xref: /openbmc/linux/arch/x86/kvm/x86.c (revision 55e43d6abd078ed6d219902ce8cb4d68e3c993ba)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Kernel-based Virtual Machine driver for Linux
4   *
5   * derived from drivers/kvm/kvm_main.c
6   *
7   * Copyright (C) 2006 Qumranet, Inc.
8   * Copyright (C) 2008 Qumranet, Inc.
9   * Copyright IBM Corporation, 2008
10   * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11   *
12   * Authors:
13   *   Avi Kivity   <avi@qumranet.com>
14   *   Yaniv Kamay  <yaniv@qumranet.com>
15   *   Amit Shah    <amit.shah@qumranet.com>
16   *   Ben-Ami Yassour <benami@il.ibm.com>
17   */
18  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19  
20  #include <linux/kvm_host.h>
21  #include "irq.h"
22  #include "ioapic.h"
23  #include "mmu.h"
24  #include "i8254.h"
25  #include "tss.h"
26  #include "kvm_cache_regs.h"
27  #include "kvm_emulate.h"
28  #include "mmu/page_track.h"
29  #include "x86.h"
30  #include "cpuid.h"
31  #include "pmu.h"
32  #include "hyperv.h"
33  #include "lapic.h"
34  #include "xen.h"
35  #include "smm.h"
36  
37  #include <linux/clocksource.h>
38  #include <linux/interrupt.h>
39  #include <linux/kvm.h>
40  #include <linux/fs.h>
41  #include <linux/vmalloc.h>
42  #include <linux/export.h>
43  #include <linux/moduleparam.h>
44  #include <linux/mman.h>
45  #include <linux/highmem.h>
46  #include <linux/iommu.h>
47  #include <linux/cpufreq.h>
48  #include <linux/user-return-notifier.h>
49  #include <linux/srcu.h>
50  #include <linux/slab.h>
51  #include <linux/perf_event.h>
52  #include <linux/uaccess.h>
53  #include <linux/hash.h>
54  #include <linux/pci.h>
55  #include <linux/timekeeper_internal.h>
56  #include <linux/pvclock_gtod.h>
57  #include <linux/kvm_irqfd.h>
58  #include <linux/irqbypass.h>
59  #include <linux/sched/stat.h>
60  #include <linux/sched/isolation.h>
61  #include <linux/mem_encrypt.h>
62  #include <linux/entry-kvm.h>
63  #include <linux/suspend.h>
64  #include <linux/smp.h>
65  
66  #include <trace/events/ipi.h>
67  #include <trace/events/kvm.h>
68  
69  #include <asm/debugreg.h>
70  #include <asm/msr.h>
71  #include <asm/desc.h>
72  #include <asm/mce.h>
73  #include <asm/pkru.h>
74  #include <linux/kernel_stat.h>
75  #include <asm/fpu/api.h>
76  #include <asm/fpu/xcr.h>
77  #include <asm/fpu/xstate.h>
78  #include <asm/pvclock.h>
79  #include <asm/div64.h>
80  #include <asm/irq_remapping.h>
81  #include <asm/mshyperv.h>
82  #include <asm/hypervisor.h>
83  #include <asm/tlbflush.h>
84  #include <asm/intel_pt.h>
85  #include <asm/emulate_prefix.h>
86  #include <asm/sgx.h>
87  #include <clocksource/hyperv_timer.h>
88  
89  #define CREATE_TRACE_POINTS
90  #include "trace.h"
91  
92  #define MAX_IO_MSRS 256
93  #define KVM_MAX_MCE_BANKS 32
94  
95  struct kvm_caps kvm_caps __read_mostly = {
96  	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
97  };
98  EXPORT_SYMBOL_GPL(kvm_caps);
99  
100  #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
101  
102  #define emul_to_vcpu(ctxt) \
103  	((struct kvm_vcpu *)(ctxt)->vcpu)
104  
105  /* EFER defaults:
106   * - enable syscall per default because its emulated by KVM
107   * - enable LME and LMA per default on 64 bit KVM
108   */
109  #ifdef CONFIG_X86_64
110  static
111  u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
112  #else
113  static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
114  #endif
115  
116  static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
117  
118  #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
119  
120  #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
121  
122  #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
123                                      KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
124  
125  static void update_cr8_intercept(struct kvm_vcpu *vcpu);
126  static void process_nmi(struct kvm_vcpu *vcpu);
127  static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
128  static void store_regs(struct kvm_vcpu *vcpu);
129  static int sync_regs(struct kvm_vcpu *vcpu);
130  static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
131  
132  static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133  static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
134  
135  static DEFINE_MUTEX(vendor_module_lock);
136  struct kvm_x86_ops kvm_x86_ops __read_mostly;
137  
138  #define KVM_X86_OP(func)					     \
139  	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
140  				*(((struct kvm_x86_ops *)0)->func));
141  #define KVM_X86_OP_OPTIONAL KVM_X86_OP
142  #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
143  #include <asm/kvm-x86-ops.h>
144  EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
145  EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
146  
147  static bool __read_mostly ignore_msrs = 0;
148  module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
149  
150  bool __read_mostly report_ignored_msrs = true;
151  module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
152  EXPORT_SYMBOL_GPL(report_ignored_msrs);
153  
154  unsigned int min_timer_period_us = 200;
155  module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
156  
157  static bool __read_mostly kvmclock_periodic_sync = true;
158  module_param(kvmclock_periodic_sync, bool, S_IRUGO);
159  
160  /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
161  static u32 __read_mostly tsc_tolerance_ppm = 250;
162  module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
163  
164  /*
165   * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
166   * adaptive tuning starting from default advancement of 1000ns.  '0' disables
167   * advancement entirely.  Any other value is used as-is and disables adaptive
168   * tuning, i.e. allows privileged userspace to set an exact advancement time.
169   */
170  static int __read_mostly lapic_timer_advance_ns = -1;
171  module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
172  
173  static bool __read_mostly vector_hashing = true;
174  module_param(vector_hashing, bool, S_IRUGO);
175  
176  bool __read_mostly enable_vmware_backdoor = false;
177  module_param(enable_vmware_backdoor, bool, S_IRUGO);
178  EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
179  
180  /*
181   * Flags to manipulate forced emulation behavior (any non-zero value will
182   * enable forced emulation).
183   */
184  #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
185  static int __read_mostly force_emulation_prefix;
186  module_param(force_emulation_prefix, int, 0644);
187  
188  int __read_mostly pi_inject_timer = -1;
189  module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
190  
191  /* Enable/disable PMU virtualization */
192  bool __read_mostly enable_pmu = true;
193  EXPORT_SYMBOL_GPL(enable_pmu);
194  module_param(enable_pmu, bool, 0444);
195  
196  bool __read_mostly eager_page_split = true;
197  module_param(eager_page_split, bool, 0644);
198  
199  /* Enable/disable SMT_RSB bug mitigation */
200  static bool __read_mostly mitigate_smt_rsb;
201  module_param(mitigate_smt_rsb, bool, 0444);
202  
203  /*
204   * Restoring the host value for MSRs that are only consumed when running in
205   * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
206   * returns to userspace, i.e. the kernel can run with the guest's value.
207   */
208  #define KVM_MAX_NR_USER_RETURN_MSRS 16
209  
210  struct kvm_user_return_msrs {
211  	struct user_return_notifier urn;
212  	bool registered;
213  	struct kvm_user_return_msr_values {
214  		u64 host;
215  		u64 curr;
216  	} values[KVM_MAX_NR_USER_RETURN_MSRS];
217  };
218  
219  u32 __read_mostly kvm_nr_uret_msrs;
220  EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
221  static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
222  static struct kvm_user_return_msrs __percpu *user_return_msrs;
223  
224  #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
225  				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
226  				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
227  				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
228  
229  u64 __read_mostly host_efer;
230  EXPORT_SYMBOL_GPL(host_efer);
231  
232  bool __read_mostly allow_smaller_maxphyaddr = 0;
233  EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
234  
235  bool __read_mostly enable_apicv = true;
236  EXPORT_SYMBOL_GPL(enable_apicv);
237  
238  u64 __read_mostly host_xss;
239  EXPORT_SYMBOL_GPL(host_xss);
240  
241  u64 __read_mostly host_arch_capabilities;
242  EXPORT_SYMBOL_GPL(host_arch_capabilities);
243  
244  const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245  	KVM_GENERIC_VM_STATS(),
246  	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247  	STATS_DESC_COUNTER(VM, mmu_pte_write),
248  	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249  	STATS_DESC_COUNTER(VM, mmu_flooded),
250  	STATS_DESC_COUNTER(VM, mmu_recycled),
251  	STATS_DESC_COUNTER(VM, mmu_cache_miss),
252  	STATS_DESC_ICOUNTER(VM, mmu_unsync),
253  	STATS_DESC_ICOUNTER(VM, pages_4k),
254  	STATS_DESC_ICOUNTER(VM, pages_2m),
255  	STATS_DESC_ICOUNTER(VM, pages_1g),
256  	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257  	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258  	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
259  };
260  
261  const struct kvm_stats_header kvm_vm_stats_header = {
262  	.name_size = KVM_STATS_NAME_SIZE,
263  	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264  	.id_offset = sizeof(struct kvm_stats_header),
265  	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266  	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267  		       sizeof(kvm_vm_stats_desc),
268  };
269  
270  const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271  	KVM_GENERIC_VCPU_STATS(),
272  	STATS_DESC_COUNTER(VCPU, pf_taken),
273  	STATS_DESC_COUNTER(VCPU, pf_fixed),
274  	STATS_DESC_COUNTER(VCPU, pf_emulate),
275  	STATS_DESC_COUNTER(VCPU, pf_spurious),
276  	STATS_DESC_COUNTER(VCPU, pf_fast),
277  	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278  	STATS_DESC_COUNTER(VCPU, pf_guest),
279  	STATS_DESC_COUNTER(VCPU, tlb_flush),
280  	STATS_DESC_COUNTER(VCPU, invlpg),
281  	STATS_DESC_COUNTER(VCPU, exits),
282  	STATS_DESC_COUNTER(VCPU, io_exits),
283  	STATS_DESC_COUNTER(VCPU, mmio_exits),
284  	STATS_DESC_COUNTER(VCPU, signal_exits),
285  	STATS_DESC_COUNTER(VCPU, irq_window_exits),
286  	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287  	STATS_DESC_COUNTER(VCPU, l1d_flush),
288  	STATS_DESC_COUNTER(VCPU, halt_exits),
289  	STATS_DESC_COUNTER(VCPU, request_irq_exits),
290  	STATS_DESC_COUNTER(VCPU, irq_exits),
291  	STATS_DESC_COUNTER(VCPU, host_state_reload),
292  	STATS_DESC_COUNTER(VCPU, fpu_reload),
293  	STATS_DESC_COUNTER(VCPU, insn_emulation),
294  	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295  	STATS_DESC_COUNTER(VCPU, hypercalls),
296  	STATS_DESC_COUNTER(VCPU, irq_injections),
297  	STATS_DESC_COUNTER(VCPU, nmi_injections),
298  	STATS_DESC_COUNTER(VCPU, req_event),
299  	STATS_DESC_COUNTER(VCPU, nested_run),
300  	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301  	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302  	STATS_DESC_COUNTER(VCPU, preemption_reported),
303  	STATS_DESC_COUNTER(VCPU, preemption_other),
304  	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305  	STATS_DESC_COUNTER(VCPU, notify_window_exits),
306  };
307  
308  const struct kvm_stats_header kvm_vcpu_stats_header = {
309  	.name_size = KVM_STATS_NAME_SIZE,
310  	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311  	.id_offset = sizeof(struct kvm_stats_header),
312  	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313  	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314  		       sizeof(kvm_vcpu_stats_desc),
315  };
316  
317  u64 __read_mostly host_xcr0;
318  
319  static struct kmem_cache *x86_emulator_cache;
320  
321  /*
322   * When called, it means the previous get/set msr reached an invalid msr.
323   * Return true if we want to ignore/silent this failed msr access.
324   */
kvm_msr_ignored_check(u32 msr,u64 data,bool write)325  static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
326  {
327  	const char *op = write ? "wrmsr" : "rdmsr";
328  
329  	if (ignore_msrs) {
330  		if (report_ignored_msrs)
331  			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
332  				      op, msr, data);
333  		/* Mask the error */
334  		return true;
335  	} else {
336  		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
337  				      op, msr, data);
338  		return false;
339  	}
340  }
341  
kvm_alloc_emulator_cache(void)342  static struct kmem_cache *kvm_alloc_emulator_cache(void)
343  {
344  	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
345  	unsigned int size = sizeof(struct x86_emulate_ctxt);
346  
347  	return kmem_cache_create_usercopy("x86_emulator", size,
348  					  __alignof__(struct x86_emulate_ctxt),
349  					  SLAB_ACCOUNT, useroffset,
350  					  size - useroffset, NULL);
351  }
352  
353  static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
354  
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)355  static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
356  {
357  	int i;
358  	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
359  		vcpu->arch.apf.gfns[i] = ~0;
360  }
361  
kvm_on_user_return(struct user_return_notifier * urn)362  static void kvm_on_user_return(struct user_return_notifier *urn)
363  {
364  	unsigned slot;
365  	struct kvm_user_return_msrs *msrs
366  		= container_of(urn, struct kvm_user_return_msrs, urn);
367  	struct kvm_user_return_msr_values *values;
368  	unsigned long flags;
369  
370  	/*
371  	 * Disabling irqs at this point since the following code could be
372  	 * interrupted and executed through kvm_arch_hardware_disable()
373  	 */
374  	local_irq_save(flags);
375  	if (msrs->registered) {
376  		msrs->registered = false;
377  		user_return_notifier_unregister(urn);
378  	}
379  	local_irq_restore(flags);
380  	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
381  		values = &msrs->values[slot];
382  		if (values->host != values->curr) {
383  			wrmsrl(kvm_uret_msrs_list[slot], values->host);
384  			values->curr = values->host;
385  		}
386  	}
387  }
388  
kvm_probe_user_return_msr(u32 msr)389  static int kvm_probe_user_return_msr(u32 msr)
390  {
391  	u64 val;
392  	int ret;
393  
394  	preempt_disable();
395  	ret = rdmsrl_safe(msr, &val);
396  	if (ret)
397  		goto out;
398  	ret = wrmsrl_safe(msr, val);
399  out:
400  	preempt_enable();
401  	return ret;
402  }
403  
kvm_add_user_return_msr(u32 msr)404  int kvm_add_user_return_msr(u32 msr)
405  {
406  	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
407  
408  	if (kvm_probe_user_return_msr(msr))
409  		return -1;
410  
411  	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
412  	return kvm_nr_uret_msrs++;
413  }
414  EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
415  
kvm_find_user_return_msr(u32 msr)416  int kvm_find_user_return_msr(u32 msr)
417  {
418  	int i;
419  
420  	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421  		if (kvm_uret_msrs_list[i] == msr)
422  			return i;
423  	}
424  	return -1;
425  }
426  EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
427  
kvm_user_return_msr_cpu_online(void)428  static void kvm_user_return_msr_cpu_online(void)
429  {
430  	unsigned int cpu = smp_processor_id();
431  	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
432  	u64 value;
433  	int i;
434  
435  	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
436  		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
437  		msrs->values[i].host = value;
438  		msrs->values[i].curr = value;
439  	}
440  }
441  
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)442  int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
443  {
444  	unsigned int cpu = smp_processor_id();
445  	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
446  	int err;
447  
448  	value = (value & mask) | (msrs->values[slot].host & ~mask);
449  	if (value == msrs->values[slot].curr)
450  		return 0;
451  	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
452  	if (err)
453  		return 1;
454  
455  	msrs->values[slot].curr = value;
456  	if (!msrs->registered) {
457  		msrs->urn.on_user_return = kvm_on_user_return;
458  		user_return_notifier_register(&msrs->urn);
459  		msrs->registered = true;
460  	}
461  	return 0;
462  }
463  EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
464  
drop_user_return_notifiers(void)465  static void drop_user_return_notifiers(void)
466  {
467  	unsigned int cpu = smp_processor_id();
468  	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
469  
470  	if (msrs->registered)
471  		kvm_on_user_return(&msrs->urn);
472  }
473  
kvm_get_apic_base(struct kvm_vcpu * vcpu)474  u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
475  {
476  	return vcpu->arch.apic_base;
477  }
478  
kvm_get_apic_mode(struct kvm_vcpu * vcpu)479  enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
480  {
481  	return kvm_apic_mode(kvm_get_apic_base(vcpu));
482  }
483  EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
484  
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)485  int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
486  {
487  	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
488  	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
489  	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
490  		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
491  
492  	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
493  		return 1;
494  	if (!msr_info->host_initiated) {
495  		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
496  			return 1;
497  		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
498  			return 1;
499  	}
500  
501  	kvm_lapic_set_base(vcpu, msr_info->data);
502  	kvm_recalculate_apic_map(vcpu->kvm);
503  	return 0;
504  }
505  
506  /*
507   * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508   *
509   * Hardware virtualization extension instructions may fault if a reboot turns
510   * off virtualization while processes are running.  Usually after catching the
511   * fault we just panic; during reboot instead the instruction is ignored.
512   */
kvm_spurious_fault(void)513  noinstr void kvm_spurious_fault(void)
514  {
515  	/* Fault while not rebooting.  We want the trace. */
516  	BUG_ON(!kvm_rebooting);
517  }
518  EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519  
520  #define EXCPT_BENIGN		0
521  #define EXCPT_CONTRIBUTORY	1
522  #define EXCPT_PF		2
523  
exception_class(int vector)524  static int exception_class(int vector)
525  {
526  	switch (vector) {
527  	case PF_VECTOR:
528  		return EXCPT_PF;
529  	case DE_VECTOR:
530  	case TS_VECTOR:
531  	case NP_VECTOR:
532  	case SS_VECTOR:
533  	case GP_VECTOR:
534  		return EXCPT_CONTRIBUTORY;
535  	default:
536  		break;
537  	}
538  	return EXCPT_BENIGN;
539  }
540  
541  #define EXCPT_FAULT		0
542  #define EXCPT_TRAP		1
543  #define EXCPT_ABORT		2
544  #define EXCPT_INTERRUPT		3
545  #define EXCPT_DB		4
546  
exception_type(int vector)547  static int exception_type(int vector)
548  {
549  	unsigned int mask;
550  
551  	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
552  		return EXCPT_INTERRUPT;
553  
554  	mask = 1 << vector;
555  
556  	/*
557  	 * #DBs can be trap-like or fault-like, the caller must check other CPU
558  	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
559  	 */
560  	if (mask & (1 << DB_VECTOR))
561  		return EXCPT_DB;
562  
563  	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
564  		return EXCPT_TRAP;
565  
566  	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
567  		return EXCPT_ABORT;
568  
569  	/* Reserved exceptions will result in fault */
570  	return EXCPT_FAULT;
571  }
572  
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)573  void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
574  				   struct kvm_queued_exception *ex)
575  {
576  	if (!ex->has_payload)
577  		return;
578  
579  	switch (ex->vector) {
580  	case DB_VECTOR:
581  		/*
582  		 * "Certain debug exceptions may clear bit 0-3.  The
583  		 * remaining contents of the DR6 register are never
584  		 * cleared by the processor".
585  		 */
586  		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
587  		/*
588  		 * In order to reflect the #DB exception payload in guest
589  		 * dr6, three components need to be considered: active low
590  		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
591  		 * DR6_BS and DR6_BT)
592  		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
593  		 * In the target guest dr6:
594  		 * FIXED_1 bits should always be set.
595  		 * Active low bits should be cleared if 1-setting in payload.
596  		 * Active high bits should be set if 1-setting in payload.
597  		 *
598  		 * Note, the payload is compatible with the pending debug
599  		 * exceptions/exit qualification under VMX, that active_low bits
600  		 * are active high in payload.
601  		 * So they need to be flipped for DR6.
602  		 */
603  		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
604  		vcpu->arch.dr6 |= ex->payload;
605  		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
606  
607  		/*
608  		 * The #DB payload is defined as compatible with the 'pending
609  		 * debug exceptions' field under VMX, not DR6. While bit 12 is
610  		 * defined in the 'pending debug exceptions' field (enabled
611  		 * breakpoint), it is reserved and must be zero in DR6.
612  		 */
613  		vcpu->arch.dr6 &= ~BIT(12);
614  		break;
615  	case PF_VECTOR:
616  		vcpu->arch.cr2 = ex->payload;
617  		break;
618  	}
619  
620  	ex->has_payload = false;
621  	ex->payload = 0;
622  }
623  EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
624  
kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)625  static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
626  				       bool has_error_code, u32 error_code,
627  				       bool has_payload, unsigned long payload)
628  {
629  	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
630  
631  	ex->vector = vector;
632  	ex->injected = false;
633  	ex->pending = true;
634  	ex->has_error_code = has_error_code;
635  	ex->error_code = error_code;
636  	ex->has_payload = has_payload;
637  	ex->payload = payload;
638  }
639  
640  /* Forcibly leave the nested mode in cases like a vCPU reset */
kvm_leave_nested(struct kvm_vcpu * vcpu)641  static void kvm_leave_nested(struct kvm_vcpu *vcpu)
642  {
643  	kvm_x86_ops.nested_ops->leave_nested(vcpu);
644  }
645  
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)646  static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
647  		unsigned nr, bool has_error, u32 error_code,
648  	        bool has_payload, unsigned long payload, bool reinject)
649  {
650  	u32 prev_nr;
651  	int class1, class2;
652  
653  	kvm_make_request(KVM_REQ_EVENT, vcpu);
654  
655  	/*
656  	 * If the exception is destined for L2 and isn't being reinjected,
657  	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
658  	 * previously injected exception is not checked because it was checked
659  	 * when it was original queued, and re-checking is incorrect if _L1_
660  	 * injected the exception, in which case it's exempt from interception.
661  	 */
662  	if (!reinject && is_guest_mode(vcpu) &&
663  	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
664  		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
665  					   has_payload, payload);
666  		return;
667  	}
668  
669  	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
670  	queue:
671  		if (reinject) {
672  			/*
673  			 * On VM-Entry, an exception can be pending if and only
674  			 * if event injection was blocked by nested_run_pending.
675  			 * In that case, however, vcpu_enter_guest() requests an
676  			 * immediate exit, and the guest shouldn't proceed far
677  			 * enough to need reinjection.
678  			 */
679  			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
680  			vcpu->arch.exception.injected = true;
681  			if (WARN_ON_ONCE(has_payload)) {
682  				/*
683  				 * A reinjected event has already
684  				 * delivered its payload.
685  				 */
686  				has_payload = false;
687  				payload = 0;
688  			}
689  		} else {
690  			vcpu->arch.exception.pending = true;
691  			vcpu->arch.exception.injected = false;
692  		}
693  		vcpu->arch.exception.has_error_code = has_error;
694  		vcpu->arch.exception.vector = nr;
695  		vcpu->arch.exception.error_code = error_code;
696  		vcpu->arch.exception.has_payload = has_payload;
697  		vcpu->arch.exception.payload = payload;
698  		if (!is_guest_mode(vcpu))
699  			kvm_deliver_exception_payload(vcpu,
700  						      &vcpu->arch.exception);
701  		return;
702  	}
703  
704  	/* to check exception */
705  	prev_nr = vcpu->arch.exception.vector;
706  	if (prev_nr == DF_VECTOR) {
707  		/* triple fault -> shutdown */
708  		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
709  		return;
710  	}
711  	class1 = exception_class(prev_nr);
712  	class2 = exception_class(nr);
713  	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
714  	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
715  		/*
716  		 * Synthesize #DF.  Clear the previously injected or pending
717  		 * exception so as not to incorrectly trigger shutdown.
718  		 */
719  		vcpu->arch.exception.injected = false;
720  		vcpu->arch.exception.pending = false;
721  
722  		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
723  	} else {
724  		/* replace previous exception with a new one in a hope
725  		   that instruction re-execution will regenerate lost
726  		   exception */
727  		goto queue;
728  	}
729  }
730  
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)731  void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732  {
733  	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
734  }
735  EXPORT_SYMBOL_GPL(kvm_queue_exception);
736  
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)737  void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
738  {
739  	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
740  }
741  EXPORT_SYMBOL_GPL(kvm_requeue_exception);
742  
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)743  void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
744  			   unsigned long payload)
745  {
746  	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
747  }
748  EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
749  
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)750  static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
751  				    u32 error_code, unsigned long payload)
752  {
753  	kvm_multiple_exception(vcpu, nr, true, error_code,
754  			       true, payload, false);
755  }
756  
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)757  int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
758  {
759  	if (err)
760  		kvm_inject_gp(vcpu, 0);
761  	else
762  		return kvm_skip_emulated_instruction(vcpu);
763  
764  	return 1;
765  }
766  EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
767  
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)768  static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
769  {
770  	if (err) {
771  		kvm_inject_gp(vcpu, 0);
772  		return 1;
773  	}
774  
775  	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
776  				       EMULTYPE_COMPLETE_USER_EXIT);
777  }
778  
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)779  void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
780  {
781  	++vcpu->stat.pf_guest;
782  
783  	/*
784  	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
785  	 * whether or not L1 wants to intercept "regular" #PF.
786  	 */
787  	if (is_guest_mode(vcpu) && fault->async_page_fault)
788  		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
789  					   true, fault->error_code,
790  					   true, fault->address);
791  	else
792  		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
793  					fault->address);
794  }
795  
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)796  void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
797  				    struct x86_exception *fault)
798  {
799  	struct kvm_mmu *fault_mmu;
800  	WARN_ON_ONCE(fault->vector != PF_VECTOR);
801  
802  	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
803  					       vcpu->arch.walk_mmu;
804  
805  	/*
806  	 * Invalidate the TLB entry for the faulting address, if it exists,
807  	 * else the access will fault indefinitely (and to emulate hardware).
808  	 */
809  	if ((fault->error_code & PFERR_PRESENT_MASK) &&
810  	    !(fault->error_code & PFERR_RSVD_MASK))
811  		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
812  					KVM_MMU_ROOT_CURRENT);
813  
814  	fault_mmu->inject_page_fault(vcpu, fault);
815  }
816  EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
817  
kvm_inject_nmi(struct kvm_vcpu * vcpu)818  void kvm_inject_nmi(struct kvm_vcpu *vcpu)
819  {
820  	atomic_inc(&vcpu->arch.nmi_queued);
821  	kvm_make_request(KVM_REQ_NMI, vcpu);
822  }
823  
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)824  void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825  {
826  	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
827  }
828  EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
829  
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)830  void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
831  {
832  	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
833  }
834  EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
835  
836  /*
837   * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
838   * a #GP and return false.
839   */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)840  bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
841  {
842  	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
843  		return true;
844  	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
845  	return false;
846  }
847  
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)848  bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
849  {
850  	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
851  		return true;
852  
853  	kvm_queue_exception(vcpu, UD_VECTOR);
854  	return false;
855  }
856  EXPORT_SYMBOL_GPL(kvm_require_dr);
857  
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)858  static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
859  {
860  	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
861  }
862  
863  /*
864   * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
865   */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)866  int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
867  {
868  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
869  	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
870  	gpa_t real_gpa;
871  	int i;
872  	int ret;
873  	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
874  
875  	/*
876  	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
877  	 * to an L1 GPA.
878  	 */
879  	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
880  				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
881  	if (real_gpa == INVALID_GPA)
882  		return 0;
883  
884  	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
885  	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
886  				       cr3 & GENMASK(11, 5), sizeof(pdpte));
887  	if (ret < 0)
888  		return 0;
889  
890  	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
891  		if ((pdpte[i] & PT_PRESENT_MASK) &&
892  		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
893  			return 0;
894  		}
895  	}
896  
897  	/*
898  	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
899  	 * Shadow page roots need to be reconstructed instead.
900  	 */
901  	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
902  		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
903  
904  	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
905  	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
906  	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
907  	vcpu->arch.pdptrs_from_userspace = false;
908  
909  	return 1;
910  }
911  EXPORT_SYMBOL_GPL(load_pdptrs);
912  
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)913  static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
914  {
915  #ifdef CONFIG_X86_64
916  	if (cr0 & 0xffffffff00000000UL)
917  		return false;
918  #endif
919  
920  	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921  		return false;
922  
923  	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924  		return false;
925  
926  	return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
927  }
928  
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)929  void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
930  {
931  	/*
932  	 * CR0.WP is incorporated into the MMU role, but only for non-nested,
933  	 * indirect shadow MMUs.  If paging is disabled, no updates are needed
934  	 * as there are no permission bits to emulate.  If TDP is enabled, the
935  	 * MMU's metadata needs to be updated, e.g. so that emulating guest
936  	 * translations does the right thing, but there's no need to unload the
937  	 * root as CR0.WP doesn't affect SPTEs.
938  	 */
939  	if ((cr0 ^ old_cr0) == X86_CR0_WP) {
940  		if (!(cr0 & X86_CR0_PG))
941  			return;
942  
943  		if (tdp_enabled) {
944  			kvm_init_mmu(vcpu);
945  			return;
946  		}
947  	}
948  
949  	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
950  		kvm_clear_async_pf_completion_queue(vcpu);
951  		kvm_async_pf_hash_reset(vcpu);
952  
953  		/*
954  		 * Clearing CR0.PG is defined to flush the TLB from the guest's
955  		 * perspective.
956  		 */
957  		if (!(cr0 & X86_CR0_PG))
958  			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
959  	}
960  
961  	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
962  		kvm_mmu_reset_context(vcpu);
963  
964  	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
965  	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
966  	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
967  		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
968  }
969  EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
970  
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)971  int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
972  {
973  	unsigned long old_cr0 = kvm_read_cr0(vcpu);
974  
975  	if (!kvm_is_valid_cr0(vcpu, cr0))
976  		return 1;
977  
978  	cr0 |= X86_CR0_ET;
979  
980  	/* Write to CR0 reserved bits are ignored, even on Intel. */
981  	cr0 &= ~CR0_RESERVED_BITS;
982  
983  #ifdef CONFIG_X86_64
984  	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
985  	    (cr0 & X86_CR0_PG)) {
986  		int cs_db, cs_l;
987  
988  		if (!is_pae(vcpu))
989  			return 1;
990  		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
991  		if (cs_l)
992  			return 1;
993  	}
994  #endif
995  	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
996  	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
997  	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
998  		return 1;
999  
1000  	if (!(cr0 & X86_CR0_PG) &&
1001  	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1002  		return 1;
1003  
1004  	static_call(kvm_x86_set_cr0)(vcpu, cr0);
1005  
1006  	kvm_post_set_cr0(vcpu, old_cr0, cr0);
1007  
1008  	return 0;
1009  }
1010  EXPORT_SYMBOL_GPL(kvm_set_cr0);
1011  
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)1012  void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1013  {
1014  	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1015  }
1016  EXPORT_SYMBOL_GPL(kvm_lmsw);
1017  
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)1018  void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1019  {
1020  	if (vcpu->arch.guest_state_protected)
1021  		return;
1022  
1023  	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1024  
1025  		if (vcpu->arch.xcr0 != host_xcr0)
1026  			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1027  
1028  		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1029  		    vcpu->arch.ia32_xss != host_xss)
1030  			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1031  	}
1032  
1033  	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034  	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1035  	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1036  	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1037  		write_pkru(vcpu->arch.pkru);
1038  }
1039  EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1040  
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)1041  void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1042  {
1043  	if (vcpu->arch.guest_state_protected)
1044  		return;
1045  
1046  	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1047  	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1048  	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1049  		vcpu->arch.pkru = rdpkru();
1050  		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1051  			write_pkru(vcpu->arch.host_pkru);
1052  	}
1053  
1054  	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1055  
1056  		if (vcpu->arch.xcr0 != host_xcr0)
1057  			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1058  
1059  		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1060  		    vcpu->arch.ia32_xss != host_xss)
1061  			wrmsrl(MSR_IA32_XSS, host_xss);
1062  	}
1063  
1064  }
1065  EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1066  
1067  #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1068  static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1069  {
1070  	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1071  }
1072  #endif
1073  
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1074  static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1075  {
1076  	u64 xcr0 = xcr;
1077  	u64 old_xcr0 = vcpu->arch.xcr0;
1078  	u64 valid_bits;
1079  
1080  	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1081  	if (index != XCR_XFEATURE_ENABLED_MASK)
1082  		return 1;
1083  	if (!(xcr0 & XFEATURE_MASK_FP))
1084  		return 1;
1085  	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1086  		return 1;
1087  
1088  	/*
1089  	 * Do not allow the guest to set bits that we do not support
1090  	 * saving.  However, xcr0 bit 0 is always set, even if the
1091  	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1092  	 */
1093  	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1094  	if (xcr0 & ~valid_bits)
1095  		return 1;
1096  
1097  	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1098  	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1099  		return 1;
1100  
1101  	if (xcr0 & XFEATURE_MASK_AVX512) {
1102  		if (!(xcr0 & XFEATURE_MASK_YMM))
1103  			return 1;
1104  		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1105  			return 1;
1106  	}
1107  
1108  	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1109  	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1110  		return 1;
1111  
1112  	vcpu->arch.xcr0 = xcr0;
1113  
1114  	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1115  		kvm_update_cpuid_runtime(vcpu);
1116  	return 0;
1117  }
1118  
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1119  int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1120  {
1121  	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1122  	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1123  	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1124  		kvm_inject_gp(vcpu, 0);
1125  		return 1;
1126  	}
1127  
1128  	return kvm_skip_emulated_instruction(vcpu);
1129  }
1130  EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1131  
__kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1132  bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1133  {
1134  	if (cr4 & cr4_reserved_bits)
1135  		return false;
1136  
1137  	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1138  		return false;
1139  
1140  	return true;
1141  }
1142  EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1143  
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1144  static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1145  {
1146  	return __kvm_is_valid_cr4(vcpu, cr4) &&
1147  	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1148  }
1149  
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1150  void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1151  {
1152  	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1153  		kvm_mmu_reset_context(vcpu);
1154  
1155  	/*
1156  	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1157  	 * according to the SDM; however, stale prev_roots could be reused
1158  	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1159  	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1160  	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1161  	 * so fall through.
1162  	 */
1163  	if (!tdp_enabled &&
1164  	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1165  		kvm_mmu_unload(vcpu);
1166  
1167  	/*
1168  	 * The TLB has to be flushed for all PCIDs if any of the following
1169  	 * (architecturally required) changes happen:
1170  	 * - CR4.PCIDE is changed from 1 to 0
1171  	 * - CR4.PGE is toggled
1172  	 *
1173  	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1174  	 */
1175  	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1176  	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1177  		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1178  
1179  	/*
1180  	 * The TLB has to be flushed for the current PCID if any of the
1181  	 * following (architecturally required) changes happen:
1182  	 * - CR4.SMEP is changed from 0 to 1
1183  	 * - CR4.PAE is toggled
1184  	 */
1185  	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1186  		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1187  		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1188  
1189  }
1190  EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1191  
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1192  int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1193  {
1194  	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1195  
1196  	if (!kvm_is_valid_cr4(vcpu, cr4))
1197  		return 1;
1198  
1199  	if (is_long_mode(vcpu)) {
1200  		if (!(cr4 & X86_CR4_PAE))
1201  			return 1;
1202  		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1203  			return 1;
1204  	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1205  		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1206  		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1207  		return 1;
1208  
1209  	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1210  		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1211  		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1212  			return 1;
1213  	}
1214  
1215  	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1216  
1217  	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1218  
1219  	return 0;
1220  }
1221  EXPORT_SYMBOL_GPL(kvm_set_cr4);
1222  
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1223  static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1224  {
1225  	struct kvm_mmu *mmu = vcpu->arch.mmu;
1226  	unsigned long roots_to_free = 0;
1227  	int i;
1228  
1229  	/*
1230  	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1231  	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1232  	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1233  	 * the invalidation, but the guest's TLB entries need to be flushed as
1234  	 * the CPU may have cached entries in its TLB for the target PCID.
1235  	 */
1236  	if (unlikely(tdp_enabled)) {
1237  		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1238  		return;
1239  	}
1240  
1241  	/*
1242  	 * If neither the current CR3 nor any of the prev_roots use the given
1243  	 * PCID, then nothing needs to be done here because a resync will
1244  	 * happen anyway before switching to any other CR3.
1245  	 */
1246  	if (kvm_get_active_pcid(vcpu) == pcid) {
1247  		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1248  		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1249  	}
1250  
1251  	/*
1252  	 * If PCID is disabled, there is no need to free prev_roots even if the
1253  	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1254  	 * with PCIDE=0.
1255  	 */
1256  	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1257  		return;
1258  
1259  	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1260  		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1261  			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1262  
1263  	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1264  }
1265  
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1266  int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1267  {
1268  	bool skip_tlb_flush = false;
1269  	unsigned long pcid = 0;
1270  #ifdef CONFIG_X86_64
1271  	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1272  		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1273  		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1274  		pcid = cr3 & X86_CR3_PCID_MASK;
1275  	}
1276  #endif
1277  
1278  	/* PDPTRs are always reloaded for PAE paging. */
1279  	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1280  		goto handle_tlb_flush;
1281  
1282  	/*
1283  	 * Do not condition the GPA check on long mode, this helper is used to
1284  	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1285  	 * the current vCPU mode is accurate.
1286  	 */
1287  	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1288  		return 1;
1289  
1290  	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1291  		return 1;
1292  
1293  	if (cr3 != kvm_read_cr3(vcpu))
1294  		kvm_mmu_new_pgd(vcpu, cr3);
1295  
1296  	vcpu->arch.cr3 = cr3;
1297  	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1298  	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1299  
1300  handle_tlb_flush:
1301  	/*
1302  	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1303  	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1304  	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1305  	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1306  	 * i.e. only PCID=0 can be relevant.
1307  	 */
1308  	if (!skip_tlb_flush)
1309  		kvm_invalidate_pcid(vcpu, pcid);
1310  
1311  	return 0;
1312  }
1313  EXPORT_SYMBOL_GPL(kvm_set_cr3);
1314  
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1315  int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1316  {
1317  	if (cr8 & CR8_RESERVED_BITS)
1318  		return 1;
1319  	if (lapic_in_kernel(vcpu))
1320  		kvm_lapic_set_tpr(vcpu, cr8);
1321  	else
1322  		vcpu->arch.cr8 = cr8;
1323  	return 0;
1324  }
1325  EXPORT_SYMBOL_GPL(kvm_set_cr8);
1326  
kvm_get_cr8(struct kvm_vcpu * vcpu)1327  unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1328  {
1329  	if (lapic_in_kernel(vcpu))
1330  		return kvm_lapic_get_cr8(vcpu);
1331  	else
1332  		return vcpu->arch.cr8;
1333  }
1334  EXPORT_SYMBOL_GPL(kvm_get_cr8);
1335  
kvm_update_dr0123(struct kvm_vcpu * vcpu)1336  static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1337  {
1338  	int i;
1339  
1340  	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1341  		for (i = 0; i < KVM_NR_DB_REGS; i++)
1342  			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1343  	}
1344  }
1345  
kvm_update_dr7(struct kvm_vcpu * vcpu)1346  void kvm_update_dr7(struct kvm_vcpu *vcpu)
1347  {
1348  	unsigned long dr7;
1349  
1350  	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1351  		dr7 = vcpu->arch.guest_debug_dr7;
1352  	else
1353  		dr7 = vcpu->arch.dr7;
1354  	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1355  	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1356  	if (dr7 & DR7_BP_EN_MASK)
1357  		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1358  }
1359  EXPORT_SYMBOL_GPL(kvm_update_dr7);
1360  
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1361  static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1362  {
1363  	u64 fixed = DR6_FIXED_1;
1364  
1365  	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1366  		fixed |= DR6_RTM;
1367  
1368  	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1369  		fixed |= DR6_BUS_LOCK;
1370  	return fixed;
1371  }
1372  
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1373  int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1374  {
1375  	size_t size = ARRAY_SIZE(vcpu->arch.db);
1376  
1377  	switch (dr) {
1378  	case 0 ... 3:
1379  		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1380  		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1381  			vcpu->arch.eff_db[dr] = val;
1382  		break;
1383  	case 4:
1384  	case 6:
1385  		if (!kvm_dr6_valid(val))
1386  			return 1; /* #GP */
1387  		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1388  		break;
1389  	case 5:
1390  	default: /* 7 */
1391  		if (!kvm_dr7_valid(val))
1392  			return 1; /* #GP */
1393  		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1394  		kvm_update_dr7(vcpu);
1395  		break;
1396  	}
1397  
1398  	return 0;
1399  }
1400  EXPORT_SYMBOL_GPL(kvm_set_dr);
1401  
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)1402  void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1403  {
1404  	size_t size = ARRAY_SIZE(vcpu->arch.db);
1405  
1406  	switch (dr) {
1407  	case 0 ... 3:
1408  		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1409  		break;
1410  	case 4:
1411  	case 6:
1412  		*val = vcpu->arch.dr6;
1413  		break;
1414  	case 5:
1415  	default: /* 7 */
1416  		*val = vcpu->arch.dr7;
1417  		break;
1418  	}
1419  }
1420  EXPORT_SYMBOL_GPL(kvm_get_dr);
1421  
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1422  int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1423  {
1424  	u32 ecx = kvm_rcx_read(vcpu);
1425  	u64 data;
1426  
1427  	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1428  		kvm_inject_gp(vcpu, 0);
1429  		return 1;
1430  	}
1431  
1432  	kvm_rax_write(vcpu, (u32)data);
1433  	kvm_rdx_write(vcpu, data >> 32);
1434  	return kvm_skip_emulated_instruction(vcpu);
1435  }
1436  EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1437  
1438  /*
1439   * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1440   * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1441   * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
1442   * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
1443   * MSRs that KVM emulates without strictly requiring host support.
1444   * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1445   * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
1446   * msrs_to_save and emulated_msrs.
1447   */
1448  
1449  static const u32 msrs_to_save_base[] = {
1450  	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1451  	MSR_STAR,
1452  #ifdef CONFIG_X86_64
1453  	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1454  #endif
1455  	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1456  	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1457  	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1458  	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1459  	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1460  	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1461  	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1462  	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1463  	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1464  	MSR_IA32_UMWAIT_CONTROL,
1465  
1466  	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1467  };
1468  
1469  static const u32 msrs_to_save_pmu[] = {
1470  	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1471  	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1472  	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1473  	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1474  	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1475  
1476  	/* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1477  	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1478  	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1479  	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1480  	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1481  	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1482  	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1483  	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1484  	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1485  
1486  	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1487  	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1488  
1489  	/* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1490  	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1491  	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1492  	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1493  	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1494  
1495  	MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1496  	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1497  	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1498  };
1499  
1500  static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1501  			ARRAY_SIZE(msrs_to_save_pmu)];
1502  static unsigned num_msrs_to_save;
1503  
1504  static const u32 emulated_msrs_all[] = {
1505  	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1506  	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1507  	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1508  	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1509  	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1510  	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1511  	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1512  	HV_X64_MSR_RESET,
1513  	HV_X64_MSR_VP_INDEX,
1514  	HV_X64_MSR_VP_RUNTIME,
1515  	HV_X64_MSR_SCONTROL,
1516  	HV_X64_MSR_STIMER0_CONFIG,
1517  	HV_X64_MSR_VP_ASSIST_PAGE,
1518  	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1519  	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1520  	HV_X64_MSR_SYNDBG_OPTIONS,
1521  	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1522  	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1523  	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1524  
1525  	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1526  	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1527  
1528  	MSR_IA32_TSC_ADJUST,
1529  	MSR_IA32_TSC_DEADLINE,
1530  	MSR_IA32_ARCH_CAPABILITIES,
1531  	MSR_IA32_PERF_CAPABILITIES,
1532  	MSR_IA32_MISC_ENABLE,
1533  	MSR_IA32_MCG_STATUS,
1534  	MSR_IA32_MCG_CTL,
1535  	MSR_IA32_MCG_EXT_CTL,
1536  	MSR_IA32_SMBASE,
1537  	MSR_SMI_COUNT,
1538  	MSR_PLATFORM_INFO,
1539  	MSR_MISC_FEATURES_ENABLES,
1540  	MSR_AMD64_VIRT_SPEC_CTRL,
1541  	MSR_AMD64_TSC_RATIO,
1542  	MSR_IA32_POWER_CTL,
1543  	MSR_IA32_UCODE_REV,
1544  
1545  	/*
1546  	 * KVM always supports the "true" VMX control MSRs, even if the host
1547  	 * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
1548  	 * doesn't strictly require them to exist in the host (ignoring that
1549  	 * KVM would refuse to load in the first place if the core set of MSRs
1550  	 * aren't supported).
1551  	 */
1552  	MSR_IA32_VMX_BASIC,
1553  	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1554  	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1555  	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1556  	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1557  	MSR_IA32_VMX_MISC,
1558  	MSR_IA32_VMX_CR0_FIXED0,
1559  	MSR_IA32_VMX_CR4_FIXED0,
1560  	MSR_IA32_VMX_VMCS_ENUM,
1561  	MSR_IA32_VMX_PROCBASED_CTLS2,
1562  	MSR_IA32_VMX_EPT_VPID_CAP,
1563  	MSR_IA32_VMX_VMFUNC,
1564  
1565  	MSR_K7_HWCR,
1566  	MSR_KVM_POLL_CONTROL,
1567  };
1568  
1569  static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1570  static unsigned num_emulated_msrs;
1571  
1572  /*
1573   * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1574   * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
1575   * feature MSRs, but are handled separately to allow expedited lookups.
1576   */
1577  static const u32 msr_based_features_all_except_vmx[] = {
1578  	MSR_AMD64_DE_CFG,
1579  	MSR_IA32_UCODE_REV,
1580  	MSR_IA32_ARCH_CAPABILITIES,
1581  	MSR_IA32_PERF_CAPABILITIES,
1582  };
1583  
1584  static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1585  			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1586  static unsigned int num_msr_based_features;
1587  
1588  /*
1589   * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1590   * patch, are immutable once the vCPU model is defined.
1591   */
kvm_is_immutable_feature_msr(u32 msr)1592  static bool kvm_is_immutable_feature_msr(u32 msr)
1593  {
1594  	int i;
1595  
1596  	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1597  		return true;
1598  
1599  	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1600  		if (msr == msr_based_features_all_except_vmx[i])
1601  			return msr != MSR_IA32_UCODE_REV;
1602  	}
1603  
1604  	return false;
1605  }
1606  
1607  /*
1608   * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1609   * does not yet virtualize. These include:
1610   *   10 - MISC_PACKAGE_CTRLS
1611   *   11 - ENERGY_FILTERING_CTL
1612   *   12 - DOITM
1613   *   18 - FB_CLEAR_CTRL
1614   *   21 - XAPIC_DISABLE_STATUS
1615   *   23 - OVERCLOCKING_STATUS
1616   */
1617  
1618  #define KVM_SUPPORTED_ARCH_CAP \
1619  	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1620  	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1621  	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1622  	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1623  	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1624  	 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO)
1625  
kvm_get_arch_capabilities(void)1626  static u64 kvm_get_arch_capabilities(void)
1627  {
1628  	u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1629  
1630  	/*
1631  	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1632  	 * the nested hypervisor runs with NX huge pages.  If it is not,
1633  	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1634  	 * L1 guests, so it need not worry about its own (L2) guests.
1635  	 */
1636  	data |= ARCH_CAP_PSCHANGE_MC_NO;
1637  
1638  	/*
1639  	 * If we're doing cache flushes (either "always" or "cond")
1640  	 * we will do one whenever the guest does a vmlaunch/vmresume.
1641  	 * If an outer hypervisor is doing the cache flush for us
1642  	 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1643  	 * capability to the guest too, and if EPT is disabled we're not
1644  	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1645  	 * require a nested hypervisor to do a flush of its own.
1646  	 */
1647  	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1648  		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1649  
1650  	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1651  		data |= ARCH_CAP_RDCL_NO;
1652  	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1653  		data |= ARCH_CAP_SSB_NO;
1654  	if (!boot_cpu_has_bug(X86_BUG_MDS))
1655  		data |= ARCH_CAP_MDS_NO;
1656  	if (!boot_cpu_has_bug(X86_BUG_RFDS))
1657  		data |= ARCH_CAP_RFDS_NO;
1658  
1659  	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1660  		/*
1661  		 * If RTM=0 because the kernel has disabled TSX, the host might
1662  		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1663  		 * and therefore knows that there cannot be TAA) but keep
1664  		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1665  		 * and we want to allow migrating those guests to tsx=off hosts.
1666  		 */
1667  		data &= ~ARCH_CAP_TAA_NO;
1668  	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1669  		data |= ARCH_CAP_TAA_NO;
1670  	} else {
1671  		/*
1672  		 * Nothing to do here; we emulate TSX_CTRL if present on the
1673  		 * host so the guest can choose between disabling TSX or
1674  		 * using VERW to clear CPU buffers.
1675  		 */
1676  	}
1677  
1678  	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1679  		data |= ARCH_CAP_GDS_NO;
1680  
1681  	return data;
1682  }
1683  
kvm_get_msr_feature(struct kvm_msr_entry * msr)1684  static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1685  {
1686  	switch (msr->index) {
1687  	case MSR_IA32_ARCH_CAPABILITIES:
1688  		msr->data = kvm_get_arch_capabilities();
1689  		break;
1690  	case MSR_IA32_PERF_CAPABILITIES:
1691  		msr->data = kvm_caps.supported_perf_cap;
1692  		break;
1693  	case MSR_IA32_UCODE_REV:
1694  		rdmsrl_safe(msr->index, &msr->data);
1695  		break;
1696  	default:
1697  		return static_call(kvm_x86_get_msr_feature)(msr);
1698  	}
1699  	return 0;
1700  }
1701  
do_get_msr_feature(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1702  static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1703  {
1704  	struct kvm_msr_entry msr;
1705  	int r;
1706  
1707  	msr.index = index;
1708  	r = kvm_get_msr_feature(&msr);
1709  
1710  	if (r == KVM_MSR_RET_INVALID) {
1711  		/* Unconditionally clear the output for simplicity */
1712  		*data = 0;
1713  		if (kvm_msr_ignored_check(index, 0, false))
1714  			r = 0;
1715  	}
1716  
1717  	if (r)
1718  		return r;
1719  
1720  	*data = msr.data;
1721  
1722  	return 0;
1723  }
1724  
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1725  static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1726  {
1727  	if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1728  		return false;
1729  
1730  	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1731  		return false;
1732  
1733  	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1734  		return false;
1735  
1736  	if (efer & (EFER_LME | EFER_LMA) &&
1737  	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1738  		return false;
1739  
1740  	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1741  		return false;
1742  
1743  	return true;
1744  
1745  }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1746  bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1747  {
1748  	if (efer & efer_reserved_bits)
1749  		return false;
1750  
1751  	return __kvm_valid_efer(vcpu, efer);
1752  }
1753  EXPORT_SYMBOL_GPL(kvm_valid_efer);
1754  
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1755  static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1756  {
1757  	u64 old_efer = vcpu->arch.efer;
1758  	u64 efer = msr_info->data;
1759  	int r;
1760  
1761  	if (efer & efer_reserved_bits)
1762  		return 1;
1763  
1764  	if (!msr_info->host_initiated) {
1765  		if (!__kvm_valid_efer(vcpu, efer))
1766  			return 1;
1767  
1768  		if (is_paging(vcpu) &&
1769  		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1770  			return 1;
1771  	}
1772  
1773  	efer &= ~EFER_LMA;
1774  	efer |= vcpu->arch.efer & EFER_LMA;
1775  
1776  	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1777  	if (r) {
1778  		WARN_ON(r > 0);
1779  		return r;
1780  	}
1781  
1782  	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1783  		kvm_mmu_reset_context(vcpu);
1784  
1785  	return 0;
1786  }
1787  
kvm_enable_efer_bits(u64 mask)1788  void kvm_enable_efer_bits(u64 mask)
1789  {
1790         efer_reserved_bits &= ~mask;
1791  }
1792  EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1793  
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1794  bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1795  {
1796  	struct kvm_x86_msr_filter *msr_filter;
1797  	struct msr_bitmap_range *ranges;
1798  	struct kvm *kvm = vcpu->kvm;
1799  	bool allowed;
1800  	int idx;
1801  	u32 i;
1802  
1803  	/* x2APIC MSRs do not support filtering. */
1804  	if (index >= 0x800 && index <= 0x8ff)
1805  		return true;
1806  
1807  	idx = srcu_read_lock(&kvm->srcu);
1808  
1809  	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1810  	if (!msr_filter) {
1811  		allowed = true;
1812  		goto out;
1813  	}
1814  
1815  	allowed = msr_filter->default_allow;
1816  	ranges = msr_filter->ranges;
1817  
1818  	for (i = 0; i < msr_filter->count; i++) {
1819  		u32 start = ranges[i].base;
1820  		u32 end = start + ranges[i].nmsrs;
1821  		u32 flags = ranges[i].flags;
1822  		unsigned long *bitmap = ranges[i].bitmap;
1823  
1824  		if ((index >= start) && (index < end) && (flags & type)) {
1825  			allowed = test_bit(index - start, bitmap);
1826  			break;
1827  		}
1828  	}
1829  
1830  out:
1831  	srcu_read_unlock(&kvm->srcu, idx);
1832  
1833  	return allowed;
1834  }
1835  EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1836  
1837  /*
1838   * Write @data into the MSR specified by @index.  Select MSR specific fault
1839   * checks are bypassed if @host_initiated is %true.
1840   * Returns 0 on success, non-0 otherwise.
1841   * Assumes vcpu_load() was already called.
1842   */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1843  static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1844  			 bool host_initiated)
1845  {
1846  	struct msr_data msr;
1847  
1848  	switch (index) {
1849  	case MSR_FS_BASE:
1850  	case MSR_GS_BASE:
1851  	case MSR_KERNEL_GS_BASE:
1852  	case MSR_CSTAR:
1853  	case MSR_LSTAR:
1854  		if (is_noncanonical_address(data, vcpu))
1855  			return 1;
1856  		break;
1857  	case MSR_IA32_SYSENTER_EIP:
1858  	case MSR_IA32_SYSENTER_ESP:
1859  		/*
1860  		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1861  		 * non-canonical address is written on Intel but not on
1862  		 * AMD (which ignores the top 32-bits, because it does
1863  		 * not implement 64-bit SYSENTER).
1864  		 *
1865  		 * 64-bit code should hence be able to write a non-canonical
1866  		 * value on AMD.  Making the address canonical ensures that
1867  		 * vmentry does not fail on Intel after writing a non-canonical
1868  		 * value, and that something deterministic happens if the guest
1869  		 * invokes 64-bit SYSENTER.
1870  		 */
1871  		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1872  		break;
1873  	case MSR_TSC_AUX:
1874  		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1875  			return 1;
1876  
1877  		if (!host_initiated &&
1878  		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1879  		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1880  			return 1;
1881  
1882  		/*
1883  		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1884  		 * incomplete and conflicting architectural behavior.  Current
1885  		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1886  		 * reserved and always read as zeros.  Enforce Intel's reserved
1887  		 * bits check if and only if the guest CPU is Intel, and clear
1888  		 * the bits in all other cases.  This ensures cross-vendor
1889  		 * migration will provide consistent behavior for the guest.
1890  		 */
1891  		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1892  			return 1;
1893  
1894  		data = (u32)data;
1895  		break;
1896  	}
1897  
1898  	msr.data = data;
1899  	msr.index = index;
1900  	msr.host_initiated = host_initiated;
1901  
1902  	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1903  }
1904  
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1905  static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1906  				     u32 index, u64 data, bool host_initiated)
1907  {
1908  	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1909  
1910  	if (ret == KVM_MSR_RET_INVALID)
1911  		if (kvm_msr_ignored_check(index, data, true))
1912  			ret = 0;
1913  
1914  	return ret;
1915  }
1916  
1917  /*
1918   * Read the MSR specified by @index into @data.  Select MSR specific fault
1919   * checks are bypassed if @host_initiated is %true.
1920   * Returns 0 on success, non-0 otherwise.
1921   * Assumes vcpu_load() was already called.
1922   */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1923  int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1924  		  bool host_initiated)
1925  {
1926  	struct msr_data msr;
1927  	int ret;
1928  
1929  	switch (index) {
1930  	case MSR_TSC_AUX:
1931  		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1932  			return 1;
1933  
1934  		if (!host_initiated &&
1935  		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1936  		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1937  			return 1;
1938  		break;
1939  	}
1940  
1941  	msr.index = index;
1942  	msr.host_initiated = host_initiated;
1943  
1944  	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1945  	if (!ret)
1946  		*data = msr.data;
1947  	return ret;
1948  }
1949  
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1950  static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1951  				     u32 index, u64 *data, bool host_initiated)
1952  {
1953  	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1954  
1955  	if (ret == KVM_MSR_RET_INVALID) {
1956  		/* Unconditionally clear *data for simplicity */
1957  		*data = 0;
1958  		if (kvm_msr_ignored_check(index, 0, false))
1959  			ret = 0;
1960  	}
1961  
1962  	return ret;
1963  }
1964  
kvm_get_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 * data)1965  static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1966  {
1967  	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1968  		return KVM_MSR_RET_FILTERED;
1969  	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1970  }
1971  
kvm_set_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 data)1972  static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1973  {
1974  	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1975  		return KVM_MSR_RET_FILTERED;
1976  	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1977  }
1978  
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1979  int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1980  {
1981  	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1982  }
1983  EXPORT_SYMBOL_GPL(kvm_get_msr);
1984  
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1985  int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1986  {
1987  	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1988  }
1989  EXPORT_SYMBOL_GPL(kvm_set_msr);
1990  
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)1991  static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1992  {
1993  	if (!vcpu->run->msr.error) {
1994  		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1995  		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1996  	}
1997  }
1998  
complete_emulated_msr_access(struct kvm_vcpu * vcpu)1999  static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
2000  {
2001  	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2002  }
2003  
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)2004  static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2005  {
2006  	complete_userspace_rdmsr(vcpu);
2007  	return complete_emulated_msr_access(vcpu);
2008  }
2009  
complete_fast_msr_access(struct kvm_vcpu * vcpu)2010  static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2011  {
2012  	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2013  }
2014  
complete_fast_rdmsr(struct kvm_vcpu * vcpu)2015  static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2016  {
2017  	complete_userspace_rdmsr(vcpu);
2018  	return complete_fast_msr_access(vcpu);
2019  }
2020  
kvm_msr_reason(int r)2021  static u64 kvm_msr_reason(int r)
2022  {
2023  	switch (r) {
2024  	case KVM_MSR_RET_INVALID:
2025  		return KVM_MSR_EXIT_REASON_UNKNOWN;
2026  	case KVM_MSR_RET_FILTERED:
2027  		return KVM_MSR_EXIT_REASON_FILTER;
2028  	default:
2029  		return KVM_MSR_EXIT_REASON_INVAL;
2030  	}
2031  }
2032  
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)2033  static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2034  			      u32 exit_reason, u64 data,
2035  			      int (*completion)(struct kvm_vcpu *vcpu),
2036  			      int r)
2037  {
2038  	u64 msr_reason = kvm_msr_reason(r);
2039  
2040  	/* Check if the user wanted to know about this MSR fault */
2041  	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2042  		return 0;
2043  
2044  	vcpu->run->exit_reason = exit_reason;
2045  	vcpu->run->msr.error = 0;
2046  	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2047  	vcpu->run->msr.reason = msr_reason;
2048  	vcpu->run->msr.index = index;
2049  	vcpu->run->msr.data = data;
2050  	vcpu->arch.complete_userspace_io = completion;
2051  
2052  	return 1;
2053  }
2054  
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2055  int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2056  {
2057  	u32 ecx = kvm_rcx_read(vcpu);
2058  	u64 data;
2059  	int r;
2060  
2061  	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2062  
2063  	if (!r) {
2064  		trace_kvm_msr_read(ecx, data);
2065  
2066  		kvm_rax_write(vcpu, data & -1u);
2067  		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2068  	} else {
2069  		/* MSR read failed? See if we should ask user space */
2070  		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2071  				       complete_fast_rdmsr, r))
2072  			return 0;
2073  		trace_kvm_msr_read_ex(ecx);
2074  	}
2075  
2076  	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2077  }
2078  EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2079  
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2080  int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2081  {
2082  	u32 ecx = kvm_rcx_read(vcpu);
2083  	u64 data = kvm_read_edx_eax(vcpu);
2084  	int r;
2085  
2086  	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2087  
2088  	if (!r) {
2089  		trace_kvm_msr_write(ecx, data);
2090  	} else {
2091  		/* MSR write failed? See if we should ask user space */
2092  		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2093  				       complete_fast_msr_access, r))
2094  			return 0;
2095  		/* Signal all other negative errors to userspace */
2096  		if (r < 0)
2097  			return r;
2098  		trace_kvm_msr_write_ex(ecx, data);
2099  	}
2100  
2101  	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2102  }
2103  EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2104  
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2105  int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2106  {
2107  	return kvm_skip_emulated_instruction(vcpu);
2108  }
2109  
kvm_emulate_invd(struct kvm_vcpu * vcpu)2110  int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2111  {
2112  	/* Treat an INVD instruction as a NOP and just skip it. */
2113  	return kvm_emulate_as_nop(vcpu);
2114  }
2115  EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2116  
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2117  int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2118  {
2119  	kvm_queue_exception(vcpu, UD_VECTOR);
2120  	return 1;
2121  }
2122  EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2123  
2124  
kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2125  static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2126  {
2127  	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2128  	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2129  		return kvm_handle_invalid_op(vcpu);
2130  
2131  	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2132  	return kvm_emulate_as_nop(vcpu);
2133  }
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2134  int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2135  {
2136  	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2137  }
2138  EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2139  
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2140  int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2141  {
2142  	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2143  }
2144  EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2145  
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2146  static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2147  {
2148  	xfer_to_guest_mode_prepare();
2149  	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2150  		xfer_to_guest_mode_work_pending();
2151  }
2152  
2153  /*
2154   * The fast path for frequent and performance sensitive wrmsr emulation,
2155   * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2156   * the latency of virtual IPI by avoiding the expensive bits of transitioning
2157   * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2158   * other cases which must be called after interrupts are enabled on the host.
2159   */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)2160  static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2161  {
2162  	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2163  		return 1;
2164  
2165  	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2166  	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2167  	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2168  	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2169  		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2170  
2171  	return 1;
2172  }
2173  
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)2174  static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2175  {
2176  	if (!kvm_can_use_hv_timer(vcpu))
2177  		return 1;
2178  
2179  	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2180  	return 0;
2181  }
2182  
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)2183  fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2184  {
2185  	u32 msr = kvm_rcx_read(vcpu);
2186  	u64 data;
2187  	fastpath_t ret = EXIT_FASTPATH_NONE;
2188  
2189  	kvm_vcpu_srcu_read_lock(vcpu);
2190  
2191  	switch (msr) {
2192  	case APIC_BASE_MSR + (APIC_ICR >> 4):
2193  		data = kvm_read_edx_eax(vcpu);
2194  		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2195  			kvm_skip_emulated_instruction(vcpu);
2196  			ret = EXIT_FASTPATH_EXIT_HANDLED;
2197  		}
2198  		break;
2199  	case MSR_IA32_TSC_DEADLINE:
2200  		data = kvm_read_edx_eax(vcpu);
2201  		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2202  			kvm_skip_emulated_instruction(vcpu);
2203  			ret = EXIT_FASTPATH_REENTER_GUEST;
2204  		}
2205  		break;
2206  	default:
2207  		break;
2208  	}
2209  
2210  	if (ret != EXIT_FASTPATH_NONE)
2211  		trace_kvm_msr_write(msr, data);
2212  
2213  	kvm_vcpu_srcu_read_unlock(vcpu);
2214  
2215  	return ret;
2216  }
2217  EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2218  
2219  /*
2220   * Adapt set_msr() to msr_io()'s calling convention
2221   */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2222  static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2223  {
2224  	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2225  }
2226  
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2227  static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2228  {
2229  	u64 val;
2230  
2231  	/*
2232  	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2233  	 * not support modifying the guest vCPU model on the fly, e.g. changing
2234  	 * the nVMX capabilities while L2 is running is nonsensical.  Ignore
2235  	 * writes of the same value, e.g. to allow userspace to blindly stuff
2236  	 * all MSRs when emulating RESET.
2237  	 */
2238  	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2239  		if (do_get_msr(vcpu, index, &val) || *data != val)
2240  			return -EINVAL;
2241  
2242  		return 0;
2243  	}
2244  
2245  	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2246  }
2247  
2248  #ifdef CONFIG_X86_64
2249  struct pvclock_clock {
2250  	int vclock_mode;
2251  	u64 cycle_last;
2252  	u64 mask;
2253  	u32 mult;
2254  	u32 shift;
2255  	u64 base_cycles;
2256  	u64 offset;
2257  };
2258  
2259  struct pvclock_gtod_data {
2260  	seqcount_t	seq;
2261  
2262  	struct pvclock_clock clock; /* extract of a clocksource struct */
2263  	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2264  
2265  	ktime_t		offs_boot;
2266  	u64		wall_time_sec;
2267  };
2268  
2269  static struct pvclock_gtod_data pvclock_gtod_data;
2270  
update_pvclock_gtod(struct timekeeper * tk)2271  static void update_pvclock_gtod(struct timekeeper *tk)
2272  {
2273  	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2274  
2275  	write_seqcount_begin(&vdata->seq);
2276  
2277  	/* copy pvclock gtod data */
2278  	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2279  	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2280  	vdata->clock.mask		= tk->tkr_mono.mask;
2281  	vdata->clock.mult		= tk->tkr_mono.mult;
2282  	vdata->clock.shift		= tk->tkr_mono.shift;
2283  	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2284  	vdata->clock.offset		= tk->tkr_mono.base;
2285  
2286  	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2287  	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2288  	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2289  	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2290  	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2291  	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2292  	vdata->raw_clock.offset		= tk->tkr_raw.base;
2293  
2294  	vdata->wall_time_sec            = tk->xtime_sec;
2295  
2296  	vdata->offs_boot		= tk->offs_boot;
2297  
2298  	write_seqcount_end(&vdata->seq);
2299  }
2300  
get_kvmclock_base_ns(void)2301  static s64 get_kvmclock_base_ns(void)
2302  {
2303  	/* Count up from boot time, but with the frequency of the raw clock.  */
2304  	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2305  }
2306  #else
get_kvmclock_base_ns(void)2307  static s64 get_kvmclock_base_ns(void)
2308  {
2309  	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2310  	return ktime_get_boottime_ns();
2311  }
2312  #endif
2313  
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2314  static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2315  {
2316  	int version;
2317  	int r;
2318  	struct pvclock_wall_clock wc;
2319  	u32 wc_sec_hi;
2320  	u64 wall_nsec;
2321  
2322  	if (!wall_clock)
2323  		return;
2324  
2325  	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2326  	if (r)
2327  		return;
2328  
2329  	if (version & 1)
2330  		++version;  /* first time write, random junk */
2331  
2332  	++version;
2333  
2334  	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2335  		return;
2336  
2337  	/*
2338  	 * The guest calculates current wall clock time by adding
2339  	 * system time (updated by kvm_guest_time_update below) to the
2340  	 * wall clock specified here.  We do the reverse here.
2341  	 */
2342  	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2343  
2344  	wc.nsec = do_div(wall_nsec, 1000000000);
2345  	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2346  	wc.version = version;
2347  
2348  	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2349  
2350  	if (sec_hi_ofs) {
2351  		wc_sec_hi = wall_nsec >> 32;
2352  		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2353  				&wc_sec_hi, sizeof(wc_sec_hi));
2354  	}
2355  
2356  	version++;
2357  	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2358  }
2359  
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2360  static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2361  				  bool old_msr, bool host_initiated)
2362  {
2363  	struct kvm_arch *ka = &vcpu->kvm->arch;
2364  
2365  	if (vcpu->vcpu_id == 0 && !host_initiated) {
2366  		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2367  			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2368  
2369  		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2370  	}
2371  
2372  	vcpu->arch.time = system_time;
2373  	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2374  
2375  	/* we verify if the enable bit is set... */
2376  	if (system_time & 1)
2377  		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2378  				 sizeof(struct pvclock_vcpu_time_info));
2379  	else
2380  		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2381  
2382  	return;
2383  }
2384  
div_frac(uint32_t dividend,uint32_t divisor)2385  static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2386  {
2387  	do_shl32_div32(dividend, divisor);
2388  	return dividend;
2389  }
2390  
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2391  static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2392  			       s8 *pshift, u32 *pmultiplier)
2393  {
2394  	uint64_t scaled64;
2395  	int32_t  shift = 0;
2396  	uint64_t tps64;
2397  	uint32_t tps32;
2398  
2399  	tps64 = base_hz;
2400  	scaled64 = scaled_hz;
2401  	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2402  		tps64 >>= 1;
2403  		shift--;
2404  	}
2405  
2406  	tps32 = (uint32_t)tps64;
2407  	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2408  		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2409  			scaled64 >>= 1;
2410  		else
2411  			tps32 <<= 1;
2412  		shift++;
2413  	}
2414  
2415  	*pshift = shift;
2416  	*pmultiplier = div_frac(scaled64, tps32);
2417  }
2418  
2419  #ifdef CONFIG_X86_64
2420  static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2421  #endif
2422  
2423  static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2424  static unsigned long max_tsc_khz;
2425  
adjust_tsc_khz(u32 khz,s32 ppm)2426  static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2427  {
2428  	u64 v = (u64)khz * (1000000 + ppm);
2429  	do_div(v, 1000000);
2430  	return v;
2431  }
2432  
2433  static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2434  
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2435  static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2436  {
2437  	u64 ratio;
2438  
2439  	/* Guest TSC same frequency as host TSC? */
2440  	if (!scale) {
2441  		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2442  		return 0;
2443  	}
2444  
2445  	/* TSC scaling supported? */
2446  	if (!kvm_caps.has_tsc_control) {
2447  		if (user_tsc_khz > tsc_khz) {
2448  			vcpu->arch.tsc_catchup = 1;
2449  			vcpu->arch.tsc_always_catchup = 1;
2450  			return 0;
2451  		} else {
2452  			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2453  			return -1;
2454  		}
2455  	}
2456  
2457  	/* TSC scaling required  - calculate ratio */
2458  	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2459  				user_tsc_khz, tsc_khz);
2460  
2461  	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2462  		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2463  			            user_tsc_khz);
2464  		return -1;
2465  	}
2466  
2467  	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2468  	return 0;
2469  }
2470  
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2471  static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2472  {
2473  	u32 thresh_lo, thresh_hi;
2474  	int use_scaling = 0;
2475  
2476  	/* tsc_khz can be zero if TSC calibration fails */
2477  	if (user_tsc_khz == 0) {
2478  		/* set tsc_scaling_ratio to a safe value */
2479  		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2480  		return -1;
2481  	}
2482  
2483  	/* Compute a scale to convert nanoseconds in TSC cycles */
2484  	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2485  			   &vcpu->arch.virtual_tsc_shift,
2486  			   &vcpu->arch.virtual_tsc_mult);
2487  	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2488  
2489  	/*
2490  	 * Compute the variation in TSC rate which is acceptable
2491  	 * within the range of tolerance and decide if the
2492  	 * rate being applied is within that bounds of the hardware
2493  	 * rate.  If so, no scaling or compensation need be done.
2494  	 */
2495  	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2496  	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2497  	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2498  		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2499  			 user_tsc_khz, thresh_lo, thresh_hi);
2500  		use_scaling = 1;
2501  	}
2502  	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2503  }
2504  
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2505  static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2506  {
2507  	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2508  				      vcpu->arch.virtual_tsc_mult,
2509  				      vcpu->arch.virtual_tsc_shift);
2510  	tsc += vcpu->arch.this_tsc_write;
2511  	return tsc;
2512  }
2513  
2514  #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2515  static inline int gtod_is_based_on_tsc(int mode)
2516  {
2517  	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2518  }
2519  #endif
2520  
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)2521  static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2522  {
2523  #ifdef CONFIG_X86_64
2524  	bool vcpus_matched;
2525  	struct kvm_arch *ka = &vcpu->kvm->arch;
2526  	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2527  
2528  	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2529  			 atomic_read(&vcpu->kvm->online_vcpus));
2530  
2531  	/*
2532  	 * Once the masterclock is enabled, always perform request in
2533  	 * order to update it.
2534  	 *
2535  	 * In order to enable masterclock, the host clocksource must be TSC
2536  	 * and the vcpus need to have matched TSCs.  When that happens,
2537  	 * perform request to enable masterclock.
2538  	 */
2539  	if (ka->use_master_clock ||
2540  	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2541  		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2542  
2543  	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2544  			    atomic_read(&vcpu->kvm->online_vcpus),
2545  		            ka->use_master_clock, gtod->clock.vclock_mode);
2546  #endif
2547  }
2548  
2549  /*
2550   * Multiply tsc by a fixed point number represented by ratio.
2551   *
2552   * The most significant 64-N bits (mult) of ratio represent the
2553   * integral part of the fixed point number; the remaining N bits
2554   * (frac) represent the fractional part, ie. ratio represents a fixed
2555   * point number (mult + frac * 2^(-N)).
2556   *
2557   * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2558   */
__scale_tsc(u64 ratio,u64 tsc)2559  static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2560  {
2561  	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2562  }
2563  
kvm_scale_tsc(u64 tsc,u64 ratio)2564  u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2565  {
2566  	u64 _tsc = tsc;
2567  
2568  	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2569  		_tsc = __scale_tsc(ratio, tsc);
2570  
2571  	return _tsc;
2572  }
2573  
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2574  static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2575  {
2576  	u64 tsc;
2577  
2578  	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2579  
2580  	return target_tsc - tsc;
2581  }
2582  
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2583  u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2584  {
2585  	return vcpu->arch.l1_tsc_offset +
2586  		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2587  }
2588  EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2589  
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2590  u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2591  {
2592  	u64 nested_offset;
2593  
2594  	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2595  		nested_offset = l1_offset;
2596  	else
2597  		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2598  						kvm_caps.tsc_scaling_ratio_frac_bits);
2599  
2600  	nested_offset += l2_offset;
2601  	return nested_offset;
2602  }
2603  EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2604  
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2605  u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2606  {
2607  	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2608  		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2609  				       kvm_caps.tsc_scaling_ratio_frac_bits);
2610  
2611  	return l1_multiplier;
2612  }
2613  EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2614  
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2615  static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2616  {
2617  	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2618  				   vcpu->arch.l1_tsc_offset,
2619  				   l1_offset);
2620  
2621  	vcpu->arch.l1_tsc_offset = l1_offset;
2622  
2623  	/*
2624  	 * If we are here because L1 chose not to trap WRMSR to TSC then
2625  	 * according to the spec this should set L1's TSC (as opposed to
2626  	 * setting L1's offset for L2).
2627  	 */
2628  	if (is_guest_mode(vcpu))
2629  		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2630  			l1_offset,
2631  			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2632  			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2633  	else
2634  		vcpu->arch.tsc_offset = l1_offset;
2635  
2636  	static_call(kvm_x86_write_tsc_offset)(vcpu);
2637  }
2638  
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2639  static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2640  {
2641  	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2642  
2643  	/* Userspace is changing the multiplier while L2 is active */
2644  	if (is_guest_mode(vcpu))
2645  		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2646  			l1_multiplier,
2647  			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2648  	else
2649  		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2650  
2651  	if (kvm_caps.has_tsc_control)
2652  		static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2653  }
2654  
kvm_check_tsc_unstable(void)2655  static inline bool kvm_check_tsc_unstable(void)
2656  {
2657  #ifdef CONFIG_X86_64
2658  	/*
2659  	 * TSC is marked unstable when we're running on Hyper-V,
2660  	 * 'TSC page' clocksource is good.
2661  	 */
2662  	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2663  		return false;
2664  #endif
2665  	return check_tsc_unstable();
2666  }
2667  
2668  /*
2669   * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2670   * offset for the vcpu and tracks the TSC matching generation that the vcpu
2671   * participates in.
2672   */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched)2673  static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2674  				  u64 ns, bool matched)
2675  {
2676  	struct kvm *kvm = vcpu->kvm;
2677  
2678  	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2679  
2680  	/*
2681  	 * We also track th most recent recorded KHZ, write and time to
2682  	 * allow the matching interval to be extended at each write.
2683  	 */
2684  	kvm->arch.last_tsc_nsec = ns;
2685  	kvm->arch.last_tsc_write = tsc;
2686  	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2687  	kvm->arch.last_tsc_offset = offset;
2688  
2689  	vcpu->arch.last_guest_tsc = tsc;
2690  
2691  	kvm_vcpu_write_tsc_offset(vcpu, offset);
2692  
2693  	if (!matched) {
2694  		/*
2695  		 * We split periods of matched TSC writes into generations.
2696  		 * For each generation, we track the original measured
2697  		 * nanosecond time, offset, and write, so if TSCs are in
2698  		 * sync, we can match exact offset, and if not, we can match
2699  		 * exact software computation in compute_guest_tsc()
2700  		 *
2701  		 * These values are tracked in kvm->arch.cur_xxx variables.
2702  		 */
2703  		kvm->arch.cur_tsc_generation++;
2704  		kvm->arch.cur_tsc_nsec = ns;
2705  		kvm->arch.cur_tsc_write = tsc;
2706  		kvm->arch.cur_tsc_offset = offset;
2707  		kvm->arch.nr_vcpus_matched_tsc = 0;
2708  	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2709  		kvm->arch.nr_vcpus_matched_tsc++;
2710  	}
2711  
2712  	/* Keep track of which generation this VCPU has synchronized to */
2713  	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2714  	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2715  	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2716  
2717  	kvm_track_tsc_matching(vcpu);
2718  }
2719  
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 data)2720  static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2721  {
2722  	struct kvm *kvm = vcpu->kvm;
2723  	u64 offset, ns, elapsed;
2724  	unsigned long flags;
2725  	bool matched = false;
2726  	bool synchronizing = false;
2727  
2728  	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2729  	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2730  	ns = get_kvmclock_base_ns();
2731  	elapsed = ns - kvm->arch.last_tsc_nsec;
2732  
2733  	if (vcpu->arch.virtual_tsc_khz) {
2734  		if (data == 0) {
2735  			/*
2736  			 * detection of vcpu initialization -- need to sync
2737  			 * with other vCPUs. This particularly helps to keep
2738  			 * kvm_clock stable after CPU hotplug
2739  			 */
2740  			synchronizing = true;
2741  		} else {
2742  			u64 tsc_exp = kvm->arch.last_tsc_write +
2743  						nsec_to_cycles(vcpu, elapsed);
2744  			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2745  			/*
2746  			 * Special case: TSC write with a small delta (1 second)
2747  			 * of virtual cycle time against real time is
2748  			 * interpreted as an attempt to synchronize the CPU.
2749  			 */
2750  			synchronizing = data < tsc_exp + tsc_hz &&
2751  					data + tsc_hz > tsc_exp;
2752  		}
2753  	}
2754  
2755  	/*
2756  	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2757  	 * TSC, we add elapsed time in this computation.  We could let the
2758  	 * compensation code attempt to catch up if we fall behind, but
2759  	 * it's better to try to match offsets from the beginning.
2760           */
2761  	if (synchronizing &&
2762  	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2763  		if (!kvm_check_tsc_unstable()) {
2764  			offset = kvm->arch.cur_tsc_offset;
2765  		} else {
2766  			u64 delta = nsec_to_cycles(vcpu, elapsed);
2767  			data += delta;
2768  			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2769  		}
2770  		matched = true;
2771  	}
2772  
2773  	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2774  	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2775  }
2776  
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2777  static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2778  					   s64 adjustment)
2779  {
2780  	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2781  	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2782  }
2783  
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2784  static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2785  {
2786  	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2787  		WARN_ON(adjustment < 0);
2788  	adjustment = kvm_scale_tsc((u64) adjustment,
2789  				   vcpu->arch.l1_tsc_scaling_ratio);
2790  	adjust_tsc_offset_guest(vcpu, adjustment);
2791  }
2792  
2793  #ifdef CONFIG_X86_64
2794  
read_tsc(void)2795  static u64 read_tsc(void)
2796  {
2797  	u64 ret = (u64)rdtsc_ordered();
2798  	u64 last = pvclock_gtod_data.clock.cycle_last;
2799  
2800  	if (likely(ret >= last))
2801  		return ret;
2802  
2803  	/*
2804  	 * GCC likes to generate cmov here, but this branch is extremely
2805  	 * predictable (it's just a function of time and the likely is
2806  	 * very likely) and there's a data dependence, so force GCC
2807  	 * to generate a branch instead.  I don't barrier() because
2808  	 * we don't actually need a barrier, and if this function
2809  	 * ever gets inlined it will generate worse code.
2810  	 */
2811  	asm volatile ("");
2812  	return last;
2813  }
2814  
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2815  static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2816  			  int *mode)
2817  {
2818  	u64 tsc_pg_val;
2819  	long v;
2820  
2821  	switch (clock->vclock_mode) {
2822  	case VDSO_CLOCKMODE_HVCLOCK:
2823  		if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2824  					 tsc_timestamp, &tsc_pg_val)) {
2825  			/* TSC page valid */
2826  			*mode = VDSO_CLOCKMODE_HVCLOCK;
2827  			v = (tsc_pg_val - clock->cycle_last) &
2828  				clock->mask;
2829  		} else {
2830  			/* TSC page invalid */
2831  			*mode = VDSO_CLOCKMODE_NONE;
2832  		}
2833  		break;
2834  	case VDSO_CLOCKMODE_TSC:
2835  		*mode = VDSO_CLOCKMODE_TSC;
2836  		*tsc_timestamp = read_tsc();
2837  		v = (*tsc_timestamp - clock->cycle_last) &
2838  			clock->mask;
2839  		break;
2840  	default:
2841  		*mode = VDSO_CLOCKMODE_NONE;
2842  	}
2843  
2844  	if (*mode == VDSO_CLOCKMODE_NONE)
2845  		*tsc_timestamp = v = 0;
2846  
2847  	return v * clock->mult;
2848  }
2849  
do_monotonic_raw(s64 * t,u64 * tsc_timestamp)2850  static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2851  {
2852  	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2853  	unsigned long seq;
2854  	int mode;
2855  	u64 ns;
2856  
2857  	do {
2858  		seq = read_seqcount_begin(&gtod->seq);
2859  		ns = gtod->raw_clock.base_cycles;
2860  		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2861  		ns >>= gtod->raw_clock.shift;
2862  		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2863  	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2864  	*t = ns;
2865  
2866  	return mode;
2867  }
2868  
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2869  static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2870  {
2871  	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2872  	unsigned long seq;
2873  	int mode;
2874  	u64 ns;
2875  
2876  	do {
2877  		seq = read_seqcount_begin(&gtod->seq);
2878  		ts->tv_sec = gtod->wall_time_sec;
2879  		ns = gtod->clock.base_cycles;
2880  		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2881  		ns >>= gtod->clock.shift;
2882  	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2883  
2884  	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2885  	ts->tv_nsec = ns;
2886  
2887  	return mode;
2888  }
2889  
2890  /* returns true if host is using TSC based clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2891  static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2892  {
2893  	/* checked again under seqlock below */
2894  	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2895  		return false;
2896  
2897  	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2898  						      tsc_timestamp));
2899  }
2900  
2901  /* returns true if host is using TSC based clocksource */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2902  static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2903  					   u64 *tsc_timestamp)
2904  {
2905  	/* checked again under seqlock below */
2906  	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2907  		return false;
2908  
2909  	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2910  }
2911  #endif
2912  
2913  /*
2914   *
2915   * Assuming a stable TSC across physical CPUS, and a stable TSC
2916   * across virtual CPUs, the following condition is possible.
2917   * Each numbered line represents an event visible to both
2918   * CPUs at the next numbered event.
2919   *
2920   * "timespecX" represents host monotonic time. "tscX" represents
2921   * RDTSC value.
2922   *
2923   * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2924   *
2925   * 1.  read timespec0,tsc0
2926   * 2.					| timespec1 = timespec0 + N
2927   * 					| tsc1 = tsc0 + M
2928   * 3. transition to guest		| transition to guest
2929   * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2930   * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2931   * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2932   *
2933   * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2934   *
2935   * 	- ret0 < ret1
2936   *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2937   *		...
2938   *	- 0 < N - M => M < N
2939   *
2940   * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2941   * always the case (the difference between two distinct xtime instances
2942   * might be smaller then the difference between corresponding TSC reads,
2943   * when updating guest vcpus pvclock areas).
2944   *
2945   * To avoid that problem, do not allow visibility of distinct
2946   * system_timestamp/tsc_timestamp values simultaneously: use a master
2947   * copy of host monotonic time values. Update that master copy
2948   * in lockstep.
2949   *
2950   * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2951   *
2952   */
2953  
pvclock_update_vm_gtod_copy(struct kvm * kvm)2954  static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2955  {
2956  #ifdef CONFIG_X86_64
2957  	struct kvm_arch *ka = &kvm->arch;
2958  	int vclock_mode;
2959  	bool host_tsc_clocksource, vcpus_matched;
2960  
2961  	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2962  	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2963  			atomic_read(&kvm->online_vcpus));
2964  
2965  	/*
2966  	 * If the host uses TSC clock, then passthrough TSC as stable
2967  	 * to the guest.
2968  	 */
2969  	host_tsc_clocksource = kvm_get_time_and_clockread(
2970  					&ka->master_kernel_ns,
2971  					&ka->master_cycle_now);
2972  
2973  	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2974  				&& !ka->backwards_tsc_observed
2975  				&& !ka->boot_vcpu_runs_old_kvmclock;
2976  
2977  	if (ka->use_master_clock)
2978  		atomic_set(&kvm_guest_has_master_clock, 1);
2979  
2980  	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2981  	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2982  					vcpus_matched);
2983  #endif
2984  }
2985  
kvm_make_mclock_inprogress_request(struct kvm * kvm)2986  static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2987  {
2988  	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2989  }
2990  
__kvm_start_pvclock_update(struct kvm * kvm)2991  static void __kvm_start_pvclock_update(struct kvm *kvm)
2992  {
2993  	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2994  	write_seqcount_begin(&kvm->arch.pvclock_sc);
2995  }
2996  
kvm_start_pvclock_update(struct kvm * kvm)2997  static void kvm_start_pvclock_update(struct kvm *kvm)
2998  {
2999  	kvm_make_mclock_inprogress_request(kvm);
3000  
3001  	/* no guest entries from this point */
3002  	__kvm_start_pvclock_update(kvm);
3003  }
3004  
kvm_end_pvclock_update(struct kvm * kvm)3005  static void kvm_end_pvclock_update(struct kvm *kvm)
3006  {
3007  	struct kvm_arch *ka = &kvm->arch;
3008  	struct kvm_vcpu *vcpu;
3009  	unsigned long i;
3010  
3011  	write_seqcount_end(&ka->pvclock_sc);
3012  	raw_spin_unlock_irq(&ka->tsc_write_lock);
3013  	kvm_for_each_vcpu(i, vcpu, kvm)
3014  		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3015  
3016  	/* guest entries allowed */
3017  	kvm_for_each_vcpu(i, vcpu, kvm)
3018  		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3019  }
3020  
kvm_update_masterclock(struct kvm * kvm)3021  static void kvm_update_masterclock(struct kvm *kvm)
3022  {
3023  	kvm_hv_request_tsc_page_update(kvm);
3024  	kvm_start_pvclock_update(kvm);
3025  	pvclock_update_vm_gtod_copy(kvm);
3026  	kvm_end_pvclock_update(kvm);
3027  }
3028  
3029  /*
3030   * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3031   * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3032   * can change during boot even if the TSC is constant, as it's possible for KVM
3033   * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3034   * notification when calibration completes, but practically speaking calibration
3035   * will complete before userspace is alive enough to create VMs.
3036   */
get_cpu_tsc_khz(void)3037  static unsigned long get_cpu_tsc_khz(void)
3038  {
3039  	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3040  		return tsc_khz;
3041  	else
3042  		return __this_cpu_read(cpu_tsc_khz);
3043  }
3044  
3045  /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3046  static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3047  {
3048  	struct kvm_arch *ka = &kvm->arch;
3049  	struct pvclock_vcpu_time_info hv_clock;
3050  
3051  	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3052  	get_cpu();
3053  
3054  	data->flags = 0;
3055  	if (ka->use_master_clock &&
3056  	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3057  #ifdef CONFIG_X86_64
3058  		struct timespec64 ts;
3059  
3060  		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3061  			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3062  			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3063  		} else
3064  #endif
3065  		data->host_tsc = rdtsc();
3066  
3067  		data->flags |= KVM_CLOCK_TSC_STABLE;
3068  		hv_clock.tsc_timestamp = ka->master_cycle_now;
3069  		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3070  		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3071  				   &hv_clock.tsc_shift,
3072  				   &hv_clock.tsc_to_system_mul);
3073  		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3074  	} else {
3075  		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3076  	}
3077  
3078  	put_cpu();
3079  }
3080  
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3081  static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3082  {
3083  	struct kvm_arch *ka = &kvm->arch;
3084  	unsigned seq;
3085  
3086  	do {
3087  		seq = read_seqcount_begin(&ka->pvclock_sc);
3088  		__get_kvmclock(kvm, data);
3089  	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3090  }
3091  
get_kvmclock_ns(struct kvm * kvm)3092  u64 get_kvmclock_ns(struct kvm *kvm)
3093  {
3094  	struct kvm_clock_data data;
3095  
3096  	get_kvmclock(kvm, &data);
3097  	return data.clock;
3098  }
3099  
kvm_setup_guest_pvclock(struct kvm_vcpu * v,struct gfn_to_pfn_cache * gpc,unsigned int offset)3100  static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3101  				    struct gfn_to_pfn_cache *gpc,
3102  				    unsigned int offset)
3103  {
3104  	struct kvm_vcpu_arch *vcpu = &v->arch;
3105  	struct pvclock_vcpu_time_info *guest_hv_clock;
3106  	unsigned long flags;
3107  
3108  	read_lock_irqsave(&gpc->lock, flags);
3109  	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3110  		read_unlock_irqrestore(&gpc->lock, flags);
3111  
3112  		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3113  			return;
3114  
3115  		read_lock_irqsave(&gpc->lock, flags);
3116  	}
3117  
3118  	guest_hv_clock = (void *)(gpc->khva + offset);
3119  
3120  	/*
3121  	 * This VCPU is paused, but it's legal for a guest to read another
3122  	 * VCPU's kvmclock, so we really have to follow the specification where
3123  	 * it says that version is odd if data is being modified, and even after
3124  	 * it is consistent.
3125  	 */
3126  
3127  	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3128  	smp_wmb();
3129  
3130  	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3131  	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3132  
3133  	if (vcpu->pvclock_set_guest_stopped_request) {
3134  		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3135  		vcpu->pvclock_set_guest_stopped_request = false;
3136  	}
3137  
3138  	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3139  	smp_wmb();
3140  
3141  	guest_hv_clock->version = ++vcpu->hv_clock.version;
3142  
3143  	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3144  	read_unlock_irqrestore(&gpc->lock, flags);
3145  
3146  	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3147  }
3148  
kvm_guest_time_update(struct kvm_vcpu * v)3149  static int kvm_guest_time_update(struct kvm_vcpu *v)
3150  {
3151  	unsigned long flags, tgt_tsc_khz;
3152  	unsigned seq;
3153  	struct kvm_vcpu_arch *vcpu = &v->arch;
3154  	struct kvm_arch *ka = &v->kvm->arch;
3155  	s64 kernel_ns;
3156  	u64 tsc_timestamp, host_tsc;
3157  	u8 pvclock_flags;
3158  	bool use_master_clock;
3159  
3160  	kernel_ns = 0;
3161  	host_tsc = 0;
3162  
3163  	/*
3164  	 * If the host uses TSC clock, then passthrough TSC as stable
3165  	 * to the guest.
3166  	 */
3167  	do {
3168  		seq = read_seqcount_begin(&ka->pvclock_sc);
3169  		use_master_clock = ka->use_master_clock;
3170  		if (use_master_clock) {
3171  			host_tsc = ka->master_cycle_now;
3172  			kernel_ns = ka->master_kernel_ns;
3173  		}
3174  	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3175  
3176  	/* Keep irq disabled to prevent changes to the clock */
3177  	local_irq_save(flags);
3178  	tgt_tsc_khz = get_cpu_tsc_khz();
3179  	if (unlikely(tgt_tsc_khz == 0)) {
3180  		local_irq_restore(flags);
3181  		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3182  		return 1;
3183  	}
3184  	if (!use_master_clock) {
3185  		host_tsc = rdtsc();
3186  		kernel_ns = get_kvmclock_base_ns();
3187  	}
3188  
3189  	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3190  
3191  	/*
3192  	 * We may have to catch up the TSC to match elapsed wall clock
3193  	 * time for two reasons, even if kvmclock is used.
3194  	 *   1) CPU could have been running below the maximum TSC rate
3195  	 *   2) Broken TSC compensation resets the base at each VCPU
3196  	 *      entry to avoid unknown leaps of TSC even when running
3197  	 *      again on the same CPU.  This may cause apparent elapsed
3198  	 *      time to disappear, and the guest to stand still or run
3199  	 *	very slowly.
3200  	 */
3201  	if (vcpu->tsc_catchup) {
3202  		u64 tsc = compute_guest_tsc(v, kernel_ns);
3203  		if (tsc > tsc_timestamp) {
3204  			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3205  			tsc_timestamp = tsc;
3206  		}
3207  	}
3208  
3209  	local_irq_restore(flags);
3210  
3211  	/* With all the info we got, fill in the values */
3212  
3213  	if (kvm_caps.has_tsc_control)
3214  		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3215  					    v->arch.l1_tsc_scaling_ratio);
3216  
3217  	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3218  		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3219  				   &vcpu->hv_clock.tsc_shift,
3220  				   &vcpu->hv_clock.tsc_to_system_mul);
3221  		vcpu->hw_tsc_khz = tgt_tsc_khz;
3222  		kvm_xen_update_tsc_info(v);
3223  	}
3224  
3225  	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3226  	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3227  	vcpu->last_guest_tsc = tsc_timestamp;
3228  
3229  	/* If the host uses TSC clocksource, then it is stable */
3230  	pvclock_flags = 0;
3231  	if (use_master_clock)
3232  		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3233  
3234  	vcpu->hv_clock.flags = pvclock_flags;
3235  
3236  	if (vcpu->pv_time.active)
3237  		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3238  	if (vcpu->xen.vcpu_info_cache.active)
3239  		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3240  					offsetof(struct compat_vcpu_info, time));
3241  	if (vcpu->xen.vcpu_time_info_cache.active)
3242  		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3243  	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3244  	return 0;
3245  }
3246  
3247  /*
3248   * kvmclock updates which are isolated to a given vcpu, such as
3249   * vcpu->cpu migration, should not allow system_timestamp from
3250   * the rest of the vcpus to remain static. Otherwise ntp frequency
3251   * correction applies to one vcpu's system_timestamp but not
3252   * the others.
3253   *
3254   * So in those cases, request a kvmclock update for all vcpus.
3255   * We need to rate-limit these requests though, as they can
3256   * considerably slow guests that have a large number of vcpus.
3257   * The time for a remote vcpu to update its kvmclock is bound
3258   * by the delay we use to rate-limit the updates.
3259   */
3260  
3261  #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3262  
kvmclock_update_fn(struct work_struct * work)3263  static void kvmclock_update_fn(struct work_struct *work)
3264  {
3265  	unsigned long i;
3266  	struct delayed_work *dwork = to_delayed_work(work);
3267  	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3268  					   kvmclock_update_work);
3269  	struct kvm *kvm = container_of(ka, struct kvm, arch);
3270  	struct kvm_vcpu *vcpu;
3271  
3272  	kvm_for_each_vcpu(i, vcpu, kvm) {
3273  		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3274  		kvm_vcpu_kick(vcpu);
3275  	}
3276  }
3277  
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3278  static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3279  {
3280  	struct kvm *kvm = v->kvm;
3281  
3282  	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3283  	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3284  					KVMCLOCK_UPDATE_DELAY);
3285  }
3286  
3287  #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3288  
kvmclock_sync_fn(struct work_struct * work)3289  static void kvmclock_sync_fn(struct work_struct *work)
3290  {
3291  	struct delayed_work *dwork = to_delayed_work(work);
3292  	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3293  					   kvmclock_sync_work);
3294  	struct kvm *kvm = container_of(ka, struct kvm, arch);
3295  
3296  	if (!kvmclock_periodic_sync)
3297  		return;
3298  
3299  	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3300  	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3301  					KVMCLOCK_SYNC_PERIOD);
3302  }
3303  
3304  /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
is_mci_control_msr(u32 msr)3305  static bool is_mci_control_msr(u32 msr)
3306  {
3307  	return (msr & 3) == 0;
3308  }
is_mci_status_msr(u32 msr)3309  static bool is_mci_status_msr(u32 msr)
3310  {
3311  	return (msr & 3) == 1;
3312  }
3313  
3314  /*
3315   * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3316   */
can_set_mci_status(struct kvm_vcpu * vcpu)3317  static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3318  {
3319  	/* McStatusWrEn enabled? */
3320  	if (guest_cpuid_is_amd_compatible(vcpu))
3321  		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3322  
3323  	return false;
3324  }
3325  
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3326  static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3327  {
3328  	u64 mcg_cap = vcpu->arch.mcg_cap;
3329  	unsigned bank_num = mcg_cap & 0xff;
3330  	u32 msr = msr_info->index;
3331  	u64 data = msr_info->data;
3332  	u32 offset, last_msr;
3333  
3334  	switch (msr) {
3335  	case MSR_IA32_MCG_STATUS:
3336  		vcpu->arch.mcg_status = data;
3337  		break;
3338  	case MSR_IA32_MCG_CTL:
3339  		if (!(mcg_cap & MCG_CTL_P) &&
3340  		    (data || !msr_info->host_initiated))
3341  			return 1;
3342  		if (data != 0 && data != ~(u64)0)
3343  			return 1;
3344  		vcpu->arch.mcg_ctl = data;
3345  		break;
3346  	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3347  		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3348  		if (msr > last_msr)
3349  			return 1;
3350  
3351  		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3352  			return 1;
3353  		/* An attempt to write a 1 to a reserved bit raises #GP */
3354  		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3355  			return 1;
3356  		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3357  					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3358  		vcpu->arch.mci_ctl2_banks[offset] = data;
3359  		break;
3360  	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3361  		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3362  		if (msr > last_msr)
3363  			return 1;
3364  
3365  		/*
3366  		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3367  		 * values are architecturally undefined.  But, some Linux
3368  		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3369  		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3370  		 * other bits in order to avoid an uncaught #GP in the guest.
3371  		 *
3372  		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3373  		 * single-bit ECC data errors.
3374  		 */
3375  		if (is_mci_control_msr(msr) &&
3376  		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3377  			return 1;
3378  
3379  		/*
3380  		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3381  		 * AMD-based CPUs allow non-zero values, but if and only if
3382  		 * HWCR[McStatusWrEn] is set.
3383  		 */
3384  		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3385  		    data != 0 && !can_set_mci_status(vcpu))
3386  			return 1;
3387  
3388  		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3389  					    last_msr + 1 - MSR_IA32_MC0_CTL);
3390  		vcpu->arch.mce_banks[offset] = data;
3391  		break;
3392  	default:
3393  		return 1;
3394  	}
3395  	return 0;
3396  }
3397  
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3398  static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3399  {
3400  	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3401  
3402  	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3403  }
3404  
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3405  static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3406  {
3407  	gpa_t gpa = data & ~0x3f;
3408  
3409  	/* Bits 4:5 are reserved, Should be zero */
3410  	if (data & 0x30)
3411  		return 1;
3412  
3413  	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3414  	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3415  		return 1;
3416  
3417  	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3418  	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3419  		return 1;
3420  
3421  	if (!lapic_in_kernel(vcpu))
3422  		return data ? 1 : 0;
3423  
3424  	vcpu->arch.apf.msr_en_val = data;
3425  
3426  	if (!kvm_pv_async_pf_enabled(vcpu)) {
3427  		kvm_clear_async_pf_completion_queue(vcpu);
3428  		kvm_async_pf_hash_reset(vcpu);
3429  		return 0;
3430  	}
3431  
3432  	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3433  					sizeof(u64)))
3434  		return 1;
3435  
3436  	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3437  	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3438  
3439  	kvm_async_pf_wakeup_all(vcpu);
3440  
3441  	return 0;
3442  }
3443  
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3444  static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3445  {
3446  	/* Bits 8-63 are reserved */
3447  	if (data >> 8)
3448  		return 1;
3449  
3450  	if (!lapic_in_kernel(vcpu))
3451  		return 1;
3452  
3453  	vcpu->arch.apf.msr_int_val = data;
3454  
3455  	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3456  
3457  	return 0;
3458  }
3459  
kvmclock_reset(struct kvm_vcpu * vcpu)3460  static void kvmclock_reset(struct kvm_vcpu *vcpu)
3461  {
3462  	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3463  	vcpu->arch.time = 0;
3464  }
3465  
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3466  static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3467  {
3468  	++vcpu->stat.tlb_flush;
3469  	static_call(kvm_x86_flush_tlb_all)(vcpu);
3470  
3471  	/* Flushing all ASIDs flushes the current ASID... */
3472  	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3473  }
3474  
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3475  static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3476  {
3477  	++vcpu->stat.tlb_flush;
3478  
3479  	if (!tdp_enabled) {
3480  		/*
3481  		 * A TLB flush on behalf of the guest is equivalent to
3482  		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3483  		 * a forced sync of the shadow page tables.  Ensure all the
3484  		 * roots are synced and the guest TLB in hardware is clean.
3485  		 */
3486  		kvm_mmu_sync_roots(vcpu);
3487  		kvm_mmu_sync_prev_roots(vcpu);
3488  	}
3489  
3490  	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3491  
3492  	/*
3493  	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3494  	 * grained flushing.
3495  	 */
3496  	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3497  }
3498  
3499  
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3500  static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3501  {
3502  	++vcpu->stat.tlb_flush;
3503  	static_call(kvm_x86_flush_tlb_current)(vcpu);
3504  }
3505  
3506  /*
3507   * Service "local" TLB flush requests, which are specific to the current MMU
3508   * context.  In addition to the generic event handling in vcpu_enter_guest(),
3509   * TLB flushes that are targeted at an MMU context also need to be serviced
3510   * prior before nested VM-Enter/VM-Exit.
3511   */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3512  void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3513  {
3514  	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3515  		kvm_vcpu_flush_tlb_current(vcpu);
3516  
3517  	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3518  		kvm_vcpu_flush_tlb_guest(vcpu);
3519  }
3520  EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3521  
record_steal_time(struct kvm_vcpu * vcpu)3522  static void record_steal_time(struct kvm_vcpu *vcpu)
3523  {
3524  	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3525  	struct kvm_steal_time __user *st;
3526  	struct kvm_memslots *slots;
3527  	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3528  	u64 steal;
3529  	u32 version;
3530  
3531  	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3532  		kvm_xen_runstate_set_running(vcpu);
3533  		return;
3534  	}
3535  
3536  	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3537  		return;
3538  
3539  	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3540  		return;
3541  
3542  	slots = kvm_memslots(vcpu->kvm);
3543  
3544  	if (unlikely(slots->generation != ghc->generation ||
3545  		     gpa != ghc->gpa ||
3546  		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3547  		/* We rely on the fact that it fits in a single page. */
3548  		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3549  
3550  		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3551  		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3552  			return;
3553  	}
3554  
3555  	st = (struct kvm_steal_time __user *)ghc->hva;
3556  	/*
3557  	 * Doing a TLB flush here, on the guest's behalf, can avoid
3558  	 * expensive IPIs.
3559  	 */
3560  	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3561  		u8 st_preempted = 0;
3562  		int err = -EFAULT;
3563  
3564  		if (!user_access_begin(st, sizeof(*st)))
3565  			return;
3566  
3567  		asm volatile("1: xchgb %0, %2\n"
3568  			     "xor %1, %1\n"
3569  			     "2:\n"
3570  			     _ASM_EXTABLE_UA(1b, 2b)
3571  			     : "+q" (st_preempted),
3572  			       "+&r" (err),
3573  			       "+m" (st->preempted));
3574  		if (err)
3575  			goto out;
3576  
3577  		user_access_end();
3578  
3579  		vcpu->arch.st.preempted = 0;
3580  
3581  		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3582  				       st_preempted & KVM_VCPU_FLUSH_TLB);
3583  		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3584  			kvm_vcpu_flush_tlb_guest(vcpu);
3585  
3586  		if (!user_access_begin(st, sizeof(*st)))
3587  			goto dirty;
3588  	} else {
3589  		if (!user_access_begin(st, sizeof(*st)))
3590  			return;
3591  
3592  		unsafe_put_user(0, &st->preempted, out);
3593  		vcpu->arch.st.preempted = 0;
3594  	}
3595  
3596  	unsafe_get_user(version, &st->version, out);
3597  	if (version & 1)
3598  		version += 1;  /* first time write, random junk */
3599  
3600  	version += 1;
3601  	unsafe_put_user(version, &st->version, out);
3602  
3603  	smp_wmb();
3604  
3605  	unsafe_get_user(steal, &st->steal, out);
3606  	steal += current->sched_info.run_delay -
3607  		vcpu->arch.st.last_steal;
3608  	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3609  	unsafe_put_user(steal, &st->steal, out);
3610  
3611  	version += 1;
3612  	unsafe_put_user(version, &st->version, out);
3613  
3614   out:
3615  	user_access_end();
3616   dirty:
3617  	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3618  }
3619  
kvm_is_msr_to_save(u32 msr_index)3620  static bool kvm_is_msr_to_save(u32 msr_index)
3621  {
3622  	unsigned int i;
3623  
3624  	for (i = 0; i < num_msrs_to_save; i++) {
3625  		if (msrs_to_save[i] == msr_index)
3626  			return true;
3627  	}
3628  
3629  	return false;
3630  }
3631  
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3632  int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3633  {
3634  	u32 msr = msr_info->index;
3635  	u64 data = msr_info->data;
3636  
3637  	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3638  		return kvm_xen_write_hypercall_page(vcpu, data);
3639  
3640  	switch (msr) {
3641  	case MSR_AMD64_NB_CFG:
3642  	case MSR_IA32_UCODE_WRITE:
3643  	case MSR_VM_HSAVE_PA:
3644  	case MSR_AMD64_PATCH_LOADER:
3645  	case MSR_AMD64_BU_CFG2:
3646  	case MSR_AMD64_DC_CFG:
3647  	case MSR_AMD64_TW_CFG:
3648  	case MSR_F15H_EX_CFG:
3649  		break;
3650  
3651  	case MSR_IA32_UCODE_REV:
3652  		if (msr_info->host_initiated)
3653  			vcpu->arch.microcode_version = data;
3654  		break;
3655  	case MSR_IA32_ARCH_CAPABILITIES:
3656  		if (!msr_info->host_initiated)
3657  			return 1;
3658  		vcpu->arch.arch_capabilities = data;
3659  		break;
3660  	case MSR_IA32_PERF_CAPABILITIES:
3661  		if (!msr_info->host_initiated)
3662  			return 1;
3663  		if (data & ~kvm_caps.supported_perf_cap)
3664  			return 1;
3665  
3666  		/*
3667  		 * Note, this is not just a performance optimization!  KVM
3668  		 * disallows changing feature MSRs after the vCPU has run; PMU
3669  		 * refresh will bug the VM if called after the vCPU has run.
3670  		 */
3671  		if (vcpu->arch.perf_capabilities == data)
3672  			break;
3673  
3674  		vcpu->arch.perf_capabilities = data;
3675  		kvm_pmu_refresh(vcpu);
3676  		break;
3677  	case MSR_IA32_PRED_CMD:
3678  		if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu))
3679  			return 1;
3680  
3681  		if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB))
3682  			return 1;
3683  		if (!data)
3684  			break;
3685  
3686  		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3687  		break;
3688  	case MSR_IA32_FLUSH_CMD:
3689  		if (!msr_info->host_initiated &&
3690  		    !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3691  			return 1;
3692  
3693  		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3694  			return 1;
3695  		if (!data)
3696  			break;
3697  
3698  		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3699  		break;
3700  	case MSR_EFER:
3701  		return set_efer(vcpu, msr_info);
3702  	case MSR_K7_HWCR:
3703  		data &= ~(u64)0x40;	/* ignore flush filter disable */
3704  		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3705  		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3706  
3707  		/* Handle McStatusWrEn */
3708  		if (data == BIT_ULL(18)) {
3709  			vcpu->arch.msr_hwcr = data;
3710  		} else if (data != 0) {
3711  			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3712  			return 1;
3713  		}
3714  		break;
3715  	case MSR_FAM10H_MMIO_CONF_BASE:
3716  		if (data != 0) {
3717  			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3718  			return 1;
3719  		}
3720  		break;
3721  	case MSR_IA32_CR_PAT:
3722  		if (!kvm_pat_valid(data))
3723  			return 1;
3724  
3725  		vcpu->arch.pat = data;
3726  		break;
3727  	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3728  	case MSR_MTRRdefType:
3729  		return kvm_mtrr_set_msr(vcpu, msr, data);
3730  	case MSR_IA32_APICBASE:
3731  		return kvm_set_apic_base(vcpu, msr_info);
3732  	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3733  		return kvm_x2apic_msr_write(vcpu, msr, data);
3734  	case MSR_IA32_TSC_DEADLINE:
3735  		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3736  		break;
3737  	case MSR_IA32_TSC_ADJUST:
3738  		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3739  			if (!msr_info->host_initiated) {
3740  				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3741  				adjust_tsc_offset_guest(vcpu, adj);
3742  				/* Before back to guest, tsc_timestamp must be adjusted
3743  				 * as well, otherwise guest's percpu pvclock time could jump.
3744  				 */
3745  				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3746  			}
3747  			vcpu->arch.ia32_tsc_adjust_msr = data;
3748  		}
3749  		break;
3750  	case MSR_IA32_MISC_ENABLE: {
3751  		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3752  
3753  		if (!msr_info->host_initiated) {
3754  			/* RO bits */
3755  			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3756  				return 1;
3757  
3758  			/* R bits, i.e. writes are ignored, but don't fault. */
3759  			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3760  			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3761  		}
3762  
3763  		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3764  		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3765  			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3766  				return 1;
3767  			vcpu->arch.ia32_misc_enable_msr = data;
3768  			kvm_update_cpuid_runtime(vcpu);
3769  		} else {
3770  			vcpu->arch.ia32_misc_enable_msr = data;
3771  		}
3772  		break;
3773  	}
3774  	case MSR_IA32_SMBASE:
3775  		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3776  			return 1;
3777  		vcpu->arch.smbase = data;
3778  		break;
3779  	case MSR_IA32_POWER_CTL:
3780  		vcpu->arch.msr_ia32_power_ctl = data;
3781  		break;
3782  	case MSR_IA32_TSC:
3783  		if (msr_info->host_initiated) {
3784  			kvm_synchronize_tsc(vcpu, data);
3785  		} else {
3786  			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3787  			adjust_tsc_offset_guest(vcpu, adj);
3788  			vcpu->arch.ia32_tsc_adjust_msr += adj;
3789  		}
3790  		break;
3791  	case MSR_IA32_XSS:
3792  		if (!msr_info->host_initiated &&
3793  		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3794  			return 1;
3795  		/*
3796  		 * KVM supports exposing PT to the guest, but does not support
3797  		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3798  		 * XSAVES/XRSTORS to save/restore PT MSRs.
3799  		 */
3800  		if (data & ~kvm_caps.supported_xss)
3801  			return 1;
3802  		vcpu->arch.ia32_xss = data;
3803  		kvm_update_cpuid_runtime(vcpu);
3804  		break;
3805  	case MSR_SMI_COUNT:
3806  		if (!msr_info->host_initiated)
3807  			return 1;
3808  		vcpu->arch.smi_count = data;
3809  		break;
3810  	case MSR_KVM_WALL_CLOCK_NEW:
3811  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3812  			return 1;
3813  
3814  		vcpu->kvm->arch.wall_clock = data;
3815  		kvm_write_wall_clock(vcpu->kvm, data, 0);
3816  		break;
3817  	case MSR_KVM_WALL_CLOCK:
3818  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3819  			return 1;
3820  
3821  		vcpu->kvm->arch.wall_clock = data;
3822  		kvm_write_wall_clock(vcpu->kvm, data, 0);
3823  		break;
3824  	case MSR_KVM_SYSTEM_TIME_NEW:
3825  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3826  			return 1;
3827  
3828  		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3829  		break;
3830  	case MSR_KVM_SYSTEM_TIME:
3831  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3832  			return 1;
3833  
3834  		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3835  		break;
3836  	case MSR_KVM_ASYNC_PF_EN:
3837  		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3838  			return 1;
3839  
3840  		if (kvm_pv_enable_async_pf(vcpu, data))
3841  			return 1;
3842  		break;
3843  	case MSR_KVM_ASYNC_PF_INT:
3844  		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3845  			return 1;
3846  
3847  		if (kvm_pv_enable_async_pf_int(vcpu, data))
3848  			return 1;
3849  		break;
3850  	case MSR_KVM_ASYNC_PF_ACK:
3851  		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3852  			return 1;
3853  		if (data & 0x1) {
3854  			vcpu->arch.apf.pageready_pending = false;
3855  			kvm_check_async_pf_completion(vcpu);
3856  		}
3857  		break;
3858  	case MSR_KVM_STEAL_TIME:
3859  		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3860  			return 1;
3861  
3862  		if (unlikely(!sched_info_on()))
3863  			return 1;
3864  
3865  		if (data & KVM_STEAL_RESERVED_MASK)
3866  			return 1;
3867  
3868  		vcpu->arch.st.msr_val = data;
3869  
3870  		if (!(data & KVM_MSR_ENABLED))
3871  			break;
3872  
3873  		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3874  
3875  		break;
3876  	case MSR_KVM_PV_EOI_EN:
3877  		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3878  			return 1;
3879  
3880  		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3881  			return 1;
3882  		break;
3883  
3884  	case MSR_KVM_POLL_CONTROL:
3885  		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3886  			return 1;
3887  
3888  		/* only enable bit supported */
3889  		if (data & (-1ULL << 1))
3890  			return 1;
3891  
3892  		vcpu->arch.msr_kvm_poll_control = data;
3893  		break;
3894  
3895  	case MSR_IA32_MCG_CTL:
3896  	case MSR_IA32_MCG_STATUS:
3897  	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3898  	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3899  		return set_msr_mce(vcpu, msr_info);
3900  
3901  	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3902  	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3903  	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3904  	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3905  		if (kvm_pmu_is_valid_msr(vcpu, msr))
3906  			return kvm_pmu_set_msr(vcpu, msr_info);
3907  
3908  		if (data)
3909  			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3910  		break;
3911  	case MSR_K7_CLK_CTL:
3912  		/*
3913  		 * Ignore all writes to this no longer documented MSR.
3914  		 * Writes are only relevant for old K7 processors,
3915  		 * all pre-dating SVM, but a recommended workaround from
3916  		 * AMD for these chips. It is possible to specify the
3917  		 * affected processor models on the command line, hence
3918  		 * the need to ignore the workaround.
3919  		 */
3920  		break;
3921  	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3922  	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3923  	case HV_X64_MSR_SYNDBG_OPTIONS:
3924  	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3925  	case HV_X64_MSR_CRASH_CTL:
3926  	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3927  	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3928  	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3929  	case HV_X64_MSR_TSC_EMULATION_STATUS:
3930  	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
3931  		return kvm_hv_set_msr_common(vcpu, msr, data,
3932  					     msr_info->host_initiated);
3933  	case MSR_IA32_BBL_CR_CTL3:
3934  		/* Drop writes to this legacy MSR -- see rdmsr
3935  		 * counterpart for further detail.
3936  		 */
3937  		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3938  		break;
3939  	case MSR_AMD64_OSVW_ID_LENGTH:
3940  		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3941  			return 1;
3942  		vcpu->arch.osvw.length = data;
3943  		break;
3944  	case MSR_AMD64_OSVW_STATUS:
3945  		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3946  			return 1;
3947  		vcpu->arch.osvw.status = data;
3948  		break;
3949  	case MSR_PLATFORM_INFO:
3950  		if (!msr_info->host_initiated ||
3951  		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3952  		     cpuid_fault_enabled(vcpu)))
3953  			return 1;
3954  		vcpu->arch.msr_platform_info = data;
3955  		break;
3956  	case MSR_MISC_FEATURES_ENABLES:
3957  		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3958  		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3959  		     !supports_cpuid_fault(vcpu)))
3960  			return 1;
3961  		vcpu->arch.msr_misc_features_enables = data;
3962  		break;
3963  #ifdef CONFIG_X86_64
3964  	case MSR_IA32_XFD:
3965  		if (!msr_info->host_initiated &&
3966  		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3967  			return 1;
3968  
3969  		if (data & ~kvm_guest_supported_xfd(vcpu))
3970  			return 1;
3971  
3972  		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3973  		break;
3974  	case MSR_IA32_XFD_ERR:
3975  		if (!msr_info->host_initiated &&
3976  		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3977  			return 1;
3978  
3979  		if (data & ~kvm_guest_supported_xfd(vcpu))
3980  			return 1;
3981  
3982  		vcpu->arch.guest_fpu.xfd_err = data;
3983  		break;
3984  #endif
3985  	default:
3986  		if (kvm_pmu_is_valid_msr(vcpu, msr))
3987  			return kvm_pmu_set_msr(vcpu, msr_info);
3988  
3989  		/*
3990  		 * Userspace is allowed to write '0' to MSRs that KVM reports
3991  		 * as to-be-saved, even if an MSRs isn't fully supported.
3992  		 */
3993  		if (msr_info->host_initiated && !data &&
3994  		    kvm_is_msr_to_save(msr))
3995  			break;
3996  
3997  		return KVM_MSR_RET_INVALID;
3998  	}
3999  	return 0;
4000  }
4001  EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4002  
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)4003  static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4004  {
4005  	u64 data;
4006  	u64 mcg_cap = vcpu->arch.mcg_cap;
4007  	unsigned bank_num = mcg_cap & 0xff;
4008  	u32 offset, last_msr;
4009  
4010  	switch (msr) {
4011  	case MSR_IA32_P5_MC_ADDR:
4012  	case MSR_IA32_P5_MC_TYPE:
4013  		data = 0;
4014  		break;
4015  	case MSR_IA32_MCG_CAP:
4016  		data = vcpu->arch.mcg_cap;
4017  		break;
4018  	case MSR_IA32_MCG_CTL:
4019  		if (!(mcg_cap & MCG_CTL_P) && !host)
4020  			return 1;
4021  		data = vcpu->arch.mcg_ctl;
4022  		break;
4023  	case MSR_IA32_MCG_STATUS:
4024  		data = vcpu->arch.mcg_status;
4025  		break;
4026  	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4027  		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4028  		if (msr > last_msr)
4029  			return 1;
4030  
4031  		if (!(mcg_cap & MCG_CMCI_P) && !host)
4032  			return 1;
4033  		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4034  					    last_msr + 1 - MSR_IA32_MC0_CTL2);
4035  		data = vcpu->arch.mci_ctl2_banks[offset];
4036  		break;
4037  	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4038  		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4039  		if (msr > last_msr)
4040  			return 1;
4041  
4042  		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4043  					    last_msr + 1 - MSR_IA32_MC0_CTL);
4044  		data = vcpu->arch.mce_banks[offset];
4045  		break;
4046  	default:
4047  		return 1;
4048  	}
4049  	*pdata = data;
4050  	return 0;
4051  }
4052  
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4053  int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4054  {
4055  	switch (msr_info->index) {
4056  	case MSR_IA32_PLATFORM_ID:
4057  	case MSR_IA32_EBL_CR_POWERON:
4058  	case MSR_IA32_LASTBRANCHFROMIP:
4059  	case MSR_IA32_LASTBRANCHTOIP:
4060  	case MSR_IA32_LASTINTFROMIP:
4061  	case MSR_IA32_LASTINTTOIP:
4062  	case MSR_AMD64_SYSCFG:
4063  	case MSR_K8_TSEG_ADDR:
4064  	case MSR_K8_TSEG_MASK:
4065  	case MSR_VM_HSAVE_PA:
4066  	case MSR_K8_INT_PENDING_MSG:
4067  	case MSR_AMD64_NB_CFG:
4068  	case MSR_FAM10H_MMIO_CONF_BASE:
4069  	case MSR_AMD64_BU_CFG2:
4070  	case MSR_IA32_PERF_CTL:
4071  	case MSR_AMD64_DC_CFG:
4072  	case MSR_AMD64_TW_CFG:
4073  	case MSR_F15H_EX_CFG:
4074  	/*
4075  	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4076  	 * limit) MSRs. Just return 0, as we do not want to expose the host
4077  	 * data here. Do not conditionalize this on CPUID, as KVM does not do
4078  	 * so for existing CPU-specific MSRs.
4079  	 */
4080  	case MSR_RAPL_POWER_UNIT:
4081  	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
4082  	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
4083  	case MSR_PKG_ENERGY_STATUS:	/* Total package */
4084  	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
4085  		msr_info->data = 0;
4086  		break;
4087  	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4088  	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4089  	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4090  	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4091  		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4092  			return kvm_pmu_get_msr(vcpu, msr_info);
4093  		msr_info->data = 0;
4094  		break;
4095  	case MSR_IA32_UCODE_REV:
4096  		msr_info->data = vcpu->arch.microcode_version;
4097  		break;
4098  	case MSR_IA32_ARCH_CAPABILITIES:
4099  		if (!msr_info->host_initiated &&
4100  		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4101  			return 1;
4102  		msr_info->data = vcpu->arch.arch_capabilities;
4103  		break;
4104  	case MSR_IA32_PERF_CAPABILITIES:
4105  		if (!msr_info->host_initiated &&
4106  		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4107  			return 1;
4108  		msr_info->data = vcpu->arch.perf_capabilities;
4109  		break;
4110  	case MSR_IA32_POWER_CTL:
4111  		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4112  		break;
4113  	case MSR_IA32_TSC: {
4114  		/*
4115  		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4116  		 * even when not intercepted. AMD manual doesn't explicitly
4117  		 * state this but appears to behave the same.
4118  		 *
4119  		 * On userspace reads and writes, however, we unconditionally
4120  		 * return L1's TSC value to ensure backwards-compatible
4121  		 * behavior for migration.
4122  		 */
4123  		u64 offset, ratio;
4124  
4125  		if (msr_info->host_initiated) {
4126  			offset = vcpu->arch.l1_tsc_offset;
4127  			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4128  		} else {
4129  			offset = vcpu->arch.tsc_offset;
4130  			ratio = vcpu->arch.tsc_scaling_ratio;
4131  		}
4132  
4133  		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4134  		break;
4135  	}
4136  	case MSR_IA32_CR_PAT:
4137  		msr_info->data = vcpu->arch.pat;
4138  		break;
4139  	case MSR_MTRRcap:
4140  	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4141  	case MSR_MTRRdefType:
4142  		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4143  	case 0xcd: /* fsb frequency */
4144  		msr_info->data = 3;
4145  		break;
4146  		/*
4147  		 * MSR_EBC_FREQUENCY_ID
4148  		 * Conservative value valid for even the basic CPU models.
4149  		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4150  		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4151  		 * and 266MHz for model 3, or 4. Set Core Clock
4152  		 * Frequency to System Bus Frequency Ratio to 1 (bits
4153  		 * 31:24) even though these are only valid for CPU
4154  		 * models > 2, however guests may end up dividing or
4155  		 * multiplying by zero otherwise.
4156  		 */
4157  	case MSR_EBC_FREQUENCY_ID:
4158  		msr_info->data = 1 << 24;
4159  		break;
4160  	case MSR_IA32_APICBASE:
4161  		msr_info->data = kvm_get_apic_base(vcpu);
4162  		break;
4163  	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4164  		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4165  	case MSR_IA32_TSC_DEADLINE:
4166  		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4167  		break;
4168  	case MSR_IA32_TSC_ADJUST:
4169  		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4170  		break;
4171  	case MSR_IA32_MISC_ENABLE:
4172  		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4173  		break;
4174  	case MSR_IA32_SMBASE:
4175  		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4176  			return 1;
4177  		msr_info->data = vcpu->arch.smbase;
4178  		break;
4179  	case MSR_SMI_COUNT:
4180  		msr_info->data = vcpu->arch.smi_count;
4181  		break;
4182  	case MSR_IA32_PERF_STATUS:
4183  		/* TSC increment by tick */
4184  		msr_info->data = 1000ULL;
4185  		/* CPU multiplier */
4186  		msr_info->data |= (((uint64_t)4ULL) << 40);
4187  		break;
4188  	case MSR_EFER:
4189  		msr_info->data = vcpu->arch.efer;
4190  		break;
4191  	case MSR_KVM_WALL_CLOCK:
4192  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4193  			return 1;
4194  
4195  		msr_info->data = vcpu->kvm->arch.wall_clock;
4196  		break;
4197  	case MSR_KVM_WALL_CLOCK_NEW:
4198  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4199  			return 1;
4200  
4201  		msr_info->data = vcpu->kvm->arch.wall_clock;
4202  		break;
4203  	case MSR_KVM_SYSTEM_TIME:
4204  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4205  			return 1;
4206  
4207  		msr_info->data = vcpu->arch.time;
4208  		break;
4209  	case MSR_KVM_SYSTEM_TIME_NEW:
4210  		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4211  			return 1;
4212  
4213  		msr_info->data = vcpu->arch.time;
4214  		break;
4215  	case MSR_KVM_ASYNC_PF_EN:
4216  		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4217  			return 1;
4218  
4219  		msr_info->data = vcpu->arch.apf.msr_en_val;
4220  		break;
4221  	case MSR_KVM_ASYNC_PF_INT:
4222  		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4223  			return 1;
4224  
4225  		msr_info->data = vcpu->arch.apf.msr_int_val;
4226  		break;
4227  	case MSR_KVM_ASYNC_PF_ACK:
4228  		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4229  			return 1;
4230  
4231  		msr_info->data = 0;
4232  		break;
4233  	case MSR_KVM_STEAL_TIME:
4234  		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4235  			return 1;
4236  
4237  		msr_info->data = vcpu->arch.st.msr_val;
4238  		break;
4239  	case MSR_KVM_PV_EOI_EN:
4240  		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4241  			return 1;
4242  
4243  		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4244  		break;
4245  	case MSR_KVM_POLL_CONTROL:
4246  		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4247  			return 1;
4248  
4249  		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4250  		break;
4251  	case MSR_IA32_P5_MC_ADDR:
4252  	case MSR_IA32_P5_MC_TYPE:
4253  	case MSR_IA32_MCG_CAP:
4254  	case MSR_IA32_MCG_CTL:
4255  	case MSR_IA32_MCG_STATUS:
4256  	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4257  	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4258  		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4259  				   msr_info->host_initiated);
4260  	case MSR_IA32_XSS:
4261  		if (!msr_info->host_initiated &&
4262  		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4263  			return 1;
4264  		msr_info->data = vcpu->arch.ia32_xss;
4265  		break;
4266  	case MSR_K7_CLK_CTL:
4267  		/*
4268  		 * Provide expected ramp-up count for K7. All other
4269  		 * are set to zero, indicating minimum divisors for
4270  		 * every field.
4271  		 *
4272  		 * This prevents guest kernels on AMD host with CPU
4273  		 * type 6, model 8 and higher from exploding due to
4274  		 * the rdmsr failing.
4275  		 */
4276  		msr_info->data = 0x20000000;
4277  		break;
4278  	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4279  	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4280  	case HV_X64_MSR_SYNDBG_OPTIONS:
4281  	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4282  	case HV_X64_MSR_CRASH_CTL:
4283  	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4284  	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4285  	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4286  	case HV_X64_MSR_TSC_EMULATION_STATUS:
4287  	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4288  		return kvm_hv_get_msr_common(vcpu,
4289  					     msr_info->index, &msr_info->data,
4290  					     msr_info->host_initiated);
4291  	case MSR_IA32_BBL_CR_CTL3:
4292  		/* This legacy MSR exists but isn't fully documented in current
4293  		 * silicon.  It is however accessed by winxp in very narrow
4294  		 * scenarios where it sets bit #19, itself documented as
4295  		 * a "reserved" bit.  Best effort attempt to source coherent
4296  		 * read data here should the balance of the register be
4297  		 * interpreted by the guest:
4298  		 *
4299  		 * L2 cache control register 3: 64GB range, 256KB size,
4300  		 * enabled, latency 0x1, configured
4301  		 */
4302  		msr_info->data = 0xbe702111;
4303  		break;
4304  	case MSR_AMD64_OSVW_ID_LENGTH:
4305  		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4306  			return 1;
4307  		msr_info->data = vcpu->arch.osvw.length;
4308  		break;
4309  	case MSR_AMD64_OSVW_STATUS:
4310  		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4311  			return 1;
4312  		msr_info->data = vcpu->arch.osvw.status;
4313  		break;
4314  	case MSR_PLATFORM_INFO:
4315  		if (!msr_info->host_initiated &&
4316  		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4317  			return 1;
4318  		msr_info->data = vcpu->arch.msr_platform_info;
4319  		break;
4320  	case MSR_MISC_FEATURES_ENABLES:
4321  		msr_info->data = vcpu->arch.msr_misc_features_enables;
4322  		break;
4323  	case MSR_K7_HWCR:
4324  		msr_info->data = vcpu->arch.msr_hwcr;
4325  		break;
4326  #ifdef CONFIG_X86_64
4327  	case MSR_IA32_XFD:
4328  		if (!msr_info->host_initiated &&
4329  		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4330  			return 1;
4331  
4332  		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4333  		break;
4334  	case MSR_IA32_XFD_ERR:
4335  		if (!msr_info->host_initiated &&
4336  		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4337  			return 1;
4338  
4339  		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4340  		break;
4341  #endif
4342  	default:
4343  		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4344  			return kvm_pmu_get_msr(vcpu, msr_info);
4345  
4346  		/*
4347  		 * Userspace is allowed to read MSRs that KVM reports as
4348  		 * to-be-saved, even if an MSR isn't fully supported.
4349  		 */
4350  		if (msr_info->host_initiated &&
4351  		    kvm_is_msr_to_save(msr_info->index)) {
4352  			msr_info->data = 0;
4353  			break;
4354  		}
4355  
4356  		return KVM_MSR_RET_INVALID;
4357  	}
4358  	return 0;
4359  }
4360  EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4361  
4362  /*
4363   * Read or write a bunch of msrs. All parameters are kernel addresses.
4364   *
4365   * @return number of msrs set successfully.
4366   */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4367  static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4368  		    struct kvm_msr_entry *entries,
4369  		    int (*do_msr)(struct kvm_vcpu *vcpu,
4370  				  unsigned index, u64 *data))
4371  {
4372  	int i;
4373  
4374  	for (i = 0; i < msrs->nmsrs; ++i)
4375  		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4376  			break;
4377  
4378  	return i;
4379  }
4380  
4381  /*
4382   * Read or write a bunch of msrs. Parameters are user addresses.
4383   *
4384   * @return number of msrs set successfully.
4385   */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4386  static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4387  		  int (*do_msr)(struct kvm_vcpu *vcpu,
4388  				unsigned index, u64 *data),
4389  		  int writeback)
4390  {
4391  	struct kvm_msrs msrs;
4392  	struct kvm_msr_entry *entries;
4393  	unsigned size;
4394  	int r;
4395  
4396  	r = -EFAULT;
4397  	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4398  		goto out;
4399  
4400  	r = -E2BIG;
4401  	if (msrs.nmsrs >= MAX_IO_MSRS)
4402  		goto out;
4403  
4404  	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4405  	entries = memdup_user(user_msrs->entries, size);
4406  	if (IS_ERR(entries)) {
4407  		r = PTR_ERR(entries);
4408  		goto out;
4409  	}
4410  
4411  	r = __msr_io(vcpu, &msrs, entries, do_msr);
4412  
4413  	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4414  		r = -EFAULT;
4415  
4416  	kfree(entries);
4417  out:
4418  	return r;
4419  }
4420  
kvm_can_mwait_in_guest(void)4421  static inline bool kvm_can_mwait_in_guest(void)
4422  {
4423  	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4424  		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4425  		boot_cpu_has(X86_FEATURE_ARAT);
4426  }
4427  
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4428  static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4429  					    struct kvm_cpuid2 __user *cpuid_arg)
4430  {
4431  	struct kvm_cpuid2 cpuid;
4432  	int r;
4433  
4434  	r = -EFAULT;
4435  	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4436  		return r;
4437  
4438  	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4439  	if (r)
4440  		return r;
4441  
4442  	r = -EFAULT;
4443  	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4444  		return r;
4445  
4446  	return 0;
4447  }
4448  
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4449  int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4450  {
4451  	int r = 0;
4452  
4453  	switch (ext) {
4454  	case KVM_CAP_IRQCHIP:
4455  	case KVM_CAP_HLT:
4456  	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4457  	case KVM_CAP_SET_TSS_ADDR:
4458  	case KVM_CAP_EXT_CPUID:
4459  	case KVM_CAP_EXT_EMUL_CPUID:
4460  	case KVM_CAP_CLOCKSOURCE:
4461  	case KVM_CAP_PIT:
4462  	case KVM_CAP_NOP_IO_DELAY:
4463  	case KVM_CAP_MP_STATE:
4464  	case KVM_CAP_SYNC_MMU:
4465  	case KVM_CAP_USER_NMI:
4466  	case KVM_CAP_REINJECT_CONTROL:
4467  	case KVM_CAP_IRQ_INJECT_STATUS:
4468  	case KVM_CAP_IOEVENTFD:
4469  	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4470  	case KVM_CAP_PIT2:
4471  	case KVM_CAP_PIT_STATE2:
4472  	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4473  	case KVM_CAP_VCPU_EVENTS:
4474  	case KVM_CAP_HYPERV:
4475  	case KVM_CAP_HYPERV_VAPIC:
4476  	case KVM_CAP_HYPERV_SPIN:
4477  	case KVM_CAP_HYPERV_SYNIC:
4478  	case KVM_CAP_HYPERV_SYNIC2:
4479  	case KVM_CAP_HYPERV_VP_INDEX:
4480  	case KVM_CAP_HYPERV_EVENTFD:
4481  	case KVM_CAP_HYPERV_TLBFLUSH:
4482  	case KVM_CAP_HYPERV_SEND_IPI:
4483  	case KVM_CAP_HYPERV_CPUID:
4484  	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4485  	case KVM_CAP_SYS_HYPERV_CPUID:
4486  	case KVM_CAP_PCI_SEGMENT:
4487  	case KVM_CAP_DEBUGREGS:
4488  	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4489  	case KVM_CAP_XSAVE:
4490  	case KVM_CAP_ASYNC_PF:
4491  	case KVM_CAP_ASYNC_PF_INT:
4492  	case KVM_CAP_GET_TSC_KHZ:
4493  	case KVM_CAP_KVMCLOCK_CTRL:
4494  	case KVM_CAP_READONLY_MEM:
4495  	case KVM_CAP_HYPERV_TIME:
4496  	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4497  	case KVM_CAP_TSC_DEADLINE_TIMER:
4498  	case KVM_CAP_DISABLE_QUIRKS:
4499  	case KVM_CAP_SET_BOOT_CPU_ID:
4500   	case KVM_CAP_SPLIT_IRQCHIP:
4501  	case KVM_CAP_IMMEDIATE_EXIT:
4502  	case KVM_CAP_PMU_EVENT_FILTER:
4503  	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4504  	case KVM_CAP_GET_MSR_FEATURES:
4505  	case KVM_CAP_MSR_PLATFORM_INFO:
4506  	case KVM_CAP_EXCEPTION_PAYLOAD:
4507  	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4508  	case KVM_CAP_SET_GUEST_DEBUG:
4509  	case KVM_CAP_LAST_CPU:
4510  	case KVM_CAP_X86_USER_SPACE_MSR:
4511  	case KVM_CAP_X86_MSR_FILTER:
4512  	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4513  #ifdef CONFIG_X86_SGX_KVM
4514  	case KVM_CAP_SGX_ATTRIBUTE:
4515  #endif
4516  	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4517  	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4518  	case KVM_CAP_SREGS2:
4519  	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4520  	case KVM_CAP_VCPU_ATTRIBUTES:
4521  	case KVM_CAP_SYS_ATTRIBUTES:
4522  	case KVM_CAP_VAPIC:
4523  	case KVM_CAP_ENABLE_CAP:
4524  	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4525  	case KVM_CAP_IRQFD_RESAMPLE:
4526  		r = 1;
4527  		break;
4528  	case KVM_CAP_EXIT_HYPERCALL:
4529  		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4530  		break;
4531  	case KVM_CAP_SET_GUEST_DEBUG2:
4532  		return KVM_GUESTDBG_VALID_MASK;
4533  #ifdef CONFIG_KVM_XEN
4534  	case KVM_CAP_XEN_HVM:
4535  		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4536  		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4537  		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4538  		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4539  		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4540  		if (sched_info_on())
4541  			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4542  			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4543  		break;
4544  #endif
4545  	case KVM_CAP_SYNC_REGS:
4546  		r = KVM_SYNC_X86_VALID_FIELDS;
4547  		break;
4548  	case KVM_CAP_ADJUST_CLOCK:
4549  		r = KVM_CLOCK_VALID_FLAGS;
4550  		break;
4551  	case KVM_CAP_X86_DISABLE_EXITS:
4552  		r = KVM_X86_DISABLE_EXITS_PAUSE;
4553  
4554  		if (!mitigate_smt_rsb) {
4555  			r |= KVM_X86_DISABLE_EXITS_HLT |
4556  			     KVM_X86_DISABLE_EXITS_CSTATE;
4557  
4558  			if (kvm_can_mwait_in_guest())
4559  				r |= KVM_X86_DISABLE_EXITS_MWAIT;
4560  		}
4561  		break;
4562  	case KVM_CAP_X86_SMM:
4563  		if (!IS_ENABLED(CONFIG_KVM_SMM))
4564  			break;
4565  
4566  		/* SMBASE is usually relocated above 1M on modern chipsets,
4567  		 * and SMM handlers might indeed rely on 4G segment limits,
4568  		 * so do not report SMM to be available if real mode is
4569  		 * emulated via vm86 mode.  Still, do not go to great lengths
4570  		 * to avoid userspace's usage of the feature, because it is a
4571  		 * fringe case that is not enabled except via specific settings
4572  		 * of the module parameters.
4573  		 */
4574  		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4575  		break;
4576  	case KVM_CAP_NR_VCPUS:
4577  		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4578  		break;
4579  	case KVM_CAP_MAX_VCPUS:
4580  		r = KVM_MAX_VCPUS;
4581  		break;
4582  	case KVM_CAP_MAX_VCPU_ID:
4583  		r = KVM_MAX_VCPU_IDS;
4584  		break;
4585  	case KVM_CAP_PV_MMU:	/* obsolete */
4586  		r = 0;
4587  		break;
4588  	case KVM_CAP_MCE:
4589  		r = KVM_MAX_MCE_BANKS;
4590  		break;
4591  	case KVM_CAP_XCRS:
4592  		r = boot_cpu_has(X86_FEATURE_XSAVE);
4593  		break;
4594  	case KVM_CAP_TSC_CONTROL:
4595  	case KVM_CAP_VM_TSC_CONTROL:
4596  		r = kvm_caps.has_tsc_control;
4597  		break;
4598  	case KVM_CAP_X2APIC_API:
4599  		r = KVM_X2APIC_API_VALID_FLAGS;
4600  		break;
4601  	case KVM_CAP_NESTED_STATE:
4602  		r = kvm_x86_ops.nested_ops->get_state ?
4603  			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4604  		break;
4605  	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4606  		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4607  		break;
4608  	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4609  		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4610  		break;
4611  	case KVM_CAP_SMALLER_MAXPHYADDR:
4612  		r = (int) allow_smaller_maxphyaddr;
4613  		break;
4614  	case KVM_CAP_STEAL_TIME:
4615  		r = sched_info_on();
4616  		break;
4617  	case KVM_CAP_X86_BUS_LOCK_EXIT:
4618  		if (kvm_caps.has_bus_lock_exit)
4619  			r = KVM_BUS_LOCK_DETECTION_OFF |
4620  			    KVM_BUS_LOCK_DETECTION_EXIT;
4621  		else
4622  			r = 0;
4623  		break;
4624  	case KVM_CAP_XSAVE2: {
4625  		r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4626  		if (r < sizeof(struct kvm_xsave))
4627  			r = sizeof(struct kvm_xsave);
4628  		break;
4629  	}
4630  	case KVM_CAP_PMU_CAPABILITY:
4631  		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4632  		break;
4633  	case KVM_CAP_DISABLE_QUIRKS2:
4634  		r = KVM_X86_VALID_QUIRKS;
4635  		break;
4636  	case KVM_CAP_X86_NOTIFY_VMEXIT:
4637  		r = kvm_caps.has_notify_vmexit;
4638  		break;
4639  	default:
4640  		break;
4641  	}
4642  	return r;
4643  }
4644  
kvm_get_attr_addr(struct kvm_device_attr * attr)4645  static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4646  {
4647  	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4648  
4649  	if ((u64)(unsigned long)uaddr != attr->addr)
4650  		return ERR_PTR_USR(-EFAULT);
4651  	return uaddr;
4652  }
4653  
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)4654  static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4655  {
4656  	u64 __user *uaddr = kvm_get_attr_addr(attr);
4657  
4658  	if (attr->group)
4659  		return -ENXIO;
4660  
4661  	if (IS_ERR(uaddr))
4662  		return PTR_ERR(uaddr);
4663  
4664  	switch (attr->attr) {
4665  	case KVM_X86_XCOMP_GUEST_SUPP:
4666  		if (put_user(kvm_caps.supported_xcr0, uaddr))
4667  			return -EFAULT;
4668  		return 0;
4669  	default:
4670  		return -ENXIO;
4671  	}
4672  }
4673  
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)4674  static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4675  {
4676  	if (attr->group)
4677  		return -ENXIO;
4678  
4679  	switch (attr->attr) {
4680  	case KVM_X86_XCOMP_GUEST_SUPP:
4681  		return 0;
4682  	default:
4683  		return -ENXIO;
4684  	}
4685  }
4686  
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4687  long kvm_arch_dev_ioctl(struct file *filp,
4688  			unsigned int ioctl, unsigned long arg)
4689  {
4690  	void __user *argp = (void __user *)arg;
4691  	long r;
4692  
4693  	switch (ioctl) {
4694  	case KVM_GET_MSR_INDEX_LIST: {
4695  		struct kvm_msr_list __user *user_msr_list = argp;
4696  		struct kvm_msr_list msr_list;
4697  		unsigned n;
4698  
4699  		r = -EFAULT;
4700  		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4701  			goto out;
4702  		n = msr_list.nmsrs;
4703  		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4704  		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4705  			goto out;
4706  		r = -E2BIG;
4707  		if (n < msr_list.nmsrs)
4708  			goto out;
4709  		r = -EFAULT;
4710  		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4711  				 num_msrs_to_save * sizeof(u32)))
4712  			goto out;
4713  		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4714  				 &emulated_msrs,
4715  				 num_emulated_msrs * sizeof(u32)))
4716  			goto out;
4717  		r = 0;
4718  		break;
4719  	}
4720  	case KVM_GET_SUPPORTED_CPUID:
4721  	case KVM_GET_EMULATED_CPUID: {
4722  		struct kvm_cpuid2 __user *cpuid_arg = argp;
4723  		struct kvm_cpuid2 cpuid;
4724  
4725  		r = -EFAULT;
4726  		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4727  			goto out;
4728  
4729  		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4730  					    ioctl);
4731  		if (r)
4732  			goto out;
4733  
4734  		r = -EFAULT;
4735  		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4736  			goto out;
4737  		r = 0;
4738  		break;
4739  	}
4740  	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4741  		r = -EFAULT;
4742  		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4743  				 sizeof(kvm_caps.supported_mce_cap)))
4744  			goto out;
4745  		r = 0;
4746  		break;
4747  	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4748  		struct kvm_msr_list __user *user_msr_list = argp;
4749  		struct kvm_msr_list msr_list;
4750  		unsigned int n;
4751  
4752  		r = -EFAULT;
4753  		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4754  			goto out;
4755  		n = msr_list.nmsrs;
4756  		msr_list.nmsrs = num_msr_based_features;
4757  		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4758  			goto out;
4759  		r = -E2BIG;
4760  		if (n < msr_list.nmsrs)
4761  			goto out;
4762  		r = -EFAULT;
4763  		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4764  				 num_msr_based_features * sizeof(u32)))
4765  			goto out;
4766  		r = 0;
4767  		break;
4768  	}
4769  	case KVM_GET_MSRS:
4770  		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4771  		break;
4772  	case KVM_GET_SUPPORTED_HV_CPUID:
4773  		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4774  		break;
4775  	case KVM_GET_DEVICE_ATTR: {
4776  		struct kvm_device_attr attr;
4777  		r = -EFAULT;
4778  		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4779  			break;
4780  		r = kvm_x86_dev_get_attr(&attr);
4781  		break;
4782  	}
4783  	case KVM_HAS_DEVICE_ATTR: {
4784  		struct kvm_device_attr attr;
4785  		r = -EFAULT;
4786  		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4787  			break;
4788  		r = kvm_x86_dev_has_attr(&attr);
4789  		break;
4790  	}
4791  	default:
4792  		r = -EINVAL;
4793  		break;
4794  	}
4795  out:
4796  	return r;
4797  }
4798  
wbinvd_ipi(void * garbage)4799  static void wbinvd_ipi(void *garbage)
4800  {
4801  	wbinvd();
4802  }
4803  
need_emulate_wbinvd(struct kvm_vcpu * vcpu)4804  static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4805  {
4806  	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4807  }
4808  
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)4809  void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4810  {
4811  	/* Address WBINVD may be executed by guest */
4812  	if (need_emulate_wbinvd(vcpu)) {
4813  		if (static_call(kvm_x86_has_wbinvd_exit)())
4814  			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4815  		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4816  			smp_call_function_single(vcpu->cpu,
4817  					wbinvd_ipi, NULL, 1);
4818  	}
4819  
4820  	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4821  
4822  	/* Save host pkru register if supported */
4823  	vcpu->arch.host_pkru = read_pkru();
4824  
4825  	/* Apply any externally detected TSC adjustments (due to suspend) */
4826  	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4827  		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4828  		vcpu->arch.tsc_offset_adjustment = 0;
4829  		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4830  	}
4831  
4832  	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4833  		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4834  				rdtsc() - vcpu->arch.last_host_tsc;
4835  		if (tsc_delta < 0)
4836  			mark_tsc_unstable("KVM discovered backwards TSC");
4837  
4838  		if (kvm_check_tsc_unstable()) {
4839  			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4840  						vcpu->arch.last_guest_tsc);
4841  			kvm_vcpu_write_tsc_offset(vcpu, offset);
4842  			vcpu->arch.tsc_catchup = 1;
4843  		}
4844  
4845  		if (kvm_lapic_hv_timer_in_use(vcpu))
4846  			kvm_lapic_restart_hv_timer(vcpu);
4847  
4848  		/*
4849  		 * On a host with synchronized TSC, there is no need to update
4850  		 * kvmclock on vcpu->cpu migration
4851  		 */
4852  		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4853  			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4854  		if (vcpu->cpu != cpu)
4855  			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4856  		vcpu->cpu = cpu;
4857  	}
4858  
4859  	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4860  }
4861  
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)4862  static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4863  {
4864  	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4865  	struct kvm_steal_time __user *st;
4866  	struct kvm_memslots *slots;
4867  	static const u8 preempted = KVM_VCPU_PREEMPTED;
4868  	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4869  
4870  	/*
4871  	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4872  	 * an instruction boundary and will not trigger guest emulation of any
4873  	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4874  	 * when this is true, for example allowing the vCPU to be marked
4875  	 * preempted if and only if the VM-Exit was due to a host interrupt.
4876  	 */
4877  	if (!vcpu->arch.at_instruction_boundary) {
4878  		vcpu->stat.preemption_other++;
4879  		return;
4880  	}
4881  
4882  	vcpu->stat.preemption_reported++;
4883  	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4884  		return;
4885  
4886  	if (vcpu->arch.st.preempted)
4887  		return;
4888  
4889  	/* This happens on process exit */
4890  	if (unlikely(current->mm != vcpu->kvm->mm))
4891  		return;
4892  
4893  	slots = kvm_memslots(vcpu->kvm);
4894  
4895  	if (unlikely(slots->generation != ghc->generation ||
4896  		     gpa != ghc->gpa ||
4897  		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4898  		return;
4899  
4900  	st = (struct kvm_steal_time __user *)ghc->hva;
4901  	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4902  
4903  	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4904  		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4905  
4906  	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4907  }
4908  
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)4909  void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4910  {
4911  	int idx;
4912  
4913  	if (vcpu->preempted) {
4914  		if (!vcpu->arch.guest_state_protected)
4915  			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4916  
4917  		/*
4918  		 * Take the srcu lock as memslots will be accessed to check the gfn
4919  		 * cache generation against the memslots generation.
4920  		 */
4921  		idx = srcu_read_lock(&vcpu->kvm->srcu);
4922  		if (kvm_xen_msr_enabled(vcpu->kvm))
4923  			kvm_xen_runstate_set_preempted(vcpu);
4924  		else
4925  			kvm_steal_time_set_preempted(vcpu);
4926  		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4927  	}
4928  
4929  	static_call(kvm_x86_vcpu_put)(vcpu);
4930  	vcpu->arch.last_host_tsc = rdtsc();
4931  }
4932  
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4933  static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4934  				    struct kvm_lapic_state *s)
4935  {
4936  	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4937  
4938  	return kvm_apic_get_state(vcpu, s);
4939  }
4940  
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4941  static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4942  				    struct kvm_lapic_state *s)
4943  {
4944  	int r;
4945  
4946  	r = kvm_apic_set_state(vcpu, s);
4947  	if (r)
4948  		return r;
4949  	update_cr8_intercept(vcpu);
4950  
4951  	return 0;
4952  }
4953  
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)4954  static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4955  {
4956  	/*
4957  	 * We can accept userspace's request for interrupt injection
4958  	 * as long as we have a place to store the interrupt number.
4959  	 * The actual injection will happen when the CPU is able to
4960  	 * deliver the interrupt.
4961  	 */
4962  	if (kvm_cpu_has_extint(vcpu))
4963  		return false;
4964  
4965  	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4966  	return (!lapic_in_kernel(vcpu) ||
4967  		kvm_apic_accept_pic_intr(vcpu));
4968  }
4969  
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)4970  static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4971  {
4972  	/*
4973  	 * Do not cause an interrupt window exit if an exception
4974  	 * is pending or an event needs reinjection; userspace
4975  	 * might want to inject the interrupt manually using KVM_SET_REGS
4976  	 * or KVM_SET_SREGS.  For that to work, we must be at an
4977  	 * instruction boundary and with no events half-injected.
4978  	 */
4979  	return (kvm_arch_interrupt_allowed(vcpu) &&
4980  		kvm_cpu_accept_dm_intr(vcpu) &&
4981  		!kvm_event_needs_reinjection(vcpu) &&
4982  		!kvm_is_exception_pending(vcpu));
4983  }
4984  
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)4985  static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4986  				    struct kvm_interrupt *irq)
4987  {
4988  	if (irq->irq >= KVM_NR_INTERRUPTS)
4989  		return -EINVAL;
4990  
4991  	if (!irqchip_in_kernel(vcpu->kvm)) {
4992  		kvm_queue_interrupt(vcpu, irq->irq, false);
4993  		kvm_make_request(KVM_REQ_EVENT, vcpu);
4994  		return 0;
4995  	}
4996  
4997  	/*
4998  	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4999  	 * fail for in-kernel 8259.
5000  	 */
5001  	if (pic_in_kernel(vcpu->kvm))
5002  		return -ENXIO;
5003  
5004  	if (vcpu->arch.pending_external_vector != -1)
5005  		return -EEXIST;
5006  
5007  	vcpu->arch.pending_external_vector = irq->irq;
5008  	kvm_make_request(KVM_REQ_EVENT, vcpu);
5009  	return 0;
5010  }
5011  
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)5012  static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5013  {
5014  	kvm_inject_nmi(vcpu);
5015  
5016  	return 0;
5017  }
5018  
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)5019  static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5020  					   struct kvm_tpr_access_ctl *tac)
5021  {
5022  	if (tac->flags)
5023  		return -EINVAL;
5024  	vcpu->arch.tpr_access_reporting = !!tac->enabled;
5025  	return 0;
5026  }
5027  
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)5028  static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5029  					u64 mcg_cap)
5030  {
5031  	int r;
5032  	unsigned bank_num = mcg_cap & 0xff, bank;
5033  
5034  	r = -EINVAL;
5035  	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5036  		goto out;
5037  	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5038  		goto out;
5039  	r = 0;
5040  	vcpu->arch.mcg_cap = mcg_cap;
5041  	/* Init IA32_MCG_CTL to all 1s */
5042  	if (mcg_cap & MCG_CTL_P)
5043  		vcpu->arch.mcg_ctl = ~(u64)0;
5044  	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5045  	for (bank = 0; bank < bank_num; bank++) {
5046  		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5047  		if (mcg_cap & MCG_CMCI_P)
5048  			vcpu->arch.mci_ctl2_banks[bank] = 0;
5049  	}
5050  
5051  	kvm_apic_after_set_mcg_cap(vcpu);
5052  
5053  	static_call(kvm_x86_setup_mce)(vcpu);
5054  out:
5055  	return r;
5056  }
5057  
5058  /*
5059   * Validate this is an UCNA (uncorrectable no action) error by checking the
5060   * MCG_STATUS and MCi_STATUS registers:
5061   * - none of the bits for Machine Check Exceptions are set
5062   * - both the VAL (valid) and UC (uncorrectable) bits are set
5063   * MCI_STATUS_PCC - Processor Context Corrupted
5064   * MCI_STATUS_S - Signaled as a Machine Check Exception
5065   * MCI_STATUS_AR - Software recoverable Action Required
5066   */
is_ucna(struct kvm_x86_mce * mce)5067  static bool is_ucna(struct kvm_x86_mce *mce)
5068  {
5069  	return	!mce->mcg_status &&
5070  		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5071  		(mce->status & MCI_STATUS_VAL) &&
5072  		(mce->status & MCI_STATUS_UC);
5073  }
5074  
kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)5075  static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5076  {
5077  	u64 mcg_cap = vcpu->arch.mcg_cap;
5078  
5079  	banks[1] = mce->status;
5080  	banks[2] = mce->addr;
5081  	banks[3] = mce->misc;
5082  	vcpu->arch.mcg_status = mce->mcg_status;
5083  
5084  	if (!(mcg_cap & MCG_CMCI_P) ||
5085  	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5086  		return 0;
5087  
5088  	if (lapic_in_kernel(vcpu))
5089  		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5090  
5091  	return 0;
5092  }
5093  
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)5094  static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5095  				      struct kvm_x86_mce *mce)
5096  {
5097  	u64 mcg_cap = vcpu->arch.mcg_cap;
5098  	unsigned bank_num = mcg_cap & 0xff;
5099  	u64 *banks = vcpu->arch.mce_banks;
5100  
5101  	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5102  		return -EINVAL;
5103  
5104  	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5105  
5106  	if (is_ucna(mce))
5107  		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5108  
5109  	/*
5110  	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5111  	 * reporting is disabled
5112  	 */
5113  	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5114  	    vcpu->arch.mcg_ctl != ~(u64)0)
5115  		return 0;
5116  	/*
5117  	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5118  	 * reporting is disabled for the bank
5119  	 */
5120  	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5121  		return 0;
5122  	if (mce->status & MCI_STATUS_UC) {
5123  		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5124  		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5125  			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5126  			return 0;
5127  		}
5128  		if (banks[1] & MCI_STATUS_VAL)
5129  			mce->status |= MCI_STATUS_OVER;
5130  		banks[2] = mce->addr;
5131  		banks[3] = mce->misc;
5132  		vcpu->arch.mcg_status = mce->mcg_status;
5133  		banks[1] = mce->status;
5134  		kvm_queue_exception(vcpu, MC_VECTOR);
5135  	} else if (!(banks[1] & MCI_STATUS_VAL)
5136  		   || !(banks[1] & MCI_STATUS_UC)) {
5137  		if (banks[1] & MCI_STATUS_VAL)
5138  			mce->status |= MCI_STATUS_OVER;
5139  		banks[2] = mce->addr;
5140  		banks[3] = mce->misc;
5141  		banks[1] = mce->status;
5142  	} else
5143  		banks[1] |= MCI_STATUS_OVER;
5144  	return 0;
5145  }
5146  
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5147  static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5148  					       struct kvm_vcpu_events *events)
5149  {
5150  	struct kvm_queued_exception *ex;
5151  
5152  	process_nmi(vcpu);
5153  
5154  #ifdef CONFIG_KVM_SMM
5155  	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5156  		process_smi(vcpu);
5157  #endif
5158  
5159  	/*
5160  	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5161  	 * the only time there can be two queued exceptions is if there's a
5162  	 * non-exiting _injected_ exception, and a pending exiting exception.
5163  	 * In that case, ignore the VM-Exiting exception as it's an extension
5164  	 * of the injected exception.
5165  	 */
5166  	if (vcpu->arch.exception_vmexit.pending &&
5167  	    !vcpu->arch.exception.pending &&
5168  	    !vcpu->arch.exception.injected)
5169  		ex = &vcpu->arch.exception_vmexit;
5170  	else
5171  		ex = &vcpu->arch.exception;
5172  
5173  	/*
5174  	 * In guest mode, payload delivery should be deferred if the exception
5175  	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5176  	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5177  	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5178  	 * propagate the payload and so it cannot be safely deferred.  Deliver
5179  	 * the payload if the capability hasn't been requested.
5180  	 */
5181  	if (!vcpu->kvm->arch.exception_payload_enabled &&
5182  	    ex->pending && ex->has_payload)
5183  		kvm_deliver_exception_payload(vcpu, ex);
5184  
5185  	memset(events, 0, sizeof(*events));
5186  
5187  	/*
5188  	 * The API doesn't provide the instruction length for software
5189  	 * exceptions, so don't report them. As long as the guest RIP
5190  	 * isn't advanced, we should expect to encounter the exception
5191  	 * again.
5192  	 */
5193  	if (!kvm_exception_is_soft(ex->vector)) {
5194  		events->exception.injected = ex->injected;
5195  		events->exception.pending = ex->pending;
5196  		/*
5197  		 * For ABI compatibility, deliberately conflate
5198  		 * pending and injected exceptions when
5199  		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5200  		 */
5201  		if (!vcpu->kvm->arch.exception_payload_enabled)
5202  			events->exception.injected |= ex->pending;
5203  	}
5204  	events->exception.nr = ex->vector;
5205  	events->exception.has_error_code = ex->has_error_code;
5206  	events->exception.error_code = ex->error_code;
5207  	events->exception_has_payload = ex->has_payload;
5208  	events->exception_payload = ex->payload;
5209  
5210  	events->interrupt.injected =
5211  		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5212  	events->interrupt.nr = vcpu->arch.interrupt.nr;
5213  	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5214  
5215  	events->nmi.injected = vcpu->arch.nmi_injected;
5216  	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5217  	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5218  
5219  	/* events->sipi_vector is never valid when reporting to user space */
5220  
5221  #ifdef CONFIG_KVM_SMM
5222  	events->smi.smm = is_smm(vcpu);
5223  	events->smi.pending = vcpu->arch.smi_pending;
5224  	events->smi.smm_inside_nmi =
5225  		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5226  #endif
5227  	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5228  
5229  	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5230  			 | KVM_VCPUEVENT_VALID_SHADOW
5231  			 | KVM_VCPUEVENT_VALID_SMM);
5232  	if (vcpu->kvm->arch.exception_payload_enabled)
5233  		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5234  	if (vcpu->kvm->arch.triple_fault_event) {
5235  		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5236  		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5237  	}
5238  }
5239  
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5240  static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5241  					      struct kvm_vcpu_events *events)
5242  {
5243  	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5244  			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5245  			      | KVM_VCPUEVENT_VALID_SHADOW
5246  			      | KVM_VCPUEVENT_VALID_SMM
5247  			      | KVM_VCPUEVENT_VALID_PAYLOAD
5248  			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5249  		return -EINVAL;
5250  
5251  	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5252  		if (!vcpu->kvm->arch.exception_payload_enabled)
5253  			return -EINVAL;
5254  		if (events->exception.pending)
5255  			events->exception.injected = 0;
5256  		else
5257  			events->exception_has_payload = 0;
5258  	} else {
5259  		events->exception.pending = 0;
5260  		events->exception_has_payload = 0;
5261  	}
5262  
5263  	if ((events->exception.injected || events->exception.pending) &&
5264  	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5265  		return -EINVAL;
5266  
5267  	/* INITs are latched while in SMM */
5268  	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5269  	    (events->smi.smm || events->smi.pending) &&
5270  	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5271  		return -EINVAL;
5272  
5273  	process_nmi(vcpu);
5274  
5275  	/*
5276  	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5277  	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5278  	 * pending exceptions, already-injected exceptions are not subject to
5279  	 * intercpetion.  Note, userspace that conflates pending and injected
5280  	 * is hosed, and will incorrectly convert an injected exception into a
5281  	 * pending exception, which in turn may cause a spurious VM-Exit.
5282  	 */
5283  	vcpu->arch.exception_from_userspace = events->exception.pending;
5284  
5285  	vcpu->arch.exception_vmexit.pending = false;
5286  
5287  	vcpu->arch.exception.injected = events->exception.injected;
5288  	vcpu->arch.exception.pending = events->exception.pending;
5289  	vcpu->arch.exception.vector = events->exception.nr;
5290  	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5291  	vcpu->arch.exception.error_code = events->exception.error_code;
5292  	vcpu->arch.exception.has_payload = events->exception_has_payload;
5293  	vcpu->arch.exception.payload = events->exception_payload;
5294  
5295  	vcpu->arch.interrupt.injected = events->interrupt.injected;
5296  	vcpu->arch.interrupt.nr = events->interrupt.nr;
5297  	vcpu->arch.interrupt.soft = events->interrupt.soft;
5298  	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5299  		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5300  						events->interrupt.shadow);
5301  
5302  	vcpu->arch.nmi_injected = events->nmi.injected;
5303  	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5304  		vcpu->arch.nmi_pending = 0;
5305  		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5306  		if (events->nmi.pending)
5307  			kvm_make_request(KVM_REQ_NMI, vcpu);
5308  	}
5309  	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5310  
5311  	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5312  	    lapic_in_kernel(vcpu))
5313  		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5314  
5315  	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5316  #ifdef CONFIG_KVM_SMM
5317  		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5318  			kvm_leave_nested(vcpu);
5319  			kvm_smm_changed(vcpu, events->smi.smm);
5320  		}
5321  
5322  		vcpu->arch.smi_pending = events->smi.pending;
5323  
5324  		if (events->smi.smm) {
5325  			if (events->smi.smm_inside_nmi)
5326  				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5327  			else
5328  				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5329  		}
5330  
5331  #else
5332  		if (events->smi.smm || events->smi.pending ||
5333  		    events->smi.smm_inside_nmi)
5334  			return -EINVAL;
5335  #endif
5336  
5337  		if (lapic_in_kernel(vcpu)) {
5338  			if (events->smi.latched_init)
5339  				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5340  			else
5341  				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5342  		}
5343  	}
5344  
5345  	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5346  		if (!vcpu->kvm->arch.triple_fault_event)
5347  			return -EINVAL;
5348  		if (events->triple_fault.pending)
5349  			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5350  		else
5351  			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5352  	}
5353  
5354  	kvm_make_request(KVM_REQ_EVENT, vcpu);
5355  
5356  	return 0;
5357  }
5358  
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5359  static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5360  					     struct kvm_debugregs *dbgregs)
5361  {
5362  	unsigned long val;
5363  
5364  	memset(dbgregs, 0, sizeof(*dbgregs));
5365  	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5366  	kvm_get_dr(vcpu, 6, &val);
5367  	dbgregs->dr6 = val;
5368  	dbgregs->dr7 = vcpu->arch.dr7;
5369  }
5370  
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5371  static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5372  					    struct kvm_debugregs *dbgregs)
5373  {
5374  	if (dbgregs->flags)
5375  		return -EINVAL;
5376  
5377  	if (!kvm_dr6_valid(dbgregs->dr6))
5378  		return -EINVAL;
5379  	if (!kvm_dr7_valid(dbgregs->dr7))
5380  		return -EINVAL;
5381  
5382  	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5383  	kvm_update_dr0123(vcpu);
5384  	vcpu->arch.dr6 = dbgregs->dr6;
5385  	vcpu->arch.dr7 = dbgregs->dr7;
5386  	kvm_update_dr7(vcpu);
5387  
5388  	return 0;
5389  }
5390  
5391  
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5392  static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5393  					  u8 *state, unsigned int size)
5394  {
5395  	/*
5396  	 * Only copy state for features that are enabled for the guest.  The
5397  	 * state itself isn't problematic, but setting bits in the header for
5398  	 * features that are supported in *this* host but not exposed to the
5399  	 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5400  	 * compatible host without the features that are NOT exposed to the
5401  	 * guest.
5402  	 *
5403  	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5404  	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5405  	 * supported by the host.
5406  	 */
5407  	u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5408  			     XFEATURE_MASK_FPSSE;
5409  
5410  	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5411  		return;
5412  
5413  	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5414  				       supported_xcr0, vcpu->arch.pkru);
5415  }
5416  
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5417  static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5418  					 struct kvm_xsave *guest_xsave)
5419  {
5420  	return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5421  					     sizeof(guest_xsave->region));
5422  }
5423  
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5424  static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5425  					struct kvm_xsave *guest_xsave)
5426  {
5427  	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5428  		return 0;
5429  
5430  	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5431  					      guest_xsave->region,
5432  					      kvm_caps.supported_xcr0,
5433  					      &vcpu->arch.pkru);
5434  }
5435  
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5436  static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5437  					struct kvm_xcrs *guest_xcrs)
5438  {
5439  	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5440  		guest_xcrs->nr_xcrs = 0;
5441  		return;
5442  	}
5443  
5444  	guest_xcrs->nr_xcrs = 1;
5445  	guest_xcrs->flags = 0;
5446  	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5447  	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5448  }
5449  
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5450  static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5451  				       struct kvm_xcrs *guest_xcrs)
5452  {
5453  	int i, r = 0;
5454  
5455  	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5456  		return -EINVAL;
5457  
5458  	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5459  		return -EINVAL;
5460  
5461  	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5462  		/* Only support XCR0 currently */
5463  		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5464  			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5465  				guest_xcrs->xcrs[i].value);
5466  			break;
5467  		}
5468  	if (r)
5469  		r = -EINVAL;
5470  	return r;
5471  }
5472  
5473  /*
5474   * kvm_set_guest_paused() indicates to the guest kernel that it has been
5475   * stopped by the hypervisor.  This function will be called from the host only.
5476   * EINVAL is returned when the host attempts to set the flag for a guest that
5477   * does not support pv clocks.
5478   */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5479  static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5480  {
5481  	if (!vcpu->arch.pv_time.active)
5482  		return -EINVAL;
5483  	vcpu->arch.pvclock_set_guest_stopped_request = true;
5484  	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5485  	return 0;
5486  }
5487  
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5488  static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5489  				 struct kvm_device_attr *attr)
5490  {
5491  	int r;
5492  
5493  	switch (attr->attr) {
5494  	case KVM_VCPU_TSC_OFFSET:
5495  		r = 0;
5496  		break;
5497  	default:
5498  		r = -ENXIO;
5499  	}
5500  
5501  	return r;
5502  }
5503  
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5504  static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5505  				 struct kvm_device_attr *attr)
5506  {
5507  	u64 __user *uaddr = kvm_get_attr_addr(attr);
5508  	int r;
5509  
5510  	if (IS_ERR(uaddr))
5511  		return PTR_ERR(uaddr);
5512  
5513  	switch (attr->attr) {
5514  	case KVM_VCPU_TSC_OFFSET:
5515  		r = -EFAULT;
5516  		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5517  			break;
5518  		r = 0;
5519  		break;
5520  	default:
5521  		r = -ENXIO;
5522  	}
5523  
5524  	return r;
5525  }
5526  
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5527  static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5528  				 struct kvm_device_attr *attr)
5529  {
5530  	u64 __user *uaddr = kvm_get_attr_addr(attr);
5531  	struct kvm *kvm = vcpu->kvm;
5532  	int r;
5533  
5534  	if (IS_ERR(uaddr))
5535  		return PTR_ERR(uaddr);
5536  
5537  	switch (attr->attr) {
5538  	case KVM_VCPU_TSC_OFFSET: {
5539  		u64 offset, tsc, ns;
5540  		unsigned long flags;
5541  		bool matched;
5542  
5543  		r = -EFAULT;
5544  		if (get_user(offset, uaddr))
5545  			break;
5546  
5547  		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5548  
5549  		matched = (vcpu->arch.virtual_tsc_khz &&
5550  			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5551  			   kvm->arch.last_tsc_offset == offset);
5552  
5553  		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5554  		ns = get_kvmclock_base_ns();
5555  
5556  		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5557  		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5558  
5559  		r = 0;
5560  		break;
5561  	}
5562  	default:
5563  		r = -ENXIO;
5564  	}
5565  
5566  	return r;
5567  }
5568  
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5569  static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5570  				      unsigned int ioctl,
5571  				      void __user *argp)
5572  {
5573  	struct kvm_device_attr attr;
5574  	int r;
5575  
5576  	if (copy_from_user(&attr, argp, sizeof(attr)))
5577  		return -EFAULT;
5578  
5579  	if (attr.group != KVM_VCPU_TSC_CTRL)
5580  		return -ENXIO;
5581  
5582  	switch (ioctl) {
5583  	case KVM_HAS_DEVICE_ATTR:
5584  		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5585  		break;
5586  	case KVM_GET_DEVICE_ATTR:
5587  		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5588  		break;
5589  	case KVM_SET_DEVICE_ATTR:
5590  		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5591  		break;
5592  	}
5593  
5594  	return r;
5595  }
5596  
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5597  static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5598  				     struct kvm_enable_cap *cap)
5599  {
5600  	int r;
5601  	uint16_t vmcs_version;
5602  	void __user *user_ptr;
5603  
5604  	if (cap->flags)
5605  		return -EINVAL;
5606  
5607  	switch (cap->cap) {
5608  	case KVM_CAP_HYPERV_SYNIC2:
5609  		if (cap->args[0])
5610  			return -EINVAL;
5611  		fallthrough;
5612  
5613  	case KVM_CAP_HYPERV_SYNIC:
5614  		if (!irqchip_in_kernel(vcpu->kvm))
5615  			return -EINVAL;
5616  		return kvm_hv_activate_synic(vcpu, cap->cap ==
5617  					     KVM_CAP_HYPERV_SYNIC2);
5618  	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5619  		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5620  			return -ENOTTY;
5621  		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5622  		if (!r) {
5623  			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5624  			if (copy_to_user(user_ptr, &vmcs_version,
5625  					 sizeof(vmcs_version)))
5626  				r = -EFAULT;
5627  		}
5628  		return r;
5629  	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5630  		if (!kvm_x86_ops.enable_l2_tlb_flush)
5631  			return -ENOTTY;
5632  
5633  		return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5634  
5635  	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5636  		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5637  
5638  	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5639  		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5640  		if (vcpu->arch.pv_cpuid.enforce)
5641  			kvm_update_pv_runtime(vcpu);
5642  
5643  		return 0;
5644  	default:
5645  		return -EINVAL;
5646  	}
5647  }
5648  
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5649  long kvm_arch_vcpu_ioctl(struct file *filp,
5650  			 unsigned int ioctl, unsigned long arg)
5651  {
5652  	struct kvm_vcpu *vcpu = filp->private_data;
5653  	void __user *argp = (void __user *)arg;
5654  	int r;
5655  	union {
5656  		struct kvm_sregs2 *sregs2;
5657  		struct kvm_lapic_state *lapic;
5658  		struct kvm_xsave *xsave;
5659  		struct kvm_xcrs *xcrs;
5660  		void *buffer;
5661  	} u;
5662  
5663  	vcpu_load(vcpu);
5664  
5665  	u.buffer = NULL;
5666  	switch (ioctl) {
5667  	case KVM_GET_LAPIC: {
5668  		r = -EINVAL;
5669  		if (!lapic_in_kernel(vcpu))
5670  			goto out;
5671  		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5672  				GFP_KERNEL_ACCOUNT);
5673  
5674  		r = -ENOMEM;
5675  		if (!u.lapic)
5676  			goto out;
5677  		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5678  		if (r)
5679  			goto out;
5680  		r = -EFAULT;
5681  		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5682  			goto out;
5683  		r = 0;
5684  		break;
5685  	}
5686  	case KVM_SET_LAPIC: {
5687  		r = -EINVAL;
5688  		if (!lapic_in_kernel(vcpu))
5689  			goto out;
5690  		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5691  		if (IS_ERR(u.lapic)) {
5692  			r = PTR_ERR(u.lapic);
5693  			goto out_nofree;
5694  		}
5695  
5696  		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5697  		break;
5698  	}
5699  	case KVM_INTERRUPT: {
5700  		struct kvm_interrupt irq;
5701  
5702  		r = -EFAULT;
5703  		if (copy_from_user(&irq, argp, sizeof(irq)))
5704  			goto out;
5705  		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5706  		break;
5707  	}
5708  	case KVM_NMI: {
5709  		r = kvm_vcpu_ioctl_nmi(vcpu);
5710  		break;
5711  	}
5712  	case KVM_SMI: {
5713  		r = kvm_inject_smi(vcpu);
5714  		break;
5715  	}
5716  	case KVM_SET_CPUID: {
5717  		struct kvm_cpuid __user *cpuid_arg = argp;
5718  		struct kvm_cpuid cpuid;
5719  
5720  		r = -EFAULT;
5721  		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5722  			goto out;
5723  		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5724  		break;
5725  	}
5726  	case KVM_SET_CPUID2: {
5727  		struct kvm_cpuid2 __user *cpuid_arg = argp;
5728  		struct kvm_cpuid2 cpuid;
5729  
5730  		r = -EFAULT;
5731  		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5732  			goto out;
5733  		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5734  					      cpuid_arg->entries);
5735  		break;
5736  	}
5737  	case KVM_GET_CPUID2: {
5738  		struct kvm_cpuid2 __user *cpuid_arg = argp;
5739  		struct kvm_cpuid2 cpuid;
5740  
5741  		r = -EFAULT;
5742  		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5743  			goto out;
5744  		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5745  					      cpuid_arg->entries);
5746  		if (r)
5747  			goto out;
5748  		r = -EFAULT;
5749  		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5750  			goto out;
5751  		r = 0;
5752  		break;
5753  	}
5754  	case KVM_GET_MSRS: {
5755  		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5756  		r = msr_io(vcpu, argp, do_get_msr, 1);
5757  		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5758  		break;
5759  	}
5760  	case KVM_SET_MSRS: {
5761  		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5762  		r = msr_io(vcpu, argp, do_set_msr, 0);
5763  		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5764  		break;
5765  	}
5766  	case KVM_TPR_ACCESS_REPORTING: {
5767  		struct kvm_tpr_access_ctl tac;
5768  
5769  		r = -EFAULT;
5770  		if (copy_from_user(&tac, argp, sizeof(tac)))
5771  			goto out;
5772  		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5773  		if (r)
5774  			goto out;
5775  		r = -EFAULT;
5776  		if (copy_to_user(argp, &tac, sizeof(tac)))
5777  			goto out;
5778  		r = 0;
5779  		break;
5780  	};
5781  	case KVM_SET_VAPIC_ADDR: {
5782  		struct kvm_vapic_addr va;
5783  		int idx;
5784  
5785  		r = -EINVAL;
5786  		if (!lapic_in_kernel(vcpu))
5787  			goto out;
5788  		r = -EFAULT;
5789  		if (copy_from_user(&va, argp, sizeof(va)))
5790  			goto out;
5791  		idx = srcu_read_lock(&vcpu->kvm->srcu);
5792  		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5793  		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5794  		break;
5795  	}
5796  	case KVM_X86_SETUP_MCE: {
5797  		u64 mcg_cap;
5798  
5799  		r = -EFAULT;
5800  		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5801  			goto out;
5802  		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5803  		break;
5804  	}
5805  	case KVM_X86_SET_MCE: {
5806  		struct kvm_x86_mce mce;
5807  
5808  		r = -EFAULT;
5809  		if (copy_from_user(&mce, argp, sizeof(mce)))
5810  			goto out;
5811  		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5812  		break;
5813  	}
5814  	case KVM_GET_VCPU_EVENTS: {
5815  		struct kvm_vcpu_events events;
5816  
5817  		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5818  
5819  		r = -EFAULT;
5820  		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5821  			break;
5822  		r = 0;
5823  		break;
5824  	}
5825  	case KVM_SET_VCPU_EVENTS: {
5826  		struct kvm_vcpu_events events;
5827  
5828  		r = -EFAULT;
5829  		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5830  			break;
5831  
5832  		kvm_vcpu_srcu_read_lock(vcpu);
5833  		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5834  		kvm_vcpu_srcu_read_unlock(vcpu);
5835  		break;
5836  	}
5837  	case KVM_GET_DEBUGREGS: {
5838  		struct kvm_debugregs dbgregs;
5839  
5840  		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5841  
5842  		r = -EFAULT;
5843  		if (copy_to_user(argp, &dbgregs,
5844  				 sizeof(struct kvm_debugregs)))
5845  			break;
5846  		r = 0;
5847  		break;
5848  	}
5849  	case KVM_SET_DEBUGREGS: {
5850  		struct kvm_debugregs dbgregs;
5851  
5852  		r = -EFAULT;
5853  		if (copy_from_user(&dbgregs, argp,
5854  				   sizeof(struct kvm_debugregs)))
5855  			break;
5856  
5857  		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5858  		break;
5859  	}
5860  	case KVM_GET_XSAVE: {
5861  		r = -EINVAL;
5862  		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5863  			break;
5864  
5865  		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5866  		r = -ENOMEM;
5867  		if (!u.xsave)
5868  			break;
5869  
5870  		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5871  
5872  		r = -EFAULT;
5873  		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5874  			break;
5875  		r = 0;
5876  		break;
5877  	}
5878  	case KVM_SET_XSAVE: {
5879  		int size = vcpu->arch.guest_fpu.uabi_size;
5880  
5881  		u.xsave = memdup_user(argp, size);
5882  		if (IS_ERR(u.xsave)) {
5883  			r = PTR_ERR(u.xsave);
5884  			goto out_nofree;
5885  		}
5886  
5887  		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5888  		break;
5889  	}
5890  
5891  	case KVM_GET_XSAVE2: {
5892  		int size = vcpu->arch.guest_fpu.uabi_size;
5893  
5894  		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5895  		r = -ENOMEM;
5896  		if (!u.xsave)
5897  			break;
5898  
5899  		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5900  
5901  		r = -EFAULT;
5902  		if (copy_to_user(argp, u.xsave, size))
5903  			break;
5904  
5905  		r = 0;
5906  		break;
5907  	}
5908  
5909  	case KVM_GET_XCRS: {
5910  		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5911  		r = -ENOMEM;
5912  		if (!u.xcrs)
5913  			break;
5914  
5915  		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5916  
5917  		r = -EFAULT;
5918  		if (copy_to_user(argp, u.xcrs,
5919  				 sizeof(struct kvm_xcrs)))
5920  			break;
5921  		r = 0;
5922  		break;
5923  	}
5924  	case KVM_SET_XCRS: {
5925  		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5926  		if (IS_ERR(u.xcrs)) {
5927  			r = PTR_ERR(u.xcrs);
5928  			goto out_nofree;
5929  		}
5930  
5931  		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5932  		break;
5933  	}
5934  	case KVM_SET_TSC_KHZ: {
5935  		u32 user_tsc_khz;
5936  
5937  		r = -EINVAL;
5938  		user_tsc_khz = (u32)arg;
5939  
5940  		if (kvm_caps.has_tsc_control &&
5941  		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5942  			goto out;
5943  
5944  		if (user_tsc_khz == 0)
5945  			user_tsc_khz = tsc_khz;
5946  
5947  		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5948  			r = 0;
5949  
5950  		goto out;
5951  	}
5952  	case KVM_GET_TSC_KHZ: {
5953  		r = vcpu->arch.virtual_tsc_khz;
5954  		goto out;
5955  	}
5956  	case KVM_KVMCLOCK_CTRL: {
5957  		r = kvm_set_guest_paused(vcpu);
5958  		goto out;
5959  	}
5960  	case KVM_ENABLE_CAP: {
5961  		struct kvm_enable_cap cap;
5962  
5963  		r = -EFAULT;
5964  		if (copy_from_user(&cap, argp, sizeof(cap)))
5965  			goto out;
5966  		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5967  		break;
5968  	}
5969  	case KVM_GET_NESTED_STATE: {
5970  		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5971  		u32 user_data_size;
5972  
5973  		r = -EINVAL;
5974  		if (!kvm_x86_ops.nested_ops->get_state)
5975  			break;
5976  
5977  		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5978  		r = -EFAULT;
5979  		if (get_user(user_data_size, &user_kvm_nested_state->size))
5980  			break;
5981  
5982  		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5983  						     user_data_size);
5984  		if (r < 0)
5985  			break;
5986  
5987  		if (r > user_data_size) {
5988  			if (put_user(r, &user_kvm_nested_state->size))
5989  				r = -EFAULT;
5990  			else
5991  				r = -E2BIG;
5992  			break;
5993  		}
5994  
5995  		r = 0;
5996  		break;
5997  	}
5998  	case KVM_SET_NESTED_STATE: {
5999  		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6000  		struct kvm_nested_state kvm_state;
6001  		int idx;
6002  
6003  		r = -EINVAL;
6004  		if (!kvm_x86_ops.nested_ops->set_state)
6005  			break;
6006  
6007  		r = -EFAULT;
6008  		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6009  			break;
6010  
6011  		r = -EINVAL;
6012  		if (kvm_state.size < sizeof(kvm_state))
6013  			break;
6014  
6015  		if (kvm_state.flags &
6016  		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6017  		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6018  		      | KVM_STATE_NESTED_GIF_SET))
6019  			break;
6020  
6021  		/* nested_run_pending implies guest_mode.  */
6022  		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6023  		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6024  			break;
6025  
6026  		idx = srcu_read_lock(&vcpu->kvm->srcu);
6027  		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6028  		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6029  		break;
6030  	}
6031  	case KVM_GET_SUPPORTED_HV_CPUID:
6032  		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6033  		break;
6034  #ifdef CONFIG_KVM_XEN
6035  	case KVM_XEN_VCPU_GET_ATTR: {
6036  		struct kvm_xen_vcpu_attr xva;
6037  
6038  		r = -EFAULT;
6039  		if (copy_from_user(&xva, argp, sizeof(xva)))
6040  			goto out;
6041  		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6042  		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6043  			r = -EFAULT;
6044  		break;
6045  	}
6046  	case KVM_XEN_VCPU_SET_ATTR: {
6047  		struct kvm_xen_vcpu_attr xva;
6048  
6049  		r = -EFAULT;
6050  		if (copy_from_user(&xva, argp, sizeof(xva)))
6051  			goto out;
6052  		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6053  		break;
6054  	}
6055  #endif
6056  	case KVM_GET_SREGS2: {
6057  		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6058  		r = -ENOMEM;
6059  		if (!u.sregs2)
6060  			goto out;
6061  		__get_sregs2(vcpu, u.sregs2);
6062  		r = -EFAULT;
6063  		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6064  			goto out;
6065  		r = 0;
6066  		break;
6067  	}
6068  	case KVM_SET_SREGS2: {
6069  		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6070  		if (IS_ERR(u.sregs2)) {
6071  			r = PTR_ERR(u.sregs2);
6072  			u.sregs2 = NULL;
6073  			goto out;
6074  		}
6075  		r = __set_sregs2(vcpu, u.sregs2);
6076  		break;
6077  	}
6078  	case KVM_HAS_DEVICE_ATTR:
6079  	case KVM_GET_DEVICE_ATTR:
6080  	case KVM_SET_DEVICE_ATTR:
6081  		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6082  		break;
6083  	default:
6084  		r = -EINVAL;
6085  	}
6086  out:
6087  	kfree(u.buffer);
6088  out_nofree:
6089  	vcpu_put(vcpu);
6090  	return r;
6091  }
6092  
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6093  vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6094  {
6095  	return VM_FAULT_SIGBUS;
6096  }
6097  
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)6098  static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6099  {
6100  	int ret;
6101  
6102  	if (addr > (unsigned int)(-3 * PAGE_SIZE))
6103  		return -EINVAL;
6104  	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6105  	return ret;
6106  }
6107  
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6108  static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6109  					      u64 ident_addr)
6110  {
6111  	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6112  }
6113  
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)6114  static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6115  					 unsigned long kvm_nr_mmu_pages)
6116  {
6117  	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6118  		return -EINVAL;
6119  
6120  	mutex_lock(&kvm->slots_lock);
6121  
6122  	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6123  	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6124  
6125  	mutex_unlock(&kvm->slots_lock);
6126  	return 0;
6127  }
6128  
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6129  static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6130  {
6131  	struct kvm_pic *pic = kvm->arch.vpic;
6132  	int r;
6133  
6134  	r = 0;
6135  	switch (chip->chip_id) {
6136  	case KVM_IRQCHIP_PIC_MASTER:
6137  		memcpy(&chip->chip.pic, &pic->pics[0],
6138  			sizeof(struct kvm_pic_state));
6139  		break;
6140  	case KVM_IRQCHIP_PIC_SLAVE:
6141  		memcpy(&chip->chip.pic, &pic->pics[1],
6142  			sizeof(struct kvm_pic_state));
6143  		break;
6144  	case KVM_IRQCHIP_IOAPIC:
6145  		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6146  		break;
6147  	default:
6148  		r = -EINVAL;
6149  		break;
6150  	}
6151  	return r;
6152  }
6153  
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6154  static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6155  {
6156  	struct kvm_pic *pic = kvm->arch.vpic;
6157  	int r;
6158  
6159  	r = 0;
6160  	switch (chip->chip_id) {
6161  	case KVM_IRQCHIP_PIC_MASTER:
6162  		spin_lock(&pic->lock);
6163  		memcpy(&pic->pics[0], &chip->chip.pic,
6164  			sizeof(struct kvm_pic_state));
6165  		spin_unlock(&pic->lock);
6166  		break;
6167  	case KVM_IRQCHIP_PIC_SLAVE:
6168  		spin_lock(&pic->lock);
6169  		memcpy(&pic->pics[1], &chip->chip.pic,
6170  			sizeof(struct kvm_pic_state));
6171  		spin_unlock(&pic->lock);
6172  		break;
6173  	case KVM_IRQCHIP_IOAPIC:
6174  		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6175  		break;
6176  	default:
6177  		r = -EINVAL;
6178  		break;
6179  	}
6180  	kvm_pic_update_irq(pic);
6181  	return r;
6182  }
6183  
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)6184  static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6185  {
6186  	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6187  
6188  	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6189  
6190  	mutex_lock(&kps->lock);
6191  	memcpy(ps, &kps->channels, sizeof(*ps));
6192  	mutex_unlock(&kps->lock);
6193  	return 0;
6194  }
6195  
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)6196  static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6197  {
6198  	int i;
6199  	struct kvm_pit *pit = kvm->arch.vpit;
6200  
6201  	mutex_lock(&pit->pit_state.lock);
6202  	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6203  	for (i = 0; i < 3; i++)
6204  		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6205  	mutex_unlock(&pit->pit_state.lock);
6206  	return 0;
6207  }
6208  
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6209  static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6210  {
6211  	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6212  	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6213  		sizeof(ps->channels));
6214  	ps->flags = kvm->arch.vpit->pit_state.flags;
6215  	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6216  	memset(&ps->reserved, 0, sizeof(ps->reserved));
6217  	return 0;
6218  }
6219  
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6220  static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6221  {
6222  	int start = 0;
6223  	int i;
6224  	u32 prev_legacy, cur_legacy;
6225  	struct kvm_pit *pit = kvm->arch.vpit;
6226  
6227  	mutex_lock(&pit->pit_state.lock);
6228  	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6229  	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6230  	if (!prev_legacy && cur_legacy)
6231  		start = 1;
6232  	memcpy(&pit->pit_state.channels, &ps->channels,
6233  	       sizeof(pit->pit_state.channels));
6234  	pit->pit_state.flags = ps->flags;
6235  	for (i = 0; i < 3; i++)
6236  		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6237  				   start && i == 0);
6238  	mutex_unlock(&pit->pit_state.lock);
6239  	return 0;
6240  }
6241  
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)6242  static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6243  				 struct kvm_reinject_control *control)
6244  {
6245  	struct kvm_pit *pit = kvm->arch.vpit;
6246  
6247  	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6248  	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6249  	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6250  	 */
6251  	mutex_lock(&pit->pit_state.lock);
6252  	kvm_pit_set_reinject(pit, control->pit_reinject);
6253  	mutex_unlock(&pit->pit_state.lock);
6254  
6255  	return 0;
6256  }
6257  
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6258  void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6259  {
6260  
6261  	/*
6262  	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6263  	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6264  	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6265  	 * VM-Exit.
6266  	 */
6267  	struct kvm_vcpu *vcpu;
6268  	unsigned long i;
6269  
6270  	kvm_for_each_vcpu(i, vcpu, kvm)
6271  		kvm_vcpu_kick(vcpu);
6272  }
6273  
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)6274  int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6275  			bool line_status)
6276  {
6277  	if (!irqchip_in_kernel(kvm))
6278  		return -ENXIO;
6279  
6280  	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6281  					irq_event->irq, irq_event->level,
6282  					line_status);
6283  	return 0;
6284  }
6285  
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6286  int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6287  			    struct kvm_enable_cap *cap)
6288  {
6289  	int r;
6290  
6291  	if (cap->flags)
6292  		return -EINVAL;
6293  
6294  	switch (cap->cap) {
6295  	case KVM_CAP_DISABLE_QUIRKS2:
6296  		r = -EINVAL;
6297  		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6298  			break;
6299  		fallthrough;
6300  	case KVM_CAP_DISABLE_QUIRKS:
6301  		kvm->arch.disabled_quirks = cap->args[0];
6302  		r = 0;
6303  		break;
6304  	case KVM_CAP_SPLIT_IRQCHIP: {
6305  		mutex_lock(&kvm->lock);
6306  		r = -EINVAL;
6307  		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6308  			goto split_irqchip_unlock;
6309  		r = -EEXIST;
6310  		if (irqchip_in_kernel(kvm))
6311  			goto split_irqchip_unlock;
6312  		if (kvm->created_vcpus)
6313  			goto split_irqchip_unlock;
6314  		r = kvm_setup_empty_irq_routing(kvm);
6315  		if (r)
6316  			goto split_irqchip_unlock;
6317  		/* Pairs with irqchip_in_kernel. */
6318  		smp_wmb();
6319  		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6320  		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6321  		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6322  		r = 0;
6323  split_irqchip_unlock:
6324  		mutex_unlock(&kvm->lock);
6325  		break;
6326  	}
6327  	case KVM_CAP_X2APIC_API:
6328  		r = -EINVAL;
6329  		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6330  			break;
6331  
6332  		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6333  			kvm->arch.x2apic_format = true;
6334  		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6335  			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6336  
6337  		r = 0;
6338  		break;
6339  	case KVM_CAP_X86_DISABLE_EXITS:
6340  		r = -EINVAL;
6341  		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6342  			break;
6343  
6344  		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6345  			kvm->arch.pause_in_guest = true;
6346  
6347  #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6348  		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6349  
6350  		if (!mitigate_smt_rsb) {
6351  			if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6352  			    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6353  				pr_warn_once(SMT_RSB_MSG);
6354  
6355  			if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6356  			    kvm_can_mwait_in_guest())
6357  				kvm->arch.mwait_in_guest = true;
6358  			if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6359  				kvm->arch.hlt_in_guest = true;
6360  			if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6361  				kvm->arch.cstate_in_guest = true;
6362  		}
6363  
6364  		r = 0;
6365  		break;
6366  	case KVM_CAP_MSR_PLATFORM_INFO:
6367  		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6368  		r = 0;
6369  		break;
6370  	case KVM_CAP_EXCEPTION_PAYLOAD:
6371  		kvm->arch.exception_payload_enabled = cap->args[0];
6372  		r = 0;
6373  		break;
6374  	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6375  		kvm->arch.triple_fault_event = cap->args[0];
6376  		r = 0;
6377  		break;
6378  	case KVM_CAP_X86_USER_SPACE_MSR:
6379  		r = -EINVAL;
6380  		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6381  			break;
6382  		kvm->arch.user_space_msr_mask = cap->args[0];
6383  		r = 0;
6384  		break;
6385  	case KVM_CAP_X86_BUS_LOCK_EXIT:
6386  		r = -EINVAL;
6387  		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6388  			break;
6389  
6390  		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6391  		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6392  			break;
6393  
6394  		if (kvm_caps.has_bus_lock_exit &&
6395  		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6396  			kvm->arch.bus_lock_detection_enabled = true;
6397  		r = 0;
6398  		break;
6399  #ifdef CONFIG_X86_SGX_KVM
6400  	case KVM_CAP_SGX_ATTRIBUTE: {
6401  		unsigned long allowed_attributes = 0;
6402  
6403  		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6404  		if (r)
6405  			break;
6406  
6407  		/* KVM only supports the PROVISIONKEY privileged attribute. */
6408  		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6409  		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6410  			kvm->arch.sgx_provisioning_allowed = true;
6411  		else
6412  			r = -EINVAL;
6413  		break;
6414  	}
6415  #endif
6416  	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6417  		r = -EINVAL;
6418  		if (!kvm_x86_ops.vm_copy_enc_context_from)
6419  			break;
6420  
6421  		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6422  		break;
6423  	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6424  		r = -EINVAL;
6425  		if (!kvm_x86_ops.vm_move_enc_context_from)
6426  			break;
6427  
6428  		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6429  		break;
6430  	case KVM_CAP_EXIT_HYPERCALL:
6431  		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6432  			r = -EINVAL;
6433  			break;
6434  		}
6435  		kvm->arch.hypercall_exit_enabled = cap->args[0];
6436  		r = 0;
6437  		break;
6438  	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6439  		r = -EINVAL;
6440  		if (cap->args[0] & ~1)
6441  			break;
6442  		kvm->arch.exit_on_emulation_error = cap->args[0];
6443  		r = 0;
6444  		break;
6445  	case KVM_CAP_PMU_CAPABILITY:
6446  		r = -EINVAL;
6447  		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6448  			break;
6449  
6450  		mutex_lock(&kvm->lock);
6451  		if (!kvm->created_vcpus) {
6452  			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6453  			r = 0;
6454  		}
6455  		mutex_unlock(&kvm->lock);
6456  		break;
6457  	case KVM_CAP_MAX_VCPU_ID:
6458  		r = -EINVAL;
6459  		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6460  			break;
6461  
6462  		mutex_lock(&kvm->lock);
6463  		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6464  			r = 0;
6465  		} else if (!kvm->arch.max_vcpu_ids) {
6466  			kvm->arch.max_vcpu_ids = cap->args[0];
6467  			r = 0;
6468  		}
6469  		mutex_unlock(&kvm->lock);
6470  		break;
6471  	case KVM_CAP_X86_NOTIFY_VMEXIT:
6472  		r = -EINVAL;
6473  		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6474  			break;
6475  		if (!kvm_caps.has_notify_vmexit)
6476  			break;
6477  		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6478  			break;
6479  		mutex_lock(&kvm->lock);
6480  		if (!kvm->created_vcpus) {
6481  			kvm->arch.notify_window = cap->args[0] >> 32;
6482  			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6483  			r = 0;
6484  		}
6485  		mutex_unlock(&kvm->lock);
6486  		break;
6487  	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6488  		r = -EINVAL;
6489  
6490  		/*
6491  		 * Since the risk of disabling NX hugepages is a guest crashing
6492  		 * the system, ensure the userspace process has permission to
6493  		 * reboot the system.
6494  		 *
6495  		 * Note that unlike the reboot() syscall, the process must have
6496  		 * this capability in the root namespace because exposing
6497  		 * /dev/kvm into a container does not limit the scope of the
6498  		 * iTLB multihit bug to that container. In other words,
6499  		 * this must use capable(), not ns_capable().
6500  		 */
6501  		if (!capable(CAP_SYS_BOOT)) {
6502  			r = -EPERM;
6503  			break;
6504  		}
6505  
6506  		if (cap->args[0])
6507  			break;
6508  
6509  		mutex_lock(&kvm->lock);
6510  		if (!kvm->created_vcpus) {
6511  			kvm->arch.disable_nx_huge_pages = true;
6512  			r = 0;
6513  		}
6514  		mutex_unlock(&kvm->lock);
6515  		break;
6516  	default:
6517  		r = -EINVAL;
6518  		break;
6519  	}
6520  	return r;
6521  }
6522  
kvm_alloc_msr_filter(bool default_allow)6523  static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6524  {
6525  	struct kvm_x86_msr_filter *msr_filter;
6526  
6527  	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6528  	if (!msr_filter)
6529  		return NULL;
6530  
6531  	msr_filter->default_allow = default_allow;
6532  	return msr_filter;
6533  }
6534  
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)6535  static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6536  {
6537  	u32 i;
6538  
6539  	if (!msr_filter)
6540  		return;
6541  
6542  	for (i = 0; i < msr_filter->count; i++)
6543  		kfree(msr_filter->ranges[i].bitmap);
6544  
6545  	kfree(msr_filter);
6546  }
6547  
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)6548  static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6549  			      struct kvm_msr_filter_range *user_range)
6550  {
6551  	unsigned long *bitmap;
6552  	size_t bitmap_size;
6553  
6554  	if (!user_range->nmsrs)
6555  		return 0;
6556  
6557  	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6558  		return -EINVAL;
6559  
6560  	if (!user_range->flags)
6561  		return -EINVAL;
6562  
6563  	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6564  	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6565  		return -EINVAL;
6566  
6567  	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6568  	if (IS_ERR(bitmap))
6569  		return PTR_ERR(bitmap);
6570  
6571  	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6572  		.flags = user_range->flags,
6573  		.base = user_range->base,
6574  		.nmsrs = user_range->nmsrs,
6575  		.bitmap = bitmap,
6576  	};
6577  
6578  	msr_filter->count++;
6579  	return 0;
6580  }
6581  
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)6582  static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6583  				       struct kvm_msr_filter *filter)
6584  {
6585  	struct kvm_x86_msr_filter *new_filter, *old_filter;
6586  	bool default_allow;
6587  	bool empty = true;
6588  	int r;
6589  	u32 i;
6590  
6591  	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6592  		return -EINVAL;
6593  
6594  	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6595  		empty &= !filter->ranges[i].nmsrs;
6596  
6597  	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6598  	if (empty && !default_allow)
6599  		return -EINVAL;
6600  
6601  	new_filter = kvm_alloc_msr_filter(default_allow);
6602  	if (!new_filter)
6603  		return -ENOMEM;
6604  
6605  	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6606  		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6607  		if (r) {
6608  			kvm_free_msr_filter(new_filter);
6609  			return r;
6610  		}
6611  	}
6612  
6613  	mutex_lock(&kvm->lock);
6614  	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6615  					 mutex_is_locked(&kvm->lock));
6616  	mutex_unlock(&kvm->lock);
6617  	synchronize_srcu(&kvm->srcu);
6618  
6619  	kvm_free_msr_filter(old_filter);
6620  
6621  	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6622  
6623  	return 0;
6624  }
6625  
6626  #ifdef CONFIG_KVM_COMPAT
6627  /* for KVM_X86_SET_MSR_FILTER */
6628  struct kvm_msr_filter_range_compat {
6629  	__u32 flags;
6630  	__u32 nmsrs;
6631  	__u32 base;
6632  	__u32 bitmap;
6633  };
6634  
6635  struct kvm_msr_filter_compat {
6636  	__u32 flags;
6637  	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6638  };
6639  
6640  #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6641  
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6642  long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6643  			      unsigned long arg)
6644  {
6645  	void __user *argp = (void __user *)arg;
6646  	struct kvm *kvm = filp->private_data;
6647  	long r = -ENOTTY;
6648  
6649  	switch (ioctl) {
6650  	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6651  		struct kvm_msr_filter __user *user_msr_filter = argp;
6652  		struct kvm_msr_filter_compat filter_compat;
6653  		struct kvm_msr_filter filter;
6654  		int i;
6655  
6656  		if (copy_from_user(&filter_compat, user_msr_filter,
6657  				   sizeof(filter_compat)))
6658  			return -EFAULT;
6659  
6660  		filter.flags = filter_compat.flags;
6661  		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6662  			struct kvm_msr_filter_range_compat *cr;
6663  
6664  			cr = &filter_compat.ranges[i];
6665  			filter.ranges[i] = (struct kvm_msr_filter_range) {
6666  				.flags = cr->flags,
6667  				.nmsrs = cr->nmsrs,
6668  				.base = cr->base,
6669  				.bitmap = (__u8 *)(ulong)cr->bitmap,
6670  			};
6671  		}
6672  
6673  		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6674  		break;
6675  	}
6676  	}
6677  
6678  	return r;
6679  }
6680  #endif
6681  
6682  #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)6683  static int kvm_arch_suspend_notifier(struct kvm *kvm)
6684  {
6685  	struct kvm_vcpu *vcpu;
6686  	unsigned long i;
6687  	int ret = 0;
6688  
6689  	mutex_lock(&kvm->lock);
6690  	kvm_for_each_vcpu(i, vcpu, kvm) {
6691  		if (!vcpu->arch.pv_time.active)
6692  			continue;
6693  
6694  		ret = kvm_set_guest_paused(vcpu);
6695  		if (ret) {
6696  			kvm_err("Failed to pause guest VCPU%d: %d\n",
6697  				vcpu->vcpu_id, ret);
6698  			break;
6699  		}
6700  	}
6701  	mutex_unlock(&kvm->lock);
6702  
6703  	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6704  }
6705  
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)6706  int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6707  {
6708  	switch (state) {
6709  	case PM_HIBERNATION_PREPARE:
6710  	case PM_SUSPEND_PREPARE:
6711  		return kvm_arch_suspend_notifier(kvm);
6712  	}
6713  
6714  	return NOTIFY_DONE;
6715  }
6716  #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6717  
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)6718  static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6719  {
6720  	struct kvm_clock_data data = { 0 };
6721  
6722  	get_kvmclock(kvm, &data);
6723  	if (copy_to_user(argp, &data, sizeof(data)))
6724  		return -EFAULT;
6725  
6726  	return 0;
6727  }
6728  
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)6729  static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6730  {
6731  	struct kvm_arch *ka = &kvm->arch;
6732  	struct kvm_clock_data data;
6733  	u64 now_raw_ns;
6734  
6735  	if (copy_from_user(&data, argp, sizeof(data)))
6736  		return -EFAULT;
6737  
6738  	/*
6739  	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6740  	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6741  	 */
6742  	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6743  		return -EINVAL;
6744  
6745  	kvm_hv_request_tsc_page_update(kvm);
6746  	kvm_start_pvclock_update(kvm);
6747  	pvclock_update_vm_gtod_copy(kvm);
6748  
6749  	/*
6750  	 * This pairs with kvm_guest_time_update(): when masterclock is
6751  	 * in use, we use master_kernel_ns + kvmclock_offset to set
6752  	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6753  	 * is slightly ahead) here we risk going negative on unsigned
6754  	 * 'system_time' when 'data.clock' is very small.
6755  	 */
6756  	if (data.flags & KVM_CLOCK_REALTIME) {
6757  		u64 now_real_ns = ktime_get_real_ns();
6758  
6759  		/*
6760  		 * Avoid stepping the kvmclock backwards.
6761  		 */
6762  		if (now_real_ns > data.realtime)
6763  			data.clock += now_real_ns - data.realtime;
6764  	}
6765  
6766  	if (ka->use_master_clock)
6767  		now_raw_ns = ka->master_kernel_ns;
6768  	else
6769  		now_raw_ns = get_kvmclock_base_ns();
6770  	ka->kvmclock_offset = data.clock - now_raw_ns;
6771  	kvm_end_pvclock_update(kvm);
6772  	return 0;
6773  }
6774  
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6775  int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6776  {
6777  	struct kvm *kvm = filp->private_data;
6778  	void __user *argp = (void __user *)arg;
6779  	int r = -ENOTTY;
6780  	/*
6781  	 * This union makes it completely explicit to gcc-3.x
6782  	 * that these two variables' stack usage should be
6783  	 * combined, not added together.
6784  	 */
6785  	union {
6786  		struct kvm_pit_state ps;
6787  		struct kvm_pit_state2 ps2;
6788  		struct kvm_pit_config pit_config;
6789  	} u;
6790  
6791  	switch (ioctl) {
6792  	case KVM_SET_TSS_ADDR:
6793  		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6794  		break;
6795  	case KVM_SET_IDENTITY_MAP_ADDR: {
6796  		u64 ident_addr;
6797  
6798  		mutex_lock(&kvm->lock);
6799  		r = -EINVAL;
6800  		if (kvm->created_vcpus)
6801  			goto set_identity_unlock;
6802  		r = -EFAULT;
6803  		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6804  			goto set_identity_unlock;
6805  		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6806  set_identity_unlock:
6807  		mutex_unlock(&kvm->lock);
6808  		break;
6809  	}
6810  	case KVM_SET_NR_MMU_PAGES:
6811  		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6812  		break;
6813  	case KVM_CREATE_IRQCHIP: {
6814  		mutex_lock(&kvm->lock);
6815  
6816  		r = -EEXIST;
6817  		if (irqchip_in_kernel(kvm))
6818  			goto create_irqchip_unlock;
6819  
6820  		r = -EINVAL;
6821  		if (kvm->created_vcpus)
6822  			goto create_irqchip_unlock;
6823  
6824  		r = kvm_pic_init(kvm);
6825  		if (r)
6826  			goto create_irqchip_unlock;
6827  
6828  		r = kvm_ioapic_init(kvm);
6829  		if (r) {
6830  			kvm_pic_destroy(kvm);
6831  			goto create_irqchip_unlock;
6832  		}
6833  
6834  		r = kvm_setup_default_irq_routing(kvm);
6835  		if (r) {
6836  			kvm_ioapic_destroy(kvm);
6837  			kvm_pic_destroy(kvm);
6838  			goto create_irqchip_unlock;
6839  		}
6840  		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6841  		smp_wmb();
6842  		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6843  		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6844  	create_irqchip_unlock:
6845  		mutex_unlock(&kvm->lock);
6846  		break;
6847  	}
6848  	case KVM_CREATE_PIT:
6849  		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6850  		goto create_pit;
6851  	case KVM_CREATE_PIT2:
6852  		r = -EFAULT;
6853  		if (copy_from_user(&u.pit_config, argp,
6854  				   sizeof(struct kvm_pit_config)))
6855  			goto out;
6856  	create_pit:
6857  		mutex_lock(&kvm->lock);
6858  		r = -EEXIST;
6859  		if (kvm->arch.vpit)
6860  			goto create_pit_unlock;
6861  		r = -ENOMEM;
6862  		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6863  		if (kvm->arch.vpit)
6864  			r = 0;
6865  	create_pit_unlock:
6866  		mutex_unlock(&kvm->lock);
6867  		break;
6868  	case KVM_GET_IRQCHIP: {
6869  		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6870  		struct kvm_irqchip *chip;
6871  
6872  		chip = memdup_user(argp, sizeof(*chip));
6873  		if (IS_ERR(chip)) {
6874  			r = PTR_ERR(chip);
6875  			goto out;
6876  		}
6877  
6878  		r = -ENXIO;
6879  		if (!irqchip_kernel(kvm))
6880  			goto get_irqchip_out;
6881  		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6882  		if (r)
6883  			goto get_irqchip_out;
6884  		r = -EFAULT;
6885  		if (copy_to_user(argp, chip, sizeof(*chip)))
6886  			goto get_irqchip_out;
6887  		r = 0;
6888  	get_irqchip_out:
6889  		kfree(chip);
6890  		break;
6891  	}
6892  	case KVM_SET_IRQCHIP: {
6893  		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6894  		struct kvm_irqchip *chip;
6895  
6896  		chip = memdup_user(argp, sizeof(*chip));
6897  		if (IS_ERR(chip)) {
6898  			r = PTR_ERR(chip);
6899  			goto out;
6900  		}
6901  
6902  		r = -ENXIO;
6903  		if (!irqchip_kernel(kvm))
6904  			goto set_irqchip_out;
6905  		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6906  	set_irqchip_out:
6907  		kfree(chip);
6908  		break;
6909  	}
6910  	case KVM_GET_PIT: {
6911  		r = -EFAULT;
6912  		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6913  			goto out;
6914  		r = -ENXIO;
6915  		if (!kvm->arch.vpit)
6916  			goto out;
6917  		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6918  		if (r)
6919  			goto out;
6920  		r = -EFAULT;
6921  		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6922  			goto out;
6923  		r = 0;
6924  		break;
6925  	}
6926  	case KVM_SET_PIT: {
6927  		r = -EFAULT;
6928  		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6929  			goto out;
6930  		mutex_lock(&kvm->lock);
6931  		r = -ENXIO;
6932  		if (!kvm->arch.vpit)
6933  			goto set_pit_out;
6934  		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6935  set_pit_out:
6936  		mutex_unlock(&kvm->lock);
6937  		break;
6938  	}
6939  	case KVM_GET_PIT2: {
6940  		r = -ENXIO;
6941  		if (!kvm->arch.vpit)
6942  			goto out;
6943  		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6944  		if (r)
6945  			goto out;
6946  		r = -EFAULT;
6947  		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6948  			goto out;
6949  		r = 0;
6950  		break;
6951  	}
6952  	case KVM_SET_PIT2: {
6953  		r = -EFAULT;
6954  		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6955  			goto out;
6956  		mutex_lock(&kvm->lock);
6957  		r = -ENXIO;
6958  		if (!kvm->arch.vpit)
6959  			goto set_pit2_out;
6960  		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6961  set_pit2_out:
6962  		mutex_unlock(&kvm->lock);
6963  		break;
6964  	}
6965  	case KVM_REINJECT_CONTROL: {
6966  		struct kvm_reinject_control control;
6967  		r =  -EFAULT;
6968  		if (copy_from_user(&control, argp, sizeof(control)))
6969  			goto out;
6970  		r = -ENXIO;
6971  		if (!kvm->arch.vpit)
6972  			goto out;
6973  		r = kvm_vm_ioctl_reinject(kvm, &control);
6974  		break;
6975  	}
6976  	case KVM_SET_BOOT_CPU_ID:
6977  		r = 0;
6978  		mutex_lock(&kvm->lock);
6979  		if (kvm->created_vcpus)
6980  			r = -EBUSY;
6981  		else
6982  			kvm->arch.bsp_vcpu_id = arg;
6983  		mutex_unlock(&kvm->lock);
6984  		break;
6985  #ifdef CONFIG_KVM_XEN
6986  	case KVM_XEN_HVM_CONFIG: {
6987  		struct kvm_xen_hvm_config xhc;
6988  		r = -EFAULT;
6989  		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6990  			goto out;
6991  		r = kvm_xen_hvm_config(kvm, &xhc);
6992  		break;
6993  	}
6994  	case KVM_XEN_HVM_GET_ATTR: {
6995  		struct kvm_xen_hvm_attr xha;
6996  
6997  		r = -EFAULT;
6998  		if (copy_from_user(&xha, argp, sizeof(xha)))
6999  			goto out;
7000  		r = kvm_xen_hvm_get_attr(kvm, &xha);
7001  		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7002  			r = -EFAULT;
7003  		break;
7004  	}
7005  	case KVM_XEN_HVM_SET_ATTR: {
7006  		struct kvm_xen_hvm_attr xha;
7007  
7008  		r = -EFAULT;
7009  		if (copy_from_user(&xha, argp, sizeof(xha)))
7010  			goto out;
7011  		r = kvm_xen_hvm_set_attr(kvm, &xha);
7012  		break;
7013  	}
7014  	case KVM_XEN_HVM_EVTCHN_SEND: {
7015  		struct kvm_irq_routing_xen_evtchn uxe;
7016  
7017  		r = -EFAULT;
7018  		if (copy_from_user(&uxe, argp, sizeof(uxe)))
7019  			goto out;
7020  		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7021  		break;
7022  	}
7023  #endif
7024  	case KVM_SET_CLOCK:
7025  		r = kvm_vm_ioctl_set_clock(kvm, argp);
7026  		break;
7027  	case KVM_GET_CLOCK:
7028  		r = kvm_vm_ioctl_get_clock(kvm, argp);
7029  		break;
7030  	case KVM_SET_TSC_KHZ: {
7031  		u32 user_tsc_khz;
7032  
7033  		r = -EINVAL;
7034  		user_tsc_khz = (u32)arg;
7035  
7036  		if (kvm_caps.has_tsc_control &&
7037  		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7038  			goto out;
7039  
7040  		if (user_tsc_khz == 0)
7041  			user_tsc_khz = tsc_khz;
7042  
7043  		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7044  		r = 0;
7045  
7046  		goto out;
7047  	}
7048  	case KVM_GET_TSC_KHZ: {
7049  		r = READ_ONCE(kvm->arch.default_tsc_khz);
7050  		goto out;
7051  	}
7052  	case KVM_MEMORY_ENCRYPT_OP: {
7053  		r = -ENOTTY;
7054  		if (!kvm_x86_ops.mem_enc_ioctl)
7055  			goto out;
7056  
7057  		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7058  		break;
7059  	}
7060  	case KVM_MEMORY_ENCRYPT_REG_REGION: {
7061  		struct kvm_enc_region region;
7062  
7063  		r = -EFAULT;
7064  		if (copy_from_user(&region, argp, sizeof(region)))
7065  			goto out;
7066  
7067  		r = -ENOTTY;
7068  		if (!kvm_x86_ops.mem_enc_register_region)
7069  			goto out;
7070  
7071  		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7072  		break;
7073  	}
7074  	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7075  		struct kvm_enc_region region;
7076  
7077  		r = -EFAULT;
7078  		if (copy_from_user(&region, argp, sizeof(region)))
7079  			goto out;
7080  
7081  		r = -ENOTTY;
7082  		if (!kvm_x86_ops.mem_enc_unregister_region)
7083  			goto out;
7084  
7085  		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7086  		break;
7087  	}
7088  	case KVM_HYPERV_EVENTFD: {
7089  		struct kvm_hyperv_eventfd hvevfd;
7090  
7091  		r = -EFAULT;
7092  		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7093  			goto out;
7094  		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7095  		break;
7096  	}
7097  	case KVM_SET_PMU_EVENT_FILTER:
7098  		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7099  		break;
7100  	case KVM_X86_SET_MSR_FILTER: {
7101  		struct kvm_msr_filter __user *user_msr_filter = argp;
7102  		struct kvm_msr_filter filter;
7103  
7104  		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7105  			return -EFAULT;
7106  
7107  		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7108  		break;
7109  	}
7110  	default:
7111  		r = -ENOTTY;
7112  	}
7113  out:
7114  	return r;
7115  }
7116  
kvm_probe_feature_msr(u32 msr_index)7117  static void kvm_probe_feature_msr(u32 msr_index)
7118  {
7119  	struct kvm_msr_entry msr = {
7120  		.index = msr_index,
7121  	};
7122  
7123  	if (kvm_get_msr_feature(&msr))
7124  		return;
7125  
7126  	msr_based_features[num_msr_based_features++] = msr_index;
7127  }
7128  
kvm_probe_msr_to_save(u32 msr_index)7129  static void kvm_probe_msr_to_save(u32 msr_index)
7130  {
7131  	u32 dummy[2];
7132  
7133  	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7134  		return;
7135  
7136  	/*
7137  	 * Even MSRs that are valid in the host may not be exposed to guests in
7138  	 * some cases.
7139  	 */
7140  	switch (msr_index) {
7141  	case MSR_IA32_BNDCFGS:
7142  		if (!kvm_mpx_supported())
7143  			return;
7144  		break;
7145  	case MSR_TSC_AUX:
7146  		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7147  		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7148  			return;
7149  		break;
7150  	case MSR_IA32_UMWAIT_CONTROL:
7151  		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7152  			return;
7153  		break;
7154  	case MSR_IA32_RTIT_CTL:
7155  	case MSR_IA32_RTIT_STATUS:
7156  		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7157  			return;
7158  		break;
7159  	case MSR_IA32_RTIT_CR3_MATCH:
7160  		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7161  		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7162  			return;
7163  		break;
7164  	case MSR_IA32_RTIT_OUTPUT_BASE:
7165  	case MSR_IA32_RTIT_OUTPUT_MASK:
7166  		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7167  		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7168  		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7169  			return;
7170  		break;
7171  	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7172  		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7173  		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7174  		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7175  			return;
7176  		break;
7177  	case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7178  		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7179  		    kvm_pmu_cap.num_counters_gp)
7180  			return;
7181  		break;
7182  	case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7183  		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7184  		    kvm_pmu_cap.num_counters_gp)
7185  			return;
7186  		break;
7187  	case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7188  		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7189  		    kvm_pmu_cap.num_counters_fixed)
7190  			return;
7191  		break;
7192  	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7193  	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7194  	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7195  		if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7196  			return;
7197  		break;
7198  	case MSR_IA32_XFD:
7199  	case MSR_IA32_XFD_ERR:
7200  		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7201  			return;
7202  		break;
7203  	case MSR_IA32_TSX_CTRL:
7204  		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7205  			return;
7206  		break;
7207  	default:
7208  		break;
7209  	}
7210  
7211  	msrs_to_save[num_msrs_to_save++] = msr_index;
7212  }
7213  
kvm_init_msr_lists(void)7214  static void kvm_init_msr_lists(void)
7215  {
7216  	unsigned i;
7217  
7218  	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7219  			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7220  
7221  	num_msrs_to_save = 0;
7222  	num_emulated_msrs = 0;
7223  	num_msr_based_features = 0;
7224  
7225  	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7226  		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7227  
7228  	if (enable_pmu) {
7229  		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7230  			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7231  	}
7232  
7233  	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7234  		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7235  			continue;
7236  
7237  		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7238  	}
7239  
7240  	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7241  		kvm_probe_feature_msr(i);
7242  
7243  	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7244  		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7245  }
7246  
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7247  static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7248  			   const void *v)
7249  {
7250  	int handled = 0;
7251  	int n;
7252  
7253  	do {
7254  		n = min(len, 8);
7255  		if (!(lapic_in_kernel(vcpu) &&
7256  		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7257  		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7258  			break;
7259  		handled += n;
7260  		addr += n;
7261  		len -= n;
7262  		v += n;
7263  	} while (len);
7264  
7265  	return handled;
7266  }
7267  
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7268  static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7269  {
7270  	int handled = 0;
7271  	int n;
7272  
7273  	do {
7274  		n = min(len, 8);
7275  		if (!(lapic_in_kernel(vcpu) &&
7276  		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7277  					 addr, n, v))
7278  		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7279  			break;
7280  		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7281  		handled += n;
7282  		addr += n;
7283  		len -= n;
7284  		v += n;
7285  	} while (len);
7286  
7287  	return handled;
7288  }
7289  
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7290  void kvm_set_segment(struct kvm_vcpu *vcpu,
7291  		     struct kvm_segment *var, int seg)
7292  {
7293  	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7294  }
7295  
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7296  void kvm_get_segment(struct kvm_vcpu *vcpu,
7297  		     struct kvm_segment *var, int seg)
7298  {
7299  	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7300  }
7301  
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7302  gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7303  			   struct x86_exception *exception)
7304  {
7305  	struct kvm_mmu *mmu = vcpu->arch.mmu;
7306  	gpa_t t_gpa;
7307  
7308  	BUG_ON(!mmu_is_nested(vcpu));
7309  
7310  	/* NPT walks are always user-walks */
7311  	access |= PFERR_USER_MASK;
7312  	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7313  
7314  	return t_gpa;
7315  }
7316  
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7317  gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7318  			      struct x86_exception *exception)
7319  {
7320  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7321  
7322  	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7323  	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7324  }
7325  EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7326  
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7327  gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7328  			       struct x86_exception *exception)
7329  {
7330  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7331  
7332  	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7333  	access |= PFERR_WRITE_MASK;
7334  	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7335  }
7336  EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7337  
7338  /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7339  gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7340  				struct x86_exception *exception)
7341  {
7342  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7343  
7344  	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7345  }
7346  
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7347  static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7348  				      struct kvm_vcpu *vcpu, u64 access,
7349  				      struct x86_exception *exception)
7350  {
7351  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7352  	void *data = val;
7353  	int r = X86EMUL_CONTINUE;
7354  
7355  	while (bytes) {
7356  		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7357  		unsigned offset = addr & (PAGE_SIZE-1);
7358  		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7359  		int ret;
7360  
7361  		if (gpa == INVALID_GPA)
7362  			return X86EMUL_PROPAGATE_FAULT;
7363  		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7364  					       offset, toread);
7365  		if (ret < 0) {
7366  			r = X86EMUL_IO_NEEDED;
7367  			goto out;
7368  		}
7369  
7370  		bytes -= toread;
7371  		data += toread;
7372  		addr += toread;
7373  	}
7374  out:
7375  	return r;
7376  }
7377  
7378  /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7379  static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7380  				gva_t addr, void *val, unsigned int bytes,
7381  				struct x86_exception *exception)
7382  {
7383  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7384  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7385  	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7386  	unsigned offset;
7387  	int ret;
7388  
7389  	/* Inline kvm_read_guest_virt_helper for speed.  */
7390  	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7391  				    exception);
7392  	if (unlikely(gpa == INVALID_GPA))
7393  		return X86EMUL_PROPAGATE_FAULT;
7394  
7395  	offset = addr & (PAGE_SIZE-1);
7396  	if (WARN_ON(offset + bytes > PAGE_SIZE))
7397  		bytes = (unsigned)PAGE_SIZE - offset;
7398  	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7399  				       offset, bytes);
7400  	if (unlikely(ret < 0))
7401  		return X86EMUL_IO_NEEDED;
7402  
7403  	return X86EMUL_CONTINUE;
7404  }
7405  
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7406  int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7407  			       gva_t addr, void *val, unsigned int bytes,
7408  			       struct x86_exception *exception)
7409  {
7410  	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7411  
7412  	/*
7413  	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7414  	 * is returned, but our callers are not ready for that and they blindly
7415  	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7416  	 * uninitialized kernel stack memory into cr2 and error code.
7417  	 */
7418  	memset(exception, 0, sizeof(*exception));
7419  	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7420  					  exception);
7421  }
7422  EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7423  
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7424  static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7425  			     gva_t addr, void *val, unsigned int bytes,
7426  			     struct x86_exception *exception, bool system)
7427  {
7428  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7429  	u64 access = 0;
7430  
7431  	if (system)
7432  		access |= PFERR_IMPLICIT_ACCESS;
7433  	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7434  		access |= PFERR_USER_MASK;
7435  
7436  	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7437  }
7438  
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7439  static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7440  				      struct kvm_vcpu *vcpu, u64 access,
7441  				      struct x86_exception *exception)
7442  {
7443  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7444  	void *data = val;
7445  	int r = X86EMUL_CONTINUE;
7446  
7447  	while (bytes) {
7448  		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7449  		unsigned offset = addr & (PAGE_SIZE-1);
7450  		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7451  		int ret;
7452  
7453  		if (gpa == INVALID_GPA)
7454  			return X86EMUL_PROPAGATE_FAULT;
7455  		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7456  		if (ret < 0) {
7457  			r = X86EMUL_IO_NEEDED;
7458  			goto out;
7459  		}
7460  
7461  		bytes -= towrite;
7462  		data += towrite;
7463  		addr += towrite;
7464  	}
7465  out:
7466  	return r;
7467  }
7468  
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7469  static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7470  			      unsigned int bytes, struct x86_exception *exception,
7471  			      bool system)
7472  {
7473  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7474  	u64 access = PFERR_WRITE_MASK;
7475  
7476  	if (system)
7477  		access |= PFERR_IMPLICIT_ACCESS;
7478  	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7479  		access |= PFERR_USER_MASK;
7480  
7481  	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7482  					   access, exception);
7483  }
7484  
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7485  int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7486  				unsigned int bytes, struct x86_exception *exception)
7487  {
7488  	/* kvm_write_guest_virt_system can pull in tons of pages. */
7489  	vcpu->arch.l1tf_flush_l1d = true;
7490  
7491  	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7492  					   PFERR_WRITE_MASK, exception);
7493  }
7494  EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7495  
kvm_can_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)7496  static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7497  				void *insn, int insn_len)
7498  {
7499  	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7500  							    insn, insn_len);
7501  }
7502  
handle_ud(struct kvm_vcpu * vcpu)7503  int handle_ud(struct kvm_vcpu *vcpu)
7504  {
7505  	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7506  	int fep_flags = READ_ONCE(force_emulation_prefix);
7507  	int emul_type = EMULTYPE_TRAP_UD;
7508  	char sig[5]; /* ud2; .ascii "kvm" */
7509  	struct x86_exception e;
7510  
7511  	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7512  		return 1;
7513  
7514  	if (fep_flags &&
7515  	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7516  				sig, sizeof(sig), &e) == 0 &&
7517  	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7518  		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7519  			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7520  		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7521  		emul_type = EMULTYPE_TRAP_UD_FORCED;
7522  	}
7523  
7524  	return kvm_emulate_instruction(vcpu, emul_type);
7525  }
7526  EXPORT_SYMBOL_GPL(handle_ud);
7527  
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)7528  static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7529  			    gpa_t gpa, bool write)
7530  {
7531  	/* For APIC access vmexit */
7532  	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7533  		return 1;
7534  
7535  	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7536  		trace_vcpu_match_mmio(gva, gpa, write, true);
7537  		return 1;
7538  	}
7539  
7540  	return 0;
7541  }
7542  
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)7543  static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7544  				gpa_t *gpa, struct x86_exception *exception,
7545  				bool write)
7546  {
7547  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7548  	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7549  		| (write ? PFERR_WRITE_MASK : 0);
7550  
7551  	/*
7552  	 * currently PKRU is only applied to ept enabled guest so
7553  	 * there is no pkey in EPT page table for L1 guest or EPT
7554  	 * shadow page table for L2 guest.
7555  	 */
7556  	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7557  	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7558  			      vcpu->arch.mmio_access, 0, access))) {
7559  		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7560  					(gva & (PAGE_SIZE - 1));
7561  		trace_vcpu_match_mmio(gva, *gpa, write, false);
7562  		return 1;
7563  	}
7564  
7565  	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7566  
7567  	if (*gpa == INVALID_GPA)
7568  		return -1;
7569  
7570  	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7571  }
7572  
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)7573  int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7574  			const void *val, int bytes)
7575  {
7576  	int ret;
7577  
7578  	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7579  	if (ret < 0)
7580  		return 0;
7581  	kvm_page_track_write(vcpu, gpa, val, bytes);
7582  	return 1;
7583  }
7584  
7585  struct read_write_emulator_ops {
7586  	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7587  				  int bytes);
7588  	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7589  				  void *val, int bytes);
7590  	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7591  			       int bytes, void *val);
7592  	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7593  				    void *val, int bytes);
7594  	bool write;
7595  };
7596  
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)7597  static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7598  {
7599  	if (vcpu->mmio_read_completed) {
7600  		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7601  			       vcpu->mmio_fragments[0].gpa, val);
7602  		vcpu->mmio_read_completed = 0;
7603  		return 1;
7604  	}
7605  
7606  	return 0;
7607  }
7608  
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7609  static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7610  			void *val, int bytes)
7611  {
7612  	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7613  }
7614  
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7615  static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7616  			 void *val, int bytes)
7617  {
7618  	return emulator_write_phys(vcpu, gpa, val, bytes);
7619  }
7620  
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)7621  static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7622  {
7623  	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7624  	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7625  }
7626  
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7627  static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7628  			  void *val, int bytes)
7629  {
7630  	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7631  	return X86EMUL_IO_NEEDED;
7632  }
7633  
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7634  static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7635  			   void *val, int bytes)
7636  {
7637  	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7638  
7639  	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7640  	return X86EMUL_CONTINUE;
7641  }
7642  
7643  static const struct read_write_emulator_ops read_emultor = {
7644  	.read_write_prepare = read_prepare,
7645  	.read_write_emulate = read_emulate,
7646  	.read_write_mmio = vcpu_mmio_read,
7647  	.read_write_exit_mmio = read_exit_mmio,
7648  };
7649  
7650  static const struct read_write_emulator_ops write_emultor = {
7651  	.read_write_emulate = write_emulate,
7652  	.read_write_mmio = write_mmio,
7653  	.read_write_exit_mmio = write_exit_mmio,
7654  	.write = true,
7655  };
7656  
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)7657  static int emulator_read_write_onepage(unsigned long addr, void *val,
7658  				       unsigned int bytes,
7659  				       struct x86_exception *exception,
7660  				       struct kvm_vcpu *vcpu,
7661  				       const struct read_write_emulator_ops *ops)
7662  {
7663  	gpa_t gpa;
7664  	int handled, ret;
7665  	bool write = ops->write;
7666  	struct kvm_mmio_fragment *frag;
7667  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7668  
7669  	/*
7670  	 * If the exit was due to a NPF we may already have a GPA.
7671  	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7672  	 * Note, this cannot be used on string operations since string
7673  	 * operation using rep will only have the initial GPA from the NPF
7674  	 * occurred.
7675  	 */
7676  	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7677  	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7678  		gpa = ctxt->gpa_val;
7679  		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7680  	} else {
7681  		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7682  		if (ret < 0)
7683  			return X86EMUL_PROPAGATE_FAULT;
7684  	}
7685  
7686  	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7687  		return X86EMUL_CONTINUE;
7688  
7689  	/*
7690  	 * Is this MMIO handled locally?
7691  	 */
7692  	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7693  	if (handled == bytes)
7694  		return X86EMUL_CONTINUE;
7695  
7696  	gpa += handled;
7697  	bytes -= handled;
7698  	val += handled;
7699  
7700  	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7701  	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7702  	frag->gpa = gpa;
7703  	frag->data = val;
7704  	frag->len = bytes;
7705  	return X86EMUL_CONTINUE;
7706  }
7707  
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)7708  static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7709  			unsigned long addr,
7710  			void *val, unsigned int bytes,
7711  			struct x86_exception *exception,
7712  			const struct read_write_emulator_ops *ops)
7713  {
7714  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7715  	gpa_t gpa;
7716  	int rc;
7717  
7718  	if (ops->read_write_prepare &&
7719  		  ops->read_write_prepare(vcpu, val, bytes))
7720  		return X86EMUL_CONTINUE;
7721  
7722  	vcpu->mmio_nr_fragments = 0;
7723  
7724  	/* Crossing a page boundary? */
7725  	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7726  		int now;
7727  
7728  		now = -addr & ~PAGE_MASK;
7729  		rc = emulator_read_write_onepage(addr, val, now, exception,
7730  						 vcpu, ops);
7731  
7732  		if (rc != X86EMUL_CONTINUE)
7733  			return rc;
7734  		addr += now;
7735  		if (ctxt->mode != X86EMUL_MODE_PROT64)
7736  			addr = (u32)addr;
7737  		val += now;
7738  		bytes -= now;
7739  	}
7740  
7741  	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7742  					 vcpu, ops);
7743  	if (rc != X86EMUL_CONTINUE)
7744  		return rc;
7745  
7746  	if (!vcpu->mmio_nr_fragments)
7747  		return rc;
7748  
7749  	gpa = vcpu->mmio_fragments[0].gpa;
7750  
7751  	vcpu->mmio_needed = 1;
7752  	vcpu->mmio_cur_fragment = 0;
7753  
7754  	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7755  	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7756  	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7757  	vcpu->run->mmio.phys_addr = gpa;
7758  
7759  	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7760  }
7761  
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)7762  static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7763  				  unsigned long addr,
7764  				  void *val,
7765  				  unsigned int bytes,
7766  				  struct x86_exception *exception)
7767  {
7768  	return emulator_read_write(ctxt, addr, val, bytes,
7769  				   exception, &read_emultor);
7770  }
7771  
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)7772  static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7773  			    unsigned long addr,
7774  			    const void *val,
7775  			    unsigned int bytes,
7776  			    struct x86_exception *exception)
7777  {
7778  	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7779  				   exception, &write_emultor);
7780  }
7781  
7782  #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7783  	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7784  
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)7785  static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7786  				     unsigned long addr,
7787  				     const void *old,
7788  				     const void *new,
7789  				     unsigned int bytes,
7790  				     struct x86_exception *exception)
7791  {
7792  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7793  	u64 page_line_mask;
7794  	unsigned long hva;
7795  	gpa_t gpa;
7796  	int r;
7797  
7798  	/* guests cmpxchg8b have to be emulated atomically */
7799  	if (bytes > 8 || (bytes & (bytes - 1)))
7800  		goto emul_write;
7801  
7802  	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7803  
7804  	if (gpa == INVALID_GPA ||
7805  	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7806  		goto emul_write;
7807  
7808  	/*
7809  	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7810  	 * enabled in the host and the access splits a cache line.
7811  	 */
7812  	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7813  		page_line_mask = ~(cache_line_size() - 1);
7814  	else
7815  		page_line_mask = PAGE_MASK;
7816  
7817  	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7818  		goto emul_write;
7819  
7820  	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7821  	if (kvm_is_error_hva(hva))
7822  		goto emul_write;
7823  
7824  	hva += offset_in_page(gpa);
7825  
7826  	switch (bytes) {
7827  	case 1:
7828  		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7829  		break;
7830  	case 2:
7831  		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7832  		break;
7833  	case 4:
7834  		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7835  		break;
7836  	case 8:
7837  		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7838  		break;
7839  	default:
7840  		BUG();
7841  	}
7842  
7843  	if (r < 0)
7844  		return X86EMUL_UNHANDLEABLE;
7845  
7846  	/*
7847  	 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
7848  	 * successful, as the old value is written back on failure.  Note, for
7849  	 * live migration, this is unnecessarily conservative as CMPXCHG writes
7850  	 * back the original value and the access is atomic, but KVM's ABI is
7851  	 * that all writes are dirty logged, regardless of the value written.
7852  	 */
7853  	kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
7854  
7855  	if (r)
7856  		return X86EMUL_CMPXCHG_FAILED;
7857  
7858  	kvm_page_track_write(vcpu, gpa, new, bytes);
7859  
7860  	return X86EMUL_CONTINUE;
7861  
7862  emul_write:
7863  	pr_warn_once("emulating exchange as write\n");
7864  
7865  	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7866  }
7867  
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)7868  static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7869  			       unsigned short port, void *data,
7870  			       unsigned int count, bool in)
7871  {
7872  	unsigned i;
7873  	int r;
7874  
7875  	WARN_ON_ONCE(vcpu->arch.pio.count);
7876  	for (i = 0; i < count; i++) {
7877  		if (in)
7878  			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7879  		else
7880  			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7881  
7882  		if (r) {
7883  			if (i == 0)
7884  				goto userspace_io;
7885  
7886  			/*
7887  			 * Userspace must have unregistered the device while PIO
7888  			 * was running.  Drop writes / read as 0.
7889  			 */
7890  			if (in)
7891  				memset(data, 0, size * (count - i));
7892  			break;
7893  		}
7894  
7895  		data += size;
7896  	}
7897  	return 1;
7898  
7899  userspace_io:
7900  	vcpu->arch.pio.port = port;
7901  	vcpu->arch.pio.in = in;
7902  	vcpu->arch.pio.count = count;
7903  	vcpu->arch.pio.size = size;
7904  
7905  	if (in)
7906  		memset(vcpu->arch.pio_data, 0, size * count);
7907  	else
7908  		memcpy(vcpu->arch.pio_data, data, size * count);
7909  
7910  	vcpu->run->exit_reason = KVM_EXIT_IO;
7911  	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7912  	vcpu->run->io.size = size;
7913  	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7914  	vcpu->run->io.count = count;
7915  	vcpu->run->io.port = port;
7916  	return 0;
7917  }
7918  
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)7919  static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7920        			   unsigned short port, void *val, unsigned int count)
7921  {
7922  	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7923  	if (r)
7924  		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7925  
7926  	return r;
7927  }
7928  
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)7929  static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7930  {
7931  	int size = vcpu->arch.pio.size;
7932  	unsigned int count = vcpu->arch.pio.count;
7933  	memcpy(val, vcpu->arch.pio_data, size * count);
7934  	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7935  	vcpu->arch.pio.count = 0;
7936  }
7937  
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)7938  static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7939  				    int size, unsigned short port, void *val,
7940  				    unsigned int count)
7941  {
7942  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7943  	if (vcpu->arch.pio.count) {
7944  		/*
7945  		 * Complete a previous iteration that required userspace I/O.
7946  		 * Note, @count isn't guaranteed to match pio.count as userspace
7947  		 * can modify ECX before rerunning the vCPU.  Ignore any such
7948  		 * shenanigans as KVM doesn't support modifying the rep count,
7949  		 * and the emulator ensures @count doesn't overflow the buffer.
7950  		 */
7951  		complete_emulator_pio_in(vcpu, val);
7952  		return 1;
7953  	}
7954  
7955  	return emulator_pio_in(vcpu, size, port, val, count);
7956  }
7957  
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)7958  static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7959  			    unsigned short port, const void *val,
7960  			    unsigned int count)
7961  {
7962  	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7963  	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7964  }
7965  
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)7966  static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7967  				     int size, unsigned short port,
7968  				     const void *val, unsigned int count)
7969  {
7970  	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7971  }
7972  
get_segment_base(struct kvm_vcpu * vcpu,int seg)7973  static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7974  {
7975  	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7976  }
7977  
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)7978  static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7979  {
7980  	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7981  }
7982  
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)7983  static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7984  {
7985  	if (!need_emulate_wbinvd(vcpu))
7986  		return X86EMUL_CONTINUE;
7987  
7988  	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7989  		int cpu = get_cpu();
7990  
7991  		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7992  		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7993  				wbinvd_ipi, NULL, 1);
7994  		put_cpu();
7995  		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7996  	} else
7997  		wbinvd();
7998  	return X86EMUL_CONTINUE;
7999  }
8000  
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)8001  int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8002  {
8003  	kvm_emulate_wbinvd_noskip(vcpu);
8004  	return kvm_skip_emulated_instruction(vcpu);
8005  }
8006  EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8007  
8008  
8009  
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)8010  static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8011  {
8012  	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8013  }
8014  
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)8015  static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
8016  			    unsigned long *dest)
8017  {
8018  	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
8019  }
8020  
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)8021  static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8022  			   unsigned long value)
8023  {
8024  
8025  	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8026  }
8027  
mk_cr_64(u64 curr_cr,u32 new_val)8028  static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8029  {
8030  	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8031  }
8032  
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)8033  static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8034  {
8035  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8036  	unsigned long value;
8037  
8038  	switch (cr) {
8039  	case 0:
8040  		value = kvm_read_cr0(vcpu);
8041  		break;
8042  	case 2:
8043  		value = vcpu->arch.cr2;
8044  		break;
8045  	case 3:
8046  		value = kvm_read_cr3(vcpu);
8047  		break;
8048  	case 4:
8049  		value = kvm_read_cr4(vcpu);
8050  		break;
8051  	case 8:
8052  		value = kvm_get_cr8(vcpu);
8053  		break;
8054  	default:
8055  		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8056  		return 0;
8057  	}
8058  
8059  	return value;
8060  }
8061  
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)8062  static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8063  {
8064  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8065  	int res = 0;
8066  
8067  	switch (cr) {
8068  	case 0:
8069  		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8070  		break;
8071  	case 2:
8072  		vcpu->arch.cr2 = val;
8073  		break;
8074  	case 3:
8075  		res = kvm_set_cr3(vcpu, val);
8076  		break;
8077  	case 4:
8078  		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8079  		break;
8080  	case 8:
8081  		res = kvm_set_cr8(vcpu, val);
8082  		break;
8083  	default:
8084  		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8085  		res = -1;
8086  	}
8087  
8088  	return res;
8089  }
8090  
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)8091  static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8092  {
8093  	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8094  }
8095  
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8096  static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8097  {
8098  	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8099  }
8100  
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8101  static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8102  {
8103  	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8104  }
8105  
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8106  static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8107  {
8108  	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8109  }
8110  
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8111  static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8112  {
8113  	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8114  }
8115  
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)8116  static unsigned long emulator_get_cached_segment_base(
8117  	struct x86_emulate_ctxt *ctxt, int seg)
8118  {
8119  	return get_segment_base(emul_to_vcpu(ctxt), seg);
8120  }
8121  
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)8122  static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8123  				 struct desc_struct *desc, u32 *base3,
8124  				 int seg)
8125  {
8126  	struct kvm_segment var;
8127  
8128  	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8129  	*selector = var.selector;
8130  
8131  	if (var.unusable) {
8132  		memset(desc, 0, sizeof(*desc));
8133  		if (base3)
8134  			*base3 = 0;
8135  		return false;
8136  	}
8137  
8138  	if (var.g)
8139  		var.limit >>= 12;
8140  	set_desc_limit(desc, var.limit);
8141  	set_desc_base(desc, (unsigned long)var.base);
8142  #ifdef CONFIG_X86_64
8143  	if (base3)
8144  		*base3 = var.base >> 32;
8145  #endif
8146  	desc->type = var.type;
8147  	desc->s = var.s;
8148  	desc->dpl = var.dpl;
8149  	desc->p = var.present;
8150  	desc->avl = var.avl;
8151  	desc->l = var.l;
8152  	desc->d = var.db;
8153  	desc->g = var.g;
8154  
8155  	return true;
8156  }
8157  
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8158  static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8159  				 struct desc_struct *desc, u32 base3,
8160  				 int seg)
8161  {
8162  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8163  	struct kvm_segment var;
8164  
8165  	var.selector = selector;
8166  	var.base = get_desc_base(desc);
8167  #ifdef CONFIG_X86_64
8168  	var.base |= ((u64)base3) << 32;
8169  #endif
8170  	var.limit = get_desc_limit(desc);
8171  	if (desc->g)
8172  		var.limit = (var.limit << 12) | 0xfff;
8173  	var.type = desc->type;
8174  	var.dpl = desc->dpl;
8175  	var.db = desc->d;
8176  	var.s = desc->s;
8177  	var.l = desc->l;
8178  	var.g = desc->g;
8179  	var.avl = desc->avl;
8180  	var.present = desc->p;
8181  	var.unusable = !var.present;
8182  	var.padding = 0;
8183  
8184  	kvm_set_segment(vcpu, &var, seg);
8185  	return;
8186  }
8187  
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8188  static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8189  					u32 msr_index, u64 *pdata)
8190  {
8191  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8192  	int r;
8193  
8194  	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8195  	if (r < 0)
8196  		return X86EMUL_UNHANDLEABLE;
8197  
8198  	if (r) {
8199  		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8200  				       complete_emulated_rdmsr, r))
8201  			return X86EMUL_IO_NEEDED;
8202  
8203  		trace_kvm_msr_read_ex(msr_index);
8204  		return X86EMUL_PROPAGATE_FAULT;
8205  	}
8206  
8207  	trace_kvm_msr_read(msr_index, *pdata);
8208  	return X86EMUL_CONTINUE;
8209  }
8210  
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8211  static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8212  					u32 msr_index, u64 data)
8213  {
8214  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8215  	int r;
8216  
8217  	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8218  	if (r < 0)
8219  		return X86EMUL_UNHANDLEABLE;
8220  
8221  	if (r) {
8222  		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8223  				       complete_emulated_msr_access, r))
8224  			return X86EMUL_IO_NEEDED;
8225  
8226  		trace_kvm_msr_write_ex(msr_index, data);
8227  		return X86EMUL_PROPAGATE_FAULT;
8228  	}
8229  
8230  	trace_kvm_msr_write(msr_index, data);
8231  	return X86EMUL_CONTINUE;
8232  }
8233  
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8234  static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8235  			    u32 msr_index, u64 *pdata)
8236  {
8237  	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8238  }
8239  
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)8240  static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8241  			      u32 pmc)
8242  {
8243  	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8244  		return 0;
8245  	return -EINVAL;
8246  }
8247  
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8248  static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8249  			     u32 pmc, u64 *pdata)
8250  {
8251  	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8252  }
8253  
emulator_halt(struct x86_emulate_ctxt * ctxt)8254  static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8255  {
8256  	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8257  }
8258  
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8259  static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8260  			      struct x86_instruction_info *info,
8261  			      enum x86_intercept_stage stage)
8262  {
8263  	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8264  					    &ctxt->exception);
8265  }
8266  
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8267  static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8268  			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8269  			      bool exact_only)
8270  {
8271  	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8272  }
8273  
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8274  static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8275  {
8276  	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8277  }
8278  
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8279  static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8280  {
8281  	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8282  }
8283  
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8284  static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8285  {
8286  	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8287  }
8288  
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8289  static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8290  {
8291  	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8292  }
8293  
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8294  static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8295  {
8296  	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8297  }
8298  
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8299  static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8300  {
8301  	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8302  }
8303  
emulator_is_smm(struct x86_emulate_ctxt * ctxt)8304  static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8305  {
8306  	return is_smm(emul_to_vcpu(ctxt));
8307  }
8308  
emulator_is_guest_mode(struct x86_emulate_ctxt * ctxt)8309  static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8310  {
8311  	return is_guest_mode(emul_to_vcpu(ctxt));
8312  }
8313  
8314  #ifndef CONFIG_KVM_SMM
emulator_leave_smm(struct x86_emulate_ctxt * ctxt)8315  static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8316  {
8317  	WARN_ON_ONCE(1);
8318  	return X86EMUL_UNHANDLEABLE;
8319  }
8320  #endif
8321  
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8322  static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8323  {
8324  	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8325  }
8326  
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8327  static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8328  {
8329  	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8330  }
8331  
emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8332  static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8333  {
8334  	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8335  
8336  	if (!kvm->vm_bugged)
8337  		kvm_vm_bugged(kvm);
8338  }
8339  
8340  static const struct x86_emulate_ops emulate_ops = {
8341  	.vm_bugged           = emulator_vm_bugged,
8342  	.read_gpr            = emulator_read_gpr,
8343  	.write_gpr           = emulator_write_gpr,
8344  	.read_std            = emulator_read_std,
8345  	.write_std           = emulator_write_std,
8346  	.fetch               = kvm_fetch_guest_virt,
8347  	.read_emulated       = emulator_read_emulated,
8348  	.write_emulated      = emulator_write_emulated,
8349  	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8350  	.invlpg              = emulator_invlpg,
8351  	.pio_in_emulated     = emulator_pio_in_emulated,
8352  	.pio_out_emulated    = emulator_pio_out_emulated,
8353  	.get_segment         = emulator_get_segment,
8354  	.set_segment         = emulator_set_segment,
8355  	.get_cached_segment_base = emulator_get_cached_segment_base,
8356  	.get_gdt             = emulator_get_gdt,
8357  	.get_idt	     = emulator_get_idt,
8358  	.set_gdt             = emulator_set_gdt,
8359  	.set_idt	     = emulator_set_idt,
8360  	.get_cr              = emulator_get_cr,
8361  	.set_cr              = emulator_set_cr,
8362  	.cpl                 = emulator_get_cpl,
8363  	.get_dr              = emulator_get_dr,
8364  	.set_dr              = emulator_set_dr,
8365  	.set_msr_with_filter = emulator_set_msr_with_filter,
8366  	.get_msr_with_filter = emulator_get_msr_with_filter,
8367  	.get_msr             = emulator_get_msr,
8368  	.check_pmc	     = emulator_check_pmc,
8369  	.read_pmc            = emulator_read_pmc,
8370  	.halt                = emulator_halt,
8371  	.wbinvd              = emulator_wbinvd,
8372  	.fix_hypercall       = emulator_fix_hypercall,
8373  	.intercept           = emulator_intercept,
8374  	.get_cpuid           = emulator_get_cpuid,
8375  	.guest_has_movbe     = emulator_guest_has_movbe,
8376  	.guest_has_fxsr      = emulator_guest_has_fxsr,
8377  	.guest_has_rdpid     = emulator_guest_has_rdpid,
8378  	.set_nmi_mask        = emulator_set_nmi_mask,
8379  	.is_smm              = emulator_is_smm,
8380  	.is_guest_mode       = emulator_is_guest_mode,
8381  	.leave_smm           = emulator_leave_smm,
8382  	.triple_fault        = emulator_triple_fault,
8383  	.set_xcr             = emulator_set_xcr,
8384  };
8385  
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8386  static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8387  {
8388  	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8389  	/*
8390  	 * an sti; sti; sequence only disable interrupts for the first
8391  	 * instruction. So, if the last instruction, be it emulated or
8392  	 * not, left the system with the INT_STI flag enabled, it
8393  	 * means that the last instruction is an sti. We should not
8394  	 * leave the flag on in this case. The same goes for mov ss
8395  	 */
8396  	if (int_shadow & mask)
8397  		mask = 0;
8398  	if (unlikely(int_shadow || mask)) {
8399  		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8400  		if (!mask)
8401  			kvm_make_request(KVM_REQ_EVENT, vcpu);
8402  	}
8403  }
8404  
inject_emulated_exception(struct kvm_vcpu * vcpu)8405  static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8406  {
8407  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8408  
8409  	if (ctxt->exception.vector == PF_VECTOR)
8410  		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8411  	else if (ctxt->exception.error_code_valid)
8412  		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8413  				      ctxt->exception.error_code);
8414  	else
8415  		kvm_queue_exception(vcpu, ctxt->exception.vector);
8416  }
8417  
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8418  static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8419  {
8420  	struct x86_emulate_ctxt *ctxt;
8421  
8422  	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8423  	if (!ctxt) {
8424  		pr_err("failed to allocate vcpu's emulator\n");
8425  		return NULL;
8426  	}
8427  
8428  	ctxt->vcpu = vcpu;
8429  	ctxt->ops = &emulate_ops;
8430  	vcpu->arch.emulate_ctxt = ctxt;
8431  
8432  	return ctxt;
8433  }
8434  
init_emulate_ctxt(struct kvm_vcpu * vcpu)8435  static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8436  {
8437  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8438  	int cs_db, cs_l;
8439  
8440  	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8441  
8442  	ctxt->gpa_available = false;
8443  	ctxt->eflags = kvm_get_rflags(vcpu);
8444  	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8445  
8446  	ctxt->eip = kvm_rip_read(vcpu);
8447  	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8448  		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8449  		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8450  		     cs_db				? X86EMUL_MODE_PROT32 :
8451  							  X86EMUL_MODE_PROT16;
8452  	ctxt->interruptibility = 0;
8453  	ctxt->have_exception = false;
8454  	ctxt->exception.vector = -1;
8455  	ctxt->perm_ok = false;
8456  
8457  	init_decode_cache(ctxt);
8458  	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8459  }
8460  
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8461  void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8462  {
8463  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8464  	int ret;
8465  
8466  	init_emulate_ctxt(vcpu);
8467  
8468  	ctxt->op_bytes = 2;
8469  	ctxt->ad_bytes = 2;
8470  	ctxt->_eip = ctxt->eip + inc_eip;
8471  	ret = emulate_int_real(ctxt, irq);
8472  
8473  	if (ret != X86EMUL_CONTINUE) {
8474  		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8475  	} else {
8476  		ctxt->eip = ctxt->_eip;
8477  		kvm_rip_write(vcpu, ctxt->eip);
8478  		kvm_set_rflags(vcpu, ctxt->eflags);
8479  	}
8480  }
8481  EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8482  
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)8483  static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8484  					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8485  {
8486  	struct kvm_run *run = vcpu->run;
8487  	u64 info[5];
8488  	u8 info_start;
8489  
8490  	/*
8491  	 * Zero the whole array used to retrieve the exit info, as casting to
8492  	 * u32 for select entries will leave some chunks uninitialized.
8493  	 */
8494  	memset(&info, 0, sizeof(info));
8495  
8496  	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8497  					   &info[2], (u32 *)&info[3],
8498  					   (u32 *)&info[4]);
8499  
8500  	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8501  	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8502  
8503  	/*
8504  	 * There's currently space for 13 entries, but 5 are used for the exit
8505  	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8506  	 * when expanding kvm_run.emulation_failure in the future.
8507  	 */
8508  	if (WARN_ON_ONCE(ndata > 4))
8509  		ndata = 4;
8510  
8511  	/* Always include the flags as a 'data' entry. */
8512  	info_start = 1;
8513  	run->emulation_failure.flags = 0;
8514  
8515  	if (insn_size) {
8516  		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8517  			      sizeof(run->emulation_failure.insn_bytes) != 16));
8518  		info_start += 2;
8519  		run->emulation_failure.flags |=
8520  			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8521  		run->emulation_failure.insn_size = insn_size;
8522  		memset(run->emulation_failure.insn_bytes, 0x90,
8523  		       sizeof(run->emulation_failure.insn_bytes));
8524  		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8525  	}
8526  
8527  	memcpy(&run->internal.data[info_start], info, sizeof(info));
8528  	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8529  	       ndata * sizeof(data[0]));
8530  
8531  	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8532  }
8533  
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)8534  static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8535  {
8536  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8537  
8538  	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8539  				       ctxt->fetch.end - ctxt->fetch.data);
8540  }
8541  
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)8542  void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8543  					  u8 ndata)
8544  {
8545  	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8546  }
8547  EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8548  
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)8549  void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8550  {
8551  	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8552  }
8553  EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8554  
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)8555  static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8556  {
8557  	struct kvm *kvm = vcpu->kvm;
8558  
8559  	++vcpu->stat.insn_emulation_fail;
8560  	trace_kvm_emulate_insn_failed(vcpu);
8561  
8562  	if (emulation_type & EMULTYPE_VMWARE_GP) {
8563  		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8564  		return 1;
8565  	}
8566  
8567  	if (kvm->arch.exit_on_emulation_error ||
8568  	    (emulation_type & EMULTYPE_SKIP)) {
8569  		prepare_emulation_ctxt_failure_exit(vcpu);
8570  		return 0;
8571  	}
8572  
8573  	kvm_queue_exception(vcpu, UD_VECTOR);
8574  
8575  	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8576  		prepare_emulation_ctxt_failure_exit(vcpu);
8577  		return 0;
8578  	}
8579  
8580  	return 1;
8581  }
8582  
reexecute_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type)8583  static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8584  				  int emulation_type)
8585  {
8586  	gpa_t gpa = cr2_or_gpa;
8587  	kvm_pfn_t pfn;
8588  
8589  	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8590  		return false;
8591  
8592  	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8593  	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8594  		return false;
8595  
8596  	if (!vcpu->arch.mmu->root_role.direct) {
8597  		/*
8598  		 * Write permission should be allowed since only
8599  		 * write access need to be emulated.
8600  		 */
8601  		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8602  
8603  		/*
8604  		 * If the mapping is invalid in guest, let cpu retry
8605  		 * it to generate fault.
8606  		 */
8607  		if (gpa == INVALID_GPA)
8608  			return true;
8609  	}
8610  
8611  	/*
8612  	 * Do not retry the unhandleable instruction if it faults on the
8613  	 * readonly host memory, otherwise it will goto a infinite loop:
8614  	 * retry instruction -> write #PF -> emulation fail -> retry
8615  	 * instruction -> ...
8616  	 */
8617  	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8618  
8619  	/*
8620  	 * If the instruction failed on the error pfn, it can not be fixed,
8621  	 * report the error to userspace.
8622  	 */
8623  	if (is_error_noslot_pfn(pfn))
8624  		return false;
8625  
8626  	kvm_release_pfn_clean(pfn);
8627  
8628  	/* The instructions are well-emulated on direct mmu. */
8629  	if (vcpu->arch.mmu->root_role.direct) {
8630  		unsigned int indirect_shadow_pages;
8631  
8632  		write_lock(&vcpu->kvm->mmu_lock);
8633  		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8634  		write_unlock(&vcpu->kvm->mmu_lock);
8635  
8636  		if (indirect_shadow_pages)
8637  			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8638  
8639  		return true;
8640  	}
8641  
8642  	/*
8643  	 * if emulation was due to access to shadowed page table
8644  	 * and it failed try to unshadow page and re-enter the
8645  	 * guest to let CPU execute the instruction.
8646  	 */
8647  	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8648  
8649  	/*
8650  	 * If the access faults on its page table, it can not
8651  	 * be fixed by unprotecting shadow page and it should
8652  	 * be reported to userspace.
8653  	 */
8654  	return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8655  }
8656  
retry_instruction(struct x86_emulate_ctxt * ctxt,gpa_t cr2_or_gpa,int emulation_type)8657  static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8658  			      gpa_t cr2_or_gpa,  int emulation_type)
8659  {
8660  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8661  	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8662  
8663  	last_retry_eip = vcpu->arch.last_retry_eip;
8664  	last_retry_addr = vcpu->arch.last_retry_addr;
8665  
8666  	/*
8667  	 * If the emulation is caused by #PF and it is non-page_table
8668  	 * writing instruction, it means the VM-EXIT is caused by shadow
8669  	 * page protected, we can zap the shadow page and retry this
8670  	 * instruction directly.
8671  	 *
8672  	 * Note: if the guest uses a non-page-table modifying instruction
8673  	 * on the PDE that points to the instruction, then we will unmap
8674  	 * the instruction and go to an infinite loop. So, we cache the
8675  	 * last retried eip and the last fault address, if we meet the eip
8676  	 * and the address again, we can break out of the potential infinite
8677  	 * loop.
8678  	 */
8679  	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8680  
8681  	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8682  		return false;
8683  
8684  	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8685  	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8686  		return false;
8687  
8688  	if (x86_page_table_writing_insn(ctxt))
8689  		return false;
8690  
8691  	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8692  		return false;
8693  
8694  	vcpu->arch.last_retry_eip = ctxt->eip;
8695  	vcpu->arch.last_retry_addr = cr2_or_gpa;
8696  
8697  	if (!vcpu->arch.mmu->root_role.direct)
8698  		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8699  
8700  	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8701  
8702  	return true;
8703  }
8704  
8705  static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8706  static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8707  
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)8708  static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8709  				unsigned long *db)
8710  {
8711  	u32 dr6 = 0;
8712  	int i;
8713  	u32 enable, rwlen;
8714  
8715  	enable = dr7;
8716  	rwlen = dr7 >> 16;
8717  	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8718  		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8719  			dr6 |= (1 << i);
8720  	return dr6;
8721  }
8722  
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)8723  static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8724  {
8725  	struct kvm_run *kvm_run = vcpu->run;
8726  
8727  	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8728  		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8729  		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8730  		kvm_run->debug.arch.exception = DB_VECTOR;
8731  		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8732  		return 0;
8733  	}
8734  	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8735  	return 1;
8736  }
8737  
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)8738  int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8739  {
8740  	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8741  	int r;
8742  
8743  	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8744  	if (unlikely(!r))
8745  		return 0;
8746  
8747  	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8748  
8749  	/*
8750  	 * rflags is the old, "raw" value of the flags.  The new value has
8751  	 * not been saved yet.
8752  	 *
8753  	 * This is correct even for TF set by the guest, because "the
8754  	 * processor will not generate this exception after the instruction
8755  	 * that sets the TF flag".
8756  	 */
8757  	if (unlikely(rflags & X86_EFLAGS_TF))
8758  		r = kvm_vcpu_do_singlestep(vcpu);
8759  	return r;
8760  }
8761  EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8762  
kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)8763  static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8764  {
8765  	u32 shadow;
8766  
8767  	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8768  		return true;
8769  
8770  	/*
8771  	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8772  	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8773  	 * to avoid the relatively expensive CPUID lookup.
8774  	 */
8775  	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8776  	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8777  	       guest_cpuid_is_intel(vcpu);
8778  }
8779  
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)8780  static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8781  					   int emulation_type, int *r)
8782  {
8783  	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8784  
8785  	/*
8786  	 * Do not check for code breakpoints if hardware has already done the
8787  	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8788  	 * the instruction has passed all exception checks, and all intercepted
8789  	 * exceptions that trigger emulation have lower priority than code
8790  	 * breakpoints, i.e. the fact that the intercepted exception occurred
8791  	 * means any code breakpoints have already been serviced.
8792  	 *
8793  	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8794  	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8795  	 * the instruction being emulated.  The intent of forced emulation is
8796  	 * to behave as if KVM intercepted the instruction without an exception
8797  	 * and without a prefix.
8798  	 */
8799  	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8800  			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8801  		return false;
8802  
8803  	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8804  	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8805  		struct kvm_run *kvm_run = vcpu->run;
8806  		unsigned long eip = kvm_get_linear_rip(vcpu);
8807  		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8808  					   vcpu->arch.guest_debug_dr7,
8809  					   vcpu->arch.eff_db);
8810  
8811  		if (dr6 != 0) {
8812  			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8813  			kvm_run->debug.arch.pc = eip;
8814  			kvm_run->debug.arch.exception = DB_VECTOR;
8815  			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8816  			*r = 0;
8817  			return true;
8818  		}
8819  	}
8820  
8821  	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8822  	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
8823  		unsigned long eip = kvm_get_linear_rip(vcpu);
8824  		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8825  					   vcpu->arch.dr7,
8826  					   vcpu->arch.db);
8827  
8828  		if (dr6 != 0) {
8829  			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8830  			*r = 1;
8831  			return true;
8832  		}
8833  	}
8834  
8835  	return false;
8836  }
8837  
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)8838  static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8839  {
8840  	switch (ctxt->opcode_len) {
8841  	case 1:
8842  		switch (ctxt->b) {
8843  		case 0xe4:	/* IN */
8844  		case 0xe5:
8845  		case 0xec:
8846  		case 0xed:
8847  		case 0xe6:	/* OUT */
8848  		case 0xe7:
8849  		case 0xee:
8850  		case 0xef:
8851  		case 0x6c:	/* INS */
8852  		case 0x6d:
8853  		case 0x6e:	/* OUTS */
8854  		case 0x6f:
8855  			return true;
8856  		}
8857  		break;
8858  	case 2:
8859  		switch (ctxt->b) {
8860  		case 0x33:	/* RDPMC */
8861  			return true;
8862  		}
8863  		break;
8864  	}
8865  
8866  	return false;
8867  }
8868  
8869  /*
8870   * Decode an instruction for emulation.  The caller is responsible for handling
8871   * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8872   * (and wrong) when emulating on an intercepted fault-like exception[*], as
8873   * code breakpoints have higher priority and thus have already been done by
8874   * hardware.
8875   *
8876   * [*] Except #MC, which is higher priority, but KVM should never emulate in
8877   *     response to a machine check.
8878   */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)8879  int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8880  				    void *insn, int insn_len)
8881  {
8882  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8883  	int r;
8884  
8885  	init_emulate_ctxt(vcpu);
8886  
8887  	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8888  
8889  	trace_kvm_emulate_insn_start(vcpu);
8890  	++vcpu->stat.insn_emulation;
8891  
8892  	return r;
8893  }
8894  EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8895  
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)8896  int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8897  			    int emulation_type, void *insn, int insn_len)
8898  {
8899  	int r;
8900  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8901  	bool writeback = true;
8902  
8903  	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8904  		return 1;
8905  
8906  	vcpu->arch.l1tf_flush_l1d = true;
8907  
8908  	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8909  		kvm_clear_exception_queue(vcpu);
8910  
8911  		/*
8912  		 * Return immediately if RIP hits a code breakpoint, such #DBs
8913  		 * are fault-like and are higher priority than any faults on
8914  		 * the code fetch itself.
8915  		 */
8916  		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8917  			return r;
8918  
8919  		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8920  						    insn, insn_len);
8921  		if (r != EMULATION_OK)  {
8922  			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8923  			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8924  				kvm_queue_exception(vcpu, UD_VECTOR);
8925  				return 1;
8926  			}
8927  			if (reexecute_instruction(vcpu, cr2_or_gpa,
8928  						  emulation_type))
8929  				return 1;
8930  
8931  			if (ctxt->have_exception &&
8932  			    !(emulation_type & EMULTYPE_SKIP)) {
8933  				/*
8934  				 * #UD should result in just EMULATION_FAILED, and trap-like
8935  				 * exception should not be encountered during decode.
8936  				 */
8937  				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8938  					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8939  				inject_emulated_exception(vcpu);
8940  				return 1;
8941  			}
8942  			return handle_emulation_failure(vcpu, emulation_type);
8943  		}
8944  	}
8945  
8946  	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8947  	    !is_vmware_backdoor_opcode(ctxt)) {
8948  		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8949  		return 1;
8950  	}
8951  
8952  	/*
8953  	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8954  	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8955  	 * The caller is responsible for updating interruptibility state and
8956  	 * injecting single-step #DBs.
8957  	 */
8958  	if (emulation_type & EMULTYPE_SKIP) {
8959  		if (ctxt->mode != X86EMUL_MODE_PROT64)
8960  			ctxt->eip = (u32)ctxt->_eip;
8961  		else
8962  			ctxt->eip = ctxt->_eip;
8963  
8964  		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8965  			r = 1;
8966  			goto writeback;
8967  		}
8968  
8969  		kvm_rip_write(vcpu, ctxt->eip);
8970  		if (ctxt->eflags & X86_EFLAGS_RF)
8971  			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8972  		return 1;
8973  	}
8974  
8975  	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8976  		return 1;
8977  
8978  	/* this is needed for vmware backdoor interface to work since it
8979  	   changes registers values  during IO operation */
8980  	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8981  		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8982  		emulator_invalidate_register_cache(ctxt);
8983  	}
8984  
8985  restart:
8986  	if (emulation_type & EMULTYPE_PF) {
8987  		/* Save the faulting GPA (cr2) in the address field */
8988  		ctxt->exception.address = cr2_or_gpa;
8989  
8990  		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8991  		if (vcpu->arch.mmu->root_role.direct) {
8992  			ctxt->gpa_available = true;
8993  			ctxt->gpa_val = cr2_or_gpa;
8994  		}
8995  	} else {
8996  		/* Sanitize the address out of an abundance of paranoia. */
8997  		ctxt->exception.address = 0;
8998  	}
8999  
9000  	r = x86_emulate_insn(ctxt);
9001  
9002  	if (r == EMULATION_INTERCEPTED)
9003  		return 1;
9004  
9005  	if (r == EMULATION_FAILED) {
9006  		if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
9007  			return 1;
9008  
9009  		return handle_emulation_failure(vcpu, emulation_type);
9010  	}
9011  
9012  	if (ctxt->have_exception) {
9013  		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9014  		vcpu->mmio_needed = false;
9015  		r = 1;
9016  		inject_emulated_exception(vcpu);
9017  	} else if (vcpu->arch.pio.count) {
9018  		if (!vcpu->arch.pio.in) {
9019  			/* FIXME: return into emulator if single-stepping.  */
9020  			vcpu->arch.pio.count = 0;
9021  		} else {
9022  			writeback = false;
9023  			vcpu->arch.complete_userspace_io = complete_emulated_pio;
9024  		}
9025  		r = 0;
9026  	} else if (vcpu->mmio_needed) {
9027  		++vcpu->stat.mmio_exits;
9028  
9029  		if (!vcpu->mmio_is_write)
9030  			writeback = false;
9031  		r = 0;
9032  		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9033  	} else if (vcpu->arch.complete_userspace_io) {
9034  		writeback = false;
9035  		r = 0;
9036  	} else if (r == EMULATION_RESTART)
9037  		goto restart;
9038  	else
9039  		r = 1;
9040  
9041  writeback:
9042  	if (writeback) {
9043  		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9044  		toggle_interruptibility(vcpu, ctxt->interruptibility);
9045  		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9046  
9047  		/*
9048  		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9049  		 * only supports code breakpoints and general detect #DB, both
9050  		 * of which are fault-like.
9051  		 */
9052  		if (!ctxt->have_exception ||
9053  		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9054  			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9055  			if (ctxt->is_branch)
9056  				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9057  			kvm_rip_write(vcpu, ctxt->eip);
9058  			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9059  				r = kvm_vcpu_do_singlestep(vcpu);
9060  			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9061  			__kvm_set_rflags(vcpu, ctxt->eflags);
9062  		}
9063  
9064  		/*
9065  		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9066  		 * do nothing, and it will be requested again as soon as
9067  		 * the shadow expires.  But we still need to check here,
9068  		 * because POPF has no interrupt shadow.
9069  		 */
9070  		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9071  			kvm_make_request(KVM_REQ_EVENT, vcpu);
9072  	} else
9073  		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9074  
9075  	return r;
9076  }
9077  
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)9078  int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9079  {
9080  	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9081  }
9082  EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9083  
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)9084  int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9085  					void *insn, int insn_len)
9086  {
9087  	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9088  }
9089  EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9090  
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9091  static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9092  {
9093  	vcpu->arch.pio.count = 0;
9094  	return 1;
9095  }
9096  
complete_fast_pio_out(struct kvm_vcpu * vcpu)9097  static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9098  {
9099  	vcpu->arch.pio.count = 0;
9100  
9101  	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9102  		return 1;
9103  
9104  	return kvm_skip_emulated_instruction(vcpu);
9105  }
9106  
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9107  static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9108  			    unsigned short port)
9109  {
9110  	unsigned long val = kvm_rax_read(vcpu);
9111  	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9112  
9113  	if (ret)
9114  		return ret;
9115  
9116  	/*
9117  	 * Workaround userspace that relies on old KVM behavior of %rip being
9118  	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9119  	 */
9120  	if (port == 0x7e &&
9121  	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9122  		vcpu->arch.complete_userspace_io =
9123  			complete_fast_pio_out_port_0x7e;
9124  		kvm_skip_emulated_instruction(vcpu);
9125  	} else {
9126  		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9127  		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9128  	}
9129  	return 0;
9130  }
9131  
complete_fast_pio_in(struct kvm_vcpu * vcpu)9132  static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9133  {
9134  	unsigned long val;
9135  
9136  	/* We should only ever be called with arch.pio.count equal to 1 */
9137  	BUG_ON(vcpu->arch.pio.count != 1);
9138  
9139  	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9140  		vcpu->arch.pio.count = 0;
9141  		return 1;
9142  	}
9143  
9144  	/* For size less than 4 we merge, else we zero extend */
9145  	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9146  
9147  	complete_emulator_pio_in(vcpu, &val);
9148  	kvm_rax_write(vcpu, val);
9149  
9150  	return kvm_skip_emulated_instruction(vcpu);
9151  }
9152  
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9153  static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9154  			   unsigned short port)
9155  {
9156  	unsigned long val;
9157  	int ret;
9158  
9159  	/* For size less than 4 we merge, else we zero extend */
9160  	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9161  
9162  	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9163  	if (ret) {
9164  		kvm_rax_write(vcpu, val);
9165  		return ret;
9166  	}
9167  
9168  	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9169  	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9170  
9171  	return 0;
9172  }
9173  
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9174  int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9175  {
9176  	int ret;
9177  
9178  	if (in)
9179  		ret = kvm_fast_pio_in(vcpu, size, port);
9180  	else
9181  		ret = kvm_fast_pio_out(vcpu, size, port);
9182  	return ret && kvm_skip_emulated_instruction(vcpu);
9183  }
9184  EXPORT_SYMBOL_GPL(kvm_fast_pio);
9185  
kvmclock_cpu_down_prep(unsigned int cpu)9186  static int kvmclock_cpu_down_prep(unsigned int cpu)
9187  {
9188  	__this_cpu_write(cpu_tsc_khz, 0);
9189  	return 0;
9190  }
9191  
tsc_khz_changed(void * data)9192  static void tsc_khz_changed(void *data)
9193  {
9194  	struct cpufreq_freqs *freq = data;
9195  	unsigned long khz;
9196  
9197  	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9198  
9199  	if (data)
9200  		khz = freq->new;
9201  	else
9202  		khz = cpufreq_quick_get(raw_smp_processor_id());
9203  	if (!khz)
9204  		khz = tsc_khz;
9205  	__this_cpu_write(cpu_tsc_khz, khz);
9206  }
9207  
9208  #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)9209  static void kvm_hyperv_tsc_notifier(void)
9210  {
9211  	struct kvm *kvm;
9212  	int cpu;
9213  
9214  	mutex_lock(&kvm_lock);
9215  	list_for_each_entry(kvm, &vm_list, vm_list)
9216  		kvm_make_mclock_inprogress_request(kvm);
9217  
9218  	/* no guest entries from this point */
9219  	hyperv_stop_tsc_emulation();
9220  
9221  	/* TSC frequency always matches when on Hyper-V */
9222  	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9223  		for_each_present_cpu(cpu)
9224  			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9225  	}
9226  	kvm_caps.max_guest_tsc_khz = tsc_khz;
9227  
9228  	list_for_each_entry(kvm, &vm_list, vm_list) {
9229  		__kvm_start_pvclock_update(kvm);
9230  		pvclock_update_vm_gtod_copy(kvm);
9231  		kvm_end_pvclock_update(kvm);
9232  	}
9233  
9234  	mutex_unlock(&kvm_lock);
9235  }
9236  #endif
9237  
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9238  static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9239  {
9240  	struct kvm *kvm;
9241  	struct kvm_vcpu *vcpu;
9242  	int send_ipi = 0;
9243  	unsigned long i;
9244  
9245  	/*
9246  	 * We allow guests to temporarily run on slowing clocks,
9247  	 * provided we notify them after, or to run on accelerating
9248  	 * clocks, provided we notify them before.  Thus time never
9249  	 * goes backwards.
9250  	 *
9251  	 * However, we have a problem.  We can't atomically update
9252  	 * the frequency of a given CPU from this function; it is
9253  	 * merely a notifier, which can be called from any CPU.
9254  	 * Changing the TSC frequency at arbitrary points in time
9255  	 * requires a recomputation of local variables related to
9256  	 * the TSC for each VCPU.  We must flag these local variables
9257  	 * to be updated and be sure the update takes place with the
9258  	 * new frequency before any guests proceed.
9259  	 *
9260  	 * Unfortunately, the combination of hotplug CPU and frequency
9261  	 * change creates an intractable locking scenario; the order
9262  	 * of when these callouts happen is undefined with respect to
9263  	 * CPU hotplug, and they can race with each other.  As such,
9264  	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9265  	 * undefined; you can actually have a CPU frequency change take
9266  	 * place in between the computation of X and the setting of the
9267  	 * variable.  To protect against this problem, all updates of
9268  	 * the per_cpu tsc_khz variable are done in an interrupt
9269  	 * protected IPI, and all callers wishing to update the value
9270  	 * must wait for a synchronous IPI to complete (which is trivial
9271  	 * if the caller is on the CPU already).  This establishes the
9272  	 * necessary total order on variable updates.
9273  	 *
9274  	 * Note that because a guest time update may take place
9275  	 * anytime after the setting of the VCPU's request bit, the
9276  	 * correct TSC value must be set before the request.  However,
9277  	 * to ensure the update actually makes it to any guest which
9278  	 * starts running in hardware virtualization between the set
9279  	 * and the acquisition of the spinlock, we must also ping the
9280  	 * CPU after setting the request bit.
9281  	 *
9282  	 */
9283  
9284  	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9285  
9286  	mutex_lock(&kvm_lock);
9287  	list_for_each_entry(kvm, &vm_list, vm_list) {
9288  		kvm_for_each_vcpu(i, vcpu, kvm) {
9289  			if (vcpu->cpu != cpu)
9290  				continue;
9291  			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9292  			if (vcpu->cpu != raw_smp_processor_id())
9293  				send_ipi = 1;
9294  		}
9295  	}
9296  	mutex_unlock(&kvm_lock);
9297  
9298  	if (freq->old < freq->new && send_ipi) {
9299  		/*
9300  		 * We upscale the frequency.  Must make the guest
9301  		 * doesn't see old kvmclock values while running with
9302  		 * the new frequency, otherwise we risk the guest sees
9303  		 * time go backwards.
9304  		 *
9305  		 * In case we update the frequency for another cpu
9306  		 * (which might be in guest context) send an interrupt
9307  		 * to kick the cpu out of guest context.  Next time
9308  		 * guest context is entered kvmclock will be updated,
9309  		 * so the guest will not see stale values.
9310  		 */
9311  		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9312  	}
9313  }
9314  
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9315  static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9316  				     void *data)
9317  {
9318  	struct cpufreq_freqs *freq = data;
9319  	int cpu;
9320  
9321  	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9322  		return 0;
9323  	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9324  		return 0;
9325  
9326  	for_each_cpu(cpu, freq->policy->cpus)
9327  		__kvmclock_cpufreq_notifier(freq, cpu);
9328  
9329  	return 0;
9330  }
9331  
9332  static struct notifier_block kvmclock_cpufreq_notifier_block = {
9333  	.notifier_call  = kvmclock_cpufreq_notifier
9334  };
9335  
kvmclock_cpu_online(unsigned int cpu)9336  static int kvmclock_cpu_online(unsigned int cpu)
9337  {
9338  	tsc_khz_changed(NULL);
9339  	return 0;
9340  }
9341  
kvm_timer_init(void)9342  static void kvm_timer_init(void)
9343  {
9344  	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9345  		max_tsc_khz = tsc_khz;
9346  
9347  		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9348  			struct cpufreq_policy *policy;
9349  			int cpu;
9350  
9351  			cpu = get_cpu();
9352  			policy = cpufreq_cpu_get(cpu);
9353  			if (policy) {
9354  				if (policy->cpuinfo.max_freq)
9355  					max_tsc_khz = policy->cpuinfo.max_freq;
9356  				cpufreq_cpu_put(policy);
9357  			}
9358  			put_cpu();
9359  		}
9360  		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9361  					  CPUFREQ_TRANSITION_NOTIFIER);
9362  
9363  		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9364  				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9365  	}
9366  }
9367  
9368  #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)9369  static void pvclock_gtod_update_fn(struct work_struct *work)
9370  {
9371  	struct kvm *kvm;
9372  	struct kvm_vcpu *vcpu;
9373  	unsigned long i;
9374  
9375  	mutex_lock(&kvm_lock);
9376  	list_for_each_entry(kvm, &vm_list, vm_list)
9377  		kvm_for_each_vcpu(i, vcpu, kvm)
9378  			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9379  	atomic_set(&kvm_guest_has_master_clock, 0);
9380  	mutex_unlock(&kvm_lock);
9381  }
9382  
9383  static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9384  
9385  /*
9386   * Indirection to move queue_work() out of the tk_core.seq write held
9387   * region to prevent possible deadlocks against time accessors which
9388   * are invoked with work related locks held.
9389   */
pvclock_irq_work_fn(struct irq_work * w)9390  static void pvclock_irq_work_fn(struct irq_work *w)
9391  {
9392  	queue_work(system_long_wq, &pvclock_gtod_work);
9393  }
9394  
9395  static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9396  
9397  /*
9398   * Notification about pvclock gtod data update.
9399   */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9400  static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9401  			       void *priv)
9402  {
9403  	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9404  	struct timekeeper *tk = priv;
9405  
9406  	update_pvclock_gtod(tk);
9407  
9408  	/*
9409  	 * Disable master clock if host does not trust, or does not use,
9410  	 * TSC based clocksource. Delegate queue_work() to irq_work as
9411  	 * this is invoked with tk_core.seq write held.
9412  	 */
9413  	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9414  	    atomic_read(&kvm_guest_has_master_clock) != 0)
9415  		irq_work_queue(&pvclock_irq_work);
9416  	return 0;
9417  }
9418  
9419  static struct notifier_block pvclock_gtod_notifier = {
9420  	.notifier_call = pvclock_gtod_notify,
9421  };
9422  #endif
9423  
kvm_ops_update(struct kvm_x86_init_ops * ops)9424  static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9425  {
9426  	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9427  
9428  #define __KVM_X86_OP(func) \
9429  	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9430  #define KVM_X86_OP(func) \
9431  	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9432  #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9433  #define KVM_X86_OP_OPTIONAL_RET0(func) \
9434  	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9435  					   (void *)__static_call_return0);
9436  #include <asm/kvm-x86-ops.h>
9437  #undef __KVM_X86_OP
9438  
9439  	kvm_pmu_ops_update(ops->pmu_ops);
9440  }
9441  
kvm_x86_check_processor_compatibility(void)9442  static int kvm_x86_check_processor_compatibility(void)
9443  {
9444  	int cpu = smp_processor_id();
9445  	struct cpuinfo_x86 *c = &cpu_data(cpu);
9446  
9447  	/*
9448  	 * Compatibility checks are done when loading KVM and when enabling
9449  	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9450  	 * compatible, i.e. KVM should never perform a compatibility check on
9451  	 * an offline CPU.
9452  	 */
9453  	WARN_ON(!cpu_online(cpu));
9454  
9455  	if (__cr4_reserved_bits(cpu_has, c) !=
9456  	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9457  		return -EIO;
9458  
9459  	return static_call(kvm_x86_check_processor_compatibility)();
9460  }
9461  
kvm_x86_check_cpu_compat(void * ret)9462  static void kvm_x86_check_cpu_compat(void *ret)
9463  {
9464  	*(int *)ret = kvm_x86_check_processor_compatibility();
9465  }
9466  
__kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9467  static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9468  {
9469  	u64 host_pat;
9470  	int r, cpu;
9471  
9472  	if (kvm_x86_ops.hardware_enable) {
9473  		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9474  		return -EEXIST;
9475  	}
9476  
9477  	/*
9478  	 * KVM explicitly assumes that the guest has an FPU and
9479  	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9480  	 * vCPU's FPU state as a fxregs_state struct.
9481  	 */
9482  	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9483  		pr_err("inadequate fpu\n");
9484  		return -EOPNOTSUPP;
9485  	}
9486  
9487  	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9488  		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9489  		return -EOPNOTSUPP;
9490  	}
9491  
9492  	/*
9493  	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9494  	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9495  	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9496  	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9497  	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9498  	 */
9499  	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9500  	    (host_pat & GENMASK(2, 0)) != 6) {
9501  		pr_err("host PAT[0] is not WB\n");
9502  		return -EIO;
9503  	}
9504  
9505  	x86_emulator_cache = kvm_alloc_emulator_cache();
9506  	if (!x86_emulator_cache) {
9507  		pr_err("failed to allocate cache for x86 emulator\n");
9508  		return -ENOMEM;
9509  	}
9510  
9511  	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9512  	if (!user_return_msrs) {
9513  		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9514  		r = -ENOMEM;
9515  		goto out_free_x86_emulator_cache;
9516  	}
9517  	kvm_nr_uret_msrs = 0;
9518  
9519  	r = kvm_mmu_vendor_module_init();
9520  	if (r)
9521  		goto out_free_percpu;
9522  
9523  	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9524  		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9525  		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9526  	}
9527  
9528  	rdmsrl_safe(MSR_EFER, &host_efer);
9529  
9530  	if (boot_cpu_has(X86_FEATURE_XSAVES))
9531  		rdmsrl(MSR_IA32_XSS, host_xss);
9532  
9533  	kvm_init_pmu_capability(ops->pmu_ops);
9534  
9535  	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9536  		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9537  
9538  	r = ops->hardware_setup();
9539  	if (r != 0)
9540  		goto out_mmu_exit;
9541  
9542  	kvm_ops_update(ops);
9543  
9544  	for_each_online_cpu(cpu) {
9545  		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9546  		if (r < 0)
9547  			goto out_unwind_ops;
9548  	}
9549  
9550  	/*
9551  	 * Point of no return!  DO NOT add error paths below this point unless
9552  	 * absolutely necessary, as most operations from this point forward
9553  	 * require unwinding.
9554  	 */
9555  	kvm_timer_init();
9556  
9557  	if (pi_inject_timer == -1)
9558  		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9559  #ifdef CONFIG_X86_64
9560  	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9561  
9562  	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9563  		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9564  #endif
9565  
9566  	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9567  
9568  	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9569  		kvm_caps.supported_xss = 0;
9570  
9571  #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9572  	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9573  #undef __kvm_cpu_cap_has
9574  
9575  	if (kvm_caps.has_tsc_control) {
9576  		/*
9577  		 * Make sure the user can only configure tsc_khz values that
9578  		 * fit into a signed integer.
9579  		 * A min value is not calculated because it will always
9580  		 * be 1 on all machines.
9581  		 */
9582  		u64 max = min(0x7fffffffULL,
9583  			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9584  		kvm_caps.max_guest_tsc_khz = max;
9585  	}
9586  	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9587  	kvm_init_msr_lists();
9588  	return 0;
9589  
9590  out_unwind_ops:
9591  	kvm_x86_ops.hardware_enable = NULL;
9592  	static_call(kvm_x86_hardware_unsetup)();
9593  out_mmu_exit:
9594  	kvm_mmu_vendor_module_exit();
9595  out_free_percpu:
9596  	free_percpu(user_return_msrs);
9597  out_free_x86_emulator_cache:
9598  	kmem_cache_destroy(x86_emulator_cache);
9599  	return r;
9600  }
9601  
kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9602  int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9603  {
9604  	int r;
9605  
9606  	mutex_lock(&vendor_module_lock);
9607  	r = __kvm_x86_vendor_init(ops);
9608  	mutex_unlock(&vendor_module_lock);
9609  
9610  	return r;
9611  }
9612  EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9613  
kvm_x86_vendor_exit(void)9614  void kvm_x86_vendor_exit(void)
9615  {
9616  	kvm_unregister_perf_callbacks();
9617  
9618  #ifdef CONFIG_X86_64
9619  	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9620  		clear_hv_tscchange_cb();
9621  #endif
9622  	kvm_lapic_exit();
9623  
9624  	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9625  		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9626  					    CPUFREQ_TRANSITION_NOTIFIER);
9627  		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9628  	}
9629  #ifdef CONFIG_X86_64
9630  	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9631  	irq_work_sync(&pvclock_irq_work);
9632  	cancel_work_sync(&pvclock_gtod_work);
9633  #endif
9634  	static_call(kvm_x86_hardware_unsetup)();
9635  	kvm_mmu_vendor_module_exit();
9636  	free_percpu(user_return_msrs);
9637  	kmem_cache_destroy(x86_emulator_cache);
9638  #ifdef CONFIG_KVM_XEN
9639  	static_key_deferred_flush(&kvm_xen_enabled);
9640  	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9641  #endif
9642  	mutex_lock(&vendor_module_lock);
9643  	kvm_x86_ops.hardware_enable = NULL;
9644  	mutex_unlock(&vendor_module_lock);
9645  }
9646  EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9647  
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)9648  static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9649  {
9650  	/*
9651  	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9652  	 * local APIC is in-kernel, the run loop will detect the non-runnable
9653  	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9654  	 * managed by userspace, in which case userspace is responsible for
9655  	 * handling wake events.
9656  	 */
9657  	++vcpu->stat.halt_exits;
9658  	if (lapic_in_kernel(vcpu)) {
9659  		vcpu->arch.mp_state = state;
9660  		return 1;
9661  	} else {
9662  		vcpu->run->exit_reason = reason;
9663  		return 0;
9664  	}
9665  }
9666  
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)9667  int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9668  {
9669  	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9670  }
9671  EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9672  
kvm_emulate_halt(struct kvm_vcpu * vcpu)9673  int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9674  {
9675  	int ret = kvm_skip_emulated_instruction(vcpu);
9676  	/*
9677  	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9678  	 * KVM_EXIT_DEBUG here.
9679  	 */
9680  	return kvm_emulate_halt_noskip(vcpu) && ret;
9681  }
9682  EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9683  
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)9684  int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9685  {
9686  	int ret = kvm_skip_emulated_instruction(vcpu);
9687  
9688  	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9689  					KVM_EXIT_AP_RESET_HOLD) && ret;
9690  }
9691  EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9692  
9693  #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)9694  static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9695  			        unsigned long clock_type)
9696  {
9697  	struct kvm_clock_pairing clock_pairing;
9698  	struct timespec64 ts;
9699  	u64 cycle;
9700  	int ret;
9701  
9702  	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9703  		return -KVM_EOPNOTSUPP;
9704  
9705  	/*
9706  	 * When tsc is in permanent catchup mode guests won't be able to use
9707  	 * pvclock_read_retry loop to get consistent view of pvclock
9708  	 */
9709  	if (vcpu->arch.tsc_always_catchup)
9710  		return -KVM_EOPNOTSUPP;
9711  
9712  	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9713  		return -KVM_EOPNOTSUPP;
9714  
9715  	clock_pairing.sec = ts.tv_sec;
9716  	clock_pairing.nsec = ts.tv_nsec;
9717  	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9718  	clock_pairing.flags = 0;
9719  	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9720  
9721  	ret = 0;
9722  	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9723  			    sizeof(struct kvm_clock_pairing)))
9724  		ret = -KVM_EFAULT;
9725  
9726  	return ret;
9727  }
9728  #endif
9729  
9730  /*
9731   * kvm_pv_kick_cpu_op:  Kick a vcpu.
9732   *
9733   * @apicid - apicid of vcpu to be kicked.
9734   */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)9735  static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9736  {
9737  	/*
9738  	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9739  	 * common code, e.g. for tracing. Defer initialization to the compiler.
9740  	 */
9741  	struct kvm_lapic_irq lapic_irq = {
9742  		.delivery_mode = APIC_DM_REMRD,
9743  		.dest_mode = APIC_DEST_PHYSICAL,
9744  		.shorthand = APIC_DEST_NOSHORT,
9745  		.dest_id = apicid,
9746  	};
9747  
9748  	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9749  }
9750  
kvm_apicv_activated(struct kvm * kvm)9751  bool kvm_apicv_activated(struct kvm *kvm)
9752  {
9753  	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9754  }
9755  EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9756  
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)9757  bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9758  {
9759  	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9760  	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9761  
9762  	return (vm_reasons | vcpu_reasons) == 0;
9763  }
9764  EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9765  
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)9766  static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9767  				       enum kvm_apicv_inhibit reason, bool set)
9768  {
9769  	if (set)
9770  		__set_bit(reason, inhibits);
9771  	else
9772  		__clear_bit(reason, inhibits);
9773  
9774  	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9775  }
9776  
kvm_apicv_init(struct kvm * kvm)9777  static void kvm_apicv_init(struct kvm *kvm)
9778  {
9779  	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9780  
9781  	init_rwsem(&kvm->arch.apicv_update_lock);
9782  
9783  	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9784  
9785  	if (!enable_apicv)
9786  		set_or_clear_apicv_inhibit(inhibits,
9787  					   APICV_INHIBIT_REASON_DISABLE, true);
9788  }
9789  
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)9790  static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9791  {
9792  	struct kvm_vcpu *target = NULL;
9793  	struct kvm_apic_map *map;
9794  
9795  	vcpu->stat.directed_yield_attempted++;
9796  
9797  	if (single_task_running())
9798  		goto no_yield;
9799  
9800  	rcu_read_lock();
9801  	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9802  
9803  	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9804  		target = map->phys_map[dest_id]->vcpu;
9805  
9806  	rcu_read_unlock();
9807  
9808  	if (!target || !READ_ONCE(target->ready))
9809  		goto no_yield;
9810  
9811  	/* Ignore requests to yield to self */
9812  	if (vcpu == target)
9813  		goto no_yield;
9814  
9815  	if (kvm_vcpu_yield_to(target) <= 0)
9816  		goto no_yield;
9817  
9818  	vcpu->stat.directed_yield_successful++;
9819  
9820  no_yield:
9821  	return;
9822  }
9823  
complete_hypercall_exit(struct kvm_vcpu * vcpu)9824  static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9825  {
9826  	u64 ret = vcpu->run->hypercall.ret;
9827  
9828  	if (!is_64_bit_hypercall(vcpu))
9829  		ret = (u32)ret;
9830  	kvm_rax_write(vcpu, ret);
9831  	++vcpu->stat.hypercalls;
9832  	return kvm_skip_emulated_instruction(vcpu);
9833  }
9834  
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)9835  int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9836  {
9837  	unsigned long nr, a0, a1, a2, a3, ret;
9838  	int op_64_bit;
9839  
9840  	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9841  		return kvm_xen_hypercall(vcpu);
9842  
9843  	if (kvm_hv_hypercall_enabled(vcpu))
9844  		return kvm_hv_hypercall(vcpu);
9845  
9846  	nr = kvm_rax_read(vcpu);
9847  	a0 = kvm_rbx_read(vcpu);
9848  	a1 = kvm_rcx_read(vcpu);
9849  	a2 = kvm_rdx_read(vcpu);
9850  	a3 = kvm_rsi_read(vcpu);
9851  
9852  	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9853  
9854  	op_64_bit = is_64_bit_hypercall(vcpu);
9855  	if (!op_64_bit) {
9856  		nr &= 0xFFFFFFFF;
9857  		a0 &= 0xFFFFFFFF;
9858  		a1 &= 0xFFFFFFFF;
9859  		a2 &= 0xFFFFFFFF;
9860  		a3 &= 0xFFFFFFFF;
9861  	}
9862  
9863  	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9864  		ret = -KVM_EPERM;
9865  		goto out;
9866  	}
9867  
9868  	ret = -KVM_ENOSYS;
9869  
9870  	switch (nr) {
9871  	case KVM_HC_VAPIC_POLL_IRQ:
9872  		ret = 0;
9873  		break;
9874  	case KVM_HC_KICK_CPU:
9875  		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9876  			break;
9877  
9878  		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9879  		kvm_sched_yield(vcpu, a1);
9880  		ret = 0;
9881  		break;
9882  #ifdef CONFIG_X86_64
9883  	case KVM_HC_CLOCK_PAIRING:
9884  		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9885  		break;
9886  #endif
9887  	case KVM_HC_SEND_IPI:
9888  		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9889  			break;
9890  
9891  		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9892  		break;
9893  	case KVM_HC_SCHED_YIELD:
9894  		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9895  			break;
9896  
9897  		kvm_sched_yield(vcpu, a0);
9898  		ret = 0;
9899  		break;
9900  	case KVM_HC_MAP_GPA_RANGE: {
9901  		u64 gpa = a0, npages = a1, attrs = a2;
9902  
9903  		ret = -KVM_ENOSYS;
9904  		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9905  			break;
9906  
9907  		if (!PAGE_ALIGNED(gpa) || !npages ||
9908  		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9909  			ret = -KVM_EINVAL;
9910  			break;
9911  		}
9912  
9913  		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9914  		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9915  		vcpu->run->hypercall.args[0]  = gpa;
9916  		vcpu->run->hypercall.args[1]  = npages;
9917  		vcpu->run->hypercall.args[2]  = attrs;
9918  		vcpu->run->hypercall.flags    = 0;
9919  		if (op_64_bit)
9920  			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
9921  
9922  		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
9923  		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9924  		return 0;
9925  	}
9926  	default:
9927  		ret = -KVM_ENOSYS;
9928  		break;
9929  	}
9930  out:
9931  	if (!op_64_bit)
9932  		ret = (u32)ret;
9933  	kvm_rax_write(vcpu, ret);
9934  
9935  	++vcpu->stat.hypercalls;
9936  	return kvm_skip_emulated_instruction(vcpu);
9937  }
9938  EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9939  
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)9940  static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9941  {
9942  	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9943  	char instruction[3];
9944  	unsigned long rip = kvm_rip_read(vcpu);
9945  
9946  	/*
9947  	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9948  	 * the pieces.
9949  	 */
9950  	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9951  		ctxt->exception.error_code_valid = false;
9952  		ctxt->exception.vector = UD_VECTOR;
9953  		ctxt->have_exception = true;
9954  		return X86EMUL_PROPAGATE_FAULT;
9955  	}
9956  
9957  	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9958  
9959  	return emulator_write_emulated(ctxt, rip, instruction, 3,
9960  		&ctxt->exception);
9961  }
9962  
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)9963  static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9964  {
9965  	return vcpu->run->request_interrupt_window &&
9966  		likely(!pic_in_kernel(vcpu->kvm));
9967  }
9968  
9969  /* Called within kvm->srcu read side.  */
post_kvm_run_save(struct kvm_vcpu * vcpu)9970  static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9971  {
9972  	struct kvm_run *kvm_run = vcpu->run;
9973  
9974  	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9975  	kvm_run->cr8 = kvm_get_cr8(vcpu);
9976  	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9977  
9978  	kvm_run->ready_for_interrupt_injection =
9979  		pic_in_kernel(vcpu->kvm) ||
9980  		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9981  
9982  	if (is_smm(vcpu))
9983  		kvm_run->flags |= KVM_RUN_X86_SMM;
9984  }
9985  
update_cr8_intercept(struct kvm_vcpu * vcpu)9986  static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9987  {
9988  	int max_irr, tpr;
9989  
9990  	if (!kvm_x86_ops.update_cr8_intercept)
9991  		return;
9992  
9993  	if (!lapic_in_kernel(vcpu))
9994  		return;
9995  
9996  	if (vcpu->arch.apic->apicv_active)
9997  		return;
9998  
9999  	if (!vcpu->arch.apic->vapic_addr)
10000  		max_irr = kvm_lapic_find_highest_irr(vcpu);
10001  	else
10002  		max_irr = -1;
10003  
10004  	if (max_irr != -1)
10005  		max_irr >>= 4;
10006  
10007  	tpr = kvm_lapic_get_cr8(vcpu);
10008  
10009  	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
10010  }
10011  
10012  
kvm_check_nested_events(struct kvm_vcpu * vcpu)10013  int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10014  {
10015  	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10016  		kvm_x86_ops.nested_ops->triple_fault(vcpu);
10017  		return 1;
10018  	}
10019  
10020  	return kvm_x86_ops.nested_ops->check_events(vcpu);
10021  }
10022  
kvm_inject_exception(struct kvm_vcpu * vcpu)10023  static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10024  {
10025  	/*
10026  	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10027  	 * exceptions don't report error codes.  The presence of an error code
10028  	 * is carried with the exception and only stripped when the exception
10029  	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10030  	 * report an error code despite the CPU being in Real Mode.
10031  	 */
10032  	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10033  
10034  	trace_kvm_inj_exception(vcpu->arch.exception.vector,
10035  				vcpu->arch.exception.has_error_code,
10036  				vcpu->arch.exception.error_code,
10037  				vcpu->arch.exception.injected);
10038  
10039  	static_call(kvm_x86_inject_exception)(vcpu);
10040  }
10041  
10042  /*
10043   * Check for any event (interrupt or exception) that is ready to be injected,
10044   * and if there is at least one event, inject the event with the highest
10045   * priority.  This handles both "pending" events, i.e. events that have never
10046   * been injected into the guest, and "injected" events, i.e. events that were
10047   * injected as part of a previous VM-Enter, but weren't successfully delivered
10048   * and need to be re-injected.
10049   *
10050   * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10051   * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10052   * be able to inject exceptions in the "middle" of an instruction, and so must
10053   * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10054   * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10055   * boundaries is necessary and correct.
10056   *
10057   * For simplicity, KVM uses a single path to inject all events (except events
10058   * that are injected directly from L1 to L2) and doesn't explicitly track
10059   * instruction boundaries for asynchronous events.  However, because VM-Exits
10060   * that can occur during instruction execution typically result in KVM skipping
10061   * the instruction or injecting an exception, e.g. instruction and exception
10062   * intercepts, and because pending exceptions have higher priority than pending
10063   * interrupts, KVM still honors instruction boundaries in most scenarios.
10064   *
10065   * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10066   * the instruction or inject an exception, then KVM can incorrecty inject a new
10067   * asynchrounous event if the event became pending after the CPU fetched the
10068   * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10069   * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10070   * injected on the restarted instruction instead of being deferred until the
10071   * instruction completes.
10072   *
10073   * In practice, this virtualization hole is unlikely to be observed by the
10074   * guest, and even less likely to cause functional problems.  To detect the
10075   * hole, the guest would have to trigger an event on a side effect of an early
10076   * phase of instruction execution, e.g. on the instruction fetch from memory.
10077   * And for it to be a functional problem, the guest would need to depend on the
10078   * ordering between that side effect, the instruction completing, _and_ the
10079   * delivery of the asynchronous event.
10080   */
kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)10081  static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10082  				       bool *req_immediate_exit)
10083  {
10084  	bool can_inject;
10085  	int r;
10086  
10087  	/*
10088  	 * Process nested events first, as nested VM-Exit supercedes event
10089  	 * re-injection.  If there's an event queued for re-injection, it will
10090  	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10091  	 */
10092  	if (is_guest_mode(vcpu))
10093  		r = kvm_check_nested_events(vcpu);
10094  	else
10095  		r = 0;
10096  
10097  	/*
10098  	 * Re-inject exceptions and events *especially* if immediate entry+exit
10099  	 * to/from L2 is needed, as any event that has already been injected
10100  	 * into L2 needs to complete its lifecycle before injecting a new event.
10101  	 *
10102  	 * Don't re-inject an NMI or interrupt if there is a pending exception.
10103  	 * This collision arises if an exception occurred while vectoring the
10104  	 * injected event, KVM intercepted said exception, and KVM ultimately
10105  	 * determined the fault belongs to the guest and queues the exception
10106  	 * for injection back into the guest.
10107  	 *
10108  	 * "Injected" interrupts can also collide with pending exceptions if
10109  	 * userspace ignores the "ready for injection" flag and blindly queues
10110  	 * an interrupt.  In that case, prioritizing the exception is correct,
10111  	 * as the exception "occurred" before the exit to userspace.  Trap-like
10112  	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10113  	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10114  	 * priority, they're only generated (pended) during instruction
10115  	 * execution, and interrupts are recognized at instruction boundaries.
10116  	 * Thus a pending fault-like exception means the fault occurred on the
10117  	 * *previous* instruction and must be serviced prior to recognizing any
10118  	 * new events in order to fully complete the previous instruction.
10119  	 */
10120  	if (vcpu->arch.exception.injected)
10121  		kvm_inject_exception(vcpu);
10122  	else if (kvm_is_exception_pending(vcpu))
10123  		; /* see above */
10124  	else if (vcpu->arch.nmi_injected)
10125  		static_call(kvm_x86_inject_nmi)(vcpu);
10126  	else if (vcpu->arch.interrupt.injected)
10127  		static_call(kvm_x86_inject_irq)(vcpu, true);
10128  
10129  	/*
10130  	 * Exceptions that morph to VM-Exits are handled above, and pending
10131  	 * exceptions on top of injected exceptions that do not VM-Exit should
10132  	 * either morph to #DF or, sadly, override the injected exception.
10133  	 */
10134  	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10135  		     vcpu->arch.exception.pending);
10136  
10137  	/*
10138  	 * Bail if immediate entry+exit to/from the guest is needed to complete
10139  	 * nested VM-Enter or event re-injection so that a different pending
10140  	 * event can be serviced (or if KVM needs to exit to userspace).
10141  	 *
10142  	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10143  	 * VM-Exit will have cleared exceptions that were meant for L2, but
10144  	 * there may now be events that can be injected into L1.
10145  	 */
10146  	if (r < 0)
10147  		goto out;
10148  
10149  	/*
10150  	 * A pending exception VM-Exit should either result in nested VM-Exit
10151  	 * or force an immediate re-entry and exit to/from L2, and exception
10152  	 * VM-Exits cannot be injected (flag should _never_ be set).
10153  	 */
10154  	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10155  		     vcpu->arch.exception_vmexit.pending);
10156  
10157  	/*
10158  	 * New events, other than exceptions, cannot be injected if KVM needs
10159  	 * to re-inject a previous event.  See above comments on re-injecting
10160  	 * for why pending exceptions get priority.
10161  	 */
10162  	can_inject = !kvm_event_needs_reinjection(vcpu);
10163  
10164  	if (vcpu->arch.exception.pending) {
10165  		/*
10166  		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10167  		 * value pushed on the stack.  Trap-like exception and all #DBs
10168  		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10169  		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10170  		 *
10171  		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10172  		 * describe the behavior of General Detect #DBs, which are
10173  		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10174  		 */
10175  		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10176  			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10177  					     X86_EFLAGS_RF);
10178  
10179  		if (vcpu->arch.exception.vector == DB_VECTOR) {
10180  			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10181  			if (vcpu->arch.dr7 & DR7_GD) {
10182  				vcpu->arch.dr7 &= ~DR7_GD;
10183  				kvm_update_dr7(vcpu);
10184  			}
10185  		}
10186  
10187  		kvm_inject_exception(vcpu);
10188  
10189  		vcpu->arch.exception.pending = false;
10190  		vcpu->arch.exception.injected = true;
10191  
10192  		can_inject = false;
10193  	}
10194  
10195  	/* Don't inject interrupts if the user asked to avoid doing so */
10196  	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10197  		return 0;
10198  
10199  	/*
10200  	 * Finally, inject interrupt events.  If an event cannot be injected
10201  	 * due to architectural conditions (e.g. IF=0) a window-open exit
10202  	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10203  	 * and can architecturally be injected, but we cannot do it right now:
10204  	 * an interrupt could have arrived just now and we have to inject it
10205  	 * as a vmexit, or there could already an event in the queue, which is
10206  	 * indicated by can_inject.  In that case we request an immediate exit
10207  	 * in order to make progress and get back here for another iteration.
10208  	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10209  	 */
10210  #ifdef CONFIG_KVM_SMM
10211  	if (vcpu->arch.smi_pending) {
10212  		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10213  		if (r < 0)
10214  			goto out;
10215  		if (r) {
10216  			vcpu->arch.smi_pending = false;
10217  			++vcpu->arch.smi_count;
10218  			enter_smm(vcpu);
10219  			can_inject = false;
10220  		} else
10221  			static_call(kvm_x86_enable_smi_window)(vcpu);
10222  	}
10223  #endif
10224  
10225  	if (vcpu->arch.nmi_pending) {
10226  		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10227  		if (r < 0)
10228  			goto out;
10229  		if (r) {
10230  			--vcpu->arch.nmi_pending;
10231  			vcpu->arch.nmi_injected = true;
10232  			static_call(kvm_x86_inject_nmi)(vcpu);
10233  			can_inject = false;
10234  			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10235  		}
10236  		if (vcpu->arch.nmi_pending)
10237  			static_call(kvm_x86_enable_nmi_window)(vcpu);
10238  	}
10239  
10240  	if (kvm_cpu_has_injectable_intr(vcpu)) {
10241  		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10242  		if (r < 0)
10243  			goto out;
10244  		if (r) {
10245  			int irq = kvm_cpu_get_interrupt(vcpu);
10246  
10247  			if (!WARN_ON_ONCE(irq == -1)) {
10248  				kvm_queue_interrupt(vcpu, irq, false);
10249  				static_call(kvm_x86_inject_irq)(vcpu, false);
10250  				WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10251  			}
10252  		}
10253  		if (kvm_cpu_has_injectable_intr(vcpu))
10254  			static_call(kvm_x86_enable_irq_window)(vcpu);
10255  	}
10256  
10257  	if (is_guest_mode(vcpu) &&
10258  	    kvm_x86_ops.nested_ops->has_events &&
10259  	    kvm_x86_ops.nested_ops->has_events(vcpu, true))
10260  		*req_immediate_exit = true;
10261  
10262  	/*
10263  	 * KVM must never queue a new exception while injecting an event; KVM
10264  	 * is done emulating and should only propagate the to-be-injected event
10265  	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10266  	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10267  	 * exception and start the cycle all over.
10268  	 *
10269  	 * Exempt triple faults as they have special handling and won't put the
10270  	 * vCPU into an infinite loop.  Triple fault can be queued when running
10271  	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10272  	 * Mode events (see kvm_inject_realmode_interrupt()).
10273  	 */
10274  	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10275  		     vcpu->arch.exception_vmexit.pending);
10276  	return 0;
10277  
10278  out:
10279  	if (r == -EBUSY) {
10280  		*req_immediate_exit = true;
10281  		r = 0;
10282  	}
10283  	return r;
10284  }
10285  
process_nmi(struct kvm_vcpu * vcpu)10286  static void process_nmi(struct kvm_vcpu *vcpu)
10287  {
10288  	unsigned int limit;
10289  
10290  	/*
10291  	 * x86 is limited to one NMI pending, but because KVM can't react to
10292  	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10293  	 * scheduled out, KVM needs to play nice with two queued NMIs showing
10294  	 * up at the same time.  To handle this scenario, allow two NMIs to be
10295  	 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10296  	 * waiting for a previous NMI injection to complete (which effectively
10297  	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10298  	 * will request an NMI window to handle the second NMI.
10299  	 */
10300  	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10301  		limit = 1;
10302  	else
10303  		limit = 2;
10304  
10305  	/*
10306  	 * Adjust the limit to account for pending virtual NMIs, which aren't
10307  	 * tracked in vcpu->arch.nmi_pending.
10308  	 */
10309  	if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10310  		limit--;
10311  
10312  	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10313  	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10314  
10315  	if (vcpu->arch.nmi_pending &&
10316  	    (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10317  		vcpu->arch.nmi_pending--;
10318  
10319  	if (vcpu->arch.nmi_pending)
10320  		kvm_make_request(KVM_REQ_EVENT, vcpu);
10321  }
10322  
10323  /* Return total number of NMIs pending injection to the VM */
kvm_get_nr_pending_nmis(struct kvm_vcpu * vcpu)10324  int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10325  {
10326  	return vcpu->arch.nmi_pending +
10327  	       static_call(kvm_x86_is_vnmi_pending)(vcpu);
10328  }
10329  
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10330  void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10331  				       unsigned long *vcpu_bitmap)
10332  {
10333  	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10334  }
10335  
kvm_make_scan_ioapic_request(struct kvm * kvm)10336  void kvm_make_scan_ioapic_request(struct kvm *kvm)
10337  {
10338  	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10339  }
10340  
__kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10341  void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10342  {
10343  	struct kvm_lapic *apic = vcpu->arch.apic;
10344  	bool activate;
10345  
10346  	if (!lapic_in_kernel(vcpu))
10347  		return;
10348  
10349  	down_read(&vcpu->kvm->arch.apicv_update_lock);
10350  	preempt_disable();
10351  
10352  	/* Do not activate APICV when APIC is disabled */
10353  	activate = kvm_vcpu_apicv_activated(vcpu) &&
10354  		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10355  
10356  	if (apic->apicv_active == activate)
10357  		goto out;
10358  
10359  	apic->apicv_active = activate;
10360  	kvm_apic_update_apicv(vcpu);
10361  	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10362  
10363  	/*
10364  	 * When APICv gets disabled, we may still have injected interrupts
10365  	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10366  	 * still active when the interrupt got accepted. Make sure
10367  	 * kvm_check_and_inject_events() is called to check for that.
10368  	 */
10369  	if (!apic->apicv_active)
10370  		kvm_make_request(KVM_REQ_EVENT, vcpu);
10371  
10372  out:
10373  	preempt_enable();
10374  	up_read(&vcpu->kvm->arch.apicv_update_lock);
10375  }
10376  EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10377  
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10378  static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10379  {
10380  	if (!lapic_in_kernel(vcpu))
10381  		return;
10382  
10383  	/*
10384  	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10385  	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10386  	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10387  	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10388  	 * this case so that KVM can the AVIC doorbell to inject interrupts to
10389  	 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10390  	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10391  	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10392  	 * access page is sticky.
10393  	 */
10394  	if (apic_x2apic_mode(vcpu->arch.apic) &&
10395  	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10396  		kvm_inhibit_apic_access_page(vcpu);
10397  
10398  	__kvm_vcpu_update_apicv(vcpu);
10399  }
10400  
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10401  void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10402  				      enum kvm_apicv_inhibit reason, bool set)
10403  {
10404  	unsigned long old, new;
10405  
10406  	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10407  
10408  	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10409  		return;
10410  
10411  	old = new = kvm->arch.apicv_inhibit_reasons;
10412  
10413  	set_or_clear_apicv_inhibit(&new, reason, set);
10414  
10415  	if (!!old != !!new) {
10416  		/*
10417  		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10418  		 * false positives in the sanity check WARN in svm_vcpu_run().
10419  		 * This task will wait for all vCPUs to ack the kick IRQ before
10420  		 * updating apicv_inhibit_reasons, and all other vCPUs will
10421  		 * block on acquiring apicv_update_lock so that vCPUs can't
10422  		 * redo svm_vcpu_run() without seeing the new inhibit state.
10423  		 *
10424  		 * Note, holding apicv_update_lock and taking it in the read
10425  		 * side (handling the request) also prevents other vCPUs from
10426  		 * servicing the request with a stale apicv_inhibit_reasons.
10427  		 */
10428  		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10429  		kvm->arch.apicv_inhibit_reasons = new;
10430  		if (new) {
10431  			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10432  			int idx = srcu_read_lock(&kvm->srcu);
10433  
10434  			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10435  			srcu_read_unlock(&kvm->srcu, idx);
10436  		}
10437  	} else {
10438  		kvm->arch.apicv_inhibit_reasons = new;
10439  	}
10440  }
10441  
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10442  void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10443  				    enum kvm_apicv_inhibit reason, bool set)
10444  {
10445  	if (!enable_apicv)
10446  		return;
10447  
10448  	down_write(&kvm->arch.apicv_update_lock);
10449  	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10450  	up_write(&kvm->arch.apicv_update_lock);
10451  }
10452  EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10453  
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10454  static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10455  {
10456  	if (!kvm_apic_present(vcpu))
10457  		return;
10458  
10459  	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10460  
10461  	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10462  
10463  	if (irqchip_split(vcpu->kvm))
10464  		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10465  	else if (ioapic_in_kernel(vcpu->kvm))
10466  		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10467  
10468  	if (is_guest_mode(vcpu))
10469  		vcpu->arch.load_eoi_exitmap_pending = true;
10470  	else
10471  		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10472  }
10473  
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)10474  static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10475  {
10476  	u64 eoi_exit_bitmap[4];
10477  
10478  	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10479  		return;
10480  
10481  	if (to_hv_vcpu(vcpu)) {
10482  		bitmap_or((ulong *)eoi_exit_bitmap,
10483  			  vcpu->arch.ioapic_handled_vectors,
10484  			  to_hv_synic(vcpu)->vec_bitmap, 256);
10485  		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10486  		return;
10487  	}
10488  
10489  	static_call_cond(kvm_x86_load_eoi_exitmap)(
10490  		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10491  }
10492  
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)10493  void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10494  {
10495  	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10496  }
10497  
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)10498  static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10499  {
10500  	if (!lapic_in_kernel(vcpu))
10501  		return;
10502  
10503  	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10504  }
10505  
__kvm_request_immediate_exit(struct kvm_vcpu * vcpu)10506  void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10507  {
10508  	smp_send_reschedule(vcpu->cpu);
10509  }
10510  EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10511  
10512  /*
10513   * Called within kvm->srcu read side.
10514   * Returns 1 to let vcpu_run() continue the guest execution loop without
10515   * exiting to the userspace.  Otherwise, the value will be returned to the
10516   * userspace.
10517   */
vcpu_enter_guest(struct kvm_vcpu * vcpu)10518  static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10519  {
10520  	int r;
10521  	bool req_int_win =
10522  		dm_request_for_irq_injection(vcpu) &&
10523  		kvm_cpu_accept_dm_intr(vcpu);
10524  	fastpath_t exit_fastpath;
10525  
10526  	bool req_immediate_exit = false;
10527  
10528  	if (kvm_request_pending(vcpu)) {
10529  		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10530  			r = -EIO;
10531  			goto out;
10532  		}
10533  
10534  		if (kvm_dirty_ring_check_request(vcpu)) {
10535  			r = 0;
10536  			goto out;
10537  		}
10538  
10539  		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10540  			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10541  				r = 0;
10542  				goto out;
10543  			}
10544  		}
10545  		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10546  			kvm_mmu_free_obsolete_roots(vcpu);
10547  		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10548  			__kvm_migrate_timers(vcpu);
10549  		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10550  			kvm_update_masterclock(vcpu->kvm);
10551  		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10552  			kvm_gen_kvmclock_update(vcpu);
10553  		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10554  			r = kvm_guest_time_update(vcpu);
10555  			if (unlikely(r))
10556  				goto out;
10557  		}
10558  		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10559  			kvm_mmu_sync_roots(vcpu);
10560  		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10561  			kvm_mmu_load_pgd(vcpu);
10562  
10563  		/*
10564  		 * Note, the order matters here, as flushing "all" TLB entries
10565  		 * also flushes the "current" TLB entries, i.e. servicing the
10566  		 * flush "all" will clear any request to flush "current".
10567  		 */
10568  		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10569  			kvm_vcpu_flush_tlb_all(vcpu);
10570  
10571  		kvm_service_local_tlb_flush_requests(vcpu);
10572  
10573  		/*
10574  		 * Fall back to a "full" guest flush if Hyper-V's precise
10575  		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10576  		 * the flushes are considered "remote" and not "local" because
10577  		 * the requests can be initiated from other vCPUs.
10578  		 */
10579  		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10580  		    kvm_hv_vcpu_flush_tlb(vcpu))
10581  			kvm_vcpu_flush_tlb_guest(vcpu);
10582  
10583  		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10584  			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10585  			r = 0;
10586  			goto out;
10587  		}
10588  		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10589  			if (is_guest_mode(vcpu))
10590  				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10591  
10592  			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10593  				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10594  				vcpu->mmio_needed = 0;
10595  				r = 0;
10596  				goto out;
10597  			}
10598  		}
10599  		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10600  			/* Page is swapped out. Do synthetic halt */
10601  			vcpu->arch.apf.halted = true;
10602  			r = 1;
10603  			goto out;
10604  		}
10605  		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10606  			record_steal_time(vcpu);
10607  #ifdef CONFIG_KVM_SMM
10608  		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10609  			process_smi(vcpu);
10610  #endif
10611  		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10612  			process_nmi(vcpu);
10613  		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10614  			kvm_pmu_handle_event(vcpu);
10615  		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10616  			kvm_pmu_deliver_pmi(vcpu);
10617  		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10618  			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10619  			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10620  				     vcpu->arch.ioapic_handled_vectors)) {
10621  				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10622  				vcpu->run->eoi.vector =
10623  						vcpu->arch.pending_ioapic_eoi;
10624  				r = 0;
10625  				goto out;
10626  			}
10627  		}
10628  		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10629  			vcpu_scan_ioapic(vcpu);
10630  		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10631  			vcpu_load_eoi_exitmap(vcpu);
10632  		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10633  			kvm_vcpu_reload_apic_access_page(vcpu);
10634  		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10635  			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10636  			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10637  			vcpu->run->system_event.ndata = 0;
10638  			r = 0;
10639  			goto out;
10640  		}
10641  		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10642  			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10643  			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10644  			vcpu->run->system_event.ndata = 0;
10645  			r = 0;
10646  			goto out;
10647  		}
10648  		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10649  			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10650  
10651  			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10652  			vcpu->run->hyperv = hv_vcpu->exit;
10653  			r = 0;
10654  			goto out;
10655  		}
10656  
10657  		/*
10658  		 * KVM_REQ_HV_STIMER has to be processed after
10659  		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10660  		 * depend on the guest clock being up-to-date
10661  		 */
10662  		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10663  			kvm_hv_process_stimers(vcpu);
10664  		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10665  			kvm_vcpu_update_apicv(vcpu);
10666  		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10667  			kvm_check_async_pf_completion(vcpu);
10668  		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10669  			static_call(kvm_x86_msr_filter_changed)(vcpu);
10670  
10671  		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10672  			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10673  	}
10674  
10675  	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10676  	    kvm_xen_has_interrupt(vcpu)) {
10677  		++vcpu->stat.req_event;
10678  		r = kvm_apic_accept_events(vcpu);
10679  		if (r < 0) {
10680  			r = 0;
10681  			goto out;
10682  		}
10683  		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10684  			r = 1;
10685  			goto out;
10686  		}
10687  
10688  		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10689  		if (r < 0) {
10690  			r = 0;
10691  			goto out;
10692  		}
10693  		if (req_int_win)
10694  			static_call(kvm_x86_enable_irq_window)(vcpu);
10695  
10696  		if (kvm_lapic_enabled(vcpu)) {
10697  			update_cr8_intercept(vcpu);
10698  			kvm_lapic_sync_to_vapic(vcpu);
10699  		}
10700  	}
10701  
10702  	r = kvm_mmu_reload(vcpu);
10703  	if (unlikely(r)) {
10704  		goto cancel_injection;
10705  	}
10706  
10707  	preempt_disable();
10708  
10709  	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10710  
10711  	/*
10712  	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10713  	 * IPI are then delayed after guest entry, which ensures that they
10714  	 * result in virtual interrupt delivery.
10715  	 */
10716  	local_irq_disable();
10717  
10718  	/* Store vcpu->apicv_active before vcpu->mode.  */
10719  	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10720  
10721  	kvm_vcpu_srcu_read_unlock(vcpu);
10722  
10723  	/*
10724  	 * 1) We should set ->mode before checking ->requests.  Please see
10725  	 * the comment in kvm_vcpu_exiting_guest_mode().
10726  	 *
10727  	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10728  	 * pairs with the memory barrier implicit in pi_test_and_set_on
10729  	 * (see vmx_deliver_posted_interrupt).
10730  	 *
10731  	 * 3) This also orders the write to mode from any reads to the page
10732  	 * tables done while the VCPU is running.  Please see the comment
10733  	 * in kvm_flush_remote_tlbs.
10734  	 */
10735  	smp_mb__after_srcu_read_unlock();
10736  
10737  	/*
10738  	 * Process pending posted interrupts to handle the case where the
10739  	 * notification IRQ arrived in the host, or was never sent (because the
10740  	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10741  	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10742  	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10743  	 */
10744  	if (kvm_lapic_enabled(vcpu))
10745  		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10746  
10747  	if (kvm_vcpu_exit_request(vcpu)) {
10748  		vcpu->mode = OUTSIDE_GUEST_MODE;
10749  		smp_wmb();
10750  		local_irq_enable();
10751  		preempt_enable();
10752  		kvm_vcpu_srcu_read_lock(vcpu);
10753  		r = 1;
10754  		goto cancel_injection;
10755  	}
10756  
10757  	if (req_immediate_exit) {
10758  		kvm_make_request(KVM_REQ_EVENT, vcpu);
10759  		static_call(kvm_x86_request_immediate_exit)(vcpu);
10760  	}
10761  
10762  	fpregs_assert_state_consistent();
10763  	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10764  		switch_fpu_return();
10765  
10766  	if (vcpu->arch.guest_fpu.xfd_err)
10767  		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10768  
10769  	if (unlikely(vcpu->arch.switch_db_regs)) {
10770  		set_debugreg(0, 7);
10771  		set_debugreg(vcpu->arch.eff_db[0], 0);
10772  		set_debugreg(vcpu->arch.eff_db[1], 1);
10773  		set_debugreg(vcpu->arch.eff_db[2], 2);
10774  		set_debugreg(vcpu->arch.eff_db[3], 3);
10775  	} else if (unlikely(hw_breakpoint_active())) {
10776  		set_debugreg(0, 7);
10777  	}
10778  
10779  	guest_timing_enter_irqoff();
10780  
10781  	for (;;) {
10782  		/*
10783  		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10784  		 * update must kick and wait for all vCPUs before toggling the
10785  		 * per-VM state, and responsing vCPUs must wait for the update
10786  		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10787  		 */
10788  		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10789  			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10790  
10791  		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10792  		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10793  			break;
10794  
10795  		if (kvm_lapic_enabled(vcpu))
10796  			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10797  
10798  		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10799  			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10800  			break;
10801  		}
10802  
10803  		/* Note, VM-Exits that go down the "slow" path are accounted below. */
10804  		++vcpu->stat.exits;
10805  	}
10806  
10807  	/*
10808  	 * Do this here before restoring debug registers on the host.  And
10809  	 * since we do this before handling the vmexit, a DR access vmexit
10810  	 * can (a) read the correct value of the debug registers, (b) set
10811  	 * KVM_DEBUGREG_WONT_EXIT again.
10812  	 */
10813  	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10814  		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10815  		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10816  		kvm_update_dr0123(vcpu);
10817  		kvm_update_dr7(vcpu);
10818  	}
10819  
10820  	/*
10821  	 * If the guest has used debug registers, at least dr7
10822  	 * will be disabled while returning to the host.
10823  	 * If we don't have active breakpoints in the host, we don't
10824  	 * care about the messed up debug address registers. But if
10825  	 * we have some of them active, restore the old state.
10826  	 */
10827  	if (hw_breakpoint_active())
10828  		hw_breakpoint_restore();
10829  
10830  	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10831  	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10832  
10833  	vcpu->mode = OUTSIDE_GUEST_MODE;
10834  	smp_wmb();
10835  
10836  	/*
10837  	 * Sync xfd before calling handle_exit_irqoff() which may
10838  	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10839  	 * in #NM irqoff handler).
10840  	 */
10841  	if (vcpu->arch.xfd_no_write_intercept)
10842  		fpu_sync_guest_vmexit_xfd_state();
10843  
10844  	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10845  
10846  	if (vcpu->arch.guest_fpu.xfd_err)
10847  		wrmsrl(MSR_IA32_XFD_ERR, 0);
10848  
10849  	/*
10850  	 * Consume any pending interrupts, including the possible source of
10851  	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10852  	 * An instruction is required after local_irq_enable() to fully unblock
10853  	 * interrupts on processors that implement an interrupt shadow, the
10854  	 * stat.exits increment will do nicely.
10855  	 */
10856  	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10857  	local_irq_enable();
10858  	++vcpu->stat.exits;
10859  	local_irq_disable();
10860  	kvm_after_interrupt(vcpu);
10861  
10862  	/*
10863  	 * Wait until after servicing IRQs to account guest time so that any
10864  	 * ticks that occurred while running the guest are properly accounted
10865  	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10866  	 * of accounting via context tracking, but the loss of accuracy is
10867  	 * acceptable for all known use cases.
10868  	 */
10869  	guest_timing_exit_irqoff();
10870  
10871  	local_irq_enable();
10872  	preempt_enable();
10873  
10874  	kvm_vcpu_srcu_read_lock(vcpu);
10875  
10876  	/*
10877  	 * Profile KVM exit RIPs:
10878  	 */
10879  	if (unlikely(prof_on == KVM_PROFILING)) {
10880  		unsigned long rip = kvm_rip_read(vcpu);
10881  		profile_hit(KVM_PROFILING, (void *)rip);
10882  	}
10883  
10884  	if (unlikely(vcpu->arch.tsc_always_catchup))
10885  		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10886  
10887  	if (vcpu->arch.apic_attention)
10888  		kvm_lapic_sync_from_vapic(vcpu);
10889  
10890  	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10891  	return r;
10892  
10893  cancel_injection:
10894  	if (req_immediate_exit)
10895  		kvm_make_request(KVM_REQ_EVENT, vcpu);
10896  	static_call(kvm_x86_cancel_injection)(vcpu);
10897  	if (unlikely(vcpu->arch.apic_attention))
10898  		kvm_lapic_sync_from_vapic(vcpu);
10899  out:
10900  	return r;
10901  }
10902  
10903  /* Called within kvm->srcu read side.  */
vcpu_block(struct kvm_vcpu * vcpu)10904  static inline int vcpu_block(struct kvm_vcpu *vcpu)
10905  {
10906  	bool hv_timer;
10907  
10908  	if (!kvm_arch_vcpu_runnable(vcpu)) {
10909  		/*
10910  		 * Switch to the software timer before halt-polling/blocking as
10911  		 * the guest's timer may be a break event for the vCPU, and the
10912  		 * hypervisor timer runs only when the CPU is in guest mode.
10913  		 * Switch before halt-polling so that KVM recognizes an expired
10914  		 * timer before blocking.
10915  		 */
10916  		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10917  		if (hv_timer)
10918  			kvm_lapic_switch_to_sw_timer(vcpu);
10919  
10920  		kvm_vcpu_srcu_read_unlock(vcpu);
10921  		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10922  			kvm_vcpu_halt(vcpu);
10923  		else
10924  			kvm_vcpu_block(vcpu);
10925  		kvm_vcpu_srcu_read_lock(vcpu);
10926  
10927  		if (hv_timer)
10928  			kvm_lapic_switch_to_hv_timer(vcpu);
10929  
10930  		/*
10931  		 * If the vCPU is not runnable, a signal or another host event
10932  		 * of some kind is pending; service it without changing the
10933  		 * vCPU's activity state.
10934  		 */
10935  		if (!kvm_arch_vcpu_runnable(vcpu))
10936  			return 1;
10937  	}
10938  
10939  	/*
10940  	 * Evaluate nested events before exiting the halted state.  This allows
10941  	 * the halt state to be recorded properly in the VMCS12's activity
10942  	 * state field (AMD does not have a similar field and a VM-Exit always
10943  	 * causes a spurious wakeup from HLT).
10944  	 */
10945  	if (is_guest_mode(vcpu)) {
10946  		if (kvm_check_nested_events(vcpu) < 0)
10947  			return 0;
10948  	}
10949  
10950  	if (kvm_apic_accept_events(vcpu) < 0)
10951  		return 0;
10952  	switch(vcpu->arch.mp_state) {
10953  	case KVM_MP_STATE_HALTED:
10954  	case KVM_MP_STATE_AP_RESET_HOLD:
10955  		vcpu->arch.pv.pv_unhalted = false;
10956  		vcpu->arch.mp_state =
10957  			KVM_MP_STATE_RUNNABLE;
10958  		fallthrough;
10959  	case KVM_MP_STATE_RUNNABLE:
10960  		vcpu->arch.apf.halted = false;
10961  		break;
10962  	case KVM_MP_STATE_INIT_RECEIVED:
10963  		break;
10964  	default:
10965  		WARN_ON_ONCE(1);
10966  		break;
10967  	}
10968  	return 1;
10969  }
10970  
kvm_vcpu_running(struct kvm_vcpu * vcpu)10971  static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10972  {
10973  	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10974  		!vcpu->arch.apf.halted);
10975  }
10976  
10977  /* Called within kvm->srcu read side.  */
vcpu_run(struct kvm_vcpu * vcpu)10978  static int vcpu_run(struct kvm_vcpu *vcpu)
10979  {
10980  	int r;
10981  
10982  	vcpu->arch.l1tf_flush_l1d = true;
10983  
10984  	for (;;) {
10985  		/*
10986  		 * If another guest vCPU requests a PV TLB flush in the middle
10987  		 * of instruction emulation, the rest of the emulation could
10988  		 * use a stale page translation. Assume that any code after
10989  		 * this point can start executing an instruction.
10990  		 */
10991  		vcpu->arch.at_instruction_boundary = false;
10992  		if (kvm_vcpu_running(vcpu)) {
10993  			r = vcpu_enter_guest(vcpu);
10994  		} else {
10995  			r = vcpu_block(vcpu);
10996  		}
10997  
10998  		if (r <= 0)
10999  			break;
11000  
11001  		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11002  		if (kvm_xen_has_pending_events(vcpu))
11003  			kvm_xen_inject_pending_events(vcpu);
11004  
11005  		if (kvm_cpu_has_pending_timer(vcpu))
11006  			kvm_inject_pending_timer_irqs(vcpu);
11007  
11008  		if (dm_request_for_irq_injection(vcpu) &&
11009  			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11010  			r = 0;
11011  			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11012  			++vcpu->stat.request_irq_exits;
11013  			break;
11014  		}
11015  
11016  		if (__xfer_to_guest_mode_work_pending()) {
11017  			kvm_vcpu_srcu_read_unlock(vcpu);
11018  			r = xfer_to_guest_mode_handle_work(vcpu);
11019  			kvm_vcpu_srcu_read_lock(vcpu);
11020  			if (r)
11021  				return r;
11022  		}
11023  	}
11024  
11025  	return r;
11026  }
11027  
complete_emulated_io(struct kvm_vcpu * vcpu)11028  static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11029  {
11030  	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11031  }
11032  
complete_emulated_pio(struct kvm_vcpu * vcpu)11033  static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11034  {
11035  	BUG_ON(!vcpu->arch.pio.count);
11036  
11037  	return complete_emulated_io(vcpu);
11038  }
11039  
11040  /*
11041   * Implements the following, as a state machine:
11042   *
11043   * read:
11044   *   for each fragment
11045   *     for each mmio piece in the fragment
11046   *       write gpa, len
11047   *       exit
11048   *       copy data
11049   *   execute insn
11050   *
11051   * write:
11052   *   for each fragment
11053   *     for each mmio piece in the fragment
11054   *       write gpa, len
11055   *       copy data
11056   *       exit
11057   */
complete_emulated_mmio(struct kvm_vcpu * vcpu)11058  static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11059  {
11060  	struct kvm_run *run = vcpu->run;
11061  	struct kvm_mmio_fragment *frag;
11062  	unsigned len;
11063  
11064  	BUG_ON(!vcpu->mmio_needed);
11065  
11066  	/* Complete previous fragment */
11067  	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11068  	len = min(8u, frag->len);
11069  	if (!vcpu->mmio_is_write)
11070  		memcpy(frag->data, run->mmio.data, len);
11071  
11072  	if (frag->len <= 8) {
11073  		/* Switch to the next fragment. */
11074  		frag++;
11075  		vcpu->mmio_cur_fragment++;
11076  	} else {
11077  		/* Go forward to the next mmio piece. */
11078  		frag->data += len;
11079  		frag->gpa += len;
11080  		frag->len -= len;
11081  	}
11082  
11083  	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11084  		vcpu->mmio_needed = 0;
11085  
11086  		/* FIXME: return into emulator if single-stepping.  */
11087  		if (vcpu->mmio_is_write)
11088  			return 1;
11089  		vcpu->mmio_read_completed = 1;
11090  		return complete_emulated_io(vcpu);
11091  	}
11092  
11093  	run->exit_reason = KVM_EXIT_MMIO;
11094  	run->mmio.phys_addr = frag->gpa;
11095  	if (vcpu->mmio_is_write)
11096  		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11097  	run->mmio.len = min(8u, frag->len);
11098  	run->mmio.is_write = vcpu->mmio_is_write;
11099  	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11100  	return 0;
11101  }
11102  
11103  /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11104  static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11105  {
11106  	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11107  	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11108  	trace_kvm_fpu(1);
11109  }
11110  
11111  /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11112  static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11113  {
11114  	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11115  	++vcpu->stat.fpu_reload;
11116  	trace_kvm_fpu(0);
11117  }
11118  
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11119  int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11120  {
11121  	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11122  	struct kvm_run *kvm_run = vcpu->run;
11123  	int r;
11124  
11125  	vcpu_load(vcpu);
11126  	kvm_sigset_activate(vcpu);
11127  	kvm_run->flags = 0;
11128  	kvm_load_guest_fpu(vcpu);
11129  
11130  	kvm_vcpu_srcu_read_lock(vcpu);
11131  	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11132  		if (kvm_run->immediate_exit) {
11133  			r = -EINTR;
11134  			goto out;
11135  		}
11136  
11137  		/*
11138  		 * Don't bother switching APIC timer emulation from the
11139  		 * hypervisor timer to the software timer, the only way for the
11140  		 * APIC timer to be active is if userspace stuffed vCPU state,
11141  		 * i.e. put the vCPU into a nonsensical state.  Only an INIT
11142  		 * will transition the vCPU out of UNINITIALIZED (without more
11143  		 * state stuffing from userspace), which will reset the local
11144  		 * APIC and thus cancel the timer or drop the IRQ (if the timer
11145  		 * already expired).
11146  		 */
11147  		kvm_vcpu_srcu_read_unlock(vcpu);
11148  		kvm_vcpu_block(vcpu);
11149  		kvm_vcpu_srcu_read_lock(vcpu);
11150  
11151  		if (kvm_apic_accept_events(vcpu) < 0) {
11152  			r = 0;
11153  			goto out;
11154  		}
11155  		r = -EAGAIN;
11156  		if (signal_pending(current)) {
11157  			r = -EINTR;
11158  			kvm_run->exit_reason = KVM_EXIT_INTR;
11159  			++vcpu->stat.signal_exits;
11160  		}
11161  		goto out;
11162  	}
11163  
11164  	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11165  	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11166  		r = -EINVAL;
11167  		goto out;
11168  	}
11169  
11170  	if (kvm_run->kvm_dirty_regs) {
11171  		r = sync_regs(vcpu);
11172  		if (r != 0)
11173  			goto out;
11174  	}
11175  
11176  	/* re-sync apic's tpr */
11177  	if (!lapic_in_kernel(vcpu)) {
11178  		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11179  			r = -EINVAL;
11180  			goto out;
11181  		}
11182  	}
11183  
11184  	/*
11185  	 * If userspace set a pending exception and L2 is active, convert it to
11186  	 * a pending VM-Exit if L1 wants to intercept the exception.
11187  	 */
11188  	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11189  	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11190  							ex->error_code)) {
11191  		kvm_queue_exception_vmexit(vcpu, ex->vector,
11192  					   ex->has_error_code, ex->error_code,
11193  					   ex->has_payload, ex->payload);
11194  		ex->injected = false;
11195  		ex->pending = false;
11196  	}
11197  	vcpu->arch.exception_from_userspace = false;
11198  
11199  	if (unlikely(vcpu->arch.complete_userspace_io)) {
11200  		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11201  		vcpu->arch.complete_userspace_io = NULL;
11202  		r = cui(vcpu);
11203  		if (r <= 0)
11204  			goto out;
11205  	} else {
11206  		WARN_ON_ONCE(vcpu->arch.pio.count);
11207  		WARN_ON_ONCE(vcpu->mmio_needed);
11208  	}
11209  
11210  	if (kvm_run->immediate_exit) {
11211  		r = -EINTR;
11212  		goto out;
11213  	}
11214  
11215  	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11216  	if (r <= 0)
11217  		goto out;
11218  
11219  	r = vcpu_run(vcpu);
11220  
11221  out:
11222  	kvm_put_guest_fpu(vcpu);
11223  	if (kvm_run->kvm_valid_regs)
11224  		store_regs(vcpu);
11225  	post_kvm_run_save(vcpu);
11226  	kvm_vcpu_srcu_read_unlock(vcpu);
11227  
11228  	kvm_sigset_deactivate(vcpu);
11229  	vcpu_put(vcpu);
11230  	return r;
11231  }
11232  
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11233  static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11234  {
11235  	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11236  		/*
11237  		 * We are here if userspace calls get_regs() in the middle of
11238  		 * instruction emulation. Registers state needs to be copied
11239  		 * back from emulation context to vcpu. Userspace shouldn't do
11240  		 * that usually, but some bad designed PV devices (vmware
11241  		 * backdoor interface) need this to work
11242  		 */
11243  		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11244  		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11245  	}
11246  	regs->rax = kvm_rax_read(vcpu);
11247  	regs->rbx = kvm_rbx_read(vcpu);
11248  	regs->rcx = kvm_rcx_read(vcpu);
11249  	regs->rdx = kvm_rdx_read(vcpu);
11250  	regs->rsi = kvm_rsi_read(vcpu);
11251  	regs->rdi = kvm_rdi_read(vcpu);
11252  	regs->rsp = kvm_rsp_read(vcpu);
11253  	regs->rbp = kvm_rbp_read(vcpu);
11254  #ifdef CONFIG_X86_64
11255  	regs->r8 = kvm_r8_read(vcpu);
11256  	regs->r9 = kvm_r9_read(vcpu);
11257  	regs->r10 = kvm_r10_read(vcpu);
11258  	regs->r11 = kvm_r11_read(vcpu);
11259  	regs->r12 = kvm_r12_read(vcpu);
11260  	regs->r13 = kvm_r13_read(vcpu);
11261  	regs->r14 = kvm_r14_read(vcpu);
11262  	regs->r15 = kvm_r15_read(vcpu);
11263  #endif
11264  
11265  	regs->rip = kvm_rip_read(vcpu);
11266  	regs->rflags = kvm_get_rflags(vcpu);
11267  }
11268  
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11269  int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11270  {
11271  	vcpu_load(vcpu);
11272  	__get_regs(vcpu, regs);
11273  	vcpu_put(vcpu);
11274  	return 0;
11275  }
11276  
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11277  static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11278  {
11279  	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11280  	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11281  
11282  	kvm_rax_write(vcpu, regs->rax);
11283  	kvm_rbx_write(vcpu, regs->rbx);
11284  	kvm_rcx_write(vcpu, regs->rcx);
11285  	kvm_rdx_write(vcpu, regs->rdx);
11286  	kvm_rsi_write(vcpu, regs->rsi);
11287  	kvm_rdi_write(vcpu, regs->rdi);
11288  	kvm_rsp_write(vcpu, regs->rsp);
11289  	kvm_rbp_write(vcpu, regs->rbp);
11290  #ifdef CONFIG_X86_64
11291  	kvm_r8_write(vcpu, regs->r8);
11292  	kvm_r9_write(vcpu, regs->r9);
11293  	kvm_r10_write(vcpu, regs->r10);
11294  	kvm_r11_write(vcpu, regs->r11);
11295  	kvm_r12_write(vcpu, regs->r12);
11296  	kvm_r13_write(vcpu, regs->r13);
11297  	kvm_r14_write(vcpu, regs->r14);
11298  	kvm_r15_write(vcpu, regs->r15);
11299  #endif
11300  
11301  	kvm_rip_write(vcpu, regs->rip);
11302  	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11303  
11304  	vcpu->arch.exception.pending = false;
11305  	vcpu->arch.exception_vmexit.pending = false;
11306  
11307  	kvm_make_request(KVM_REQ_EVENT, vcpu);
11308  }
11309  
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11310  int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11311  {
11312  	vcpu_load(vcpu);
11313  	__set_regs(vcpu, regs);
11314  	vcpu_put(vcpu);
11315  	return 0;
11316  }
11317  
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11318  static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11319  {
11320  	struct desc_ptr dt;
11321  
11322  	if (vcpu->arch.guest_state_protected)
11323  		goto skip_protected_regs;
11324  
11325  	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11326  	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11327  	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11328  	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11329  	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11330  	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11331  
11332  	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11333  	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11334  
11335  	static_call(kvm_x86_get_idt)(vcpu, &dt);
11336  	sregs->idt.limit = dt.size;
11337  	sregs->idt.base = dt.address;
11338  	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11339  	sregs->gdt.limit = dt.size;
11340  	sregs->gdt.base = dt.address;
11341  
11342  	sregs->cr2 = vcpu->arch.cr2;
11343  	sregs->cr3 = kvm_read_cr3(vcpu);
11344  
11345  skip_protected_regs:
11346  	sregs->cr0 = kvm_read_cr0(vcpu);
11347  	sregs->cr4 = kvm_read_cr4(vcpu);
11348  	sregs->cr8 = kvm_get_cr8(vcpu);
11349  	sregs->efer = vcpu->arch.efer;
11350  	sregs->apic_base = kvm_get_apic_base(vcpu);
11351  }
11352  
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11353  static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11354  {
11355  	__get_sregs_common(vcpu, sregs);
11356  
11357  	if (vcpu->arch.guest_state_protected)
11358  		return;
11359  
11360  	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11361  		set_bit(vcpu->arch.interrupt.nr,
11362  			(unsigned long *)sregs->interrupt_bitmap);
11363  }
11364  
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11365  static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11366  {
11367  	int i;
11368  
11369  	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11370  
11371  	if (vcpu->arch.guest_state_protected)
11372  		return;
11373  
11374  	if (is_pae_paging(vcpu)) {
11375  		for (i = 0 ; i < 4 ; i++)
11376  			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11377  		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11378  	}
11379  }
11380  
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11381  int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11382  				  struct kvm_sregs *sregs)
11383  {
11384  	vcpu_load(vcpu);
11385  	__get_sregs(vcpu, sregs);
11386  	vcpu_put(vcpu);
11387  	return 0;
11388  }
11389  
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11390  int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11391  				    struct kvm_mp_state *mp_state)
11392  {
11393  	int r;
11394  
11395  	vcpu_load(vcpu);
11396  	if (kvm_mpx_supported())
11397  		kvm_load_guest_fpu(vcpu);
11398  
11399  	r = kvm_apic_accept_events(vcpu);
11400  	if (r < 0)
11401  		goto out;
11402  	r = 0;
11403  
11404  	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11405  	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11406  	    vcpu->arch.pv.pv_unhalted)
11407  		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11408  	else
11409  		mp_state->mp_state = vcpu->arch.mp_state;
11410  
11411  out:
11412  	if (kvm_mpx_supported())
11413  		kvm_put_guest_fpu(vcpu);
11414  	vcpu_put(vcpu);
11415  	return r;
11416  }
11417  
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11418  int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11419  				    struct kvm_mp_state *mp_state)
11420  {
11421  	int ret = -EINVAL;
11422  
11423  	vcpu_load(vcpu);
11424  
11425  	switch (mp_state->mp_state) {
11426  	case KVM_MP_STATE_UNINITIALIZED:
11427  	case KVM_MP_STATE_HALTED:
11428  	case KVM_MP_STATE_AP_RESET_HOLD:
11429  	case KVM_MP_STATE_INIT_RECEIVED:
11430  	case KVM_MP_STATE_SIPI_RECEIVED:
11431  		if (!lapic_in_kernel(vcpu))
11432  			goto out;
11433  		break;
11434  
11435  	case KVM_MP_STATE_RUNNABLE:
11436  		break;
11437  
11438  	default:
11439  		goto out;
11440  	}
11441  
11442  	/*
11443  	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11444  	 * forcing the guest into INIT/SIPI if those events are supposed to be
11445  	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11446  	 * if an SMI is pending as well.
11447  	 */
11448  	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11449  	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11450  	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11451  		goto out;
11452  
11453  	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11454  		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11455  		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11456  	} else
11457  		vcpu->arch.mp_state = mp_state->mp_state;
11458  	kvm_make_request(KVM_REQ_EVENT, vcpu);
11459  
11460  	ret = 0;
11461  out:
11462  	vcpu_put(vcpu);
11463  	return ret;
11464  }
11465  
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)11466  int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11467  		    int reason, bool has_error_code, u32 error_code)
11468  {
11469  	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11470  	int ret;
11471  
11472  	init_emulate_ctxt(vcpu);
11473  
11474  	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11475  				   has_error_code, error_code);
11476  	if (ret) {
11477  		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11478  		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11479  		vcpu->run->internal.ndata = 0;
11480  		return 0;
11481  	}
11482  
11483  	kvm_rip_write(vcpu, ctxt->eip);
11484  	kvm_set_rflags(vcpu, ctxt->eflags);
11485  	return 1;
11486  }
11487  EXPORT_SYMBOL_GPL(kvm_task_switch);
11488  
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11489  static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11490  {
11491  	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11492  		/*
11493  		 * When EFER.LME and CR0.PG are set, the processor is in
11494  		 * 64-bit mode (though maybe in a 32-bit code segment).
11495  		 * CR4.PAE and EFER.LMA must be set.
11496  		 */
11497  		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11498  			return false;
11499  		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11500  			return false;
11501  	} else {
11502  		/*
11503  		 * Not in 64-bit mode: EFER.LMA is clear and the code
11504  		 * segment cannot be 64-bit.
11505  		 */
11506  		if (sregs->efer & EFER_LMA || sregs->cs.l)
11507  			return false;
11508  	}
11509  
11510  	return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11511  	       kvm_is_valid_cr0(vcpu, sregs->cr0);
11512  }
11513  
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)11514  static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11515  		int *mmu_reset_needed, bool update_pdptrs)
11516  {
11517  	struct msr_data apic_base_msr;
11518  	int idx;
11519  	struct desc_ptr dt;
11520  
11521  	if (!kvm_is_valid_sregs(vcpu, sregs))
11522  		return -EINVAL;
11523  
11524  	apic_base_msr.data = sregs->apic_base;
11525  	apic_base_msr.host_initiated = true;
11526  	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11527  		return -EINVAL;
11528  
11529  	if (vcpu->arch.guest_state_protected)
11530  		return 0;
11531  
11532  	dt.size = sregs->idt.limit;
11533  	dt.address = sregs->idt.base;
11534  	static_call(kvm_x86_set_idt)(vcpu, &dt);
11535  	dt.size = sregs->gdt.limit;
11536  	dt.address = sregs->gdt.base;
11537  	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11538  
11539  	vcpu->arch.cr2 = sregs->cr2;
11540  	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11541  	vcpu->arch.cr3 = sregs->cr3;
11542  	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11543  	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11544  
11545  	kvm_set_cr8(vcpu, sregs->cr8);
11546  
11547  	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11548  	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11549  
11550  	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11551  	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11552  	vcpu->arch.cr0 = sregs->cr0;
11553  
11554  	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11555  	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11556  
11557  	if (update_pdptrs) {
11558  		idx = srcu_read_lock(&vcpu->kvm->srcu);
11559  		if (is_pae_paging(vcpu)) {
11560  			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11561  			*mmu_reset_needed = 1;
11562  		}
11563  		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11564  	}
11565  
11566  	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11567  	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11568  	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11569  	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11570  	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11571  	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11572  
11573  	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11574  	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11575  
11576  	update_cr8_intercept(vcpu);
11577  
11578  	/* Older userspace won't unhalt the vcpu on reset. */
11579  	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11580  	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11581  	    !is_protmode(vcpu))
11582  		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11583  
11584  	return 0;
11585  }
11586  
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11587  static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11588  {
11589  	int pending_vec, max_bits;
11590  	int mmu_reset_needed = 0;
11591  	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11592  
11593  	if (ret)
11594  		return ret;
11595  
11596  	if (mmu_reset_needed)
11597  		kvm_mmu_reset_context(vcpu);
11598  
11599  	max_bits = KVM_NR_INTERRUPTS;
11600  	pending_vec = find_first_bit(
11601  		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11602  
11603  	if (pending_vec < max_bits) {
11604  		kvm_queue_interrupt(vcpu, pending_vec, false);
11605  		pr_debug("Set back pending irq %d\n", pending_vec);
11606  		kvm_make_request(KVM_REQ_EVENT, vcpu);
11607  	}
11608  	return 0;
11609  }
11610  
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11611  static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11612  {
11613  	int mmu_reset_needed = 0;
11614  	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11615  	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11616  		!(sregs2->efer & EFER_LMA);
11617  	int i, ret;
11618  
11619  	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11620  		return -EINVAL;
11621  
11622  	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11623  		return -EINVAL;
11624  
11625  	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11626  				 &mmu_reset_needed, !valid_pdptrs);
11627  	if (ret)
11628  		return ret;
11629  
11630  	if (valid_pdptrs) {
11631  		for (i = 0; i < 4 ; i++)
11632  			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11633  
11634  		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11635  		mmu_reset_needed = 1;
11636  		vcpu->arch.pdptrs_from_userspace = true;
11637  	}
11638  	if (mmu_reset_needed)
11639  		kvm_mmu_reset_context(vcpu);
11640  	return 0;
11641  }
11642  
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11643  int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11644  				  struct kvm_sregs *sregs)
11645  {
11646  	int ret;
11647  
11648  	vcpu_load(vcpu);
11649  	ret = __set_sregs(vcpu, sregs);
11650  	vcpu_put(vcpu);
11651  	return ret;
11652  }
11653  
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)11654  static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11655  {
11656  	bool set = false;
11657  	struct kvm_vcpu *vcpu;
11658  	unsigned long i;
11659  
11660  	if (!enable_apicv)
11661  		return;
11662  
11663  	down_write(&kvm->arch.apicv_update_lock);
11664  
11665  	kvm_for_each_vcpu(i, vcpu, kvm) {
11666  		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11667  			set = true;
11668  			break;
11669  		}
11670  	}
11671  	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11672  	up_write(&kvm->arch.apicv_update_lock);
11673  }
11674  
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)11675  int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11676  					struct kvm_guest_debug *dbg)
11677  {
11678  	unsigned long rflags;
11679  	int i, r;
11680  
11681  	if (vcpu->arch.guest_state_protected)
11682  		return -EINVAL;
11683  
11684  	vcpu_load(vcpu);
11685  
11686  	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11687  		r = -EBUSY;
11688  		if (kvm_is_exception_pending(vcpu))
11689  			goto out;
11690  		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11691  			kvm_queue_exception(vcpu, DB_VECTOR);
11692  		else
11693  			kvm_queue_exception(vcpu, BP_VECTOR);
11694  	}
11695  
11696  	/*
11697  	 * Read rflags as long as potentially injected trace flags are still
11698  	 * filtered out.
11699  	 */
11700  	rflags = kvm_get_rflags(vcpu);
11701  
11702  	vcpu->guest_debug = dbg->control;
11703  	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11704  		vcpu->guest_debug = 0;
11705  
11706  	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11707  		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11708  			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11709  		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11710  	} else {
11711  		for (i = 0; i < KVM_NR_DB_REGS; i++)
11712  			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11713  	}
11714  	kvm_update_dr7(vcpu);
11715  
11716  	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11717  		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11718  
11719  	/*
11720  	 * Trigger an rflags update that will inject or remove the trace
11721  	 * flags.
11722  	 */
11723  	kvm_set_rflags(vcpu, rflags);
11724  
11725  	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11726  
11727  	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11728  
11729  	r = 0;
11730  
11731  out:
11732  	vcpu_put(vcpu);
11733  	return r;
11734  }
11735  
11736  /*
11737   * Translate a guest virtual address to a guest physical address.
11738   */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)11739  int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11740  				    struct kvm_translation *tr)
11741  {
11742  	unsigned long vaddr = tr->linear_address;
11743  	gpa_t gpa;
11744  	int idx;
11745  
11746  	vcpu_load(vcpu);
11747  
11748  	idx = srcu_read_lock(&vcpu->kvm->srcu);
11749  	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11750  	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11751  	tr->physical_address = gpa;
11752  	tr->valid = gpa != INVALID_GPA;
11753  	tr->writeable = 1;
11754  	tr->usermode = 0;
11755  
11756  	vcpu_put(vcpu);
11757  	return 0;
11758  }
11759  
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)11760  int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11761  {
11762  	struct fxregs_state *fxsave;
11763  
11764  	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11765  		return 0;
11766  
11767  	vcpu_load(vcpu);
11768  
11769  	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11770  	memcpy(fpu->fpr, fxsave->st_space, 128);
11771  	fpu->fcw = fxsave->cwd;
11772  	fpu->fsw = fxsave->swd;
11773  	fpu->ftwx = fxsave->twd;
11774  	fpu->last_opcode = fxsave->fop;
11775  	fpu->last_ip = fxsave->rip;
11776  	fpu->last_dp = fxsave->rdp;
11777  	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11778  
11779  	vcpu_put(vcpu);
11780  	return 0;
11781  }
11782  
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)11783  int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11784  {
11785  	struct fxregs_state *fxsave;
11786  
11787  	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11788  		return 0;
11789  
11790  	vcpu_load(vcpu);
11791  
11792  	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11793  
11794  	memcpy(fxsave->st_space, fpu->fpr, 128);
11795  	fxsave->cwd = fpu->fcw;
11796  	fxsave->swd = fpu->fsw;
11797  	fxsave->twd = fpu->ftwx;
11798  	fxsave->fop = fpu->last_opcode;
11799  	fxsave->rip = fpu->last_ip;
11800  	fxsave->rdp = fpu->last_dp;
11801  	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11802  
11803  	vcpu_put(vcpu);
11804  	return 0;
11805  }
11806  
store_regs(struct kvm_vcpu * vcpu)11807  static void store_regs(struct kvm_vcpu *vcpu)
11808  {
11809  	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11810  
11811  	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11812  		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11813  
11814  	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11815  		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11816  
11817  	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11818  		kvm_vcpu_ioctl_x86_get_vcpu_events(
11819  				vcpu, &vcpu->run->s.regs.events);
11820  }
11821  
sync_regs(struct kvm_vcpu * vcpu)11822  static int sync_regs(struct kvm_vcpu *vcpu)
11823  {
11824  	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11825  		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11826  		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11827  	}
11828  
11829  	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11830  		struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
11831  
11832  		if (__set_sregs(vcpu, &sregs))
11833  			return -EINVAL;
11834  
11835  		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11836  	}
11837  
11838  	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11839  		struct kvm_vcpu_events events = vcpu->run->s.regs.events;
11840  
11841  		if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
11842  			return -EINVAL;
11843  
11844  		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11845  	}
11846  
11847  	return 0;
11848  }
11849  
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)11850  int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11851  {
11852  	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11853  		pr_warn_once("SMP vm created on host with unstable TSC; "
11854  			     "guest TSC will not be reliable\n");
11855  
11856  	if (!kvm->arch.max_vcpu_ids)
11857  		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11858  
11859  	if (id >= kvm->arch.max_vcpu_ids)
11860  		return -EINVAL;
11861  
11862  	return static_call(kvm_x86_vcpu_precreate)(kvm);
11863  }
11864  
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)11865  int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11866  {
11867  	struct page *page;
11868  	int r;
11869  
11870  	vcpu->arch.last_vmentry_cpu = -1;
11871  	vcpu->arch.regs_avail = ~0;
11872  	vcpu->arch.regs_dirty = ~0;
11873  
11874  	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11875  
11876  	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11877  		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11878  	else
11879  		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11880  
11881  	r = kvm_mmu_create(vcpu);
11882  	if (r < 0)
11883  		return r;
11884  
11885  	if (irqchip_in_kernel(vcpu->kvm)) {
11886  		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11887  		if (r < 0)
11888  			goto fail_mmu_destroy;
11889  
11890  		/*
11891  		 * Defer evaluating inhibits until the vCPU is first run, as
11892  		 * this vCPU will not get notified of any changes until this
11893  		 * vCPU is visible to other vCPUs (marked online and added to
11894  		 * the set of vCPUs).  Opportunistically mark APICv active as
11895  		 * VMX in particularly is highly unlikely to have inhibits.
11896  		 * Ignore the current per-VM APICv state so that vCPU creation
11897  		 * is guaranteed to run with a deterministic value, the request
11898  		 * will ensure the vCPU gets the correct state before VM-Entry.
11899  		 */
11900  		if (enable_apicv) {
11901  			vcpu->arch.apic->apicv_active = true;
11902  			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11903  		}
11904  	} else
11905  		static_branch_inc(&kvm_has_noapic_vcpu);
11906  
11907  	r = -ENOMEM;
11908  
11909  	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11910  	if (!page)
11911  		goto fail_free_lapic;
11912  	vcpu->arch.pio_data = page_address(page);
11913  
11914  	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11915  				       GFP_KERNEL_ACCOUNT);
11916  	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11917  					    GFP_KERNEL_ACCOUNT);
11918  	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11919  		goto fail_free_mce_banks;
11920  	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11921  
11922  	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11923  				GFP_KERNEL_ACCOUNT))
11924  		goto fail_free_mce_banks;
11925  
11926  	if (!alloc_emulate_ctxt(vcpu))
11927  		goto free_wbinvd_dirty_mask;
11928  
11929  	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11930  		pr_err("failed to allocate vcpu's fpu\n");
11931  		goto free_emulate_ctxt;
11932  	}
11933  
11934  	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11935  	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11936  
11937  	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11938  
11939  	kvm_async_pf_hash_reset(vcpu);
11940  
11941  	vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11942  	kvm_pmu_init(vcpu);
11943  
11944  	vcpu->arch.pending_external_vector = -1;
11945  	vcpu->arch.preempted_in_kernel = false;
11946  
11947  #if IS_ENABLED(CONFIG_HYPERV)
11948  	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11949  #endif
11950  
11951  	r = static_call(kvm_x86_vcpu_create)(vcpu);
11952  	if (r)
11953  		goto free_guest_fpu;
11954  
11955  	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11956  	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11957  	kvm_xen_init_vcpu(vcpu);
11958  	kvm_vcpu_mtrr_init(vcpu);
11959  	vcpu_load(vcpu);
11960  	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11961  	kvm_vcpu_reset(vcpu, false);
11962  	kvm_init_mmu(vcpu);
11963  	vcpu_put(vcpu);
11964  	return 0;
11965  
11966  free_guest_fpu:
11967  	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11968  free_emulate_ctxt:
11969  	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11970  free_wbinvd_dirty_mask:
11971  	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11972  fail_free_mce_banks:
11973  	kfree(vcpu->arch.mce_banks);
11974  	kfree(vcpu->arch.mci_ctl2_banks);
11975  	free_page((unsigned long)vcpu->arch.pio_data);
11976  fail_free_lapic:
11977  	kvm_free_lapic(vcpu);
11978  fail_mmu_destroy:
11979  	kvm_mmu_destroy(vcpu);
11980  	return r;
11981  }
11982  
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)11983  void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11984  {
11985  	struct kvm *kvm = vcpu->kvm;
11986  
11987  	if (mutex_lock_killable(&vcpu->mutex))
11988  		return;
11989  	vcpu_load(vcpu);
11990  	kvm_synchronize_tsc(vcpu, 0);
11991  	vcpu_put(vcpu);
11992  
11993  	/* poll control enabled by default */
11994  	vcpu->arch.msr_kvm_poll_control = 1;
11995  
11996  	mutex_unlock(&vcpu->mutex);
11997  
11998  	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11999  		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12000  						KVMCLOCK_SYNC_PERIOD);
12001  }
12002  
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)12003  void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12004  {
12005  	int idx;
12006  
12007  	kvmclock_reset(vcpu);
12008  
12009  	static_call(kvm_x86_vcpu_free)(vcpu);
12010  
12011  	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12012  	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12013  	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12014  
12015  	kvm_xen_destroy_vcpu(vcpu);
12016  	kvm_hv_vcpu_uninit(vcpu);
12017  	kvm_pmu_destroy(vcpu);
12018  	kfree(vcpu->arch.mce_banks);
12019  	kfree(vcpu->arch.mci_ctl2_banks);
12020  	kvm_free_lapic(vcpu);
12021  	idx = srcu_read_lock(&vcpu->kvm->srcu);
12022  	kvm_mmu_destroy(vcpu);
12023  	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12024  	free_page((unsigned long)vcpu->arch.pio_data);
12025  	kvfree(vcpu->arch.cpuid_entries);
12026  	if (!lapic_in_kernel(vcpu))
12027  		static_branch_dec(&kvm_has_noapic_vcpu);
12028  }
12029  
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)12030  void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12031  {
12032  	struct kvm_cpuid_entry2 *cpuid_0x1;
12033  	unsigned long old_cr0 = kvm_read_cr0(vcpu);
12034  	unsigned long new_cr0;
12035  
12036  	/*
12037  	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12038  	 * to handle side effects.  RESET emulation hits those flows and relies
12039  	 * on emulated/virtualized registers, including those that are loaded
12040  	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12041  	 * to detect improper or missing initialization.
12042  	 */
12043  	WARN_ON_ONCE(!init_event &&
12044  		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12045  
12046  	/*
12047  	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12048  	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12049  	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12050  	 * bits), i.e. virtualization is disabled.
12051  	 */
12052  	if (is_guest_mode(vcpu))
12053  		kvm_leave_nested(vcpu);
12054  
12055  	kvm_lapic_reset(vcpu, init_event);
12056  
12057  	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12058  	vcpu->arch.hflags = 0;
12059  
12060  	vcpu->arch.smi_pending = 0;
12061  	vcpu->arch.smi_count = 0;
12062  	atomic_set(&vcpu->arch.nmi_queued, 0);
12063  	vcpu->arch.nmi_pending = 0;
12064  	vcpu->arch.nmi_injected = false;
12065  	kvm_clear_interrupt_queue(vcpu);
12066  	kvm_clear_exception_queue(vcpu);
12067  
12068  	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12069  	kvm_update_dr0123(vcpu);
12070  	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12071  	vcpu->arch.dr7 = DR7_FIXED_1;
12072  	kvm_update_dr7(vcpu);
12073  
12074  	vcpu->arch.cr2 = 0;
12075  
12076  	kvm_make_request(KVM_REQ_EVENT, vcpu);
12077  	vcpu->arch.apf.msr_en_val = 0;
12078  	vcpu->arch.apf.msr_int_val = 0;
12079  	vcpu->arch.st.msr_val = 0;
12080  
12081  	kvmclock_reset(vcpu);
12082  
12083  	kvm_clear_async_pf_completion_queue(vcpu);
12084  	kvm_async_pf_hash_reset(vcpu);
12085  	vcpu->arch.apf.halted = false;
12086  
12087  	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12088  		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12089  
12090  		/*
12091  		 * All paths that lead to INIT are required to load the guest's
12092  		 * FPU state (because most paths are buried in KVM_RUN).
12093  		 */
12094  		if (init_event)
12095  			kvm_put_guest_fpu(vcpu);
12096  
12097  		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12098  		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12099  
12100  		if (init_event)
12101  			kvm_load_guest_fpu(vcpu);
12102  	}
12103  
12104  	if (!init_event) {
12105  		kvm_pmu_reset(vcpu);
12106  		vcpu->arch.smbase = 0x30000;
12107  
12108  		vcpu->arch.msr_misc_features_enables = 0;
12109  		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12110  						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12111  
12112  		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12113  		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12114  	}
12115  
12116  	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12117  	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12118  	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12119  
12120  	/*
12121  	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12122  	 * if no CPUID match is found.  Note, it's impossible to get a match at
12123  	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12124  	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12125  	 * on RESET.  But, go through the motions in case that's ever remedied.
12126  	 */
12127  	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12128  	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12129  
12130  	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12131  
12132  	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12133  	kvm_rip_write(vcpu, 0xfff0);
12134  
12135  	vcpu->arch.cr3 = 0;
12136  	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12137  
12138  	/*
12139  	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12140  	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12141  	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12142  	 */
12143  	new_cr0 = X86_CR0_ET;
12144  	if (init_event)
12145  		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12146  	else
12147  		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12148  
12149  	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12150  	static_call(kvm_x86_set_cr4)(vcpu, 0);
12151  	static_call(kvm_x86_set_efer)(vcpu, 0);
12152  	static_call(kvm_x86_update_exception_bitmap)(vcpu);
12153  
12154  	/*
12155  	 * On the standard CR0/CR4/EFER modification paths, there are several
12156  	 * complex conditions determining whether the MMU has to be reset and/or
12157  	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12158  	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12159  	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12160  	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12161  	 */
12162  	if (old_cr0 & X86_CR0_PG) {
12163  		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12164  		kvm_mmu_reset_context(vcpu);
12165  	}
12166  
12167  	/*
12168  	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12169  	 * APM states the TLBs are untouched by INIT, but it also states that
12170  	 * the TLBs are flushed on "External initialization of the processor."
12171  	 * Flush the guest TLB regardless of vendor, there is no meaningful
12172  	 * benefit in relying on the guest to flush the TLB immediately after
12173  	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12174  	 * performance perspective.
12175  	 */
12176  	if (init_event)
12177  		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12178  }
12179  EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12180  
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)12181  void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12182  {
12183  	struct kvm_segment cs;
12184  
12185  	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12186  	cs.selector = vector << 8;
12187  	cs.base = vector << 12;
12188  	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12189  	kvm_rip_write(vcpu, 0);
12190  }
12191  EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12192  
kvm_arch_hardware_enable(void)12193  int kvm_arch_hardware_enable(void)
12194  {
12195  	struct kvm *kvm;
12196  	struct kvm_vcpu *vcpu;
12197  	unsigned long i;
12198  	int ret;
12199  	u64 local_tsc;
12200  	u64 max_tsc = 0;
12201  	bool stable, backwards_tsc = false;
12202  
12203  	kvm_user_return_msr_cpu_online();
12204  
12205  	ret = kvm_x86_check_processor_compatibility();
12206  	if (ret)
12207  		return ret;
12208  
12209  	ret = static_call(kvm_x86_hardware_enable)();
12210  	if (ret != 0)
12211  		return ret;
12212  
12213  	local_tsc = rdtsc();
12214  	stable = !kvm_check_tsc_unstable();
12215  	list_for_each_entry(kvm, &vm_list, vm_list) {
12216  		kvm_for_each_vcpu(i, vcpu, kvm) {
12217  			if (!stable && vcpu->cpu == smp_processor_id())
12218  				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12219  			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12220  				backwards_tsc = true;
12221  				if (vcpu->arch.last_host_tsc > max_tsc)
12222  					max_tsc = vcpu->arch.last_host_tsc;
12223  			}
12224  		}
12225  	}
12226  
12227  	/*
12228  	 * Sometimes, even reliable TSCs go backwards.  This happens on
12229  	 * platforms that reset TSC during suspend or hibernate actions, but
12230  	 * maintain synchronization.  We must compensate.  Fortunately, we can
12231  	 * detect that condition here, which happens early in CPU bringup,
12232  	 * before any KVM threads can be running.  Unfortunately, we can't
12233  	 * bring the TSCs fully up to date with real time, as we aren't yet far
12234  	 * enough into CPU bringup that we know how much real time has actually
12235  	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12236  	 * variables that haven't been updated yet.
12237  	 *
12238  	 * So we simply find the maximum observed TSC above, then record the
12239  	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12240  	 * the adjustment will be applied.  Note that we accumulate
12241  	 * adjustments, in case multiple suspend cycles happen before some VCPU
12242  	 * gets a chance to run again.  In the event that no KVM threads get a
12243  	 * chance to run, we will miss the entire elapsed period, as we'll have
12244  	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12245  	 * loose cycle time.  This isn't too big a deal, since the loss will be
12246  	 * uniform across all VCPUs (not to mention the scenario is extremely
12247  	 * unlikely). It is possible that a second hibernate recovery happens
12248  	 * much faster than a first, causing the observed TSC here to be
12249  	 * smaller; this would require additional padding adjustment, which is
12250  	 * why we set last_host_tsc to the local tsc observed here.
12251  	 *
12252  	 * N.B. - this code below runs only on platforms with reliable TSC,
12253  	 * as that is the only way backwards_tsc is set above.  Also note
12254  	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12255  	 * have the same delta_cyc adjustment applied if backwards_tsc
12256  	 * is detected.  Note further, this adjustment is only done once,
12257  	 * as we reset last_host_tsc on all VCPUs to stop this from being
12258  	 * called multiple times (one for each physical CPU bringup).
12259  	 *
12260  	 * Platforms with unreliable TSCs don't have to deal with this, they
12261  	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12262  	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12263  	 * guarantee that they stay in perfect synchronization.
12264  	 */
12265  	if (backwards_tsc) {
12266  		u64 delta_cyc = max_tsc - local_tsc;
12267  		list_for_each_entry(kvm, &vm_list, vm_list) {
12268  			kvm->arch.backwards_tsc_observed = true;
12269  			kvm_for_each_vcpu(i, vcpu, kvm) {
12270  				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12271  				vcpu->arch.last_host_tsc = local_tsc;
12272  				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12273  			}
12274  
12275  			/*
12276  			 * We have to disable TSC offset matching.. if you were
12277  			 * booting a VM while issuing an S4 host suspend....
12278  			 * you may have some problem.  Solving this issue is
12279  			 * left as an exercise to the reader.
12280  			 */
12281  			kvm->arch.last_tsc_nsec = 0;
12282  			kvm->arch.last_tsc_write = 0;
12283  		}
12284  
12285  	}
12286  	return 0;
12287  }
12288  
kvm_arch_hardware_disable(void)12289  void kvm_arch_hardware_disable(void)
12290  {
12291  	static_call(kvm_x86_hardware_disable)();
12292  	drop_user_return_notifiers();
12293  }
12294  
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)12295  bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12296  {
12297  	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12298  }
12299  
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)12300  bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12301  {
12302  	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12303  }
12304  
12305  __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12306  EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12307  
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)12308  void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12309  {
12310  	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12311  
12312  	vcpu->arch.l1tf_flush_l1d = true;
12313  	if (pmu->version && unlikely(pmu->event_count)) {
12314  		pmu->need_cleanup = true;
12315  		kvm_make_request(KVM_REQ_PMU, vcpu);
12316  	}
12317  	static_call(kvm_x86_sched_in)(vcpu, cpu);
12318  }
12319  
kvm_arch_free_vm(struct kvm * kvm)12320  void kvm_arch_free_vm(struct kvm *kvm)
12321  {
12322  	kfree(to_kvm_hv(kvm)->hv_pa_pg);
12323  	__kvm_arch_free_vm(kvm);
12324  }
12325  
12326  
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)12327  int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12328  {
12329  	int ret;
12330  	unsigned long flags;
12331  
12332  	if (type)
12333  		return -EINVAL;
12334  
12335  	ret = kvm_page_track_init(kvm);
12336  	if (ret)
12337  		goto out;
12338  
12339  	kvm_mmu_init_vm(kvm);
12340  
12341  	ret = static_call(kvm_x86_vm_init)(kvm);
12342  	if (ret)
12343  		goto out_uninit_mmu;
12344  
12345  	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12346  	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12347  	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12348  
12349  	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12350  	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12351  	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12352  	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12353  		&kvm->arch.irq_sources_bitmap);
12354  
12355  	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12356  	mutex_init(&kvm->arch.apic_map_lock);
12357  	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12358  	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12359  
12360  	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12361  	pvclock_update_vm_gtod_copy(kvm);
12362  	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12363  
12364  	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12365  	kvm->arch.guest_can_read_msr_platform_info = true;
12366  	kvm->arch.enable_pmu = enable_pmu;
12367  
12368  #if IS_ENABLED(CONFIG_HYPERV)
12369  	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12370  	kvm->arch.hv_root_tdp = INVALID_PAGE;
12371  #endif
12372  
12373  	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12374  	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12375  
12376  	kvm_apicv_init(kvm);
12377  	kvm_hv_init_vm(kvm);
12378  	kvm_xen_init_vm(kvm);
12379  
12380  	return 0;
12381  
12382  out_uninit_mmu:
12383  	kvm_mmu_uninit_vm(kvm);
12384  	kvm_page_track_cleanup(kvm);
12385  out:
12386  	return ret;
12387  }
12388  
kvm_arch_post_init_vm(struct kvm * kvm)12389  int kvm_arch_post_init_vm(struct kvm *kvm)
12390  {
12391  	return kvm_mmu_post_init_vm(kvm);
12392  }
12393  
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)12394  static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12395  {
12396  	vcpu_load(vcpu);
12397  	kvm_mmu_unload(vcpu);
12398  	vcpu_put(vcpu);
12399  }
12400  
kvm_unload_vcpu_mmus(struct kvm * kvm)12401  static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12402  {
12403  	unsigned long i;
12404  	struct kvm_vcpu *vcpu;
12405  
12406  	kvm_for_each_vcpu(i, vcpu, kvm) {
12407  		kvm_clear_async_pf_completion_queue(vcpu);
12408  		kvm_unload_vcpu_mmu(vcpu);
12409  	}
12410  }
12411  
kvm_arch_sync_events(struct kvm * kvm)12412  void kvm_arch_sync_events(struct kvm *kvm)
12413  {
12414  	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12415  	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12416  	kvm_free_pit(kvm);
12417  }
12418  
12419  /**
12420   * __x86_set_memory_region: Setup KVM internal memory slot
12421   *
12422   * @kvm: the kvm pointer to the VM.
12423   * @id: the slot ID to setup.
12424   * @gpa: the GPA to install the slot (unused when @size == 0).
12425   * @size: the size of the slot. Set to zero to uninstall a slot.
12426   *
12427   * This function helps to setup a KVM internal memory slot.  Specify
12428   * @size > 0 to install a new slot, while @size == 0 to uninstall a
12429   * slot.  The return code can be one of the following:
12430   *
12431   *   HVA:           on success (uninstall will return a bogus HVA)
12432   *   -errno:        on error
12433   *
12434   * The caller should always use IS_ERR() to check the return value
12435   * before use.  Note, the KVM internal memory slots are guaranteed to
12436   * remain valid and unchanged until the VM is destroyed, i.e., the
12437   * GPA->HVA translation will not change.  However, the HVA is a user
12438   * address, i.e. its accessibility is not guaranteed, and must be
12439   * accessed via __copy_{to,from}_user().
12440   */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)12441  void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12442  				      u32 size)
12443  {
12444  	int i, r;
12445  	unsigned long hva, old_npages;
12446  	struct kvm_memslots *slots = kvm_memslots(kvm);
12447  	struct kvm_memory_slot *slot;
12448  
12449  	/* Called with kvm->slots_lock held.  */
12450  	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12451  		return ERR_PTR_USR(-EINVAL);
12452  
12453  	slot = id_to_memslot(slots, id);
12454  	if (size) {
12455  		if (slot && slot->npages)
12456  			return ERR_PTR_USR(-EEXIST);
12457  
12458  		/*
12459  		 * MAP_SHARED to prevent internal slot pages from being moved
12460  		 * by fork()/COW.
12461  		 */
12462  		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12463  			      MAP_SHARED | MAP_ANONYMOUS, 0);
12464  		if (IS_ERR_VALUE(hva))
12465  			return (void __user *)hva;
12466  	} else {
12467  		if (!slot || !slot->npages)
12468  			return NULL;
12469  
12470  		old_npages = slot->npages;
12471  		hva = slot->userspace_addr;
12472  	}
12473  
12474  	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12475  		struct kvm_userspace_memory_region m;
12476  
12477  		m.slot = id | (i << 16);
12478  		m.flags = 0;
12479  		m.guest_phys_addr = gpa;
12480  		m.userspace_addr = hva;
12481  		m.memory_size = size;
12482  		r = __kvm_set_memory_region(kvm, &m);
12483  		if (r < 0)
12484  			return ERR_PTR_USR(r);
12485  	}
12486  
12487  	if (!size)
12488  		vm_munmap(hva, old_npages * PAGE_SIZE);
12489  
12490  	return (void __user *)hva;
12491  }
12492  EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12493  
kvm_arch_pre_destroy_vm(struct kvm * kvm)12494  void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12495  {
12496  	kvm_mmu_pre_destroy_vm(kvm);
12497  }
12498  
kvm_arch_destroy_vm(struct kvm * kvm)12499  void kvm_arch_destroy_vm(struct kvm *kvm)
12500  {
12501  	if (current->mm == kvm->mm) {
12502  		/*
12503  		 * Free memory regions allocated on behalf of userspace,
12504  		 * unless the memory map has changed due to process exit
12505  		 * or fd copying.
12506  		 */
12507  		mutex_lock(&kvm->slots_lock);
12508  		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12509  					0, 0);
12510  		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12511  					0, 0);
12512  		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12513  		mutex_unlock(&kvm->slots_lock);
12514  	}
12515  	kvm_unload_vcpu_mmus(kvm);
12516  	static_call_cond(kvm_x86_vm_destroy)(kvm);
12517  	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12518  	kvm_pic_destroy(kvm);
12519  	kvm_ioapic_destroy(kvm);
12520  	kvm_destroy_vcpus(kvm);
12521  	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12522  	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12523  	kvm_mmu_uninit_vm(kvm);
12524  	kvm_page_track_cleanup(kvm);
12525  	kvm_xen_destroy_vm(kvm);
12526  	kvm_hv_destroy_vm(kvm);
12527  }
12528  
memslot_rmap_free(struct kvm_memory_slot * slot)12529  static void memslot_rmap_free(struct kvm_memory_slot *slot)
12530  {
12531  	int i;
12532  
12533  	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12534  		kvfree(slot->arch.rmap[i]);
12535  		slot->arch.rmap[i] = NULL;
12536  	}
12537  }
12538  
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12539  void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12540  {
12541  	int i;
12542  
12543  	memslot_rmap_free(slot);
12544  
12545  	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12546  		kvfree(slot->arch.lpage_info[i - 1]);
12547  		slot->arch.lpage_info[i - 1] = NULL;
12548  	}
12549  
12550  	kvm_page_track_free_memslot(slot);
12551  }
12552  
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)12553  int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12554  {
12555  	const int sz = sizeof(*slot->arch.rmap[0]);
12556  	int i;
12557  
12558  	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12559  		int level = i + 1;
12560  		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12561  
12562  		if (slot->arch.rmap[i])
12563  			continue;
12564  
12565  		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12566  		if (!slot->arch.rmap[i]) {
12567  			memslot_rmap_free(slot);
12568  			return -ENOMEM;
12569  		}
12570  	}
12571  
12572  	return 0;
12573  }
12574  
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)12575  static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12576  				      struct kvm_memory_slot *slot)
12577  {
12578  	unsigned long npages = slot->npages;
12579  	int i, r;
12580  
12581  	/*
12582  	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12583  	 * old arrays will be freed by __kvm_set_memory_region() if installing
12584  	 * the new memslot is successful.
12585  	 */
12586  	memset(&slot->arch, 0, sizeof(slot->arch));
12587  
12588  	if (kvm_memslots_have_rmaps(kvm)) {
12589  		r = memslot_rmap_alloc(slot, npages);
12590  		if (r)
12591  			return r;
12592  	}
12593  
12594  	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12595  		struct kvm_lpage_info *linfo;
12596  		unsigned long ugfn;
12597  		int lpages;
12598  		int level = i + 1;
12599  
12600  		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12601  
12602  		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12603  		if (!linfo)
12604  			goto out_free;
12605  
12606  		slot->arch.lpage_info[i - 1] = linfo;
12607  
12608  		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12609  			linfo[0].disallow_lpage = 1;
12610  		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12611  			linfo[lpages - 1].disallow_lpage = 1;
12612  		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12613  		/*
12614  		 * If the gfn and userspace address are not aligned wrt each
12615  		 * other, disable large page support for this slot.
12616  		 */
12617  		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12618  			unsigned long j;
12619  
12620  			for (j = 0; j < lpages; ++j)
12621  				linfo[j].disallow_lpage = 1;
12622  		}
12623  	}
12624  
12625  	if (kvm_page_track_create_memslot(kvm, slot, npages))
12626  		goto out_free;
12627  
12628  	return 0;
12629  
12630  out_free:
12631  	memslot_rmap_free(slot);
12632  
12633  	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12634  		kvfree(slot->arch.lpage_info[i - 1]);
12635  		slot->arch.lpage_info[i - 1] = NULL;
12636  	}
12637  	return -ENOMEM;
12638  }
12639  
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)12640  void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12641  {
12642  	struct kvm_vcpu *vcpu;
12643  	unsigned long i;
12644  
12645  	/*
12646  	 * memslots->generation has been incremented.
12647  	 * mmio generation may have reached its maximum value.
12648  	 */
12649  	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12650  
12651  	/* Force re-initialization of steal_time cache */
12652  	kvm_for_each_vcpu(i, vcpu, kvm)
12653  		kvm_vcpu_kick(vcpu);
12654  }
12655  
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)12656  int kvm_arch_prepare_memory_region(struct kvm *kvm,
12657  				   const struct kvm_memory_slot *old,
12658  				   struct kvm_memory_slot *new,
12659  				   enum kvm_mr_change change)
12660  {
12661  	/*
12662  	 * KVM doesn't support moving memslots when there are external page
12663  	 * trackers attached to the VM, i.e. if KVMGT is in use.
12664  	 */
12665  	if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12666  		return -EINVAL;
12667  
12668  	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12669  		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12670  			return -EINVAL;
12671  
12672  		return kvm_alloc_memslot_metadata(kvm, new);
12673  	}
12674  
12675  	if (change == KVM_MR_FLAGS_ONLY)
12676  		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12677  	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12678  		return -EIO;
12679  
12680  	return 0;
12681  }
12682  
12683  
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)12684  static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12685  {
12686  	int nr_slots;
12687  
12688  	if (!kvm_x86_ops.cpu_dirty_log_size)
12689  		return;
12690  
12691  	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12692  	if ((enable && nr_slots == 1) || !nr_slots)
12693  		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12694  }
12695  
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)12696  static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12697  				     struct kvm_memory_slot *old,
12698  				     const struct kvm_memory_slot *new,
12699  				     enum kvm_mr_change change)
12700  {
12701  	u32 old_flags = old ? old->flags : 0;
12702  	u32 new_flags = new ? new->flags : 0;
12703  	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12704  
12705  	/*
12706  	 * Update CPU dirty logging if dirty logging is being toggled.  This
12707  	 * applies to all operations.
12708  	 */
12709  	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12710  		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12711  
12712  	/*
12713  	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12714  	 * made writable) or CREATE/MOVE/DELETE of a slot.
12715  	 *
12716  	 * For a memslot with dirty logging disabled:
12717  	 * CREATE:      No dirty mappings will already exist.
12718  	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12719  	 *		kvm_arch_flush_shadow_memslot()
12720  	 *
12721  	 * For a memslot with dirty logging enabled:
12722  	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12723  	 *		and no dirty bits to clear.
12724  	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12725  	 *		kvm_arch_flush_shadow_memslot().
12726  	 */
12727  	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12728  		return;
12729  
12730  	/*
12731  	 * READONLY and non-flags changes were filtered out above, and the only
12732  	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12733  	 * logging isn't being toggled on or off.
12734  	 */
12735  	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12736  		return;
12737  
12738  	if (!log_dirty_pages) {
12739  		/*
12740  		 * Dirty logging tracks sptes in 4k granularity, meaning that
12741  		 * large sptes have to be split.  If live migration succeeds,
12742  		 * the guest in the source machine will be destroyed and large
12743  		 * sptes will be created in the destination.  However, if the
12744  		 * guest continues to run in the source machine (for example if
12745  		 * live migration fails), small sptes will remain around and
12746  		 * cause bad performance.
12747  		 *
12748  		 * Scan sptes if dirty logging has been stopped, dropping those
12749  		 * which can be collapsed into a single large-page spte.  Later
12750  		 * page faults will create the large-page sptes.
12751  		 */
12752  		kvm_mmu_zap_collapsible_sptes(kvm, new);
12753  	} else {
12754  		/*
12755  		 * Initially-all-set does not require write protecting any page,
12756  		 * because they're all assumed to be dirty.
12757  		 */
12758  		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12759  			return;
12760  
12761  		if (READ_ONCE(eager_page_split))
12762  			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12763  
12764  		if (kvm_x86_ops.cpu_dirty_log_size) {
12765  			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12766  			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12767  		} else {
12768  			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12769  		}
12770  
12771  		/*
12772  		 * Unconditionally flush the TLBs after enabling dirty logging.
12773  		 * A flush is almost always going to be necessary (see below),
12774  		 * and unconditionally flushing allows the helpers to omit
12775  		 * the subtly complex checks when removing write access.
12776  		 *
12777  		 * Do the flush outside of mmu_lock to reduce the amount of
12778  		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12779  		 * safe as KVM only needs to guarantee the slot is fully
12780  		 * write-protected before returning to userspace, i.e. before
12781  		 * userspace can consume the dirty status.
12782  		 *
12783  		 * Flushing outside of mmu_lock requires KVM to be careful when
12784  		 * making decisions based on writable status of an SPTE, e.g. a
12785  		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12786  		 *
12787  		 * Specifically, KVM also write-protects guest page tables to
12788  		 * monitor changes when using shadow paging, and must guarantee
12789  		 * no CPUs can write to those page before mmu_lock is dropped.
12790  		 * Because CPUs may have stale TLB entries at this point, a
12791  		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12792  		 *
12793  		 * KVM also allows making SPTES writable outside of mmu_lock,
12794  		 * e.g. to allow dirty logging without taking mmu_lock.
12795  		 *
12796  		 * To handle these scenarios, KVM uses a separate software-only
12797  		 * bit (MMU-writable) to track if a SPTE is !writable due to
12798  		 * a guest page table being write-protected (KVM clears the
12799  		 * MMU-writable flag when write-protecting for shadow paging).
12800  		 *
12801  		 * The use of MMU-writable is also the primary motivation for
12802  		 * the unconditional flush.  Because KVM must guarantee that a
12803  		 * CPU doesn't contain stale, writable TLB entries for a
12804  		 * !MMU-writable SPTE, KVM must flush if it encounters any
12805  		 * MMU-writable SPTE regardless of whether the actual hardware
12806  		 * writable bit was set.  I.e. KVM is almost guaranteed to need
12807  		 * to flush, while unconditionally flushing allows the "remove
12808  		 * write access" helpers to ignore MMU-writable entirely.
12809  		 *
12810  		 * See is_writable_pte() for more details (the case involving
12811  		 * access-tracked SPTEs is particularly relevant).
12812  		 */
12813  		kvm_flush_remote_tlbs_memslot(kvm, new);
12814  	}
12815  }
12816  
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)12817  void kvm_arch_commit_memory_region(struct kvm *kvm,
12818  				struct kvm_memory_slot *old,
12819  				const struct kvm_memory_slot *new,
12820  				enum kvm_mr_change change)
12821  {
12822  	if (change == KVM_MR_DELETE)
12823  		kvm_page_track_delete_slot(kvm, old);
12824  
12825  	if (!kvm->arch.n_requested_mmu_pages &&
12826  	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12827  		unsigned long nr_mmu_pages;
12828  
12829  		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12830  		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12831  		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12832  	}
12833  
12834  	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12835  
12836  	/* Free the arrays associated with the old memslot. */
12837  	if (change == KVM_MR_MOVE)
12838  		kvm_arch_free_memslot(kvm, old);
12839  }
12840  
kvm_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)12841  static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12842  {
12843  	return (is_guest_mode(vcpu) &&
12844  		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12845  }
12846  
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)12847  static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12848  {
12849  	if (!list_empty_careful(&vcpu->async_pf.done))
12850  		return true;
12851  
12852  	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12853  	    kvm_apic_init_sipi_allowed(vcpu))
12854  		return true;
12855  
12856  	if (vcpu->arch.pv.pv_unhalted)
12857  		return true;
12858  
12859  	if (kvm_is_exception_pending(vcpu))
12860  		return true;
12861  
12862  	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12863  	    (vcpu->arch.nmi_pending &&
12864  	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12865  		return true;
12866  
12867  #ifdef CONFIG_KVM_SMM
12868  	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12869  	    (vcpu->arch.smi_pending &&
12870  	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12871  		return true;
12872  #endif
12873  
12874  	if (kvm_test_request(KVM_REQ_PMI, vcpu))
12875  		return true;
12876  
12877  	if (kvm_arch_interrupt_allowed(vcpu) &&
12878  	    (kvm_cpu_has_interrupt(vcpu) ||
12879  	    kvm_guest_apic_has_interrupt(vcpu)))
12880  		return true;
12881  
12882  	if (kvm_hv_has_stimer_pending(vcpu))
12883  		return true;
12884  
12885  	if (is_guest_mode(vcpu) &&
12886  	    kvm_x86_ops.nested_ops->has_events &&
12887  	    kvm_x86_ops.nested_ops->has_events(vcpu, false))
12888  		return true;
12889  
12890  	if (kvm_xen_has_pending_events(vcpu))
12891  		return true;
12892  
12893  	return false;
12894  }
12895  
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)12896  int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12897  {
12898  	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12899  }
12900  
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)12901  bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12902  {
12903  	if (kvm_vcpu_apicv_active(vcpu) &&
12904  	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12905  		return true;
12906  
12907  	return false;
12908  }
12909  
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)12910  bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12911  {
12912  	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12913  		return true;
12914  
12915  	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12916  #ifdef CONFIG_KVM_SMM
12917  		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12918  #endif
12919  		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12920  		return true;
12921  
12922  	return kvm_arch_dy_has_pending_interrupt(vcpu);
12923  }
12924  
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)12925  bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12926  {
12927  	if (vcpu->arch.guest_state_protected)
12928  		return true;
12929  
12930  	return vcpu->arch.preempted_in_kernel;
12931  }
12932  
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)12933  unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12934  {
12935  	return kvm_rip_read(vcpu);
12936  }
12937  
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)12938  int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12939  {
12940  	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12941  }
12942  
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)12943  int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12944  {
12945  	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12946  }
12947  
kvm_get_linear_rip(struct kvm_vcpu * vcpu)12948  unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12949  {
12950  	/* Can't read the RIP when guest state is protected, just return 0 */
12951  	if (vcpu->arch.guest_state_protected)
12952  		return 0;
12953  
12954  	if (is_64_bit_mode(vcpu))
12955  		return kvm_rip_read(vcpu);
12956  	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12957  		     kvm_rip_read(vcpu));
12958  }
12959  EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12960  
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)12961  bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12962  {
12963  	return kvm_get_linear_rip(vcpu) == linear_rip;
12964  }
12965  EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12966  
kvm_get_rflags(struct kvm_vcpu * vcpu)12967  unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12968  {
12969  	unsigned long rflags;
12970  
12971  	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12972  	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12973  		rflags &= ~X86_EFLAGS_TF;
12974  	return rflags;
12975  }
12976  EXPORT_SYMBOL_GPL(kvm_get_rflags);
12977  
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)12978  static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12979  {
12980  	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12981  	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12982  		rflags |= X86_EFLAGS_TF;
12983  	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12984  }
12985  
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)12986  void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12987  {
12988  	__kvm_set_rflags(vcpu, rflags);
12989  	kvm_make_request(KVM_REQ_EVENT, vcpu);
12990  }
12991  EXPORT_SYMBOL_GPL(kvm_set_rflags);
12992  
kvm_async_pf_hash_fn(gfn_t gfn)12993  static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12994  {
12995  	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12996  
12997  	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12998  }
12999  
kvm_async_pf_next_probe(u32 key)13000  static inline u32 kvm_async_pf_next_probe(u32 key)
13001  {
13002  	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13003  }
13004  
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13005  static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13006  {
13007  	u32 key = kvm_async_pf_hash_fn(gfn);
13008  
13009  	while (vcpu->arch.apf.gfns[key] != ~0)
13010  		key = kvm_async_pf_next_probe(key);
13011  
13012  	vcpu->arch.apf.gfns[key] = gfn;
13013  }
13014  
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)13015  static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13016  {
13017  	int i;
13018  	u32 key = kvm_async_pf_hash_fn(gfn);
13019  
13020  	for (i = 0; i < ASYNC_PF_PER_VCPU &&
13021  		     (vcpu->arch.apf.gfns[key] != gfn &&
13022  		      vcpu->arch.apf.gfns[key] != ~0); i++)
13023  		key = kvm_async_pf_next_probe(key);
13024  
13025  	return key;
13026  }
13027  
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13028  bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13029  {
13030  	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13031  }
13032  
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13033  static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13034  {
13035  	u32 i, j, k;
13036  
13037  	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13038  
13039  	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13040  		return;
13041  
13042  	while (true) {
13043  		vcpu->arch.apf.gfns[i] = ~0;
13044  		do {
13045  			j = kvm_async_pf_next_probe(j);
13046  			if (vcpu->arch.apf.gfns[j] == ~0)
13047  				return;
13048  			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13049  			/*
13050  			 * k lies cyclically in ]i,j]
13051  			 * |    i.k.j |
13052  			 * |....j i.k.| or  |.k..j i...|
13053  			 */
13054  		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13055  		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13056  		i = j;
13057  	}
13058  }
13059  
apf_put_user_notpresent(struct kvm_vcpu * vcpu)13060  static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13061  {
13062  	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13063  
13064  	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13065  				      sizeof(reason));
13066  }
13067  
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13068  static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13069  {
13070  	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13071  
13072  	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13073  					     &token, offset, sizeof(token));
13074  }
13075  
apf_pageready_slot_free(struct kvm_vcpu * vcpu)13076  static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13077  {
13078  	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13079  	u32 val;
13080  
13081  	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13082  					 &val, offset, sizeof(val)))
13083  		return false;
13084  
13085  	return !val;
13086  }
13087  
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13088  static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13089  {
13090  
13091  	if (!kvm_pv_async_pf_enabled(vcpu))
13092  		return false;
13093  
13094  	if (vcpu->arch.apf.send_user_only &&
13095  	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
13096  		return false;
13097  
13098  	if (is_guest_mode(vcpu)) {
13099  		/*
13100  		 * L1 needs to opt into the special #PF vmexits that are
13101  		 * used to deliver async page faults.
13102  		 */
13103  		return vcpu->arch.apf.delivery_as_pf_vmexit;
13104  	} else {
13105  		/*
13106  		 * Play it safe in case the guest temporarily disables paging.
13107  		 * The real mode IDT in particular is unlikely to have a #PF
13108  		 * exception setup.
13109  		 */
13110  		return is_paging(vcpu);
13111  	}
13112  }
13113  
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13114  bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13115  {
13116  	if (unlikely(!lapic_in_kernel(vcpu) ||
13117  		     kvm_event_needs_reinjection(vcpu) ||
13118  		     kvm_is_exception_pending(vcpu)))
13119  		return false;
13120  
13121  	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13122  		return false;
13123  
13124  	/*
13125  	 * If interrupts are off we cannot even use an artificial
13126  	 * halt state.
13127  	 */
13128  	return kvm_arch_interrupt_allowed(vcpu);
13129  }
13130  
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13131  bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13132  				     struct kvm_async_pf *work)
13133  {
13134  	struct x86_exception fault;
13135  
13136  	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13137  	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13138  
13139  	if (kvm_can_deliver_async_pf(vcpu) &&
13140  	    !apf_put_user_notpresent(vcpu)) {
13141  		fault.vector = PF_VECTOR;
13142  		fault.error_code_valid = true;
13143  		fault.error_code = 0;
13144  		fault.nested_page_fault = false;
13145  		fault.address = work->arch.token;
13146  		fault.async_page_fault = true;
13147  		kvm_inject_page_fault(vcpu, &fault);
13148  		return true;
13149  	} else {
13150  		/*
13151  		 * It is not possible to deliver a paravirtualized asynchronous
13152  		 * page fault, but putting the guest in an artificial halt state
13153  		 * can be beneficial nevertheless: if an interrupt arrives, we
13154  		 * can deliver it timely and perhaps the guest will schedule
13155  		 * another process.  When the instruction that triggered a page
13156  		 * fault is retried, hopefully the page will be ready in the host.
13157  		 */
13158  		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13159  		return false;
13160  	}
13161  }
13162  
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13163  void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13164  				 struct kvm_async_pf *work)
13165  {
13166  	struct kvm_lapic_irq irq = {
13167  		.delivery_mode = APIC_DM_FIXED,
13168  		.vector = vcpu->arch.apf.vec
13169  	};
13170  
13171  	if (work->wakeup_all)
13172  		work->arch.token = ~0; /* broadcast wakeup */
13173  	else
13174  		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13175  	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13176  
13177  	if ((work->wakeup_all || work->notpresent_injected) &&
13178  	    kvm_pv_async_pf_enabled(vcpu) &&
13179  	    !apf_put_user_ready(vcpu, work->arch.token)) {
13180  		vcpu->arch.apf.pageready_pending = true;
13181  		kvm_apic_set_irq(vcpu, &irq, NULL);
13182  	}
13183  
13184  	vcpu->arch.apf.halted = false;
13185  	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13186  }
13187  
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13188  void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13189  {
13190  	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13191  	if (!vcpu->arch.apf.pageready_pending)
13192  		kvm_vcpu_kick(vcpu);
13193  }
13194  
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13195  bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13196  {
13197  	if (!kvm_pv_async_pf_enabled(vcpu))
13198  		return true;
13199  	else
13200  		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13201  }
13202  
kvm_arch_start_assignment(struct kvm * kvm)13203  void kvm_arch_start_assignment(struct kvm *kvm)
13204  {
13205  	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13206  		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13207  }
13208  EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13209  
kvm_arch_end_assignment(struct kvm * kvm)13210  void kvm_arch_end_assignment(struct kvm *kvm)
13211  {
13212  	atomic_dec(&kvm->arch.assigned_device_count);
13213  }
13214  EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13215  
kvm_arch_has_assigned_device(struct kvm * kvm)13216  bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13217  {
13218  	return raw_atomic_read(&kvm->arch.assigned_device_count);
13219  }
13220  EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13221  
kvm_arch_register_noncoherent_dma(struct kvm * kvm)13222  void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13223  {
13224  	atomic_inc(&kvm->arch.noncoherent_dma_count);
13225  }
13226  EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13227  
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13228  void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13229  {
13230  	atomic_dec(&kvm->arch.noncoherent_dma_count);
13231  }
13232  EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13233  
kvm_arch_has_noncoherent_dma(struct kvm * kvm)13234  bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13235  {
13236  	return atomic_read(&kvm->arch.noncoherent_dma_count);
13237  }
13238  EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13239  
kvm_arch_has_irq_bypass(void)13240  bool kvm_arch_has_irq_bypass(void)
13241  {
13242  	return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13243  }
13244  
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13245  int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13246  				      struct irq_bypass_producer *prod)
13247  {
13248  	struct kvm_kernel_irqfd *irqfd =
13249  		container_of(cons, struct kvm_kernel_irqfd, consumer);
13250  	int ret;
13251  
13252  	irqfd->producer = prod;
13253  	kvm_arch_start_assignment(irqfd->kvm);
13254  	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13255  					 prod->irq, irqfd->gsi, 1);
13256  
13257  	if (ret)
13258  		kvm_arch_end_assignment(irqfd->kvm);
13259  
13260  	return ret;
13261  }
13262  
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13263  void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13264  				      struct irq_bypass_producer *prod)
13265  {
13266  	int ret;
13267  	struct kvm_kernel_irqfd *irqfd =
13268  		container_of(cons, struct kvm_kernel_irqfd, consumer);
13269  
13270  	WARN_ON(irqfd->producer != prod);
13271  	irqfd->producer = NULL;
13272  
13273  	/*
13274  	 * When producer of consumer is unregistered, we change back to
13275  	 * remapped mode, so we can re-use the current implementation
13276  	 * when the irq is masked/disabled or the consumer side (KVM
13277  	 * int this case doesn't want to receive the interrupts.
13278  	*/
13279  	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13280  	if (ret)
13281  		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13282  		       " fails: %d\n", irqfd->consumer.token, ret);
13283  
13284  	kvm_arch_end_assignment(irqfd->kvm);
13285  }
13286  
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)13287  int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13288  				   uint32_t guest_irq, bool set)
13289  {
13290  	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13291  }
13292  
kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)13293  bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13294  				  struct kvm_kernel_irq_routing_entry *new)
13295  {
13296  	if (new->type != KVM_IRQ_ROUTING_MSI)
13297  		return true;
13298  
13299  	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13300  }
13301  
kvm_vector_hashing_enabled(void)13302  bool kvm_vector_hashing_enabled(void)
13303  {
13304  	return vector_hashing;
13305  }
13306  
kvm_arch_no_poll(struct kvm_vcpu * vcpu)13307  bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13308  {
13309  	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13310  }
13311  EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13312  
13313  
kvm_spec_ctrl_test_value(u64 value)13314  int kvm_spec_ctrl_test_value(u64 value)
13315  {
13316  	/*
13317  	 * test that setting IA32_SPEC_CTRL to given value
13318  	 * is allowed by the host processor
13319  	 */
13320  
13321  	u64 saved_value;
13322  	unsigned long flags;
13323  	int ret = 0;
13324  
13325  	local_irq_save(flags);
13326  
13327  	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13328  		ret = 1;
13329  	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13330  		ret = 1;
13331  	else
13332  		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13333  
13334  	local_irq_restore(flags);
13335  
13336  	return ret;
13337  }
13338  EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13339  
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)13340  void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13341  {
13342  	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13343  	struct x86_exception fault;
13344  	u64 access = error_code &
13345  		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13346  
13347  	if (!(error_code & PFERR_PRESENT_MASK) ||
13348  	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13349  		/*
13350  		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13351  		 * tables probably do not match the TLB.  Just proceed
13352  		 * with the error code that the processor gave.
13353  		 */
13354  		fault.vector = PF_VECTOR;
13355  		fault.error_code_valid = true;
13356  		fault.error_code = error_code;
13357  		fault.nested_page_fault = false;
13358  		fault.address = gva;
13359  		fault.async_page_fault = false;
13360  	}
13361  	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13362  }
13363  EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13364  
13365  /*
13366   * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13367   * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13368   * indicates whether exit to userspace is needed.
13369   */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)13370  int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13371  			      struct x86_exception *e)
13372  {
13373  	if (r == X86EMUL_PROPAGATE_FAULT) {
13374  		if (KVM_BUG_ON(!e, vcpu->kvm))
13375  			return -EIO;
13376  
13377  		kvm_inject_emulated_page_fault(vcpu, e);
13378  		return 1;
13379  	}
13380  
13381  	/*
13382  	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13383  	 * while handling a VMX instruction KVM could've handled the request
13384  	 * correctly by exiting to userspace and performing I/O but there
13385  	 * doesn't seem to be a real use-case behind such requests, just return
13386  	 * KVM_EXIT_INTERNAL_ERROR for now.
13387  	 */
13388  	kvm_prepare_emulation_failure_exit(vcpu);
13389  
13390  	return 0;
13391  }
13392  EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13393  
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)13394  int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13395  {
13396  	bool pcid_enabled;
13397  	struct x86_exception e;
13398  	struct {
13399  		u64 pcid;
13400  		u64 gla;
13401  	} operand;
13402  	int r;
13403  
13404  	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13405  	if (r != X86EMUL_CONTINUE)
13406  		return kvm_handle_memory_failure(vcpu, r, &e);
13407  
13408  	if (operand.pcid >> 12 != 0) {
13409  		kvm_inject_gp(vcpu, 0);
13410  		return 1;
13411  	}
13412  
13413  	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13414  
13415  	switch (type) {
13416  	case INVPCID_TYPE_INDIV_ADDR:
13417  		if ((!pcid_enabled && (operand.pcid != 0)) ||
13418  		    is_noncanonical_address(operand.gla, vcpu)) {
13419  			kvm_inject_gp(vcpu, 0);
13420  			return 1;
13421  		}
13422  		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13423  		return kvm_skip_emulated_instruction(vcpu);
13424  
13425  	case INVPCID_TYPE_SINGLE_CTXT:
13426  		if (!pcid_enabled && (operand.pcid != 0)) {
13427  			kvm_inject_gp(vcpu, 0);
13428  			return 1;
13429  		}
13430  
13431  		kvm_invalidate_pcid(vcpu, operand.pcid);
13432  		return kvm_skip_emulated_instruction(vcpu);
13433  
13434  	case INVPCID_TYPE_ALL_NON_GLOBAL:
13435  		/*
13436  		 * Currently, KVM doesn't mark global entries in the shadow
13437  		 * page tables, so a non-global flush just degenerates to a
13438  		 * global flush. If needed, we could optimize this later by
13439  		 * keeping track of global entries in shadow page tables.
13440  		 */
13441  
13442  		fallthrough;
13443  	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13444  		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13445  		return kvm_skip_emulated_instruction(vcpu);
13446  
13447  	default:
13448  		kvm_inject_gp(vcpu, 0);
13449  		return 1;
13450  	}
13451  }
13452  EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13453  
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)13454  static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13455  {
13456  	struct kvm_run *run = vcpu->run;
13457  	struct kvm_mmio_fragment *frag;
13458  	unsigned int len;
13459  
13460  	BUG_ON(!vcpu->mmio_needed);
13461  
13462  	/* Complete previous fragment */
13463  	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13464  	len = min(8u, frag->len);
13465  	if (!vcpu->mmio_is_write)
13466  		memcpy(frag->data, run->mmio.data, len);
13467  
13468  	if (frag->len <= 8) {
13469  		/* Switch to the next fragment. */
13470  		frag++;
13471  		vcpu->mmio_cur_fragment++;
13472  	} else {
13473  		/* Go forward to the next mmio piece. */
13474  		frag->data += len;
13475  		frag->gpa += len;
13476  		frag->len -= len;
13477  	}
13478  
13479  	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13480  		vcpu->mmio_needed = 0;
13481  
13482  		// VMG change, at this point, we're always done
13483  		// RIP has already been advanced
13484  		return 1;
13485  	}
13486  
13487  	// More MMIO is needed
13488  	run->mmio.phys_addr = frag->gpa;
13489  	run->mmio.len = min(8u, frag->len);
13490  	run->mmio.is_write = vcpu->mmio_is_write;
13491  	if (run->mmio.is_write)
13492  		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13493  	run->exit_reason = KVM_EXIT_MMIO;
13494  
13495  	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13496  
13497  	return 0;
13498  }
13499  
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13500  int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13501  			  void *data)
13502  {
13503  	int handled;
13504  	struct kvm_mmio_fragment *frag;
13505  
13506  	if (!data)
13507  		return -EINVAL;
13508  
13509  	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13510  	if (handled == bytes)
13511  		return 1;
13512  
13513  	bytes -= handled;
13514  	gpa += handled;
13515  	data += handled;
13516  
13517  	/*TODO: Check if need to increment number of frags */
13518  	frag = vcpu->mmio_fragments;
13519  	vcpu->mmio_nr_fragments = 1;
13520  	frag->len = bytes;
13521  	frag->gpa = gpa;
13522  	frag->data = data;
13523  
13524  	vcpu->mmio_needed = 1;
13525  	vcpu->mmio_cur_fragment = 0;
13526  
13527  	vcpu->run->mmio.phys_addr = gpa;
13528  	vcpu->run->mmio.len = min(8u, frag->len);
13529  	vcpu->run->mmio.is_write = 1;
13530  	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13531  	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13532  
13533  	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13534  
13535  	return 0;
13536  }
13537  EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13538  
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13539  int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13540  			 void *data)
13541  {
13542  	int handled;
13543  	struct kvm_mmio_fragment *frag;
13544  
13545  	if (!data)
13546  		return -EINVAL;
13547  
13548  	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13549  	if (handled == bytes)
13550  		return 1;
13551  
13552  	bytes -= handled;
13553  	gpa += handled;
13554  	data += handled;
13555  
13556  	/*TODO: Check if need to increment number of frags */
13557  	frag = vcpu->mmio_fragments;
13558  	vcpu->mmio_nr_fragments = 1;
13559  	frag->len = bytes;
13560  	frag->gpa = gpa;
13561  	frag->data = data;
13562  
13563  	vcpu->mmio_needed = 1;
13564  	vcpu->mmio_cur_fragment = 0;
13565  
13566  	vcpu->run->mmio.phys_addr = gpa;
13567  	vcpu->run->mmio.len = min(8u, frag->len);
13568  	vcpu->run->mmio.is_write = 0;
13569  	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13570  
13571  	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13572  
13573  	return 0;
13574  }
13575  EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13576  
advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)13577  static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13578  {
13579  	vcpu->arch.sev_pio_count -= count;
13580  	vcpu->arch.sev_pio_data += count * size;
13581  }
13582  
13583  static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13584  			   unsigned int port);
13585  
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)13586  static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13587  {
13588  	int size = vcpu->arch.pio.size;
13589  	int port = vcpu->arch.pio.port;
13590  
13591  	vcpu->arch.pio.count = 0;
13592  	if (vcpu->arch.sev_pio_count)
13593  		return kvm_sev_es_outs(vcpu, size, port);
13594  	return 1;
13595  }
13596  
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13597  static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13598  			   unsigned int port)
13599  {
13600  	for (;;) {
13601  		unsigned int count =
13602  			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13603  		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13604  
13605  		/* memcpy done already by emulator_pio_out.  */
13606  		advance_sev_es_emulated_pio(vcpu, count, size);
13607  		if (!ret)
13608  			break;
13609  
13610  		/* Emulation done by the kernel.  */
13611  		if (!vcpu->arch.sev_pio_count)
13612  			return 1;
13613  	}
13614  
13615  	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13616  	return 0;
13617  }
13618  
13619  static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13620  			  unsigned int port);
13621  
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)13622  static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13623  {
13624  	unsigned count = vcpu->arch.pio.count;
13625  	int size = vcpu->arch.pio.size;
13626  	int port = vcpu->arch.pio.port;
13627  
13628  	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13629  	advance_sev_es_emulated_pio(vcpu, count, size);
13630  	if (vcpu->arch.sev_pio_count)
13631  		return kvm_sev_es_ins(vcpu, size, port);
13632  	return 1;
13633  }
13634  
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13635  static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13636  			  unsigned int port)
13637  {
13638  	for (;;) {
13639  		unsigned int count =
13640  			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13641  		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13642  			break;
13643  
13644  		/* Emulation done by the kernel.  */
13645  		advance_sev_es_emulated_pio(vcpu, count, size);
13646  		if (!vcpu->arch.sev_pio_count)
13647  			return 1;
13648  	}
13649  
13650  	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13651  	return 0;
13652  }
13653  
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)13654  int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13655  			 unsigned int port, void *data,  unsigned int count,
13656  			 int in)
13657  {
13658  	vcpu->arch.sev_pio_data = data;
13659  	vcpu->arch.sev_pio_count = count;
13660  	return in ? kvm_sev_es_ins(vcpu, size, port)
13661  		  : kvm_sev_es_outs(vcpu, size, port);
13662  }
13663  EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13664  
13665  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13666  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13667  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13668  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13669  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13670  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13671  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13672  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13673  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13674  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13675  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13676  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13677  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13678  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13679  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13680  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13681  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13682  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13683  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13684  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13685  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13686  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13687  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13688  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13689  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13690  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13691  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13692  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13693  EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13694  
kvm_x86_init(void)13695  static int __init kvm_x86_init(void)
13696  {
13697  	kvm_init_xstate_sizes();
13698  
13699  	kvm_mmu_x86_module_init();
13700  	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13701  	return 0;
13702  }
13703  module_init(kvm_x86_init);
13704  
kvm_x86_exit(void)13705  static void __exit kvm_x86_exit(void)
13706  {
13707  	/*
13708  	 * If module_init() is implemented, module_exit() must also be
13709  	 * implemented to allow module unload.
13710  	 */
13711  }
13712  module_exit(kvm_x86_exit);
13713