1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/profile.c
4 * Simple profiling. Manages a direct-mapped profile hit count buffer,
5 * with configurable resolution, support for restricting the cpus on
6 * which profiling is done, and switching between cpu time and
7 * schedule() calls via kernel command line parameters passed at boot.
8 *
9 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
10 * Red Hat, July 2004
11 * Consolidation of architecture support code for profiling,
12 * Nadia Yvette Chambers, Oracle, July 2004
13 * Amortized hit count accounting via per-cpu open-addressed hashtables
14 * to resolve timer interrupt livelocks, Nadia Yvette Chambers,
15 * Oracle, 2004
16 */
17
18 #include <linux/export.h>
19 #include <linux/profile.h>
20 #include <linux/memblock.h>
21 #include <linux/notifier.h>
22 #include <linux/mm.h>
23 #include <linux/cpumask.h>
24 #include <linux/cpu.h>
25 #include <linux/highmem.h>
26 #include <linux/mutex.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched/stat.h>
30
31 #include <asm/sections.h>
32 #include <asm/irq_regs.h>
33 #include <asm/ptrace.h>
34
35 struct profile_hit {
36 u32 pc, hits;
37 };
38 #define PROFILE_GRPSHIFT 3
39 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
40 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
41 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
42
43 static atomic_t *prof_buffer;
44 static unsigned long prof_len;
45 static unsigned short int prof_shift;
46
47 int prof_on __read_mostly;
48 EXPORT_SYMBOL_GPL(prof_on);
49
50 static cpumask_var_t prof_cpu_mask;
51 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
52 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
53 static DEFINE_PER_CPU(int, cpu_profile_flip);
54 static DEFINE_MUTEX(profile_flip_mutex);
55 #endif /* CONFIG_SMP */
56
profile_setup(char * str)57 int profile_setup(char *str)
58 {
59 static const char schedstr[] = "schedule";
60 static const char kvmstr[] = "kvm";
61 const char *select = NULL;
62 int par;
63
64 if (!strncmp(str, schedstr, strlen(schedstr))) {
65 prof_on = SCHED_PROFILING;
66 select = schedstr;
67 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
68 prof_on = KVM_PROFILING;
69 select = kvmstr;
70 } else if (get_option(&str, &par)) {
71 prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
72 prof_on = CPU_PROFILING;
73 pr_info("kernel profiling enabled (shift: %u)\n",
74 prof_shift);
75 }
76
77 if (select) {
78 if (str[strlen(select)] == ',')
79 str += strlen(select) + 1;
80 if (get_option(&str, &par))
81 prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
82 pr_info("kernel %s profiling enabled (shift: %u)\n",
83 select, prof_shift);
84 }
85
86 return 1;
87 }
88 __setup("profile=", profile_setup);
89
90
profile_init(void)91 int __ref profile_init(void)
92 {
93 int buffer_bytes;
94 if (!prof_on)
95 return 0;
96
97 /* only text is profiled */
98 prof_len = (_etext - _stext) >> prof_shift;
99
100 if (!prof_len) {
101 pr_warn("profiling shift: %u too large\n", prof_shift);
102 prof_on = 0;
103 return -EINVAL;
104 }
105
106 buffer_bytes = prof_len*sizeof(atomic_t);
107
108 if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
109 return -ENOMEM;
110
111 cpumask_copy(prof_cpu_mask, cpu_possible_mask);
112
113 prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
114 if (prof_buffer)
115 return 0;
116
117 prof_buffer = alloc_pages_exact(buffer_bytes,
118 GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
119 if (prof_buffer)
120 return 0;
121
122 prof_buffer = vzalloc(buffer_bytes);
123 if (prof_buffer)
124 return 0;
125
126 free_cpumask_var(prof_cpu_mask);
127 return -ENOMEM;
128 }
129
130 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
131 /*
132 * Each cpu has a pair of open-addressed hashtables for pending
133 * profile hits. read_profile() IPI's all cpus to request them
134 * to flip buffers and flushes their contents to prof_buffer itself.
135 * Flip requests are serialized by the profile_flip_mutex. The sole
136 * use of having a second hashtable is for avoiding cacheline
137 * contention that would otherwise happen during flushes of pending
138 * profile hits required for the accuracy of reported profile hits
139 * and so resurrect the interrupt livelock issue.
140 *
141 * The open-addressed hashtables are indexed by profile buffer slot
142 * and hold the number of pending hits to that profile buffer slot on
143 * a cpu in an entry. When the hashtable overflows, all pending hits
144 * are accounted to their corresponding profile buffer slots with
145 * atomic_add() and the hashtable emptied. As numerous pending hits
146 * may be accounted to a profile buffer slot in a hashtable entry,
147 * this amortizes a number of atomic profile buffer increments likely
148 * to be far larger than the number of entries in the hashtable,
149 * particularly given that the number of distinct profile buffer
150 * positions to which hits are accounted during short intervals (e.g.
151 * several seconds) is usually very small. Exclusion from buffer
152 * flipping is provided by interrupt disablement (note that for
153 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
154 * process context).
155 * The hash function is meant to be lightweight as opposed to strong,
156 * and was vaguely inspired by ppc64 firmware-supported inverted
157 * pagetable hash functions, but uses a full hashtable full of finite
158 * collision chains, not just pairs of them.
159 *
160 * -- nyc
161 */
__profile_flip_buffers(void * unused)162 static void __profile_flip_buffers(void *unused)
163 {
164 int cpu = smp_processor_id();
165
166 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
167 }
168
profile_flip_buffers(void)169 static void profile_flip_buffers(void)
170 {
171 int i, j, cpu;
172
173 mutex_lock(&profile_flip_mutex);
174 j = per_cpu(cpu_profile_flip, get_cpu());
175 put_cpu();
176 on_each_cpu(__profile_flip_buffers, NULL, 1);
177 for_each_online_cpu(cpu) {
178 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
179 for (i = 0; i < NR_PROFILE_HIT; ++i) {
180 if (!hits[i].hits) {
181 if (hits[i].pc)
182 hits[i].pc = 0;
183 continue;
184 }
185 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
186 hits[i].hits = hits[i].pc = 0;
187 }
188 }
189 mutex_unlock(&profile_flip_mutex);
190 }
191
profile_discard_flip_buffers(void)192 static void profile_discard_flip_buffers(void)
193 {
194 int i, cpu;
195
196 mutex_lock(&profile_flip_mutex);
197 i = per_cpu(cpu_profile_flip, get_cpu());
198 put_cpu();
199 on_each_cpu(__profile_flip_buffers, NULL, 1);
200 for_each_online_cpu(cpu) {
201 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
202 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
203 }
204 mutex_unlock(&profile_flip_mutex);
205 }
206
do_profile_hits(int type,void * __pc,unsigned int nr_hits)207 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
208 {
209 unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
210 int i, j, cpu;
211 struct profile_hit *hits;
212
213 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
214 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
215 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
216 cpu = get_cpu();
217 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
218 if (!hits) {
219 put_cpu();
220 return;
221 }
222 /*
223 * We buffer the global profiler buffer into a per-CPU
224 * queue and thus reduce the number of global (and possibly
225 * NUMA-alien) accesses. The write-queue is self-coalescing:
226 */
227 local_irq_save(flags);
228 do {
229 for (j = 0; j < PROFILE_GRPSZ; ++j) {
230 if (hits[i + j].pc == pc) {
231 hits[i + j].hits += nr_hits;
232 goto out;
233 } else if (!hits[i + j].hits) {
234 hits[i + j].pc = pc;
235 hits[i + j].hits = nr_hits;
236 goto out;
237 }
238 }
239 i = (i + secondary) & (NR_PROFILE_HIT - 1);
240 } while (i != primary);
241
242 /*
243 * Add the current hit(s) and flush the write-queue out
244 * to the global buffer:
245 */
246 atomic_add(nr_hits, &prof_buffer[pc]);
247 for (i = 0; i < NR_PROFILE_HIT; ++i) {
248 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
249 hits[i].pc = hits[i].hits = 0;
250 }
251 out:
252 local_irq_restore(flags);
253 put_cpu();
254 }
255
profile_dead_cpu(unsigned int cpu)256 static int profile_dead_cpu(unsigned int cpu)
257 {
258 struct page *page;
259 int i;
260
261 if (cpumask_available(prof_cpu_mask))
262 cpumask_clear_cpu(cpu, prof_cpu_mask);
263
264 for (i = 0; i < 2; i++) {
265 if (per_cpu(cpu_profile_hits, cpu)[i]) {
266 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
267 per_cpu(cpu_profile_hits, cpu)[i] = NULL;
268 __free_page(page);
269 }
270 }
271 return 0;
272 }
273
profile_prepare_cpu(unsigned int cpu)274 static int profile_prepare_cpu(unsigned int cpu)
275 {
276 int i, node = cpu_to_mem(cpu);
277 struct page *page;
278
279 per_cpu(cpu_profile_flip, cpu) = 0;
280
281 for (i = 0; i < 2; i++) {
282 if (per_cpu(cpu_profile_hits, cpu)[i])
283 continue;
284
285 page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
286 if (!page) {
287 profile_dead_cpu(cpu);
288 return -ENOMEM;
289 }
290 per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
291
292 }
293 return 0;
294 }
295
profile_online_cpu(unsigned int cpu)296 static int profile_online_cpu(unsigned int cpu)
297 {
298 if (cpumask_available(prof_cpu_mask))
299 cpumask_set_cpu(cpu, prof_cpu_mask);
300
301 return 0;
302 }
303
304 #else /* !CONFIG_SMP */
305 #define profile_flip_buffers() do { } while (0)
306 #define profile_discard_flip_buffers() do { } while (0)
307
do_profile_hits(int type,void * __pc,unsigned int nr_hits)308 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
309 {
310 unsigned long pc;
311 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
312 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
313 }
314 #endif /* !CONFIG_SMP */
315
profile_hits(int type,void * __pc,unsigned int nr_hits)316 void profile_hits(int type, void *__pc, unsigned int nr_hits)
317 {
318 if (prof_on != type || !prof_buffer)
319 return;
320 do_profile_hits(type, __pc, nr_hits);
321 }
322 EXPORT_SYMBOL_GPL(profile_hits);
323
profile_tick(int type)324 void profile_tick(int type)
325 {
326 struct pt_regs *regs = get_irq_regs();
327
328 if (!user_mode(regs) && cpumask_available(prof_cpu_mask) &&
329 cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
330 profile_hit(type, (void *)profile_pc(regs));
331 }
332
333 #ifdef CONFIG_PROC_FS
334 #include <linux/proc_fs.h>
335 #include <linux/seq_file.h>
336 #include <linux/uaccess.h>
337
prof_cpu_mask_proc_show(struct seq_file * m,void * v)338 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
339 {
340 seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
341 return 0;
342 }
343
prof_cpu_mask_proc_open(struct inode * inode,struct file * file)344 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
345 {
346 return single_open(file, prof_cpu_mask_proc_show, NULL);
347 }
348
prof_cpu_mask_proc_write(struct file * file,const char __user * buffer,size_t count,loff_t * pos)349 static ssize_t prof_cpu_mask_proc_write(struct file *file,
350 const char __user *buffer, size_t count, loff_t *pos)
351 {
352 cpumask_var_t new_value;
353 int err;
354
355 if (!zalloc_cpumask_var(&new_value, GFP_KERNEL))
356 return -ENOMEM;
357
358 err = cpumask_parse_user(buffer, count, new_value);
359 if (!err) {
360 cpumask_copy(prof_cpu_mask, new_value);
361 err = count;
362 }
363 free_cpumask_var(new_value);
364 return err;
365 }
366
367 static const struct proc_ops prof_cpu_mask_proc_ops = {
368 .proc_open = prof_cpu_mask_proc_open,
369 .proc_read = seq_read,
370 .proc_lseek = seq_lseek,
371 .proc_release = single_release,
372 .proc_write = prof_cpu_mask_proc_write,
373 };
374
create_prof_cpu_mask(void)375 void create_prof_cpu_mask(void)
376 {
377 /* create /proc/irq/prof_cpu_mask */
378 proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_ops);
379 }
380
381 /*
382 * This function accesses profiling information. The returned data is
383 * binary: the sampling step and the actual contents of the profile
384 * buffer. Use of the program readprofile is recommended in order to
385 * get meaningful info out of these data.
386 */
387 static ssize_t
read_profile(struct file * file,char __user * buf,size_t count,loff_t * ppos)388 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
389 {
390 unsigned long p = *ppos;
391 ssize_t read;
392 char *pnt;
393 unsigned long sample_step = 1UL << prof_shift;
394
395 profile_flip_buffers();
396 if (p >= (prof_len+1)*sizeof(unsigned int))
397 return 0;
398 if (count > (prof_len+1)*sizeof(unsigned int) - p)
399 count = (prof_len+1)*sizeof(unsigned int) - p;
400 read = 0;
401
402 while (p < sizeof(unsigned int) && count > 0) {
403 if (put_user(*((char *)(&sample_step)+p), buf))
404 return -EFAULT;
405 buf++; p++; count--; read++;
406 }
407 pnt = (char *)prof_buffer + p - sizeof(atomic_t);
408 if (copy_to_user(buf, (void *)pnt, count))
409 return -EFAULT;
410 read += count;
411 *ppos += read;
412 return read;
413 }
414
415 /* default is to not implement this call */
setup_profiling_timer(unsigned mult)416 int __weak setup_profiling_timer(unsigned mult)
417 {
418 return -EINVAL;
419 }
420
421 /*
422 * Writing to /proc/profile resets the counters
423 *
424 * Writing a 'profiling multiplier' value into it also re-sets the profiling
425 * interrupt frequency, on architectures that support this.
426 */
write_profile(struct file * file,const char __user * buf,size_t count,loff_t * ppos)427 static ssize_t write_profile(struct file *file, const char __user *buf,
428 size_t count, loff_t *ppos)
429 {
430 #ifdef CONFIG_SMP
431 if (count == sizeof(int)) {
432 unsigned int multiplier;
433
434 if (copy_from_user(&multiplier, buf, sizeof(int)))
435 return -EFAULT;
436
437 if (setup_profiling_timer(multiplier))
438 return -EINVAL;
439 }
440 #endif
441 profile_discard_flip_buffers();
442 memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
443 return count;
444 }
445
446 static const struct proc_ops profile_proc_ops = {
447 .proc_read = read_profile,
448 .proc_write = write_profile,
449 .proc_lseek = default_llseek,
450 };
451
create_proc_profile(void)452 int __ref create_proc_profile(void)
453 {
454 struct proc_dir_entry *entry;
455 #ifdef CONFIG_SMP
456 enum cpuhp_state online_state;
457 #endif
458
459 int err = 0;
460
461 if (!prof_on)
462 return 0;
463 #ifdef CONFIG_SMP
464 err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
465 profile_prepare_cpu, profile_dead_cpu);
466 if (err)
467 return err;
468
469 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
470 profile_online_cpu, NULL);
471 if (err < 0)
472 goto err_state_prep;
473 online_state = err;
474 err = 0;
475 #endif
476 entry = proc_create("profile", S_IWUSR | S_IRUGO,
477 NULL, &profile_proc_ops);
478 if (!entry)
479 goto err_state_onl;
480 proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
481
482 return err;
483 err_state_onl:
484 #ifdef CONFIG_SMP
485 cpuhp_remove_state(online_state);
486 err_state_prep:
487 cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
488 #endif
489 return err;
490 }
491 subsys_initcall(create_proc_profile);
492 #endif /* CONFIG_PROC_FS */
493