xref: /openbmc/linux/drivers/most/core.c (revision d0034a7a4ac7fae708146ac0059b9c47a1543f0d)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * core.c - Implementation of core module of MOST Linux driver stack
4   *
5   * Copyright (C) 2013-2020 Microchip Technology Germany II GmbH & Co. KG
6   */
7  
8  #include <linux/module.h>
9  #include <linux/fs.h>
10  #include <linux/slab.h>
11  #include <linux/init.h>
12  #include <linux/device.h>
13  #include <linux/list.h>
14  #include <linux/poll.h>
15  #include <linux/wait.h>
16  #include <linux/kobject.h>
17  #include <linux/mutex.h>
18  #include <linux/completion.h>
19  #include <linux/sysfs.h>
20  #include <linux/kthread.h>
21  #include <linux/dma-mapping.h>
22  #include <linux/idr.h>
23  #include <linux/most.h>
24  
25  #define MAX_CHANNELS	64
26  #define STRING_SIZE	80
27  
28  static struct ida mdev_id;
29  static int dummy_num_buffers;
30  static struct list_head comp_list;
31  
32  struct pipe {
33  	struct most_component *comp;
34  	int refs;
35  	int num_buffers;
36  };
37  
38  struct most_channel {
39  	struct device dev;
40  	struct completion cleanup;
41  	atomic_t mbo_ref;
42  	atomic_t mbo_nq_level;
43  	u16 channel_id;
44  	char name[STRING_SIZE];
45  	bool is_poisoned;
46  	struct mutex start_mutex; /* channel activation synchronization */
47  	struct mutex nq_mutex; /* nq thread synchronization */
48  	int is_starving;
49  	struct most_interface *iface;
50  	struct most_channel_config cfg;
51  	bool keep_mbo;
52  	bool enqueue_halt;
53  	struct list_head fifo;
54  	spinlock_t fifo_lock; /* fifo access synchronization */
55  	struct list_head halt_fifo;
56  	struct list_head list;
57  	struct pipe pipe0;
58  	struct pipe pipe1;
59  	struct list_head trash_fifo;
60  	struct task_struct *hdm_enqueue_task;
61  	wait_queue_head_t hdm_fifo_wq;
62  
63  };
64  
65  #define to_channel(d) container_of(d, struct most_channel, dev)
66  
67  struct interface_private {
68  	int dev_id;
69  	char name[STRING_SIZE];
70  	struct most_channel *channel[MAX_CHANNELS];
71  	struct list_head channel_list;
72  };
73  
74  static const struct {
75  	int most_ch_data_type;
76  	const char *name;
77  } ch_data_type[] = {
78  	{ MOST_CH_CONTROL, "control" },
79  	{ MOST_CH_ASYNC, "async" },
80  	{ MOST_CH_SYNC, "sync" },
81  	{ MOST_CH_ISOC, "isoc"},
82  	{ MOST_CH_ISOC, "isoc_avp"},
83  };
84  
85  /**
86   * list_pop_mbo - retrieves the first MBO of the list and removes it
87   * @ptr: the list head to grab the MBO from.
88   */
89  #define list_pop_mbo(ptr)						\
90  ({									\
91  	struct mbo *_mbo = list_first_entry(ptr, struct mbo, list);	\
92  	list_del(&_mbo->list);						\
93  	_mbo;								\
94  })
95  
96  /**
97   * most_free_mbo_coherent - free an MBO and its coherent buffer
98   * @mbo: most buffer
99   */
most_free_mbo_coherent(struct mbo * mbo)100  static void most_free_mbo_coherent(struct mbo *mbo)
101  {
102  	struct most_channel *c = mbo->context;
103  	u16 const coherent_buf_size = c->cfg.buffer_size + c->cfg.extra_len;
104  
105  	if (c->iface->dma_free)
106  		c->iface->dma_free(mbo, coherent_buf_size);
107  	else
108  		kfree(mbo->virt_address);
109  	kfree(mbo);
110  	if (atomic_sub_and_test(1, &c->mbo_ref))
111  		complete(&c->cleanup);
112  }
113  
114  /**
115   * flush_channel_fifos - clear the channel fifos
116   * @c: pointer to channel object
117   */
flush_channel_fifos(struct most_channel * c)118  static void flush_channel_fifos(struct most_channel *c)
119  {
120  	unsigned long flags, hf_flags;
121  	struct mbo *mbo, *tmp;
122  
123  	if (list_empty(&c->fifo) && list_empty(&c->halt_fifo))
124  		return;
125  
126  	spin_lock_irqsave(&c->fifo_lock, flags);
127  	list_for_each_entry_safe(mbo, tmp, &c->fifo, list) {
128  		list_del(&mbo->list);
129  		spin_unlock_irqrestore(&c->fifo_lock, flags);
130  		most_free_mbo_coherent(mbo);
131  		spin_lock_irqsave(&c->fifo_lock, flags);
132  	}
133  	spin_unlock_irqrestore(&c->fifo_lock, flags);
134  
135  	spin_lock_irqsave(&c->fifo_lock, hf_flags);
136  	list_for_each_entry_safe(mbo, tmp, &c->halt_fifo, list) {
137  		list_del(&mbo->list);
138  		spin_unlock_irqrestore(&c->fifo_lock, hf_flags);
139  		most_free_mbo_coherent(mbo);
140  		spin_lock_irqsave(&c->fifo_lock, hf_flags);
141  	}
142  	spin_unlock_irqrestore(&c->fifo_lock, hf_flags);
143  
144  	if (unlikely((!list_empty(&c->fifo) || !list_empty(&c->halt_fifo))))
145  		dev_warn(&c->dev, "Channel or trash fifo not empty\n");
146  }
147  
148  /**
149   * flush_trash_fifo - clear the trash fifo
150   * @c: pointer to channel object
151   */
flush_trash_fifo(struct most_channel * c)152  static int flush_trash_fifo(struct most_channel *c)
153  {
154  	struct mbo *mbo, *tmp;
155  	unsigned long flags;
156  
157  	spin_lock_irqsave(&c->fifo_lock, flags);
158  	list_for_each_entry_safe(mbo, tmp, &c->trash_fifo, list) {
159  		list_del(&mbo->list);
160  		spin_unlock_irqrestore(&c->fifo_lock, flags);
161  		most_free_mbo_coherent(mbo);
162  		spin_lock_irqsave(&c->fifo_lock, flags);
163  	}
164  	spin_unlock_irqrestore(&c->fifo_lock, flags);
165  	return 0;
166  }
167  
available_directions_show(struct device * dev,struct device_attribute * attr,char * buf)168  static ssize_t available_directions_show(struct device *dev,
169  					 struct device_attribute *attr,
170  					 char *buf)
171  {
172  	struct most_channel *c = to_channel(dev);
173  	unsigned int i = c->channel_id;
174  
175  	strcpy(buf, "");
176  	if (c->iface->channel_vector[i].direction & MOST_CH_RX)
177  		strcat(buf, "rx ");
178  	if (c->iface->channel_vector[i].direction & MOST_CH_TX)
179  		strcat(buf, "tx ");
180  	strcat(buf, "\n");
181  	return strlen(buf);
182  }
183  
available_datatypes_show(struct device * dev,struct device_attribute * attr,char * buf)184  static ssize_t available_datatypes_show(struct device *dev,
185  					struct device_attribute *attr,
186  					char *buf)
187  {
188  	struct most_channel *c = to_channel(dev);
189  	unsigned int i = c->channel_id;
190  
191  	strcpy(buf, "");
192  	if (c->iface->channel_vector[i].data_type & MOST_CH_CONTROL)
193  		strcat(buf, "control ");
194  	if (c->iface->channel_vector[i].data_type & MOST_CH_ASYNC)
195  		strcat(buf, "async ");
196  	if (c->iface->channel_vector[i].data_type & MOST_CH_SYNC)
197  		strcat(buf, "sync ");
198  	if (c->iface->channel_vector[i].data_type & MOST_CH_ISOC)
199  		strcat(buf, "isoc ");
200  	strcat(buf, "\n");
201  	return strlen(buf);
202  }
203  
number_of_packet_buffers_show(struct device * dev,struct device_attribute * attr,char * buf)204  static ssize_t number_of_packet_buffers_show(struct device *dev,
205  					     struct device_attribute *attr,
206  					     char *buf)
207  {
208  	struct most_channel *c = to_channel(dev);
209  	unsigned int i = c->channel_id;
210  
211  	return snprintf(buf, PAGE_SIZE, "%d\n",
212  			c->iface->channel_vector[i].num_buffers_packet);
213  }
214  
number_of_stream_buffers_show(struct device * dev,struct device_attribute * attr,char * buf)215  static ssize_t number_of_stream_buffers_show(struct device *dev,
216  					     struct device_attribute *attr,
217  					     char *buf)
218  {
219  	struct most_channel *c = to_channel(dev);
220  	unsigned int i = c->channel_id;
221  
222  	return snprintf(buf, PAGE_SIZE, "%d\n",
223  			c->iface->channel_vector[i].num_buffers_streaming);
224  }
225  
size_of_packet_buffer_show(struct device * dev,struct device_attribute * attr,char * buf)226  static ssize_t size_of_packet_buffer_show(struct device *dev,
227  					  struct device_attribute *attr,
228  					  char *buf)
229  {
230  	struct most_channel *c = to_channel(dev);
231  	unsigned int i = c->channel_id;
232  
233  	return snprintf(buf, PAGE_SIZE, "%d\n",
234  			c->iface->channel_vector[i].buffer_size_packet);
235  }
236  
size_of_stream_buffer_show(struct device * dev,struct device_attribute * attr,char * buf)237  static ssize_t size_of_stream_buffer_show(struct device *dev,
238  					  struct device_attribute *attr,
239  					  char *buf)
240  {
241  	struct most_channel *c = to_channel(dev);
242  	unsigned int i = c->channel_id;
243  
244  	return snprintf(buf, PAGE_SIZE, "%d\n",
245  			c->iface->channel_vector[i].buffer_size_streaming);
246  }
247  
channel_starving_show(struct device * dev,struct device_attribute * attr,char * buf)248  static ssize_t channel_starving_show(struct device *dev,
249  				     struct device_attribute *attr,
250  				     char *buf)
251  {
252  	struct most_channel *c = to_channel(dev);
253  
254  	return snprintf(buf, PAGE_SIZE, "%d\n", c->is_starving);
255  }
256  
set_number_of_buffers_show(struct device * dev,struct device_attribute * attr,char * buf)257  static ssize_t set_number_of_buffers_show(struct device *dev,
258  					  struct device_attribute *attr,
259  					  char *buf)
260  {
261  	struct most_channel *c = to_channel(dev);
262  
263  	return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.num_buffers);
264  }
265  
set_buffer_size_show(struct device * dev,struct device_attribute * attr,char * buf)266  static ssize_t set_buffer_size_show(struct device *dev,
267  				    struct device_attribute *attr,
268  				    char *buf)
269  {
270  	struct most_channel *c = to_channel(dev);
271  
272  	return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.buffer_size);
273  }
274  
set_direction_show(struct device * dev,struct device_attribute * attr,char * buf)275  static ssize_t set_direction_show(struct device *dev,
276  				  struct device_attribute *attr,
277  				  char *buf)
278  {
279  	struct most_channel *c = to_channel(dev);
280  
281  	if (c->cfg.direction & MOST_CH_TX)
282  		return snprintf(buf, PAGE_SIZE, "tx\n");
283  	else if (c->cfg.direction & MOST_CH_RX)
284  		return snprintf(buf, PAGE_SIZE, "rx\n");
285  	return snprintf(buf, PAGE_SIZE, "unconfigured\n");
286  }
287  
set_datatype_show(struct device * dev,struct device_attribute * attr,char * buf)288  static ssize_t set_datatype_show(struct device *dev,
289  				 struct device_attribute *attr,
290  				 char *buf)
291  {
292  	int i;
293  	struct most_channel *c = to_channel(dev);
294  
295  	for (i = 0; i < ARRAY_SIZE(ch_data_type); i++) {
296  		if (c->cfg.data_type & ch_data_type[i].most_ch_data_type)
297  			return snprintf(buf, PAGE_SIZE, "%s",
298  					ch_data_type[i].name);
299  	}
300  	return snprintf(buf, PAGE_SIZE, "unconfigured\n");
301  }
302  
set_subbuffer_size_show(struct device * dev,struct device_attribute * attr,char * buf)303  static ssize_t set_subbuffer_size_show(struct device *dev,
304  				       struct device_attribute *attr,
305  				       char *buf)
306  {
307  	struct most_channel *c = to_channel(dev);
308  
309  	return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.subbuffer_size);
310  }
311  
set_packets_per_xact_show(struct device * dev,struct device_attribute * attr,char * buf)312  static ssize_t set_packets_per_xact_show(struct device *dev,
313  					 struct device_attribute *attr,
314  					 char *buf)
315  {
316  	struct most_channel *c = to_channel(dev);
317  
318  	return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.packets_per_xact);
319  }
320  
set_dbr_size_show(struct device * dev,struct device_attribute * attr,char * buf)321  static ssize_t set_dbr_size_show(struct device *dev,
322  				 struct device_attribute *attr, char *buf)
323  {
324  	struct most_channel *c = to_channel(dev);
325  
326  	return snprintf(buf, PAGE_SIZE, "%d\n", c->cfg.dbr_size);
327  }
328  
329  #define to_dev_attr(a) container_of(a, struct device_attribute, attr)
channel_attr_is_visible(struct kobject * kobj,struct attribute * attr,int index)330  static umode_t channel_attr_is_visible(struct kobject *kobj,
331  				       struct attribute *attr, int index)
332  {
333  	struct device_attribute *dev_attr = to_dev_attr(attr);
334  	struct device *dev = kobj_to_dev(kobj);
335  	struct most_channel *c = to_channel(dev);
336  
337  	if (!strcmp(dev_attr->attr.name, "set_dbr_size") &&
338  	    (c->iface->interface != ITYPE_MEDIALB_DIM2))
339  		return 0;
340  	if (!strcmp(dev_attr->attr.name, "set_packets_per_xact") &&
341  	    (c->iface->interface != ITYPE_USB))
342  		return 0;
343  
344  	return attr->mode;
345  }
346  
347  #define DEV_ATTR(_name)  (&dev_attr_##_name.attr)
348  
349  static DEVICE_ATTR_RO(available_directions);
350  static DEVICE_ATTR_RO(available_datatypes);
351  static DEVICE_ATTR_RO(number_of_packet_buffers);
352  static DEVICE_ATTR_RO(number_of_stream_buffers);
353  static DEVICE_ATTR_RO(size_of_stream_buffer);
354  static DEVICE_ATTR_RO(size_of_packet_buffer);
355  static DEVICE_ATTR_RO(channel_starving);
356  static DEVICE_ATTR_RO(set_buffer_size);
357  static DEVICE_ATTR_RO(set_number_of_buffers);
358  static DEVICE_ATTR_RO(set_direction);
359  static DEVICE_ATTR_RO(set_datatype);
360  static DEVICE_ATTR_RO(set_subbuffer_size);
361  static DEVICE_ATTR_RO(set_packets_per_xact);
362  static DEVICE_ATTR_RO(set_dbr_size);
363  
364  static struct attribute *channel_attrs[] = {
365  	DEV_ATTR(available_directions),
366  	DEV_ATTR(available_datatypes),
367  	DEV_ATTR(number_of_packet_buffers),
368  	DEV_ATTR(number_of_stream_buffers),
369  	DEV_ATTR(size_of_stream_buffer),
370  	DEV_ATTR(size_of_packet_buffer),
371  	DEV_ATTR(channel_starving),
372  	DEV_ATTR(set_buffer_size),
373  	DEV_ATTR(set_number_of_buffers),
374  	DEV_ATTR(set_direction),
375  	DEV_ATTR(set_datatype),
376  	DEV_ATTR(set_subbuffer_size),
377  	DEV_ATTR(set_packets_per_xact),
378  	DEV_ATTR(set_dbr_size),
379  	NULL,
380  };
381  
382  static const struct attribute_group channel_attr_group = {
383  	.attrs = channel_attrs,
384  	.is_visible = channel_attr_is_visible,
385  };
386  
387  static const struct attribute_group *channel_attr_groups[] = {
388  	&channel_attr_group,
389  	NULL,
390  };
391  
description_show(struct device * dev,struct device_attribute * attr,char * buf)392  static ssize_t description_show(struct device *dev,
393  				struct device_attribute *attr,
394  				char *buf)
395  {
396  	struct most_interface *iface = dev_get_drvdata(dev);
397  
398  	return snprintf(buf, PAGE_SIZE, "%s\n", iface->description);
399  }
400  
interface_show(struct device * dev,struct device_attribute * attr,char * buf)401  static ssize_t interface_show(struct device *dev,
402  			      struct device_attribute *attr,
403  			      char *buf)
404  {
405  	struct most_interface *iface = dev_get_drvdata(dev);
406  
407  	switch (iface->interface) {
408  	case ITYPE_LOOPBACK:
409  		return snprintf(buf, PAGE_SIZE, "loopback\n");
410  	case ITYPE_I2C:
411  		return snprintf(buf, PAGE_SIZE, "i2c\n");
412  	case ITYPE_I2S:
413  		return snprintf(buf, PAGE_SIZE, "i2s\n");
414  	case ITYPE_TSI:
415  		return snprintf(buf, PAGE_SIZE, "tsi\n");
416  	case ITYPE_HBI:
417  		return snprintf(buf, PAGE_SIZE, "hbi\n");
418  	case ITYPE_MEDIALB_DIM:
419  		return snprintf(buf, PAGE_SIZE, "mlb_dim\n");
420  	case ITYPE_MEDIALB_DIM2:
421  		return snprintf(buf, PAGE_SIZE, "mlb_dim2\n");
422  	case ITYPE_USB:
423  		return snprintf(buf, PAGE_SIZE, "usb\n");
424  	case ITYPE_PCIE:
425  		return snprintf(buf, PAGE_SIZE, "pcie\n");
426  	}
427  	return snprintf(buf, PAGE_SIZE, "unknown\n");
428  }
429  
430  static DEVICE_ATTR_RO(description);
431  static DEVICE_ATTR_RO(interface);
432  
433  static struct attribute *interface_attrs[] = {
434  	DEV_ATTR(description),
435  	DEV_ATTR(interface),
436  	NULL,
437  };
438  
439  static const struct attribute_group interface_attr_group = {
440  	.attrs = interface_attrs,
441  };
442  
443  static const struct attribute_group *interface_attr_groups[] = {
444  	&interface_attr_group,
445  	NULL,
446  };
447  
match_component(char * name)448  static struct most_component *match_component(char *name)
449  {
450  	struct most_component *comp;
451  
452  	list_for_each_entry(comp, &comp_list, list) {
453  		if (!strcmp(comp->name, name))
454  			return comp;
455  	}
456  	return NULL;
457  }
458  
459  struct show_links_data {
460  	int offs;
461  	char *buf;
462  };
463  
print_links(struct device * dev,void * data)464  static int print_links(struct device *dev, void *data)
465  {
466  	struct show_links_data *d = data;
467  	int offs = d->offs;
468  	char *buf = d->buf;
469  	struct most_channel *c;
470  	struct most_interface *iface = dev_get_drvdata(dev);
471  
472  	list_for_each_entry(c, &iface->p->channel_list, list) {
473  		if (c->pipe0.comp) {
474  			offs += scnprintf(buf + offs,
475  					 PAGE_SIZE - offs,
476  					 "%s:%s:%s\n",
477  					 c->pipe0.comp->name,
478  					 dev_name(iface->dev),
479  					 dev_name(&c->dev));
480  		}
481  		if (c->pipe1.comp) {
482  			offs += scnprintf(buf + offs,
483  					 PAGE_SIZE - offs,
484  					 "%s:%s:%s\n",
485  					 c->pipe1.comp->name,
486  					 dev_name(iface->dev),
487  					 dev_name(&c->dev));
488  		}
489  	}
490  	d->offs = offs;
491  	return 0;
492  }
493  
most_match(struct device * dev,struct device_driver * drv)494  static int most_match(struct device *dev, struct device_driver *drv)
495  {
496  	if (!strcmp(dev_name(dev), "most"))
497  		return 0;
498  	else
499  		return 1;
500  }
501  
502  static struct bus_type mostbus = {
503  	.name = "most",
504  	.match = most_match,
505  };
506  
links_show(struct device_driver * drv,char * buf)507  static ssize_t links_show(struct device_driver *drv, char *buf)
508  {
509  	struct show_links_data d = { .buf = buf };
510  
511  	bus_for_each_dev(&mostbus, NULL, &d, print_links);
512  	return d.offs;
513  }
514  
components_show(struct device_driver * drv,char * buf)515  static ssize_t components_show(struct device_driver *drv, char *buf)
516  {
517  	struct most_component *comp;
518  	int offs = 0;
519  
520  	list_for_each_entry(comp, &comp_list, list) {
521  		offs += scnprintf(buf + offs, PAGE_SIZE - offs, "%s\n",
522  				 comp->name);
523  	}
524  	return offs;
525  }
526  
527  /**
528   * get_channel - get pointer to channel
529   * @mdev: name of the device interface
530   * @mdev_ch: name of channel
531   */
get_channel(char * mdev,char * mdev_ch)532  static struct most_channel *get_channel(char *mdev, char *mdev_ch)
533  {
534  	struct device *dev = NULL;
535  	struct most_interface *iface;
536  	struct most_channel *c, *tmp;
537  
538  	dev = bus_find_device_by_name(&mostbus, NULL, mdev);
539  	if (!dev)
540  		return NULL;
541  	put_device(dev);
542  	iface = dev_get_drvdata(dev);
543  	list_for_each_entry_safe(c, tmp, &iface->p->channel_list, list) {
544  		if (!strcmp(dev_name(&c->dev), mdev_ch))
545  			return c;
546  	}
547  	return NULL;
548  }
549  
550  static
link_channel_to_component(struct most_channel * c,struct most_component * comp,char * name,char * comp_param)551  inline int link_channel_to_component(struct most_channel *c,
552  				     struct most_component *comp,
553  				     char *name,
554  				     char *comp_param)
555  {
556  	int ret;
557  	struct most_component **comp_ptr;
558  
559  	if (!c->pipe0.comp)
560  		comp_ptr = &c->pipe0.comp;
561  	else if (!c->pipe1.comp)
562  		comp_ptr = &c->pipe1.comp;
563  	else
564  		return -ENOSPC;
565  
566  	*comp_ptr = comp;
567  	ret = comp->probe_channel(c->iface, c->channel_id, &c->cfg, name,
568  				  comp_param);
569  	if (ret) {
570  		*comp_ptr = NULL;
571  		return ret;
572  	}
573  	return 0;
574  }
575  
most_set_cfg_buffer_size(char * mdev,char * mdev_ch,u16 val)576  int most_set_cfg_buffer_size(char *mdev, char *mdev_ch, u16 val)
577  {
578  	struct most_channel *c = get_channel(mdev, mdev_ch);
579  
580  	if (!c)
581  		return -ENODEV;
582  	c->cfg.buffer_size = val;
583  	return 0;
584  }
585  
most_set_cfg_subbuffer_size(char * mdev,char * mdev_ch,u16 val)586  int most_set_cfg_subbuffer_size(char *mdev, char *mdev_ch, u16 val)
587  {
588  	struct most_channel *c = get_channel(mdev, mdev_ch);
589  
590  	if (!c)
591  		return -ENODEV;
592  	c->cfg.subbuffer_size = val;
593  	return 0;
594  }
595  
most_set_cfg_dbr_size(char * mdev,char * mdev_ch,u16 val)596  int most_set_cfg_dbr_size(char *mdev, char *mdev_ch, u16 val)
597  {
598  	struct most_channel *c = get_channel(mdev, mdev_ch);
599  
600  	if (!c)
601  		return -ENODEV;
602  	c->cfg.dbr_size = val;
603  	return 0;
604  }
605  
most_set_cfg_num_buffers(char * mdev,char * mdev_ch,u16 val)606  int most_set_cfg_num_buffers(char *mdev, char *mdev_ch, u16 val)
607  {
608  	struct most_channel *c = get_channel(mdev, mdev_ch);
609  
610  	if (!c)
611  		return -ENODEV;
612  	c->cfg.num_buffers = val;
613  	return 0;
614  }
615  
most_set_cfg_datatype(char * mdev,char * mdev_ch,char * buf)616  int most_set_cfg_datatype(char *mdev, char *mdev_ch, char *buf)
617  {
618  	int i;
619  	struct most_channel *c = get_channel(mdev, mdev_ch);
620  
621  	if (!c)
622  		return -ENODEV;
623  	for (i = 0; i < ARRAY_SIZE(ch_data_type); i++) {
624  		if (!strcmp(buf, ch_data_type[i].name)) {
625  			c->cfg.data_type = ch_data_type[i].most_ch_data_type;
626  			break;
627  		}
628  	}
629  
630  	if (i == ARRAY_SIZE(ch_data_type))
631  		dev_warn(&c->dev, "Invalid attribute settings\n");
632  	return 0;
633  }
634  
most_set_cfg_direction(char * mdev,char * mdev_ch,char * buf)635  int most_set_cfg_direction(char *mdev, char *mdev_ch, char *buf)
636  {
637  	struct most_channel *c = get_channel(mdev, mdev_ch);
638  
639  	if (!c)
640  		return -ENODEV;
641  	if (!strcmp(buf, "dir_rx")) {
642  		c->cfg.direction = MOST_CH_RX;
643  	} else if (!strcmp(buf, "rx")) {
644  		c->cfg.direction = MOST_CH_RX;
645  	} else if (!strcmp(buf, "dir_tx")) {
646  		c->cfg.direction = MOST_CH_TX;
647  	} else if (!strcmp(buf, "tx")) {
648  		c->cfg.direction = MOST_CH_TX;
649  	} else {
650  		dev_err(&c->dev, "Invalid direction\n");
651  		return -ENODATA;
652  	}
653  	return 0;
654  }
655  
most_set_cfg_packets_xact(char * mdev,char * mdev_ch,u16 val)656  int most_set_cfg_packets_xact(char *mdev, char *mdev_ch, u16 val)
657  {
658  	struct most_channel *c = get_channel(mdev, mdev_ch);
659  
660  	if (!c)
661  		return -ENODEV;
662  	c->cfg.packets_per_xact = val;
663  	return 0;
664  }
665  
most_cfg_complete(char * comp_name)666  int most_cfg_complete(char *comp_name)
667  {
668  	struct most_component *comp;
669  
670  	comp = match_component(comp_name);
671  	if (!comp)
672  		return -ENODEV;
673  
674  	return comp->cfg_complete();
675  }
676  
most_add_link(char * mdev,char * mdev_ch,char * comp_name,char * link_name,char * comp_param)677  int most_add_link(char *mdev, char *mdev_ch, char *comp_name, char *link_name,
678  		  char *comp_param)
679  {
680  	struct most_channel *c = get_channel(mdev, mdev_ch);
681  	struct most_component *comp = match_component(comp_name);
682  
683  	if (!c || !comp)
684  		return -ENODEV;
685  
686  	return link_channel_to_component(c, comp, link_name, comp_param);
687  }
688  
most_remove_link(char * mdev,char * mdev_ch,char * comp_name)689  int most_remove_link(char *mdev, char *mdev_ch, char *comp_name)
690  {
691  	struct most_channel *c;
692  	struct most_component *comp;
693  
694  	comp = match_component(comp_name);
695  	if (!comp)
696  		return -ENODEV;
697  	c = get_channel(mdev, mdev_ch);
698  	if (!c)
699  		return -ENODEV;
700  
701  	if (comp->disconnect_channel(c->iface, c->channel_id))
702  		return -EIO;
703  	if (c->pipe0.comp == comp)
704  		c->pipe0.comp = NULL;
705  	if (c->pipe1.comp == comp)
706  		c->pipe1.comp = NULL;
707  	return 0;
708  }
709  
710  #define DRV_ATTR(_name)  (&driver_attr_##_name.attr)
711  
712  static DRIVER_ATTR_RO(links);
713  static DRIVER_ATTR_RO(components);
714  
715  static struct attribute *mc_attrs[] = {
716  	DRV_ATTR(links),
717  	DRV_ATTR(components),
718  	NULL,
719  };
720  
721  static const struct attribute_group mc_attr_group = {
722  	.attrs = mc_attrs,
723  };
724  
725  static const struct attribute_group *mc_attr_groups[] = {
726  	&mc_attr_group,
727  	NULL,
728  };
729  
730  static struct device_driver mostbus_driver = {
731  	.name = "most_core",
732  	.bus = &mostbus,
733  	.groups = mc_attr_groups,
734  };
735  
trash_mbo(struct mbo * mbo)736  static inline void trash_mbo(struct mbo *mbo)
737  {
738  	unsigned long flags;
739  	struct most_channel *c = mbo->context;
740  
741  	spin_lock_irqsave(&c->fifo_lock, flags);
742  	list_add(&mbo->list, &c->trash_fifo);
743  	spin_unlock_irqrestore(&c->fifo_lock, flags);
744  }
745  
hdm_mbo_ready(struct most_channel * c)746  static bool hdm_mbo_ready(struct most_channel *c)
747  {
748  	bool empty;
749  
750  	if (c->enqueue_halt)
751  		return false;
752  
753  	spin_lock_irq(&c->fifo_lock);
754  	empty = list_empty(&c->halt_fifo);
755  	spin_unlock_irq(&c->fifo_lock);
756  
757  	return !empty;
758  }
759  
nq_hdm_mbo(struct mbo * mbo)760  static void nq_hdm_mbo(struct mbo *mbo)
761  {
762  	unsigned long flags;
763  	struct most_channel *c = mbo->context;
764  
765  	spin_lock_irqsave(&c->fifo_lock, flags);
766  	list_add_tail(&mbo->list, &c->halt_fifo);
767  	spin_unlock_irqrestore(&c->fifo_lock, flags);
768  	wake_up_interruptible(&c->hdm_fifo_wq);
769  }
770  
hdm_enqueue_thread(void * data)771  static int hdm_enqueue_thread(void *data)
772  {
773  	struct most_channel *c = data;
774  	struct mbo *mbo;
775  	int ret;
776  	typeof(c->iface->enqueue) enqueue = c->iface->enqueue;
777  
778  	while (likely(!kthread_should_stop())) {
779  		wait_event_interruptible(c->hdm_fifo_wq,
780  					 hdm_mbo_ready(c) ||
781  					 kthread_should_stop());
782  
783  		mutex_lock(&c->nq_mutex);
784  		spin_lock_irq(&c->fifo_lock);
785  		if (unlikely(c->enqueue_halt || list_empty(&c->halt_fifo))) {
786  			spin_unlock_irq(&c->fifo_lock);
787  			mutex_unlock(&c->nq_mutex);
788  			continue;
789  		}
790  
791  		mbo = list_pop_mbo(&c->halt_fifo);
792  		spin_unlock_irq(&c->fifo_lock);
793  
794  		if (c->cfg.direction == MOST_CH_RX)
795  			mbo->buffer_length = c->cfg.buffer_size;
796  
797  		ret = enqueue(mbo->ifp, mbo->hdm_channel_id, mbo);
798  		mutex_unlock(&c->nq_mutex);
799  
800  		if (unlikely(ret)) {
801  			dev_err(&c->dev, "Buffer enqueue failed\n");
802  			nq_hdm_mbo(mbo);
803  			c->hdm_enqueue_task = NULL;
804  			return 0;
805  		}
806  	}
807  
808  	return 0;
809  }
810  
run_enqueue_thread(struct most_channel * c,int channel_id)811  static int run_enqueue_thread(struct most_channel *c, int channel_id)
812  {
813  	struct task_struct *task =
814  		kthread_run(hdm_enqueue_thread, c, "hdm_fifo_%d",
815  			    channel_id);
816  
817  	if (IS_ERR(task))
818  		return PTR_ERR(task);
819  
820  	c->hdm_enqueue_task = task;
821  	return 0;
822  }
823  
824  /**
825   * arm_mbo - recycle MBO for further usage
826   * @mbo: most buffer
827   *
828   * This puts an MBO back to the list to have it ready for up coming
829   * tx transactions.
830   *
831   * In case the MBO belongs to a channel that recently has been
832   * poisoned, the MBO is scheduled to be trashed.
833   * Calls the completion handler of an attached component.
834   */
arm_mbo(struct mbo * mbo)835  static void arm_mbo(struct mbo *mbo)
836  {
837  	unsigned long flags;
838  	struct most_channel *c;
839  
840  	c = mbo->context;
841  
842  	if (c->is_poisoned) {
843  		trash_mbo(mbo);
844  		return;
845  	}
846  
847  	spin_lock_irqsave(&c->fifo_lock, flags);
848  	++*mbo->num_buffers_ptr;
849  	list_add_tail(&mbo->list, &c->fifo);
850  	spin_unlock_irqrestore(&c->fifo_lock, flags);
851  
852  	if (c->pipe0.refs && c->pipe0.comp->tx_completion)
853  		c->pipe0.comp->tx_completion(c->iface, c->channel_id);
854  
855  	if (c->pipe1.refs && c->pipe1.comp->tx_completion)
856  		c->pipe1.comp->tx_completion(c->iface, c->channel_id);
857  }
858  
859  /**
860   * arm_mbo_chain - helper function that arms an MBO chain for the HDM
861   * @c: pointer to interface channel
862   * @dir: direction of the channel
863   * @compl: pointer to completion function
864   *
865   * This allocates buffer objects including the containing DMA coherent
866   * buffer and puts them in the fifo.
867   * Buffers of Rx channels are put in the kthread fifo, hence immediately
868   * submitted to the HDM.
869   *
870   * Returns the number of allocated and enqueued MBOs.
871   */
arm_mbo_chain(struct most_channel * c,int dir,void (* compl)(struct mbo *))872  static int arm_mbo_chain(struct most_channel *c, int dir,
873  			 void (*compl)(struct mbo *))
874  {
875  	unsigned int i;
876  	struct mbo *mbo;
877  	unsigned long flags;
878  	u32 coherent_buf_size = c->cfg.buffer_size + c->cfg.extra_len;
879  
880  	atomic_set(&c->mbo_nq_level, 0);
881  
882  	for (i = 0; i < c->cfg.num_buffers; i++) {
883  		mbo = kzalloc(sizeof(*mbo), GFP_KERNEL);
884  		if (!mbo)
885  			goto flush_fifos;
886  
887  		mbo->context = c;
888  		mbo->ifp = c->iface;
889  		mbo->hdm_channel_id = c->channel_id;
890  		if (c->iface->dma_alloc) {
891  			mbo->virt_address =
892  				c->iface->dma_alloc(mbo, coherent_buf_size);
893  		} else {
894  			mbo->virt_address =
895  				kzalloc(coherent_buf_size, GFP_KERNEL);
896  		}
897  		if (!mbo->virt_address)
898  			goto release_mbo;
899  
900  		mbo->complete = compl;
901  		mbo->num_buffers_ptr = &dummy_num_buffers;
902  		if (dir == MOST_CH_RX) {
903  			nq_hdm_mbo(mbo);
904  			atomic_inc(&c->mbo_nq_level);
905  		} else {
906  			spin_lock_irqsave(&c->fifo_lock, flags);
907  			list_add_tail(&mbo->list, &c->fifo);
908  			spin_unlock_irqrestore(&c->fifo_lock, flags);
909  		}
910  	}
911  	return c->cfg.num_buffers;
912  
913  release_mbo:
914  	kfree(mbo);
915  
916  flush_fifos:
917  	flush_channel_fifos(c);
918  	return 0;
919  }
920  
921  /**
922   * most_submit_mbo - submits an MBO to fifo
923   * @mbo: most buffer
924   */
most_submit_mbo(struct mbo * mbo)925  void most_submit_mbo(struct mbo *mbo)
926  {
927  	if (WARN_ONCE(!mbo || !mbo->context,
928  		      "Bad buffer or missing channel reference\n"))
929  		return;
930  
931  	nq_hdm_mbo(mbo);
932  }
933  EXPORT_SYMBOL_GPL(most_submit_mbo);
934  
935  /**
936   * most_write_completion - write completion handler
937   * @mbo: most buffer
938   *
939   * This recycles the MBO for further usage. In case the channel has been
940   * poisoned, the MBO is scheduled to be trashed.
941   */
most_write_completion(struct mbo * mbo)942  static void most_write_completion(struct mbo *mbo)
943  {
944  	struct most_channel *c;
945  
946  	c = mbo->context;
947  	if (unlikely(c->is_poisoned || (mbo->status == MBO_E_CLOSE)))
948  		trash_mbo(mbo);
949  	else
950  		arm_mbo(mbo);
951  }
952  
channel_has_mbo(struct most_interface * iface,int id,struct most_component * comp)953  int channel_has_mbo(struct most_interface *iface, int id,
954  		    struct most_component *comp)
955  {
956  	struct most_channel *c = iface->p->channel[id];
957  	unsigned long flags;
958  	int empty;
959  
960  	if (unlikely(!c))
961  		return -EINVAL;
962  
963  	if (c->pipe0.refs && c->pipe1.refs &&
964  	    ((comp == c->pipe0.comp && c->pipe0.num_buffers <= 0) ||
965  	     (comp == c->pipe1.comp && c->pipe1.num_buffers <= 0)))
966  		return 0;
967  
968  	spin_lock_irqsave(&c->fifo_lock, flags);
969  	empty = list_empty(&c->fifo);
970  	spin_unlock_irqrestore(&c->fifo_lock, flags);
971  	return !empty;
972  }
973  EXPORT_SYMBOL_GPL(channel_has_mbo);
974  
975  /**
976   * most_get_mbo - get pointer to an MBO of pool
977   * @iface: pointer to interface instance
978   * @id: channel ID
979   * @comp: driver component
980   *
981   * This attempts to get a free buffer out of the channel fifo.
982   * Returns a pointer to MBO on success or NULL otherwise.
983   */
most_get_mbo(struct most_interface * iface,int id,struct most_component * comp)984  struct mbo *most_get_mbo(struct most_interface *iface, int id,
985  			 struct most_component *comp)
986  {
987  	struct mbo *mbo;
988  	struct most_channel *c;
989  	unsigned long flags;
990  	int *num_buffers_ptr;
991  
992  	c = iface->p->channel[id];
993  	if (unlikely(!c))
994  		return NULL;
995  
996  	if (c->pipe0.refs && c->pipe1.refs &&
997  	    ((comp == c->pipe0.comp && c->pipe0.num_buffers <= 0) ||
998  	     (comp == c->pipe1.comp && c->pipe1.num_buffers <= 0)))
999  		return NULL;
1000  
1001  	if (comp == c->pipe0.comp)
1002  		num_buffers_ptr = &c->pipe0.num_buffers;
1003  	else if (comp == c->pipe1.comp)
1004  		num_buffers_ptr = &c->pipe1.num_buffers;
1005  	else
1006  		num_buffers_ptr = &dummy_num_buffers;
1007  
1008  	spin_lock_irqsave(&c->fifo_lock, flags);
1009  	if (list_empty(&c->fifo)) {
1010  		spin_unlock_irqrestore(&c->fifo_lock, flags);
1011  		return NULL;
1012  	}
1013  	mbo = list_pop_mbo(&c->fifo);
1014  	--*num_buffers_ptr;
1015  	spin_unlock_irqrestore(&c->fifo_lock, flags);
1016  
1017  	mbo->num_buffers_ptr = num_buffers_ptr;
1018  	mbo->buffer_length = c->cfg.buffer_size;
1019  	return mbo;
1020  }
1021  EXPORT_SYMBOL_GPL(most_get_mbo);
1022  
1023  /**
1024   * most_put_mbo - return buffer to pool
1025   * @mbo: most buffer
1026   */
most_put_mbo(struct mbo * mbo)1027  void most_put_mbo(struct mbo *mbo)
1028  {
1029  	struct most_channel *c = mbo->context;
1030  
1031  	if (c->cfg.direction == MOST_CH_TX) {
1032  		arm_mbo(mbo);
1033  		return;
1034  	}
1035  	nq_hdm_mbo(mbo);
1036  	atomic_inc(&c->mbo_nq_level);
1037  }
1038  EXPORT_SYMBOL_GPL(most_put_mbo);
1039  
1040  /**
1041   * most_read_completion - read completion handler
1042   * @mbo: most buffer
1043   *
1044   * This function is called by the HDM when data has been received from the
1045   * hardware and copied to the buffer of the MBO.
1046   *
1047   * In case the channel has been poisoned it puts the buffer in the trash queue.
1048   * Otherwise, it passes the buffer to an component for further processing.
1049   */
most_read_completion(struct mbo * mbo)1050  static void most_read_completion(struct mbo *mbo)
1051  {
1052  	struct most_channel *c = mbo->context;
1053  
1054  	if (unlikely(c->is_poisoned || (mbo->status == MBO_E_CLOSE))) {
1055  		trash_mbo(mbo);
1056  		return;
1057  	}
1058  
1059  	if (mbo->status == MBO_E_INVAL) {
1060  		nq_hdm_mbo(mbo);
1061  		atomic_inc(&c->mbo_nq_level);
1062  		return;
1063  	}
1064  
1065  	if (atomic_sub_and_test(1, &c->mbo_nq_level))
1066  		c->is_starving = 1;
1067  
1068  	if (c->pipe0.refs && c->pipe0.comp->rx_completion &&
1069  	    c->pipe0.comp->rx_completion(mbo) == 0)
1070  		return;
1071  
1072  	if (c->pipe1.refs && c->pipe1.comp->rx_completion &&
1073  	    c->pipe1.comp->rx_completion(mbo) == 0)
1074  		return;
1075  
1076  	most_put_mbo(mbo);
1077  }
1078  
1079  /**
1080   * most_start_channel - prepares a channel for communication
1081   * @iface: pointer to interface instance
1082   * @id: channel ID
1083   * @comp: driver component
1084   *
1085   * This prepares the channel for usage. Cross-checks whether the
1086   * channel's been properly configured.
1087   *
1088   * Returns 0 on success or error code otherwise.
1089   */
most_start_channel(struct most_interface * iface,int id,struct most_component * comp)1090  int most_start_channel(struct most_interface *iface, int id,
1091  		       struct most_component *comp)
1092  {
1093  	int num_buffer;
1094  	int ret;
1095  	struct most_channel *c = iface->p->channel[id];
1096  
1097  	if (unlikely(!c))
1098  		return -EINVAL;
1099  
1100  	mutex_lock(&c->start_mutex);
1101  	if (c->pipe0.refs + c->pipe1.refs > 0)
1102  		goto out; /* already started by another component */
1103  
1104  	if (!try_module_get(iface->mod)) {
1105  		dev_err(&c->dev, "Failed to acquire HDM lock\n");
1106  		mutex_unlock(&c->start_mutex);
1107  		return -ENOLCK;
1108  	}
1109  
1110  	c->cfg.extra_len = 0;
1111  	if (c->iface->configure(c->iface, c->channel_id, &c->cfg)) {
1112  		dev_err(&c->dev, "Channel configuration failed. Go check settings...\n");
1113  		ret = -EINVAL;
1114  		goto err_put_module;
1115  	}
1116  
1117  	init_waitqueue_head(&c->hdm_fifo_wq);
1118  
1119  	if (c->cfg.direction == MOST_CH_RX)
1120  		num_buffer = arm_mbo_chain(c, c->cfg.direction,
1121  					   most_read_completion);
1122  	else
1123  		num_buffer = arm_mbo_chain(c, c->cfg.direction,
1124  					   most_write_completion);
1125  	if (unlikely(!num_buffer)) {
1126  		ret = -ENOMEM;
1127  		goto err_put_module;
1128  	}
1129  
1130  	ret = run_enqueue_thread(c, id);
1131  	if (ret)
1132  		goto err_put_module;
1133  
1134  	c->is_starving = 0;
1135  	c->pipe0.num_buffers = c->cfg.num_buffers / 2;
1136  	c->pipe1.num_buffers = c->cfg.num_buffers - c->pipe0.num_buffers;
1137  	atomic_set(&c->mbo_ref, num_buffer);
1138  
1139  out:
1140  	if (comp == c->pipe0.comp)
1141  		c->pipe0.refs++;
1142  	if (comp == c->pipe1.comp)
1143  		c->pipe1.refs++;
1144  	mutex_unlock(&c->start_mutex);
1145  	return 0;
1146  
1147  err_put_module:
1148  	module_put(iface->mod);
1149  	mutex_unlock(&c->start_mutex);
1150  	return ret;
1151  }
1152  EXPORT_SYMBOL_GPL(most_start_channel);
1153  
1154  /**
1155   * most_stop_channel - stops a running channel
1156   * @iface: pointer to interface instance
1157   * @id: channel ID
1158   * @comp: driver component
1159   */
most_stop_channel(struct most_interface * iface,int id,struct most_component * comp)1160  int most_stop_channel(struct most_interface *iface, int id,
1161  		      struct most_component *comp)
1162  {
1163  	struct most_channel *c;
1164  
1165  	if (unlikely((!iface) || (id >= iface->num_channels) || (id < 0))) {
1166  		pr_err("Bad interface or index out of range\n");
1167  		return -EINVAL;
1168  	}
1169  	c = iface->p->channel[id];
1170  	if (unlikely(!c))
1171  		return -EINVAL;
1172  
1173  	mutex_lock(&c->start_mutex);
1174  	if (c->pipe0.refs + c->pipe1.refs >= 2)
1175  		goto out;
1176  
1177  	if (c->hdm_enqueue_task)
1178  		kthread_stop(c->hdm_enqueue_task);
1179  	c->hdm_enqueue_task = NULL;
1180  
1181  	if (iface->mod)
1182  		module_put(iface->mod);
1183  
1184  	c->is_poisoned = true;
1185  	if (c->iface->poison_channel(c->iface, c->channel_id)) {
1186  		dev_err(&c->dev, "Failed to stop channel %d of interface %s\n", c->channel_id,
1187  			c->iface->description);
1188  		mutex_unlock(&c->start_mutex);
1189  		return -EAGAIN;
1190  	}
1191  	flush_trash_fifo(c);
1192  	flush_channel_fifos(c);
1193  
1194  #ifdef CMPL_INTERRUPTIBLE
1195  	if (wait_for_completion_interruptible(&c->cleanup)) {
1196  		dev_err(&c->dev, "Interrupted while cleaning up channel %d\n", c->channel_id);
1197  		mutex_unlock(&c->start_mutex);
1198  		return -EINTR;
1199  	}
1200  #else
1201  	wait_for_completion(&c->cleanup);
1202  #endif
1203  	c->is_poisoned = false;
1204  
1205  out:
1206  	if (comp == c->pipe0.comp)
1207  		c->pipe0.refs--;
1208  	if (comp == c->pipe1.comp)
1209  		c->pipe1.refs--;
1210  	mutex_unlock(&c->start_mutex);
1211  	return 0;
1212  }
1213  EXPORT_SYMBOL_GPL(most_stop_channel);
1214  
1215  /**
1216   * most_register_component - registers a driver component with the core
1217   * @comp: driver component
1218   */
most_register_component(struct most_component * comp)1219  int most_register_component(struct most_component *comp)
1220  {
1221  	if (!comp) {
1222  		pr_err("Bad component\n");
1223  		return -EINVAL;
1224  	}
1225  	list_add_tail(&comp->list, &comp_list);
1226  	return 0;
1227  }
1228  EXPORT_SYMBOL_GPL(most_register_component);
1229  
disconnect_channels(struct device * dev,void * data)1230  static int disconnect_channels(struct device *dev, void *data)
1231  {
1232  	struct most_interface *iface;
1233  	struct most_channel *c, *tmp;
1234  	struct most_component *comp = data;
1235  
1236  	iface = dev_get_drvdata(dev);
1237  	list_for_each_entry_safe(c, tmp, &iface->p->channel_list, list) {
1238  		if (c->pipe0.comp == comp || c->pipe1.comp == comp)
1239  			comp->disconnect_channel(c->iface, c->channel_id);
1240  		if (c->pipe0.comp == comp)
1241  			c->pipe0.comp = NULL;
1242  		if (c->pipe1.comp == comp)
1243  			c->pipe1.comp = NULL;
1244  	}
1245  	return 0;
1246  }
1247  
1248  /**
1249   * most_deregister_component - deregisters a driver component with the core
1250   * @comp: driver component
1251   */
most_deregister_component(struct most_component * comp)1252  int most_deregister_component(struct most_component *comp)
1253  {
1254  	if (!comp) {
1255  		pr_err("Bad component\n");
1256  		return -EINVAL;
1257  	}
1258  
1259  	bus_for_each_dev(&mostbus, NULL, comp, disconnect_channels);
1260  	list_del(&comp->list);
1261  	return 0;
1262  }
1263  EXPORT_SYMBOL_GPL(most_deregister_component);
1264  
release_channel(struct device * dev)1265  static void release_channel(struct device *dev)
1266  {
1267  	struct most_channel *c = to_channel(dev);
1268  
1269  	kfree(c);
1270  }
1271  
1272  /**
1273   * most_register_interface - registers an interface with core
1274   * @iface: device interface
1275   *
1276   * Allocates and initializes a new interface instance and all of its channels.
1277   * Returns a pointer to kobject or an error pointer.
1278   */
most_register_interface(struct most_interface * iface)1279  int most_register_interface(struct most_interface *iface)
1280  {
1281  	unsigned int i;
1282  	int id;
1283  	struct most_channel *c;
1284  
1285  	if (!iface || !iface->enqueue || !iface->configure ||
1286  	    !iface->poison_channel || (iface->num_channels > MAX_CHANNELS))
1287  		return -EINVAL;
1288  
1289  	id = ida_simple_get(&mdev_id, 0, 0, GFP_KERNEL);
1290  	if (id < 0) {
1291  		dev_err(iface->dev, "Failed to allocate device ID\n");
1292  		return id;
1293  	}
1294  
1295  	iface->p = kzalloc(sizeof(*iface->p), GFP_KERNEL);
1296  	if (!iface->p) {
1297  		ida_simple_remove(&mdev_id, id);
1298  		return -ENOMEM;
1299  	}
1300  
1301  	INIT_LIST_HEAD(&iface->p->channel_list);
1302  	iface->p->dev_id = id;
1303  	strscpy(iface->p->name, iface->description, sizeof(iface->p->name));
1304  	iface->dev->bus = &mostbus;
1305  	iface->dev->groups = interface_attr_groups;
1306  	dev_set_drvdata(iface->dev, iface);
1307  	if (device_register(iface->dev)) {
1308  		dev_err(iface->dev, "Failed to register interface device\n");
1309  		kfree(iface->p);
1310  		put_device(iface->dev);
1311  		ida_simple_remove(&mdev_id, id);
1312  		return -ENOMEM;
1313  	}
1314  
1315  	for (i = 0; i < iface->num_channels; i++) {
1316  		const char *name_suffix = iface->channel_vector[i].name_suffix;
1317  
1318  		c = kzalloc(sizeof(*c), GFP_KERNEL);
1319  		if (!c)
1320  			goto err_free_resources;
1321  		if (!name_suffix)
1322  			snprintf(c->name, STRING_SIZE, "ch%d", i);
1323  		else
1324  			snprintf(c->name, STRING_SIZE, "%s", name_suffix);
1325  		c->dev.init_name = c->name;
1326  		c->dev.parent = iface->dev;
1327  		c->dev.groups = channel_attr_groups;
1328  		c->dev.release = release_channel;
1329  		iface->p->channel[i] = c;
1330  		c->is_starving = 0;
1331  		c->iface = iface;
1332  		c->channel_id = i;
1333  		c->keep_mbo = false;
1334  		c->enqueue_halt = false;
1335  		c->is_poisoned = false;
1336  		c->cfg.direction = 0;
1337  		c->cfg.data_type = 0;
1338  		c->cfg.num_buffers = 0;
1339  		c->cfg.buffer_size = 0;
1340  		c->cfg.subbuffer_size = 0;
1341  		c->cfg.packets_per_xact = 0;
1342  		spin_lock_init(&c->fifo_lock);
1343  		INIT_LIST_HEAD(&c->fifo);
1344  		INIT_LIST_HEAD(&c->trash_fifo);
1345  		INIT_LIST_HEAD(&c->halt_fifo);
1346  		init_completion(&c->cleanup);
1347  		atomic_set(&c->mbo_ref, 0);
1348  		mutex_init(&c->start_mutex);
1349  		mutex_init(&c->nq_mutex);
1350  		list_add_tail(&c->list, &iface->p->channel_list);
1351  		if (device_register(&c->dev)) {
1352  			dev_err(&c->dev, "Failed to register channel device\n");
1353  			goto err_free_most_channel;
1354  		}
1355  	}
1356  	most_interface_register_notify(iface->description);
1357  	return 0;
1358  
1359  err_free_most_channel:
1360  	put_device(&c->dev);
1361  
1362  err_free_resources:
1363  	while (i > 0) {
1364  		c = iface->p->channel[--i];
1365  		device_unregister(&c->dev);
1366  	}
1367  	kfree(iface->p);
1368  	device_unregister(iface->dev);
1369  	ida_simple_remove(&mdev_id, id);
1370  	return -ENOMEM;
1371  }
1372  EXPORT_SYMBOL_GPL(most_register_interface);
1373  
1374  /**
1375   * most_deregister_interface - deregisters an interface with core
1376   * @iface: device interface
1377   *
1378   * Before removing an interface instance from the list, all running
1379   * channels are stopped and poisoned.
1380   */
most_deregister_interface(struct most_interface * iface)1381  void most_deregister_interface(struct most_interface *iface)
1382  {
1383  	int i;
1384  	struct most_channel *c;
1385  
1386  	for (i = 0; i < iface->num_channels; i++) {
1387  		c = iface->p->channel[i];
1388  		if (c->pipe0.comp)
1389  			c->pipe0.comp->disconnect_channel(c->iface,
1390  							c->channel_id);
1391  		if (c->pipe1.comp)
1392  			c->pipe1.comp->disconnect_channel(c->iface,
1393  							c->channel_id);
1394  		c->pipe0.comp = NULL;
1395  		c->pipe1.comp = NULL;
1396  		list_del(&c->list);
1397  		device_unregister(&c->dev);
1398  	}
1399  
1400  	ida_simple_remove(&mdev_id, iface->p->dev_id);
1401  	kfree(iface->p);
1402  	device_unregister(iface->dev);
1403  }
1404  EXPORT_SYMBOL_GPL(most_deregister_interface);
1405  
1406  /**
1407   * most_stop_enqueue - prevents core from enqueueing MBOs
1408   * @iface: pointer to interface
1409   * @id: channel id
1410   *
1411   * This is called by an HDM that _cannot_ attend to its duties and
1412   * is imminent to get run over by the core. The core is not going to
1413   * enqueue any further packets unless the flagging HDM calls
1414   * most_resume enqueue().
1415   */
most_stop_enqueue(struct most_interface * iface,int id)1416  void most_stop_enqueue(struct most_interface *iface, int id)
1417  {
1418  	struct most_channel *c = iface->p->channel[id];
1419  
1420  	if (!c)
1421  		return;
1422  
1423  	mutex_lock(&c->nq_mutex);
1424  	c->enqueue_halt = true;
1425  	mutex_unlock(&c->nq_mutex);
1426  }
1427  EXPORT_SYMBOL_GPL(most_stop_enqueue);
1428  
1429  /**
1430   * most_resume_enqueue - allow core to enqueue MBOs again
1431   * @iface: pointer to interface
1432   * @id: channel id
1433   *
1434   * This clears the enqueue halt flag and enqueues all MBOs currently
1435   * sitting in the wait fifo.
1436   */
most_resume_enqueue(struct most_interface * iface,int id)1437  void most_resume_enqueue(struct most_interface *iface, int id)
1438  {
1439  	struct most_channel *c = iface->p->channel[id];
1440  
1441  	if (!c)
1442  		return;
1443  
1444  	mutex_lock(&c->nq_mutex);
1445  	c->enqueue_halt = false;
1446  	mutex_unlock(&c->nq_mutex);
1447  
1448  	wake_up_interruptible(&c->hdm_fifo_wq);
1449  }
1450  EXPORT_SYMBOL_GPL(most_resume_enqueue);
1451  
most_init(void)1452  static int __init most_init(void)
1453  {
1454  	int err;
1455  
1456  	INIT_LIST_HEAD(&comp_list);
1457  	ida_init(&mdev_id);
1458  
1459  	err = bus_register(&mostbus);
1460  	if (err) {
1461  		pr_err("Failed to register most bus\n");
1462  		return err;
1463  	}
1464  	err = driver_register(&mostbus_driver);
1465  	if (err) {
1466  		pr_err("Failed to register core driver\n");
1467  		goto err_unregister_bus;
1468  	}
1469  	configfs_init();
1470  	return 0;
1471  
1472  err_unregister_bus:
1473  	bus_unregister(&mostbus);
1474  	return err;
1475  }
1476  
most_exit(void)1477  static void __exit most_exit(void)
1478  {
1479  	driver_unregister(&mostbus_driver);
1480  	bus_unregister(&mostbus);
1481  	ida_destroy(&mdev_id);
1482  }
1483  
1484  subsys_initcall(most_init);
1485  module_exit(most_exit);
1486  MODULE_LICENSE("GPL");
1487  MODULE_AUTHOR("Christian Gromm <christian.gromm@microchip.com>");
1488  MODULE_DESCRIPTION("Core module of stacked MOST Linux driver");
1489