  			/* start fifo */
2627  			HFC_outb_nodebug(hc, R_FIFO, 0);
2628  			HFC_wait_nodebug(hc);
2629  		}
2630  		j++;
2631  		if (dch && (r_irq_fifo_bl & (1 << j)) &&
2632  		    test_bit(FLG_ACTIVE, &dch->Flags)) {
2633  			hfcmulti_rx(hc, ch);
2634  		}
2635  		if (bch && (r_irq_fifo_bl & (1 << j)) &&
2636  		    test_bit(FLG_ACTIVE, &bch->Flags)) {
2637  			hfcmulti_rx(hc, ch);
2638  		}
2639  		j++;
2640  	}
2641  }
2642  
2643  #ifdef IRQ_DEBUG
2644  int irqsem;
2645  #endif
2646  static irqreturn_t
hfcmulti_interrupt(int intno,void * dev_id)2647  hfcmulti_interrupt(int intno, void *dev_id)
2648  {
2649  #ifdef IRQCOUNT_DEBUG
2650  	static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2651  		iq5 = 0, iq6 = 0, iqcnt = 0;
2652  #endif
2653  	struct hfc_multi	*hc = dev_id;
2654  	struct dchannel		*dch;
2655  	u_char			r_irq_statech, status, r_irq_misc, r_irq_oview;
2656  	int			i;
2657  	void __iomem		*plx_acc;
2658  	u_short			wval;
2659  	u_char			e1_syncsta, temp, temp2;
2660  	u_long			flags;
2661  
2662  	if (!hc) {
2663  		printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2664  		return IRQ_NONE;
2665  	}
2666  
2667  	spin_lock(&hc->lock);
2668  
2669  #ifdef IRQ_DEBUG
2670  	if (irqsem)
2671  		printk(KERN_ERR "irq for card %d during irq from "
2672  		       "card %d, this is no bug.\n", hc->id + 1, irqsem);
2673  	irqsem = hc->id + 1;
2674  #endif
2675  #ifdef CONFIG_MISDN_HFCMULTI_8xx
2676  	if (hc->immap->im_cpm.cp_pbdat & hc->pb_irqmsk)
2677  		goto irq_notforus;
2678  #endif
2679  	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2680  		spin_lock_irqsave(&plx_lock, flags);
2681  		plx_acc = hc->plx_membase + PLX_INTCSR;
2682  		wval = readw(plx_acc);
2683  		spin_unlock_irqrestore(&plx_lock, flags);
2684  		if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2685  			goto irq_notforus;
2686  	}
2687  
2688  	status = HFC_inb_nodebug(hc, R_STATUS);
2689  	r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2690  #ifdef IRQCOUNT_DEBUG
2691  	if (r_irq_statech)
2692  		iq1++;
2693  	if (status & V_DTMF_STA)
2694  		iq2++;
2695  	if (status & V_LOST_STA)
2696  		iq3++;
2697  	if (status & V_EXT_IRQSTA)
2698  		iq4++;
2699  	if (status & V_MISC_IRQSTA)
2700  		iq5++;
2701  	if (status & V_FR_IRQSTA)
2702  		iq6++;
2703  	if (iqcnt++ > 5000) {
2704  		printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2705  		       iq1, iq2, iq3, iq4, iq5, iq6);
2706  		iqcnt = 0;
2707  	}
2708  #endif
2709  
2710  	if (!r_irq_statech &&
2711  	    !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2712  			V_MISC_IRQSTA | V_FR_IRQSTA))) {
2713  		/* irq is not for us */
2714  		goto irq_notforus;
2715  	}
2716  	hc->irqcnt++;
2717  	if (r_irq_statech) {
2718  		if (hc->ctype != HFC_TYPE_E1)
2719  			ph_state_irq(hc, r_irq_statech);
2720  	}
2721  	if (status & V_LOST_STA) {
2722  		/* LOST IRQ */
2723  		HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2724  	}
2725  	if (status & V_MISC_IRQSTA) {
2726  		/* misc IRQ */
2727  		r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
2728  		r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */
2729  		if (r_irq_misc & V_STA_IRQ) {
2730  			if (hc->ctype == HFC_TYPE_E1) {
2731  				/* state machine */
2732  				dch = hc->chan[hc->dnum[0]].dch;
2733  				e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2734  				if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2735  				    && hc->e1_getclock) {
2736  					if (e1_syncsta & V_FR_SYNC_E1)
2737  						hc->syncronized = 1;
2738  					else
2739  						hc->syncronized = 0;
2740  				}
2741  				/* undocumented: status changes during read */
2742  				temp = HFC_inb_nodebug(hc, R_E1_RD_STA);
2743  				while (temp != (temp2 =
2744  						      HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2745  					if (debug & DEBUG_HFCMULTI_STATE)
2746  						printk(KERN_DEBUG "%s: reread "
2747  						       "STATE because %d!=%d\n",
2748  						    __func__, temp, temp2);
2749  					temp = temp2; /* repeat */
2750  				}
2751  				/* broadcast state change to all fragments */
2752  				if (debug & DEBUG_HFCMULTI_STATE)
2753  					printk(KERN_DEBUG
2754  					       "%s: E1 (id=%d) newstate %x\n",
2755  					    __func__, hc->id, temp & 0x7);
2756  				for (i = 0; i < hc->ports; i++) {
2757  					dch = hc->chan[hc->dnum[i]].dch;
2758  					dch->state = temp & 0x7;
2759  					schedule_event(dch, FLG_PHCHANGE);
2760  				}
2761  
2762  				if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2763  					plxsd_checksync(hc, 0);
2764  			}
2765  		}
2766  		if (r_irq_misc & V_TI_IRQ) {
2767  			if (hc->iclock_on)
2768  				mISDN_clock_update(hc->iclock, poll, NULL);
2769  			handle_timer_irq(hc);
2770  		}
2771  
2772  		if (r_irq_misc & V_DTMF_IRQ)
2773  			hfcmulti_dtmf(hc);
2774  
2775  		if (r_irq_misc & V_IRQ_PROC) {
2776  			static int irq_proc_cnt;
2777  			if (!irq_proc_cnt++)
2778  				printk(KERN_DEBUG "%s: got V_IRQ_PROC -"
2779  				       " this should not happen\n", __func__);
2780  		}
2781  
2782  	}
2783  	if (status & V_FR_IRQSTA) {
2784  		/* FIFO IRQ */
2785  		r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2786  		for (i = 0; i < 8; i++) {
2787  			if (r_irq_oview & (1 << i))
2788  				fifo_irq(hc, i);
2789  		}
2790  	}
2791  
2792  #ifdef IRQ_DEBUG
2793  	irqsem = 0;
2794  #endif
2795  	spin_unlock(&hc->lock);
2796  	return IRQ_HANDLED;
2797  
2798  irq_notforus:
2799  #ifdef IRQ_DEBUG
2800  	irqsem = 0;
2801  #endif
2802  	spin_unlock(&hc->lock);
2803  	return IRQ_NONE;
2804  }
2805  
2806  
2807  /*
2808   * timer callback for D-chan busy resolution. Currently no function
2809   */
2810  
2811  static void
hfcmulti_dbusy_timer(struct timer_list * t)2812  hfcmulti_dbusy_timer(struct timer_list *t)
2813  {
2814  }
2815  
2816  
2817  /*
2818   * activate/deactivate hardware for selected channels and mode
2819   *
2820   * configure B-channel with the given protocol
2821   * ch eqals to the HFC-channel (0-31)
2822   * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2823   * for S/T, 1-31 for E1)
2824   * the hdlc interrupts will be set/unset
2825   */
2826  static int
mode_hfcmulti(struct hfc_multi * hc,int ch,int protocol,int slot_tx,int bank_tx,int slot_rx,int bank_rx)2827  mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2828  	      int bank_tx, int slot_rx, int bank_rx)
2829  {
2830  	int flow_tx = 0, flow_rx = 0, routing = 0;
2831  	int oslot_tx, oslot_rx;
2832  	int conf;
2833  
2834  	if (ch < 0 || ch > 31)
2835  		return -EINVAL;
2836  	oslot_tx = hc->chan[ch].slot_tx;
2837  	oslot_rx = hc->chan[ch].slot_rx;
2838  	conf = hc->chan[ch].conf;
2839  
2840  	if (debug & DEBUG_HFCMULTI_MODE)
2841  		printk(KERN_DEBUG
2842  		       "%s: card %d channel %d protocol %x slot old=%d new=%d "
2843  		       "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2844  		       __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2845  		       bank_tx, oslot_rx, slot_rx, bank_rx);
2846  
2847  	if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2848  		/* remove from slot */
2849  		if (debug & DEBUG_HFCMULTI_MODE)
2850  			printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2851  			       __func__, oslot_tx);
2852  		if (hc->slot_owner[oslot_tx << 1] == ch) {
2853  			HFC_outb(hc, R_SLOT, oslot_tx << 1);
2854  			HFC_outb(hc, A_SL_CFG, 0);
2855  			if (hc->ctype != HFC_TYPE_XHFC)
2856  				HFC_outb(hc, A_CONF, 0);
2857  			hc->slot_owner[oslot_tx << 1] = -1;
2858  		} else {
2859  			if (debug & DEBUG_HFCMULTI_MODE)
2860  				printk(KERN_DEBUG
2861  				       "%s: we are not owner of this tx slot "
2862  				       "anymore, channel %d is.\n",
2863  				       __func__, hc->slot_owner[oslot_tx << 1]);
2864  		}
2865  	}
2866  
2867  	if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2868  		/* remove from slot */
2869  		if (debug & DEBUG_HFCMULTI_MODE)
2870  			printk(KERN_DEBUG
2871  			       "%s: remove from slot %d (RX)\n",
2872  			       __func__, oslot_rx);
2873  		if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2874  			HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2875  			HFC_outb(hc, A_SL_CFG, 0);
2876  			hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2877  		} else {
2878  			if (debug & DEBUG_HFCMULTI_MODE)
2879  				printk(KERN_DEBUG
2880  				       "%s: we are not owner of this rx slot "
2881  				       "anymore, channel %d is.\n",
2882  				       __func__,
2883  				       hc->slot_owner[(oslot_rx << 1) | 1]);
2884  		}
2885  	}
2886  
2887  	if (slot_tx < 0) {
2888  		flow_tx = 0x80; /* FIFO->ST */
2889  		/* disable pcm slot */
2890  		hc->chan[ch].slot_tx = -1;
2891  		hc->chan[ch].bank_tx = 0;
2892  	} else {
2893  		/* set pcm slot */
2894  		if (hc->chan[ch].txpending)
2895  			flow_tx = 0x80; /* FIFO->ST */
2896  		else
2897  			flow_tx = 0xc0; /* PCM->ST */
2898  		/* put on slot */
2899  		routing = bank_tx ? 0xc0 : 0x80;
2900  		if (conf >= 0 || bank_tx > 1)
2901  			routing = 0x40; /* loop */
2902  		if (debug & DEBUG_HFCMULTI_MODE)
2903  			printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2904  			       " %d flow %02x routing %02x conf %d (TX)\n",
2905  			       __func__, ch, slot_tx, bank_tx,
2906  			       flow_tx, routing, conf);
2907  		HFC_outb(hc, R_SLOT, slot_tx << 1);
2908  		HFC_outb(hc, A_SL_CFG, (ch << 1) | routing);
2909  		if (hc->ctype != HFC_TYPE_XHFC)
2910  			HFC_outb(hc, A_CONF,
2911  				 (conf < 0) ? 0 : (conf | V_CONF_SL));
2912  		hc->slot_owner[slot_tx << 1] = ch;
2913  		hc->chan[ch].slot_tx = slot_tx;
2914  		hc->chan[ch].bank_tx = bank_tx;
2915  	}
2916  	if (slot_rx < 0) {
2917  		/* disable pcm slot */
2918  		flow_rx = 0x80; /* ST->FIFO */
2919  		hc->chan[ch].slot_rx = -1;
2920  		hc->chan[ch].bank_rx = 0;
2921  	} else {
2922  		/* set pcm slot */
2923  		if (hc->chan[ch].txpending)
2924  			flow_rx = 0x80; /* ST->FIFO */
2925  		else
2926  			flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2927  		/* put on slot */
2928  		routing = bank_rx ? 0x80 : 0xc0; /* reversed */
2929  		if (conf >= 0 || bank_rx > 1)
2930  			routing = 0x40; /* loop */
2931  		if (debug & DEBUG_HFCMULTI_MODE)
2932  			printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2933  			       " %d flow %02x routing %02x conf %d (RX)\n",
2934  			       __func__, ch, slot_rx, bank_rx,
2935  			       flow_rx, routing, conf);
2936  		HFC_outb(hc, R_SLOT, (slot_rx << 1) | V_SL_DIR);
2937  		HFC_outb(hc, A_SL_CFG, (ch << 1) | V_CH_DIR | routing);
2938  		hc->slot_owner[(slot_rx << 1) | 1] = ch;
2939  		hc->chan[ch].slot_rx = slot_rx;
2940  		hc->chan[ch].bank_rx = bank_rx;
2941  	}
2942  
2943  	switch (protocol) {
2944  	case (ISDN_P_NONE):
2945  		/* disable TX fifo */
2946  		HFC_outb(hc, R_FIFO, ch << 1);
2947  		HFC_wait(hc);
2948  		HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
2949  		HFC_outb(hc, A_SUBCH_CFG, 0);
2950  		HFC_outb(hc, A_IRQ_MSK, 0);
2951  		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2952  		HFC_wait(hc);
2953  		/* disable RX fifo */
2954  		HFC_outb(hc, R_FIFO, (ch << 1) | 1);
2955  		HFC_wait(hc);
2956  		HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
2957  		HFC_outb(hc, A_SUBCH_CFG, 0);
2958  		HFC_outb(hc, A_IRQ_MSK, 0);
2959  		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2960  		HFC_wait(hc);
2961  		if (hc->chan[ch].bch && hc->ctype != HFC_TYPE_E1) {
2962  			hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
2963  				((ch & 0x3) == 0) ? ~V_B1_EN : ~V_B2_EN;
2964  			HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2965  			/* undocumented: delay after R_ST_SEL */
2966  			udelay(1);
2967  			HFC_outb(hc, A_ST_CTRL0,
2968  				 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2969  		}
2970  		if (hc->chan[ch].bch) {
2971  			test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
2972  			test_and_clear_bit(FLG_TRANSPARENT,
2973  					   &hc->chan[ch].bch->Flags);
2974  		}
2975  		break;
2976  	case (ISDN_P_B_RAW): /* B-channel */
2977  
2978  		if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2979  		    (hc->chan[ch].slot_rx < 0) &&
2980  		    (hc->chan[ch].slot_tx < 0)) {
2981  
2982  			printk(KERN_DEBUG
2983  			       "Setting B-channel %d to echo cancelable "
2984  			       "state on PCM slot %d\n", ch,
2985  			       ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
2986  			printk(KERN_DEBUG
2987  			       "Enabling pass through for channel\n");
2988  			vpm_out(hc, ch, ((ch / 4) * 8) +
2989  				((ch % 4) * 4) + 1, 0x01);
2990  			/* rx path */
2991  			/* S/T -> PCM */
2992  			HFC_outb(hc, R_FIFO, (ch << 1));
2993  			HFC_wait(hc);
2994  			HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
2995  			HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
2996  					      ((ch % 4) * 4) + 1) << 1);
2997  			HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
2998  
2999  			/* PCM -> FIFO */
3000  			HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
3001  			HFC_wait(hc);
3002  			HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3003  			HFC_outb(hc, A_SUBCH_CFG, 0);
3004  			HFC_outb(hc, A_IRQ_MSK, 0);
3005  			if (hc->chan[ch].protocol != protocol) {
3006  				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3007  				HFC_wait(hc);
3008  			}
3009  			HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3010  					       ((ch % 4) * 4) + 1) << 1) | 1);
3011  			HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
3012  
3013  			/* tx path */
3014  			/* PCM -> S/T */
3015  			HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3016  			HFC_wait(hc);
3017  			HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3018  			HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3019  					       ((ch % 4) * 4)) << 1) | 1);
3020  			HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
3021  
3022  			/* FIFO -> PCM */
3023  			HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
3024  			HFC_wait(hc);
3025  			HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3026  			HFC_outb(hc, A_SUBCH_CFG, 0);
3027  			HFC_outb(hc, A_IRQ_MSK, 0);
3028  			if (hc->chan[ch].protocol != protocol) {
3029  				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3030  				HFC_wait(hc);
3031  			}
3032  			/* tx silence */
3033  			HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3034  			HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3035  					      ((ch % 4) * 4)) << 1);
3036  			HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
3037  		} else {
3038  			/* enable TX fifo */
3039  			HFC_outb(hc, R_FIFO, ch << 1);
3040  			HFC_wait(hc);
3041  			if (hc->ctype == HFC_TYPE_XHFC)
3042  				HFC_outb(hc, A_CON_HDLC, flow_tx | 0x07 << 2 |
3043  					 V_HDLC_TRP | V_IFF);
3044  			/* Enable FIFO, no interrupt */
3045  			else
3046  				HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
3047  					 V_HDLC_TRP | V_IFF);
3048  			HFC_outb(hc, A_SUBCH_CFG, 0);
3049  			HFC_outb(hc, A_IRQ_MSK, 0);
3050  			if (hc->chan[ch].protocol != protocol) {
3051  				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3052  				HFC_wait(hc);
3053  			}
3054  			/* tx silence */
3055  			HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3056  			/* enable RX fifo */
3057  			HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3058  			HFC_wait(hc);
3059  			if (hc->ctype == HFC_TYPE_XHFC)
3060  				HFC_outb(hc, A_CON_HDLC, flow_rx | 0x07 << 2 |
3061  					 V_HDLC_TRP);
3062  			/* Enable FIFO, no interrupt*/
3063  			else
3064  				HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 |
3065  					 V_HDLC_TRP);
3066  			HFC_outb(hc, A_SUBCH_CFG, 0);
3067  			HFC_outb(hc, A_IRQ_MSK, 0);
3068  			if (hc->chan[ch].protocol != protocol) {
3069  				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3070  				HFC_wait(hc);
3071  			}
3072  		}
3073  		if (hc->ctype != HFC_TYPE_E1) {
3074  			hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3075  				((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3076  			HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3077  			/* undocumented: delay after R_ST_SEL */
3078  			udelay(1);
3079  			HFC_outb(hc, A_ST_CTRL0,
3080  				 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3081  		}
3082  		if (hc->chan[ch].bch)
3083  			test_and_set_bit(FLG_TRANSPARENT,
3084  					 &hc->chan[ch].bch->Flags);
3085  		break;
3086  	case (ISDN_P_B_HDLC): /* B-channel */
3087  	case (ISDN_P_TE_S0): /* D-channel */
3088  	case (ISDN_P_NT_S0):
3089  	case (ISDN_P_TE_E1):
3090  	case (ISDN_P_NT_E1):
3091  		/* enable TX fifo */
3092  		HFC_outb(hc, R_FIFO, ch << 1);
3093  		HFC_wait(hc);
3094  		if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) {
3095  			/* E1 or B-channel */
3096  			HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
3097  			HFC_outb(hc, A_SUBCH_CFG, 0);
3098  		} else {
3099  			/* D-Channel without HDLC fill flags */
3100  			HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
3101  			HFC_outb(hc, A_SUBCH_CFG, 2);
3102  		}
3103  		HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3104  		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3105  		HFC_wait(hc);
3106  		/* enable RX fifo */
3107  		HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3108  		HFC_wait(hc);
3109  		HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
3110  		if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch)
3111  			HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
3112  		else
3113  			HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3114  		HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3115  		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3116  		HFC_wait(hc);
3117  		if (hc->chan[ch].bch) {
3118  			test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3119  			if (hc->ctype != HFC_TYPE_E1) {
3120  				hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3121  					((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3122  				HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3123  				/* undocumented: delay after R_ST_SEL */
3124  				udelay(1);
3125  				HFC_outb(hc, A_ST_CTRL0,
3126  					 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3127  			}
3128  		}
3129  		break;
3130  	default:
3131  		printk(KERN_DEBUG "%s: protocol not known %x\n",
3132  		       __func__, protocol);
3133  		hc->chan[ch].protocol = ISDN_P_NONE;
3134  		return -ENOPROTOOPT;
3135  	}
3136  	hc->chan[ch].protocol = protocol;
3137  	return 0;
3138  }
3139  
3140  
3141  /*
3142   * connect/disconnect PCM
3143   */
3144  
3145  static void
hfcmulti_pcm(struct hfc_multi * hc,int ch,int slot_tx,int bank_tx,int slot_rx,int bank_rx)3146  hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3147  	     int slot_rx, int bank_rx)
3148  {
3149  	if (slot_tx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
3150  		/* disable PCM */
3151  		mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3152  		return;
3153  	}
3154  
3155  	/* enable pcm */
3156  	mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3157  		      slot_rx, bank_rx);
3158  }
3159  
3160  /*
3161   * set/disable conference
3162   */
3163  
3164  static void
hfcmulti_conf(struct hfc_multi * hc,int ch,int num)3165  hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3166  {
3167  	if (num >= 0 && num <= 7)
3168  		hc->chan[ch].conf = num;
3169  	else
3170  		hc->chan[ch].conf = -1;
3171  	mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3172  		      hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3173  		      hc->chan[ch].bank_rx);
3174  }
3175  
3176  
3177  /*
3178   * set/disable sample loop
3179   */
3180  
3181  /* NOTE: this function is experimental and therefore disabled */
3182  
3183  /*
3184   * Layer 1 callback function
3185   */
3186  static int
hfcm_l1callback(struct dchannel * dch,u_int cmd)3187  hfcm_l1callback(struct dchannel *dch, u_int cmd)
3188  {
3189  	struct hfc_multi	*hc = dch->hw;
3190  	struct sk_buff_head	free_queue;
3191  	u_long	flags;
3192  
3193  	switch (cmd) {
3194  	case INFO3_P8:
3195  	case INFO3_P10:
3196  		break;
3197  	case HW_RESET_REQ:
3198  		/* start activation */
3199  		spin_lock_irqsave(&hc->lock, flags);
3200  		if (hc->ctype == HFC_TYPE_E1) {
3201  			if (debug & DEBUG_HFCMULTI_MSG)
3202  				printk(KERN_DEBUG
3203  				       "%s: HW_RESET_REQ no BRI\n",
3204  				       __func__);
3205  		} else {
3206  			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3207  			/* undocumented: delay after R_ST_SEL */
3208  			udelay(1);
3209  			HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3210  			udelay(6); /* wait at least 5,21us */
3211  			HFC_outb(hc, A_ST_WR_STATE, 3);
3212  			HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT * 3));
3213  			/* activate */
3214  		}
3215  		spin_unlock_irqrestore(&hc->lock, flags);
3216  		l1_event(dch->l1, HW_POWERUP_IND);
3217  		break;
3218  	case HW_DEACT_REQ:
3219  		__skb_queue_head_init(&free_queue);
3220  		/* start deactivation */
3221  		spin_lock_irqsave(&hc->lock, flags);
3222  		if (hc->ctype == HFC_TYPE_E1) {
3223  			if (debug & DEBUG_HFCMULTI_MSG)
3224  				printk(KERN_DEBUG
3225  				       "%s: HW_DEACT_REQ no BRI\n",
3226  				       __func__);
3227  		} else {
3228  			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3229  			/* undocumented: delay after R_ST_SEL */
3230  			udelay(1);
3231  			HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3232  			/* deactivate */
3233  			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3234  				hc->syncronized &=
3235  					~(1 << hc->chan[dch->slot].port);
3236  				plxsd_checksync(hc, 0);
3237  			}
3238  		}
3239  		skb_queue_splice_init(&dch->squeue, &free_queue);
3240  		if (dch->tx_skb) {
3241  			__skb_queue_tail(&free_queue, dch->tx_skb);
3242  			dch->tx_skb = NULL;
3243  		}
3244  		dch->tx_idx = 0;
3245  		if (dch->rx_skb) {
3246  			__skb_queue_tail(&free_queue, dch->rx_skb);
3247  			dch->rx_skb = NULL;
3248  		}
3249  		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3250  		if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3251  			del_timer(&dch->timer);
3252  		spin_unlock_irqrestore(&hc->lock, flags);
3253  		__skb_queue_purge(&free_queue);
3254  		break;
3255  	case HW_POWERUP_REQ:
3256  		spin_lock_irqsave(&hc->lock, flags);
3257  		if (hc->ctype == HFC_TYPE_E1) {
3258  			if (debug & DEBUG_HFCMULTI_MSG)
3259  				printk(KERN_DEBUG
3260  				       "%s: HW_POWERUP_REQ no BRI\n",
3261  				       __func__);
3262  		} else {
3263  			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3264  			/* undocumented: delay after R_ST_SEL */
3265  			udelay(1);
3266  			HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3267  			udelay(6); /* wait at least 5,21us */
3268  			HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3269  		}
3270  		spin_unlock_irqrestore(&hc->lock, flags);
3271  		break;
3272  	case PH_ACTIVATE_IND:
3273  		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3274  		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3275  			    GFP_ATOMIC);
3276  		break;
3277  	case PH_DEACTIVATE_IND:
3278  		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3279  		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3280  			    GFP_ATOMIC);
3281  		break;
3282  	default:
3283  		if (dch->debug & DEBUG_HW)
3284  			printk(KERN_DEBUG "%s: unknown command %x\n",
3285  			       __func__, cmd);
3286  		return -1;
3287  	}
3288  	return 0;
3289  }
3290  
3291  /*
3292   * Layer2 -> Layer 1 Transfer
3293   */
3294  
3295  static int
handle_dmsg(struct mISDNchannel * ch,struct sk_buff * skb)3296  handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3297  {
3298  	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
3299  	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
3300  	struct hfc_multi	*hc = dch->hw;
3301  	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
3302  	int			ret = -EINVAL;
3303  	unsigned int		id;
3304  	u_long			flags;
3305  
3306  	switch (hh->prim) {
3307  	case PH_DATA_REQ:
3308  		if (skb->len < 1)
3309  			break;
3310  		spin_lock_irqsave(&hc->lock, flags);
3311  		ret = dchannel_senddata(dch, skb);
3312  		if (ret > 0) { /* direct TX */
3313  			id = hh->id; /* skb can be freed */
3314  			hfcmulti_tx(hc, dch->slot);
3315  			ret = 0;
3316  			/* start fifo */
3317  			HFC_outb(hc, R_FIFO, 0);
3318  			HFC_wait(hc);
3319  			spin_unlock_irqrestore(&hc->lock, flags);
3320  			queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3321  		} else
3322  			spin_unlock_irqrestore(&hc->lock, flags);
3323  		return ret;
3324  	case PH_ACTIVATE_REQ:
3325  		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3326  			spin_lock_irqsave(&hc->lock, flags);
3327  			ret = 0;
3328  			if (debug & DEBUG_HFCMULTI_MSG)
3329  				printk(KERN_DEBUG
3330  				       "%s: PH_ACTIVATE port %d (0..%d)\n",
3331  				       __func__, hc->chan[dch->slot].port,
3332  				       hc->ports - 1);
3333  			/* start activation */
3334  			if (hc->ctype == HFC_TYPE_E1) {
3335  				ph_state_change(dch);
3336  				if (debug & DEBUG_HFCMULTI_STATE)
3337  					printk(KERN_DEBUG
3338  					       "%s: E1 report state %x \n",
3339  					       __func__, dch->state);
3340  			} else {
3341  				HFC_outb(hc, R_ST_SEL,
3342  					 hc->chan[dch->slot].port);
3343  				/* undocumented: delay after R_ST_SEL */
3344  				udelay(1);
3345  				HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3346  				/* G1 */
3347  				udelay(6); /* wait at least 5,21us */
3348  				HFC_outb(hc, A_ST_WR_STATE, 1);
3349  				HFC_outb(hc, A_ST_WR_STATE, 1 |
3350  					 (V_ST_ACT * 3)); /* activate */
3351  				dch->state = 1;
3352  			}
3353  			spin_unlock_irqrestore(&hc->lock, flags);
3354  		} else
3355  			ret = l1_event(dch->l1, hh->prim);
3356  		break;
3357  	case PH_DEACTIVATE_REQ:
3358  		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3359  		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3360  			struct sk_buff_head free_queue;
3361  
3362  			__skb_queue_head_init(&free_queue);
3363  			spin_lock_irqsave(&hc->lock, flags);
3364  			if (debug & DEBUG_HFCMULTI_MSG)
3365  				printk(KERN_DEBUG
3366  				       "%s: PH_DEACTIVATE port %d (0..%d)\n",
3367  				       __func__, hc->chan[dch->slot].port,
3368  				       hc->ports - 1);
3369  			/* start deactivation */
3370  			if (hc->ctype == HFC_TYPE_E1) {
3371  				if (debug & DEBUG_HFCMULTI_MSG)
3372  					printk(KERN_DEBUG
3373  					       "%s: PH_DEACTIVATE no BRI\n",
3374  					       __func__);
3375  			} else {
3376  				HFC_outb(hc, R_ST_SEL,
3377  					 hc->chan[dch->slot].port);
3378  				/* undocumented: delay after R_ST_SEL */
3379  				udelay(1);
3380  				HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3381  				/* deactivate */
3382  				dch->state = 1;
3383  			}
3384  			skb_queue_splice_init(&dch->squeue, &free_queue);
3385  			if (dch->tx_skb) {
3386  				__skb_queue_tail(&free_queue, dch->tx_skb);
3387  				dch->tx_skb = NULL;
3388  			}
3389  			dch->tx_idx = 0;
3390  			if (dch->rx_skb) {
3391  				__skb_queue_tail(&free_queue, dch->rx_skb);
3392  				dch->rx_skb = NULL;
3393  			}
3394  			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3395  			if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3396  				del_timer(&dch->timer);
3397  #ifdef FIXME
3398  			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3399  				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3400  #endif
3401  			ret = 0;
3402  			spin_unlock_irqrestore(&hc->lock, flags);
3403  			__skb_queue_purge(&free_queue);
3404  		} else
3405  			ret = l1_event(dch->l1, hh->prim);
3406  		break;
3407  	}
3408  	if (!ret)
3409  		dev_kfree_skb(skb);
3410  	return ret;
3411  }
3412  
3413  static void
deactivate_bchannel(struct bchannel * bch)3414  deactivate_bchannel(struct bchannel *bch)
3415  {
3416  	struct hfc_multi	*hc = bch->hw;
3417  	u_long			flags;
3418  
3419  	spin_lock_irqsave(&hc->lock, flags);
3420  	mISDN_clear_bchannel(bch);
3421  	hc->chan[bch->slot].coeff_count = 0;
3422  	hc->chan[bch->slot].rx_off = 0;
3423  	hc->chan[bch->slot].conf = -1;
3424  	mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3425  	spin_unlock_irqrestore(&hc->lock, flags);
3426  }
3427  
3428  static int
handle_bmsg(struct mISDNchannel * ch,struct sk_buff * skb)3429  handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3430  {
3431  	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
3432  	struct hfc_multi	*hc = bch->hw;
3433  	int			ret = -EINVAL;
3434  	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
3435  	unsigned long		flags;
3436  
3437  	switch (hh->prim) {
3438  	case PH_DATA_REQ:
3439  		if (!skb->len)
3440  			break;
3441  		spin_lock_irqsave(&hc->lock, flags);
3442  		ret = bchannel_senddata(bch, skb);
3443  		if (ret > 0) { /* direct TX */
3444  			hfcmulti_tx(hc, bch->slot);
3445  			ret = 0;
3446  			/* start fifo */
3447  			HFC_outb_nodebug(hc, R_FIFO, 0);
3448  			HFC_wait_nodebug(hc);
3449  		}
3450  		spin_unlock_irqrestore(&hc->lock, flags);
3451  		return ret;
3452  	case PH_ACTIVATE_REQ:
3453  		if (debug & DEBUG_HFCMULTI_MSG)
3454  			printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3455  			       __func__, bch->slot);
3456  		spin_lock_irqsave(&hc->lock, flags);
3457  		/* activate B-channel if not already activated */
3458  		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3459  			hc->chan[bch->slot].txpending = 0;
3460  			ret = mode_hfcmulti(hc, bch->slot,
3461  					    ch->protocol,
3462  					    hc->chan[bch->slot].slot_tx,
3463  					    hc->chan[bch->slot].bank_tx,
3464  					    hc->chan[bch->slot].slot_rx,
3465  					    hc->chan[bch->slot].bank_rx);
3466  			if (!ret) {
3467  				if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3468  				    && test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3469  					/* start decoder */
3470  					hc->dtmf = 1;
3471  					if (debug & DEBUG_HFCMULTI_DTMF)
3472  						printk(KERN_DEBUG
3473  						       "%s: start dtmf decoder\n",
3474  						       __func__);
3475  					HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3476  						 V_RST_DTMF);
3477  				}
3478  			}
3479  		} else
3480  			ret = 0;
3481  		spin_unlock_irqrestore(&hc->lock, flags);
3482  		if (!ret)
3483  			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3484  				    GFP_KERNEL);
3485  		break;
3486  	case PH_CONTROL_REQ:
3487  		spin_lock_irqsave(&hc->lock, flags);
3488  		switch (hh->id) {
3489  		case HFC_SPL_LOOP_ON: /* set sample loop */
3490  			if (debug & DEBUG_HFCMULTI_MSG)
3491  				printk(KERN_DEBUG
3492  				       "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3493  				       __func__, skb->len);
3494  			ret = 0;
3495  			break;
3496  		case HFC_SPL_LOOP_OFF: /* set silence */
3497  			if (debug & DEBUG_HFCMULTI_MSG)
3498  				printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3499  				       __func__);
3500  			ret = 0;
3501  			break;
3502  		default:
3503  			printk(KERN_ERR
3504  			       "%s: unknown PH_CONTROL_REQ info %x\n",
3505  			       __func__, hh->id);
3506  			ret = -EINVAL;
3507  		}
3508  		spin_unlock_irqrestore(&hc->lock, flags);
3509  		break;
3510  	case PH_DEACTIVATE_REQ:
3511  		deactivate_bchannel(bch); /* locked there */
3512  		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3513  			    GFP_KERNEL);
3514  		ret = 0;
3515  		break;
3516  	}
3517  	if (!ret)
3518  		dev_kfree_skb(skb);
3519  	return ret;
3520  }
3521  
3522  /*
3523   * bchannel control function
3524   */
3525  static int
channel_bctrl(struct bchannel * bch,struct mISDN_ctrl_req * cq)3526  channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3527  {
3528  	int			ret = 0;
3529  	struct dsp_features	*features =
3530  		(struct dsp_features *)(*((u_long *)&cq->p1));
3531  	struct hfc_multi	*hc = bch->hw;
3532  	int			slot_tx;
3533  	int			bank_tx;
3534  	int			slot_rx;
3535  	int			bank_rx;
3536  	int			num;
3537  
3538  	switch (cq->op) {
3539  	case MISDN_CTRL_GETOP:
3540  		ret = mISDN_ctrl_bchannel(bch, cq);
3541  		cq->op |= MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP;
3542  		break;
3543  	case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3544  		ret = mISDN_ctrl_bchannel(bch, cq);
3545  		hc->chan[bch->slot].rx_off = !!cq->p1;
3546  		if (!hc->chan[bch->slot].rx_off) {
3547  			/* reset fifo on rx on */
3548  			HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3549  			HFC_wait_nodebug(hc);
3550  			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3551  			HFC_wait_nodebug(hc);
3552  		}
3553  		if (debug & DEBUG_HFCMULTI_MSG)
3554  			printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3555  			       __func__, bch->nr, hc->chan[bch->slot].rx_off);
3556  		break;
3557  	case MISDN_CTRL_FILL_EMPTY:
3558  		ret = mISDN_ctrl_bchannel(bch, cq);
3559  		hc->silence = bch->fill[0];
3560  		memset(hc->silence_data, hc->silence, sizeof(hc->silence_data));
3561  		break;
3562  	case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3563  		if (debug & DEBUG_HFCMULTI_MSG)
3564  			printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3565  			       __func__);
3566  		/* create confirm */
3567  		features->hfc_id = hc->id;
3568  		if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3569  			features->hfc_dtmf = 1;
3570  		if (test_bit(HFC_CHIP_CONF, &hc->chip))
3571  			features->hfc_conf = 1;
3572  		features->hfc_loops = 0;
3573  		if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3574  			features->hfc_echocanhw = 1;
3575  		} else {
3576  			features->pcm_id = hc->pcm;
3577  			features->pcm_slots = hc->slots;
3578  			features->pcm_banks = 2;
3579  		}
3580  		break;
3581  	case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3582  		slot_tx = cq->p1 & 0xff;
3583  		bank_tx = cq->p1 >> 8;
3584  		slot_rx = cq->p2 & 0xff;
3585  		bank_rx = cq->p2 >> 8;
3586  		if (debug & DEBUG_HFCMULTI_MSG)
3587  			printk(KERN_DEBUG
3588  			       "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3589  			       "slot %d bank %d (RX)\n",
3590  			       __func__, slot_tx, bank_tx,
3591  			       slot_rx, bank_rx);
3592  		if (slot_tx < hc->slots && bank_tx <= 2 &&
3593  		    slot_rx < hc->slots && bank_rx <= 2)
3594  			hfcmulti_pcm(hc, bch->slot,
3595  				     slot_tx, bank_tx, slot_rx, bank_rx);
3596  		else {
3597  			printk(KERN_WARNING
3598  			       "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3599  			       "slot %d bank %d (RX) out of range\n",
3600  			       __func__, slot_tx, bank_tx,
3601  			       slot_rx, bank_rx);
3602  			ret = -EINVAL;
3603  		}
3604  		break;
3605  	case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3606  		if (debug & DEBUG_HFCMULTI_MSG)
3607  			printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3608  			       __func__);
3609  		hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3610  		break;
3611  	case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3612  		num = cq->p1 & 0xff;
3613  		if (debug & DEBUG_HFCMULTI_MSG)
3614  			printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3615  			       __func__, num);
3616  		if (num <= 7)
3617  			hfcmulti_conf(hc, bch->slot, num);
3618  		else {
3619  			printk(KERN_WARNING
3620  			       "%s: HW_CONF_JOIN conf %d out of range\n",
3621  			       __func__, num);
3622  			ret = -EINVAL;
3623  		}
3624  		break;
3625  	case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3626  		if (debug & DEBUG_HFCMULTI_MSG)
3627  			printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3628  		hfcmulti_conf(hc, bch->slot, -1);
3629  		break;
3630  	case MISDN_CTRL_HFC_ECHOCAN_ON:
3631  		if (debug & DEBUG_HFCMULTI_MSG)
3632  			printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3633  		if (test_bit(HFC_CHIP_B410P, &hc->chip))
3634  			vpm_echocan_on(hc, bch->slot, cq->p1);
3635  		else
3636  			ret = -EINVAL;
3637  		break;
3638  
3639  	case MISDN_CTRL_HFC_ECHOCAN_OFF:
3640  		if (debug & DEBUG_HFCMULTI_MSG)
3641  			printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3642  			       __func__);
3643  		if (test_bit(HFC_CHIP_B410P, &hc->chip))
3644  			vpm_echocan_off(hc, bch->slot);
3645  		else
3646  			ret = -EINVAL;
3647  		break;
3648  	default:
3649  		ret = mISDN_ctrl_bchannel(bch, cq);
3650  		break;
3651  	}
3652  	return ret;
3653  }
3654  
3655  static int
hfcm_bctrl(struct mISDNchannel * ch,u_int cmd,void * arg)3656  hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3657  {
3658  	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
3659  	struct hfc_multi	*hc = bch->hw;
3660  	int			err = -EINVAL;
3661  	u_long	flags;
3662  
3663  	if (bch->debug & DEBUG_HW)
3664  		printk(KERN_DEBUG "%s: cmd:%x %p\n",
3665  		       __func__, cmd, arg);
3666  	switch (cmd) {
3667  	case CLOSE_CHANNEL:
3668  		test_and_clear_bit(FLG_OPEN, &bch->Flags);
3669  		deactivate_bchannel(bch); /* locked there */
3670  		ch->protocol = ISDN_P_NONE;
3671  		ch->peer = NULL;
3672  		module_put(THIS_MODULE);
3673  		err = 0;
3674  		break;
3675  	case CONTROL_CHANNEL:
3676  		spin_lock_irqsave(&hc->lock, flags);
3677  		err = channel_bctrl(bch, arg);
3678  		spin_unlock_irqrestore(&hc->lock, flags);
3679  		break;
3680  	default:
3681  		printk(KERN_WARNING "%s: unknown prim(%x)\n",
3682  		       __func__, cmd);
3683  	}
3684  	return err;
3685  }
3686  
3687  /*
3688   * handle D-channel events
3689   *
3690   * handle state change event
3691   */
3692  static void
ph_state_change(struct dchannel * dch)3693  ph_state_change(struct dchannel *dch)
3694  {
3695  	struct hfc_multi *hc;
3696  	int ch, i;
3697  
3698  	if (!dch) {
3699  		printk(KERN_WARNING "%s: ERROR given dch is NULL\n", __func__);
3700  		return;
3701  	}
3702  	hc = dch->hw;
3703  	ch = dch->slot;
3704  
3705  	if (hc->ctype == HFC_TYPE_E1) {
3706  		if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3707  			if (debug & DEBUG_HFCMULTI_STATE)
3708  				printk(KERN_DEBUG
3709  				       "%s: E1 TE (id=%d) newstate %x\n",
3710  				       __func__, hc->id, dch->state);
3711  		} else {
3712  			if (debug & DEBUG_HFCMULTI_STATE)
3713  				printk(KERN_DEBUG
3714  				       "%s: E1 NT (id=%d) newstate %x\n",
3715  				       __func__, hc->id, dch->state);
3716  		}
3717  		switch (dch->state) {
3718  		case (1):
3719  			if (hc->e1_state != 1) {
3720  				for (i = 1; i <= 31; i++) {
3721  					/* reset fifos on e1 activation */
3722  					HFC_outb_nodebug(hc, R_FIFO,
3723  							 (i << 1) | 1);
3724  					HFC_wait_nodebug(hc);
3725  					HFC_outb_nodebug(hc, R_INC_RES_FIFO,
3726  							 V_RES_F);
3727  					HFC_wait_nodebug(hc);
3728  				}
3729  			}
3730  			test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3731  			_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3732  				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3733  			break;
3734  
3735  		default:
3736  			if (hc->e1_state != 1)
3737  				return;
3738  			test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3739  			_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3740  				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3741  		}
3742  		hc->e1_state = dch->state;
3743  	} else {
3744  		if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3745  			if (debug & DEBUG_HFCMULTI_STATE)
3746  				printk(KERN_DEBUG
3747  				       "%s: S/T TE newstate %x\n",
3748  				       __func__, dch->state);
3749  			switch (dch->state) {
3750  			case (0):
3751  				l1_event(dch->l1, HW_RESET_IND);
3752  				break;
3753  			case (3):
3754  				l1_event(dch->l1, HW_DEACT_IND);
3755  				break;
3756  			case (5):
3757  			case (8):
3758  				l1_event(dch->l1, ANYSIGNAL);
3759  				break;
3760  			case (6):
3761  				l1_event(dch->l1, INFO2);
3762  				break;
3763  			case (7):
3764  				l1_event(dch->l1, INFO4_P8);
3765  				break;
3766  			}
3767  		} else {
3768  			if (debug & DEBUG_HFCMULTI_STATE)
3769  				printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3770  				       __func__, dch->state);
3771  			switch (dch->state) {
3772  			case (2):
3773  				if (hc->chan[ch].nt_timer == 0) {
3774  					hc->chan[ch].nt_timer = -1;
3775  					HFC_outb(hc, R_ST_SEL,
3776  						 hc->chan[ch].port);
3777  					/* undocumented: delay after R_ST_SEL */
3778  					udelay(1);
3779  					HFC_outb(hc, A_ST_WR_STATE, 4 |
3780  						 V_ST_LD_STA); /* G4 */
3781  					udelay(6); /* wait at least 5,21us */
3782  					HFC_outb(hc, A_ST_WR_STATE, 4);
3783  					dch->state = 4;
3784  				} else {
3785  					/* one extra count for the next event */
3786  					hc->chan[ch].nt_timer =
3787  						nt_t1_count[poll_timer] + 1;
3788  					HFC_outb(hc, R_ST_SEL,
3789  						 hc->chan[ch].port);
3790  					/* undocumented: delay after R_ST_SEL */
3791  					udelay(1);
3792  					/* allow G2 -> G3 transition */
3793  					HFC_outb(hc, A_ST_WR_STATE, 2 |
3794  						 V_SET_G2_G3);
3795  				}
3796  				break;
3797  			case (1):
3798  				hc->chan[ch].nt_timer = -1;
3799  				test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3800  				_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3801  					    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3802  				break;
3803  			case (4):
3804  				hc->chan[ch].nt_timer = -1;
3805  				break;
3806  			case (3):
3807  				hc->chan[ch].nt_timer = -1;
3808  				test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3809  				_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3810  					    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3811  				break;
3812  			}
3813  		}
3814  	}
3815  }
3816  
3817  /*
3818   * called for card mode init message
3819   */
3820  
3821  static void
hfcmulti_initmode(struct dchannel * dch)3822  hfcmulti_initmode(struct dchannel *dch)
3823  {
3824  	struct hfc_multi *hc = dch->hw;
3825  	u_char		a_st_wr_state, r_e1_wr_sta;
3826  	int		i, pt;
3827  
3828  	if (debug & DEBUG_HFCMULTI_INIT)
3829  		printk(KERN_DEBUG "%s: entered\n", __func__);
3830  
3831  	i = dch->slot;
3832  	pt = hc->chan[i].port;
3833  	if (hc->ctype == HFC_TYPE_E1) {
3834  		/* E1 */
3835  		hc->chan[hc->dnum[pt]].slot_tx = -1;
3836  		hc->chan[hc->dnum[pt]].slot_rx = -1;
3837  		hc->chan[hc->dnum[pt]].conf = -1;
3838  		if (hc->dnum[pt]) {
3839  			mode_hfcmulti(hc, dch->slot, dch->dev.D.protocol,
3840  				      -1, 0, -1, 0);
3841  			timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0);
3842  		}
3843  		for (i = 1; i <= 31; i++) {
3844  			if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
3845  				continue;
3846  			hc->chan[i].slot_tx = -1;
3847  			hc->chan[i].slot_rx = -1;
3848  			hc->chan[i].conf = -1;
3849  			mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3850  		}
3851  	}
3852  	if (hc->ctype == HFC_TYPE_E1 && pt == 0) {
3853  		/* E1, port 0 */
3854  		dch = hc->chan[hc->dnum[0]].dch;
3855  		if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
3856  			HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3857  			HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3858  		}
3859  		if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dnum[0]].cfg)) {
3860  			HFC_outb(hc, R_RX0, 0);
3861  			hc->hw.r_tx0 = 0 | V_OUT_EN;
3862  		} else {
3863  			HFC_outb(hc, R_RX0, 1);
3864  			hc->hw.r_tx0 = 1 | V_OUT_EN;
3865  		}
3866  		hc->hw.r_tx1 = V_ATX | V_NTRI;
3867  		HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3868  		HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3869  		HFC_outb(hc, R_TX_FR0, 0x00);
3870  		HFC_outb(hc, R_TX_FR1, 0xf8);
3871  
3872  		if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3873  			HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3874  
3875  		HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3876  
3877  		if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3878  			HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3879  
3880  		if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3881  			if (debug & DEBUG_HFCMULTI_INIT)
3882  				printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3883  				       __func__);
3884  			r_e1_wr_sta = 0; /* G0 */
3885  			hc->e1_getclock = 0;
3886  		} else {
3887  			if (debug & DEBUG_HFCMULTI_INIT)
3888  				printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3889  				       __func__);
3890  			r_e1_wr_sta = 0; /* F0 */
3891  			hc->e1_getclock = 1;
3892  		}
3893  		if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3894  			HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3895  		else
3896  			HFC_outb(hc, R_SYNC_OUT, 0);
3897  		if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3898  			hc->e1_getclock = 1;
3899  		if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3900  			hc->e1_getclock = 0;
3901  		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3902  			/* SLAVE (clock master) */
3903  			if (debug & DEBUG_HFCMULTI_INIT)
3904  				printk(KERN_DEBUG
3905  				       "%s: E1 port is clock master "
3906  				       "(clock from PCM)\n", __func__);
3907  			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3908  		} else {
3909  			if (hc->e1_getclock) {
3910  				/* MASTER (clock slave) */
3911  				if (debug & DEBUG_HFCMULTI_INIT)
3912  					printk(KERN_DEBUG
3913  					       "%s: E1 port is clock slave "
3914  					       "(clock to PCM)\n", __func__);
3915  				HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3916  			} else {
3917  				/* MASTER (clock master) */
3918  				if (debug & DEBUG_HFCMULTI_INIT)
3919  					printk(KERN_DEBUG "%s: E1 port is "
3920  					       "clock master "
3921  					       "(clock from QUARTZ)\n",
3922  					       __func__);
3923  				HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3924  					 V_PCM_SYNC | V_JATT_OFF);
3925  				HFC_outb(hc, R_SYNC_OUT, 0);
3926  			}
3927  		}
3928  		HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3929  		HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3930  		HFC_outb(hc, R_PWM0, 0x50);
3931  		HFC_outb(hc, R_PWM1, 0xff);
3932  		/* state machine setup */
3933  		HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3934  		udelay(6); /* wait at least 5,21us */
3935  		HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3936  		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3937  			hc->syncronized = 0;
3938  			plxsd_checksync(hc, 0);
3939  		}
3940  	}
3941  	if (hc->ctype != HFC_TYPE_E1) {
3942  		/* ST */
3943  		hc->chan[i].slot_tx = -1;
3944  		hc->chan[i].slot_rx = -1;
3945  		hc->chan[i].conf = -1;
3946  		mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
3947  		timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0);
3948  		hc->chan[i - 2].slot_tx = -1;
3949  		hc->chan[i - 2].slot_rx = -1;
3950  		hc->chan[i - 2].conf = -1;
3951  		mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
3952  		hc->chan[i - 1].slot_tx = -1;
3953  		hc->chan[i - 1].slot_rx = -1;
3954  		hc->chan[i - 1].conf = -1;
3955  		mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
3956  		/* select interface */
3957  		HFC_outb(hc, R_ST_SEL, pt);
3958  		/* undocumented: delay after R_ST_SEL */
3959  		udelay(1);
3960  		if (dch->dev.D.protocol == ISDN_P_NT_S0) {
3961  			if (debug & DEBUG_HFCMULTI_INIT)
3962  				printk(KERN_DEBUG
3963  				       "%s: ST port %d is NT-mode\n",
3964  				       __func__, pt);
3965  			/* clock delay */
3966  			HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
3967  			a_st_wr_state = 1; /* G1 */
3968  			hc->hw.a_st_ctrl0[pt] = V_ST_MD;
3969  		} else {
3970  			if (debug & DEBUG_HFCMULTI_INIT)
3971  				printk(KERN_DEBUG
3972  				       "%s: ST port %d is TE-mode\n",
3973  				       __func__, pt);
3974  			/* clock delay */
3975  			HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
3976  			a_st_wr_state = 2; /* F2 */
3977  			hc->hw.a_st_ctrl0[pt] = 0;
3978  		}
3979  		if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
3980  			hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
3981  		if (hc->ctype == HFC_TYPE_XHFC) {
3982  			hc->hw.a_st_ctrl0[pt] |= 0x40 /* V_ST_PU_CTRL */;
3983  			HFC_outb(hc, 0x35 /* A_ST_CTRL3 */,
3984  				 0x7c << 1 /* V_ST_PULSE */);
3985  		}
3986  		/* line setup */
3987  		HFC_outb(hc, A_ST_CTRL0,  hc->hw.a_st_ctrl0[pt]);
3988  		/* disable E-channel */
3989  		if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
3990  		    test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
3991  			HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
3992  		else
3993  			HFC_outb(hc, A_ST_CTRL1, 0);
3994  		/* enable B-channel receive */
3995  		HFC_outb(hc, A_ST_CTRL2,  V_B1_RX_EN | V_B2_RX_EN);
3996  		/* state machine setup */
3997  		HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
3998  		udelay(6); /* wait at least 5,21us */
3999  		HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
4000  		hc->hw.r_sci_msk |= 1 << pt;
4001  		/* state machine interrupts */
4002  		HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
4003  		/* unset sync on port */
4004  		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4005  			hc->syncronized &=
4006  				~(1 << hc->chan[dch->slot].port);
4007  			plxsd_checksync(hc, 0);
4008  		}
4009  	}
4010  	if (debug & DEBUG_HFCMULTI_INIT)
4011  		printk("%s: done\n", __func__);
4012  }
4013  
4014  
4015  static int
open_dchannel(struct hfc_multi * hc,struct dchannel * dch,struct channel_req * rq)4016  open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
4017  	      struct channel_req *rq)
4018  {
4019  	int	err = 0;
4020  	u_long	flags;
4021  
4022  	if (debug & DEBUG_HW_OPEN)
4023  		printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
4024  		       dch->dev.id, __builtin_return_address(0));
4025  	if (rq->protocol == ISDN_P_NONE)
4026  		return -EINVAL;
4027  	if ((dch->dev.D.protocol != ISDN_P_NONE) &&
4028  	    (dch->dev.D.protocol != rq->protocol)) {
4029  		if (debug & DEBUG_HFCMULTI_MODE)
4030  			printk(KERN_DEBUG "%s: change protocol %x to %x\n",
4031  			       __func__, dch->dev.D.protocol, rq->protocol);
4032  	}
4033  	if ((dch->dev.D.protocol == ISDN_P_TE_S0) &&
4034  	    (rq->protocol != ISDN_P_TE_S0))
4035  		l1_event(dch->l1, CLOSE_CHANNEL);
4036  	if (dch->dev.D.protocol != rq->protocol) {
4037  		if (rq->protocol == ISDN_P_TE_S0) {
4038  			err = create_l1(dch, hfcm_l1callback);
4039  			if (err)
4040  				return err;
4041  		}
4042  		dch->dev.D.protocol = rq->protocol;
4043  		spin_lock_irqsave(&hc->lock, flags);
4044  		hfcmulti_initmode(dch);
4045  		spin_unlock_irqrestore(&hc->lock, flags);
4046  	}
4047  	if (test_bit(FLG_ACTIVE, &dch->Flags))
4048  		_queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
4049  			    0, NULL, GFP_KERNEL);
4050  	rq->ch = &dch->dev.D;
4051  	if (!try_module_get(THIS_MODULE))
4052  		printk(KERN_WARNING "%s:cannot get module\n", __func__);
4053  	return 0;
4054  }
4055  
4056  static int
open_bchannel(struct hfc_multi * hc,struct dchannel * dch,struct channel_req * rq)4057  open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
4058  	      struct channel_req *rq)
4059  {
4060  	struct bchannel	*bch;
4061  	int		ch;
4062  
4063  	if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
4064  		return -EINVAL;
4065  	if (rq->protocol == ISDN_P_NONE)
4066  		return -EINVAL;
4067  	if (hc->ctype == HFC_TYPE_E1)
4068  		ch = rq->adr.channel;
4069  	else
4070  		ch = (rq->adr.channel - 1) + (dch->slot - 2);
4071  	bch = hc->chan[ch].bch;
4072  	if (!bch) {
4073  		printk(KERN_ERR "%s:internal error ch %d has no bch\n",
4074  		       __func__, ch);
4075  		return -EINVAL;
4076  	}
4077  	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
4078  		return -EBUSY; /* b-channel can be only open once */
4079  	bch->ch.protocol = rq->protocol;
4080  	hc->chan[ch].rx_off = 0;
4081  	rq->ch = &bch->ch;
4082  	if (!try_module_get(THIS_MODULE))
4083  		printk(KERN_WARNING "%s:cannot get module\n", __func__);
4084  	return 0;
4085  }
4086  
4087  /*
4088   * device control function
4089   */
4090  static int
channel_dctrl(struct dchannel * dch,struct mISDN_ctrl_req * cq)4091  channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
4092  {
4093  	struct hfc_multi	*hc = dch->hw;
4094  	int	ret = 0;
4095  	int	wd_mode, wd_cnt;
4096  
4097  	switch (cq->op) {
4098  	case MISDN_CTRL_GETOP:
4099  		cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_L1_TIMER3;
4100  		break;
4101  	case MISDN_CTRL_HFC_WD_INIT: /* init the watchdog */
4102  		wd_cnt = cq->p1 & 0xf;
4103  		wd_mode = !!(cq->p1 >> 4);
4104  		if (debug & DEBUG_HFCMULTI_MSG)
4105  			printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_INIT mode %s"
4106  			       ", counter 0x%x\n", __func__,
4107  			       wd_mode ? "AUTO" : "MANUAL", wd_cnt);
4108  		/* set the watchdog timer */
4109  		HFC_outb(hc, R_TI_WD, poll_timer | (wd_cnt << 4));
4110  		hc->hw.r_bert_wd_md = (wd_mode ? V_AUTO_WD_RES : 0);
4111  		if (hc->ctype == HFC_TYPE_XHFC)
4112  			hc->hw.r_bert_wd_md |= 0x40 /* V_WD_EN */;
4113  		/* init the watchdog register and reset the counter */
4114  		HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4115  		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4116  			/* enable the watchdog output for Speech-Design */
4117  			HFC_outb(hc, R_GPIO_SEL,  V_GPIO_SEL7);
4118  			HFC_outb(hc, R_GPIO_EN1,  V_GPIO_EN15);
4119  			HFC_outb(hc, R_GPIO_OUT1, 0);
4120  			HFC_outb(hc, R_GPIO_OUT1, V_GPIO_OUT15);
4121  		}
4122  		break;
4123  	case MISDN_CTRL_HFC_WD_RESET: /* reset the watchdog counter */
4124  		if (debug & DEBUG_HFCMULTI_MSG)
4125  			printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_RESET\n",
4126  			       __func__);
4127  		HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4128  		break;
4129  	case MISDN_CTRL_L1_TIMER3:
4130  		ret = l1_event(dch->l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
4131  		break;
4132  	default:
4133  		printk(KERN_WARNING "%s: unknown Op %x\n",
4134  		       __func__, cq->op);
4135  		ret = -EINVAL;
4136  		break;
4137  	}
4138  	return ret;
4139  }
4140  
4141  static int
hfcm_dctrl(struct mISDNchannel * ch,u_int cmd,void * arg)4142  hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4143  {
4144  	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
4145  	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
4146  	struct hfc_multi	*hc = dch->hw;
4147  	struct channel_req	*rq;
4148  	int			err = 0;
4149  	u_long			flags;
4150  
4151  	if (dch->debug & DEBUG_HW)
4152  		printk(KERN_DEBUG "%s: cmd:%x %p\n",
4153  		       __func__, cmd, arg);
4154  	switch (cmd) {
4155  	case OPEN_CHANNEL:
4156  		rq = arg;
4157  		switch (rq->protocol) {
4158  		case ISDN_P_TE_S0:
4159  		case ISDN_P_NT_S0:
4160  			if (hc->ctype == HFC_TYPE_E1) {
4161  				err = -EINVAL;
4162  				break;
4163  			}
4164  			err = open_dchannel(hc, dch, rq); /* locked there */
4165  			break;
4166  		case ISDN_P_TE_E1:
4167  		case ISDN_P_NT_E1:
4168  			if (hc->ctype != HFC_TYPE_E1) {
4169  				err = -EINVAL;
4170  				break;
4171  			}
4172  			err = open_dchannel(hc, dch, rq); /* locked there */
4173  			break;
4174  		default:
4175  			spin_lock_irqsave(&hc->lock, flags);
4176  			err = open_bchannel(hc, dch, rq);
4177  			spin_unlock_irqrestore(&hc->lock, flags);
4178  		}
4179  		break;
4180  	case CLOSE_CHANNEL:
4181  		if (debug & DEBUG_HW_OPEN)
4182  			printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4183  			       __func__, dch->dev.id,
4184  			       __builtin_return_address(0));
4185  		module_put(THIS_MODULE);
4186  		break;
4187  	case CONTROL_CHANNEL:
4188  		spin_lock_irqsave(&hc->lock, flags);
4189  		err = channel_dctrl(dch, arg);
4190  		spin_unlock_irqrestore(&hc->lock, flags);
4191  		break;
4192  	default:
4193  		if (dch->debug & DEBUG_HW)
4194  			printk(KERN_DEBUG "%s: unknown command %x\n",
4195  			       __func__, cmd);
4196  		err = -EINVAL;
4197  	}
4198  	return err;
4199  }
4200  
4201  static int
clockctl(void * priv,int enable)4202  clockctl(void *priv, int enable)
4203  {
4204  	struct hfc_multi *hc = priv;
4205  
4206  	hc->iclock_on = enable;
4207  	return 0;
4208  }
4209  
4210  /*
4211   * initialize the card
4212   */
4213  
4214  /*
4215   * start timer irq, wait some time and check if we have interrupts.
4216   * if not, reset chip and try again.
4217   */
4218  static int
init_card(struct hfc_multi * hc)4219  init_card(struct hfc_multi *hc)
4220  {
4221  	int	err = -EIO;
4222  	u_long	flags;
4223  	void	__iomem *plx_acc;
4224  	u_long	plx_flags;
4225  
4226  	if (debug & DEBUG_HFCMULTI_INIT)
4227  		printk(KERN_DEBUG "%s: entered\n", __func__);
4228  
4229  	spin_lock_irqsave(&hc->lock, flags);
4230  	/* set interrupts but leave global interrupt disabled */
4231  	hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4232  	disable_hwirq(hc);
4233  	spin_unlock_irqrestore(&hc->lock, flags);
4234  
4235  	if (request_irq(hc->irq, hfcmulti_interrupt, IRQF_SHARED,
4236  			"HFC-multi", hc)) {
4237  		printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
4238  		       hc->irq);
4239  		hc->irq = 0;
4240  		return -EIO;
4241  	}
4242  
4243  	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4244  		spin_lock_irqsave(&plx_lock, plx_flags);
4245  		plx_acc = hc->plx_membase + PLX_INTCSR;
4246  		writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4247  		       plx_acc); /* enable PCI & LINT1 irq */
4248  		spin_unlock_irqrestore(&plx_lock, plx_flags);
4249  	}
4250  
4251  	if (debug & DEBUG_HFCMULTI_INIT)
4252  		printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4253  		       __func__, hc->irq, hc->irqcnt);
4254  	err = init_chip(hc);
4255  	if (err)
4256  		goto error;
4257  	/*
4258  	 * Finally enable IRQ output
4259  	 * this is only allowed, if an IRQ routine is already
4260  	 * established for this HFC, so don't do that earlier
4261  	 */
4262  	spin_lock_irqsave(&hc->lock, flags);
4263  	enable_hwirq(hc);
4264  	spin_unlock_irqrestore(&hc->lock, flags);
4265  	/* printk(KERN_DEBUG "no master irq set!!!\n"); */
4266  	set_current_state(TASK_UNINTERRUPTIBLE);
4267  	schedule_timeout((100 * HZ) / 1000); /* Timeout 100ms */
4268  	/* turn IRQ off until chip is completely initialized */
4269  	spin_lock_irqsave(&hc->lock, flags);
4270  	disable_hwirq(hc);
4271  	spin_unlock_irqrestore(&hc->lock, flags);
4272  	if (debug & DEBUG_HFCMULTI_INIT)
4273  		printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4274  		       __func__, hc->irq, hc->irqcnt);
4275  	if (hc->irqcnt) {
4276  		if (debug & DEBUG_HFCMULTI_INIT)
4277  			printk(KERN_DEBUG "%s: done\n", __func__);
4278  
4279  		return 0;
4280  	}
4281  	if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4282  		printk(KERN_INFO "ignoring missing interrupts\n");
4283  		return 0;
4284  	}
4285  
4286  	printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4287  	       hc->irq);
4288  
4289  	err = -EIO;
4290  
4291  error:
4292  	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4293  		spin_lock_irqsave(&plx_lock, plx_flags);
4294  		plx_acc = hc->plx_membase + PLX_INTCSR;
4295  		writew(0x00, plx_acc); /*disable IRQs*/
4296  		spin_unlock_irqrestore(&plx_lock, plx_flags);
4297  	}
4298  
4299  	if (debug & DEBUG_HFCMULTI_INIT)
4300  		printk(KERN_DEBUG "%s: free irq %d\n", __func__, hc->irq);
4301  	if (hc->irq) {
4302  		free_irq(hc->irq, hc);
4303  		hc->irq = 0;
4304  	}
4305  
4306  	if (debug & DEBUG_HFCMULTI_INIT)
4307  		printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4308  	return err;
4309  }
4310  
4311  /*
4312   * find pci device and set it up
4313   */
4314  
4315  static int
setup_pci(struct hfc_multi * hc,struct pci_dev * pdev,const struct pci_device_id * ent)4316  setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4317  	  const struct pci_device_id *ent)
4318  {
4319  	struct hm_map	*m = (struct hm_map *)ent->driver_data;
4320  
4321  	printk(KERN_INFO
4322  	       "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4323  	       m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4324  
4325  	hc->pci_dev = pdev;
4326  	if (m->clock2)
4327  		test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4328  
4329  	if (ent->vendor == PCI_VENDOR_ID_DIGIUM &&
4330  	    ent->device == PCI_DEVICE_ID_DIGIUM_HFC4S) {
4331  		test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4332  		test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4333  		test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4334  		hc->slots = 32;
4335  	}
4336  
4337  	if (hc->pci_dev->irq <= 0) {
4338  		printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4339  		return -EIO;
4340  	}
4341  	if (pci_enable_device(hc->pci_dev)) {
4342  		printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4343  		return -EIO;
4344  	}
4345  	hc->leds = m->leds;
4346  	hc->ledstate = 0xAFFEAFFE;
4347  	hc->opticalsupport = m->opticalsupport;
4348  
4349  	hc->pci_iobase = 0;
4350  	hc->pci_membase = NULL;
4351  	hc->plx_membase = NULL;
4352  
4353  	/* set memory access methods */
4354  	if (m->io_mode) /* use mode from card config */
4355  		hc->io_mode = m->io_mode;
4356  	switch (hc->io_mode) {
4357  	case HFC_IO_MODE_PLXSD:
4358  		test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4359  		hc->slots = 128; /* required */
4360  		hc->HFC_outb = HFC_outb_pcimem;
4361  		hc->HFC_inb = HFC_inb_pcimem;
4362  		hc->HFC_inw = HFC_inw_pcimem;
4363  		hc->HFC_wait = HFC_wait_pcimem;
4364  		hc->read_fifo = read_fifo_pcimem;
4365  		hc->write_fifo = write_fifo_pcimem;
4366  		hc->plx_origmembase =  hc->pci_dev->resource[0].start;
4367  		/* MEMBASE 1 is PLX PCI Bridge */
4368  
4369  		if (!hc->plx_origmembase) {
4370  			printk(KERN_WARNING
4371  			       "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4372  			pci_disable_device(hc->pci_dev);
4373  			return -EIO;
4374  		}
4375  
4376  		hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4377  		if (!hc->plx_membase) {
4378  			printk(KERN_WARNING
4379  			       "HFC-multi: failed to remap plx address space. "
4380  			       "(internal error)\n");
4381  			pci_disable_device(hc->pci_dev);
4382  			return -EIO;
4383  		}
4384  		printk(KERN_INFO
4385  		       "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4386  		       (u_long)hc->plx_membase, hc->plx_origmembase);
4387  
4388  		hc->pci_origmembase =  hc->pci_dev->resource[2].start;
4389  		/* MEMBASE 1 is PLX PCI Bridge */
4390  		if (!hc->pci_origmembase) {
4391  			printk(KERN_WARNING
4392  			       "HFC-multi: No IO-Memory for PCI card found\n");
4393  			pci_disable_device(hc->pci_dev);
4394  			return -EIO;
4395  		}
4396  
4397  		hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4398  		if (!hc->pci_membase) {
4399  			printk(KERN_WARNING "HFC-multi: failed to remap io "
4400  			       "address space. (internal error)\n");
4401  			pci_disable_device(hc->pci_dev);
4402  			return -EIO;
4403  		}
4404  
4405  		printk(KERN_INFO
4406  		       "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4407  		       "leds-type %d\n",
4408  		       hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4409  		       hc->pci_dev->irq, HZ, hc->leds);
4410  		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4411  		break;
4412  	case HFC_IO_MODE_PCIMEM:
4413  		hc->HFC_outb = HFC_outb_pcimem;
4414  		hc->HFC_inb = HFC_inb_pcimem;
4415  		hc->HFC_inw = HFC_inw_pcimem;
4416  		hc->HFC_wait = HFC_wait_pcimem;
4417  		hc->read_fifo = read_fifo_pcimem;
4418  		hc->write_fifo = write_fifo_pcimem;
4419  		hc->pci_origmembase = hc->pci_dev->resource[1].start;
4420  		if (!hc->pci_origmembase) {
4421  			printk(KERN_WARNING
4422  			       "HFC-multi: No IO-Memory for PCI card found\n");
4423  			pci_disable_device(hc->pci_dev);
4424  			return -EIO;
4425  		}
4426  
4427  		hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4428  		if (!hc->pci_membase) {
4429  			printk(KERN_WARNING
4430  			       "HFC-multi: failed to remap io address space. "
4431  			       "(internal error)\n");
4432  			pci_disable_device(hc->pci_dev);
4433  			return -EIO;
4434  		}
4435  		printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ "
4436  		       "%d HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
4437  		       hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4438  		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4439  		break;
4440  	case HFC_IO_MODE_REGIO:
4441  		hc->HFC_outb = HFC_outb_regio;
4442  		hc->HFC_inb = HFC_inb_regio;
4443  		hc->HFC_inw = HFC_inw_regio;
4444  		hc->HFC_wait = HFC_wait_regio;
4445  		hc->read_fifo = read_fifo_regio;
4446  		hc->write_fifo = write_fifo_regio;
4447  		hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4448  		if (!hc->pci_iobase) {
4449  			printk(KERN_WARNING
4450  			       "HFC-multi: No IO for PCI card found\n");
4451  			pci_disable_device(hc->pci_dev);
4452  			return -EIO;
4453  		}
4454  
4455  		if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4456  			printk(KERN_WARNING "HFC-multi: failed to request "
4457  			       "address space at 0x%08lx (internal error)\n",
4458  			       hc->pci_iobase);
4459  			pci_disable_device(hc->pci_dev);
4460  			return -EIO;
4461  		}
4462  
4463  		printk(KERN_INFO
4464  		       "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4465  		       m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4466  		       hc->pci_dev->irq, HZ, hc->leds);
4467  		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4468  		break;
4469  	default:
4470  		printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4471  		pci_disable_device(hc->pci_dev);
4472  		return -EIO;
4473  	}
4474  
4475  	pci_set_drvdata(hc->pci_dev, hc);
4476  
4477  	/* At this point the needed PCI config is done */
4478  	/* fifos are still not enabled */
4479  	return 0;
4480  }
4481  
4482  
4483  /*
4484   * remove port
4485   */
4486  
4487  static void
release_port(struct hfc_multi * hc,struct dchannel * dch)4488  release_port(struct hfc_multi *hc, struct dchannel *dch)
4489  {
4490  	int	pt, ci, i = 0;
4491  	u_long	flags;
4492  	struct bchannel *pb;
4493  
4494  	ci = dch->slot;
4495  	pt = hc->chan[ci].port;
4496  
4497  	if (debug & DEBUG_HFCMULTI_INIT)
4498  		printk(KERN_DEBUG "%s: entered for port %d\n",
4499  		       __func__, pt + 1);
4500  
4501  	if (pt >= hc->ports) {
4502  		printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4503  		       __func__, pt + 1);
4504  		return;
4505  	}
4506  
4507  	if (debug & DEBUG_HFCMULTI_INIT)
4508  		printk(KERN_DEBUG "%s: releasing port=%d\n",
4509  		       __func__, pt + 1);
4510  
4511  	if (dch->dev.D.protocol == ISDN_P_TE_S0)
4512  		l1_event(dch->l1, CLOSE_CHANNEL);
4513  
4514  	hc->chan[ci].dch = NULL;
4515  
4516  	if (hc->created[pt]) {
4517  		hc->created[pt] = 0;
4518  		mISDN_unregister_device(&dch->dev);
4519  	}
4520  
4521  	spin_lock_irqsave(&hc->lock, flags);
4522  
4523  	if (dch->timer.function) {
4524  		del_timer(&dch->timer);
4525  		dch->timer.function = NULL;
4526  	}
4527  
4528  	if (hc->ctype == HFC_TYPE_E1) { /* E1 */
4529  		/* remove sync */
4530  		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4531  			hc->syncronized = 0;
4532  			plxsd_checksync(hc, 1);
4533  		}
4534  		/* free channels */
4535  		for (i = 0; i <= 31; i++) {
4536  			if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
4537  				continue;
4538  			if (hc->chan[i].bch) {
4539  				if (debug & DEBUG_HFCMULTI_INIT)
4540  					printk(KERN_DEBUG
4541  					       "%s: free port %d channel %d\n",
4542  					       __func__, hc->chan[i].port + 1, i);
4543  				pb = hc->chan[i].bch;
4544  				hc->chan[i].bch = NULL;
4545  				spin_unlock_irqrestore(&hc->lock, flags);
4546  				mISDN_freebchannel(pb);
4547  				kfree(pb);
4548  				kfree(hc->chan[i].coeff);
4549  				spin_lock_irqsave(&hc->lock, flags);
4550  			}
4551  		}
4552  	} else {
4553  		/* remove sync */
4554  		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4555  			hc->syncronized &=
4556  				~(1 << hc->chan[ci].port);
4557  			plxsd_checksync(hc, 1);
4558  		}
4559  		/* free channels */
4560  		if (hc->chan[ci - 2].bch) {
4561  			if (debug & DEBUG_HFCMULTI_INIT)
4562  				printk(KERN_DEBUG
4563  				       "%s: free port %d channel %d\n",
4564  				       __func__, hc->chan[ci - 2].port + 1,
4565  				       ci - 2);
4566  			pb = hc->chan[ci - 2].bch;
4567  			hc->chan[ci - 2].bch = NULL;
4568  			spin_unlock_irqrestore(&hc->lock, flags);
4569  			mISDN_freebchannel(pb);
4570  			kfree(pb);
4571  			kfree(hc->chan[ci - 2].coeff);
4572  			spin_lock_irqsave(&hc->lock, flags);
4573  		}
4574  		if (hc->chan[ci - 1].bch) {
4575  			if (debug & DEBUG_HFCMULTI_INIT)
4576  				printk(KERN_DEBUG
4577  				       "%s: free port %d channel %d\n",
4578  				       __func__, hc->chan[ci - 1].port + 1,
4579  				       ci - 1);
4580  			pb = hc->chan[ci - 1].bch;
4581  			hc->chan[ci - 1].bch = NULL;
4582  			spin_unlock_irqrestore(&hc->lock, flags);
4583  			mISDN_freebchannel(pb);
4584  			kfree(pb);
4585  			kfree(hc->chan[ci - 1].coeff);
4586  			spin_lock_irqsave(&hc->lock, flags);
4587  		}
4588  	}
4589  
4590  	spin_unlock_irqrestore(&hc->lock, flags);
4591  
4592  	if (debug & DEBUG_HFCMULTI_INIT)
4593  		printk(KERN_DEBUG "%s: free port %d channel D(%d)\n", __func__,
4594  			pt+1, ci);
4595  	mISDN_freedchannel(dch);
4596  	kfree(dch);
4597  
4598  	if (debug & DEBUG_HFCMULTI_INIT)
4599  		printk(KERN_DEBUG "%s: done!\n", __func__);
4600  }
4601  
4602  static void
release_card(struct hfc_multi * hc)4603  release_card(struct hfc_multi *hc)
4604  {
4605  	u_long	flags;
4606  	int	ch;
4607  
4608  	if (debug & DEBUG_HFCMULTI_INIT)
4609  		printk(KERN_DEBUG "%s: release card (%d) entered\n",
4610  		       __func__, hc->id);
4611  
4612  	/* unregister clock source */
4613  	if (hc->iclock)
4614  		mISDN_unregister_clock(hc->iclock);
4615  
4616  	/* disable and free irq */
4617  	spin_lock_irqsave(&hc->lock, flags);
4618  	disable_hwirq(hc);
4619  	spin_unlock_irqrestore(&hc->lock, flags);
4620  	udelay(1000);
4621  	if (hc->irq) {
4622  		if (debug & DEBUG_HFCMULTI_INIT)
4623  			printk(KERN_DEBUG "%s: free irq %d (hc=%p)\n",
4624  			    __func__, hc->irq, hc);
4625  		free_irq(hc->irq, hc);
4626  		hc->irq = 0;
4627  
4628  	}
4629  
4630  	/* disable D-channels & B-channels */
4631  	if (debug & DEBUG_HFCMULTI_INIT)
4632  		printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4633  		       __func__);
4634  	for (ch = 0; ch <= 31; ch++) {
4635  		if (hc->chan[ch].dch)
4636  			release_port(hc, hc->chan[ch].dch);
4637  	}
4638  
4639  	/* dimm leds */
4640  	if (hc->leds)
4641  		hfcmulti_leds(hc);
4642  
4643  	/* release hardware */
4644  	release_io_hfcmulti(hc);
4645  
4646  	if (debug & DEBUG_HFCMULTI_INIT)
4647  		printk(KERN_DEBUG "%s: remove instance from list\n",
4648  		       __func__);
4649  	list_del(&hc->list);
4650  
4651  	if (debug & DEBUG_HFCMULTI_INIT)
4652  		printk(KERN_DEBUG "%s: delete instance\n", __func__);
4653  	if (hc == syncmaster)
4654  		syncmaster = NULL;
4655  	kfree(hc);
4656  	if (debug & DEBUG_HFCMULTI_INIT)
4657  		printk(KERN_DEBUG "%s: card successfully removed\n",
4658  		       __func__);
4659  }
4660  
4661  static void
init_e1_port_hw(struct hfc_multi * hc,struct hm_map * m)4662  init_e1_port_hw(struct hfc_multi *hc, struct hm_map *m)
4663  {
4664  	/* set optical line type */
4665  	if (port[Port_cnt] & 0x001) {
4666  		if (!m->opticalsupport)  {
4667  			printk(KERN_INFO
4668  			       "This board has no optical "
4669  			       "support\n");
4670  		} else {
4671  			if (debug & DEBUG_HFCMULTI_INIT)
4672  				printk(KERN_DEBUG
4673  				       "%s: PORT set optical "
4674  				       "interfacs: card(%d) "
4675  				       "port(%d)\n",
4676  				       __func__,
4677  				       HFC_cnt + 1, 1);
4678  			test_and_set_bit(HFC_CFG_OPTICAL,
4679  			    &hc->chan[hc->dnum[0]].cfg);
4680  		}
4681  	}
4682  	/* set LOS report */
4683  	if (port[Port_cnt] & 0x004) {
4684  		if (debug & DEBUG_HFCMULTI_INIT)
4685  			printk(KERN_DEBUG "%s: PORT set "
4686  			       "LOS report: card(%d) port(%d)\n",
4687  			       __func__, HFC_cnt + 1, 1);
4688  		test_and_set_bit(HFC_CFG_REPORT_LOS,
4689  		    &hc->chan[hc->dnum[0]].cfg);
4690  	}
4691  	/* set AIS report */
4692  	if (port[Port_cnt] & 0x008) {
4693  		if (debug & DEBUG_HFCMULTI_INIT)
4694  			printk(KERN_DEBUG "%s: PORT set "
4695  			       "AIS report: card(%d) port(%d)\n",
4696  			       __func__, HFC_cnt + 1, 1);
4697  		test_and_set_bit(HFC_CFG_REPORT_AIS,
4698  		    &hc->chan[hc->dnum[0]].cfg);
4699  	}
4700  	/* set SLIP report */
4701  	if (port[Port_cnt] & 0x010) {
4702  		if (debug & DEBUG_HFCMULTI_INIT)
4703  			printk(KERN_DEBUG
4704  			       "%s: PORT set SLIP report: "
4705  			       "card(%d) port(%d)\n",
4706  			       __func__, HFC_cnt + 1, 1);
4707  		test_and_set_bit(HFC_CFG_REPORT_SLIP,
4708  		    &hc->chan[hc->dnum[0]].cfg);
4709  	}
4710  	/* set RDI report */
4711  	if (port[Port_cnt] & 0x020) {
4712  		if (debug & DEBUG_HFCMULTI_INIT)
4713  			printk(KERN_DEBUG
4714  			       "%s: PORT set RDI report: "
4715  			       "card(%d) port(%d)\n",
4716  			       __func__, HFC_cnt + 1, 1);
4717  		test_and_set_bit(HFC_CFG_REPORT_RDI,
4718  		    &hc->chan[hc->dnum[0]].cfg);
4719  	}
4720  	/* set CRC-4 Mode */
4721  	if (!(port[Port_cnt] & 0x100)) {
4722  		if (debug & DEBUG_HFCMULTI_INIT)
4723  			printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4724  			       " card(%d) port(%d)\n",
4725  			       __func__, HFC_cnt + 1, 1);
4726  		test_and_set_bit(HFC_CFG_CRC4,
4727  		    &hc->chan[hc->dnum[0]].cfg);
4728  	} else {
4729  		if (debug & DEBUG_HFCMULTI_INIT)
4730  			printk(KERN_DEBUG "%s: PORT turn off CRC4"
4731  			       " report: card(%d) port(%d)\n",
4732  			       __func__, HFC_cnt + 1, 1);
4733  	}
4734  	/* set forced clock */
4735  	if (port[Port_cnt] & 0x0200) {
4736  		if (debug & DEBUG_HFCMULTI_INIT)
4737  			printk(KERN_DEBUG "%s: PORT force getting clock from "
4738  			       "E1: card(%d) port(%d)\n",
4739  			       __func__, HFC_cnt + 1, 1);
4740  		test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4741  	} else
4742  		if (port[Port_cnt] & 0x0400) {
4743  			if (debug & DEBUG_HFCMULTI_INIT)
4744  				printk(KERN_DEBUG "%s: PORT force putting clock to "
4745  				       "E1: card(%d) port(%d)\n",
4746  				       __func__, HFC_cnt + 1, 1);
4747  			test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4748  		}
4749  	/* set JATT PLL */
4750  	if (port[Port_cnt] & 0x0800) {
4751  		if (debug & DEBUG_HFCMULTI_INIT)
4752  			printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4753  			       "E1: card(%d) port(%d)\n",
4754  			       __func__, HFC_cnt + 1, 1);
4755  		test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4756  	}
4757  	/* set elastic jitter buffer */
4758  	if (port[Port_cnt] & 0x3000) {
4759  		hc->chan[hc->dnum[0]].jitter = (port[Port_cnt]>>12) & 0x3;
4760  		if (debug & DEBUG_HFCMULTI_INIT)
4761  			printk(KERN_DEBUG
4762  			       "%s: PORT set elastic "
4763  			       "buffer to %d: card(%d) port(%d)\n",
4764  			    __func__, hc->chan[hc->dnum[0]].jitter,
4765  			       HFC_cnt + 1, 1);
4766  	} else
4767  		hc->chan[hc->dnum[0]].jitter = 2; /* default */
4768  }
4769  
4770  static int
init_e1_port(struct hfc_multi * hc,struct hm_map * m,int pt)4771  init_e1_port(struct hfc_multi *hc, struct hm_map *m, int pt)
4772  {
4773  	struct dchannel	*dch;
4774  	struct bchannel	*bch;
4775  	int		ch, ret = 0;
4776  	char		name[MISDN_MAX_IDLEN];
4777  	int		bcount = 0;
4778  
4779  	dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4780  	if (!dch)
4781  		return -ENOMEM;
4782  	dch->debug = debug;
4783  	mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4784  	dch->hw = hc;
4785  	dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4786  	dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4787  	    (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4788  	dch->dev.D.send = handle_dmsg;
4789  	dch->dev.D.ctrl = hfcm_dctrl;
4790  	dch->slot = hc->dnum[pt];
4791  	hc->chan[hc->dnum[pt]].dch = dch;
4792  	hc->chan[hc->dnum[pt]].port = pt;
4793  	hc->chan[hc->dnum[pt]].nt_timer = -1;
4794  	for (ch = 1; ch <= 31; ch++) {
4795  		if (!((1 << ch) & hc->bmask[pt])) /* skip unused channel */
4796  			continue;
4797  		bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4798  		if (!bch) {
4799  			printk(KERN_ERR "%s: no memory for bchannel\n",
4800  			    __func__);
4801  			ret = -ENOMEM;
4802  			goto free_chan;
4803  		}
4804  		hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4805  		if (!hc->chan[ch].coeff) {
4806  			printk(KERN_ERR "%s: no memory for coeffs\n",
4807  			    __func__);
4808  			ret = -ENOMEM;
4809  			kfree(bch);
4810  			goto free_chan;
4811  		}
4812  		bch->nr = ch;
4813  		bch->slot = ch;
4814  		bch->debug = debug;
4815  		mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
4816  		bch->hw = hc;
4817  		bch->ch.send = handle_bmsg;
4818  		bch->ch.ctrl = hfcm_bctrl;
4819  		bch->ch.nr = ch;
4820  		list_add(&bch->ch.list, &dch->dev.bchannels);
4821  		hc->chan[ch].bch = bch;
4822  		hc->chan[ch].port = pt;
4823  		set_channelmap(bch->nr, dch->dev.channelmap);
4824  		bcount++;
4825  	}
4826  	dch->dev.nrbchan = bcount;
4827  	if (pt == 0)
4828  		init_e1_port_hw(hc, m);
4829  	if (hc->ports > 1)
4830  		snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d-%d",
4831  				HFC_cnt + 1, pt+1);
4832  	else
4833  		snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
4834  	ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4835  	if (ret)
4836  		goto free_chan;
4837  	hc->created[pt] = 1;
4838  	return ret;
4839  free_chan:
4840  	release_port(hc, dch);
4841  	return ret;
4842  }
4843  
4844  static int
init_multi_port(struct hfc_multi * hc,int pt)4845  init_multi_port(struct hfc_multi *hc, int pt)
4846  {
4847  	struct dchannel	*dch;
4848  	struct bchannel	*bch;
4849  	int		ch, i, ret = 0;
4850  	char		name[MISDN_MAX_IDLEN];
4851  
4852  	dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4853  	if (!dch)
4854  		return -ENOMEM;
4855  	dch->debug = debug;
4856  	mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4857  	dch->hw = hc;
4858  	dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4859  	dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4860  		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4861  	dch->dev.D.send = handle_dmsg;
4862  	dch->dev.D.ctrl = hfcm_dctrl;
4863  	dch->dev.nrbchan = 2;
4864  	i = pt << 2;
4865  	dch->slot = i + 2;
4866  	hc->chan[i + 2].dch = dch;
4867  	hc->chan[i + 2].port = pt;
4868  	hc->chan[i + 2].nt_timer = -1;
4869  	for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4870  		bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4871  		if (!bch) {
4872  			printk(KERN_ERR "%s: no memory for bchannel\n",
4873  			       __func__);
4874  			ret = -ENOMEM;
4875  			goto free_chan;
4876  		}
4877  		hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4878  		if (!hc->chan[i + ch].coeff) {
4879  			printk(KERN_ERR "%s: no memory for coeffs\n",
4880  			       __func__);
4881  			ret = -ENOMEM;
4882  			kfree(bch);
4883  			goto free_chan;
4884  		}
4885  		bch->nr = ch + 1;
4886  		bch->slot = i + ch;
4887  		bch->debug = debug;
4888  		mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
4889  		bch->hw = hc;
4890  		bch->ch.send = handle_bmsg;
4891  		bch->ch.ctrl = hfcm_bctrl;
4892  		bch->ch.nr = ch + 1;
4893  		list_add(&bch->ch.list, &dch->dev.bchannels);
4894  		hc->chan[i + ch].bch = bch;
4895  		hc->chan[i + ch].port = pt;
4896  		set_channelmap(bch->nr, dch->dev.channelmap);
4897  	}
4898  	/* set master clock */
4899  	if (port[Port_cnt] & 0x001) {
4900  		if (debug & DEBUG_HFCMULTI_INIT)
4901  			printk(KERN_DEBUG
4902  			       "%s: PROTOCOL set master clock: "
4903  			       "card(%d) port(%d)\n",
4904  			       __func__, HFC_cnt + 1, pt + 1);
4905  		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4906  			printk(KERN_ERR "Error: Master clock "
4907  			       "for port(%d) of card(%d) is only"
4908  			       " possible with TE-mode\n",
4909  			       pt + 1, HFC_cnt + 1);
4910  			ret = -EINVAL;
4911  			goto free_chan;
4912  		}
4913  		if (hc->masterclk >= 0) {
4914  			printk(KERN_ERR "Error: Master clock "
4915  			       "for port(%d) of card(%d) already "
4916  			       "defined for port(%d)\n",
4917  			       pt + 1, HFC_cnt + 1, hc->masterclk + 1);
4918  			ret = -EINVAL;
4919  			goto free_chan;
4920  		}
4921  		hc->masterclk = pt;
4922  	}
4923  	/* set transmitter line to non capacitive */
4924  	if (port[Port_cnt] & 0x002) {
4925  		if (debug & DEBUG_HFCMULTI_INIT)
4926  			printk(KERN_DEBUG
4927  			       "%s: PROTOCOL set non capacitive "
4928  			       "transmitter: card(%d) port(%d)\n",
4929  			       __func__, HFC_cnt + 1, pt + 1);
4930  		test_and_set_bit(HFC_CFG_NONCAP_TX,
4931  				 &hc->chan[i + 2].cfg);
4932  	}
4933  	/* disable E-channel */
4934  	if (port[Port_cnt] & 0x004) {
4935  		if (debug & DEBUG_HFCMULTI_INIT)
4936  			printk(KERN_DEBUG
4937  			       "%s: PROTOCOL disable E-channel: "
4938  			       "card(%d) port(%d)\n",
4939  			       __func__, HFC_cnt + 1, pt + 1);
4940  		test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
4941  				 &hc->chan[i + 2].cfg);
4942  	}
4943  	if (hc->ctype == HFC_TYPE_XHFC) {
4944  		snprintf(name, MISDN_MAX_IDLEN - 1, "xhfc.%d-%d",
4945  			 HFC_cnt + 1, pt + 1);
4946  		ret = mISDN_register_device(&dch->dev, NULL, name);
4947  	} else {
4948  		snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d",
4949  			 hc->ctype, HFC_cnt + 1, pt + 1);
4950  		ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4951  	}
4952  	if (ret)
4953  		goto free_chan;
4954  	hc->created[pt] = 1;
4955  	return ret;
4956  free_chan:
4957  	release_port(hc, dch);
4958  	return ret;
4959  }
4960  
4961  static int
hfcmulti_init(struct hm_map * m,struct pci_dev * pdev,const struct pci_device_id * ent)4962  hfcmulti_init(struct hm_map *m, struct pci_dev *pdev,
4963  	      const struct pci_device_id *ent)
4964  {
4965  	int		ret_err = 0;
4966  	int		pt;
4967  	struct hfc_multi	*hc;
4968  	u_long		flags;
4969  	u_char		dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
4970  	int		i, ch;
4971  	u_int		maskcheck;
4972  
4973  	if (HFC_cnt >= MAX_CARDS) {
4974  		printk(KERN_ERR "too many cards (max=%d).\n",
4975  		       MAX_CARDS);
4976  		return -EINVAL;
4977  	}
4978  	if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
4979  		printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
4980  		       "type[%d] %d was supplied as module parameter\n",
4981  		       m->vendor_name, m->card_name, m->type, HFC_cnt,
4982  		       type[HFC_cnt] & 0xff);
4983  		printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
4984  		       "first, to see cards and their types.");
4985  		return -EINVAL;
4986  	}
4987  	if (debug & DEBUG_HFCMULTI_INIT)
4988  		printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
4989  		       __func__, m->vendor_name, m->card_name, m->type,
4990  		       type[HFC_cnt]);
4991  
4992  	/* allocate card+fifo structure */
4993  	hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
4994  	if (!hc) {
4995  		printk(KERN_ERR "No kmem for HFC-Multi card\n");
4996  		return -ENOMEM;
4997  	}
4998  	spin_lock_init(&hc->lock);
4999  	hc->mtyp = m;
5000  	hc->ctype =  m->type;
5001  	hc->ports = m->ports;
5002  	hc->id = HFC_cnt;
5003  	hc->pcm = pcm[HFC_cnt];
5004  	hc->io_mode = iomode[HFC_cnt];
5005  	if (hc->ctype == HFC_TYPE_E1 && dmask[E1_cnt]) {
5006  		/* fragment card */
5007  		pt = 0;
5008  		maskcheck = 0;
5009  		for (ch = 0; ch <= 31; ch++) {
5010  			if (!((1 << ch) & dmask[E1_cnt]))
5011  				continue;
5012  			hc->dnum[pt] = ch;
5013  			hc->bmask[pt] = bmask[bmask_cnt++];
5014  			if ((maskcheck & hc->bmask[pt])
5015  			 || (dmask[E1_cnt] & hc->bmask[pt])) {
5016  				printk(KERN_INFO
5017  				       "HFC-E1 #%d has overlapping B-channels on fragment #%d\n",
5018  				       E1_cnt + 1, pt);
5019  				kfree(hc);
5020  				return -EINVAL;
5021  			}
5022  			maskcheck |= hc->bmask[pt];
5023  			printk(KERN_INFO
5024  			       "HFC-E1 #%d uses D-channel on slot %d and a B-channel map of 0x%08x\n",
5025  				E1_cnt + 1, ch, hc->bmask[pt]);
5026  			pt++;
5027  		}
5028  		hc->ports = pt;
5029  	}
5030  	if (hc->ctype == HFC_TYPE_E1 && !dmask[E1_cnt]) {
5031  		/* default card layout */
5032  		hc->dnum[0] = 16;
5033  		hc->bmask[0] = 0xfffefffe;
5034  		hc->ports = 1;
5035  	}
5036  
5037  	/* set chip specific features */
5038  	hc->masterclk = -1;
5039  	if (type[HFC_cnt] & 0x100) {
5040  		test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
5041  		hc->silence = 0xff; /* ulaw silence */
5042  	} else
5043  		hc->silence = 0x2a; /* alaw silence */
5044  	if ((poll >> 1) > sizeof(hc->silence_data)) {
5045  		printk(KERN_ERR "HFCMULTI error: silence_data too small, "
5046  		       "please fix\n");
5047  		kfree(hc);
5048  		return -EINVAL;
5049  	}
5050  	for (i = 0; i < (poll >> 1); i++)
5051  		hc->silence_data[i] = hc->silence;
5052  
5053  	if (hc->ctype != HFC_TYPE_XHFC) {
5054  		if (!(type[HFC_cnt] & 0x200))
5055  			test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
5056  		test_and_set_bit(HFC_CHIP_CONF, &hc->chip);
5057  	}
5058  
5059  	if (type[HFC_cnt] & 0x800)
5060  		test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5061  	if (type[HFC_cnt] & 0x1000) {
5062  		test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
5063  		test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5064  	}
5065  	if (type[HFC_cnt] & 0x4000)
5066  		test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
5067  	if (type[HFC_cnt] & 0x8000)
5068  		test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
5069  	hc->slots = 32;
5070  	if (type[HFC_cnt] & 0x10000)
5071  		hc->slots = 64;
5072  	if (type[HFC_cnt] & 0x20000)
5073  		hc->slots = 128;
5074  	if (type[HFC_cnt] & 0x80000) {
5075  		test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
5076  		hc->wdcount = 0;
5077  		hc->wdbyte = V_GPIO_OUT2;
5078  		printk(KERN_NOTICE "Watchdog enabled\n");
5079  	}
5080  
5081  	if (pdev && ent)
5082  		/* setup pci, hc->slots may change due to PLXSD */
5083  		ret_err = setup_pci(hc, pdev, ent);
5084  	else
5085  #ifdef CONFIG_MISDN_HFCMULTI_8xx
5086  		ret_err = setup_embedded(hc, m);
5087  #else
5088  	{
5089  		printk(KERN_WARNING "Embedded IO Mode not selected\n");
5090  		ret_err = -EIO;
5091  	}
5092  #endif
5093  	if (ret_err) {
5094  		if (hc == syncmaster)
5095  			syncmaster = NULL;
5096  		kfree(hc);
5097  		return ret_err;
5098  	}
5099  
5100  	hc->HFC_outb_nodebug = hc->HFC_outb;
5101  	hc->HFC_inb_nodebug = hc->HFC_inb;
5102  	hc->HFC_inw_nodebug = hc->HFC_inw;
5103  	hc->HFC_wait_nodebug = hc->HFC_wait;
5104  #ifdef HFC_REGISTER_DEBUG
5105  	hc->HFC_outb = HFC_outb_debug;
5106  	hc->HFC_inb = HFC_inb_debug;
5107  	hc->HFC_inw = HFC_inw_debug;
5108  	hc->HFC_wait = HFC_wait_debug;
5109  #endif
5110  	/* create channels */
5111  	for (pt = 0; pt < hc->ports; pt++) {
5112  		if (Port_cnt >= MAX_PORTS) {
5113  			printk(KERN_ERR "too many ports (max=%d).\n",
5114  			       MAX_PORTS);
5115  			ret_err = -EINVAL;
5116  			goto free_card;
5117  		}
5118  		if (hc->ctype == HFC_TYPE_E1)
5119  			ret_err = init_e1_port(hc, m, pt);
5120  		else
5121  			ret_err = init_multi_port(hc, pt);
5122  		if (debug & DEBUG_HFCMULTI_INIT)
5123  			printk(KERN_DEBUG
5124  			    "%s: Registering D-channel, card(%d) port(%d) "
5125  			       "result %d\n",
5126  			    __func__, HFC_cnt + 1, pt + 1, ret_err);
5127  
5128  		if (ret_err) {
5129  			while (pt) { /* release already registered ports */
5130  				pt--;
5131  				if (hc->ctype == HFC_TYPE_E1)
5132  					release_port(hc,
5133  						hc->chan[hc->dnum[pt]].dch);
5134  				else
5135  					release_port(hc,
5136  						hc->chan[(pt << 2) + 2].dch);
5137  			}
5138  			goto free_card;
5139  		}
5140  		if (hc->ctype != HFC_TYPE_E1)
5141  			Port_cnt++; /* for each S0 port */
5142  	}
5143  	if (hc->ctype == HFC_TYPE_E1) {
5144  		Port_cnt++; /* for each E1 port */
5145  		E1_cnt++;
5146  	}
5147  
5148  	/* disp switches */
5149  	switch (m->dip_type) {
5150  	case DIP_4S:
5151  		/*
5152  		 * Get DIP setting for beroNet 1S/2S/4S cards
5153  		 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
5154  		 * GPI 19/23 (R_GPI_IN2))
5155  		 */
5156  		dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
5157  			((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
5158  			(~HFC_inb(hc, R_GPI_IN2) & 0x08);
5159  
5160  		/* Port mode (TE/NT) jumpers */
5161  		pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4)  & 0xf);
5162  
5163  		if (test_bit(HFC_CHIP_B410P, &hc->chip))
5164  			pmj = ~pmj & 0xf;
5165  
5166  		printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
5167  		       m->vendor_name, m->card_name, dips, pmj);
5168  		break;
5169  	case DIP_8S:
5170  		/*
5171  		 * Get DIP Setting for beroNet 8S0+ cards
5172  		 * Enable PCI auxbridge function
5173  		 */
5174  		HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
5175  		/* prepare access to auxport */
5176  		outw(0x4000, hc->pci_iobase + 4);
5177  		/*
5178  		 * some dummy reads are required to
5179  		 * read valid DIP switch data
5180  		 */
5181  		dips = inb(hc->pci_iobase);
5182  		dips = inb(hc->pci_iobase);
5183  		dips = inb(hc->pci_iobase);
5184  		dips = ~inb(hc->pci_iobase) & 0x3F;
5185  		outw(0x0, hc->pci_iobase + 4);
5186  		/* disable PCI auxbridge function */
5187  		HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
5188  		printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5189  		       m->vendor_name, m->card_name, dips);
5190  		break;
5191  	case DIP_E1:
5192  		/*
5193  		 * get DIP Setting for beroNet E1 cards
5194  		 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5195  		 */
5196  		dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0) >> 4;
5197  		printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5198  		       m->vendor_name, m->card_name, dips);
5199  		break;
5200  	}
5201  
5202  	/* add to list */
5203  	spin_lock_irqsave(&HFClock, flags);
5204  	list_add_tail(&hc->list, &HFClist);
5205  	spin_unlock_irqrestore(&HFClock, flags);
5206  
5207  	/* use as clock source */
5208  	if (clock == HFC_cnt + 1)
5209  		hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc);
5210  
5211  	/* initialize hardware */
5212  	hc->irq = (m->irq) ? : hc->pci_dev->irq;
5213  	ret_err = init_card(hc);
5214  	if (ret_err) {
5215  		printk(KERN_ERR "init card returns %d\n", ret_err);
5216  		release_card(hc);
5217  		return ret_err;
5218  	}
5219  
5220  	/* start IRQ and return */
5221  	spin_lock_irqsave(&hc->lock, flags);
5222  	enable_hwirq(hc);
5223  	spin_unlock_irqrestore(&hc->lock, flags);
5224  	return 0;
5225  
5226  free_card:
5227  	release_io_hfcmulti(hc);
5228  	if (hc == syncmaster)
5229  		syncmaster = NULL;
5230  	kfree(hc);
5231  	return ret_err;
5232  }
5233  
hfc_remove_pci(struct pci_dev * pdev)5234  static void hfc_remove_pci(struct pci_dev *pdev)
5235  {
5236  	struct hfc_multi	*card = pci_get_drvdata(pdev);
5237  	u_long			flags;
5238  
5239  	if (debug)
5240  		printk(KERN_INFO "removing hfc_multi card vendor:%x "
5241  		       "device:%x subvendor:%x subdevice:%x\n",
5242  		       pdev->vendor, pdev->device,
5243  		       pdev->subsystem_vendor, pdev->subsystem_device);
5244  
5245  	if (card) {
5246  		spin_lock_irqsave(&HFClock, flags);
5247  		release_card(card);
5248  		spin_unlock_irqrestore(&HFClock, flags);
5249  	}  else {
5250  		if (debug)
5251  			printk(KERN_DEBUG "%s: drvdata already removed\n",
5252  			       __func__);
5253  	}
5254  }
5255  
5256  #define	VENDOR_CCD	"Cologne Chip AG"
5257  #define	VENDOR_BN	"beroNet GmbH"
5258  #define	VENDOR_DIG	"Digium Inc."
5259  #define VENDOR_JH	"Junghanns.NET GmbH"
5260  #define VENDOR_PRIM	"PrimuX"
5261  
5262  static const struct hm_map hfcm_map[] = {
5263  	/*0*/	{VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0, 0},
5264  	/*1*/	{VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5265  	/*2*/	{VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5266  	/*3*/	{VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5267  	/*4*/	{VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0},
5268  	/*5*/	{VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0},
5269  	/*6*/	{VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5270  	/*7*/	{VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0},
5271  	/*8*/	{VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO, 0},
5272  	/*9*/	{VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0},
5273  	/*10*/	{VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0},
5274  	/*11*/	{VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0},
5275  
5276  	/*12*/	{VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0},
5277  	/*13*/	{VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
5278  		 HFC_IO_MODE_REGIO, 0},
5279  	/*14*/	{VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0},
5280  	/*15*/	{VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0},
5281  
5282  	/*16*/	{VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0},
5283  	/*17*/	{VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5284  	/*18*/	{VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5285  
5286  	/*19*/	{VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5287  	/*20*/	{VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0},
5288  	/*21*/	{VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5289  	/*22*/	{VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5290  
5291  	/*23*/	{VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0},
5292  	/*24*/	{VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0},
5293  	/*25*/	{VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0},
5294  
5295  	/*26*/	{VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5296  		 HFC_IO_MODE_PLXSD, 0},
5297  	/*27*/	{VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5298  		 HFC_IO_MODE_PLXSD, 0},
5299  	/*28*/	{VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0},
5300  	/*29*/	{VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0},
5301  	/*30*/	{VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0},
5302  	/*31*/	{VENDOR_CCD, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0,
5303  		 HFC_IO_MODE_EMBSD, XHFC_IRQ},
5304  	/*32*/	{VENDOR_JH, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0},
5305  	/*33*/	{VENDOR_BN, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5306  	/*34*/	{VENDOR_BN, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5307  };
5308  
5309  #undef H
5310  #define H(x)	((unsigned long)&hfcm_map[x])
5311  static const struct pci_device_id hfmultipci_ids[] = {
5312  
5313  	/* Cards with HFC-4S Chip */
5314  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5315  	  PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5316  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5317  	  PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5318  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5319  	  PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5320  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5321  	  PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5322  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5323  	  PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5324  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5325  	  PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5326  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5327  	  PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5328  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5329  	  PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5330  	{ PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5331  	  PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5332  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5333  	  PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5334  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5335  	  PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5336  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5337  	  PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5338  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5339  	  PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5340  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5341  	  PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
5342  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5343  	  0xb761, 0, 0, H(33)}, /* BN2S PCIe */
5344  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5345  	  0xb762, 0, 0, H(34)}, /* BN4S PCIe */
5346  
5347  	/* Cards with HFC-8S Chip */
5348  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5349  	  PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5350  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5351  	  PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5352  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5353  	  PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5354  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5355  	  PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
5356  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5357  	  PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST  */
5358  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5359  	  PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST  */
5360  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5361  	  PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5362  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5363  	  PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
5364  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5365  	  PCI_SUBDEVICE_ID_CCD_JH8S, 0, 0, H(32)}, /* Junganns 8S  */
5366  
5367  
5368  	/* Cards with HFC-E1 Chip */
5369  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5370  	  PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5371  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5372  	  PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5373  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5374  	  PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5375  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5376  	  PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5377  
5378  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5379  	  PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5380  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5381  	  PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5382  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5383  	  PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5384  
5385  	{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5386  	  PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5387  	{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5388  	  PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
5389  
5390  	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5391  	  PCI_SUBDEVICE_ID_CCD_JHSE1, 0, 0, H(25)}, /* Junghanns E1 */
5392  
5393  	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC4S), 0 },
5394  	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC8S), 0 },
5395  	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFCE1), 0 },
5396  	{0, }
5397  };
5398  #undef H
5399  
5400  MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5401  
5402  static int
hfcmulti_probe(struct pci_dev * pdev,const struct pci_device_id * ent)5403  hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5404  {
5405  	struct hm_map	*m = (struct hm_map *)ent->driver_data;
5406  	int		ret;
5407  
5408  	if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
5409  		    ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5410  		    ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5411  		    ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
5412  		printk(KERN_ERR
5413  		       "Unknown HFC multiport controller (vendor:%04x device:%04x "
5414  		       "subvendor:%04x subdevice:%04x)\n", pdev->vendor,
5415  		       pdev->device, pdev->subsystem_vendor,
5416  		       pdev->subsystem_device);
5417  		printk(KERN_ERR
5418  		       "Please contact the driver maintainer for support.\n");
5419  		return -ENODEV;
5420  	}
5421  	ret = hfcmulti_init(m, pdev, ent);
5422  	if (ret)
5423  		return ret;
5424  	HFC_cnt++;
5425  	printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5426  	return 0;
5427  }
5428  
5429  static struct pci_driver hfcmultipci_driver = {
5430  	.name		= "hfc_multi",
5431  	.probe		= hfcmulti_probe,
5432  	.remove		= hfc_remove_pci,
5433  	.id_table	= hfmultipci_ids,
5434  };
5435  
5436  static void __exit
HFCmulti_cleanup(void)5437  HFCmulti_cleanup(void)
5438  {
5439  	struct hfc_multi *card, *next;
5440  
5441  	/* get rid of all devices of this driver */
5442  	list_for_each_entry_safe(card, next, &HFClist, list)
5443  		release_card(card);
5444  	pci_unregister_driver(&hfcmultipci_driver);
5445  }
5446  
5447  static int __init
HFCmulti_init(void)5448  HFCmulti_init(void)
5449  {
5450  	int err;
5451  	int i, xhfc = 0;
5452  	struct hm_map m;
5453  
5454  	printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);
5455  
5456  #ifdef IRQ_DEBUG
5457  	printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
5458  #endif
5459  
5460  	if (debug & DEBUG_HFCMULTI_INIT)
5461  		printk(KERN_DEBUG "%s: init entered\n", __func__);
5462  
5463  	switch (poll) {
5464  	case 0:
5465  		poll_timer = 6;
5466  		poll = 128;
5467  		break;
5468  	case 8:
5469  		poll_timer = 2;
5470  		break;
5471  	case 16:
5472  		poll_timer = 3;
5473  		break;
5474  	case 32:
5475  		poll_timer = 4;
5476  		break;
5477  	case 64:
5478  		poll_timer = 5;
5479  		break;
5480  	case 128:
5481  		poll_timer = 6;
5482  		break;
5483  	case 256:
5484  		poll_timer = 7;
5485  		break;
5486  	default:
5487  		printk(KERN_ERR
5488  		       "%s: Wrong poll value (%d).\n", __func__, poll);
5489  		err = -EINVAL;
5490  		return err;
5491  
5492  	}
5493  
5494  	if (!clock)
5495  		clock = 1;
5496  
5497  	/* Register the embedded devices.
5498  	 * This should be done before the PCI cards registration */
5499  	switch (hwid) {
5500  	case HWID_MINIP4:
5501  		xhfc = 1;
5502  		m = hfcm_map[31];
5503  		break;
5504  	case HWID_MINIP8:
5505  		xhfc = 2;
5506  		m = hfcm_map[31];
5507  		break;
5508  	case HWID_MINIP16:
5509  		xhfc = 4;
5510  		m = hfcm_map[31];
5511  		break;
5512  	default:
5513  		xhfc = 0;
5514  	}
5515  
5516  	for (i = 0; i < xhfc; ++i) {
5517  		err = hfcmulti_init(&m, NULL, NULL);
5518  		if (err) {
5519  			printk(KERN_ERR "error registering embedded driver: "
5520  			       "%x\n", err);
5521  			return err;
5522  		}
5523  		HFC_cnt++;
5524  		printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5525  	}
5526  
5527  	/* Register the PCI cards */
5528  	err = pci_register_driver(&hfcmultipci_driver);
5529  	if (err < 0) {
5530  		printk(KERN_ERR "error registering pci driver: %x\n", err);
5531  		return err;
5532  	}
5533  
5534  	return 0;
5535  }
5536  
5537  
5538  module_init(HFCmulti_init);
5539  module_exit(HFCmulti_cleanup);
5540