xref: /openbmc/linux/drivers/acpi/nfit/core.c (revision 16f6ccde74a6f8538c62f127f17207c75f4dba7a)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4   */
5  #include <linux/list_sort.h>
6  #include <linux/libnvdimm.h>
7  #include <linux/module.h>
8  #include <linux/nospec.h>
9  #include <linux/mutex.h>
10  #include <linux/ndctl.h>
11  #include <linux/sysfs.h>
12  #include <linux/delay.h>
13  #include <linux/list.h>
14  #include <linux/acpi.h>
15  #include <linux/sort.h>
16  #include <linux/io.h>
17  #include <linux/nd.h>
18  #include <asm/cacheflush.h>
19  #include <acpi/nfit.h>
20  #include "intel.h"
21  #include "nfit.h"
22  
23  /*
24   * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
25   * irrelevant.
26   */
27  #include <linux/io-64-nonatomic-hi-lo.h>
28  
29  static bool force_enable_dimms;
30  module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
31  MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
32  
33  static bool disable_vendor_specific;
34  module_param(disable_vendor_specific, bool, S_IRUGO);
35  MODULE_PARM_DESC(disable_vendor_specific,
36  		"Limit commands to the publicly specified set");
37  
38  static unsigned long override_dsm_mask;
39  module_param(override_dsm_mask, ulong, S_IRUGO);
40  MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
41  
42  static int default_dsm_family = -1;
43  module_param(default_dsm_family, int, S_IRUGO);
44  MODULE_PARM_DESC(default_dsm_family,
45  		"Try this DSM type first when identifying NVDIMM family");
46  
47  static bool no_init_ars;
48  module_param(no_init_ars, bool, 0644);
49  MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time");
50  
51  static bool force_labels;
52  module_param(force_labels, bool, 0444);
53  MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods");
54  
55  LIST_HEAD(acpi_descs);
56  DEFINE_MUTEX(acpi_desc_lock);
57  
58  static struct workqueue_struct *nfit_wq;
59  
60  struct nfit_table_prev {
61  	struct list_head spas;
62  	struct list_head memdevs;
63  	struct list_head dcrs;
64  	struct list_head bdws;
65  	struct list_head idts;
66  	struct list_head flushes;
67  };
68  
69  static guid_t nfit_uuid[NFIT_UUID_MAX];
70  
to_nfit_uuid(enum nfit_uuids id)71  const guid_t *to_nfit_uuid(enum nfit_uuids id)
72  {
73  	return &nfit_uuid[id];
74  }
75  EXPORT_SYMBOL(to_nfit_uuid);
76  
to_nfit_bus_uuid(int family)77  static const guid_t *to_nfit_bus_uuid(int family)
78  {
79  	if (WARN_ONCE(family == NVDIMM_BUS_FAMILY_NFIT,
80  			"only secondary bus families can be translated\n"))
81  		return NULL;
82  	/*
83  	 * The index of bus UUIDs starts immediately following the last
84  	 * NVDIMM/leaf family.
85  	 */
86  	return to_nfit_uuid(family + NVDIMM_FAMILY_MAX);
87  }
88  
to_acpi_dev(struct acpi_nfit_desc * acpi_desc)89  static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
90  {
91  	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
92  
93  	/*
94  	 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
95  	 * acpi_device.
96  	 */
97  	if (!nd_desc->provider_name
98  			|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
99  		return NULL;
100  
101  	return to_acpi_device(acpi_desc->dev);
102  }
103  
xlat_bus_status(void * buf,unsigned int cmd,u32 status)104  static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
105  {
106  	struct nd_cmd_clear_error *clear_err;
107  	struct nd_cmd_ars_status *ars_status;
108  	u16 flags;
109  
110  	switch (cmd) {
111  	case ND_CMD_ARS_CAP:
112  		if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
113  			return -ENOTTY;
114  
115  		/* Command failed */
116  		if (status & 0xffff)
117  			return -EIO;
118  
119  		/* No supported scan types for this range */
120  		flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
121  		if ((status >> 16 & flags) == 0)
122  			return -ENOTTY;
123  		return 0;
124  	case ND_CMD_ARS_START:
125  		/* ARS is in progress */
126  		if ((status & 0xffff) == NFIT_ARS_START_BUSY)
127  			return -EBUSY;
128  
129  		/* Command failed */
130  		if (status & 0xffff)
131  			return -EIO;
132  		return 0;
133  	case ND_CMD_ARS_STATUS:
134  		ars_status = buf;
135  		/* Command failed */
136  		if (status & 0xffff)
137  			return -EIO;
138  		/* Check extended status (Upper two bytes) */
139  		if (status == NFIT_ARS_STATUS_DONE)
140  			return 0;
141  
142  		/* ARS is in progress */
143  		if (status == NFIT_ARS_STATUS_BUSY)
144  			return -EBUSY;
145  
146  		/* No ARS performed for the current boot */
147  		if (status == NFIT_ARS_STATUS_NONE)
148  			return -EAGAIN;
149  
150  		/*
151  		 * ARS interrupted, either we overflowed or some other
152  		 * agent wants the scan to stop.  If we didn't overflow
153  		 * then just continue with the returned results.
154  		 */
155  		if (status == NFIT_ARS_STATUS_INTR) {
156  			if (ars_status->out_length >= 40 && (ars_status->flags
157  						& NFIT_ARS_F_OVERFLOW))
158  				return -ENOSPC;
159  			return 0;
160  		}
161  
162  		/* Unknown status */
163  		if (status >> 16)
164  			return -EIO;
165  		return 0;
166  	case ND_CMD_CLEAR_ERROR:
167  		clear_err = buf;
168  		if (status & 0xffff)
169  			return -EIO;
170  		if (!clear_err->cleared)
171  			return -EIO;
172  		if (clear_err->length > clear_err->cleared)
173  			return clear_err->cleared;
174  		return 0;
175  	default:
176  		break;
177  	}
178  
179  	/* all other non-zero status results in an error */
180  	if (status)
181  		return -EIO;
182  	return 0;
183  }
184  
185  #define ACPI_LABELS_LOCKED 3
186  
xlat_nvdimm_status(struct nvdimm * nvdimm,void * buf,unsigned int cmd,u32 status)187  static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
188  		u32 status)
189  {
190  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
191  
192  	switch (cmd) {
193  	case ND_CMD_GET_CONFIG_SIZE:
194  		/*
195  		 * In the _LSI, _LSR, _LSW case the locked status is
196  		 * communicated via the read/write commands
197  		 */
198  		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
199  			break;
200  
201  		if (status >> 16 & ND_CONFIG_LOCKED)
202  			return -EACCES;
203  		break;
204  	case ND_CMD_GET_CONFIG_DATA:
205  		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
206  				&& status == ACPI_LABELS_LOCKED)
207  			return -EACCES;
208  		break;
209  	case ND_CMD_SET_CONFIG_DATA:
210  		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
211  				&& status == ACPI_LABELS_LOCKED)
212  			return -EACCES;
213  		break;
214  	default:
215  		break;
216  	}
217  
218  	/* all other non-zero status results in an error */
219  	if (status)
220  		return -EIO;
221  	return 0;
222  }
223  
xlat_status(struct nvdimm * nvdimm,void * buf,unsigned int cmd,u32 status)224  static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
225  		u32 status)
226  {
227  	if (!nvdimm)
228  		return xlat_bus_status(buf, cmd, status);
229  	return xlat_nvdimm_status(nvdimm, buf, cmd, status);
230  }
231  
232  /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
pkg_to_buf(union acpi_object * pkg)233  static union acpi_object *pkg_to_buf(union acpi_object *pkg)
234  {
235  	int i;
236  	void *dst;
237  	size_t size = 0;
238  	union acpi_object *buf = NULL;
239  
240  	if (pkg->type != ACPI_TYPE_PACKAGE) {
241  		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
242  				pkg->type);
243  		goto err;
244  	}
245  
246  	for (i = 0; i < pkg->package.count; i++) {
247  		union acpi_object *obj = &pkg->package.elements[i];
248  
249  		if (obj->type == ACPI_TYPE_INTEGER)
250  			size += 4;
251  		else if (obj->type == ACPI_TYPE_BUFFER)
252  			size += obj->buffer.length;
253  		else {
254  			WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
255  					obj->type);
256  			goto err;
257  		}
258  	}
259  
260  	buf = ACPI_ALLOCATE(sizeof(*buf) + size);
261  	if (!buf)
262  		goto err;
263  
264  	dst = buf + 1;
265  	buf->type = ACPI_TYPE_BUFFER;
266  	buf->buffer.length = size;
267  	buf->buffer.pointer = dst;
268  	for (i = 0; i < pkg->package.count; i++) {
269  		union acpi_object *obj = &pkg->package.elements[i];
270  
271  		if (obj->type == ACPI_TYPE_INTEGER) {
272  			memcpy(dst, &obj->integer.value, 4);
273  			dst += 4;
274  		} else if (obj->type == ACPI_TYPE_BUFFER) {
275  			memcpy(dst, obj->buffer.pointer, obj->buffer.length);
276  			dst += obj->buffer.length;
277  		}
278  	}
279  err:
280  	ACPI_FREE(pkg);
281  	return buf;
282  }
283  
int_to_buf(union acpi_object * integer)284  static union acpi_object *int_to_buf(union acpi_object *integer)
285  {
286  	union acpi_object *buf = NULL;
287  	void *dst = NULL;
288  
289  	if (integer->type != ACPI_TYPE_INTEGER) {
290  		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
291  				integer->type);
292  		goto err;
293  	}
294  
295  	buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
296  	if (!buf)
297  		goto err;
298  
299  	dst = buf + 1;
300  	buf->type = ACPI_TYPE_BUFFER;
301  	buf->buffer.length = 4;
302  	buf->buffer.pointer = dst;
303  	memcpy(dst, &integer->integer.value, 4);
304  err:
305  	ACPI_FREE(integer);
306  	return buf;
307  }
308  
acpi_label_write(acpi_handle handle,u32 offset,u32 len,void * data)309  static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
310  		u32 len, void *data)
311  {
312  	acpi_status rc;
313  	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
314  	struct acpi_object_list input = {
315  		.count = 3,
316  		.pointer = (union acpi_object []) {
317  			[0] = {
318  				.integer.type = ACPI_TYPE_INTEGER,
319  				.integer.value = offset,
320  			},
321  			[1] = {
322  				.integer.type = ACPI_TYPE_INTEGER,
323  				.integer.value = len,
324  			},
325  			[2] = {
326  				.buffer.type = ACPI_TYPE_BUFFER,
327  				.buffer.pointer = data,
328  				.buffer.length = len,
329  			},
330  		},
331  	};
332  
333  	rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
334  	if (ACPI_FAILURE(rc))
335  		return NULL;
336  	return int_to_buf(buf.pointer);
337  }
338  
acpi_label_read(acpi_handle handle,u32 offset,u32 len)339  static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
340  		u32 len)
341  {
342  	acpi_status rc;
343  	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
344  	struct acpi_object_list input = {
345  		.count = 2,
346  		.pointer = (union acpi_object []) {
347  			[0] = {
348  				.integer.type = ACPI_TYPE_INTEGER,
349  				.integer.value = offset,
350  			},
351  			[1] = {
352  				.integer.type = ACPI_TYPE_INTEGER,
353  				.integer.value = len,
354  			},
355  		},
356  	};
357  
358  	rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
359  	if (ACPI_FAILURE(rc))
360  		return NULL;
361  	return pkg_to_buf(buf.pointer);
362  }
363  
acpi_label_info(acpi_handle handle)364  static union acpi_object *acpi_label_info(acpi_handle handle)
365  {
366  	acpi_status rc;
367  	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
368  
369  	rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
370  	if (ACPI_FAILURE(rc))
371  		return NULL;
372  	return pkg_to_buf(buf.pointer);
373  }
374  
nfit_dsm_revid(unsigned family,unsigned func)375  static u8 nfit_dsm_revid(unsigned family, unsigned func)
376  {
377  	static const u8 revid_table[NVDIMM_FAMILY_MAX+1][NVDIMM_CMD_MAX+1] = {
378  		[NVDIMM_FAMILY_INTEL] = {
379  			[NVDIMM_INTEL_GET_MODES ...
380  				NVDIMM_INTEL_FW_ACTIVATE_ARM] = 2,
381  		},
382  	};
383  	u8 id;
384  
385  	if (family > NVDIMM_FAMILY_MAX)
386  		return 0;
387  	if (func > NVDIMM_CMD_MAX)
388  		return 0;
389  	id = revid_table[family][func];
390  	if (id == 0)
391  		return 1; /* default */
392  	return id;
393  }
394  
payload_dumpable(struct nvdimm * nvdimm,unsigned int func)395  static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func)
396  {
397  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
398  
399  	if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL
400  			&& func >= NVDIMM_INTEL_GET_SECURITY_STATE
401  			&& func <= NVDIMM_INTEL_MASTER_SECURE_ERASE)
402  		return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG);
403  	return true;
404  }
405  
cmd_to_func(struct nfit_mem * nfit_mem,unsigned int cmd,struct nd_cmd_pkg * call_pkg,int * family)406  static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd,
407  		struct nd_cmd_pkg *call_pkg, int *family)
408  {
409  	if (call_pkg) {
410  		int i;
411  
412  		if (nfit_mem && nfit_mem->family != call_pkg->nd_family)
413  			return -ENOTTY;
414  
415  		for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
416  			if (call_pkg->nd_reserved2[i])
417  				return -EINVAL;
418  		*family = call_pkg->nd_family;
419  		return call_pkg->nd_command;
420  	}
421  
422  	/* In the !call_pkg case, bus commands == bus functions */
423  	if (!nfit_mem)
424  		return cmd;
425  
426  	/* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */
427  	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
428  		return cmd;
429  
430  	/*
431  	 * Force function number validation to fail since 0 is never
432  	 * published as a valid function in dsm_mask.
433  	 */
434  	return 0;
435  }
436  
acpi_nfit_ctl(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,unsigned int cmd,void * buf,unsigned int buf_len,int * cmd_rc)437  int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
438  		unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
439  {
440  	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
441  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
442  	union acpi_object in_obj, in_buf, *out_obj;
443  	const struct nd_cmd_desc *desc = NULL;
444  	struct device *dev = acpi_desc->dev;
445  	struct nd_cmd_pkg *call_pkg = NULL;
446  	const char *cmd_name, *dimm_name;
447  	unsigned long cmd_mask, dsm_mask;
448  	u32 offset, fw_status = 0;
449  	acpi_handle handle;
450  	const guid_t *guid;
451  	int func, rc, i;
452  	int family = 0;
453  
454  	if (cmd_rc)
455  		*cmd_rc = -EINVAL;
456  
457  	if (cmd == ND_CMD_CALL) {
458  		if (!buf || buf_len < sizeof(*call_pkg))
459  			return -EINVAL;
460  
461  		call_pkg = buf;
462  	}
463  
464  	func = cmd_to_func(nfit_mem, cmd, call_pkg, &family);
465  	if (func < 0)
466  		return func;
467  
468  	if (nvdimm) {
469  		struct acpi_device *adev = nfit_mem->adev;
470  
471  		if (!adev)
472  			return -ENOTTY;
473  
474  		dimm_name = nvdimm_name(nvdimm);
475  		cmd_name = nvdimm_cmd_name(cmd);
476  		cmd_mask = nvdimm_cmd_mask(nvdimm);
477  		dsm_mask = nfit_mem->dsm_mask;
478  		desc = nd_cmd_dimm_desc(cmd);
479  		guid = to_nfit_uuid(nfit_mem->family);
480  		handle = adev->handle;
481  	} else {
482  		struct acpi_device *adev = to_acpi_dev(acpi_desc);
483  
484  		cmd_name = nvdimm_bus_cmd_name(cmd);
485  		cmd_mask = nd_desc->cmd_mask;
486  		if (cmd == ND_CMD_CALL && call_pkg->nd_family) {
487  			family = call_pkg->nd_family;
488  			if (family > NVDIMM_BUS_FAMILY_MAX ||
489  			    !test_bit(family, &nd_desc->bus_family_mask))
490  				return -EINVAL;
491  			family = array_index_nospec(family,
492  						    NVDIMM_BUS_FAMILY_MAX + 1);
493  			dsm_mask = acpi_desc->family_dsm_mask[family];
494  			guid = to_nfit_bus_uuid(family);
495  		} else {
496  			dsm_mask = acpi_desc->bus_dsm_mask;
497  			guid = to_nfit_uuid(NFIT_DEV_BUS);
498  		}
499  		desc = nd_cmd_bus_desc(cmd);
500  		handle = adev->handle;
501  		dimm_name = "bus";
502  	}
503  
504  	if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
505  		return -ENOTTY;
506  
507  	/*
508  	 * Check for a valid command.  For ND_CMD_CALL, we also have to
509  	 * make sure that the DSM function is supported.
510  	 */
511  	if (cmd == ND_CMD_CALL &&
512  	    (func > NVDIMM_CMD_MAX || !test_bit(func, &dsm_mask)))
513  		return -ENOTTY;
514  	else if (!test_bit(cmd, &cmd_mask))
515  		return -ENOTTY;
516  
517  	in_obj.type = ACPI_TYPE_PACKAGE;
518  	in_obj.package.count = 1;
519  	in_obj.package.elements = &in_buf;
520  	in_buf.type = ACPI_TYPE_BUFFER;
521  	in_buf.buffer.pointer = buf;
522  	in_buf.buffer.length = 0;
523  
524  	/* libnvdimm has already validated the input envelope */
525  	for (i = 0; i < desc->in_num; i++)
526  		in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
527  				i, buf);
528  
529  	if (call_pkg) {
530  		/* skip over package wrapper */
531  		in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
532  		in_buf.buffer.length = call_pkg->nd_size_in;
533  	}
534  
535  	dev_dbg(dev, "%s cmd: %d: family: %d func: %d input length: %d\n",
536  		dimm_name, cmd, family, func, in_buf.buffer.length);
537  	if (payload_dumpable(nvdimm, func))
538  		print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
539  				in_buf.buffer.pointer,
540  				min_t(u32, 256, in_buf.buffer.length), true);
541  
542  	/* call the BIOS, prefer the named methods over _DSM if available */
543  	if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE
544  			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
545  		out_obj = acpi_label_info(handle);
546  	else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA
547  			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
548  		struct nd_cmd_get_config_data_hdr *p = buf;
549  
550  		out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
551  	} else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
552  			&& test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) {
553  		struct nd_cmd_set_config_hdr *p = buf;
554  
555  		out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
556  				p->in_buf);
557  	} else {
558  		u8 revid;
559  
560  		if (nvdimm)
561  			revid = nfit_dsm_revid(nfit_mem->family, func);
562  		else
563  			revid = 1;
564  		out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
565  	}
566  
567  	if (!out_obj) {
568  		dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name);
569  		return -EINVAL;
570  	}
571  
572  	if (out_obj->type != ACPI_TYPE_BUFFER) {
573  		dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n",
574  				dimm_name, cmd_name, out_obj->type);
575  		rc = -EINVAL;
576  		goto out;
577  	}
578  
579  	dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name,
580  			cmd_name, out_obj->buffer.length);
581  	print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
582  			out_obj->buffer.pointer,
583  			min_t(u32, 128, out_obj->buffer.length), true);
584  
585  	if (call_pkg) {
586  		call_pkg->nd_fw_size = out_obj->buffer.length;
587  		memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
588  			out_obj->buffer.pointer,
589  			min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
590  
591  		ACPI_FREE(out_obj);
592  		/*
593  		 * Need to support FW function w/o known size in advance.
594  		 * Caller can determine required size based upon nd_fw_size.
595  		 * If we return an error (like elsewhere) then caller wouldn't
596  		 * be able to rely upon data returned to make calculation.
597  		 */
598  		if (cmd_rc)
599  			*cmd_rc = 0;
600  		return 0;
601  	}
602  
603  	for (i = 0, offset = 0; i < desc->out_num; i++) {
604  		u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
605  				(u32 *) out_obj->buffer.pointer,
606  				out_obj->buffer.length - offset);
607  
608  		if (offset + out_size > out_obj->buffer.length) {
609  			dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n",
610  					dimm_name, cmd_name, i);
611  			break;
612  		}
613  
614  		if (in_buf.buffer.length + offset + out_size > buf_len) {
615  			dev_dbg(dev, "%s output overrun cmd: %s field: %d\n",
616  					dimm_name, cmd_name, i);
617  			rc = -ENXIO;
618  			goto out;
619  		}
620  		memcpy(buf + in_buf.buffer.length + offset,
621  				out_obj->buffer.pointer + offset, out_size);
622  		offset += out_size;
623  	}
624  
625  	/*
626  	 * Set fw_status for all the commands with a known format to be
627  	 * later interpreted by xlat_status().
628  	 */
629  	if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
630  					&& cmd <= ND_CMD_CLEAR_ERROR)
631  				|| (nvdimm && cmd >= ND_CMD_SMART
632  					&& cmd <= ND_CMD_VENDOR)))
633  		fw_status = *(u32 *) out_obj->buffer.pointer;
634  
635  	if (offset + in_buf.buffer.length < buf_len) {
636  		if (i >= 1) {
637  			/*
638  			 * status valid, return the number of bytes left
639  			 * unfilled in the output buffer
640  			 */
641  			rc = buf_len - offset - in_buf.buffer.length;
642  			if (cmd_rc)
643  				*cmd_rc = xlat_status(nvdimm, buf, cmd,
644  						fw_status);
645  		} else {
646  			dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
647  					__func__, dimm_name, cmd_name, buf_len,
648  					offset);
649  			rc = -ENXIO;
650  		}
651  	} else {
652  		rc = 0;
653  		if (cmd_rc)
654  			*cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
655  	}
656  
657   out:
658  	ACPI_FREE(out_obj);
659  
660  	return rc;
661  }
662  EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
663  
spa_type_name(u16 type)664  static const char *spa_type_name(u16 type)
665  {
666  	static const char *to_name[] = {
667  		[NFIT_SPA_VOLATILE] = "volatile",
668  		[NFIT_SPA_PM] = "pmem",
669  		[NFIT_SPA_DCR] = "dimm-control-region",
670  		[NFIT_SPA_BDW] = "block-data-window",
671  		[NFIT_SPA_VDISK] = "volatile-disk",
672  		[NFIT_SPA_VCD] = "volatile-cd",
673  		[NFIT_SPA_PDISK] = "persistent-disk",
674  		[NFIT_SPA_PCD] = "persistent-cd",
675  
676  	};
677  
678  	if (type > NFIT_SPA_PCD)
679  		return "unknown";
680  
681  	return to_name[type];
682  }
683  
nfit_spa_type(struct acpi_nfit_system_address * spa)684  int nfit_spa_type(struct acpi_nfit_system_address *spa)
685  {
686  	guid_t guid;
687  	int i;
688  
689  	import_guid(&guid, spa->range_guid);
690  	for (i = 0; i < NFIT_UUID_MAX; i++)
691  		if (guid_equal(to_nfit_uuid(i), &guid))
692  			return i;
693  	return -1;
694  }
695  
sizeof_spa(struct acpi_nfit_system_address * spa)696  static size_t sizeof_spa(struct acpi_nfit_system_address *spa)
697  {
698  	if (spa->flags & ACPI_NFIT_LOCATION_COOKIE_VALID)
699  		return sizeof(*spa);
700  	return sizeof(*spa) - 8;
701  }
702  
add_spa(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_system_address * spa)703  static bool add_spa(struct acpi_nfit_desc *acpi_desc,
704  		struct nfit_table_prev *prev,
705  		struct acpi_nfit_system_address *spa)
706  {
707  	struct device *dev = acpi_desc->dev;
708  	struct nfit_spa *nfit_spa;
709  
710  	if (spa->header.length != sizeof_spa(spa))
711  		return false;
712  
713  	list_for_each_entry(nfit_spa, &prev->spas, list) {
714  		if (memcmp(nfit_spa->spa, spa, sizeof_spa(spa)) == 0) {
715  			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
716  			return true;
717  		}
718  	}
719  
720  	nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof_spa(spa),
721  			GFP_KERNEL);
722  	if (!nfit_spa)
723  		return false;
724  	INIT_LIST_HEAD(&nfit_spa->list);
725  	memcpy(nfit_spa->spa, spa, sizeof_spa(spa));
726  	list_add_tail(&nfit_spa->list, &acpi_desc->spas);
727  	dev_dbg(dev, "spa index: %d type: %s\n",
728  			spa->range_index,
729  			spa_type_name(nfit_spa_type(spa)));
730  	return true;
731  }
732  
add_memdev(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_memory_map * memdev)733  static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
734  		struct nfit_table_prev *prev,
735  		struct acpi_nfit_memory_map *memdev)
736  {
737  	struct device *dev = acpi_desc->dev;
738  	struct nfit_memdev *nfit_memdev;
739  
740  	if (memdev->header.length != sizeof(*memdev))
741  		return false;
742  
743  	list_for_each_entry(nfit_memdev, &prev->memdevs, list)
744  		if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
745  			list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
746  			return true;
747  		}
748  
749  	nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
750  			GFP_KERNEL);
751  	if (!nfit_memdev)
752  		return false;
753  	INIT_LIST_HEAD(&nfit_memdev->list);
754  	memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
755  	list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
756  	dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
757  			memdev->device_handle, memdev->range_index,
758  			memdev->region_index, memdev->flags);
759  	return true;
760  }
761  
nfit_get_smbios_id(u32 device_handle,u16 * flags)762  int nfit_get_smbios_id(u32 device_handle, u16 *flags)
763  {
764  	struct acpi_nfit_memory_map *memdev;
765  	struct acpi_nfit_desc *acpi_desc;
766  	struct nfit_mem *nfit_mem;
767  	u16 physical_id;
768  
769  	mutex_lock(&acpi_desc_lock);
770  	list_for_each_entry(acpi_desc, &acpi_descs, list) {
771  		mutex_lock(&acpi_desc->init_mutex);
772  		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
773  			memdev = __to_nfit_memdev(nfit_mem);
774  			if (memdev->device_handle == device_handle) {
775  				*flags = memdev->flags;
776  				physical_id = memdev->physical_id;
777  				mutex_unlock(&acpi_desc->init_mutex);
778  				mutex_unlock(&acpi_desc_lock);
779  				return physical_id;
780  			}
781  		}
782  		mutex_unlock(&acpi_desc->init_mutex);
783  	}
784  	mutex_unlock(&acpi_desc_lock);
785  
786  	return -ENODEV;
787  }
788  EXPORT_SYMBOL_GPL(nfit_get_smbios_id);
789  
790  /*
791   * An implementation may provide a truncated control region if no block windows
792   * are defined.
793   */
sizeof_dcr(struct acpi_nfit_control_region * dcr)794  static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
795  {
796  	if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
797  				window_size))
798  		return 0;
799  	if (dcr->windows)
800  		return sizeof(*dcr);
801  	return offsetof(struct acpi_nfit_control_region, window_size);
802  }
803  
add_dcr(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_control_region * dcr)804  static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
805  		struct nfit_table_prev *prev,
806  		struct acpi_nfit_control_region *dcr)
807  {
808  	struct device *dev = acpi_desc->dev;
809  	struct nfit_dcr *nfit_dcr;
810  
811  	if (!sizeof_dcr(dcr))
812  		return false;
813  
814  	list_for_each_entry(nfit_dcr, &prev->dcrs, list)
815  		if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
816  			list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
817  			return true;
818  		}
819  
820  	nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
821  			GFP_KERNEL);
822  	if (!nfit_dcr)
823  		return false;
824  	INIT_LIST_HEAD(&nfit_dcr->list);
825  	memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
826  	list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
827  	dev_dbg(dev, "dcr index: %d windows: %d\n",
828  			dcr->region_index, dcr->windows);
829  	return true;
830  }
831  
add_bdw(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_data_region * bdw)832  static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
833  		struct nfit_table_prev *prev,
834  		struct acpi_nfit_data_region *bdw)
835  {
836  	struct device *dev = acpi_desc->dev;
837  	struct nfit_bdw *nfit_bdw;
838  
839  	if (bdw->header.length != sizeof(*bdw))
840  		return false;
841  	list_for_each_entry(nfit_bdw, &prev->bdws, list)
842  		if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
843  			list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
844  			return true;
845  		}
846  
847  	nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
848  			GFP_KERNEL);
849  	if (!nfit_bdw)
850  		return false;
851  	INIT_LIST_HEAD(&nfit_bdw->list);
852  	memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
853  	list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
854  	dev_dbg(dev, "bdw dcr: %d windows: %d\n",
855  			bdw->region_index, bdw->windows);
856  	return true;
857  }
858  
sizeof_idt(struct acpi_nfit_interleave * idt)859  static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
860  {
861  	if (idt->header.length < sizeof(*idt))
862  		return 0;
863  	return sizeof(*idt) + sizeof(u32) * idt->line_count;
864  }
865  
add_idt(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_interleave * idt)866  static bool add_idt(struct acpi_nfit_desc *acpi_desc,
867  		struct nfit_table_prev *prev,
868  		struct acpi_nfit_interleave *idt)
869  {
870  	struct device *dev = acpi_desc->dev;
871  	struct nfit_idt *nfit_idt;
872  
873  	if (!sizeof_idt(idt))
874  		return false;
875  
876  	list_for_each_entry(nfit_idt, &prev->idts, list) {
877  		if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
878  			continue;
879  
880  		if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
881  			list_move_tail(&nfit_idt->list, &acpi_desc->idts);
882  			return true;
883  		}
884  	}
885  
886  	nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
887  			GFP_KERNEL);
888  	if (!nfit_idt)
889  		return false;
890  	INIT_LIST_HEAD(&nfit_idt->list);
891  	memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
892  	list_add_tail(&nfit_idt->list, &acpi_desc->idts);
893  	dev_dbg(dev, "idt index: %d num_lines: %d\n",
894  			idt->interleave_index, idt->line_count);
895  	return true;
896  }
897  
sizeof_flush(struct acpi_nfit_flush_address * flush)898  static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
899  {
900  	if (flush->header.length < sizeof(*flush))
901  		return 0;
902  	return struct_size(flush, hint_address, flush->hint_count);
903  }
904  
add_flush(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_flush_address * flush)905  static bool add_flush(struct acpi_nfit_desc *acpi_desc,
906  		struct nfit_table_prev *prev,
907  		struct acpi_nfit_flush_address *flush)
908  {
909  	struct device *dev = acpi_desc->dev;
910  	struct nfit_flush *nfit_flush;
911  
912  	if (!sizeof_flush(flush))
913  		return false;
914  
915  	list_for_each_entry(nfit_flush, &prev->flushes, list) {
916  		if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
917  			continue;
918  
919  		if (memcmp(nfit_flush->flush, flush,
920  					sizeof_flush(flush)) == 0) {
921  			list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
922  			return true;
923  		}
924  	}
925  
926  	nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
927  			+ sizeof_flush(flush), GFP_KERNEL);
928  	if (!nfit_flush)
929  		return false;
930  	INIT_LIST_HEAD(&nfit_flush->list);
931  	memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
932  	list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
933  	dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n",
934  			flush->device_handle, flush->hint_count);
935  	return true;
936  }
937  
add_platform_cap(struct acpi_nfit_desc * acpi_desc,struct acpi_nfit_capabilities * pcap)938  static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc,
939  		struct acpi_nfit_capabilities *pcap)
940  {
941  	struct device *dev = acpi_desc->dev;
942  	u32 mask;
943  
944  	mask = (1 << (pcap->highest_capability + 1)) - 1;
945  	acpi_desc->platform_cap = pcap->capabilities & mask;
946  	dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap);
947  	return true;
948  }
949  
add_table(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,void * table,const void * end)950  static void *add_table(struct acpi_nfit_desc *acpi_desc,
951  		struct nfit_table_prev *prev, void *table, const void *end)
952  {
953  	struct device *dev = acpi_desc->dev;
954  	struct acpi_nfit_header *hdr;
955  	void *err = ERR_PTR(-ENOMEM);
956  
957  	if (table >= end)
958  		return NULL;
959  
960  	hdr = table;
961  	if (!hdr->length) {
962  		dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
963  			hdr->type);
964  		return NULL;
965  	}
966  
967  	switch (hdr->type) {
968  	case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
969  		if (!add_spa(acpi_desc, prev, table))
970  			return err;
971  		break;
972  	case ACPI_NFIT_TYPE_MEMORY_MAP:
973  		if (!add_memdev(acpi_desc, prev, table))
974  			return err;
975  		break;
976  	case ACPI_NFIT_TYPE_CONTROL_REGION:
977  		if (!add_dcr(acpi_desc, prev, table))
978  			return err;
979  		break;
980  	case ACPI_NFIT_TYPE_DATA_REGION:
981  		if (!add_bdw(acpi_desc, prev, table))
982  			return err;
983  		break;
984  	case ACPI_NFIT_TYPE_INTERLEAVE:
985  		if (!add_idt(acpi_desc, prev, table))
986  			return err;
987  		break;
988  	case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
989  		if (!add_flush(acpi_desc, prev, table))
990  			return err;
991  		break;
992  	case ACPI_NFIT_TYPE_SMBIOS:
993  		dev_dbg(dev, "smbios\n");
994  		break;
995  	case ACPI_NFIT_TYPE_CAPABILITIES:
996  		if (!add_platform_cap(acpi_desc, table))
997  			return err;
998  		break;
999  	default:
1000  		dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
1001  		break;
1002  	}
1003  
1004  	return table + hdr->length;
1005  }
1006  
__nfit_mem_init(struct acpi_nfit_desc * acpi_desc,struct acpi_nfit_system_address * spa)1007  static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
1008  		struct acpi_nfit_system_address *spa)
1009  {
1010  	struct nfit_mem *nfit_mem, *found;
1011  	struct nfit_memdev *nfit_memdev;
1012  	int type = spa ? nfit_spa_type(spa) : 0;
1013  
1014  	switch (type) {
1015  	case NFIT_SPA_DCR:
1016  	case NFIT_SPA_PM:
1017  		break;
1018  	default:
1019  		if (spa)
1020  			return 0;
1021  	}
1022  
1023  	/*
1024  	 * This loop runs in two modes, when a dimm is mapped the loop
1025  	 * adds memdev associations to an existing dimm, or creates a
1026  	 * dimm. In the unmapped dimm case this loop sweeps for memdev
1027  	 * instances with an invalid / zero range_index and adds those
1028  	 * dimms without spa associations.
1029  	 */
1030  	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1031  		struct nfit_flush *nfit_flush;
1032  		struct nfit_dcr *nfit_dcr;
1033  		u32 device_handle;
1034  		u16 dcr;
1035  
1036  		if (spa && nfit_memdev->memdev->range_index != spa->range_index)
1037  			continue;
1038  		if (!spa && nfit_memdev->memdev->range_index)
1039  			continue;
1040  		found = NULL;
1041  		dcr = nfit_memdev->memdev->region_index;
1042  		device_handle = nfit_memdev->memdev->device_handle;
1043  		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1044  			if (__to_nfit_memdev(nfit_mem)->device_handle
1045  					== device_handle) {
1046  				found = nfit_mem;
1047  				break;
1048  			}
1049  
1050  		if (found)
1051  			nfit_mem = found;
1052  		else {
1053  			nfit_mem = devm_kzalloc(acpi_desc->dev,
1054  					sizeof(*nfit_mem), GFP_KERNEL);
1055  			if (!nfit_mem)
1056  				return -ENOMEM;
1057  			INIT_LIST_HEAD(&nfit_mem->list);
1058  			nfit_mem->acpi_desc = acpi_desc;
1059  			list_add(&nfit_mem->list, &acpi_desc->dimms);
1060  		}
1061  
1062  		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1063  			if (nfit_dcr->dcr->region_index != dcr)
1064  				continue;
1065  			/*
1066  			 * Record the control region for the dimm.  For
1067  			 * the ACPI 6.1 case, where there are separate
1068  			 * control regions for the pmem vs blk
1069  			 * interfaces, be sure to record the extended
1070  			 * blk details.
1071  			 */
1072  			if (!nfit_mem->dcr)
1073  				nfit_mem->dcr = nfit_dcr->dcr;
1074  			else if (nfit_mem->dcr->windows == 0
1075  					&& nfit_dcr->dcr->windows)
1076  				nfit_mem->dcr = nfit_dcr->dcr;
1077  			break;
1078  		}
1079  
1080  		list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
1081  			struct acpi_nfit_flush_address *flush;
1082  			u16 i;
1083  
1084  			if (nfit_flush->flush->device_handle != device_handle)
1085  				continue;
1086  			nfit_mem->nfit_flush = nfit_flush;
1087  			flush = nfit_flush->flush;
1088  			nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev,
1089  					flush->hint_count,
1090  					sizeof(struct resource),
1091  					GFP_KERNEL);
1092  			if (!nfit_mem->flush_wpq)
1093  				return -ENOMEM;
1094  			for (i = 0; i < flush->hint_count; i++) {
1095  				struct resource *res = &nfit_mem->flush_wpq[i];
1096  
1097  				res->start = flush->hint_address[i];
1098  				res->end = res->start + 8 - 1;
1099  			}
1100  			break;
1101  		}
1102  
1103  		if (dcr && !nfit_mem->dcr) {
1104  			dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
1105  					spa->range_index, dcr);
1106  			return -ENODEV;
1107  		}
1108  
1109  		if (type == NFIT_SPA_DCR) {
1110  			struct nfit_idt *nfit_idt;
1111  			u16 idt_idx;
1112  
1113  			/* multiple dimms may share a SPA when interleaved */
1114  			nfit_mem->spa_dcr = spa;
1115  			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1116  			idt_idx = nfit_memdev->memdev->interleave_index;
1117  			list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1118  				if (nfit_idt->idt->interleave_index != idt_idx)
1119  					continue;
1120  				nfit_mem->idt_dcr = nfit_idt->idt;
1121  				break;
1122  			}
1123  		} else if (type == NFIT_SPA_PM) {
1124  			/*
1125  			 * A single dimm may belong to multiple SPA-PM
1126  			 * ranges, record at least one in addition to
1127  			 * any SPA-DCR range.
1128  			 */
1129  			nfit_mem->memdev_pmem = nfit_memdev->memdev;
1130  		} else
1131  			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1132  	}
1133  
1134  	return 0;
1135  }
1136  
nfit_mem_cmp(void * priv,const struct list_head * _a,const struct list_head * _b)1137  static int nfit_mem_cmp(void *priv, const struct list_head *_a,
1138  		const struct list_head *_b)
1139  {
1140  	struct nfit_mem *a = container_of(_a, typeof(*a), list);
1141  	struct nfit_mem *b = container_of(_b, typeof(*b), list);
1142  	u32 handleA, handleB;
1143  
1144  	handleA = __to_nfit_memdev(a)->device_handle;
1145  	handleB = __to_nfit_memdev(b)->device_handle;
1146  	if (handleA < handleB)
1147  		return -1;
1148  	else if (handleA > handleB)
1149  		return 1;
1150  	return 0;
1151  }
1152  
nfit_mem_init(struct acpi_nfit_desc * acpi_desc)1153  static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
1154  {
1155  	struct nfit_spa *nfit_spa;
1156  	int rc;
1157  
1158  
1159  	/*
1160  	 * For each SPA-DCR or SPA-PMEM address range find its
1161  	 * corresponding MEMDEV(s).  From each MEMDEV find the
1162  	 * corresponding DCR.  Then, if we're operating on a SPA-DCR,
1163  	 * try to find a SPA-BDW and a corresponding BDW that references
1164  	 * the DCR.  Throw it all into an nfit_mem object.  Note, that
1165  	 * BDWs are optional.
1166  	 */
1167  	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1168  		rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
1169  		if (rc)
1170  			return rc;
1171  	}
1172  
1173  	/*
1174  	 * If a DIMM has failed to be mapped into SPA there will be no
1175  	 * SPA entries above. Find and register all the unmapped DIMMs
1176  	 * for reporting and recovery purposes.
1177  	 */
1178  	rc = __nfit_mem_init(acpi_desc, NULL);
1179  	if (rc)
1180  		return rc;
1181  
1182  	list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
1183  
1184  	return 0;
1185  }
1186  
bus_dsm_mask_show(struct device * dev,struct device_attribute * attr,char * buf)1187  static ssize_t bus_dsm_mask_show(struct device *dev,
1188  		struct device_attribute *attr, char *buf)
1189  {
1190  	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1191  	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1192  	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1193  
1194  	return sprintf(buf, "%#lx\n", acpi_desc->bus_dsm_mask);
1195  }
1196  static struct device_attribute dev_attr_bus_dsm_mask =
1197  		__ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
1198  
revision_show(struct device * dev,struct device_attribute * attr,char * buf)1199  static ssize_t revision_show(struct device *dev,
1200  		struct device_attribute *attr, char *buf)
1201  {
1202  	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1203  	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1204  	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1205  
1206  	return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
1207  }
1208  static DEVICE_ATTR_RO(revision);
1209  
hw_error_scrub_show(struct device * dev,struct device_attribute * attr,char * buf)1210  static ssize_t hw_error_scrub_show(struct device *dev,
1211  		struct device_attribute *attr, char *buf)
1212  {
1213  	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1214  	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1215  	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1216  
1217  	return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
1218  }
1219  
1220  /*
1221   * The 'hw_error_scrub' attribute can have the following values written to it:
1222   * '0': Switch to the default mode where an exception will only insert
1223   *      the address of the memory error into the poison and badblocks lists.
1224   * '1': Enable a full scrub to happen if an exception for a memory error is
1225   *      received.
1226   */
hw_error_scrub_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1227  static ssize_t hw_error_scrub_store(struct device *dev,
1228  		struct device_attribute *attr, const char *buf, size_t size)
1229  {
1230  	struct nvdimm_bus_descriptor *nd_desc;
1231  	ssize_t rc;
1232  	long val;
1233  
1234  	rc = kstrtol(buf, 0, &val);
1235  	if (rc)
1236  		return rc;
1237  
1238  	device_lock(dev);
1239  	nd_desc = dev_get_drvdata(dev);
1240  	if (nd_desc) {
1241  		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1242  
1243  		switch (val) {
1244  		case HW_ERROR_SCRUB_ON:
1245  			acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1246  			break;
1247  		case HW_ERROR_SCRUB_OFF:
1248  			acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1249  			break;
1250  		default:
1251  			rc = -EINVAL;
1252  			break;
1253  		}
1254  	}
1255  	device_unlock(dev);
1256  	if (rc)
1257  		return rc;
1258  	return size;
1259  }
1260  static DEVICE_ATTR_RW(hw_error_scrub);
1261  
1262  /*
1263   * This shows the number of full Address Range Scrubs that have been
1264   * completed since driver load time. Userspace can wait on this using
1265   * select/poll etc. A '+' at the end indicates an ARS is in progress
1266   */
scrub_show(struct device * dev,struct device_attribute * attr,char * buf)1267  static ssize_t scrub_show(struct device *dev,
1268  		struct device_attribute *attr, char *buf)
1269  {
1270  	struct nvdimm_bus_descriptor *nd_desc;
1271  	struct acpi_nfit_desc *acpi_desc;
1272  	ssize_t rc = -ENXIO;
1273  	bool busy;
1274  
1275  	device_lock(dev);
1276  	nd_desc = dev_get_drvdata(dev);
1277  	if (!nd_desc) {
1278  		device_unlock(dev);
1279  		return rc;
1280  	}
1281  	acpi_desc = to_acpi_desc(nd_desc);
1282  
1283  	mutex_lock(&acpi_desc->init_mutex);
1284  	busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags)
1285  		&& !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
1286  	rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n");
1287  	/* Allow an admin to poll the busy state at a higher rate */
1288  	if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL,
1289  				&acpi_desc->scrub_flags)) {
1290  		acpi_desc->scrub_tmo = 1;
1291  		mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ);
1292  	}
1293  
1294  	mutex_unlock(&acpi_desc->init_mutex);
1295  	device_unlock(dev);
1296  	return rc;
1297  }
1298  
scrub_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1299  static ssize_t scrub_store(struct device *dev,
1300  		struct device_attribute *attr, const char *buf, size_t size)
1301  {
1302  	struct nvdimm_bus_descriptor *nd_desc;
1303  	ssize_t rc;
1304  	long val;
1305  
1306  	rc = kstrtol(buf, 0, &val);
1307  	if (rc)
1308  		return rc;
1309  	if (val != 1)
1310  		return -EINVAL;
1311  
1312  	device_lock(dev);
1313  	nd_desc = dev_get_drvdata(dev);
1314  	if (nd_desc) {
1315  		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1316  
1317  		rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
1318  	}
1319  	device_unlock(dev);
1320  	if (rc)
1321  		return rc;
1322  	return size;
1323  }
1324  static DEVICE_ATTR_RW(scrub);
1325  
ars_supported(struct nvdimm_bus * nvdimm_bus)1326  static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1327  {
1328  	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1329  	const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1330  		| 1 << ND_CMD_ARS_STATUS;
1331  
1332  	return (nd_desc->cmd_mask & mask) == mask;
1333  }
1334  
nfit_visible(struct kobject * kobj,struct attribute * a,int n)1335  static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1336  {
1337  	struct device *dev = kobj_to_dev(kobj);
1338  	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1339  
1340  	if (a == &dev_attr_scrub.attr)
1341  		return ars_supported(nvdimm_bus) ? a->mode : 0;
1342  
1343  	if (a == &dev_attr_firmware_activate_noidle.attr)
1344  		return intel_fwa_supported(nvdimm_bus) ? a->mode : 0;
1345  
1346  	return a->mode;
1347  }
1348  
1349  static struct attribute *acpi_nfit_attributes[] = {
1350  	&dev_attr_revision.attr,
1351  	&dev_attr_scrub.attr,
1352  	&dev_attr_hw_error_scrub.attr,
1353  	&dev_attr_bus_dsm_mask.attr,
1354  	&dev_attr_firmware_activate_noidle.attr,
1355  	NULL,
1356  };
1357  
1358  static const struct attribute_group acpi_nfit_attribute_group = {
1359  	.name = "nfit",
1360  	.attrs = acpi_nfit_attributes,
1361  	.is_visible = nfit_visible,
1362  };
1363  
1364  static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1365  	&acpi_nfit_attribute_group,
1366  	NULL,
1367  };
1368  
to_nfit_memdev(struct device * dev)1369  static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1370  {
1371  	struct nvdimm *nvdimm = to_nvdimm(dev);
1372  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1373  
1374  	return __to_nfit_memdev(nfit_mem);
1375  }
1376  
to_nfit_dcr(struct device * dev)1377  static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1378  {
1379  	struct nvdimm *nvdimm = to_nvdimm(dev);
1380  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1381  
1382  	return nfit_mem->dcr;
1383  }
1384  
handle_show(struct device * dev,struct device_attribute * attr,char * buf)1385  static ssize_t handle_show(struct device *dev,
1386  		struct device_attribute *attr, char *buf)
1387  {
1388  	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1389  
1390  	return sprintf(buf, "%#x\n", memdev->device_handle);
1391  }
1392  static DEVICE_ATTR_RO(handle);
1393  
phys_id_show(struct device * dev,struct device_attribute * attr,char * buf)1394  static ssize_t phys_id_show(struct device *dev,
1395  		struct device_attribute *attr, char *buf)
1396  {
1397  	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1398  
1399  	return sprintf(buf, "%#x\n", memdev->physical_id);
1400  }
1401  static DEVICE_ATTR_RO(phys_id);
1402  
vendor_show(struct device * dev,struct device_attribute * attr,char * buf)1403  static ssize_t vendor_show(struct device *dev,
1404  		struct device_attribute *attr, char *buf)
1405  {
1406  	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1407  
1408  	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1409  }
1410  static DEVICE_ATTR_RO(vendor);
1411  
rev_id_show(struct device * dev,struct device_attribute * attr,char * buf)1412  static ssize_t rev_id_show(struct device *dev,
1413  		struct device_attribute *attr, char *buf)
1414  {
1415  	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1416  
1417  	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1418  }
1419  static DEVICE_ATTR_RO(rev_id);
1420  
device_show(struct device * dev,struct device_attribute * attr,char * buf)1421  static ssize_t device_show(struct device *dev,
1422  		struct device_attribute *attr, char *buf)
1423  {
1424  	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1425  
1426  	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1427  }
1428  static DEVICE_ATTR_RO(device);
1429  
subsystem_vendor_show(struct device * dev,struct device_attribute * attr,char * buf)1430  static ssize_t subsystem_vendor_show(struct device *dev,
1431  		struct device_attribute *attr, char *buf)
1432  {
1433  	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1434  
1435  	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1436  }
1437  static DEVICE_ATTR_RO(subsystem_vendor);
1438  
subsystem_rev_id_show(struct device * dev,struct device_attribute * attr,char * buf)1439  static ssize_t subsystem_rev_id_show(struct device *dev,
1440  		struct device_attribute *attr, char *buf)
1441  {
1442  	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1443  
1444  	return sprintf(buf, "0x%04x\n",
1445  			be16_to_cpu(dcr->subsystem_revision_id));
1446  }
1447  static DEVICE_ATTR_RO(subsystem_rev_id);
1448  
subsystem_device_show(struct device * dev,struct device_attribute * attr,char * buf)1449  static ssize_t subsystem_device_show(struct device *dev,
1450  		struct device_attribute *attr, char *buf)
1451  {
1452  	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1453  
1454  	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1455  }
1456  static DEVICE_ATTR_RO(subsystem_device);
1457  
num_nvdimm_formats(struct nvdimm * nvdimm)1458  static int num_nvdimm_formats(struct nvdimm *nvdimm)
1459  {
1460  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1461  	int formats = 0;
1462  
1463  	if (nfit_mem->memdev_pmem)
1464  		formats++;
1465  	return formats;
1466  }
1467  
format_show(struct device * dev,struct device_attribute * attr,char * buf)1468  static ssize_t format_show(struct device *dev,
1469  		struct device_attribute *attr, char *buf)
1470  {
1471  	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1472  
1473  	return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1474  }
1475  static DEVICE_ATTR_RO(format);
1476  
format1_show(struct device * dev,struct device_attribute * attr,char * buf)1477  static ssize_t format1_show(struct device *dev,
1478  		struct device_attribute *attr, char *buf)
1479  {
1480  	u32 handle;
1481  	ssize_t rc = -ENXIO;
1482  	struct nfit_mem *nfit_mem;
1483  	struct nfit_memdev *nfit_memdev;
1484  	struct acpi_nfit_desc *acpi_desc;
1485  	struct nvdimm *nvdimm = to_nvdimm(dev);
1486  	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1487  
1488  	nfit_mem = nvdimm_provider_data(nvdimm);
1489  	acpi_desc = nfit_mem->acpi_desc;
1490  	handle = to_nfit_memdev(dev)->device_handle;
1491  
1492  	/* assumes DIMMs have at most 2 published interface codes */
1493  	mutex_lock(&acpi_desc->init_mutex);
1494  	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1495  		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1496  		struct nfit_dcr *nfit_dcr;
1497  
1498  		if (memdev->device_handle != handle)
1499  			continue;
1500  
1501  		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1502  			if (nfit_dcr->dcr->region_index != memdev->region_index)
1503  				continue;
1504  			if (nfit_dcr->dcr->code == dcr->code)
1505  				continue;
1506  			rc = sprintf(buf, "0x%04x\n",
1507  					le16_to_cpu(nfit_dcr->dcr->code));
1508  			break;
1509  		}
1510  		if (rc != -ENXIO)
1511  			break;
1512  	}
1513  	mutex_unlock(&acpi_desc->init_mutex);
1514  	return rc;
1515  }
1516  static DEVICE_ATTR_RO(format1);
1517  
formats_show(struct device * dev,struct device_attribute * attr,char * buf)1518  static ssize_t formats_show(struct device *dev,
1519  		struct device_attribute *attr, char *buf)
1520  {
1521  	struct nvdimm *nvdimm = to_nvdimm(dev);
1522  
1523  	return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1524  }
1525  static DEVICE_ATTR_RO(formats);
1526  
serial_show(struct device * dev,struct device_attribute * attr,char * buf)1527  static ssize_t serial_show(struct device *dev,
1528  		struct device_attribute *attr, char *buf)
1529  {
1530  	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1531  
1532  	return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1533  }
1534  static DEVICE_ATTR_RO(serial);
1535  
family_show(struct device * dev,struct device_attribute * attr,char * buf)1536  static ssize_t family_show(struct device *dev,
1537  		struct device_attribute *attr, char *buf)
1538  {
1539  	struct nvdimm *nvdimm = to_nvdimm(dev);
1540  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1541  
1542  	if (nfit_mem->family < 0)
1543  		return -ENXIO;
1544  	return sprintf(buf, "%d\n", nfit_mem->family);
1545  }
1546  static DEVICE_ATTR_RO(family);
1547  
dsm_mask_show(struct device * dev,struct device_attribute * attr,char * buf)1548  static ssize_t dsm_mask_show(struct device *dev,
1549  		struct device_attribute *attr, char *buf)
1550  {
1551  	struct nvdimm *nvdimm = to_nvdimm(dev);
1552  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1553  
1554  	if (nfit_mem->family < 0)
1555  		return -ENXIO;
1556  	return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1557  }
1558  static DEVICE_ATTR_RO(dsm_mask);
1559  
flags_show(struct device * dev,struct device_attribute * attr,char * buf)1560  static ssize_t flags_show(struct device *dev,
1561  		struct device_attribute *attr, char *buf)
1562  {
1563  	struct nvdimm *nvdimm = to_nvdimm(dev);
1564  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1565  	u16 flags = __to_nfit_memdev(nfit_mem)->flags;
1566  
1567  	if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags))
1568  		flags |= ACPI_NFIT_MEM_FLUSH_FAILED;
1569  
1570  	return sprintf(buf, "%s%s%s%s%s%s%s\n",
1571  		flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1572  		flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1573  		flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1574  		flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1575  		flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1576  		flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1577  		flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1578  }
1579  static DEVICE_ATTR_RO(flags);
1580  
id_show(struct device * dev,struct device_attribute * attr,char * buf)1581  static ssize_t id_show(struct device *dev,
1582  		struct device_attribute *attr, char *buf)
1583  {
1584  	struct nvdimm *nvdimm = to_nvdimm(dev);
1585  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1586  
1587  	return sprintf(buf, "%s\n", nfit_mem->id);
1588  }
1589  static DEVICE_ATTR_RO(id);
1590  
dirty_shutdown_show(struct device * dev,struct device_attribute * attr,char * buf)1591  static ssize_t dirty_shutdown_show(struct device *dev,
1592  		struct device_attribute *attr, char *buf)
1593  {
1594  	struct nvdimm *nvdimm = to_nvdimm(dev);
1595  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1596  
1597  	return sprintf(buf, "%d\n", nfit_mem->dirty_shutdown);
1598  }
1599  static DEVICE_ATTR_RO(dirty_shutdown);
1600  
1601  static struct attribute *acpi_nfit_dimm_attributes[] = {
1602  	&dev_attr_handle.attr,
1603  	&dev_attr_phys_id.attr,
1604  	&dev_attr_vendor.attr,
1605  	&dev_attr_device.attr,
1606  	&dev_attr_rev_id.attr,
1607  	&dev_attr_subsystem_vendor.attr,
1608  	&dev_attr_subsystem_device.attr,
1609  	&dev_attr_subsystem_rev_id.attr,
1610  	&dev_attr_format.attr,
1611  	&dev_attr_formats.attr,
1612  	&dev_attr_format1.attr,
1613  	&dev_attr_serial.attr,
1614  	&dev_attr_flags.attr,
1615  	&dev_attr_id.attr,
1616  	&dev_attr_family.attr,
1617  	&dev_attr_dsm_mask.attr,
1618  	&dev_attr_dirty_shutdown.attr,
1619  	NULL,
1620  };
1621  
acpi_nfit_dimm_attr_visible(struct kobject * kobj,struct attribute * a,int n)1622  static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1623  		struct attribute *a, int n)
1624  {
1625  	struct device *dev = kobj_to_dev(kobj);
1626  	struct nvdimm *nvdimm = to_nvdimm(dev);
1627  	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1628  
1629  	if (!to_nfit_dcr(dev)) {
1630  		/* Without a dcr only the memdev attributes can be surfaced */
1631  		if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1632  				|| a == &dev_attr_flags.attr
1633  				|| a == &dev_attr_family.attr
1634  				|| a == &dev_attr_dsm_mask.attr)
1635  			return a->mode;
1636  		return 0;
1637  	}
1638  
1639  	if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1640  		return 0;
1641  
1642  	if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags)
1643  			&& a == &dev_attr_dirty_shutdown.attr)
1644  		return 0;
1645  
1646  	return a->mode;
1647  }
1648  
1649  static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1650  	.name = "nfit",
1651  	.attrs = acpi_nfit_dimm_attributes,
1652  	.is_visible = acpi_nfit_dimm_attr_visible,
1653  };
1654  
1655  static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1656  	&acpi_nfit_dimm_attribute_group,
1657  	NULL,
1658  };
1659  
acpi_nfit_dimm_by_handle(struct acpi_nfit_desc * acpi_desc,u32 device_handle)1660  static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1661  		u32 device_handle)
1662  {
1663  	struct nfit_mem *nfit_mem;
1664  
1665  	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1666  		if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1667  			return nfit_mem->nvdimm;
1668  
1669  	return NULL;
1670  }
1671  
__acpi_nvdimm_notify(struct device * dev,u32 event)1672  void __acpi_nvdimm_notify(struct device *dev, u32 event)
1673  {
1674  	struct nfit_mem *nfit_mem;
1675  	struct acpi_nfit_desc *acpi_desc;
1676  
1677  	dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev),
1678  			event);
1679  
1680  	if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1681  		dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1682  				event);
1683  		return;
1684  	}
1685  
1686  	acpi_desc = dev_get_drvdata(dev->parent);
1687  	if (!acpi_desc)
1688  		return;
1689  
1690  	/*
1691  	 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1692  	 * is still valid.
1693  	 */
1694  	nfit_mem = dev_get_drvdata(dev);
1695  	if (nfit_mem && nfit_mem->flags_attr)
1696  		sysfs_notify_dirent(nfit_mem->flags_attr);
1697  }
1698  EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1699  
acpi_nvdimm_notify(acpi_handle handle,u32 event,void * data)1700  static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1701  {
1702  	struct acpi_device *adev = data;
1703  	struct device *dev = &adev->dev;
1704  
1705  	device_lock(dev->parent);
1706  	__acpi_nvdimm_notify(dev, event);
1707  	device_unlock(dev->parent);
1708  }
1709  
acpi_nvdimm_has_method(struct acpi_device * adev,char * method)1710  static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method)
1711  {
1712  	acpi_handle handle;
1713  	acpi_status status;
1714  
1715  	status = acpi_get_handle(adev->handle, method, &handle);
1716  
1717  	if (ACPI_SUCCESS(status))
1718  		return true;
1719  	return false;
1720  }
1721  
nfit_intel_shutdown_status(struct nfit_mem * nfit_mem)1722  __weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem)
1723  {
1724  	struct device *dev = &nfit_mem->adev->dev;
1725  	struct nd_intel_smart smart = { 0 };
1726  	union acpi_object in_buf = {
1727  		.buffer.type = ACPI_TYPE_BUFFER,
1728  		.buffer.length = 0,
1729  	};
1730  	union acpi_object in_obj = {
1731  		.package.type = ACPI_TYPE_PACKAGE,
1732  		.package.count = 1,
1733  		.package.elements = &in_buf,
1734  	};
1735  	const u8 func = ND_INTEL_SMART;
1736  	const guid_t *guid = to_nfit_uuid(nfit_mem->family);
1737  	u8 revid = nfit_dsm_revid(nfit_mem->family, func);
1738  	struct acpi_device *adev = nfit_mem->adev;
1739  	acpi_handle handle = adev->handle;
1740  	union acpi_object *out_obj;
1741  
1742  	if ((nfit_mem->dsm_mask & (1 << func)) == 0)
1743  		return;
1744  
1745  	out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
1746  	if (!out_obj || out_obj->type != ACPI_TYPE_BUFFER
1747  			|| out_obj->buffer.length < sizeof(smart)) {
1748  		dev_dbg(dev->parent, "%s: failed to retrieve initial health\n",
1749  				dev_name(dev));
1750  		ACPI_FREE(out_obj);
1751  		return;
1752  	}
1753  	memcpy(&smart, out_obj->buffer.pointer, sizeof(smart));
1754  	ACPI_FREE(out_obj);
1755  
1756  	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) {
1757  		if (smart.shutdown_state)
1758  			set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags);
1759  	}
1760  
1761  	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) {
1762  		set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags);
1763  		nfit_mem->dirty_shutdown = smart.shutdown_count;
1764  	}
1765  }
1766  
populate_shutdown_status(struct nfit_mem * nfit_mem)1767  static void populate_shutdown_status(struct nfit_mem *nfit_mem)
1768  {
1769  	/*
1770  	 * For DIMMs that provide a dynamic facility to retrieve a
1771  	 * dirty-shutdown status and/or a dirty-shutdown count, cache
1772  	 * these values in nfit_mem.
1773  	 */
1774  	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1775  		nfit_intel_shutdown_status(nfit_mem);
1776  }
1777  
acpi_nfit_add_dimm(struct acpi_nfit_desc * acpi_desc,struct nfit_mem * nfit_mem,u32 device_handle)1778  static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1779  		struct nfit_mem *nfit_mem, u32 device_handle)
1780  {
1781  	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1782  	struct acpi_device *adev, *adev_dimm;
1783  	struct device *dev = acpi_desc->dev;
1784  	unsigned long dsm_mask, label_mask;
1785  	const guid_t *guid;
1786  	int i;
1787  	int family = -1;
1788  	struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
1789  
1790  	/* nfit test assumes 1:1 relationship between commands and dsms */
1791  	nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1792  	nfit_mem->family = NVDIMM_FAMILY_INTEL;
1793  	set_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
1794  
1795  	if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1796  		sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x",
1797  				be16_to_cpu(dcr->vendor_id),
1798  				dcr->manufacturing_location,
1799  				be16_to_cpu(dcr->manufacturing_date),
1800  				be32_to_cpu(dcr->serial_number));
1801  	else
1802  		sprintf(nfit_mem->id, "%04x-%08x",
1803  				be16_to_cpu(dcr->vendor_id),
1804  				be32_to_cpu(dcr->serial_number));
1805  
1806  	adev = to_acpi_dev(acpi_desc);
1807  	if (!adev) {
1808  		/* unit test case */
1809  		populate_shutdown_status(nfit_mem);
1810  		return 0;
1811  	}
1812  
1813  	adev_dimm = acpi_find_child_device(adev, device_handle, false);
1814  	nfit_mem->adev = adev_dimm;
1815  	if (!adev_dimm) {
1816  		dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1817  				device_handle);
1818  		return force_enable_dimms ? 0 : -ENODEV;
1819  	}
1820  
1821  	if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1822  		ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1823  		dev_err(dev, "%s: notification registration failed\n",
1824  				dev_name(&adev_dimm->dev));
1825  		return -ENXIO;
1826  	}
1827  	/*
1828  	 * Record nfit_mem for the notification path to track back to
1829  	 * the nfit sysfs attributes for this dimm device object.
1830  	 */
1831  	dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1832  
1833  	/*
1834  	 * There are 4 "legacy" NVDIMM command sets
1835  	 * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before
1836  	 * an EFI working group was established to constrain this
1837  	 * proliferation. The nfit driver probes for the supported command
1838  	 * set by GUID. Note, if you're a platform developer looking to add
1839  	 * a new command set to this probe, consider using an existing set,
1840  	 * or otherwise seek approval to publish the command set at
1841  	 * http://www.uefi.org/RFIC_LIST.
1842  	 *
1843  	 * Note, that checking for function0 (bit0) tells us if any commands
1844  	 * are reachable through this GUID.
1845  	 */
1846  	clear_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
1847  	for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
1848  		if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1)) {
1849  			set_bit(i, &nd_desc->dimm_family_mask);
1850  			if (family < 0 || i == default_dsm_family)
1851  				family = i;
1852  		}
1853  
1854  	/* limit the supported commands to those that are publicly documented */
1855  	nfit_mem->family = family;
1856  	if (override_dsm_mask && !disable_vendor_specific)
1857  		dsm_mask = override_dsm_mask;
1858  	else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1859  		dsm_mask = NVDIMM_INTEL_CMDMASK;
1860  		if (disable_vendor_specific)
1861  			dsm_mask &= ~(1 << ND_CMD_VENDOR);
1862  	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1863  		dsm_mask = 0x1c3c76;
1864  	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1865  		dsm_mask = 0x1fe;
1866  		if (disable_vendor_specific)
1867  			dsm_mask &= ~(1 << 8);
1868  	} else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1869  		dsm_mask = 0xffffffff;
1870  	} else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) {
1871  		dsm_mask = 0x1f;
1872  	} else {
1873  		dev_dbg(dev, "unknown dimm command family\n");
1874  		nfit_mem->family = -1;
1875  		/* DSMs are optional, continue loading the driver... */
1876  		return 0;
1877  	}
1878  
1879  	/*
1880  	 * Function 0 is the command interrogation function, don't
1881  	 * export it to potential userspace use, and enable it to be
1882  	 * used as an error value in acpi_nfit_ctl().
1883  	 */
1884  	dsm_mask &= ~1UL;
1885  
1886  	guid = to_nfit_uuid(nfit_mem->family);
1887  	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1888  		if (acpi_check_dsm(adev_dimm->handle, guid,
1889  					nfit_dsm_revid(nfit_mem->family, i),
1890  					1ULL << i))
1891  			set_bit(i, &nfit_mem->dsm_mask);
1892  
1893  	/*
1894  	 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present
1895  	 * due to their better semantics handling locked capacity.
1896  	 */
1897  	label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA
1898  		| 1 << ND_CMD_SET_CONFIG_DATA;
1899  	if (family == NVDIMM_FAMILY_INTEL
1900  			&& (dsm_mask & label_mask) == label_mask)
1901  		/* skip _LS{I,R,W} enabling */;
1902  	else {
1903  		if (acpi_nvdimm_has_method(adev_dimm, "_LSI")
1904  				&& acpi_nvdimm_has_method(adev_dimm, "_LSR")) {
1905  			dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
1906  			set_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1907  		}
1908  
1909  		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
1910  				&& acpi_nvdimm_has_method(adev_dimm, "_LSW")) {
1911  			dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
1912  			set_bit(NFIT_MEM_LSW, &nfit_mem->flags);
1913  		}
1914  
1915  		/*
1916  		 * Quirk read-only label configurations to preserve
1917  		 * access to label-less namespaces by default.
1918  		 */
1919  		if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
1920  				&& !force_labels) {
1921  			dev_dbg(dev, "%s: No _LSW, disable labels\n",
1922  					dev_name(&adev_dimm->dev));
1923  			clear_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1924  		} else
1925  			dev_dbg(dev, "%s: Force enable labels\n",
1926  					dev_name(&adev_dimm->dev));
1927  	}
1928  
1929  	populate_shutdown_status(nfit_mem);
1930  
1931  	return 0;
1932  }
1933  
shutdown_dimm_notify(void * data)1934  static void shutdown_dimm_notify(void *data)
1935  {
1936  	struct acpi_nfit_desc *acpi_desc = data;
1937  	struct nfit_mem *nfit_mem;
1938  
1939  	mutex_lock(&acpi_desc->init_mutex);
1940  	/*
1941  	 * Clear out the nfit_mem->flags_attr and shut down dimm event
1942  	 * notifications.
1943  	 */
1944  	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1945  		struct acpi_device *adev_dimm = nfit_mem->adev;
1946  
1947  		if (nfit_mem->flags_attr) {
1948  			sysfs_put(nfit_mem->flags_attr);
1949  			nfit_mem->flags_attr = NULL;
1950  		}
1951  		if (adev_dimm) {
1952  			acpi_remove_notify_handler(adev_dimm->handle,
1953  					ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
1954  			dev_set_drvdata(&adev_dimm->dev, NULL);
1955  		}
1956  	}
1957  	mutex_unlock(&acpi_desc->init_mutex);
1958  }
1959  
acpi_nfit_get_security_ops(int family)1960  static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family)
1961  {
1962  	switch (family) {
1963  	case NVDIMM_FAMILY_INTEL:
1964  		return intel_security_ops;
1965  	default:
1966  		return NULL;
1967  	}
1968  }
1969  
acpi_nfit_get_fw_ops(struct nfit_mem * nfit_mem)1970  static const struct nvdimm_fw_ops *acpi_nfit_get_fw_ops(
1971  		struct nfit_mem *nfit_mem)
1972  {
1973  	unsigned long mask;
1974  	struct acpi_nfit_desc *acpi_desc = nfit_mem->acpi_desc;
1975  	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1976  
1977  	if (!nd_desc->fw_ops)
1978  		return NULL;
1979  
1980  	if (nfit_mem->family != NVDIMM_FAMILY_INTEL)
1981  		return NULL;
1982  
1983  	mask = nfit_mem->dsm_mask & NVDIMM_INTEL_FW_ACTIVATE_CMDMASK;
1984  	if (mask != NVDIMM_INTEL_FW_ACTIVATE_CMDMASK)
1985  		return NULL;
1986  
1987  	return intel_fw_ops;
1988  }
1989  
acpi_nfit_register_dimms(struct acpi_nfit_desc * acpi_desc)1990  static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
1991  {
1992  	struct nfit_mem *nfit_mem;
1993  	int dimm_count = 0, rc;
1994  	struct nvdimm *nvdimm;
1995  
1996  	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1997  		struct acpi_nfit_flush_address *flush;
1998  		unsigned long flags = 0, cmd_mask;
1999  		struct nfit_memdev *nfit_memdev;
2000  		u32 device_handle;
2001  		u16 mem_flags;
2002  
2003  		device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
2004  		nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
2005  		if (nvdimm) {
2006  			dimm_count++;
2007  			continue;
2008  		}
2009  
2010  		/* collate flags across all memdevs for this dimm */
2011  		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2012  			struct acpi_nfit_memory_map *dimm_memdev;
2013  
2014  			dimm_memdev = __to_nfit_memdev(nfit_mem);
2015  			if (dimm_memdev->device_handle
2016  					!= nfit_memdev->memdev->device_handle)
2017  				continue;
2018  			dimm_memdev->flags |= nfit_memdev->memdev->flags;
2019  		}
2020  
2021  		mem_flags = __to_nfit_memdev(nfit_mem)->flags;
2022  		if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
2023  			set_bit(NDD_UNARMED, &flags);
2024  
2025  		rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
2026  		if (rc)
2027  			continue;
2028  
2029  		/*
2030  		 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
2031  		 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
2032  		 * userspace interface.
2033  		 */
2034  		cmd_mask = 1UL << ND_CMD_CALL;
2035  		if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
2036  			/*
2037  			 * These commands have a 1:1 correspondence
2038  			 * between DSM payload and libnvdimm ioctl
2039  			 * payload format.
2040  			 */
2041  			cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
2042  		}
2043  
2044  		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
2045  			set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
2046  			set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
2047  		}
2048  		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags))
2049  			set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
2050  
2051  		flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
2052  			: NULL;
2053  		nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
2054  				acpi_nfit_dimm_attribute_groups,
2055  				flags, cmd_mask, flush ? flush->hint_count : 0,
2056  				nfit_mem->flush_wpq, &nfit_mem->id[0],
2057  				acpi_nfit_get_security_ops(nfit_mem->family),
2058  				acpi_nfit_get_fw_ops(nfit_mem));
2059  		if (!nvdimm)
2060  			return -ENOMEM;
2061  
2062  		nfit_mem->nvdimm = nvdimm;
2063  		dimm_count++;
2064  
2065  		if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
2066  			continue;
2067  
2068  		dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n",
2069  				nvdimm_name(nvdimm),
2070  		  mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
2071  		  mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
2072  		  mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
2073  		  mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
2074  		  mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
2075  
2076  	}
2077  
2078  	rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
2079  	if (rc)
2080  		return rc;
2081  
2082  	/*
2083  	 * Now that dimms are successfully registered, and async registration
2084  	 * is flushed, attempt to enable event notification.
2085  	 */
2086  	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2087  		struct kernfs_node *nfit_kernfs;
2088  
2089  		nvdimm = nfit_mem->nvdimm;
2090  		if (!nvdimm)
2091  			continue;
2092  
2093  		nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
2094  		if (nfit_kernfs)
2095  			nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
2096  					"flags");
2097  		sysfs_put(nfit_kernfs);
2098  		if (!nfit_mem->flags_attr)
2099  			dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
2100  					nvdimm_name(nvdimm));
2101  	}
2102  
2103  	return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
2104  			acpi_desc);
2105  }
2106  
2107  /*
2108   * These constants are private because there are no kernel consumers of
2109   * these commands.
2110   */
2111  enum nfit_aux_cmds {
2112  	NFIT_CMD_TRANSLATE_SPA = 5,
2113  	NFIT_CMD_ARS_INJECT_SET = 7,
2114  	NFIT_CMD_ARS_INJECT_CLEAR = 8,
2115  	NFIT_CMD_ARS_INJECT_GET = 9,
2116  };
2117  
acpi_nfit_init_dsms(struct acpi_nfit_desc * acpi_desc)2118  static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
2119  {
2120  	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2121  	const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
2122  	unsigned long dsm_mask, *mask;
2123  	struct acpi_device *adev;
2124  	int i;
2125  
2126  	set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
2127  	set_bit(NVDIMM_BUS_FAMILY_NFIT, &nd_desc->bus_family_mask);
2128  
2129  	/* enable nfit_test to inject bus command emulation */
2130  	if (acpi_desc->bus_cmd_force_en) {
2131  		nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
2132  		mask = &nd_desc->bus_family_mask;
2133  		if (acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL]) {
2134  			set_bit(NVDIMM_BUS_FAMILY_INTEL, mask);
2135  			nd_desc->fw_ops = intel_bus_fw_ops;
2136  		}
2137  	}
2138  
2139  	adev = to_acpi_dev(acpi_desc);
2140  	if (!adev)
2141  		return;
2142  
2143  	for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
2144  		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2145  			set_bit(i, &nd_desc->cmd_mask);
2146  
2147  	dsm_mask =
2148  		(1 << ND_CMD_ARS_CAP) |
2149  		(1 << ND_CMD_ARS_START) |
2150  		(1 << ND_CMD_ARS_STATUS) |
2151  		(1 << ND_CMD_CLEAR_ERROR) |
2152  		(1 << NFIT_CMD_TRANSLATE_SPA) |
2153  		(1 << NFIT_CMD_ARS_INJECT_SET) |
2154  		(1 << NFIT_CMD_ARS_INJECT_CLEAR) |
2155  		(1 << NFIT_CMD_ARS_INJECT_GET);
2156  	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2157  		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2158  			set_bit(i, &acpi_desc->bus_dsm_mask);
2159  
2160  	/* Enumerate allowed NVDIMM_BUS_FAMILY_INTEL commands */
2161  	dsm_mask = NVDIMM_BUS_INTEL_FW_ACTIVATE_CMDMASK;
2162  	guid = to_nfit_bus_uuid(NVDIMM_BUS_FAMILY_INTEL);
2163  	mask = &acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL];
2164  	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2165  		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2166  			set_bit(i, mask);
2167  
2168  	if (*mask == dsm_mask) {
2169  		set_bit(NVDIMM_BUS_FAMILY_INTEL, &nd_desc->bus_family_mask);
2170  		nd_desc->fw_ops = intel_bus_fw_ops;
2171  	}
2172  }
2173  
range_index_show(struct device * dev,struct device_attribute * attr,char * buf)2174  static ssize_t range_index_show(struct device *dev,
2175  		struct device_attribute *attr, char *buf)
2176  {
2177  	struct nd_region *nd_region = to_nd_region(dev);
2178  	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
2179  
2180  	return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
2181  }
2182  static DEVICE_ATTR_RO(range_index);
2183  
2184  static struct attribute *acpi_nfit_region_attributes[] = {
2185  	&dev_attr_range_index.attr,
2186  	NULL,
2187  };
2188  
2189  static const struct attribute_group acpi_nfit_region_attribute_group = {
2190  	.name = "nfit",
2191  	.attrs = acpi_nfit_region_attributes,
2192  };
2193  
2194  static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
2195  	&acpi_nfit_region_attribute_group,
2196  	NULL,
2197  };
2198  
2199  /* enough info to uniquely specify an interleave set */
2200  struct nfit_set_info {
2201  	u64 region_offset;
2202  	u32 serial_number;
2203  	u32 pad;
2204  };
2205  
2206  struct nfit_set_info2 {
2207  	u64 region_offset;
2208  	u32 serial_number;
2209  	u16 vendor_id;
2210  	u16 manufacturing_date;
2211  	u8 manufacturing_location;
2212  	u8 reserved[31];
2213  };
2214  
cmp_map_compat(const void * m0,const void * m1)2215  static int cmp_map_compat(const void *m0, const void *m1)
2216  {
2217  	const struct nfit_set_info *map0 = m0;
2218  	const struct nfit_set_info *map1 = m1;
2219  
2220  	return memcmp(&map0->region_offset, &map1->region_offset,
2221  			sizeof(u64));
2222  }
2223  
cmp_map(const void * m0,const void * m1)2224  static int cmp_map(const void *m0, const void *m1)
2225  {
2226  	const struct nfit_set_info *map0 = m0;
2227  	const struct nfit_set_info *map1 = m1;
2228  
2229  	if (map0->region_offset < map1->region_offset)
2230  		return -1;
2231  	else if (map0->region_offset > map1->region_offset)
2232  		return 1;
2233  	return 0;
2234  }
2235  
cmp_map2(const void * m0,const void * m1)2236  static int cmp_map2(const void *m0, const void *m1)
2237  {
2238  	const struct nfit_set_info2 *map0 = m0;
2239  	const struct nfit_set_info2 *map1 = m1;
2240  
2241  	if (map0->region_offset < map1->region_offset)
2242  		return -1;
2243  	else if (map0->region_offset > map1->region_offset)
2244  		return 1;
2245  	return 0;
2246  }
2247  
2248  /* Retrieve the nth entry referencing this spa */
memdev_from_spa(struct acpi_nfit_desc * acpi_desc,u16 range_index,int n)2249  static struct acpi_nfit_memory_map *memdev_from_spa(
2250  		struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
2251  {
2252  	struct nfit_memdev *nfit_memdev;
2253  
2254  	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
2255  		if (nfit_memdev->memdev->range_index == range_index)
2256  			if (n-- == 0)
2257  				return nfit_memdev->memdev;
2258  	return NULL;
2259  }
2260  
acpi_nfit_init_interleave_set(struct acpi_nfit_desc * acpi_desc,struct nd_region_desc * ndr_desc,struct acpi_nfit_system_address * spa)2261  static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
2262  		struct nd_region_desc *ndr_desc,
2263  		struct acpi_nfit_system_address *spa)
2264  {
2265  	struct device *dev = acpi_desc->dev;
2266  	struct nd_interleave_set *nd_set;
2267  	u16 nr = ndr_desc->num_mappings;
2268  	struct nfit_set_info2 *info2;
2269  	struct nfit_set_info *info;
2270  	int i;
2271  
2272  	nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
2273  	if (!nd_set)
2274  		return -ENOMEM;
2275  	import_guid(&nd_set->type_guid, spa->range_guid);
2276  
2277  	info = devm_kcalloc(dev, nr, sizeof(*info), GFP_KERNEL);
2278  	if (!info)
2279  		return -ENOMEM;
2280  
2281  	info2 = devm_kcalloc(dev, nr, sizeof(*info2), GFP_KERNEL);
2282  	if (!info2)
2283  		return -ENOMEM;
2284  
2285  	for (i = 0; i < nr; i++) {
2286  		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
2287  		struct nvdimm *nvdimm = mapping->nvdimm;
2288  		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2289  		struct nfit_set_info *map = &info[i];
2290  		struct nfit_set_info2 *map2 = &info2[i];
2291  		struct acpi_nfit_memory_map *memdev =
2292  			memdev_from_spa(acpi_desc, spa->range_index, i);
2293  		struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2294  
2295  		if (!memdev || !nfit_mem->dcr) {
2296  			dev_err(dev, "%s: failed to find DCR\n", __func__);
2297  			return -ENODEV;
2298  		}
2299  
2300  		map->region_offset = memdev->region_offset;
2301  		map->serial_number = dcr->serial_number;
2302  
2303  		map2->region_offset = memdev->region_offset;
2304  		map2->serial_number = dcr->serial_number;
2305  		map2->vendor_id = dcr->vendor_id;
2306  		map2->manufacturing_date = dcr->manufacturing_date;
2307  		map2->manufacturing_location = dcr->manufacturing_location;
2308  	}
2309  
2310  	/* v1.1 namespaces */
2311  	sort(info, nr, sizeof(*info), cmp_map, NULL);
2312  	nd_set->cookie1 = nd_fletcher64(info, sizeof(*info) * nr, 0);
2313  
2314  	/* v1.2 namespaces */
2315  	sort(info2, nr, sizeof(*info2), cmp_map2, NULL);
2316  	nd_set->cookie2 = nd_fletcher64(info2, sizeof(*info2) * nr, 0);
2317  
2318  	/* support v1.1 namespaces created with the wrong sort order */
2319  	sort(info, nr, sizeof(*info), cmp_map_compat, NULL);
2320  	nd_set->altcookie = nd_fletcher64(info, sizeof(*info) * nr, 0);
2321  
2322  	/* record the result of the sort for the mapping position */
2323  	for (i = 0; i < nr; i++) {
2324  		struct nfit_set_info2 *map2 = &info2[i];
2325  		int j;
2326  
2327  		for (j = 0; j < nr; j++) {
2328  			struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
2329  			struct nvdimm *nvdimm = mapping->nvdimm;
2330  			struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2331  			struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2332  
2333  			if (map2->serial_number == dcr->serial_number &&
2334  			    map2->vendor_id == dcr->vendor_id &&
2335  			    map2->manufacturing_date == dcr->manufacturing_date &&
2336  			    map2->manufacturing_location
2337  				    == dcr->manufacturing_location) {
2338  				mapping->position = i;
2339  				break;
2340  			}
2341  		}
2342  	}
2343  
2344  	ndr_desc->nd_set = nd_set;
2345  	devm_kfree(dev, info);
2346  	devm_kfree(dev, info2);
2347  
2348  	return 0;
2349  }
2350  
ars_get_cap(struct acpi_nfit_desc * acpi_desc,struct nd_cmd_ars_cap * cmd,struct nfit_spa * nfit_spa)2351  static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2352  		struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2353  {
2354  	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2355  	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2356  	int cmd_rc, rc;
2357  
2358  	cmd->address = spa->address;
2359  	cmd->length = spa->length;
2360  	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2361  			sizeof(*cmd), &cmd_rc);
2362  	if (rc < 0)
2363  		return rc;
2364  	return cmd_rc;
2365  }
2366  
ars_start(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa,enum nfit_ars_state req_type)2367  static int ars_start(struct acpi_nfit_desc *acpi_desc,
2368  		struct nfit_spa *nfit_spa, enum nfit_ars_state req_type)
2369  {
2370  	int rc;
2371  	int cmd_rc;
2372  	struct nd_cmd_ars_start ars_start;
2373  	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2374  	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2375  
2376  	memset(&ars_start, 0, sizeof(ars_start));
2377  	ars_start.address = spa->address;
2378  	ars_start.length = spa->length;
2379  	if (req_type == ARS_REQ_SHORT)
2380  		ars_start.flags = ND_ARS_RETURN_PREV_DATA;
2381  	if (nfit_spa_type(spa) == NFIT_SPA_PM)
2382  		ars_start.type = ND_ARS_PERSISTENT;
2383  	else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2384  		ars_start.type = ND_ARS_VOLATILE;
2385  	else
2386  		return -ENOTTY;
2387  
2388  	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2389  			sizeof(ars_start), &cmd_rc);
2390  
2391  	if (rc < 0)
2392  		return rc;
2393  	if (cmd_rc < 0)
2394  		return cmd_rc;
2395  	set_bit(ARS_VALID, &acpi_desc->scrub_flags);
2396  	return 0;
2397  }
2398  
ars_continue(struct acpi_nfit_desc * acpi_desc)2399  static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2400  {
2401  	int rc, cmd_rc;
2402  	struct nd_cmd_ars_start ars_start;
2403  	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2404  	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2405  
2406  	ars_start = (struct nd_cmd_ars_start) {
2407  		.address = ars_status->restart_address,
2408  		.length = ars_status->restart_length,
2409  		.type = ars_status->type,
2410  	};
2411  	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2412  			sizeof(ars_start), &cmd_rc);
2413  	if (rc < 0)
2414  		return rc;
2415  	return cmd_rc;
2416  }
2417  
ars_get_status(struct acpi_nfit_desc * acpi_desc)2418  static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2419  {
2420  	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2421  	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2422  	int rc, cmd_rc;
2423  
2424  	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2425  			acpi_desc->max_ars, &cmd_rc);
2426  	if (rc < 0)
2427  		return rc;
2428  	return cmd_rc;
2429  }
2430  
ars_complete(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2431  static void ars_complete(struct acpi_nfit_desc *acpi_desc,
2432  		struct nfit_spa *nfit_spa)
2433  {
2434  	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2435  	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2436  	struct nd_region *nd_region = nfit_spa->nd_region;
2437  	struct device *dev;
2438  
2439  	lockdep_assert_held(&acpi_desc->init_mutex);
2440  	/*
2441  	 * Only advance the ARS state for ARS runs initiated by the
2442  	 * kernel, ignore ARS results from BIOS initiated runs for scrub
2443  	 * completion tracking.
2444  	 */
2445  	if (acpi_desc->scrub_spa != nfit_spa)
2446  		return;
2447  
2448  	if ((ars_status->address >= spa->address && ars_status->address
2449  				< spa->address + spa->length)
2450  			|| (ars_status->address < spa->address)) {
2451  		/*
2452  		 * Assume that if a scrub starts at an offset from the
2453  		 * start of nfit_spa that we are in the continuation
2454  		 * case.
2455  		 *
2456  		 * Otherwise, if the scrub covers the spa range, mark
2457  		 * any pending request complete.
2458  		 */
2459  		if (ars_status->address + ars_status->length
2460  				>= spa->address + spa->length)
2461  				/* complete */;
2462  		else
2463  			return;
2464  	} else
2465  		return;
2466  
2467  	acpi_desc->scrub_spa = NULL;
2468  	if (nd_region) {
2469  		dev = nd_region_dev(nd_region);
2470  		nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON);
2471  	} else
2472  		dev = acpi_desc->dev;
2473  	dev_dbg(dev, "ARS: range %d complete\n", spa->range_index);
2474  }
2475  
ars_status_process_records(struct acpi_nfit_desc * acpi_desc)2476  static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc)
2477  {
2478  	struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2479  	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2480  	int rc;
2481  	u32 i;
2482  
2483  	/*
2484  	 * First record starts at 44 byte offset from the start of the
2485  	 * payload.
2486  	 */
2487  	if (ars_status->out_length < 44)
2488  		return 0;
2489  
2490  	/*
2491  	 * Ignore potentially stale results that are only refreshed
2492  	 * after a start-ARS event.
2493  	 */
2494  	if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) {
2495  		dev_dbg(acpi_desc->dev, "skip %d stale records\n",
2496  				ars_status->num_records);
2497  		return 0;
2498  	}
2499  
2500  	for (i = 0; i < ars_status->num_records; i++) {
2501  		/* only process full records */
2502  		if (ars_status->out_length
2503  				< 44 + sizeof(struct nd_ars_record) * (i + 1))
2504  			break;
2505  		rc = nvdimm_bus_add_badrange(nvdimm_bus,
2506  				ars_status->records[i].err_address,
2507  				ars_status->records[i].length);
2508  		if (rc)
2509  			return rc;
2510  	}
2511  	if (i < ars_status->num_records)
2512  		dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2513  
2514  	return 0;
2515  }
2516  
acpi_nfit_remove_resource(void * data)2517  static void acpi_nfit_remove_resource(void *data)
2518  {
2519  	struct resource *res = data;
2520  
2521  	remove_resource(res);
2522  }
2523  
acpi_nfit_insert_resource(struct acpi_nfit_desc * acpi_desc,struct nd_region_desc * ndr_desc)2524  static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2525  		struct nd_region_desc *ndr_desc)
2526  {
2527  	struct resource *res, *nd_res = ndr_desc->res;
2528  	int is_pmem, ret;
2529  
2530  	/* No operation if the region is already registered as PMEM */
2531  	is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2532  				IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2533  	if (is_pmem == REGION_INTERSECTS)
2534  		return 0;
2535  
2536  	res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2537  	if (!res)
2538  		return -ENOMEM;
2539  
2540  	res->name = "Persistent Memory";
2541  	res->start = nd_res->start;
2542  	res->end = nd_res->end;
2543  	res->flags = IORESOURCE_MEM;
2544  	res->desc = IORES_DESC_PERSISTENT_MEMORY;
2545  
2546  	ret = insert_resource(&iomem_resource, res);
2547  	if (ret)
2548  		return ret;
2549  
2550  	ret = devm_add_action_or_reset(acpi_desc->dev,
2551  					acpi_nfit_remove_resource,
2552  					res);
2553  	if (ret)
2554  		return ret;
2555  
2556  	return 0;
2557  }
2558  
acpi_nfit_init_mapping(struct acpi_nfit_desc * acpi_desc,struct nd_mapping_desc * mapping,struct nd_region_desc * ndr_desc,struct acpi_nfit_memory_map * memdev,struct nfit_spa * nfit_spa)2559  static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2560  		struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2561  		struct acpi_nfit_memory_map *memdev,
2562  		struct nfit_spa *nfit_spa)
2563  {
2564  	struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2565  			memdev->device_handle);
2566  	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2567  
2568  	if (!nvdimm) {
2569  		dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2570  				spa->range_index, memdev->device_handle);
2571  		return -ENODEV;
2572  	}
2573  
2574  	mapping->nvdimm = nvdimm;
2575  	switch (nfit_spa_type(spa)) {
2576  	case NFIT_SPA_PM:
2577  	case NFIT_SPA_VOLATILE:
2578  		mapping->start = memdev->address;
2579  		mapping->size = memdev->region_size;
2580  		break;
2581  	}
2582  
2583  	return 0;
2584  }
2585  
nfit_spa_is_virtual(struct acpi_nfit_system_address * spa)2586  static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2587  {
2588  	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2589  		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2590  		nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2591  		nfit_spa_type(spa) == NFIT_SPA_PCD);
2592  }
2593  
nfit_spa_is_volatile(struct acpi_nfit_system_address * spa)2594  static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2595  {
2596  	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2597  		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2598  		nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2599  }
2600  
acpi_nfit_register_region(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2601  static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2602  		struct nfit_spa *nfit_spa)
2603  {
2604  	static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2605  	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2606  	struct nd_region_desc *ndr_desc, _ndr_desc;
2607  	struct nfit_memdev *nfit_memdev;
2608  	struct nvdimm_bus *nvdimm_bus;
2609  	struct resource res;
2610  	int count = 0, rc;
2611  
2612  	if (nfit_spa->nd_region)
2613  		return 0;
2614  
2615  	if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2616  		dev_dbg(acpi_desc->dev, "detected invalid spa index\n");
2617  		return 0;
2618  	}
2619  
2620  	memset(&res, 0, sizeof(res));
2621  	memset(&mappings, 0, sizeof(mappings));
2622  	memset(&_ndr_desc, 0, sizeof(_ndr_desc));
2623  	res.start = spa->address;
2624  	res.end = res.start + spa->length - 1;
2625  	ndr_desc = &_ndr_desc;
2626  	ndr_desc->res = &res;
2627  	ndr_desc->provider_data = nfit_spa;
2628  	ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2629  	if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) {
2630  		ndr_desc->numa_node = pxm_to_online_node(spa->proximity_domain);
2631  		ndr_desc->target_node = pxm_to_node(spa->proximity_domain);
2632  	} else {
2633  		ndr_desc->numa_node = NUMA_NO_NODE;
2634  		ndr_desc->target_node = NUMA_NO_NODE;
2635  	}
2636  
2637  	/* Fallback to address based numa information if node lookup failed */
2638  	if (ndr_desc->numa_node == NUMA_NO_NODE) {
2639  		ndr_desc->numa_node = memory_add_physaddr_to_nid(spa->address);
2640  		dev_info(acpi_desc->dev, "changing numa node from %d to %d for nfit region [%pa-%pa]",
2641  			NUMA_NO_NODE, ndr_desc->numa_node, &res.start, &res.end);
2642  	}
2643  	if (ndr_desc->target_node == NUMA_NO_NODE) {
2644  		ndr_desc->target_node = phys_to_target_node(spa->address);
2645  		dev_info(acpi_desc->dev, "changing target node from %d to %d for nfit region [%pa-%pa]",
2646  			NUMA_NO_NODE, ndr_desc->numa_node, &res.start, &res.end);
2647  	}
2648  
2649  	/*
2650  	 * Persistence domain bits are hierarchical, if
2651  	 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then
2652  	 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied.
2653  	 */
2654  	if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH)
2655  		set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags);
2656  	else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH)
2657  		set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags);
2658  
2659  	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2660  		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2661  		struct nd_mapping_desc *mapping;
2662  
2663  		/* range index 0 == unmapped in SPA or invalid-SPA */
2664  		if (memdev->range_index == 0 || spa->range_index == 0)
2665  			continue;
2666  		if (memdev->range_index != spa->range_index)
2667  			continue;
2668  		if (count >= ND_MAX_MAPPINGS) {
2669  			dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2670  					spa->range_index, ND_MAX_MAPPINGS);
2671  			return -ENXIO;
2672  		}
2673  		mapping = &mappings[count++];
2674  		rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2675  				memdev, nfit_spa);
2676  		if (rc)
2677  			goto out;
2678  	}
2679  
2680  	ndr_desc->mapping = mappings;
2681  	ndr_desc->num_mappings = count;
2682  	rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2683  	if (rc)
2684  		goto out;
2685  
2686  	nvdimm_bus = acpi_desc->nvdimm_bus;
2687  	if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2688  		rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2689  		if (rc) {
2690  			dev_warn(acpi_desc->dev,
2691  				"failed to insert pmem resource to iomem: %d\n",
2692  				rc);
2693  			goto out;
2694  		}
2695  
2696  		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2697  				ndr_desc);
2698  		if (!nfit_spa->nd_region)
2699  			rc = -ENOMEM;
2700  	} else if (nfit_spa_is_volatile(spa)) {
2701  		nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
2702  				ndr_desc);
2703  		if (!nfit_spa->nd_region)
2704  			rc = -ENOMEM;
2705  	} else if (nfit_spa_is_virtual(spa)) {
2706  		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2707  				ndr_desc);
2708  		if (!nfit_spa->nd_region)
2709  			rc = -ENOMEM;
2710  	}
2711  
2712   out:
2713  	if (rc)
2714  		dev_err(acpi_desc->dev, "failed to register spa range %d\n",
2715  				nfit_spa->spa->range_index);
2716  	return rc;
2717  }
2718  
ars_status_alloc(struct acpi_nfit_desc * acpi_desc)2719  static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc)
2720  {
2721  	struct device *dev = acpi_desc->dev;
2722  	struct nd_cmd_ars_status *ars_status;
2723  
2724  	if (acpi_desc->ars_status) {
2725  		memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
2726  		return 0;
2727  	}
2728  
2729  	ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL);
2730  	if (!ars_status)
2731  		return -ENOMEM;
2732  	acpi_desc->ars_status = ars_status;
2733  	return 0;
2734  }
2735  
acpi_nfit_query_poison(struct acpi_nfit_desc * acpi_desc)2736  static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc)
2737  {
2738  	int rc;
2739  
2740  	if (ars_status_alloc(acpi_desc))
2741  		return -ENOMEM;
2742  
2743  	rc = ars_get_status(acpi_desc);
2744  
2745  	if (rc < 0 && rc != -ENOSPC)
2746  		return rc;
2747  
2748  	if (ars_status_process_records(acpi_desc))
2749  		dev_err(acpi_desc->dev, "Failed to process ARS records\n");
2750  
2751  	return rc;
2752  }
2753  
ars_register(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2754  static int ars_register(struct acpi_nfit_desc *acpi_desc,
2755  		struct nfit_spa *nfit_spa)
2756  {
2757  	int rc;
2758  
2759  	if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2760  		return acpi_nfit_register_region(acpi_desc, nfit_spa);
2761  
2762  	set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
2763  	if (!no_init_ars)
2764  		set_bit(ARS_REQ_LONG, &nfit_spa->ars_state);
2765  
2766  	switch (acpi_nfit_query_poison(acpi_desc)) {
2767  	case 0:
2768  	case -ENOSPC:
2769  	case -EAGAIN:
2770  		rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT);
2771  		/* shouldn't happen, try again later */
2772  		if (rc == -EBUSY)
2773  			break;
2774  		if (rc) {
2775  			set_bit(ARS_FAILED, &nfit_spa->ars_state);
2776  			break;
2777  		}
2778  		clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
2779  		rc = acpi_nfit_query_poison(acpi_desc);
2780  		if (rc)
2781  			break;
2782  		acpi_desc->scrub_spa = nfit_spa;
2783  		ars_complete(acpi_desc, nfit_spa);
2784  		/*
2785  		 * If ars_complete() says we didn't complete the
2786  		 * short scrub, we'll try again with a long
2787  		 * request.
2788  		 */
2789  		acpi_desc->scrub_spa = NULL;
2790  		break;
2791  	case -EBUSY:
2792  	case -ENOMEM:
2793  		/*
2794  		 * BIOS was using ARS, wait for it to complete (or
2795  		 * resources to become available) and then perform our
2796  		 * own scrubs.
2797  		 */
2798  		break;
2799  	default:
2800  		set_bit(ARS_FAILED, &nfit_spa->ars_state);
2801  		break;
2802  	}
2803  
2804  	return acpi_nfit_register_region(acpi_desc, nfit_spa);
2805  }
2806  
ars_complete_all(struct acpi_nfit_desc * acpi_desc)2807  static void ars_complete_all(struct acpi_nfit_desc *acpi_desc)
2808  {
2809  	struct nfit_spa *nfit_spa;
2810  
2811  	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2812  		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2813  			continue;
2814  		ars_complete(acpi_desc, nfit_spa);
2815  	}
2816  }
2817  
__acpi_nfit_scrub(struct acpi_nfit_desc * acpi_desc,int query_rc)2818  static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc,
2819  		int query_rc)
2820  {
2821  	unsigned int tmo = acpi_desc->scrub_tmo;
2822  	struct device *dev = acpi_desc->dev;
2823  	struct nfit_spa *nfit_spa;
2824  
2825  	lockdep_assert_held(&acpi_desc->init_mutex);
2826  
2827  	if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags))
2828  		return 0;
2829  
2830  	if (query_rc == -EBUSY) {
2831  		dev_dbg(dev, "ARS: ARS busy\n");
2832  		return min(30U * 60U, tmo * 2);
2833  	}
2834  	if (query_rc == -ENOSPC) {
2835  		dev_dbg(dev, "ARS: ARS continue\n");
2836  		ars_continue(acpi_desc);
2837  		return 1;
2838  	}
2839  	if (query_rc && query_rc != -EAGAIN) {
2840  		unsigned long long addr, end;
2841  
2842  		addr = acpi_desc->ars_status->address;
2843  		end = addr + acpi_desc->ars_status->length;
2844  		dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end,
2845  				query_rc);
2846  	}
2847  
2848  	ars_complete_all(acpi_desc);
2849  	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2850  		enum nfit_ars_state req_type;
2851  		int rc;
2852  
2853  		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2854  			continue;
2855  
2856  		/* prefer short ARS requests first */
2857  		if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state))
2858  			req_type = ARS_REQ_SHORT;
2859  		else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state))
2860  			req_type = ARS_REQ_LONG;
2861  		else
2862  			continue;
2863  		rc = ars_start(acpi_desc, nfit_spa, req_type);
2864  
2865  		dev = nd_region_dev(nfit_spa->nd_region);
2866  		dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n",
2867  				nfit_spa->spa->range_index,
2868  				req_type == ARS_REQ_SHORT ? "short" : "long",
2869  				rc);
2870  		/*
2871  		 * Hmm, we raced someone else starting ARS? Try again in
2872  		 * a bit.
2873  		 */
2874  		if (rc == -EBUSY)
2875  			return 1;
2876  		if (rc == 0) {
2877  			dev_WARN_ONCE(dev, acpi_desc->scrub_spa,
2878  					"scrub start while range %d active\n",
2879  					acpi_desc->scrub_spa->spa->range_index);
2880  			clear_bit(req_type, &nfit_spa->ars_state);
2881  			acpi_desc->scrub_spa = nfit_spa;
2882  			/*
2883  			 * Consider this spa last for future scrub
2884  			 * requests
2885  			 */
2886  			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
2887  			return 1;
2888  		}
2889  
2890  		dev_err(dev, "ARS: range %d ARS failed (%d)\n",
2891  				nfit_spa->spa->range_index, rc);
2892  		set_bit(ARS_FAILED, &nfit_spa->ars_state);
2893  	}
2894  	return 0;
2895  }
2896  
__sched_ars(struct acpi_nfit_desc * acpi_desc,unsigned int tmo)2897  static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo)
2898  {
2899  	lockdep_assert_held(&acpi_desc->init_mutex);
2900  
2901  	set_bit(ARS_BUSY, &acpi_desc->scrub_flags);
2902  	/* note this should only be set from within the workqueue */
2903  	if (tmo)
2904  		acpi_desc->scrub_tmo = tmo;
2905  	queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ);
2906  }
2907  
sched_ars(struct acpi_nfit_desc * acpi_desc)2908  static void sched_ars(struct acpi_nfit_desc *acpi_desc)
2909  {
2910  	__sched_ars(acpi_desc, 0);
2911  }
2912  
notify_ars_done(struct acpi_nfit_desc * acpi_desc)2913  static void notify_ars_done(struct acpi_nfit_desc *acpi_desc)
2914  {
2915  	lockdep_assert_held(&acpi_desc->init_mutex);
2916  
2917  	clear_bit(ARS_BUSY, &acpi_desc->scrub_flags);
2918  	acpi_desc->scrub_count++;
2919  	if (acpi_desc->scrub_count_state)
2920  		sysfs_notify_dirent(acpi_desc->scrub_count_state);
2921  }
2922  
acpi_nfit_scrub(struct work_struct * work)2923  static void acpi_nfit_scrub(struct work_struct *work)
2924  {
2925  	struct acpi_nfit_desc *acpi_desc;
2926  	unsigned int tmo;
2927  	int query_rc;
2928  
2929  	acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work);
2930  	mutex_lock(&acpi_desc->init_mutex);
2931  	query_rc = acpi_nfit_query_poison(acpi_desc);
2932  	tmo = __acpi_nfit_scrub(acpi_desc, query_rc);
2933  	if (tmo)
2934  		__sched_ars(acpi_desc, tmo);
2935  	else
2936  		notify_ars_done(acpi_desc);
2937  	memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
2938  	clear_bit(ARS_POLL, &acpi_desc->scrub_flags);
2939  	mutex_unlock(&acpi_desc->init_mutex);
2940  }
2941  
acpi_nfit_init_ars(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2942  static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc,
2943  		struct nfit_spa *nfit_spa)
2944  {
2945  	int type = nfit_spa_type(nfit_spa->spa);
2946  	struct nd_cmd_ars_cap ars_cap;
2947  	int rc;
2948  
2949  	set_bit(ARS_FAILED, &nfit_spa->ars_state);
2950  	memset(&ars_cap, 0, sizeof(ars_cap));
2951  	rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
2952  	if (rc < 0)
2953  		return;
2954  	/* check that the supported scrub types match the spa type */
2955  	if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16)
2956  				& ND_ARS_VOLATILE) == 0)
2957  		return;
2958  	if (type == NFIT_SPA_PM && ((ars_cap.status >> 16)
2959  				& ND_ARS_PERSISTENT) == 0)
2960  		return;
2961  
2962  	nfit_spa->max_ars = ars_cap.max_ars_out;
2963  	nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
2964  	acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars);
2965  	clear_bit(ARS_FAILED, &nfit_spa->ars_state);
2966  }
2967  
acpi_nfit_register_regions(struct acpi_nfit_desc * acpi_desc)2968  static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
2969  {
2970  	struct nfit_spa *nfit_spa;
2971  	int rc, do_sched_ars = 0;
2972  
2973  	set_bit(ARS_VALID, &acpi_desc->scrub_flags);
2974  	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2975  		switch (nfit_spa_type(nfit_spa->spa)) {
2976  		case NFIT_SPA_VOLATILE:
2977  		case NFIT_SPA_PM:
2978  			acpi_nfit_init_ars(acpi_desc, nfit_spa);
2979  			break;
2980  		}
2981  	}
2982  
2983  	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2984  		switch (nfit_spa_type(nfit_spa->spa)) {
2985  		case NFIT_SPA_VOLATILE:
2986  		case NFIT_SPA_PM:
2987  			/* register regions and kick off initial ARS run */
2988  			rc = ars_register(acpi_desc, nfit_spa);
2989  			if (rc)
2990  				return rc;
2991  
2992  			/*
2993  			 * Kick off background ARS if at least one
2994  			 * region successfully registered ARS
2995  			 */
2996  			if (!test_bit(ARS_FAILED, &nfit_spa->ars_state))
2997  				do_sched_ars++;
2998  			break;
2999  		case NFIT_SPA_BDW:
3000  			/* nothing to register */
3001  			break;
3002  		case NFIT_SPA_DCR:
3003  		case NFIT_SPA_VDISK:
3004  		case NFIT_SPA_VCD:
3005  		case NFIT_SPA_PDISK:
3006  		case NFIT_SPA_PCD:
3007  			/* register known regions that don't support ARS */
3008  			rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
3009  			if (rc)
3010  				return rc;
3011  			break;
3012  		default:
3013  			/* don't register unknown regions */
3014  			break;
3015  		}
3016  	}
3017  
3018  	if (do_sched_ars)
3019  		sched_ars(acpi_desc);
3020  	return 0;
3021  }
3022  
acpi_nfit_check_deletions(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev)3023  static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
3024  		struct nfit_table_prev *prev)
3025  {
3026  	struct device *dev = acpi_desc->dev;
3027  
3028  	if (!list_empty(&prev->spas) ||
3029  			!list_empty(&prev->memdevs) ||
3030  			!list_empty(&prev->dcrs) ||
3031  			!list_empty(&prev->bdws) ||
3032  			!list_empty(&prev->idts) ||
3033  			!list_empty(&prev->flushes)) {
3034  		dev_err(dev, "new nfit deletes entries (unsupported)\n");
3035  		return -ENXIO;
3036  	}
3037  	return 0;
3038  }
3039  
acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc * acpi_desc)3040  static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
3041  {
3042  	struct device *dev = acpi_desc->dev;
3043  	struct kernfs_node *nfit;
3044  	struct device *bus_dev;
3045  
3046  	if (!ars_supported(acpi_desc->nvdimm_bus))
3047  		return 0;
3048  
3049  	bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3050  	nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
3051  	if (!nfit) {
3052  		dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
3053  		return -ENODEV;
3054  	}
3055  	acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
3056  	sysfs_put(nfit);
3057  	if (!acpi_desc->scrub_count_state) {
3058  		dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
3059  		return -ENODEV;
3060  	}
3061  
3062  	return 0;
3063  }
3064  
acpi_nfit_unregister(void * data)3065  static void acpi_nfit_unregister(void *data)
3066  {
3067  	struct acpi_nfit_desc *acpi_desc = data;
3068  
3069  	nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
3070  }
3071  
acpi_nfit_init(struct acpi_nfit_desc * acpi_desc,void * data,acpi_size sz)3072  int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
3073  {
3074  	struct device *dev = acpi_desc->dev;
3075  	struct nfit_table_prev prev;
3076  	const void *end;
3077  	int rc;
3078  
3079  	if (!acpi_desc->nvdimm_bus) {
3080  		acpi_nfit_init_dsms(acpi_desc);
3081  
3082  		acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
3083  				&acpi_desc->nd_desc);
3084  		if (!acpi_desc->nvdimm_bus)
3085  			return -ENOMEM;
3086  
3087  		rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
3088  				acpi_desc);
3089  		if (rc)
3090  			return rc;
3091  
3092  		rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
3093  		if (rc)
3094  			return rc;
3095  
3096  		/* register this acpi_desc for mce notifications */
3097  		mutex_lock(&acpi_desc_lock);
3098  		list_add_tail(&acpi_desc->list, &acpi_descs);
3099  		mutex_unlock(&acpi_desc_lock);
3100  	}
3101  
3102  	mutex_lock(&acpi_desc->init_mutex);
3103  
3104  	INIT_LIST_HEAD(&prev.spas);
3105  	INIT_LIST_HEAD(&prev.memdevs);
3106  	INIT_LIST_HEAD(&prev.dcrs);
3107  	INIT_LIST_HEAD(&prev.bdws);
3108  	INIT_LIST_HEAD(&prev.idts);
3109  	INIT_LIST_HEAD(&prev.flushes);
3110  
3111  	list_cut_position(&prev.spas, &acpi_desc->spas,
3112  				acpi_desc->spas.prev);
3113  	list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
3114  				acpi_desc->memdevs.prev);
3115  	list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
3116  				acpi_desc->dcrs.prev);
3117  	list_cut_position(&prev.bdws, &acpi_desc->bdws,
3118  				acpi_desc->bdws.prev);
3119  	list_cut_position(&prev.idts, &acpi_desc->idts,
3120  				acpi_desc->idts.prev);
3121  	list_cut_position(&prev.flushes, &acpi_desc->flushes,
3122  				acpi_desc->flushes.prev);
3123  
3124  	end = data + sz;
3125  	while (!IS_ERR_OR_NULL(data))
3126  		data = add_table(acpi_desc, &prev, data, end);
3127  
3128  	if (IS_ERR(data)) {
3129  		dev_dbg(dev, "nfit table parsing error: %ld\n",	PTR_ERR(data));
3130  		rc = PTR_ERR(data);
3131  		goto out_unlock;
3132  	}
3133  
3134  	rc = acpi_nfit_check_deletions(acpi_desc, &prev);
3135  	if (rc)
3136  		goto out_unlock;
3137  
3138  	rc = nfit_mem_init(acpi_desc);
3139  	if (rc)
3140  		goto out_unlock;
3141  
3142  	rc = acpi_nfit_register_dimms(acpi_desc);
3143  	if (rc)
3144  		goto out_unlock;
3145  
3146  	rc = acpi_nfit_register_regions(acpi_desc);
3147  
3148   out_unlock:
3149  	mutex_unlock(&acpi_desc->init_mutex);
3150  	return rc;
3151  }
3152  EXPORT_SYMBOL_GPL(acpi_nfit_init);
3153  
acpi_nfit_flush_probe(struct nvdimm_bus_descriptor * nd_desc)3154  static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
3155  {
3156  	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3157  	struct device *dev = acpi_desc->dev;
3158  
3159  	/* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
3160  	device_lock(dev);
3161  	device_unlock(dev);
3162  
3163  	/* Bounce the init_mutex to complete initial registration */
3164  	mutex_lock(&acpi_desc->init_mutex);
3165  	mutex_unlock(&acpi_desc->init_mutex);
3166  
3167  	return 0;
3168  }
3169  
__acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,unsigned int cmd)3170  static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3171  		struct nvdimm *nvdimm, unsigned int cmd)
3172  {
3173  	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3174  
3175  	if (nvdimm)
3176  		return 0;
3177  	if (cmd != ND_CMD_ARS_START)
3178  		return 0;
3179  
3180  	/*
3181  	 * The kernel and userspace may race to initiate a scrub, but
3182  	 * the scrub thread is prepared to lose that initial race.  It
3183  	 * just needs guarantees that any ARS it initiates are not
3184  	 * interrupted by any intervening start requests from userspace.
3185  	 */
3186  	if (work_busy(&acpi_desc->dwork.work))
3187  		return -EBUSY;
3188  
3189  	return 0;
3190  }
3191  
3192  /*
3193   * Prevent security and firmware activate commands from being issued via
3194   * ioctl.
3195   */
acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,unsigned int cmd,void * buf)3196  static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3197  		struct nvdimm *nvdimm, unsigned int cmd, void *buf)
3198  {
3199  	struct nd_cmd_pkg *call_pkg = buf;
3200  	unsigned int func;
3201  
3202  	if (nvdimm && cmd == ND_CMD_CALL &&
3203  			call_pkg->nd_family == NVDIMM_FAMILY_INTEL) {
3204  		func = call_pkg->nd_command;
3205  		if (func > NVDIMM_CMD_MAX ||
3206  		    (1 << func) & NVDIMM_INTEL_DENY_CMDMASK)
3207  			return -EOPNOTSUPP;
3208  	}
3209  
3210  	/* block all non-nfit bus commands */
3211  	if (!nvdimm && cmd == ND_CMD_CALL &&
3212  			call_pkg->nd_family != NVDIMM_BUS_FAMILY_NFIT)
3213  		return -EOPNOTSUPP;
3214  
3215  	return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd);
3216  }
3217  
acpi_nfit_ars_rescan(struct acpi_nfit_desc * acpi_desc,enum nfit_ars_state req_type)3218  int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc,
3219  		enum nfit_ars_state req_type)
3220  {
3221  	struct device *dev = acpi_desc->dev;
3222  	int scheduled = 0, busy = 0;
3223  	struct nfit_spa *nfit_spa;
3224  
3225  	mutex_lock(&acpi_desc->init_mutex);
3226  	if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) {
3227  		mutex_unlock(&acpi_desc->init_mutex);
3228  		return 0;
3229  	}
3230  
3231  	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3232  		int type = nfit_spa_type(nfit_spa->spa);
3233  
3234  		if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE)
3235  			continue;
3236  		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3237  			continue;
3238  
3239  		if (test_and_set_bit(req_type, &nfit_spa->ars_state))
3240  			busy++;
3241  		else
3242  			scheduled++;
3243  	}
3244  	if (scheduled) {
3245  		sched_ars(acpi_desc);
3246  		dev_dbg(dev, "ars_scan triggered\n");
3247  	}
3248  	mutex_unlock(&acpi_desc->init_mutex);
3249  
3250  	if (scheduled)
3251  		return 0;
3252  	if (busy)
3253  		return -EBUSY;
3254  	return -ENOTTY;
3255  }
3256  
acpi_nfit_desc_init(struct acpi_nfit_desc * acpi_desc,struct device * dev)3257  void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
3258  {
3259  	struct nvdimm_bus_descriptor *nd_desc;
3260  
3261  	dev_set_drvdata(dev, acpi_desc);
3262  	acpi_desc->dev = dev;
3263  	nd_desc = &acpi_desc->nd_desc;
3264  	nd_desc->provider_name = "ACPI.NFIT";
3265  	nd_desc->module = THIS_MODULE;
3266  	nd_desc->ndctl = acpi_nfit_ctl;
3267  	nd_desc->flush_probe = acpi_nfit_flush_probe;
3268  	nd_desc->clear_to_send = acpi_nfit_clear_to_send;
3269  	nd_desc->attr_groups = acpi_nfit_attribute_groups;
3270  
3271  	INIT_LIST_HEAD(&acpi_desc->spas);
3272  	INIT_LIST_HEAD(&acpi_desc->dcrs);
3273  	INIT_LIST_HEAD(&acpi_desc->bdws);
3274  	INIT_LIST_HEAD(&acpi_desc->idts);
3275  	INIT_LIST_HEAD(&acpi_desc->flushes);
3276  	INIT_LIST_HEAD(&acpi_desc->memdevs);
3277  	INIT_LIST_HEAD(&acpi_desc->dimms);
3278  	INIT_LIST_HEAD(&acpi_desc->list);
3279  	mutex_init(&acpi_desc->init_mutex);
3280  	acpi_desc->scrub_tmo = 1;
3281  	INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub);
3282  }
3283  EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
3284  
acpi_nfit_put_table(void * table)3285  static void acpi_nfit_put_table(void *table)
3286  {
3287  	acpi_put_table(table);
3288  }
3289  
acpi_nfit_notify(acpi_handle handle,u32 event,void * data)3290  static void acpi_nfit_notify(acpi_handle handle, u32 event, void *data)
3291  {
3292  	struct acpi_device *adev = data;
3293  
3294  	device_lock(&adev->dev);
3295  	__acpi_nfit_notify(&adev->dev, handle, event);
3296  	device_unlock(&adev->dev);
3297  }
3298  
acpi_nfit_remove_notify_handler(void * data)3299  static void acpi_nfit_remove_notify_handler(void *data)
3300  {
3301  	struct acpi_device *adev = data;
3302  
3303  	acpi_dev_remove_notify_handler(adev, ACPI_DEVICE_NOTIFY,
3304  				       acpi_nfit_notify);
3305  }
3306  
acpi_nfit_shutdown(void * data)3307  void acpi_nfit_shutdown(void *data)
3308  {
3309  	struct acpi_nfit_desc *acpi_desc = data;
3310  	struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3311  
3312  	/*
3313  	 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
3314  	 * race teardown
3315  	 */
3316  	mutex_lock(&acpi_desc_lock);
3317  	list_del(&acpi_desc->list);
3318  	mutex_unlock(&acpi_desc_lock);
3319  
3320  	mutex_lock(&acpi_desc->init_mutex);
3321  	set_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
3322  	mutex_unlock(&acpi_desc->init_mutex);
3323  	cancel_delayed_work_sync(&acpi_desc->dwork);
3324  
3325  	/*
3326  	 * Bounce the nvdimm bus lock to make sure any in-flight
3327  	 * acpi_nfit_ars_rescan() submissions have had a chance to
3328  	 * either submit or see ->cancel set.
3329  	 */
3330  	device_lock(bus_dev);
3331  	device_unlock(bus_dev);
3332  
3333  	flush_workqueue(nfit_wq);
3334  }
3335  EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3336  
acpi_nfit_add(struct acpi_device * adev)3337  static int acpi_nfit_add(struct acpi_device *adev)
3338  {
3339  	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3340  	struct acpi_nfit_desc *acpi_desc;
3341  	struct device *dev = &adev->dev;
3342  	struct acpi_table_header *tbl;
3343  	acpi_status status = AE_OK;
3344  	acpi_size sz;
3345  	int rc = 0;
3346  
3347  	rc = acpi_dev_install_notify_handler(adev, ACPI_DEVICE_NOTIFY,
3348  					     acpi_nfit_notify);
3349  	if (rc)
3350  		return rc;
3351  
3352  	rc = devm_add_action_or_reset(dev, acpi_nfit_remove_notify_handler,
3353  					adev);
3354  	if (rc)
3355  		return rc;
3356  
3357  	status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3358  	if (ACPI_FAILURE(status)) {
3359  		/* The NVDIMM root device allows OS to trigger enumeration of
3360  		 * NVDIMMs through NFIT at boot time and re-enumeration at
3361  		 * root level via the _FIT method during runtime.
3362  		 * This is ok to return 0 here, we could have an nvdimm
3363  		 * hotplugged later and evaluate _FIT method which returns
3364  		 * data in the format of a series of NFIT Structures.
3365  		 */
3366  		dev_dbg(dev, "failed to find NFIT at startup\n");
3367  		return 0;
3368  	}
3369  
3370  	rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3371  	if (rc)
3372  		return rc;
3373  	sz = tbl->length;
3374  
3375  	acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3376  	if (!acpi_desc)
3377  		return -ENOMEM;
3378  	acpi_nfit_desc_init(acpi_desc, &adev->dev);
3379  
3380  	/* Save the acpi header for exporting the revision via sysfs */
3381  	acpi_desc->acpi_header = *tbl;
3382  
3383  	/* Evaluate _FIT and override with that if present */
3384  	status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3385  	if (ACPI_SUCCESS(status) && buf.length > 0) {
3386  		union acpi_object *obj = buf.pointer;
3387  
3388  		if (obj->type == ACPI_TYPE_BUFFER)
3389  			rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3390  					obj->buffer.length);
3391  		else
3392  			dev_dbg(dev, "invalid type %d, ignoring _FIT\n",
3393  				(int) obj->type);
3394  		kfree(buf.pointer);
3395  	} else
3396  		/* skip over the lead-in header table */
3397  		rc = acpi_nfit_init(acpi_desc, (void *) tbl
3398  				+ sizeof(struct acpi_table_nfit),
3399  				sz - sizeof(struct acpi_table_nfit));
3400  
3401  	if (rc)
3402  		return rc;
3403  
3404  	return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3405  }
3406  
acpi_nfit_update_notify(struct device * dev,acpi_handle handle)3407  static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3408  {
3409  	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3410  	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3411  	union acpi_object *obj;
3412  	acpi_status status;
3413  	int ret;
3414  
3415  	if (!dev->driver) {
3416  		/* dev->driver may be null if we're being removed */
3417  		dev_dbg(dev, "no driver found for dev\n");
3418  		return;
3419  	}
3420  
3421  	if (!acpi_desc) {
3422  		acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3423  		if (!acpi_desc)
3424  			return;
3425  		acpi_nfit_desc_init(acpi_desc, dev);
3426  	} else {
3427  		/*
3428  		 * Finish previous registration before considering new
3429  		 * regions.
3430  		 */
3431  		flush_workqueue(nfit_wq);
3432  	}
3433  
3434  	/* Evaluate _FIT */
3435  	status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3436  	if (ACPI_FAILURE(status)) {
3437  		dev_err(dev, "failed to evaluate _FIT\n");
3438  		return;
3439  	}
3440  
3441  	obj = buf.pointer;
3442  	if (obj->type == ACPI_TYPE_BUFFER) {
3443  		ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3444  				obj->buffer.length);
3445  		if (ret)
3446  			dev_err(dev, "failed to merge updated NFIT\n");
3447  	} else
3448  		dev_err(dev, "Invalid _FIT\n");
3449  	kfree(buf.pointer);
3450  }
3451  
acpi_nfit_uc_error_notify(struct device * dev,acpi_handle handle)3452  static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3453  {
3454  	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3455  
3456  	if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON)
3457  		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
3458  	else
3459  		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT);
3460  }
3461  
__acpi_nfit_notify(struct device * dev,acpi_handle handle,u32 event)3462  void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3463  {
3464  	dev_dbg(dev, "event: 0x%x\n", event);
3465  
3466  	switch (event) {
3467  	case NFIT_NOTIFY_UPDATE:
3468  		return acpi_nfit_update_notify(dev, handle);
3469  	case NFIT_NOTIFY_UC_MEMORY_ERROR:
3470  		return acpi_nfit_uc_error_notify(dev, handle);
3471  	default:
3472  		return;
3473  	}
3474  }
3475  EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3476  
3477  static const struct acpi_device_id acpi_nfit_ids[] = {
3478  	{ "ACPI0012", 0 },
3479  	{ "", 0 },
3480  };
3481  MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3482  
3483  static struct acpi_driver acpi_nfit_driver = {
3484  	.name = KBUILD_MODNAME,
3485  	.ids = acpi_nfit_ids,
3486  	.ops = {
3487  		.add = acpi_nfit_add,
3488  	},
3489  };
3490  
nfit_init(void)3491  static __init int nfit_init(void)
3492  {
3493  	int ret;
3494  
3495  	BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3496  	BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 64);
3497  	BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3498  	BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 16);
3499  	BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 8);
3500  	BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3501  	BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3502  	BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16);
3503  
3504  	guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3505  	guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3506  	guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3507  	guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3508  	guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3509  	guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3510  	guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3511  	guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3512  	guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3513  	guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3514  	guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3515  	guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3516  	guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3517  	guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]);
3518  	guid_parse(UUID_INTEL_BUS, &nfit_uuid[NFIT_BUS_INTEL]);
3519  
3520  	nfit_wq = create_singlethread_workqueue("nfit");
3521  	if (!nfit_wq)
3522  		return -ENOMEM;
3523  
3524  	nfit_mce_register();
3525  	ret = acpi_bus_register_driver(&acpi_nfit_driver);
3526  	if (ret) {
3527  		nfit_mce_unregister();
3528  		destroy_workqueue(nfit_wq);
3529  	}
3530  
3531  	return ret;
3532  
3533  }
3534  
nfit_exit(void)3535  static __exit void nfit_exit(void)
3536  {
3537  	nfit_mce_unregister();
3538  	acpi_bus_unregister_driver(&acpi_nfit_driver);
3539  	destroy_workqueue(nfit_wq);
3540  	WARN_ON(!list_empty(&acpi_descs));
3541  }
3542  
3543  module_init(nfit_init);
3544  module_exit(nfit_exit);
3545  MODULE_LICENSE("GPL v2");
3546  MODULE_AUTHOR("Intel Corporation");
3547