1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3 * Copyright(c) 2016 - 2020 Intel Corporation.
4 */
5
6 #include <linux/hash.h>
7 #include <linux/bitops.h>
8 #include <linux/lockdep.h>
9 #include <linux/vmalloc.h>
10 #include <linux/slab.h>
11 #include <rdma/ib_verbs.h>
12 #include <rdma/ib_hdrs.h>
13 #include <rdma/opa_addr.h>
14 #include <rdma/uverbs_ioctl.h>
15 #include "qp.h"
16 #include "vt.h"
17 #include "trace.h"
18
19 #define RVT_RWQ_COUNT_THRESHOLD 16
20
21 static void rvt_rc_timeout(struct timer_list *t);
22 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
23 enum ib_qp_type type);
24
25 /*
26 * Convert the AETH RNR timeout code into the number of microseconds.
27 */
28 static const u32 ib_rvt_rnr_table[32] = {
29 655360, /* 00: 655.36 */
30 10, /* 01: .01 */
31 20, /* 02 .02 */
32 30, /* 03: .03 */
33 40, /* 04: .04 */
34 60, /* 05: .06 */
35 80, /* 06: .08 */
36 120, /* 07: .12 */
37 160, /* 08: .16 */
38 240, /* 09: .24 */
39 320, /* 0A: .32 */
40 480, /* 0B: .48 */
41 640, /* 0C: .64 */
42 960, /* 0D: .96 */
43 1280, /* 0E: 1.28 */
44 1920, /* 0F: 1.92 */
45 2560, /* 10: 2.56 */
46 3840, /* 11: 3.84 */
47 5120, /* 12: 5.12 */
48 7680, /* 13: 7.68 */
49 10240, /* 14: 10.24 */
50 15360, /* 15: 15.36 */
51 20480, /* 16: 20.48 */
52 30720, /* 17: 30.72 */
53 40960, /* 18: 40.96 */
54 61440, /* 19: 61.44 */
55 81920, /* 1A: 81.92 */
56 122880, /* 1B: 122.88 */
57 163840, /* 1C: 163.84 */
58 245760, /* 1D: 245.76 */
59 327680, /* 1E: 327.68 */
60 491520 /* 1F: 491.52 */
61 };
62
63 /*
64 * Note that it is OK to post send work requests in the SQE and ERR
65 * states; rvt_do_send() will process them and generate error
66 * completions as per IB 1.2 C10-96.
67 */
68 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
69 [IB_QPS_RESET] = 0,
70 [IB_QPS_INIT] = RVT_POST_RECV_OK,
71 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
72 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
73 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
74 RVT_PROCESS_NEXT_SEND_OK,
75 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
76 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
77 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
78 RVT_POST_SEND_OK | RVT_FLUSH_SEND,
79 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
80 RVT_POST_SEND_OK | RVT_FLUSH_SEND,
81 };
82 EXPORT_SYMBOL(ib_rvt_state_ops);
83
84 /* platform specific: return the last level cache (llc) size, in KiB */
rvt_wss_llc_size(void)85 static int rvt_wss_llc_size(void)
86 {
87 /* assume that the boot CPU value is universal for all CPUs */
88 return boot_cpu_data.x86_cache_size;
89 }
90
91 /* platform specific: cacheless copy */
cacheless_memcpy(void * dst,void * src,size_t n)92 static void cacheless_memcpy(void *dst, void *src, size_t n)
93 {
94 /*
95 * Use the only available X64 cacheless copy. Add a __user cast
96 * to quiet sparse. The src agument is already in the kernel so
97 * there are no security issues. The extra fault recovery machinery
98 * is not invoked.
99 */
100 __copy_user_nocache(dst, (void __user *)src, n);
101 }
102
rvt_wss_exit(struct rvt_dev_info * rdi)103 void rvt_wss_exit(struct rvt_dev_info *rdi)
104 {
105 struct rvt_wss *wss = rdi->wss;
106
107 if (!wss)
108 return;
109
110 /* coded to handle partially initialized and repeat callers */
111 kfree(wss->entries);
112 wss->entries = NULL;
113 kfree(rdi->wss);
114 rdi->wss = NULL;
115 }
116
117 /*
118 * rvt_wss_init - Init wss data structures
119 *
120 * Return: 0 on success
121 */
rvt_wss_init(struct rvt_dev_info * rdi)122 int rvt_wss_init(struct rvt_dev_info *rdi)
123 {
124 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
125 unsigned int wss_threshold = rdi->dparms.wss_threshold;
126 unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
127 long llc_size;
128 long llc_bits;
129 long table_size;
130 long table_bits;
131 struct rvt_wss *wss;
132 int node = rdi->dparms.node;
133
134 if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
135 rdi->wss = NULL;
136 return 0;
137 }
138
139 rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
140 if (!rdi->wss)
141 return -ENOMEM;
142 wss = rdi->wss;
143
144 /* check for a valid percent range - default to 80 if none or invalid */
145 if (wss_threshold < 1 || wss_threshold > 100)
146 wss_threshold = 80;
147
148 /* reject a wildly large period */
149 if (wss_clean_period > 1000000)
150 wss_clean_period = 256;
151
152 /* reject a zero period */
153 if (wss_clean_period == 0)
154 wss_clean_period = 1;
155
156 /*
157 * Calculate the table size - the next power of 2 larger than the
158 * LLC size. LLC size is in KiB.
159 */
160 llc_size = rvt_wss_llc_size() * 1024;
161 table_size = roundup_pow_of_two(llc_size);
162
163 /* one bit per page in rounded up table */
164 llc_bits = llc_size / PAGE_SIZE;
165 table_bits = table_size / PAGE_SIZE;
166 wss->pages_mask = table_bits - 1;
167 wss->num_entries = table_bits / BITS_PER_LONG;
168
169 wss->threshold = (llc_bits * wss_threshold) / 100;
170 if (wss->threshold == 0)
171 wss->threshold = 1;
172
173 wss->clean_period = wss_clean_period;
174 atomic_set(&wss->clean_counter, wss_clean_period);
175
176 wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
177 GFP_KERNEL, node);
178 if (!wss->entries) {
179 rvt_wss_exit(rdi);
180 return -ENOMEM;
181 }
182
183 return 0;
184 }
185
186 /*
187 * Advance the clean counter. When the clean period has expired,
188 * clean an entry.
189 *
190 * This is implemented in atomics to avoid locking. Because multiple
191 * variables are involved, it can be racy which can lead to slightly
192 * inaccurate information. Since this is only a heuristic, this is
193 * OK. Any innaccuracies will clean themselves out as the counter
194 * advances. That said, it is unlikely the entry clean operation will
195 * race - the next possible racer will not start until the next clean
196 * period.
197 *
198 * The clean counter is implemented as a decrement to zero. When zero
199 * is reached an entry is cleaned.
200 */
wss_advance_clean_counter(struct rvt_wss * wss)201 static void wss_advance_clean_counter(struct rvt_wss *wss)
202 {
203 int entry;
204 int weight;
205 unsigned long bits;
206
207 /* become the cleaner if we decrement the counter to zero */
208 if (atomic_dec_and_test(&wss->clean_counter)) {
209 /*
210 * Set, not add, the clean period. This avoids an issue
211 * where the counter could decrement below the clean period.
212 * Doing a set can result in lost decrements, slowing the
213 * clean advance. Since this a heuristic, this possible
214 * slowdown is OK.
215 *
216 * An alternative is to loop, advancing the counter by a
217 * clean period until the result is > 0. However, this could
218 * lead to several threads keeping another in the clean loop.
219 * This could be mitigated by limiting the number of times
220 * we stay in the loop.
221 */
222 atomic_set(&wss->clean_counter, wss->clean_period);
223
224 /*
225 * Uniquely grab the entry to clean and move to next.
226 * The current entry is always the lower bits of
227 * wss.clean_entry. The table size, wss.num_entries,
228 * is always a power-of-2.
229 */
230 entry = (atomic_inc_return(&wss->clean_entry) - 1)
231 & (wss->num_entries - 1);
232
233 /* clear the entry and count the bits */
234 bits = xchg(&wss->entries[entry], 0);
235 weight = hweight64((u64)bits);
236 /* only adjust the contended total count if needed */
237 if (weight)
238 atomic_sub(weight, &wss->total_count);
239 }
240 }
241
242 /*
243 * Insert the given address into the working set array.
244 */
wss_insert(struct rvt_wss * wss,void * address)245 static void wss_insert(struct rvt_wss *wss, void *address)
246 {
247 u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
248 u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
249 u32 nr = page & (BITS_PER_LONG - 1);
250
251 if (!test_and_set_bit(nr, &wss->entries[entry]))
252 atomic_inc(&wss->total_count);
253
254 wss_advance_clean_counter(wss);
255 }
256
257 /*
258 * Is the working set larger than the threshold?
259 */
wss_exceeds_threshold(struct rvt_wss * wss)260 static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
261 {
262 return atomic_read(&wss->total_count) >= wss->threshold;
263 }
264
get_map_page(struct rvt_qpn_table * qpt,struct rvt_qpn_map * map)265 static void get_map_page(struct rvt_qpn_table *qpt,
266 struct rvt_qpn_map *map)
267 {
268 unsigned long page = get_zeroed_page(GFP_KERNEL);
269
270 /*
271 * Free the page if someone raced with us installing it.
272 */
273
274 spin_lock(&qpt->lock);
275 if (map->page)
276 free_page(page);
277 else
278 map->page = (void *)page;
279 spin_unlock(&qpt->lock);
280 }
281
282 /**
283 * init_qpn_table - initialize the QP number table for a device
284 * @rdi: rvt dev struct
285 * @qpt: the QPN table
286 */
init_qpn_table(struct rvt_dev_info * rdi,struct rvt_qpn_table * qpt)287 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
288 {
289 u32 offset, i;
290 struct rvt_qpn_map *map;
291 int ret = 0;
292
293 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
294 return -EINVAL;
295
296 spin_lock_init(&qpt->lock);
297
298 qpt->last = rdi->dparms.qpn_start;
299 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
300
301 /*
302 * Drivers may want some QPs beyond what we need for verbs let them use
303 * our qpn table. No need for two. Lets go ahead and mark the bitmaps
304 * for those. The reserved range must be *after* the range which verbs
305 * will pick from.
306 */
307
308 /* Figure out number of bit maps needed before reserved range */
309 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
310
311 /* This should always be zero */
312 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
313
314 /* Starting with the first reserved bit map */
315 map = &qpt->map[qpt->nmaps];
316
317 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
318 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
319 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
320 if (!map->page) {
321 get_map_page(qpt, map);
322 if (!map->page) {
323 ret = -ENOMEM;
324 break;
325 }
326 }
327 set_bit(offset, map->page);
328 offset++;
329 if (offset == RVT_BITS_PER_PAGE) {
330 /* next page */
331 qpt->nmaps++;
332 map++;
333 offset = 0;
334 }
335 }
336 return ret;
337 }
338
339 /**
340 * free_qpn_table - free the QP number table for a device
341 * @qpt: the QPN table
342 */
free_qpn_table(struct rvt_qpn_table * qpt)343 static void free_qpn_table(struct rvt_qpn_table *qpt)
344 {
345 int i;
346
347 for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
348 free_page((unsigned long)qpt->map[i].page);
349 }
350
351 /**
352 * rvt_driver_qp_init - Init driver qp resources
353 * @rdi: rvt dev strucutre
354 *
355 * Return: 0 on success
356 */
rvt_driver_qp_init(struct rvt_dev_info * rdi)357 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
358 {
359 int i;
360 int ret = -ENOMEM;
361
362 if (!rdi->dparms.qp_table_size)
363 return -EINVAL;
364
365 /*
366 * If driver is not doing any QP allocation then make sure it is
367 * providing the necessary QP functions.
368 */
369 if (!rdi->driver_f.free_all_qps ||
370 !rdi->driver_f.qp_priv_alloc ||
371 !rdi->driver_f.qp_priv_free ||
372 !rdi->driver_f.notify_qp_reset ||
373 !rdi->driver_f.notify_restart_rc)
374 return -EINVAL;
375
376 /* allocate parent object */
377 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
378 rdi->dparms.node);
379 if (!rdi->qp_dev)
380 return -ENOMEM;
381
382 /* allocate hash table */
383 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
384 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
385 rdi->qp_dev->qp_table =
386 kmalloc_array_node(rdi->qp_dev->qp_table_size,
387 sizeof(*rdi->qp_dev->qp_table),
388 GFP_KERNEL, rdi->dparms.node);
389 if (!rdi->qp_dev->qp_table)
390 goto no_qp_table;
391
392 for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
393 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
394
395 spin_lock_init(&rdi->qp_dev->qpt_lock);
396
397 /* initialize qpn map */
398 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
399 goto fail_table;
400
401 spin_lock_init(&rdi->n_qps_lock);
402
403 return 0;
404
405 fail_table:
406 kfree(rdi->qp_dev->qp_table);
407 free_qpn_table(&rdi->qp_dev->qpn_table);
408
409 no_qp_table:
410 kfree(rdi->qp_dev);
411
412 return ret;
413 }
414
415 /**
416 * rvt_free_qp_cb - callback function to reset a qp
417 * @qp: the qp to reset
418 * @v: a 64-bit value
419 *
420 * This function resets the qp and removes it from the
421 * qp hash table.
422 */
rvt_free_qp_cb(struct rvt_qp * qp,u64 v)423 static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v)
424 {
425 unsigned int *qp_inuse = (unsigned int *)v;
426 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
427
428 /* Reset the qp and remove it from the qp hash list */
429 rvt_reset_qp(rdi, qp, qp->ibqp.qp_type);
430
431 /* Increment the qp_inuse count */
432 (*qp_inuse)++;
433 }
434
435 /**
436 * rvt_free_all_qps - check for QPs still in use
437 * @rdi: rvt device info structure
438 *
439 * There should not be any QPs still in use.
440 * Free memory for table.
441 * Return the number of QPs still in use.
442 */
rvt_free_all_qps(struct rvt_dev_info * rdi)443 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
444 {
445 unsigned int qp_inuse = 0;
446
447 qp_inuse += rvt_mcast_tree_empty(rdi);
448
449 rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb);
450
451 return qp_inuse;
452 }
453
454 /**
455 * rvt_qp_exit - clean up qps on device exit
456 * @rdi: rvt dev structure
457 *
458 * Check for qp leaks and free resources.
459 */
rvt_qp_exit(struct rvt_dev_info * rdi)460 void rvt_qp_exit(struct rvt_dev_info *rdi)
461 {
462 u32 qps_inuse = rvt_free_all_qps(rdi);
463
464 if (qps_inuse)
465 rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
466 qps_inuse);
467
468 kfree(rdi->qp_dev->qp_table);
469 free_qpn_table(&rdi->qp_dev->qpn_table);
470 kfree(rdi->qp_dev);
471 }
472
mk_qpn(struct rvt_qpn_table * qpt,struct rvt_qpn_map * map,unsigned off)473 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
474 struct rvt_qpn_map *map, unsigned off)
475 {
476 return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
477 }
478
479 /**
480 * alloc_qpn - Allocate the next available qpn or zero/one for QP type
481 * IB_QPT_SMI/IB_QPT_GSI
482 * @rdi: rvt device info structure
483 * @qpt: queue pair number table pointer
484 * @type: the QP type
485 * @port_num: IB port number, 1 based, comes from core
486 * @exclude_prefix: prefix of special queue pair number being allocated
487 *
488 * Return: The queue pair number
489 */
alloc_qpn(struct rvt_dev_info * rdi,struct rvt_qpn_table * qpt,enum ib_qp_type type,u8 port_num,u8 exclude_prefix)490 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
491 enum ib_qp_type type, u8 port_num, u8 exclude_prefix)
492 {
493 u32 i, offset, max_scan, qpn;
494 struct rvt_qpn_map *map;
495 u32 ret;
496 u32 max_qpn = exclude_prefix == RVT_AIP_QP_PREFIX ?
497 RVT_AIP_QPN_MAX : RVT_QPN_MAX;
498
499 if (rdi->driver_f.alloc_qpn)
500 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
501
502 if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
503 unsigned n;
504
505 ret = type == IB_QPT_GSI;
506 n = 1 << (ret + 2 * (port_num - 1));
507 spin_lock(&qpt->lock);
508 if (qpt->flags & n)
509 ret = -EINVAL;
510 else
511 qpt->flags |= n;
512 spin_unlock(&qpt->lock);
513 goto bail;
514 }
515
516 qpn = qpt->last + qpt->incr;
517 if (qpn >= max_qpn)
518 qpn = qpt->incr | ((qpt->last & 1) ^ 1);
519 /* offset carries bit 0 */
520 offset = qpn & RVT_BITS_PER_PAGE_MASK;
521 map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
522 max_scan = qpt->nmaps - !offset;
523 for (i = 0;;) {
524 if (unlikely(!map->page)) {
525 get_map_page(qpt, map);
526 if (unlikely(!map->page))
527 break;
528 }
529 do {
530 if (!test_and_set_bit(offset, map->page)) {
531 qpt->last = qpn;
532 ret = qpn;
533 goto bail;
534 }
535 offset += qpt->incr;
536 /*
537 * This qpn might be bogus if offset >= BITS_PER_PAGE.
538 * That is OK. It gets re-assigned below
539 */
540 qpn = mk_qpn(qpt, map, offset);
541 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
542 /*
543 * In order to keep the number of pages allocated to a
544 * minimum, we scan the all existing pages before increasing
545 * the size of the bitmap table.
546 */
547 if (++i > max_scan) {
548 if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
549 break;
550 map = &qpt->map[qpt->nmaps++];
551 /* start at incr with current bit 0 */
552 offset = qpt->incr | (offset & 1);
553 } else if (map < &qpt->map[qpt->nmaps]) {
554 ++map;
555 /* start at incr with current bit 0 */
556 offset = qpt->incr | (offset & 1);
557 } else {
558 map = &qpt->map[0];
559 /* wrap to first map page, invert bit 0 */
560 offset = qpt->incr | ((offset & 1) ^ 1);
561 }
562 /* there can be no set bits in low-order QoS bits */
563 WARN_ON(rdi->dparms.qos_shift > 1 &&
564 offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1));
565 qpn = mk_qpn(qpt, map, offset);
566 }
567
568 ret = -ENOMEM;
569
570 bail:
571 return ret;
572 }
573
574 /**
575 * rvt_clear_mr_refs - Drop help mr refs
576 * @qp: rvt qp data structure
577 * @clr_sends: If shoudl clear send side or not
578 */
rvt_clear_mr_refs(struct rvt_qp * qp,int clr_sends)579 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
580 {
581 unsigned n;
582 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
583
584 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
585 rvt_put_ss(&qp->s_rdma_read_sge);
586
587 rvt_put_ss(&qp->r_sge);
588
589 if (clr_sends) {
590 while (qp->s_last != qp->s_head) {
591 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
592
593 rvt_put_qp_swqe(qp, wqe);
594 if (++qp->s_last >= qp->s_size)
595 qp->s_last = 0;
596 smp_wmb(); /* see qp_set_savail */
597 }
598 if (qp->s_rdma_mr) {
599 rvt_put_mr(qp->s_rdma_mr);
600 qp->s_rdma_mr = NULL;
601 }
602 }
603
604 for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
605 struct rvt_ack_entry *e = &qp->s_ack_queue[n];
606
607 if (e->rdma_sge.mr) {
608 rvt_put_mr(e->rdma_sge.mr);
609 e->rdma_sge.mr = NULL;
610 }
611 }
612 }
613
614 /**
615 * rvt_swqe_has_lkey - return true if lkey is used by swqe
616 * @wqe: the send wqe
617 * @lkey: the lkey
618 *
619 * Test the swqe for using lkey
620 */
rvt_swqe_has_lkey(struct rvt_swqe * wqe,u32 lkey)621 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
622 {
623 int i;
624
625 for (i = 0; i < wqe->wr.num_sge; i++) {
626 struct rvt_sge *sge = &wqe->sg_list[i];
627
628 if (rvt_mr_has_lkey(sge->mr, lkey))
629 return true;
630 }
631 return false;
632 }
633
634 /**
635 * rvt_qp_sends_has_lkey - return true is qp sends use lkey
636 * @qp: the rvt_qp
637 * @lkey: the lkey
638 */
rvt_qp_sends_has_lkey(struct rvt_qp * qp,u32 lkey)639 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
640 {
641 u32 s_last = qp->s_last;
642
643 while (s_last != qp->s_head) {
644 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
645
646 if (rvt_swqe_has_lkey(wqe, lkey))
647 return true;
648
649 if (++s_last >= qp->s_size)
650 s_last = 0;
651 }
652 if (qp->s_rdma_mr)
653 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
654 return true;
655 return false;
656 }
657
658 /**
659 * rvt_qp_acks_has_lkey - return true if acks have lkey
660 * @qp: the qp
661 * @lkey: the lkey
662 */
rvt_qp_acks_has_lkey(struct rvt_qp * qp,u32 lkey)663 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
664 {
665 int i;
666 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
667
668 for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
669 struct rvt_ack_entry *e = &qp->s_ack_queue[i];
670
671 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
672 return true;
673 }
674 return false;
675 }
676
677 /**
678 * rvt_qp_mr_clean - clean up remote ops for lkey
679 * @qp: the qp
680 * @lkey: the lkey that is being de-registered
681 *
682 * This routine checks if the lkey is being used by
683 * the qp.
684 *
685 * If so, the qp is put into an error state to elminate
686 * any references from the qp.
687 */
rvt_qp_mr_clean(struct rvt_qp * qp,u32 lkey)688 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
689 {
690 bool lastwqe = false;
691
692 if (qp->ibqp.qp_type == IB_QPT_SMI ||
693 qp->ibqp.qp_type == IB_QPT_GSI)
694 /* avoid special QPs */
695 return;
696 spin_lock_irq(&qp->r_lock);
697 spin_lock(&qp->s_hlock);
698 spin_lock(&qp->s_lock);
699
700 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
701 goto check_lwqe;
702
703 if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
704 rvt_qp_sends_has_lkey(qp, lkey) ||
705 rvt_qp_acks_has_lkey(qp, lkey))
706 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
707 check_lwqe:
708 spin_unlock(&qp->s_lock);
709 spin_unlock(&qp->s_hlock);
710 spin_unlock_irq(&qp->r_lock);
711 if (lastwqe) {
712 struct ib_event ev;
713
714 ev.device = qp->ibqp.device;
715 ev.element.qp = &qp->ibqp;
716 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
717 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
718 }
719 }
720
721 /**
722 * rvt_remove_qp - remove qp form table
723 * @rdi: rvt dev struct
724 * @qp: qp to remove
725 *
726 * Remove the QP from the table so it can't be found asynchronously by
727 * the receive routine.
728 */
rvt_remove_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp)729 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
730 {
731 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
732 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
733 unsigned long flags;
734 int removed = 1;
735
736 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
737
738 if (rcu_dereference_protected(rvp->qp[0],
739 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
740 RCU_INIT_POINTER(rvp->qp[0], NULL);
741 } else if (rcu_dereference_protected(rvp->qp[1],
742 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
743 RCU_INIT_POINTER(rvp->qp[1], NULL);
744 } else {
745 struct rvt_qp *q;
746 struct rvt_qp __rcu **qpp;
747
748 removed = 0;
749 qpp = &rdi->qp_dev->qp_table[n];
750 for (; (q = rcu_dereference_protected(*qpp,
751 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
752 qpp = &q->next) {
753 if (q == qp) {
754 RCU_INIT_POINTER(*qpp,
755 rcu_dereference_protected(qp->next,
756 lockdep_is_held(&rdi->qp_dev->qpt_lock)));
757 removed = 1;
758 trace_rvt_qpremove(qp, n);
759 break;
760 }
761 }
762 }
763
764 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
765 if (removed) {
766 synchronize_rcu();
767 rvt_put_qp(qp);
768 }
769 }
770
771 /**
772 * rvt_alloc_rq - allocate memory for user or kernel buffer
773 * @rq: receive queue data structure
774 * @size: number of request queue entries
775 * @node: The NUMA node
776 * @udata: True if user data is available or not false
777 *
778 * Return: If memory allocation failed, return -ENONEM
779 * This function is used by both shared receive
780 * queues and non-shared receive queues to allocate
781 * memory.
782 */
rvt_alloc_rq(struct rvt_rq * rq,u32 size,int node,struct ib_udata * udata)783 int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node,
784 struct ib_udata *udata)
785 {
786 if (udata) {
787 rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size);
788 if (!rq->wq)
789 goto bail;
790 /* need kwq with no buffers */
791 rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node);
792 if (!rq->kwq)
793 goto bail;
794 rq->kwq->curr_wq = rq->wq->wq;
795 } else {
796 /* need kwq with buffers */
797 rq->kwq =
798 vzalloc_node(sizeof(struct rvt_krwq) + size, node);
799 if (!rq->kwq)
800 goto bail;
801 rq->kwq->curr_wq = rq->kwq->wq;
802 }
803
804 spin_lock_init(&rq->kwq->p_lock);
805 spin_lock_init(&rq->kwq->c_lock);
806 return 0;
807 bail:
808 rvt_free_rq(rq);
809 return -ENOMEM;
810 }
811
812 /**
813 * rvt_init_qp - initialize the QP state to the reset state
814 * @rdi: rvt dev struct
815 * @qp: the QP to init or reinit
816 * @type: the QP type
817 *
818 * This function is called from both rvt_create_qp() and
819 * rvt_reset_qp(). The difference is that the reset
820 * patch the necessary locks to protect against concurent
821 * access.
822 */
rvt_init_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp,enum ib_qp_type type)823 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
824 enum ib_qp_type type)
825 {
826 qp->remote_qpn = 0;
827 qp->qkey = 0;
828 qp->qp_access_flags = 0;
829 qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
830 qp->s_hdrwords = 0;
831 qp->s_wqe = NULL;
832 qp->s_draining = 0;
833 qp->s_next_psn = 0;
834 qp->s_last_psn = 0;
835 qp->s_sending_psn = 0;
836 qp->s_sending_hpsn = 0;
837 qp->s_psn = 0;
838 qp->r_psn = 0;
839 qp->r_msn = 0;
840 if (type == IB_QPT_RC) {
841 qp->s_state = IB_OPCODE_RC_SEND_LAST;
842 qp->r_state = IB_OPCODE_RC_SEND_LAST;
843 } else {
844 qp->s_state = IB_OPCODE_UC_SEND_LAST;
845 qp->r_state = IB_OPCODE_UC_SEND_LAST;
846 }
847 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
848 qp->r_nak_state = 0;
849 qp->r_aflags = 0;
850 qp->r_flags = 0;
851 qp->s_head = 0;
852 qp->s_tail = 0;
853 qp->s_cur = 0;
854 qp->s_acked = 0;
855 qp->s_last = 0;
856 qp->s_ssn = 1;
857 qp->s_lsn = 0;
858 qp->s_mig_state = IB_MIG_MIGRATED;
859 qp->r_head_ack_queue = 0;
860 qp->s_tail_ack_queue = 0;
861 qp->s_acked_ack_queue = 0;
862 qp->s_num_rd_atomic = 0;
863 qp->r_sge.num_sge = 0;
864 atomic_set(&qp->s_reserved_used, 0);
865 }
866
867 /**
868 * _rvt_reset_qp - initialize the QP state to the reset state
869 * @rdi: rvt dev struct
870 * @qp: the QP to reset
871 * @type: the QP type
872 *
873 * r_lock, s_hlock, and s_lock are required to be held by the caller
874 */
_rvt_reset_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp,enum ib_qp_type type)875 static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
876 enum ib_qp_type type)
877 __must_hold(&qp->s_lock)
878 __must_hold(&qp->s_hlock)
879 __must_hold(&qp->r_lock)
880 {
881 lockdep_assert_held(&qp->r_lock);
882 lockdep_assert_held(&qp->s_hlock);
883 lockdep_assert_held(&qp->s_lock);
884 if (qp->state != IB_QPS_RESET) {
885 qp->state = IB_QPS_RESET;
886
887 /* Let drivers flush their waitlist */
888 rdi->driver_f.flush_qp_waiters(qp);
889 rvt_stop_rc_timers(qp);
890 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
891 spin_unlock(&qp->s_lock);
892 spin_unlock(&qp->s_hlock);
893 spin_unlock_irq(&qp->r_lock);
894
895 /* Stop the send queue and the retry timer */
896 rdi->driver_f.stop_send_queue(qp);
897 rvt_del_timers_sync(qp);
898 /* Wait for things to stop */
899 rdi->driver_f.quiesce_qp(qp);
900
901 /* take qp out the hash and wait for it to be unused */
902 rvt_remove_qp(rdi, qp);
903
904 /* grab the lock b/c it was locked at call time */
905 spin_lock_irq(&qp->r_lock);
906 spin_lock(&qp->s_hlock);
907 spin_lock(&qp->s_lock);
908
909 rvt_clear_mr_refs(qp, 1);
910 /*
911 * Let the driver do any tear down or re-init it needs to for
912 * a qp that has been reset
913 */
914 rdi->driver_f.notify_qp_reset(qp);
915 }
916 rvt_init_qp(rdi, qp, type);
917 lockdep_assert_held(&qp->r_lock);
918 lockdep_assert_held(&qp->s_hlock);
919 lockdep_assert_held(&qp->s_lock);
920 }
921
922 /**
923 * rvt_reset_qp - initialize the QP state to the reset state
924 * @rdi: the device info
925 * @qp: the QP to reset
926 * @type: the QP type
927 *
928 * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock
929 * before calling _rvt_reset_qp().
930 */
rvt_reset_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp,enum ib_qp_type type)931 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
932 enum ib_qp_type type)
933 {
934 spin_lock_irq(&qp->r_lock);
935 spin_lock(&qp->s_hlock);
936 spin_lock(&qp->s_lock);
937 _rvt_reset_qp(rdi, qp, type);
938 spin_unlock(&qp->s_lock);
939 spin_unlock(&qp->s_hlock);
940 spin_unlock_irq(&qp->r_lock);
941 }
942
943 /**
944 * rvt_free_qpn - Free a qpn from the bit map
945 * @qpt: QP table
946 * @qpn: queue pair number to free
947 */
rvt_free_qpn(struct rvt_qpn_table * qpt,u32 qpn)948 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
949 {
950 struct rvt_qpn_map *map;
951
952 if ((qpn & RVT_AIP_QP_PREFIX_MASK) == RVT_AIP_QP_BASE)
953 qpn &= RVT_AIP_QP_SUFFIX;
954
955 map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
956 if (map->page)
957 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
958 }
959
960 /**
961 * get_allowed_ops - Given a QP type return the appropriate allowed OP
962 * @type: valid, supported, QP type
963 */
get_allowed_ops(enum ib_qp_type type)964 static u8 get_allowed_ops(enum ib_qp_type type)
965 {
966 return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ?
967 IB_OPCODE_UC : IB_OPCODE_UD;
968 }
969
970 /**
971 * free_ud_wq_attr - Clean up AH attribute cache for UD QPs
972 * @qp: Valid QP with allowed_ops set
973 *
974 * The rvt_swqe data structure being used is a union, so this is
975 * only valid for UD QPs.
976 */
free_ud_wq_attr(struct rvt_qp * qp)977 static void free_ud_wq_attr(struct rvt_qp *qp)
978 {
979 struct rvt_swqe *wqe;
980 int i;
981
982 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
983 wqe = rvt_get_swqe_ptr(qp, i);
984 kfree(wqe->ud_wr.attr);
985 wqe->ud_wr.attr = NULL;
986 }
987 }
988
989 /**
990 * alloc_ud_wq_attr - AH attribute cache for UD QPs
991 * @qp: Valid QP with allowed_ops set
992 * @node: Numa node for allocation
993 *
994 * The rvt_swqe data structure being used is a union, so this is
995 * only valid for UD QPs.
996 */
alloc_ud_wq_attr(struct rvt_qp * qp,int node)997 static int alloc_ud_wq_attr(struct rvt_qp *qp, int node)
998 {
999 struct rvt_swqe *wqe;
1000 int i;
1001
1002 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1003 wqe = rvt_get_swqe_ptr(qp, i);
1004 wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr),
1005 GFP_KERNEL, node);
1006 if (!wqe->ud_wr.attr) {
1007 free_ud_wq_attr(qp);
1008 return -ENOMEM;
1009 }
1010 }
1011
1012 return 0;
1013 }
1014
1015 /**
1016 * rvt_create_qp - create a queue pair for a device
1017 * @ibqp: the queue pair
1018 * @init_attr: the attributes of the queue pair
1019 * @udata: user data for libibverbs.so
1020 *
1021 * Queue pair creation is mostly an rvt issue. However, drivers have their own
1022 * unique idea of what queue pair numbers mean. For instance there is a reserved
1023 * range for PSM.
1024 *
1025 * Return: 0 on success, otherwise returns an errno.
1026 *
1027 * Called by the ib_create_qp() core verbs function.
1028 */
rvt_create_qp(struct ib_qp * ibqp,struct ib_qp_init_attr * init_attr,struct ib_udata * udata)1029 int rvt_create_qp(struct ib_qp *ibqp, struct ib_qp_init_attr *init_attr,
1030 struct ib_udata *udata)
1031 {
1032 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1033 int ret = -ENOMEM;
1034 struct rvt_swqe *swq = NULL;
1035 size_t sz;
1036 size_t sg_list_sz = 0;
1037 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1038 void *priv = NULL;
1039 size_t sqsize;
1040 u8 exclude_prefix = 0;
1041
1042 if (!rdi)
1043 return -EINVAL;
1044
1045 if (init_attr->create_flags & ~IB_QP_CREATE_NETDEV_USE)
1046 return -EOPNOTSUPP;
1047
1048 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
1049 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr)
1050 return -EINVAL;
1051
1052 /* Check receive queue parameters if no SRQ is specified. */
1053 if (!init_attr->srq) {
1054 if (init_attr->cap.max_recv_sge >
1055 rdi->dparms.props.max_recv_sge ||
1056 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
1057 return -EINVAL;
1058
1059 if (init_attr->cap.max_send_sge +
1060 init_attr->cap.max_send_wr +
1061 init_attr->cap.max_recv_sge +
1062 init_attr->cap.max_recv_wr == 0)
1063 return -EINVAL;
1064 }
1065 sqsize =
1066 init_attr->cap.max_send_wr + 1 +
1067 rdi->dparms.reserved_operations;
1068 switch (init_attr->qp_type) {
1069 case IB_QPT_SMI:
1070 case IB_QPT_GSI:
1071 if (init_attr->port_num == 0 ||
1072 init_attr->port_num > ibqp->device->phys_port_cnt)
1073 return -EINVAL;
1074 fallthrough;
1075 case IB_QPT_UC:
1076 case IB_QPT_RC:
1077 case IB_QPT_UD:
1078 sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge);
1079 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
1080 if (!swq)
1081 return -ENOMEM;
1082
1083 if (init_attr->srq) {
1084 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1085
1086 if (srq->rq.max_sge > 1)
1087 sg_list_sz = sizeof(*qp->r_sg_list) *
1088 (srq->rq.max_sge - 1);
1089 } else if (init_attr->cap.max_recv_sge > 1)
1090 sg_list_sz = sizeof(*qp->r_sg_list) *
1091 (init_attr->cap.max_recv_sge - 1);
1092 qp->r_sg_list =
1093 kzalloc_node(sg_list_sz, GFP_KERNEL, rdi->dparms.node);
1094 if (!qp->r_sg_list)
1095 goto bail_qp;
1096 qp->allowed_ops = get_allowed_ops(init_attr->qp_type);
1097
1098 RCU_INIT_POINTER(qp->next, NULL);
1099 if (init_attr->qp_type == IB_QPT_RC) {
1100 qp->s_ack_queue =
1101 kcalloc_node(rvt_max_atomic(rdi),
1102 sizeof(*qp->s_ack_queue),
1103 GFP_KERNEL,
1104 rdi->dparms.node);
1105 if (!qp->s_ack_queue)
1106 goto bail_qp;
1107 }
1108 /* initialize timers needed for rc qp */
1109 timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1110 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1111 HRTIMER_MODE_REL);
1112 qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1113
1114 /*
1115 * Driver needs to set up it's private QP structure and do any
1116 * initialization that is needed.
1117 */
1118 priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1119 if (IS_ERR(priv)) {
1120 ret = PTR_ERR(priv);
1121 goto bail_qp;
1122 }
1123 qp->priv = priv;
1124 qp->timeout_jiffies =
1125 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1126 1000UL);
1127 if (init_attr->srq) {
1128 sz = 0;
1129 } else {
1130 qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1131 qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1132 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1133 sizeof(struct rvt_rwqe);
1134 ret = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz,
1135 rdi->dparms.node, udata);
1136 if (ret)
1137 goto bail_driver_priv;
1138 }
1139
1140 /*
1141 * ib_create_qp() will initialize qp->ibqp
1142 * except for qp->ibqp.qp_num.
1143 */
1144 spin_lock_init(&qp->r_lock);
1145 spin_lock_init(&qp->s_hlock);
1146 spin_lock_init(&qp->s_lock);
1147 atomic_set(&qp->refcount, 0);
1148 atomic_set(&qp->local_ops_pending, 0);
1149 init_waitqueue_head(&qp->wait);
1150 INIT_LIST_HEAD(&qp->rspwait);
1151 qp->state = IB_QPS_RESET;
1152 qp->s_wq = swq;
1153 qp->s_size = sqsize;
1154 qp->s_avail = init_attr->cap.max_send_wr;
1155 qp->s_max_sge = init_attr->cap.max_send_sge;
1156 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1157 qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1158 ret = alloc_ud_wq_attr(qp, rdi->dparms.node);
1159 if (ret)
1160 goto bail_rq_rvt;
1161
1162 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1163 exclude_prefix = RVT_AIP_QP_PREFIX;
1164
1165 ret = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1166 init_attr->qp_type,
1167 init_attr->port_num,
1168 exclude_prefix);
1169 if (ret < 0)
1170 goto bail_rq_wq;
1171
1172 qp->ibqp.qp_num = ret;
1173 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1174 qp->ibqp.qp_num |= RVT_AIP_QP_BASE;
1175 qp->port_num = init_attr->port_num;
1176 rvt_init_qp(rdi, qp, init_attr->qp_type);
1177 if (rdi->driver_f.qp_priv_init) {
1178 ret = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1179 if (ret)
1180 goto bail_rq_wq;
1181 }
1182 break;
1183
1184 default:
1185 /* Don't support raw QPs */
1186 return -EOPNOTSUPP;
1187 }
1188
1189 init_attr->cap.max_inline_data = 0;
1190
1191 /*
1192 * Return the address of the RWQ as the offset to mmap.
1193 * See rvt_mmap() for details.
1194 */
1195 if (udata && udata->outlen >= sizeof(__u64)) {
1196 if (!qp->r_rq.wq) {
1197 __u64 offset = 0;
1198
1199 ret = ib_copy_to_udata(udata, &offset,
1200 sizeof(offset));
1201 if (ret)
1202 goto bail_qpn;
1203 } else {
1204 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1205
1206 qp->ip = rvt_create_mmap_info(rdi, s, udata,
1207 qp->r_rq.wq);
1208 if (IS_ERR(qp->ip)) {
1209 ret = PTR_ERR(qp->ip);
1210 goto bail_qpn;
1211 }
1212
1213 ret = ib_copy_to_udata(udata, &qp->ip->offset,
1214 sizeof(qp->ip->offset));
1215 if (ret)
1216 goto bail_ip;
1217 }
1218 qp->pid = current->pid;
1219 }
1220
1221 spin_lock(&rdi->n_qps_lock);
1222 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1223 spin_unlock(&rdi->n_qps_lock);
1224 ret = -ENOMEM;
1225 goto bail_ip;
1226 }
1227
1228 rdi->n_qps_allocated++;
1229 /*
1230 * Maintain a busy_jiffies variable that will be added to the timeout
1231 * period in mod_retry_timer and add_retry_timer. This busy jiffies
1232 * is scaled by the number of rc qps created for the device to reduce
1233 * the number of timeouts occurring when there is a large number of
1234 * qps. busy_jiffies is incremented every rc qp scaling interval.
1235 * The scaling interval is selected based on extensive performance
1236 * evaluation of targeted workloads.
1237 */
1238 if (init_attr->qp_type == IB_QPT_RC) {
1239 rdi->n_rc_qps++;
1240 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1241 }
1242 spin_unlock(&rdi->n_qps_lock);
1243
1244 if (qp->ip) {
1245 spin_lock_irq(&rdi->pending_lock);
1246 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1247 spin_unlock_irq(&rdi->pending_lock);
1248 }
1249
1250 return 0;
1251
1252 bail_ip:
1253 if (qp->ip)
1254 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1255
1256 bail_qpn:
1257 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1258
1259 bail_rq_wq:
1260 free_ud_wq_attr(qp);
1261
1262 bail_rq_rvt:
1263 rvt_free_rq(&qp->r_rq);
1264
1265 bail_driver_priv:
1266 rdi->driver_f.qp_priv_free(rdi, qp);
1267
1268 bail_qp:
1269 kfree(qp->s_ack_queue);
1270 kfree(qp->r_sg_list);
1271 vfree(swq);
1272 return ret;
1273 }
1274
1275 /**
1276 * rvt_error_qp - put a QP into the error state
1277 * @qp: the QP to put into the error state
1278 * @err: the receive completion error to signal if a RWQE is active
1279 *
1280 * Flushes both send and receive work queues.
1281 *
1282 * Return: true if last WQE event should be generated.
1283 * The QP r_lock and s_lock should be held and interrupts disabled.
1284 * If we are already in error state, just return.
1285 */
rvt_error_qp(struct rvt_qp * qp,enum ib_wc_status err)1286 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1287 {
1288 struct ib_wc wc;
1289 int ret = 0;
1290 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1291
1292 lockdep_assert_held(&qp->r_lock);
1293 lockdep_assert_held(&qp->s_lock);
1294 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1295 goto bail;
1296
1297 qp->state = IB_QPS_ERR;
1298
1299 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1300 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1301 del_timer(&qp->s_timer);
1302 }
1303
1304 if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1305 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1306
1307 rdi->driver_f.notify_error_qp(qp);
1308
1309 /* Schedule the sending tasklet to drain the send work queue. */
1310 if (READ_ONCE(qp->s_last) != qp->s_head)
1311 rdi->driver_f.schedule_send(qp);
1312
1313 rvt_clear_mr_refs(qp, 0);
1314
1315 memset(&wc, 0, sizeof(wc));
1316 wc.qp = &qp->ibqp;
1317 wc.opcode = IB_WC_RECV;
1318
1319 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1320 wc.wr_id = qp->r_wr_id;
1321 wc.status = err;
1322 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1323 }
1324 wc.status = IB_WC_WR_FLUSH_ERR;
1325
1326 if (qp->r_rq.kwq) {
1327 u32 head;
1328 u32 tail;
1329 struct rvt_rwq *wq = NULL;
1330 struct rvt_krwq *kwq = NULL;
1331
1332 spin_lock(&qp->r_rq.kwq->c_lock);
1333 /* qp->ip used to validate if there is a user buffer mmaped */
1334 if (qp->ip) {
1335 wq = qp->r_rq.wq;
1336 head = RDMA_READ_UAPI_ATOMIC(wq->head);
1337 tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
1338 } else {
1339 kwq = qp->r_rq.kwq;
1340 head = kwq->head;
1341 tail = kwq->tail;
1342 }
1343 /* sanity check pointers before trusting them */
1344 if (head >= qp->r_rq.size)
1345 head = 0;
1346 if (tail >= qp->r_rq.size)
1347 tail = 0;
1348 while (tail != head) {
1349 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1350 if (++tail >= qp->r_rq.size)
1351 tail = 0;
1352 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1353 }
1354 if (qp->ip)
1355 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
1356 else
1357 kwq->tail = tail;
1358 spin_unlock(&qp->r_rq.kwq->c_lock);
1359 } else if (qp->ibqp.event_handler) {
1360 ret = 1;
1361 }
1362
1363 bail:
1364 return ret;
1365 }
1366 EXPORT_SYMBOL(rvt_error_qp);
1367
1368 /*
1369 * Put the QP into the hash table.
1370 * The hash table holds a reference to the QP.
1371 */
rvt_insert_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp)1372 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1373 {
1374 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1375 unsigned long flags;
1376
1377 rvt_get_qp(qp);
1378 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1379
1380 if (qp->ibqp.qp_num <= 1) {
1381 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1382 } else {
1383 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1384
1385 qp->next = rdi->qp_dev->qp_table[n];
1386 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1387 trace_rvt_qpinsert(qp, n);
1388 }
1389
1390 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1391 }
1392
1393 /**
1394 * rvt_modify_qp - modify the attributes of a queue pair
1395 * @ibqp: the queue pair who's attributes we're modifying
1396 * @attr: the new attributes
1397 * @attr_mask: the mask of attributes to modify
1398 * @udata: user data for libibverbs.so
1399 *
1400 * Return: 0 on success, otherwise returns an errno.
1401 */
rvt_modify_qp(struct ib_qp * ibqp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1402 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1403 int attr_mask, struct ib_udata *udata)
1404 {
1405 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1406 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1407 enum ib_qp_state cur_state, new_state;
1408 struct ib_event ev;
1409 int lastwqe = 0;
1410 int mig = 0;
1411 int pmtu = 0; /* for gcc warning only */
1412 int opa_ah;
1413
1414 if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS)
1415 return -EOPNOTSUPP;
1416
1417 spin_lock_irq(&qp->r_lock);
1418 spin_lock(&qp->s_hlock);
1419 spin_lock(&qp->s_lock);
1420
1421 cur_state = attr_mask & IB_QP_CUR_STATE ?
1422 attr->cur_qp_state : qp->state;
1423 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1424 opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1425
1426 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1427 attr_mask))
1428 goto inval;
1429
1430 if (rdi->driver_f.check_modify_qp &&
1431 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1432 goto inval;
1433
1434 if (attr_mask & IB_QP_AV) {
1435 if (opa_ah) {
1436 if (rdma_ah_get_dlid(&attr->ah_attr) >=
1437 opa_get_mcast_base(OPA_MCAST_NR))
1438 goto inval;
1439 } else {
1440 if (rdma_ah_get_dlid(&attr->ah_attr) >=
1441 be16_to_cpu(IB_MULTICAST_LID_BASE))
1442 goto inval;
1443 }
1444
1445 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1446 goto inval;
1447 }
1448
1449 if (attr_mask & IB_QP_ALT_PATH) {
1450 if (opa_ah) {
1451 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1452 opa_get_mcast_base(OPA_MCAST_NR))
1453 goto inval;
1454 } else {
1455 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1456 be16_to_cpu(IB_MULTICAST_LID_BASE))
1457 goto inval;
1458 }
1459
1460 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1461 goto inval;
1462 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1463 goto inval;
1464 }
1465
1466 if (attr_mask & IB_QP_PKEY_INDEX)
1467 if (attr->pkey_index >= rvt_get_npkeys(rdi))
1468 goto inval;
1469
1470 if (attr_mask & IB_QP_MIN_RNR_TIMER)
1471 if (attr->min_rnr_timer > 31)
1472 goto inval;
1473
1474 if (attr_mask & IB_QP_PORT)
1475 if (qp->ibqp.qp_type == IB_QPT_SMI ||
1476 qp->ibqp.qp_type == IB_QPT_GSI ||
1477 attr->port_num == 0 ||
1478 attr->port_num > ibqp->device->phys_port_cnt)
1479 goto inval;
1480
1481 if (attr_mask & IB_QP_DEST_QPN)
1482 if (attr->dest_qp_num > RVT_QPN_MASK)
1483 goto inval;
1484
1485 if (attr_mask & IB_QP_RETRY_CNT)
1486 if (attr->retry_cnt > 7)
1487 goto inval;
1488
1489 if (attr_mask & IB_QP_RNR_RETRY)
1490 if (attr->rnr_retry > 7)
1491 goto inval;
1492
1493 /*
1494 * Don't allow invalid path_mtu values. OK to set greater
1495 * than the active mtu (or even the max_cap, if we have tuned
1496 * that to a small mtu. We'll set qp->path_mtu
1497 * to the lesser of requested attribute mtu and active,
1498 * for packetizing messages.
1499 * Note that the QP port has to be set in INIT and MTU in RTR.
1500 */
1501 if (attr_mask & IB_QP_PATH_MTU) {
1502 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1503 if (pmtu < 0)
1504 goto inval;
1505 }
1506
1507 if (attr_mask & IB_QP_PATH_MIG_STATE) {
1508 if (attr->path_mig_state == IB_MIG_REARM) {
1509 if (qp->s_mig_state == IB_MIG_ARMED)
1510 goto inval;
1511 if (new_state != IB_QPS_RTS)
1512 goto inval;
1513 } else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1514 if (qp->s_mig_state == IB_MIG_REARM)
1515 goto inval;
1516 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1517 goto inval;
1518 if (qp->s_mig_state == IB_MIG_ARMED)
1519 mig = 1;
1520 } else {
1521 goto inval;
1522 }
1523 }
1524
1525 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1526 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1527 goto inval;
1528
1529 switch (new_state) {
1530 case IB_QPS_RESET:
1531 if (qp->state != IB_QPS_RESET)
1532 _rvt_reset_qp(rdi, qp, ibqp->qp_type);
1533 break;
1534
1535 case IB_QPS_RTR:
1536 /* Allow event to re-trigger if QP set to RTR more than once */
1537 qp->r_flags &= ~RVT_R_COMM_EST;
1538 qp->state = new_state;
1539 break;
1540
1541 case IB_QPS_SQD:
1542 qp->s_draining = qp->s_last != qp->s_cur;
1543 qp->state = new_state;
1544 break;
1545
1546 case IB_QPS_SQE:
1547 if (qp->ibqp.qp_type == IB_QPT_RC)
1548 goto inval;
1549 qp->state = new_state;
1550 break;
1551
1552 case IB_QPS_ERR:
1553 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1554 break;
1555
1556 default:
1557 qp->state = new_state;
1558 break;
1559 }
1560
1561 if (attr_mask & IB_QP_PKEY_INDEX)
1562 qp->s_pkey_index = attr->pkey_index;
1563
1564 if (attr_mask & IB_QP_PORT)
1565 qp->port_num = attr->port_num;
1566
1567 if (attr_mask & IB_QP_DEST_QPN)
1568 qp->remote_qpn = attr->dest_qp_num;
1569
1570 if (attr_mask & IB_QP_SQ_PSN) {
1571 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1572 qp->s_psn = qp->s_next_psn;
1573 qp->s_sending_psn = qp->s_next_psn;
1574 qp->s_last_psn = qp->s_next_psn - 1;
1575 qp->s_sending_hpsn = qp->s_last_psn;
1576 }
1577
1578 if (attr_mask & IB_QP_RQ_PSN)
1579 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1580
1581 if (attr_mask & IB_QP_ACCESS_FLAGS)
1582 qp->qp_access_flags = attr->qp_access_flags;
1583
1584 if (attr_mask & IB_QP_AV) {
1585 rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1586 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1587 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1588 }
1589
1590 if (attr_mask & IB_QP_ALT_PATH) {
1591 rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1592 qp->s_alt_pkey_index = attr->alt_pkey_index;
1593 }
1594
1595 if (attr_mask & IB_QP_PATH_MIG_STATE) {
1596 qp->s_mig_state = attr->path_mig_state;
1597 if (mig) {
1598 qp->remote_ah_attr = qp->alt_ah_attr;
1599 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1600 qp->s_pkey_index = qp->s_alt_pkey_index;
1601 }
1602 }
1603
1604 if (attr_mask & IB_QP_PATH_MTU) {
1605 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1606 qp->log_pmtu = ilog2(qp->pmtu);
1607 }
1608
1609 if (attr_mask & IB_QP_RETRY_CNT) {
1610 qp->s_retry_cnt = attr->retry_cnt;
1611 qp->s_retry = attr->retry_cnt;
1612 }
1613
1614 if (attr_mask & IB_QP_RNR_RETRY) {
1615 qp->s_rnr_retry_cnt = attr->rnr_retry;
1616 qp->s_rnr_retry = attr->rnr_retry;
1617 }
1618
1619 if (attr_mask & IB_QP_MIN_RNR_TIMER)
1620 qp->r_min_rnr_timer = attr->min_rnr_timer;
1621
1622 if (attr_mask & IB_QP_TIMEOUT) {
1623 qp->timeout = attr->timeout;
1624 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1625 }
1626
1627 if (attr_mask & IB_QP_QKEY)
1628 qp->qkey = attr->qkey;
1629
1630 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1631 qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1632
1633 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1634 qp->s_max_rd_atomic = attr->max_rd_atomic;
1635
1636 if (rdi->driver_f.modify_qp)
1637 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1638
1639 spin_unlock(&qp->s_lock);
1640 spin_unlock(&qp->s_hlock);
1641 spin_unlock_irq(&qp->r_lock);
1642
1643 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1644 rvt_insert_qp(rdi, qp);
1645
1646 if (lastwqe) {
1647 ev.device = qp->ibqp.device;
1648 ev.element.qp = &qp->ibqp;
1649 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1650 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1651 }
1652 if (mig) {
1653 ev.device = qp->ibqp.device;
1654 ev.element.qp = &qp->ibqp;
1655 ev.event = IB_EVENT_PATH_MIG;
1656 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1657 }
1658 return 0;
1659
1660 inval:
1661 spin_unlock(&qp->s_lock);
1662 spin_unlock(&qp->s_hlock);
1663 spin_unlock_irq(&qp->r_lock);
1664 return -EINVAL;
1665 }
1666
1667 /**
1668 * rvt_destroy_qp - destroy a queue pair
1669 * @ibqp: the queue pair to destroy
1670 * @udata: unused by the driver
1671 *
1672 * Note that this can be called while the QP is actively sending or
1673 * receiving!
1674 *
1675 * Return: 0 on success.
1676 */
rvt_destroy_qp(struct ib_qp * ibqp,struct ib_udata * udata)1677 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
1678 {
1679 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1680 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1681
1682 rvt_reset_qp(rdi, qp, ibqp->qp_type);
1683
1684 wait_event(qp->wait, !atomic_read(&qp->refcount));
1685 /* qpn is now available for use again */
1686 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1687
1688 spin_lock(&rdi->n_qps_lock);
1689 rdi->n_qps_allocated--;
1690 if (qp->ibqp.qp_type == IB_QPT_RC) {
1691 rdi->n_rc_qps--;
1692 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1693 }
1694 spin_unlock(&rdi->n_qps_lock);
1695
1696 if (qp->ip)
1697 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1698 kvfree(qp->r_rq.kwq);
1699 rdi->driver_f.qp_priv_free(rdi, qp);
1700 kfree(qp->s_ack_queue);
1701 kfree(qp->r_sg_list);
1702 rdma_destroy_ah_attr(&qp->remote_ah_attr);
1703 rdma_destroy_ah_attr(&qp->alt_ah_attr);
1704 free_ud_wq_attr(qp);
1705 vfree(qp->s_wq);
1706 return 0;
1707 }
1708
1709 /**
1710 * rvt_query_qp - query an ipbq
1711 * @ibqp: IB qp to query
1712 * @attr: attr struct to fill in
1713 * @attr_mask: attr mask ignored
1714 * @init_attr: struct to fill in
1715 *
1716 * Return: always 0
1717 */
rvt_query_qp(struct ib_qp * ibqp,struct ib_qp_attr * attr,int attr_mask,struct ib_qp_init_attr * init_attr)1718 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1719 int attr_mask, struct ib_qp_init_attr *init_attr)
1720 {
1721 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1722 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1723
1724 attr->qp_state = qp->state;
1725 attr->cur_qp_state = attr->qp_state;
1726 attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1727 attr->path_mig_state = qp->s_mig_state;
1728 attr->qkey = qp->qkey;
1729 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1730 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1731 attr->dest_qp_num = qp->remote_qpn;
1732 attr->qp_access_flags = qp->qp_access_flags;
1733 attr->cap.max_send_wr = qp->s_size - 1 -
1734 rdi->dparms.reserved_operations;
1735 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1736 attr->cap.max_send_sge = qp->s_max_sge;
1737 attr->cap.max_recv_sge = qp->r_rq.max_sge;
1738 attr->cap.max_inline_data = 0;
1739 attr->ah_attr = qp->remote_ah_attr;
1740 attr->alt_ah_attr = qp->alt_ah_attr;
1741 attr->pkey_index = qp->s_pkey_index;
1742 attr->alt_pkey_index = qp->s_alt_pkey_index;
1743 attr->en_sqd_async_notify = 0;
1744 attr->sq_draining = qp->s_draining;
1745 attr->max_rd_atomic = qp->s_max_rd_atomic;
1746 attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1747 attr->min_rnr_timer = qp->r_min_rnr_timer;
1748 attr->port_num = qp->port_num;
1749 attr->timeout = qp->timeout;
1750 attr->retry_cnt = qp->s_retry_cnt;
1751 attr->rnr_retry = qp->s_rnr_retry_cnt;
1752 attr->alt_port_num =
1753 rdma_ah_get_port_num(&qp->alt_ah_attr);
1754 attr->alt_timeout = qp->alt_timeout;
1755
1756 init_attr->event_handler = qp->ibqp.event_handler;
1757 init_attr->qp_context = qp->ibqp.qp_context;
1758 init_attr->send_cq = qp->ibqp.send_cq;
1759 init_attr->recv_cq = qp->ibqp.recv_cq;
1760 init_attr->srq = qp->ibqp.srq;
1761 init_attr->cap = attr->cap;
1762 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1763 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1764 else
1765 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1766 init_attr->qp_type = qp->ibqp.qp_type;
1767 init_attr->port_num = qp->port_num;
1768 return 0;
1769 }
1770
1771 /**
1772 * rvt_post_recv - post a receive on a QP
1773 * @ibqp: the QP to post the receive on
1774 * @wr: the WR to post
1775 * @bad_wr: the first bad WR is put here
1776 *
1777 * This may be called from interrupt context.
1778 *
1779 * Return: 0 on success otherwise errno
1780 */
rvt_post_recv(struct ib_qp * ibqp,const struct ib_recv_wr * wr,const struct ib_recv_wr ** bad_wr)1781 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1782 const struct ib_recv_wr **bad_wr)
1783 {
1784 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1785 struct rvt_krwq *wq = qp->r_rq.kwq;
1786 unsigned long flags;
1787 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1788 !qp->ibqp.srq;
1789
1790 /* Check that state is OK to post receive. */
1791 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1792 *bad_wr = wr;
1793 return -EINVAL;
1794 }
1795
1796 for (; wr; wr = wr->next) {
1797 struct rvt_rwqe *wqe;
1798 u32 next;
1799 int i;
1800
1801 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1802 *bad_wr = wr;
1803 return -EINVAL;
1804 }
1805
1806 spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags);
1807 next = wq->head + 1;
1808 if (next >= qp->r_rq.size)
1809 next = 0;
1810 if (next == READ_ONCE(wq->tail)) {
1811 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1812 *bad_wr = wr;
1813 return -ENOMEM;
1814 }
1815 if (unlikely(qp_err_flush)) {
1816 struct ib_wc wc;
1817
1818 memset(&wc, 0, sizeof(wc));
1819 wc.qp = &qp->ibqp;
1820 wc.opcode = IB_WC_RECV;
1821 wc.wr_id = wr->wr_id;
1822 wc.status = IB_WC_WR_FLUSH_ERR;
1823 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1824 } else {
1825 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1826 wqe->wr_id = wr->wr_id;
1827 wqe->num_sge = wr->num_sge;
1828 for (i = 0; i < wr->num_sge; i++) {
1829 wqe->sg_list[i].addr = wr->sg_list[i].addr;
1830 wqe->sg_list[i].length = wr->sg_list[i].length;
1831 wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
1832 }
1833 /*
1834 * Make sure queue entry is written
1835 * before the head index.
1836 */
1837 smp_store_release(&wq->head, next);
1838 }
1839 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1840 }
1841 return 0;
1842 }
1843
1844 /**
1845 * rvt_qp_valid_operation - validate post send wr request
1846 * @qp: the qp
1847 * @post_parms: the post send table for the driver
1848 * @wr: the work request
1849 *
1850 * The routine validates the operation based on the
1851 * validation table an returns the length of the operation
1852 * which can extend beyond the ib_send_bw. Operation
1853 * dependent flags key atomic operation validation.
1854 *
1855 * There is an exception for UD qps that validates the pd and
1856 * overrides the length to include the additional UD specific
1857 * length.
1858 *
1859 * Returns a negative error or the length of the work request
1860 * for building the swqe.
1861 */
rvt_qp_valid_operation(struct rvt_qp * qp,const struct rvt_operation_params * post_parms,const struct ib_send_wr * wr)1862 static inline int rvt_qp_valid_operation(
1863 struct rvt_qp *qp,
1864 const struct rvt_operation_params *post_parms,
1865 const struct ib_send_wr *wr)
1866 {
1867 int len;
1868
1869 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1870 return -EINVAL;
1871 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1872 return -EINVAL;
1873 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1874 ibpd_to_rvtpd(qp->ibqp.pd)->user)
1875 return -EINVAL;
1876 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1877 (wr->num_sge == 0 ||
1878 wr->sg_list[0].length < sizeof(u64) ||
1879 wr->sg_list[0].addr & (sizeof(u64) - 1)))
1880 return -EINVAL;
1881 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1882 !qp->s_max_rd_atomic)
1883 return -EINVAL;
1884 len = post_parms[wr->opcode].length;
1885 /* UD specific */
1886 if (qp->ibqp.qp_type != IB_QPT_UC &&
1887 qp->ibqp.qp_type != IB_QPT_RC) {
1888 if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1889 return -EINVAL;
1890 len = sizeof(struct ib_ud_wr);
1891 }
1892 return len;
1893 }
1894
1895 /**
1896 * rvt_qp_is_avail - determine queue capacity
1897 * @qp: the qp
1898 * @rdi: the rdmavt device
1899 * @reserved_op: is reserved operation
1900 *
1901 * This assumes the s_hlock is held but the s_last
1902 * qp variable is uncontrolled.
1903 *
1904 * For non reserved operations, the qp->s_avail
1905 * may be changed.
1906 *
1907 * The return value is zero or a -ENOMEM.
1908 */
rvt_qp_is_avail(struct rvt_qp * qp,struct rvt_dev_info * rdi,bool reserved_op)1909 static inline int rvt_qp_is_avail(
1910 struct rvt_qp *qp,
1911 struct rvt_dev_info *rdi,
1912 bool reserved_op)
1913 {
1914 u32 slast;
1915 u32 avail;
1916 u32 reserved_used;
1917
1918 /* see rvt_qp_wqe_unreserve() */
1919 smp_mb__before_atomic();
1920 if (unlikely(reserved_op)) {
1921 /* see rvt_qp_wqe_unreserve() */
1922 reserved_used = atomic_read(&qp->s_reserved_used);
1923 if (reserved_used >= rdi->dparms.reserved_operations)
1924 return -ENOMEM;
1925 return 0;
1926 }
1927 /* non-reserved operations */
1928 if (likely(qp->s_avail))
1929 return 0;
1930 /* See rvt_qp_complete_swqe() */
1931 slast = smp_load_acquire(&qp->s_last);
1932 if (qp->s_head >= slast)
1933 avail = qp->s_size - (qp->s_head - slast);
1934 else
1935 avail = slast - qp->s_head;
1936
1937 reserved_used = atomic_read(&qp->s_reserved_used);
1938 avail = avail - 1 -
1939 (rdi->dparms.reserved_operations - reserved_used);
1940 /* insure we don't assign a negative s_avail */
1941 if ((s32)avail <= 0)
1942 return -ENOMEM;
1943 qp->s_avail = avail;
1944 if (WARN_ON(qp->s_avail >
1945 (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1946 rvt_pr_err(rdi,
1947 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1948 qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1949 qp->s_head, qp->s_tail, qp->s_cur,
1950 qp->s_acked, qp->s_last);
1951 return 0;
1952 }
1953
1954 /**
1955 * rvt_post_one_wr - post one RC, UC, or UD send work request
1956 * @qp: the QP to post on
1957 * @wr: the work request to send
1958 * @call_send: kick the send engine into gear
1959 */
rvt_post_one_wr(struct rvt_qp * qp,const struct ib_send_wr * wr,bool * call_send)1960 static int rvt_post_one_wr(struct rvt_qp *qp,
1961 const struct ib_send_wr *wr,
1962 bool *call_send)
1963 {
1964 struct rvt_swqe *wqe;
1965 u32 next;
1966 int i;
1967 int j;
1968 int acc;
1969 struct rvt_lkey_table *rkt;
1970 struct rvt_pd *pd;
1971 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1972 u8 log_pmtu;
1973 int ret;
1974 size_t cplen;
1975 bool reserved_op;
1976 int local_ops_delayed = 0;
1977
1978 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
1979
1980 /* IB spec says that num_sge == 0 is OK. */
1981 if (unlikely(wr->num_sge > qp->s_max_sge))
1982 return -EINVAL;
1983
1984 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
1985 if (ret < 0)
1986 return ret;
1987 cplen = ret;
1988
1989 /*
1990 * Local operations include fast register and local invalidate.
1991 * Fast register needs to be processed immediately because the
1992 * registered lkey may be used by following work requests and the
1993 * lkey needs to be valid at the time those requests are posted.
1994 * Local invalidate can be processed immediately if fencing is
1995 * not required and no previous local invalidate ops are pending.
1996 * Signaled local operations that have been processed immediately
1997 * need to have requests with "completion only" flags set posted
1998 * to the send queue in order to generate completions.
1999 */
2000 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
2001 switch (wr->opcode) {
2002 case IB_WR_REG_MR:
2003 ret = rvt_fast_reg_mr(qp,
2004 reg_wr(wr)->mr,
2005 reg_wr(wr)->key,
2006 reg_wr(wr)->access);
2007 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2008 return ret;
2009 break;
2010 case IB_WR_LOCAL_INV:
2011 if ((wr->send_flags & IB_SEND_FENCE) ||
2012 atomic_read(&qp->local_ops_pending)) {
2013 local_ops_delayed = 1;
2014 } else {
2015 ret = rvt_invalidate_rkey(
2016 qp, wr->ex.invalidate_rkey);
2017 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2018 return ret;
2019 }
2020 break;
2021 default:
2022 return -EINVAL;
2023 }
2024 }
2025
2026 reserved_op = rdi->post_parms[wr->opcode].flags &
2027 RVT_OPERATION_USE_RESERVE;
2028 /* check for avail */
2029 ret = rvt_qp_is_avail(qp, rdi, reserved_op);
2030 if (ret)
2031 return ret;
2032 next = qp->s_head + 1;
2033 if (next >= qp->s_size)
2034 next = 0;
2035
2036 rkt = &rdi->lkey_table;
2037 pd = ibpd_to_rvtpd(qp->ibqp.pd);
2038 wqe = rvt_get_swqe_ptr(qp, qp->s_head);
2039
2040 /* cplen has length from above */
2041 memcpy(&wqe->ud_wr, wr, cplen);
2042
2043 wqe->length = 0;
2044 j = 0;
2045 if (wr->num_sge) {
2046 struct rvt_sge *last_sge = NULL;
2047
2048 acc = wr->opcode >= IB_WR_RDMA_READ ?
2049 IB_ACCESS_LOCAL_WRITE : 0;
2050 for (i = 0; i < wr->num_sge; i++) {
2051 u32 length = wr->sg_list[i].length;
2052
2053 if (length == 0)
2054 continue;
2055 ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
2056 &wr->sg_list[i], acc);
2057 if (unlikely(ret < 0))
2058 goto bail_inval_free;
2059 wqe->length += length;
2060 if (ret)
2061 last_sge = &wqe->sg_list[j];
2062 j += ret;
2063 }
2064 wqe->wr.num_sge = j;
2065 }
2066
2067 /*
2068 * Calculate and set SWQE PSN values prior to handing it off
2069 * to the driver's check routine. This give the driver the
2070 * opportunity to adjust PSN values based on internal checks.
2071 */
2072 log_pmtu = qp->log_pmtu;
2073 if (qp->allowed_ops == IB_OPCODE_UD) {
2074 struct rvt_ah *ah = rvt_get_swqe_ah(wqe);
2075
2076 log_pmtu = ah->log_pmtu;
2077 rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr);
2078 }
2079
2080 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2081 if (local_ops_delayed)
2082 atomic_inc(&qp->local_ops_pending);
2083 else
2084 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2085 wqe->ssn = 0;
2086 wqe->psn = 0;
2087 wqe->lpsn = 0;
2088 } else {
2089 wqe->ssn = qp->s_ssn++;
2090 wqe->psn = qp->s_next_psn;
2091 wqe->lpsn = wqe->psn +
2092 (wqe->length ?
2093 ((wqe->length - 1) >> log_pmtu) :
2094 0);
2095 }
2096
2097 /* general part of wqe valid - allow for driver checks */
2098 if (rdi->driver_f.setup_wqe) {
2099 ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2100 if (ret < 0)
2101 goto bail_inval_free_ref;
2102 }
2103
2104 if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2105 qp->s_next_psn = wqe->lpsn + 1;
2106
2107 if (unlikely(reserved_op)) {
2108 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2109 rvt_qp_wqe_reserve(qp, wqe);
2110 } else {
2111 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2112 qp->s_avail--;
2113 }
2114 trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2115 smp_wmb(); /* see request builders */
2116 qp->s_head = next;
2117
2118 return 0;
2119
2120 bail_inval_free_ref:
2121 if (qp->allowed_ops == IB_OPCODE_UD)
2122 rdma_destroy_ah_attr(wqe->ud_wr.attr);
2123 bail_inval_free:
2124 /* release mr holds */
2125 while (j) {
2126 struct rvt_sge *sge = &wqe->sg_list[--j];
2127
2128 rvt_put_mr(sge->mr);
2129 }
2130 return ret;
2131 }
2132
2133 /**
2134 * rvt_post_send - post a send on a QP
2135 * @ibqp: the QP to post the send on
2136 * @wr: the list of work requests to post
2137 * @bad_wr: the first bad WR is put here
2138 *
2139 * This may be called from interrupt context.
2140 *
2141 * Return: 0 on success else errno
2142 */
rvt_post_send(struct ib_qp * ibqp,const struct ib_send_wr * wr,const struct ib_send_wr ** bad_wr)2143 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2144 const struct ib_send_wr **bad_wr)
2145 {
2146 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2147 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2148 unsigned long flags = 0;
2149 bool call_send;
2150 unsigned nreq = 0;
2151 int err = 0;
2152
2153 spin_lock_irqsave(&qp->s_hlock, flags);
2154
2155 /*
2156 * Ensure QP state is such that we can send. If not bail out early,
2157 * there is no need to do this every time we post a send.
2158 */
2159 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2160 spin_unlock_irqrestore(&qp->s_hlock, flags);
2161 return -EINVAL;
2162 }
2163
2164 /*
2165 * If the send queue is empty, and we only have a single WR then just go
2166 * ahead and kick the send engine into gear. Otherwise we will always
2167 * just schedule the send to happen later.
2168 */
2169 call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2170
2171 for (; wr; wr = wr->next) {
2172 err = rvt_post_one_wr(qp, wr, &call_send);
2173 if (unlikely(err)) {
2174 *bad_wr = wr;
2175 goto bail;
2176 }
2177 nreq++;
2178 }
2179 bail:
2180 spin_unlock_irqrestore(&qp->s_hlock, flags);
2181 if (nreq) {
2182 /*
2183 * Only call do_send if there is exactly one packet, and the
2184 * driver said it was ok.
2185 */
2186 if (nreq == 1 && call_send)
2187 rdi->driver_f.do_send(qp);
2188 else
2189 rdi->driver_f.schedule_send_no_lock(qp);
2190 }
2191 return err;
2192 }
2193
2194 /**
2195 * rvt_post_srq_recv - post a receive on a shared receive queue
2196 * @ibsrq: the SRQ to post the receive on
2197 * @wr: the list of work requests to post
2198 * @bad_wr: A pointer to the first WR to cause a problem is put here
2199 *
2200 * This may be called from interrupt context.
2201 *
2202 * Return: 0 on success else errno
2203 */
rvt_post_srq_recv(struct ib_srq * ibsrq,const struct ib_recv_wr * wr,const struct ib_recv_wr ** bad_wr)2204 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2205 const struct ib_recv_wr **bad_wr)
2206 {
2207 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2208 struct rvt_krwq *wq;
2209 unsigned long flags;
2210
2211 for (; wr; wr = wr->next) {
2212 struct rvt_rwqe *wqe;
2213 u32 next;
2214 int i;
2215
2216 if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2217 *bad_wr = wr;
2218 return -EINVAL;
2219 }
2220
2221 spin_lock_irqsave(&srq->rq.kwq->p_lock, flags);
2222 wq = srq->rq.kwq;
2223 next = wq->head + 1;
2224 if (next >= srq->rq.size)
2225 next = 0;
2226 if (next == READ_ONCE(wq->tail)) {
2227 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2228 *bad_wr = wr;
2229 return -ENOMEM;
2230 }
2231
2232 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2233 wqe->wr_id = wr->wr_id;
2234 wqe->num_sge = wr->num_sge;
2235 for (i = 0; i < wr->num_sge; i++) {
2236 wqe->sg_list[i].addr = wr->sg_list[i].addr;
2237 wqe->sg_list[i].length = wr->sg_list[i].length;
2238 wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
2239 }
2240 /* Make sure queue entry is written before the head index. */
2241 smp_store_release(&wq->head, next);
2242 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2243 }
2244 return 0;
2245 }
2246
2247 /*
2248 * rvt used the internal kernel struct as part of its ABI, for now make sure
2249 * the kernel struct does not change layout. FIXME: rvt should never cast the
2250 * user struct to a kernel struct.
2251 */
rvt_cast_sge(struct rvt_wqe_sge * sge)2252 static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge)
2253 {
2254 BUILD_BUG_ON(offsetof(struct ib_sge, addr) !=
2255 offsetof(struct rvt_wqe_sge, addr));
2256 BUILD_BUG_ON(offsetof(struct ib_sge, length) !=
2257 offsetof(struct rvt_wqe_sge, length));
2258 BUILD_BUG_ON(offsetof(struct ib_sge, lkey) !=
2259 offsetof(struct rvt_wqe_sge, lkey));
2260 return (struct ib_sge *)sge;
2261 }
2262
2263 /*
2264 * Validate a RWQE and fill in the SGE state.
2265 * Return 1 if OK.
2266 */
init_sge(struct rvt_qp * qp,struct rvt_rwqe * wqe)2267 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2268 {
2269 int i, j, ret;
2270 struct ib_wc wc;
2271 struct rvt_lkey_table *rkt;
2272 struct rvt_pd *pd;
2273 struct rvt_sge_state *ss;
2274 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2275
2276 rkt = &rdi->lkey_table;
2277 pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2278 ss = &qp->r_sge;
2279 ss->sg_list = qp->r_sg_list;
2280 qp->r_len = 0;
2281 for (i = j = 0; i < wqe->num_sge; i++) {
2282 if (wqe->sg_list[i].length == 0)
2283 continue;
2284 /* Check LKEY */
2285 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2286 NULL, rvt_cast_sge(&wqe->sg_list[i]),
2287 IB_ACCESS_LOCAL_WRITE);
2288 if (unlikely(ret <= 0))
2289 goto bad_lkey;
2290 qp->r_len += wqe->sg_list[i].length;
2291 j++;
2292 }
2293 ss->num_sge = j;
2294 ss->total_len = qp->r_len;
2295 return 1;
2296
2297 bad_lkey:
2298 while (j) {
2299 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2300
2301 rvt_put_mr(sge->mr);
2302 }
2303 ss->num_sge = 0;
2304 memset(&wc, 0, sizeof(wc));
2305 wc.wr_id = wqe->wr_id;
2306 wc.status = IB_WC_LOC_PROT_ERR;
2307 wc.opcode = IB_WC_RECV;
2308 wc.qp = &qp->ibqp;
2309 /* Signal solicited completion event. */
2310 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2311 return 0;
2312 }
2313
2314 /**
2315 * get_rvt_head - get head indices of the circular buffer
2316 * @rq: data structure for request queue entry
2317 * @ip: the QP
2318 *
2319 * Return - head index value
2320 */
get_rvt_head(struct rvt_rq * rq,void * ip)2321 static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip)
2322 {
2323 u32 head;
2324
2325 if (ip)
2326 head = RDMA_READ_UAPI_ATOMIC(rq->wq->head);
2327 else
2328 head = rq->kwq->head;
2329
2330 return head;
2331 }
2332
2333 /**
2334 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2335 * @qp: the QP
2336 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2337 *
2338 * Return -1 if there is a local error, 0 if no RWQE is available,
2339 * otherwise return 1.
2340 *
2341 * Can be called from interrupt level.
2342 */
rvt_get_rwqe(struct rvt_qp * qp,bool wr_id_only)2343 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2344 {
2345 unsigned long flags;
2346 struct rvt_rq *rq;
2347 struct rvt_krwq *kwq = NULL;
2348 struct rvt_rwq *wq;
2349 struct rvt_srq *srq;
2350 struct rvt_rwqe *wqe;
2351 void (*handler)(struct ib_event *, void *);
2352 u32 tail;
2353 u32 head;
2354 int ret;
2355 void *ip = NULL;
2356
2357 if (qp->ibqp.srq) {
2358 srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2359 handler = srq->ibsrq.event_handler;
2360 rq = &srq->rq;
2361 ip = srq->ip;
2362 } else {
2363 srq = NULL;
2364 handler = NULL;
2365 rq = &qp->r_rq;
2366 ip = qp->ip;
2367 }
2368
2369 spin_lock_irqsave(&rq->kwq->c_lock, flags);
2370 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2371 ret = 0;
2372 goto unlock;
2373 }
2374 kwq = rq->kwq;
2375 if (ip) {
2376 wq = rq->wq;
2377 tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
2378 } else {
2379 tail = kwq->tail;
2380 }
2381
2382 /* Validate tail before using it since it is user writable. */
2383 if (tail >= rq->size)
2384 tail = 0;
2385
2386 if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) {
2387 head = get_rvt_head(rq, ip);
2388 kwq->count = rvt_get_rq_count(rq, head, tail);
2389 }
2390 if (unlikely(kwq->count == 0)) {
2391 ret = 0;
2392 goto unlock;
2393 }
2394 /* Make sure entry is read after the count is read. */
2395 smp_rmb();
2396 wqe = rvt_get_rwqe_ptr(rq, tail);
2397 /*
2398 * Even though we update the tail index in memory, the verbs
2399 * consumer is not supposed to post more entries until a
2400 * completion is generated.
2401 */
2402 if (++tail >= rq->size)
2403 tail = 0;
2404 if (ip)
2405 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
2406 else
2407 kwq->tail = tail;
2408 if (!wr_id_only && !init_sge(qp, wqe)) {
2409 ret = -1;
2410 goto unlock;
2411 }
2412 qp->r_wr_id = wqe->wr_id;
2413
2414 kwq->count--;
2415 ret = 1;
2416 set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2417 if (handler) {
2418 /*
2419 * Validate head pointer value and compute
2420 * the number of remaining WQEs.
2421 */
2422 if (kwq->count < srq->limit) {
2423 kwq->count =
2424 rvt_get_rq_count(rq,
2425 get_rvt_head(rq, ip), tail);
2426 if (kwq->count < srq->limit) {
2427 struct ib_event ev;
2428
2429 srq->limit = 0;
2430 spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2431 ev.device = qp->ibqp.device;
2432 ev.element.srq = qp->ibqp.srq;
2433 ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2434 handler(&ev, srq->ibsrq.srq_context);
2435 goto bail;
2436 }
2437 }
2438 }
2439 unlock:
2440 spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2441 bail:
2442 return ret;
2443 }
2444 EXPORT_SYMBOL(rvt_get_rwqe);
2445
2446 /**
2447 * rvt_comm_est - handle trap with QP established
2448 * @qp: the QP
2449 */
rvt_comm_est(struct rvt_qp * qp)2450 void rvt_comm_est(struct rvt_qp *qp)
2451 {
2452 qp->r_flags |= RVT_R_COMM_EST;
2453 if (qp->ibqp.event_handler) {
2454 struct ib_event ev;
2455
2456 ev.device = qp->ibqp.device;
2457 ev.element.qp = &qp->ibqp;
2458 ev.event = IB_EVENT_COMM_EST;
2459 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2460 }
2461 }
2462 EXPORT_SYMBOL(rvt_comm_est);
2463
rvt_rc_error(struct rvt_qp * qp,enum ib_wc_status err)2464 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2465 {
2466 unsigned long flags;
2467 int lastwqe;
2468
2469 spin_lock_irqsave(&qp->s_lock, flags);
2470 lastwqe = rvt_error_qp(qp, err);
2471 spin_unlock_irqrestore(&qp->s_lock, flags);
2472
2473 if (lastwqe) {
2474 struct ib_event ev;
2475
2476 ev.device = qp->ibqp.device;
2477 ev.element.qp = &qp->ibqp;
2478 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2479 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2480 }
2481 }
2482 EXPORT_SYMBOL(rvt_rc_error);
2483
2484 /*
2485 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2486 * @index - the index
2487 * return usec from an index into ib_rvt_rnr_table
2488 */
rvt_rnr_tbl_to_usec(u32 index)2489 unsigned long rvt_rnr_tbl_to_usec(u32 index)
2490 {
2491 return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2492 }
2493 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2494
rvt_aeth_to_usec(u32 aeth)2495 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2496 {
2497 return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2498 IB_AETH_CREDIT_MASK];
2499 }
2500
2501 /*
2502 * rvt_add_retry_timer_ext - add/start a retry timer
2503 * @qp - the QP
2504 * @shift - timeout shift to wait for multiple packets
2505 * add a retry timer on the QP
2506 */
rvt_add_retry_timer_ext(struct rvt_qp * qp,u8 shift)2507 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2508 {
2509 struct ib_qp *ibqp = &qp->ibqp;
2510 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2511
2512 lockdep_assert_held(&qp->s_lock);
2513 qp->s_flags |= RVT_S_TIMER;
2514 /* 4.096 usec. * (1 << qp->timeout) */
2515 qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2516 (qp->timeout_jiffies << shift);
2517 add_timer(&qp->s_timer);
2518 }
2519 EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2520
2521 /**
2522 * rvt_add_rnr_timer - add/start an rnr timer on the QP
2523 * @qp: the QP
2524 * @aeth: aeth of RNR timeout, simulated aeth for loopback
2525 */
rvt_add_rnr_timer(struct rvt_qp * qp,u32 aeth)2526 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2527 {
2528 u32 to;
2529
2530 lockdep_assert_held(&qp->s_lock);
2531 qp->s_flags |= RVT_S_WAIT_RNR;
2532 to = rvt_aeth_to_usec(aeth);
2533 trace_rvt_rnrnak_add(qp, to);
2534 hrtimer_start(&qp->s_rnr_timer,
2535 ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2536 }
2537 EXPORT_SYMBOL(rvt_add_rnr_timer);
2538
2539 /**
2540 * rvt_stop_rc_timers - stop all timers
2541 * @qp: the QP
2542 * stop any pending timers
2543 */
rvt_stop_rc_timers(struct rvt_qp * qp)2544 void rvt_stop_rc_timers(struct rvt_qp *qp)
2545 {
2546 lockdep_assert_held(&qp->s_lock);
2547 /* Remove QP from all timers */
2548 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2549 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2550 del_timer(&qp->s_timer);
2551 hrtimer_try_to_cancel(&qp->s_rnr_timer);
2552 }
2553 }
2554 EXPORT_SYMBOL(rvt_stop_rc_timers);
2555
2556 /**
2557 * rvt_stop_rnr_timer - stop an rnr timer
2558 * @qp: the QP
2559 *
2560 * stop an rnr timer and return if the timer
2561 * had been pending.
2562 */
rvt_stop_rnr_timer(struct rvt_qp * qp)2563 static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2564 {
2565 lockdep_assert_held(&qp->s_lock);
2566 /* Remove QP from rnr timer */
2567 if (qp->s_flags & RVT_S_WAIT_RNR) {
2568 qp->s_flags &= ~RVT_S_WAIT_RNR;
2569 trace_rvt_rnrnak_stop(qp, 0);
2570 }
2571 }
2572
2573 /**
2574 * rvt_del_timers_sync - wait for any timeout routines to exit
2575 * @qp: the QP
2576 */
rvt_del_timers_sync(struct rvt_qp * qp)2577 void rvt_del_timers_sync(struct rvt_qp *qp)
2578 {
2579 del_timer_sync(&qp->s_timer);
2580 hrtimer_cancel(&qp->s_rnr_timer);
2581 }
2582 EXPORT_SYMBOL(rvt_del_timers_sync);
2583
2584 /*
2585 * This is called from s_timer for missing responses.
2586 */
rvt_rc_timeout(struct timer_list * t)2587 static void rvt_rc_timeout(struct timer_list *t)
2588 {
2589 struct rvt_qp *qp = from_timer(qp, t, s_timer);
2590 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2591 unsigned long flags;
2592
2593 spin_lock_irqsave(&qp->r_lock, flags);
2594 spin_lock(&qp->s_lock);
2595 if (qp->s_flags & RVT_S_TIMER) {
2596 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2597
2598 qp->s_flags &= ~RVT_S_TIMER;
2599 rvp->n_rc_timeouts++;
2600 del_timer(&qp->s_timer);
2601 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2602 if (rdi->driver_f.notify_restart_rc)
2603 rdi->driver_f.notify_restart_rc(qp,
2604 qp->s_last_psn + 1,
2605 1);
2606 rdi->driver_f.schedule_send(qp);
2607 }
2608 spin_unlock(&qp->s_lock);
2609 spin_unlock_irqrestore(&qp->r_lock, flags);
2610 }
2611
2612 /*
2613 * This is called from s_timer for RNR timeouts.
2614 */
rvt_rc_rnr_retry(struct hrtimer * t)2615 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2616 {
2617 struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2618 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2619 unsigned long flags;
2620
2621 spin_lock_irqsave(&qp->s_lock, flags);
2622 rvt_stop_rnr_timer(qp);
2623 trace_rvt_rnrnak_timeout(qp, 0);
2624 rdi->driver_f.schedule_send(qp);
2625 spin_unlock_irqrestore(&qp->s_lock, flags);
2626 return HRTIMER_NORESTART;
2627 }
2628 EXPORT_SYMBOL(rvt_rc_rnr_retry);
2629
2630 /**
2631 * rvt_qp_iter_init - initial for QP iteration
2632 * @rdi: rvt devinfo
2633 * @v: u64 value
2634 * @cb: user-defined callback
2635 *
2636 * This returns an iterator suitable for iterating QPs
2637 * in the system.
2638 *
2639 * The @cb is a user-defined callback and @v is a 64-bit
2640 * value passed to and relevant for processing in the
2641 * @cb. An example use case would be to alter QP processing
2642 * based on criteria not part of the rvt_qp.
2643 *
2644 * Use cases that require memory allocation to succeed
2645 * must preallocate appropriately.
2646 *
2647 * Return: a pointer to an rvt_qp_iter or NULL
2648 */
rvt_qp_iter_init(struct rvt_dev_info * rdi,u64 v,void (* cb)(struct rvt_qp * qp,u64 v))2649 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2650 u64 v,
2651 void (*cb)(struct rvt_qp *qp, u64 v))
2652 {
2653 struct rvt_qp_iter *i;
2654
2655 i = kzalloc(sizeof(*i), GFP_KERNEL);
2656 if (!i)
2657 return NULL;
2658
2659 i->rdi = rdi;
2660 /* number of special QPs (SMI/GSI) for device */
2661 i->specials = rdi->ibdev.phys_port_cnt * 2;
2662 i->v = v;
2663 i->cb = cb;
2664
2665 return i;
2666 }
2667 EXPORT_SYMBOL(rvt_qp_iter_init);
2668
2669 /**
2670 * rvt_qp_iter_next - return the next QP in iter
2671 * @iter: the iterator
2672 *
2673 * Fine grained QP iterator suitable for use
2674 * with debugfs seq_file mechanisms.
2675 *
2676 * Updates iter->qp with the current QP when the return
2677 * value is 0.
2678 *
2679 * Return: 0 - iter->qp is valid 1 - no more QPs
2680 */
rvt_qp_iter_next(struct rvt_qp_iter * iter)2681 int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2682 __must_hold(RCU)
2683 {
2684 int n = iter->n;
2685 int ret = 1;
2686 struct rvt_qp *pqp = iter->qp;
2687 struct rvt_qp *qp;
2688 struct rvt_dev_info *rdi = iter->rdi;
2689
2690 /*
2691 * The approach is to consider the special qps
2692 * as additional table entries before the
2693 * real hash table. Since the qp code sets
2694 * the qp->next hash link to NULL, this works just fine.
2695 *
2696 * iter->specials is 2 * # ports
2697 *
2698 * n = 0..iter->specials is the special qp indices
2699 *
2700 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2701 * the potential hash bucket entries
2702 *
2703 */
2704 for (; n < rdi->qp_dev->qp_table_size + iter->specials; n++) {
2705 if (pqp) {
2706 qp = rcu_dereference(pqp->next);
2707 } else {
2708 if (n < iter->specials) {
2709 struct rvt_ibport *rvp;
2710 int pidx;
2711
2712 pidx = n % rdi->ibdev.phys_port_cnt;
2713 rvp = rdi->ports[pidx];
2714 qp = rcu_dereference(rvp->qp[n & 1]);
2715 } else {
2716 qp = rcu_dereference(
2717 rdi->qp_dev->qp_table[
2718 (n - iter->specials)]);
2719 }
2720 }
2721 pqp = qp;
2722 if (qp) {
2723 iter->qp = qp;
2724 iter->n = n;
2725 return 0;
2726 }
2727 }
2728 return ret;
2729 }
2730 EXPORT_SYMBOL(rvt_qp_iter_next);
2731
2732 /**
2733 * rvt_qp_iter - iterate all QPs
2734 * @rdi: rvt devinfo
2735 * @v: a 64-bit value
2736 * @cb: a callback
2737 *
2738 * This provides a way for iterating all QPs.
2739 *
2740 * The @cb is a user-defined callback and @v is a 64-bit
2741 * value passed to and relevant for processing in the
2742 * cb. An example use case would be to alter QP processing
2743 * based on criteria not part of the rvt_qp.
2744 *
2745 * The code has an internal iterator to simplify
2746 * non seq_file use cases.
2747 */
rvt_qp_iter(struct rvt_dev_info * rdi,u64 v,void (* cb)(struct rvt_qp * qp,u64 v))2748 void rvt_qp_iter(struct rvt_dev_info *rdi,
2749 u64 v,
2750 void (*cb)(struct rvt_qp *qp, u64 v))
2751 {
2752 int ret;
2753 struct rvt_qp_iter i = {
2754 .rdi = rdi,
2755 .specials = rdi->ibdev.phys_port_cnt * 2,
2756 .v = v,
2757 .cb = cb
2758 };
2759
2760 rcu_read_lock();
2761 do {
2762 ret = rvt_qp_iter_next(&i);
2763 if (!ret) {
2764 rvt_get_qp(i.qp);
2765 rcu_read_unlock();
2766 i.cb(i.qp, i.v);
2767 rcu_read_lock();
2768 rvt_put_qp(i.qp);
2769 }
2770 } while (!ret);
2771 rcu_read_unlock();
2772 }
2773 EXPORT_SYMBOL(rvt_qp_iter);
2774
2775 /*
2776 * This should be called with s_lock and r_lock held.
2777 */
rvt_send_complete(struct rvt_qp * qp,struct rvt_swqe * wqe,enum ib_wc_status status)2778 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2779 enum ib_wc_status status)
2780 {
2781 u32 old_last, last;
2782 struct rvt_dev_info *rdi;
2783
2784 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2785 return;
2786 rdi = ib_to_rvt(qp->ibqp.device);
2787
2788 old_last = qp->s_last;
2789 trace_rvt_qp_send_completion(qp, wqe, old_last);
2790 last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode],
2791 status);
2792 if (qp->s_acked == old_last)
2793 qp->s_acked = last;
2794 if (qp->s_cur == old_last)
2795 qp->s_cur = last;
2796 if (qp->s_tail == old_last)
2797 qp->s_tail = last;
2798 if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2799 qp->s_draining = 0;
2800 }
2801 EXPORT_SYMBOL(rvt_send_complete);
2802
2803 /**
2804 * rvt_copy_sge - copy data to SGE memory
2805 * @qp: associated QP
2806 * @ss: the SGE state
2807 * @data: the data to copy
2808 * @length: the length of the data
2809 * @release: boolean to release MR
2810 * @copy_last: do a separate copy of the last 8 bytes
2811 */
rvt_copy_sge(struct rvt_qp * qp,struct rvt_sge_state * ss,void * data,u32 length,bool release,bool copy_last)2812 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2813 void *data, u32 length,
2814 bool release, bool copy_last)
2815 {
2816 struct rvt_sge *sge = &ss->sge;
2817 int i;
2818 bool in_last = false;
2819 bool cacheless_copy = false;
2820 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2821 struct rvt_wss *wss = rdi->wss;
2822 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2823
2824 if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2825 cacheless_copy = length >= PAGE_SIZE;
2826 } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2827 if (length >= PAGE_SIZE) {
2828 /*
2829 * NOTE: this *assumes*:
2830 * o The first vaddr is the dest.
2831 * o If multiple pages, then vaddr is sequential.
2832 */
2833 wss_insert(wss, sge->vaddr);
2834 if (length >= (2 * PAGE_SIZE))
2835 wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2836
2837 cacheless_copy = wss_exceeds_threshold(wss);
2838 } else {
2839 wss_advance_clean_counter(wss);
2840 }
2841 }
2842
2843 if (copy_last) {
2844 if (length > 8) {
2845 length -= 8;
2846 } else {
2847 copy_last = false;
2848 in_last = true;
2849 }
2850 }
2851
2852 again:
2853 while (length) {
2854 u32 len = rvt_get_sge_length(sge, length);
2855
2856 WARN_ON_ONCE(len == 0);
2857 if (unlikely(in_last)) {
2858 /* enforce byte transfer ordering */
2859 for (i = 0; i < len; i++)
2860 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2861 } else if (cacheless_copy) {
2862 cacheless_memcpy(sge->vaddr, data, len);
2863 } else {
2864 memcpy(sge->vaddr, data, len);
2865 }
2866 rvt_update_sge(ss, len, release);
2867 data += len;
2868 length -= len;
2869 }
2870
2871 if (copy_last) {
2872 copy_last = false;
2873 in_last = true;
2874 length = 8;
2875 goto again;
2876 }
2877 }
2878 EXPORT_SYMBOL(rvt_copy_sge);
2879
loopback_qp_drop(struct rvt_ibport * rvp,struct rvt_qp * sqp)2880 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2881 struct rvt_qp *sqp)
2882 {
2883 rvp->n_pkt_drops++;
2884 /*
2885 * For RC, the requester would timeout and retry so
2886 * shortcut the timeouts and just signal too many retries.
2887 */
2888 return sqp->ibqp.qp_type == IB_QPT_RC ?
2889 IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2890 }
2891
2892 /**
2893 * rvt_ruc_loopback - handle UC and RC loopback requests
2894 * @sqp: the sending QP
2895 *
2896 * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2897 * Note that although we are single threaded due to the send engine, we still
2898 * have to protect against post_send(). We don't have to worry about
2899 * receive interrupts since this is a connected protocol and all packets
2900 * will pass through here.
2901 */
rvt_ruc_loopback(struct rvt_qp * sqp)2902 void rvt_ruc_loopback(struct rvt_qp *sqp)
2903 {
2904 struct rvt_ibport *rvp = NULL;
2905 struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2906 struct rvt_qp *qp;
2907 struct rvt_swqe *wqe;
2908 struct rvt_sge *sge;
2909 unsigned long flags;
2910 struct ib_wc wc;
2911 u64 sdata;
2912 atomic64_t *maddr;
2913 enum ib_wc_status send_status;
2914 bool release;
2915 int ret;
2916 bool copy_last = false;
2917 int local_ops = 0;
2918
2919 rcu_read_lock();
2920 rvp = rdi->ports[sqp->port_num - 1];
2921
2922 /*
2923 * Note that we check the responder QP state after
2924 * checking the requester's state.
2925 */
2926
2927 qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2928 sqp->remote_qpn);
2929
2930 spin_lock_irqsave(&sqp->s_lock, flags);
2931
2932 /* Return if we are already busy processing a work request. */
2933 if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2934 !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2935 goto unlock;
2936
2937 sqp->s_flags |= RVT_S_BUSY;
2938
2939 again:
2940 if (sqp->s_last == READ_ONCE(sqp->s_head))
2941 goto clr_busy;
2942 wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
2943
2944 /* Return if it is not OK to start a new work request. */
2945 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
2946 if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
2947 goto clr_busy;
2948 /* We are in the error state, flush the work request. */
2949 send_status = IB_WC_WR_FLUSH_ERR;
2950 goto flush_send;
2951 }
2952
2953 /*
2954 * We can rely on the entry not changing without the s_lock
2955 * being held until we update s_last.
2956 * We increment s_cur to indicate s_last is in progress.
2957 */
2958 if (sqp->s_last == sqp->s_cur) {
2959 if (++sqp->s_cur >= sqp->s_size)
2960 sqp->s_cur = 0;
2961 }
2962 spin_unlock_irqrestore(&sqp->s_lock, flags);
2963
2964 if (!qp) {
2965 send_status = loopback_qp_drop(rvp, sqp);
2966 goto serr_no_r_lock;
2967 }
2968 spin_lock_irqsave(&qp->r_lock, flags);
2969 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
2970 qp->ibqp.qp_type != sqp->ibqp.qp_type) {
2971 send_status = loopback_qp_drop(rvp, sqp);
2972 goto serr;
2973 }
2974
2975 memset(&wc, 0, sizeof(wc));
2976 send_status = IB_WC_SUCCESS;
2977
2978 release = true;
2979 sqp->s_sge.sge = wqe->sg_list[0];
2980 sqp->s_sge.sg_list = wqe->sg_list + 1;
2981 sqp->s_sge.num_sge = wqe->wr.num_sge;
2982 sqp->s_len = wqe->length;
2983 switch (wqe->wr.opcode) {
2984 case IB_WR_REG_MR:
2985 goto send_comp;
2986
2987 case IB_WR_LOCAL_INV:
2988 if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
2989 if (rvt_invalidate_rkey(sqp,
2990 wqe->wr.ex.invalidate_rkey))
2991 send_status = IB_WC_LOC_PROT_ERR;
2992 local_ops = 1;
2993 }
2994 goto send_comp;
2995
2996 case IB_WR_SEND_WITH_INV:
2997 case IB_WR_SEND_WITH_IMM:
2998 case IB_WR_SEND:
2999 ret = rvt_get_rwqe(qp, false);
3000 if (ret < 0)
3001 goto op_err;
3002 if (!ret)
3003 goto rnr_nak;
3004 if (wqe->length > qp->r_len)
3005 goto inv_err;
3006 switch (wqe->wr.opcode) {
3007 case IB_WR_SEND_WITH_INV:
3008 if (!rvt_invalidate_rkey(qp,
3009 wqe->wr.ex.invalidate_rkey)) {
3010 wc.wc_flags = IB_WC_WITH_INVALIDATE;
3011 wc.ex.invalidate_rkey =
3012 wqe->wr.ex.invalidate_rkey;
3013 }
3014 break;
3015 case IB_WR_SEND_WITH_IMM:
3016 wc.wc_flags = IB_WC_WITH_IMM;
3017 wc.ex.imm_data = wqe->wr.ex.imm_data;
3018 break;
3019 default:
3020 break;
3021 }
3022 break;
3023
3024 case IB_WR_RDMA_WRITE_WITH_IMM:
3025 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3026 goto inv_err;
3027 wc.wc_flags = IB_WC_WITH_IMM;
3028 wc.ex.imm_data = wqe->wr.ex.imm_data;
3029 ret = rvt_get_rwqe(qp, true);
3030 if (ret < 0)
3031 goto op_err;
3032 if (!ret)
3033 goto rnr_nak;
3034 /* skip copy_last set and qp_access_flags recheck */
3035 goto do_write;
3036 case IB_WR_RDMA_WRITE:
3037 copy_last = rvt_is_user_qp(qp);
3038 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3039 goto inv_err;
3040 do_write:
3041 if (wqe->length == 0)
3042 break;
3043 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
3044 wqe->rdma_wr.remote_addr,
3045 wqe->rdma_wr.rkey,
3046 IB_ACCESS_REMOTE_WRITE)))
3047 goto acc_err;
3048 qp->r_sge.sg_list = NULL;
3049 qp->r_sge.num_sge = 1;
3050 qp->r_sge.total_len = wqe->length;
3051 break;
3052
3053 case IB_WR_RDMA_READ:
3054 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
3055 goto inv_err;
3056 if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
3057 wqe->rdma_wr.remote_addr,
3058 wqe->rdma_wr.rkey,
3059 IB_ACCESS_REMOTE_READ)))
3060 goto acc_err;
3061 release = false;
3062 sqp->s_sge.sg_list = NULL;
3063 sqp->s_sge.num_sge = 1;
3064 qp->r_sge.sge = wqe->sg_list[0];
3065 qp->r_sge.sg_list = wqe->sg_list + 1;
3066 qp->r_sge.num_sge = wqe->wr.num_sge;
3067 qp->r_sge.total_len = wqe->length;
3068 break;
3069
3070 case IB_WR_ATOMIC_CMP_AND_SWP:
3071 case IB_WR_ATOMIC_FETCH_AND_ADD:
3072 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
3073 goto inv_err;
3074 if (unlikely(wqe->atomic_wr.remote_addr & (sizeof(u64) - 1)))
3075 goto inv_err;
3076 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
3077 wqe->atomic_wr.remote_addr,
3078 wqe->atomic_wr.rkey,
3079 IB_ACCESS_REMOTE_ATOMIC)))
3080 goto acc_err;
3081 /* Perform atomic OP and save result. */
3082 maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
3083 sdata = wqe->atomic_wr.compare_add;
3084 *(u64 *)sqp->s_sge.sge.vaddr =
3085 (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
3086 (u64)atomic64_add_return(sdata, maddr) - sdata :
3087 (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
3088 sdata, wqe->atomic_wr.swap);
3089 rvt_put_mr(qp->r_sge.sge.mr);
3090 qp->r_sge.num_sge = 0;
3091 goto send_comp;
3092
3093 default:
3094 send_status = IB_WC_LOC_QP_OP_ERR;
3095 goto serr;
3096 }
3097
3098 sge = &sqp->s_sge.sge;
3099 while (sqp->s_len) {
3100 u32 len = rvt_get_sge_length(sge, sqp->s_len);
3101
3102 WARN_ON_ONCE(len == 0);
3103 rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3104 len, release, copy_last);
3105 rvt_update_sge(&sqp->s_sge, len, !release);
3106 sqp->s_len -= len;
3107 }
3108 if (release)
3109 rvt_put_ss(&qp->r_sge);
3110
3111 if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3112 goto send_comp;
3113
3114 if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3115 wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3116 else
3117 wc.opcode = IB_WC_RECV;
3118 wc.wr_id = qp->r_wr_id;
3119 wc.status = IB_WC_SUCCESS;
3120 wc.byte_len = wqe->length;
3121 wc.qp = &qp->ibqp;
3122 wc.src_qp = qp->remote_qpn;
3123 wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3124 wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3125 wc.port_num = 1;
3126 /* Signal completion event if the solicited bit is set. */
3127 rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED);
3128
3129 send_comp:
3130 spin_unlock_irqrestore(&qp->r_lock, flags);
3131 spin_lock_irqsave(&sqp->s_lock, flags);
3132 rvp->n_loop_pkts++;
3133 flush_send:
3134 sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3135 spin_lock(&sqp->r_lock);
3136 rvt_send_complete(sqp, wqe, send_status);
3137 spin_unlock(&sqp->r_lock);
3138 if (local_ops) {
3139 atomic_dec(&sqp->local_ops_pending);
3140 local_ops = 0;
3141 }
3142 goto again;
3143
3144 rnr_nak:
3145 /* Handle RNR NAK */
3146 if (qp->ibqp.qp_type == IB_QPT_UC)
3147 goto send_comp;
3148 rvp->n_rnr_naks++;
3149 /*
3150 * Note: we don't need the s_lock held since the BUSY flag
3151 * makes this single threaded.
3152 */
3153 if (sqp->s_rnr_retry == 0) {
3154 send_status = IB_WC_RNR_RETRY_EXC_ERR;
3155 goto serr;
3156 }
3157 if (sqp->s_rnr_retry_cnt < 7)
3158 sqp->s_rnr_retry--;
3159 spin_unlock_irqrestore(&qp->r_lock, flags);
3160 spin_lock_irqsave(&sqp->s_lock, flags);
3161 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3162 goto clr_busy;
3163 rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3164 IB_AETH_CREDIT_SHIFT);
3165 goto clr_busy;
3166
3167 op_err:
3168 send_status = IB_WC_REM_OP_ERR;
3169 wc.status = IB_WC_LOC_QP_OP_ERR;
3170 goto err;
3171
3172 inv_err:
3173 send_status =
3174 sqp->ibqp.qp_type == IB_QPT_RC ?
3175 IB_WC_REM_INV_REQ_ERR :
3176 IB_WC_SUCCESS;
3177 wc.status = IB_WC_LOC_QP_OP_ERR;
3178 goto err;
3179
3180 acc_err:
3181 send_status = IB_WC_REM_ACCESS_ERR;
3182 wc.status = IB_WC_LOC_PROT_ERR;
3183 err:
3184 /* responder goes to error state */
3185 rvt_rc_error(qp, wc.status);
3186
3187 serr:
3188 spin_unlock_irqrestore(&qp->r_lock, flags);
3189 serr_no_r_lock:
3190 spin_lock_irqsave(&sqp->s_lock, flags);
3191 spin_lock(&sqp->r_lock);
3192 rvt_send_complete(sqp, wqe, send_status);
3193 spin_unlock(&sqp->r_lock);
3194 if (sqp->ibqp.qp_type == IB_QPT_RC) {
3195 int lastwqe;
3196
3197 spin_lock(&sqp->r_lock);
3198 lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3199 spin_unlock(&sqp->r_lock);
3200
3201 sqp->s_flags &= ~RVT_S_BUSY;
3202 spin_unlock_irqrestore(&sqp->s_lock, flags);
3203 if (lastwqe) {
3204 struct ib_event ev;
3205
3206 ev.device = sqp->ibqp.device;
3207 ev.element.qp = &sqp->ibqp;
3208 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3209 sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3210 }
3211 goto done;
3212 }
3213 clr_busy:
3214 sqp->s_flags &= ~RVT_S_BUSY;
3215 unlock:
3216 spin_unlock_irqrestore(&sqp->s_lock, flags);
3217 done:
3218 rcu_read_unlock();
3219 }
3220 EXPORT_SYMBOL(rvt_ruc_loopback);
3221