1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4
5
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42
43 #include <linux/kvm_types.h>
44
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51
52 /*
53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54 * used in kvm, other bits are visible for userspace which are defined in
55 * include/linux/kvm_h.
56 */
57 #define KVM_MEMSLOT_INVALID (1UL << 16)
58
59 /*
60 * Bit 63 of the memslot generation number is an "update in-progress flag",
61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62 * This flag effectively creates a unique generation number that is used to
63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64 * i.e. may (or may not) have come from the previous memslots generation.
65 *
66 * This is necessary because the actual memslots update is not atomic with
67 * respect to the generation number update. Updating the generation number
68 * first would allow a vCPU to cache a spte from the old memslots using the
69 * new generation number, and updating the generation number after switching
70 * to the new memslots would allow cache hits using the old generation number
71 * to reference the defunct memslots.
72 *
73 * This mechanism is used to prevent getting hits in KVM's caches while a
74 * memslot update is in-progress, and to prevent cache hits *after* updating
75 * the actual generation number against accesses that were inserted into the
76 * cache *before* the memslots were updated.
77 */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
79
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS 2
82
83 #ifndef KVM_ADDRESS_SPACE_NUM
84 #define KVM_ADDRESS_SPACE_NUM 1
85 #endif
86
87 /*
88 * For the normal pfn, the highest 12 bits should be zero,
89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
90 * mask bit 63 to indicate the noslot pfn.
91 */
92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
94 #define KVM_PFN_NOSLOT (0x1ULL << 63)
95
96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
99 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3)
100
101 /*
102 * error pfns indicate that the gfn is in slot but faild to
103 * translate it to pfn on host.
104 */
is_error_pfn(kvm_pfn_t pfn)105 static inline bool is_error_pfn(kvm_pfn_t pfn)
106 {
107 return !!(pfn & KVM_PFN_ERR_MASK);
108 }
109
110 /*
111 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
112 * by a pending signal. Note, the signal may or may not be fatal.
113 */
is_sigpending_pfn(kvm_pfn_t pfn)114 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
115 {
116 return pfn == KVM_PFN_ERR_SIGPENDING;
117 }
118
119 /*
120 * error_noslot pfns indicate that the gfn can not be
121 * translated to pfn - it is not in slot or failed to
122 * translate it to pfn.
123 */
is_error_noslot_pfn(kvm_pfn_t pfn)124 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
125 {
126 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
127 }
128
129 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)130 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
131 {
132 return pfn == KVM_PFN_NOSLOT;
133 }
134
135 /*
136 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
137 * provide own defines and kvm_is_error_hva
138 */
139 #ifndef KVM_HVA_ERR_BAD
140
141 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
142 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
143
kvm_is_error_hva(unsigned long addr)144 static inline bool kvm_is_error_hva(unsigned long addr)
145 {
146 return addr >= PAGE_OFFSET;
147 }
148
149 #endif
150
151 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
152
is_error_page(struct page * page)153 static inline bool is_error_page(struct page *page)
154 {
155 return IS_ERR(page);
156 }
157
158 #define KVM_REQUEST_MASK GENMASK(7,0)
159 #define KVM_REQUEST_NO_WAKEUP BIT(8)
160 #define KVM_REQUEST_WAIT BIT(9)
161 #define KVM_REQUEST_NO_ACTION BIT(10)
162 /*
163 * Architecture-independent vcpu->requests bit members
164 * Bits 3-7 are reserved for more arch-independent bits.
165 */
166 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
168 #define KVM_REQ_UNBLOCK 2
169 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3
170 #define KVM_REQUEST_ARCH_BASE 8
171
172 /*
173 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
174 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
175 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
176 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous
177 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
178 * guarantee the vCPU received an IPI and has actually exited guest mode.
179 */
180 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
181
182 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
183 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
184 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
185 })
186 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
187
188 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
189 unsigned long *vcpu_bitmap);
190 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
191 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
192 struct kvm_vcpu *except);
193
194 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
195 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
196
197 extern struct mutex kvm_lock;
198 extern struct list_head vm_list;
199
200 struct kvm_io_range {
201 gpa_t addr;
202 int len;
203 struct kvm_io_device *dev;
204 };
205
206 #define NR_IOBUS_DEVS 1000
207
208 struct kvm_io_bus {
209 int dev_count;
210 int ioeventfd_count;
211 struct kvm_io_range range[];
212 };
213
214 enum kvm_bus {
215 KVM_MMIO_BUS,
216 KVM_PIO_BUS,
217 KVM_VIRTIO_CCW_NOTIFY_BUS,
218 KVM_FAST_MMIO_BUS,
219 KVM_NR_BUSES
220 };
221
222 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
223 int len, const void *val);
224 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
225 gpa_t addr, int len, const void *val, long cookie);
226 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
227 int len, void *val);
228 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
229 int len, struct kvm_io_device *dev);
230 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
231 struct kvm_io_device *dev);
232 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
233 gpa_t addr);
234
235 #ifdef CONFIG_KVM_ASYNC_PF
236 struct kvm_async_pf {
237 struct work_struct work;
238 struct list_head link;
239 struct list_head queue;
240 struct kvm_vcpu *vcpu;
241 struct mm_struct *mm;
242 gpa_t cr2_or_gpa;
243 unsigned long addr;
244 struct kvm_arch_async_pf arch;
245 bool wakeup_all;
246 bool notpresent_injected;
247 };
248
249 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
250 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
251 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
252 unsigned long hva, struct kvm_arch_async_pf *arch);
253 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
254 #endif
255
256 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
257 union kvm_mmu_notifier_arg {
258 pte_t pte;
259 };
260
261 struct kvm_gfn_range {
262 struct kvm_memory_slot *slot;
263 gfn_t start;
264 gfn_t end;
265 union kvm_mmu_notifier_arg arg;
266 bool may_block;
267 };
268 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
269 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
270 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
271 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
272 #endif
273
274 enum {
275 OUTSIDE_GUEST_MODE,
276 IN_GUEST_MODE,
277 EXITING_GUEST_MODE,
278 READING_SHADOW_PAGE_TABLES,
279 };
280
281 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
282
283 struct kvm_host_map {
284 /*
285 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
286 * a 'struct page' for it. When using mem= kernel parameter some memory
287 * can be used as guest memory but they are not managed by host
288 * kernel).
289 * If 'pfn' is not managed by the host kernel, this field is
290 * initialized to KVM_UNMAPPED_PAGE.
291 */
292 struct page *page;
293 void *hva;
294 kvm_pfn_t pfn;
295 kvm_pfn_t gfn;
296 };
297
298 /*
299 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
300 * directly to check for that.
301 */
kvm_vcpu_mapped(struct kvm_host_map * map)302 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
303 {
304 return !!map->hva;
305 }
306
kvm_vcpu_can_poll(ktime_t cur,ktime_t stop)307 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
308 {
309 return single_task_running() && !need_resched() && ktime_before(cur, stop);
310 }
311
312 /*
313 * Sometimes a large or cross-page mmio needs to be broken up into separate
314 * exits for userspace servicing.
315 */
316 struct kvm_mmio_fragment {
317 gpa_t gpa;
318 void *data;
319 unsigned len;
320 };
321
322 struct kvm_vcpu {
323 struct kvm *kvm;
324 #ifdef CONFIG_PREEMPT_NOTIFIERS
325 struct preempt_notifier preempt_notifier;
326 #endif
327 int cpu;
328 int vcpu_id; /* id given by userspace at creation */
329 int vcpu_idx; /* index into kvm->vcpu_array */
330 int ____srcu_idx; /* Don't use this directly. You've been warned. */
331 #ifdef CONFIG_PROVE_RCU
332 int srcu_depth;
333 #endif
334 int mode;
335 u64 requests;
336 unsigned long guest_debug;
337
338 struct mutex mutex;
339 struct kvm_run *run;
340
341 #ifndef __KVM_HAVE_ARCH_WQP
342 struct rcuwait wait;
343 #endif
344 struct pid __rcu *pid;
345 int sigset_active;
346 sigset_t sigset;
347 unsigned int halt_poll_ns;
348 bool valid_wakeup;
349
350 #ifdef CONFIG_HAS_IOMEM
351 int mmio_needed;
352 int mmio_read_completed;
353 int mmio_is_write;
354 int mmio_cur_fragment;
355 int mmio_nr_fragments;
356 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
357 #endif
358
359 #ifdef CONFIG_KVM_ASYNC_PF
360 struct {
361 u32 queued;
362 struct list_head queue;
363 struct list_head done;
364 spinlock_t lock;
365 } async_pf;
366 #endif
367
368 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
369 /*
370 * Cpu relax intercept or pause loop exit optimization
371 * in_spin_loop: set when a vcpu does a pause loop exit
372 * or cpu relax intercepted.
373 * dy_eligible: indicates whether vcpu is eligible for directed yield.
374 */
375 struct {
376 bool in_spin_loop;
377 bool dy_eligible;
378 } spin_loop;
379 #endif
380 bool preempted;
381 bool ready;
382 struct kvm_vcpu_arch arch;
383 struct kvm_vcpu_stat stat;
384 char stats_id[KVM_STATS_NAME_SIZE];
385 struct kvm_dirty_ring dirty_ring;
386
387 /*
388 * The most recently used memslot by this vCPU and the slots generation
389 * for which it is valid.
390 * No wraparound protection is needed since generations won't overflow in
391 * thousands of years, even assuming 1M memslot operations per second.
392 */
393 struct kvm_memory_slot *last_used_slot;
394 u64 last_used_slot_gen;
395 };
396
397 /*
398 * Start accounting time towards a guest.
399 * Must be called before entering guest context.
400 */
guest_timing_enter_irqoff(void)401 static __always_inline void guest_timing_enter_irqoff(void)
402 {
403 /*
404 * This is running in ioctl context so its safe to assume that it's the
405 * stime pending cputime to flush.
406 */
407 instrumentation_begin();
408 vtime_account_guest_enter();
409 instrumentation_end();
410 }
411
412 /*
413 * Enter guest context and enter an RCU extended quiescent state.
414 *
415 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
416 * unsafe to use any code which may directly or indirectly use RCU, tracing
417 * (including IRQ flag tracing), or lockdep. All code in this period must be
418 * non-instrumentable.
419 */
guest_context_enter_irqoff(void)420 static __always_inline void guest_context_enter_irqoff(void)
421 {
422 /*
423 * KVM does not hold any references to rcu protected data when it
424 * switches CPU into a guest mode. In fact switching to a guest mode
425 * is very similar to exiting to userspace from rcu point of view. In
426 * addition CPU may stay in a guest mode for quite a long time (up to
427 * one time slice). Lets treat guest mode as quiescent state, just like
428 * we do with user-mode execution.
429 */
430 if (!context_tracking_guest_enter()) {
431 instrumentation_begin();
432 rcu_virt_note_context_switch();
433 instrumentation_end();
434 }
435 }
436
437 /*
438 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
439 * guest_state_enter_irqoff().
440 */
guest_enter_irqoff(void)441 static __always_inline void guest_enter_irqoff(void)
442 {
443 guest_timing_enter_irqoff();
444 guest_context_enter_irqoff();
445 }
446
447 /**
448 * guest_state_enter_irqoff - Fixup state when entering a guest
449 *
450 * Entry to a guest will enable interrupts, but the kernel state is interrupts
451 * disabled when this is invoked. Also tell RCU about it.
452 *
453 * 1) Trace interrupts on state
454 * 2) Invoke context tracking if enabled to adjust RCU state
455 * 3) Tell lockdep that interrupts are enabled
456 *
457 * Invoked from architecture specific code before entering a guest.
458 * Must be called with interrupts disabled and the caller must be
459 * non-instrumentable.
460 * The caller has to invoke guest_timing_enter_irqoff() before this.
461 *
462 * Note: this is analogous to exit_to_user_mode().
463 */
guest_state_enter_irqoff(void)464 static __always_inline void guest_state_enter_irqoff(void)
465 {
466 instrumentation_begin();
467 trace_hardirqs_on_prepare();
468 lockdep_hardirqs_on_prepare();
469 instrumentation_end();
470
471 guest_context_enter_irqoff();
472 lockdep_hardirqs_on(CALLER_ADDR0);
473 }
474
475 /*
476 * Exit guest context and exit an RCU extended quiescent state.
477 *
478 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
479 * unsafe to use any code which may directly or indirectly use RCU, tracing
480 * (including IRQ flag tracing), or lockdep. All code in this period must be
481 * non-instrumentable.
482 */
guest_context_exit_irqoff(void)483 static __always_inline void guest_context_exit_irqoff(void)
484 {
485 context_tracking_guest_exit();
486 }
487
488 /*
489 * Stop accounting time towards a guest.
490 * Must be called after exiting guest context.
491 */
guest_timing_exit_irqoff(void)492 static __always_inline void guest_timing_exit_irqoff(void)
493 {
494 instrumentation_begin();
495 /* Flush the guest cputime we spent on the guest */
496 vtime_account_guest_exit();
497 instrumentation_end();
498 }
499
500 /*
501 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
502 * guest_timing_exit_irqoff().
503 */
guest_exit_irqoff(void)504 static __always_inline void guest_exit_irqoff(void)
505 {
506 guest_context_exit_irqoff();
507 guest_timing_exit_irqoff();
508 }
509
guest_exit(void)510 static inline void guest_exit(void)
511 {
512 unsigned long flags;
513
514 local_irq_save(flags);
515 guest_exit_irqoff();
516 local_irq_restore(flags);
517 }
518
519 /**
520 * guest_state_exit_irqoff - Establish state when returning from guest mode
521 *
522 * Entry from a guest disables interrupts, but guest mode is traced as
523 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
524 *
525 * 1) Tell lockdep that interrupts are disabled
526 * 2) Invoke context tracking if enabled to reactivate RCU
527 * 3) Trace interrupts off state
528 *
529 * Invoked from architecture specific code after exiting a guest.
530 * Must be invoked with interrupts disabled and the caller must be
531 * non-instrumentable.
532 * The caller has to invoke guest_timing_exit_irqoff() after this.
533 *
534 * Note: this is analogous to enter_from_user_mode().
535 */
guest_state_exit_irqoff(void)536 static __always_inline void guest_state_exit_irqoff(void)
537 {
538 lockdep_hardirqs_off(CALLER_ADDR0);
539 guest_context_exit_irqoff();
540
541 instrumentation_begin();
542 trace_hardirqs_off_finish();
543 instrumentation_end();
544 }
545
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)546 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
547 {
548 /*
549 * The memory barrier ensures a previous write to vcpu->requests cannot
550 * be reordered with the read of vcpu->mode. It pairs with the general
551 * memory barrier following the write of vcpu->mode in VCPU RUN.
552 */
553 smp_mb__before_atomic();
554 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
555 }
556
557 /*
558 * Some of the bitops functions do not support too long bitmaps.
559 * This number must be determined not to exceed such limits.
560 */
561 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
562
563 /*
564 * Since at idle each memslot belongs to two memslot sets it has to contain
565 * two embedded nodes for each data structure that it forms a part of.
566 *
567 * Two memslot sets (one active and one inactive) are necessary so the VM
568 * continues to run on one memslot set while the other is being modified.
569 *
570 * These two memslot sets normally point to the same set of memslots.
571 * They can, however, be desynchronized when performing a memslot management
572 * operation by replacing the memslot to be modified by its copy.
573 * After the operation is complete, both memslot sets once again point to
574 * the same, common set of memslot data.
575 *
576 * The memslots themselves are independent of each other so they can be
577 * individually added or deleted.
578 */
579 struct kvm_memory_slot {
580 struct hlist_node id_node[2];
581 struct interval_tree_node hva_node[2];
582 struct rb_node gfn_node[2];
583 gfn_t base_gfn;
584 unsigned long npages;
585 unsigned long *dirty_bitmap;
586 struct kvm_arch_memory_slot arch;
587 unsigned long userspace_addr;
588 u32 flags;
589 short id;
590 u16 as_id;
591 };
592
kvm_slot_dirty_track_enabled(const struct kvm_memory_slot * slot)593 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
594 {
595 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
596 }
597
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)598 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
599 {
600 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
601 }
602
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)603 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
604 {
605 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
606
607 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
608 }
609
610 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
611 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
612 #endif
613
614 struct kvm_s390_adapter_int {
615 u64 ind_addr;
616 u64 summary_addr;
617 u64 ind_offset;
618 u32 summary_offset;
619 u32 adapter_id;
620 };
621
622 struct kvm_hv_sint {
623 u32 vcpu;
624 u32 sint;
625 };
626
627 struct kvm_xen_evtchn {
628 u32 port;
629 u32 vcpu_id;
630 int vcpu_idx;
631 u32 priority;
632 };
633
634 struct kvm_kernel_irq_routing_entry {
635 u32 gsi;
636 u32 type;
637 int (*set)(struct kvm_kernel_irq_routing_entry *e,
638 struct kvm *kvm, int irq_source_id, int level,
639 bool line_status);
640 union {
641 struct {
642 unsigned irqchip;
643 unsigned pin;
644 } irqchip;
645 struct {
646 u32 address_lo;
647 u32 address_hi;
648 u32 data;
649 u32 flags;
650 u32 devid;
651 } msi;
652 struct kvm_s390_adapter_int adapter;
653 struct kvm_hv_sint hv_sint;
654 struct kvm_xen_evtchn xen_evtchn;
655 };
656 struct hlist_node link;
657 };
658
659 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
660 struct kvm_irq_routing_table {
661 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
662 u32 nr_rt_entries;
663 /*
664 * Array indexed by gsi. Each entry contains list of irq chips
665 * the gsi is connected to.
666 */
667 struct hlist_head map[];
668 };
669 #endif
670
671 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
672
673 #ifndef KVM_INTERNAL_MEM_SLOTS
674 #define KVM_INTERNAL_MEM_SLOTS 0
675 #endif
676
677 #define KVM_MEM_SLOTS_NUM SHRT_MAX
678 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
679
680 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)681 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
682 {
683 return 0;
684 }
685 #endif
686
687 struct kvm_memslots {
688 u64 generation;
689 atomic_long_t last_used_slot;
690 struct rb_root_cached hva_tree;
691 struct rb_root gfn_tree;
692 /*
693 * The mapping table from slot id to memslot.
694 *
695 * 7-bit bucket count matches the size of the old id to index array for
696 * 512 slots, while giving good performance with this slot count.
697 * Higher bucket counts bring only small performance improvements but
698 * always result in higher memory usage (even for lower memslot counts).
699 */
700 DECLARE_HASHTABLE(id_hash, 7);
701 int node_idx;
702 };
703
704 struct kvm {
705 #ifdef KVM_HAVE_MMU_RWLOCK
706 rwlock_t mmu_lock;
707 #else
708 spinlock_t mmu_lock;
709 #endif /* KVM_HAVE_MMU_RWLOCK */
710
711 struct mutex slots_lock;
712
713 /*
714 * Protects the arch-specific fields of struct kvm_memory_slots in
715 * use by the VM. To be used under the slots_lock (above) or in a
716 * kvm->srcu critical section where acquiring the slots_lock would
717 * lead to deadlock with the synchronize_srcu in
718 * kvm_swap_active_memslots().
719 */
720 struct mutex slots_arch_lock;
721 struct mm_struct *mm; /* userspace tied to this vm */
722 unsigned long nr_memslot_pages;
723 /* The two memslot sets - active and inactive (per address space) */
724 struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2];
725 /* The current active memslot set for each address space */
726 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
727 struct xarray vcpu_array;
728 /*
729 * Protected by slots_lock, but can be read outside if an
730 * incorrect answer is acceptable.
731 */
732 atomic_t nr_memslots_dirty_logging;
733
734 /* Used to wait for completion of MMU notifiers. */
735 spinlock_t mn_invalidate_lock;
736 unsigned long mn_active_invalidate_count;
737 struct rcuwait mn_memslots_update_rcuwait;
738
739 /* For management / invalidation of gfn_to_pfn_caches */
740 spinlock_t gpc_lock;
741 struct list_head gpc_list;
742
743 /*
744 * created_vcpus is protected by kvm->lock, and is incremented
745 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
746 * incremented after storing the kvm_vcpu pointer in vcpus,
747 * and is accessed atomically.
748 */
749 atomic_t online_vcpus;
750 int max_vcpus;
751 int created_vcpus;
752 int last_boosted_vcpu;
753 struct list_head vm_list;
754 struct mutex lock;
755 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
756 #ifdef CONFIG_HAVE_KVM_EVENTFD
757 struct {
758 spinlock_t lock;
759 struct list_head items;
760 /* resampler_list update side is protected by resampler_lock. */
761 struct list_head resampler_list;
762 struct mutex resampler_lock;
763 } irqfds;
764 struct list_head ioeventfds;
765 #endif
766 struct kvm_vm_stat stat;
767 struct kvm_arch arch;
768 refcount_t users_count;
769 #ifdef CONFIG_KVM_MMIO
770 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
771 spinlock_t ring_lock;
772 struct list_head coalesced_zones;
773 #endif
774
775 struct mutex irq_lock;
776 #ifdef CONFIG_HAVE_KVM_IRQCHIP
777 /*
778 * Update side is protected by irq_lock.
779 */
780 struct kvm_irq_routing_table __rcu *irq_routing;
781 #endif
782 #ifdef CONFIG_HAVE_KVM_IRQFD
783 struct hlist_head irq_ack_notifier_list;
784 #endif
785
786 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
787 struct mmu_notifier mmu_notifier;
788 unsigned long mmu_invalidate_seq;
789 long mmu_invalidate_in_progress;
790 unsigned long mmu_invalidate_range_start;
791 unsigned long mmu_invalidate_range_end;
792 #endif
793 struct list_head devices;
794 u64 manual_dirty_log_protect;
795 struct dentry *debugfs_dentry;
796 struct kvm_stat_data **debugfs_stat_data;
797 struct srcu_struct srcu;
798 struct srcu_struct irq_srcu;
799 pid_t userspace_pid;
800 bool override_halt_poll_ns;
801 unsigned int max_halt_poll_ns;
802 u32 dirty_ring_size;
803 bool dirty_ring_with_bitmap;
804 bool vm_bugged;
805 bool vm_dead;
806
807 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
808 struct notifier_block pm_notifier;
809 #endif
810 char stats_id[KVM_STATS_NAME_SIZE];
811 };
812
813 #define kvm_err(fmt, ...) \
814 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
815 #define kvm_info(fmt, ...) \
816 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
817 #define kvm_debug(fmt, ...) \
818 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
819 #define kvm_debug_ratelimited(fmt, ...) \
820 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
821 ## __VA_ARGS__)
822 #define kvm_pr_unimpl(fmt, ...) \
823 pr_err_ratelimited("kvm [%i]: " fmt, \
824 task_tgid_nr(current), ## __VA_ARGS__)
825
826 /* The guest did something we don't support. */
827 #define vcpu_unimpl(vcpu, fmt, ...) \
828 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
829 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
830
831 #define vcpu_debug(vcpu, fmt, ...) \
832 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
833 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \
834 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
835 ## __VA_ARGS__)
836 #define vcpu_err(vcpu, fmt, ...) \
837 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
838
kvm_vm_dead(struct kvm * kvm)839 static inline void kvm_vm_dead(struct kvm *kvm)
840 {
841 kvm->vm_dead = true;
842 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
843 }
844
kvm_vm_bugged(struct kvm * kvm)845 static inline void kvm_vm_bugged(struct kvm *kvm)
846 {
847 kvm->vm_bugged = true;
848 kvm_vm_dead(kvm);
849 }
850
851
852 #define KVM_BUG(cond, kvm, fmt...) \
853 ({ \
854 bool __ret = !!(cond); \
855 \
856 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
857 kvm_vm_bugged(kvm); \
858 unlikely(__ret); \
859 })
860
861 #define KVM_BUG_ON(cond, kvm) \
862 ({ \
863 bool __ret = !!(cond); \
864 \
865 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
866 kvm_vm_bugged(kvm); \
867 unlikely(__ret); \
868 })
869
870 /*
871 * Note, "data corruption" refers to corruption of host kernel data structures,
872 * not guest data. Guest data corruption, suspected or confirmed, that is tied
873 * and contained to a single VM should *never* BUG() and potentially panic the
874 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
875 * is corrupted and that corruption can have a cascading effect to other parts
876 * of the hosts and/or to other VMs.
877 */
878 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \
879 ({ \
880 bool __ret = !!(cond); \
881 \
882 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \
883 BUG_ON(__ret); \
884 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
885 kvm_vm_bugged(kvm); \
886 unlikely(__ret); \
887 })
888
kvm_vcpu_srcu_read_lock(struct kvm_vcpu * vcpu)889 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
890 {
891 #ifdef CONFIG_PROVE_RCU
892 WARN_ONCE(vcpu->srcu_depth++,
893 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
894 #endif
895 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
896 }
897
kvm_vcpu_srcu_read_unlock(struct kvm_vcpu * vcpu)898 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
899 {
900 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
901
902 #ifdef CONFIG_PROVE_RCU
903 WARN_ONCE(--vcpu->srcu_depth,
904 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
905 #endif
906 }
907
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)908 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
909 {
910 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
911 }
912
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)913 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
914 {
915 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
916 lockdep_is_held(&kvm->slots_lock) ||
917 !refcount_read(&kvm->users_count));
918 }
919
kvm_get_vcpu(struct kvm * kvm,int i)920 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
921 {
922 int num_vcpus = atomic_read(&kvm->online_vcpus);
923 i = array_index_nospec(i, num_vcpus);
924
925 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
926 smp_rmb();
927 return xa_load(&kvm->vcpu_array, i);
928 }
929
930 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
931 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
932 (atomic_read(&kvm->online_vcpus) - 1))
933
kvm_get_vcpu_by_id(struct kvm * kvm,int id)934 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
935 {
936 struct kvm_vcpu *vcpu = NULL;
937 unsigned long i;
938
939 if (id < 0)
940 return NULL;
941 if (id < KVM_MAX_VCPUS)
942 vcpu = kvm_get_vcpu(kvm, id);
943 if (vcpu && vcpu->vcpu_id == id)
944 return vcpu;
945 kvm_for_each_vcpu(i, vcpu, kvm)
946 if (vcpu->vcpu_id == id)
947 return vcpu;
948 return NULL;
949 }
950
951 void kvm_destroy_vcpus(struct kvm *kvm);
952
953 void vcpu_load(struct kvm_vcpu *vcpu);
954 void vcpu_put(struct kvm_vcpu *vcpu);
955
956 #ifdef __KVM_HAVE_IOAPIC
957 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
958 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
959 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)960 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
961 {
962 }
kvm_arch_post_irq_routing_update(struct kvm * kvm)963 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
964 {
965 }
966 #endif
967
968 #ifdef CONFIG_HAVE_KVM_IRQFD
969 int kvm_irqfd_init(void);
970 void kvm_irqfd_exit(void);
971 #else
kvm_irqfd_init(void)972 static inline int kvm_irqfd_init(void)
973 {
974 return 0;
975 }
976
kvm_irqfd_exit(void)977 static inline void kvm_irqfd_exit(void)
978 {
979 }
980 #endif
981 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
982 void kvm_exit(void);
983
984 void kvm_get_kvm(struct kvm *kvm);
985 bool kvm_get_kvm_safe(struct kvm *kvm);
986 void kvm_put_kvm(struct kvm *kvm);
987 bool file_is_kvm(struct file *file);
988 void kvm_put_kvm_no_destroy(struct kvm *kvm);
989
__kvm_memslots(struct kvm * kvm,int as_id)990 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
991 {
992 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
993 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
994 lockdep_is_held(&kvm->slots_lock) ||
995 !refcount_read(&kvm->users_count));
996 }
997
kvm_memslots(struct kvm * kvm)998 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
999 {
1000 return __kvm_memslots(kvm, 0);
1001 }
1002
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)1003 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1004 {
1005 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1006
1007 return __kvm_memslots(vcpu->kvm, as_id);
1008 }
1009
kvm_memslots_empty(struct kvm_memslots * slots)1010 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1011 {
1012 return RB_EMPTY_ROOT(&slots->gfn_tree);
1013 }
1014
1015 bool kvm_are_all_memslots_empty(struct kvm *kvm);
1016
1017 #define kvm_for_each_memslot(memslot, bkt, slots) \
1018 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1019 if (WARN_ON_ONCE(!memslot->npages)) { \
1020 } else
1021
1022 static inline
id_to_memslot(struct kvm_memslots * slots,int id)1023 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1024 {
1025 struct kvm_memory_slot *slot;
1026 int idx = slots->node_idx;
1027
1028 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1029 if (slot->id == id)
1030 return slot;
1031 }
1032
1033 return NULL;
1034 }
1035
1036 /* Iterator used for walking memslots that overlap a gfn range. */
1037 struct kvm_memslot_iter {
1038 struct kvm_memslots *slots;
1039 struct rb_node *node;
1040 struct kvm_memory_slot *slot;
1041 };
1042
kvm_memslot_iter_next(struct kvm_memslot_iter * iter)1043 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1044 {
1045 iter->node = rb_next(iter->node);
1046 if (!iter->node)
1047 return;
1048
1049 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1050 }
1051
kvm_memslot_iter_start(struct kvm_memslot_iter * iter,struct kvm_memslots * slots,gfn_t start)1052 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1053 struct kvm_memslots *slots,
1054 gfn_t start)
1055 {
1056 int idx = slots->node_idx;
1057 struct rb_node *tmp;
1058 struct kvm_memory_slot *slot;
1059
1060 iter->slots = slots;
1061
1062 /*
1063 * Find the so called "upper bound" of a key - the first node that has
1064 * its key strictly greater than the searched one (the start gfn in our case).
1065 */
1066 iter->node = NULL;
1067 for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1068 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1069 if (start < slot->base_gfn) {
1070 iter->node = tmp;
1071 tmp = tmp->rb_left;
1072 } else {
1073 tmp = tmp->rb_right;
1074 }
1075 }
1076
1077 /*
1078 * Find the slot with the lowest gfn that can possibly intersect with
1079 * the range, so we'll ideally have slot start <= range start
1080 */
1081 if (iter->node) {
1082 /*
1083 * A NULL previous node means that the very first slot
1084 * already has a higher start gfn.
1085 * In this case slot start > range start.
1086 */
1087 tmp = rb_prev(iter->node);
1088 if (tmp)
1089 iter->node = tmp;
1090 } else {
1091 /* a NULL node below means no slots */
1092 iter->node = rb_last(&slots->gfn_tree);
1093 }
1094
1095 if (iter->node) {
1096 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1097
1098 /*
1099 * It is possible in the slot start < range start case that the
1100 * found slot ends before or at range start (slot end <= range start)
1101 * and so it does not overlap the requested range.
1102 *
1103 * In such non-overlapping case the next slot (if it exists) will
1104 * already have slot start > range start, otherwise the logic above
1105 * would have found it instead of the current slot.
1106 */
1107 if (iter->slot->base_gfn + iter->slot->npages <= start)
1108 kvm_memslot_iter_next(iter);
1109 }
1110 }
1111
kvm_memslot_iter_is_valid(struct kvm_memslot_iter * iter,gfn_t end)1112 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1113 {
1114 if (!iter->node)
1115 return false;
1116
1117 /*
1118 * If this slot starts beyond or at the end of the range so does
1119 * every next one
1120 */
1121 return iter->slot->base_gfn < end;
1122 }
1123
1124 /* Iterate over each memslot at least partially intersecting [start, end) range */
1125 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \
1126 for (kvm_memslot_iter_start(iter, slots, start); \
1127 kvm_memslot_iter_is_valid(iter, end); \
1128 kvm_memslot_iter_next(iter))
1129
1130 /*
1131 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1132 * - create a new memory slot
1133 * - delete an existing memory slot
1134 * - modify an existing memory slot
1135 * -- move it in the guest physical memory space
1136 * -- just change its flags
1137 *
1138 * Since flags can be changed by some of these operations, the following
1139 * differentiation is the best we can do for __kvm_set_memory_region():
1140 */
1141 enum kvm_mr_change {
1142 KVM_MR_CREATE,
1143 KVM_MR_DELETE,
1144 KVM_MR_MOVE,
1145 KVM_MR_FLAGS_ONLY,
1146 };
1147
1148 int kvm_set_memory_region(struct kvm *kvm,
1149 const struct kvm_userspace_memory_region *mem);
1150 int __kvm_set_memory_region(struct kvm *kvm,
1151 const struct kvm_userspace_memory_region *mem);
1152 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1153 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1154 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1155 const struct kvm_memory_slot *old,
1156 struct kvm_memory_slot *new,
1157 enum kvm_mr_change change);
1158 void kvm_arch_commit_memory_region(struct kvm *kvm,
1159 struct kvm_memory_slot *old,
1160 const struct kvm_memory_slot *new,
1161 enum kvm_mr_change change);
1162 /* flush all memory translations */
1163 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1164 /* flush memory translations pointing to 'slot' */
1165 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1166 struct kvm_memory_slot *slot);
1167
1168 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1169 struct page **pages, int nr_pages);
1170
1171 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1172 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1173 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1174 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1175 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1176 bool *writable);
1177 void kvm_release_page_clean(struct page *page);
1178 void kvm_release_page_dirty(struct page *page);
1179
1180 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1181 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1182 bool *writable);
1183 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1184 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1185 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1186 bool atomic, bool interruptible, bool *async,
1187 bool write_fault, bool *writable, hva_t *hva);
1188
1189 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1190 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1191 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1192 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1193
1194 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1195 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1196 int len);
1197 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1198 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1199 void *data, unsigned long len);
1200 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1201 void *data, unsigned int offset,
1202 unsigned long len);
1203 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1204 int offset, int len);
1205 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1206 unsigned long len);
1207 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1208 void *data, unsigned long len);
1209 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1210 void *data, unsigned int offset,
1211 unsigned long len);
1212 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1213 gpa_t gpa, unsigned long len);
1214
1215 #define __kvm_get_guest(kvm, gfn, offset, v) \
1216 ({ \
1217 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1218 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1219 int __ret = -EFAULT; \
1220 \
1221 if (!kvm_is_error_hva(__addr)) \
1222 __ret = get_user(v, __uaddr); \
1223 __ret; \
1224 })
1225
1226 #define kvm_get_guest(kvm, gpa, v) \
1227 ({ \
1228 gpa_t __gpa = gpa; \
1229 struct kvm *__kvm = kvm; \
1230 \
1231 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
1232 offset_in_page(__gpa), v); \
1233 })
1234
1235 #define __kvm_put_guest(kvm, gfn, offset, v) \
1236 ({ \
1237 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1238 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1239 int __ret = -EFAULT; \
1240 \
1241 if (!kvm_is_error_hva(__addr)) \
1242 __ret = put_user(v, __uaddr); \
1243 if (!__ret) \
1244 mark_page_dirty(kvm, gfn); \
1245 __ret; \
1246 })
1247
1248 #define kvm_put_guest(kvm, gpa, v) \
1249 ({ \
1250 gpa_t __gpa = gpa; \
1251 struct kvm *__kvm = kvm; \
1252 \
1253 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
1254 offset_in_page(__gpa), v); \
1255 })
1256
1257 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1258 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1259 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1260 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1261 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1262 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1263 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1264
1265 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1266 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1267 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1268 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1269 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1270 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1271 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1272 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1273 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1274 int len);
1275 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1276 unsigned long len);
1277 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1278 unsigned long len);
1279 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1280 int offset, int len);
1281 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1282 unsigned long len);
1283 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1284
1285 /**
1286 * kvm_gpc_init - initialize gfn_to_pfn_cache.
1287 *
1288 * @gpc: struct gfn_to_pfn_cache object.
1289 * @kvm: pointer to kvm instance.
1290 * @vcpu: vCPU to be used for marking pages dirty and to be woken on
1291 * invalidation.
1292 * @usage: indicates if the resulting host physical PFN is used while
1293 * the @vcpu is IN_GUEST_MODE (in which case invalidation of
1294 * the cache from MMU notifiers---but not for KVM memslot
1295 * changes!---will also force @vcpu to exit the guest and
1296 * refresh the cache); and/or if the PFN used directly
1297 * by KVM (and thus needs a kernel virtual mapping).
1298 *
1299 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1300 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by
1301 * the caller before init).
1302 */
1303 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm,
1304 struct kvm_vcpu *vcpu, enum pfn_cache_usage usage);
1305
1306 /**
1307 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1308 * physical address.
1309 *
1310 * @gpc: struct gfn_to_pfn_cache object.
1311 * @gpa: guest physical address to map.
1312 * @len: sanity check; the range being access must fit a single page.
1313 *
1314 * @return: 0 for success.
1315 * -EINVAL for a mapping which would cross a page boundary.
1316 * -EFAULT for an untranslatable guest physical address.
1317 *
1318 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1319 * invalidations to be processed. Callers are required to use kvm_gpc_check()
1320 * to ensure that the cache is valid before accessing the target page.
1321 */
1322 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1323
1324 /**
1325 * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1326 *
1327 * @gpc: struct gfn_to_pfn_cache object.
1328 * @len: sanity check; the range being access must fit a single page.
1329 *
1330 * @return: %true if the cache is still valid and the address matches.
1331 * %false if the cache is not valid.
1332 *
1333 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1334 * while calling this function, and then continue to hold the lock until the
1335 * access is complete.
1336 *
1337 * Callers in IN_GUEST_MODE may do so without locking, although they should
1338 * still hold a read lock on kvm->scru for the memslot checks.
1339 */
1340 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1341
1342 /**
1343 * kvm_gpc_refresh - update a previously initialized cache.
1344 *
1345 * @gpc: struct gfn_to_pfn_cache object.
1346 * @len: sanity check; the range being access must fit a single page.
1347 *
1348 * @return: 0 for success.
1349 * -EINVAL for a mapping which would cross a page boundary.
1350 * -EFAULT for an untranslatable guest physical address.
1351 *
1352 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1353 * return from this function does not mean the page can be immediately
1354 * accessed because it may have raced with an invalidation. Callers must
1355 * still lock and check the cache status, as this function does not return
1356 * with the lock still held to permit access.
1357 */
1358 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1359
1360 /**
1361 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1362 *
1363 * @gpc: struct gfn_to_pfn_cache object.
1364 *
1365 * This removes a cache from the VM's list to be processed on MMU notifier
1366 * invocation.
1367 */
1368 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1369
1370 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1371 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1372
1373 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1374 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1375 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1376 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1377 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1378 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1379 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1380 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1381
1382 void kvm_flush_remote_tlbs(struct kvm *kvm);
1383 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1384 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1385 const struct kvm_memory_slot *memslot);
1386
1387 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1388 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1389 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1390 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1391 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1392 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1393 #endif
1394
1395 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
1396 unsigned long end);
1397 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
1398 unsigned long end);
1399
1400 long kvm_arch_dev_ioctl(struct file *filp,
1401 unsigned int ioctl, unsigned long arg);
1402 long kvm_arch_vcpu_ioctl(struct file *filp,
1403 unsigned int ioctl, unsigned long arg);
1404 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1405
1406 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1407
1408 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1409 struct kvm_memory_slot *slot,
1410 gfn_t gfn_offset,
1411 unsigned long mask);
1412 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1413
1414 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1415 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1416 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1417 int *is_dirty, struct kvm_memory_slot **memslot);
1418 #endif
1419
1420 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1421 bool line_status);
1422 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1423 struct kvm_enable_cap *cap);
1424 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1425 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1426 unsigned long arg);
1427
1428 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1429 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1430
1431 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1432 struct kvm_translation *tr);
1433
1434 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1435 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1436 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1437 struct kvm_sregs *sregs);
1438 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1439 struct kvm_sregs *sregs);
1440 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1441 struct kvm_mp_state *mp_state);
1442 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1443 struct kvm_mp_state *mp_state);
1444 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1445 struct kvm_guest_debug *dbg);
1446 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1447
1448 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1449
1450 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1451 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1452 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1453 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1454 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1455 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1456
1457 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1458 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1459 #endif
1460
1461 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1462 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1463 #else
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)1464 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1465 #endif
1466
1467 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1468 int kvm_arch_hardware_enable(void);
1469 void kvm_arch_hardware_disable(void);
1470 #endif
1471 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1472 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1473 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1474 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1475 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1476 int kvm_arch_post_init_vm(struct kvm *kvm);
1477 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1478 int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1479
1480 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1481 /*
1482 * All architectures that want to use vzalloc currently also
1483 * need their own kvm_arch_alloc_vm implementation.
1484 */
kvm_arch_alloc_vm(void)1485 static inline struct kvm *kvm_arch_alloc_vm(void)
1486 {
1487 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1488 }
1489 #endif
1490
__kvm_arch_free_vm(struct kvm * kvm)1491 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1492 {
1493 kvfree(kvm);
1494 }
1495
1496 #ifndef __KVM_HAVE_ARCH_VM_FREE
kvm_arch_free_vm(struct kvm * kvm)1497 static inline void kvm_arch_free_vm(struct kvm *kvm)
1498 {
1499 __kvm_arch_free_vm(kvm);
1500 }
1501 #endif
1502
1503 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1504 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1505 {
1506 return -ENOTSUPP;
1507 }
1508 #else
1509 int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1510 #endif
1511
1512 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1513 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1514 gfn_t gfn, u64 nr_pages)
1515 {
1516 return -EOPNOTSUPP;
1517 }
1518 #else
1519 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1520 #endif
1521
1522 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1523 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1524 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1525 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1526 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)1527 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1528 {
1529 }
1530
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)1531 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1532 {
1533 }
1534
kvm_arch_has_noncoherent_dma(struct kvm * kvm)1535 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1536 {
1537 return false;
1538 }
1539 #endif
1540 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1541 void kvm_arch_start_assignment(struct kvm *kvm);
1542 void kvm_arch_end_assignment(struct kvm *kvm);
1543 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1544 #else
kvm_arch_start_assignment(struct kvm * kvm)1545 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1546 {
1547 }
1548
kvm_arch_end_assignment(struct kvm * kvm)1549 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1550 {
1551 }
1552
kvm_arch_has_assigned_device(struct kvm * kvm)1553 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1554 {
1555 return false;
1556 }
1557 #endif
1558
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)1559 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1560 {
1561 #ifdef __KVM_HAVE_ARCH_WQP
1562 return vcpu->arch.waitp;
1563 #else
1564 return &vcpu->wait;
1565 #endif
1566 }
1567
1568 /*
1569 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns
1570 * true if the vCPU was blocking and was awakened, false otherwise.
1571 */
__kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)1572 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1573 {
1574 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1575 }
1576
kvm_vcpu_is_blocking(struct kvm_vcpu * vcpu)1577 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1578 {
1579 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1580 }
1581
1582 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1583 /*
1584 * returns true if the virtual interrupt controller is initialized and
1585 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1586 * controller is dynamically instantiated and this is not always true.
1587 */
1588 bool kvm_arch_intc_initialized(struct kvm *kvm);
1589 #else
kvm_arch_intc_initialized(struct kvm * kvm)1590 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1591 {
1592 return true;
1593 }
1594 #endif
1595
1596 #ifdef CONFIG_GUEST_PERF_EVENTS
1597 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1598
1599 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1600 void kvm_unregister_perf_callbacks(void);
1601 #else
kvm_register_perf_callbacks(void * ign)1602 static inline void kvm_register_perf_callbacks(void *ign) {}
kvm_unregister_perf_callbacks(void)1603 static inline void kvm_unregister_perf_callbacks(void) {}
1604 #endif /* CONFIG_GUEST_PERF_EVENTS */
1605
1606 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1607 void kvm_arch_destroy_vm(struct kvm *kvm);
1608 void kvm_arch_sync_events(struct kvm *kvm);
1609
1610 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1611
1612 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1613 bool kvm_is_zone_device_page(struct page *page);
1614
1615 struct kvm_irq_ack_notifier {
1616 struct hlist_node link;
1617 unsigned gsi;
1618 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1619 };
1620
1621 int kvm_irq_map_gsi(struct kvm *kvm,
1622 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1623 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1624
1625 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1626 bool line_status);
1627 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1628 int irq_source_id, int level, bool line_status);
1629 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1630 struct kvm *kvm, int irq_source_id,
1631 int level, bool line_status);
1632 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1633 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1634 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1635 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1636 struct kvm_irq_ack_notifier *kian);
1637 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1638 struct kvm_irq_ack_notifier *kian);
1639 int kvm_request_irq_source_id(struct kvm *kvm);
1640 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1641 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1642
1643 /*
1644 * Returns a pointer to the memslot if it contains gfn.
1645 * Otherwise returns NULL.
1646 */
1647 static inline struct kvm_memory_slot *
try_get_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1648 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1649 {
1650 if (!slot)
1651 return NULL;
1652
1653 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1654 return slot;
1655 else
1656 return NULL;
1657 }
1658
1659 /*
1660 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1661 *
1662 * With "approx" set returns the memslot also when the address falls
1663 * in a hole. In that case one of the memslots bordering the hole is
1664 * returned.
1665 */
1666 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn,bool approx)1667 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1668 {
1669 struct kvm_memory_slot *slot;
1670 struct rb_node *node;
1671 int idx = slots->node_idx;
1672
1673 slot = NULL;
1674 for (node = slots->gfn_tree.rb_node; node; ) {
1675 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1676 if (gfn >= slot->base_gfn) {
1677 if (gfn < slot->base_gfn + slot->npages)
1678 return slot;
1679 node = node->rb_right;
1680 } else
1681 node = node->rb_left;
1682 }
1683
1684 return approx ? slot : NULL;
1685 }
1686
1687 static inline struct kvm_memory_slot *
____gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn,bool approx)1688 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1689 {
1690 struct kvm_memory_slot *slot;
1691
1692 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1693 slot = try_get_memslot(slot, gfn);
1694 if (slot)
1695 return slot;
1696
1697 slot = search_memslots(slots, gfn, approx);
1698 if (slot) {
1699 atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1700 return slot;
1701 }
1702
1703 return NULL;
1704 }
1705
1706 /*
1707 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1708 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline
1709 * because that would bloat other code too much.
1710 */
1711 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1712 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1713 {
1714 return ____gfn_to_memslot(slots, gfn, false);
1715 }
1716
1717 static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)1718 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1719 {
1720 /*
1721 * The index was checked originally in search_memslots. To avoid
1722 * that a malicious guest builds a Spectre gadget out of e.g. page
1723 * table walks, do not let the processor speculate loads outside
1724 * the guest's registered memslots.
1725 */
1726 unsigned long offset = gfn - slot->base_gfn;
1727 offset = array_index_nospec(offset, slot->npages);
1728 return slot->userspace_addr + offset * PAGE_SIZE;
1729 }
1730
memslot_id(struct kvm * kvm,gfn_t gfn)1731 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1732 {
1733 return gfn_to_memslot(kvm, gfn)->id;
1734 }
1735
1736 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1737 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1738 {
1739 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1740
1741 return slot->base_gfn + gfn_offset;
1742 }
1743
gfn_to_gpa(gfn_t gfn)1744 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1745 {
1746 return (gpa_t)gfn << PAGE_SHIFT;
1747 }
1748
gpa_to_gfn(gpa_t gpa)1749 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1750 {
1751 return (gfn_t)(gpa >> PAGE_SHIFT);
1752 }
1753
pfn_to_hpa(kvm_pfn_t pfn)1754 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1755 {
1756 return (hpa_t)pfn << PAGE_SHIFT;
1757 }
1758
kvm_is_error_gpa(struct kvm * kvm,gpa_t gpa)1759 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1760 {
1761 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1762
1763 return kvm_is_error_hva(hva);
1764 }
1765
1766 enum kvm_stat_kind {
1767 KVM_STAT_VM,
1768 KVM_STAT_VCPU,
1769 };
1770
1771 struct kvm_stat_data {
1772 struct kvm *kvm;
1773 const struct _kvm_stats_desc *desc;
1774 enum kvm_stat_kind kind;
1775 };
1776
1777 struct _kvm_stats_desc {
1778 struct kvm_stats_desc desc;
1779 char name[KVM_STATS_NAME_SIZE];
1780 };
1781
1782 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
1783 .flags = type | unit | base | \
1784 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1785 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1786 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1787 .exponent = exp, \
1788 .size = sz, \
1789 .bucket_size = bsz
1790
1791 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1792 { \
1793 { \
1794 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1795 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1796 }, \
1797 .name = #stat, \
1798 }
1799 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1800 { \
1801 { \
1802 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1803 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1804 }, \
1805 .name = #stat, \
1806 }
1807 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1808 { \
1809 { \
1810 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1811 .offset = offsetof(struct kvm_vm_stat, stat) \
1812 }, \
1813 .name = #stat, \
1814 }
1815 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1816 { \
1817 { \
1818 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1819 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1820 }, \
1821 .name = #stat, \
1822 }
1823 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1824 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
1825 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1826
1827 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
1828 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
1829 unit, base, exponent, 1, 0)
1830 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
1831 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
1832 unit, base, exponent, 1, 0)
1833 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
1834 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
1835 unit, base, exponent, 1, 0)
1836 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
1837 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
1838 unit, base, exponent, sz, bsz)
1839 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
1840 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
1841 unit, base, exponent, sz, 0)
1842
1843 /* Cumulative counter, read/write */
1844 #define STATS_DESC_COUNTER(SCOPE, name) \
1845 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
1846 KVM_STATS_BASE_POW10, 0)
1847 /* Instantaneous counter, read only */
1848 #define STATS_DESC_ICOUNTER(SCOPE, name) \
1849 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
1850 KVM_STATS_BASE_POW10, 0)
1851 /* Peak counter, read/write */
1852 #define STATS_DESC_PCOUNTER(SCOPE, name) \
1853 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
1854 KVM_STATS_BASE_POW10, 0)
1855
1856 /* Instantaneous boolean value, read only */
1857 #define STATS_DESC_IBOOLEAN(SCOPE, name) \
1858 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1859 KVM_STATS_BASE_POW10, 0)
1860 /* Peak (sticky) boolean value, read/write */
1861 #define STATS_DESC_PBOOLEAN(SCOPE, name) \
1862 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1863 KVM_STATS_BASE_POW10, 0)
1864
1865 /* Cumulative time in nanosecond */
1866 #define STATS_DESC_TIME_NSEC(SCOPE, name) \
1867 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1868 KVM_STATS_BASE_POW10, -9)
1869 /* Linear histogram for time in nanosecond */
1870 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
1871 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1872 KVM_STATS_BASE_POW10, -9, sz, bsz)
1873 /* Logarithmic histogram for time in nanosecond */
1874 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
1875 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1876 KVM_STATS_BASE_POW10, -9, sz)
1877
1878 #define KVM_GENERIC_VM_STATS() \
1879 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
1880 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1881
1882 #define KVM_GENERIC_VCPU_STATS() \
1883 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
1884 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
1885 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
1886 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
1887 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
1888 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
1889 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
1890 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
1891 HALT_POLL_HIST_COUNT), \
1892 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
1893 HALT_POLL_HIST_COUNT), \
1894 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
1895 HALT_POLL_HIST_COUNT), \
1896 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1897
1898 extern struct dentry *kvm_debugfs_dir;
1899
1900 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1901 const struct _kvm_stats_desc *desc,
1902 void *stats, size_t size_stats,
1903 char __user *user_buffer, size_t size, loff_t *offset);
1904
1905 /**
1906 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1907 * statistics data.
1908 *
1909 * @data: start address of the stats data
1910 * @size: the number of bucket of the stats data
1911 * @value: the new value used to update the linear histogram's bucket
1912 * @bucket_size: the size (width) of a bucket
1913 */
kvm_stats_linear_hist_update(u64 * data,size_t size,u64 value,size_t bucket_size)1914 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1915 u64 value, size_t bucket_size)
1916 {
1917 size_t index = div64_u64(value, bucket_size);
1918
1919 index = min(index, size - 1);
1920 ++data[index];
1921 }
1922
1923 /**
1924 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1925 * statistics data.
1926 *
1927 * @data: start address of the stats data
1928 * @size: the number of bucket of the stats data
1929 * @value: the new value used to update the logarithmic histogram's bucket
1930 */
kvm_stats_log_hist_update(u64 * data,size_t size,u64 value)1931 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1932 {
1933 size_t index = fls64(value);
1934
1935 index = min(index, size - 1);
1936 ++data[index];
1937 }
1938
1939 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
1940 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1941 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \
1942 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1943
1944
1945 extern const struct kvm_stats_header kvm_vm_stats_header;
1946 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1947 extern const struct kvm_stats_header kvm_vcpu_stats_header;
1948 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1949
1950 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_invalidate_retry(struct kvm * kvm,unsigned long mmu_seq)1951 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
1952 {
1953 if (unlikely(kvm->mmu_invalidate_in_progress))
1954 return 1;
1955 /*
1956 * Ensure the read of mmu_invalidate_in_progress happens before
1957 * the read of mmu_invalidate_seq. This interacts with the
1958 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
1959 * that the caller either sees the old (non-zero) value of
1960 * mmu_invalidate_in_progress or the new (incremented) value of
1961 * mmu_invalidate_seq.
1962 *
1963 * PowerPC Book3s HV KVM calls this under a per-page lock rather
1964 * than under kvm->mmu_lock, for scalability, so can't rely on
1965 * kvm->mmu_lock to keep things ordered.
1966 */
1967 smp_rmb();
1968 if (kvm->mmu_invalidate_seq != mmu_seq)
1969 return 1;
1970 return 0;
1971 }
1972
mmu_invalidate_retry_hva(struct kvm * kvm,unsigned long mmu_seq,unsigned long hva)1973 static inline int mmu_invalidate_retry_hva(struct kvm *kvm,
1974 unsigned long mmu_seq,
1975 unsigned long hva)
1976 {
1977 lockdep_assert_held(&kvm->mmu_lock);
1978 /*
1979 * If mmu_invalidate_in_progress is non-zero, then the range maintained
1980 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
1981 * that might be being invalidated. Note that it may include some false
1982 * positives, due to shortcuts when handing concurrent invalidations.
1983 */
1984 if (unlikely(kvm->mmu_invalidate_in_progress) &&
1985 hva >= kvm->mmu_invalidate_range_start &&
1986 hva < kvm->mmu_invalidate_range_end)
1987 return 1;
1988 if (kvm->mmu_invalidate_seq != mmu_seq)
1989 return 1;
1990 return 0;
1991 }
1992 #endif
1993
1994 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1995
1996 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1997
1998 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1999 int kvm_set_irq_routing(struct kvm *kvm,
2000 const struct kvm_irq_routing_entry *entries,
2001 unsigned nr,
2002 unsigned flags);
2003 int kvm_set_routing_entry(struct kvm *kvm,
2004 struct kvm_kernel_irq_routing_entry *e,
2005 const struct kvm_irq_routing_entry *ue);
2006 void kvm_free_irq_routing(struct kvm *kvm);
2007
2008 #else
2009
kvm_free_irq_routing(struct kvm * kvm)2010 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2011
2012 #endif
2013
2014 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2015
2016 #ifdef CONFIG_HAVE_KVM_EVENTFD
2017
2018 void kvm_eventfd_init(struct kvm *kvm);
2019 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2020
2021 #ifdef CONFIG_HAVE_KVM_IRQFD
2022 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2023 void kvm_irqfd_release(struct kvm *kvm);
2024 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2025 unsigned int irqchip,
2026 unsigned int pin);
2027 void kvm_irq_routing_update(struct kvm *);
2028 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)2029 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2030 {
2031 return -EINVAL;
2032 }
2033
kvm_irqfd_release(struct kvm * kvm)2034 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2035
kvm_notify_irqfd_resampler(struct kvm * kvm,unsigned int irqchip,unsigned int pin)2036 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2037 unsigned int irqchip,
2038 unsigned int pin)
2039 {
2040 return false;
2041 }
2042 #endif
2043
2044 #else
2045
kvm_eventfd_init(struct kvm * kvm)2046 static inline void kvm_eventfd_init(struct kvm *kvm) {}
2047
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)2048 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2049 {
2050 return -EINVAL;
2051 }
2052
kvm_irqfd_release(struct kvm * kvm)2053 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2054
2055 #ifdef CONFIG_HAVE_KVM_IRQCHIP
kvm_irq_routing_update(struct kvm * kvm)2056 static inline void kvm_irq_routing_update(struct kvm *kvm)
2057 {
2058 }
2059 #endif
2060
kvm_ioeventfd(struct kvm * kvm,struct kvm_ioeventfd * args)2061 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
2062 {
2063 return -ENOSYS;
2064 }
2065
2066 #endif /* CONFIG_HAVE_KVM_EVENTFD */
2067
2068 void kvm_arch_irq_routing_update(struct kvm *kvm);
2069
__kvm_make_request(int req,struct kvm_vcpu * vcpu)2070 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2071 {
2072 /*
2073 * Ensure the rest of the request is published to kvm_check_request's
2074 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
2075 */
2076 smp_wmb();
2077 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2078 }
2079
kvm_make_request(int req,struct kvm_vcpu * vcpu)2080 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2081 {
2082 /*
2083 * Request that don't require vCPU action should never be logged in
2084 * vcpu->requests. The vCPU won't clear the request, so it will stay
2085 * logged indefinitely and prevent the vCPU from entering the guest.
2086 */
2087 BUILD_BUG_ON(!__builtin_constant_p(req) ||
2088 (req & KVM_REQUEST_NO_ACTION));
2089
2090 __kvm_make_request(req, vcpu);
2091 }
2092
kvm_request_pending(struct kvm_vcpu * vcpu)2093 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2094 {
2095 return READ_ONCE(vcpu->requests);
2096 }
2097
kvm_test_request(int req,struct kvm_vcpu * vcpu)2098 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2099 {
2100 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2101 }
2102
kvm_clear_request(int req,struct kvm_vcpu * vcpu)2103 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2104 {
2105 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2106 }
2107
kvm_check_request(int req,struct kvm_vcpu * vcpu)2108 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2109 {
2110 if (kvm_test_request(req, vcpu)) {
2111 kvm_clear_request(req, vcpu);
2112
2113 /*
2114 * Ensure the rest of the request is visible to kvm_check_request's
2115 * caller. Paired with the smp_wmb in kvm_make_request.
2116 */
2117 smp_mb__after_atomic();
2118 return true;
2119 } else {
2120 return false;
2121 }
2122 }
2123
2124 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2125 extern bool kvm_rebooting;
2126 #endif
2127
2128 extern unsigned int halt_poll_ns;
2129 extern unsigned int halt_poll_ns_grow;
2130 extern unsigned int halt_poll_ns_grow_start;
2131 extern unsigned int halt_poll_ns_shrink;
2132
2133 struct kvm_device {
2134 const struct kvm_device_ops *ops;
2135 struct kvm *kvm;
2136 void *private;
2137 struct list_head vm_node;
2138 };
2139
2140 /* create, destroy, and name are mandatory */
2141 struct kvm_device_ops {
2142 const char *name;
2143
2144 /*
2145 * create is called holding kvm->lock and any operations not suitable
2146 * to do while holding the lock should be deferred to init (see
2147 * below).
2148 */
2149 int (*create)(struct kvm_device *dev, u32 type);
2150
2151 /*
2152 * init is called after create if create is successful and is called
2153 * outside of holding kvm->lock.
2154 */
2155 void (*init)(struct kvm_device *dev);
2156
2157 /*
2158 * Destroy is responsible for freeing dev.
2159 *
2160 * Destroy may be called before or after destructors are called
2161 * on emulated I/O regions, depending on whether a reference is
2162 * held by a vcpu or other kvm component that gets destroyed
2163 * after the emulated I/O.
2164 */
2165 void (*destroy)(struct kvm_device *dev);
2166
2167 /*
2168 * Release is an alternative method to free the device. It is
2169 * called when the device file descriptor is closed. Once
2170 * release is called, the destroy method will not be called
2171 * anymore as the device is removed from the device list of
2172 * the VM. kvm->lock is held.
2173 */
2174 void (*release)(struct kvm_device *dev);
2175
2176 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2177 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2178 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2179 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2180 unsigned long arg);
2181 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2182 };
2183
2184 struct kvm_device *kvm_device_from_filp(struct file *filp);
2185 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2186 void kvm_unregister_device_ops(u32 type);
2187
2188 extern struct kvm_device_ops kvm_mpic_ops;
2189 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2190 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2191
2192 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2193
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2194 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2195 {
2196 vcpu->spin_loop.in_spin_loop = val;
2197 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2198 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2199 {
2200 vcpu->spin_loop.dy_eligible = val;
2201 }
2202
2203 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2204
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2205 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2206 {
2207 }
2208
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2209 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2210 {
2211 }
2212 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2213
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)2214 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2215 {
2216 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2217 !(memslot->flags & KVM_MEMSLOT_INVALID));
2218 }
2219
2220 struct kvm_vcpu *kvm_get_running_vcpu(void);
2221 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2222
2223 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2224 bool kvm_arch_has_irq_bypass(void);
2225 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2226 struct irq_bypass_producer *);
2227 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2228 struct irq_bypass_producer *);
2229 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2230 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2231 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2232 uint32_t guest_irq, bool set);
2233 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2234 struct kvm_kernel_irq_routing_entry *);
2235 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2236
2237 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2238 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2239 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2240 {
2241 return vcpu->valid_wakeup;
2242 }
2243
2244 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2245 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2246 {
2247 return true;
2248 }
2249 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2250
2251 #ifdef CONFIG_HAVE_KVM_NO_POLL
2252 /* Callback that tells if we must not poll */
2253 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2254 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)2255 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2256 {
2257 return false;
2258 }
2259 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2260
2261 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2262 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2263 unsigned int ioctl, unsigned long arg);
2264 #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2265 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2266 unsigned int ioctl,
2267 unsigned long arg)
2268 {
2269 return -ENOIOCTLCMD;
2270 }
2271 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2272
2273 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2274
2275 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2276 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2277 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)2278 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2279 {
2280 return 0;
2281 }
2282 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2283
2284 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2285
2286 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2287 uintptr_t data, const char *name,
2288 struct task_struct **thread_ptr);
2289
2290 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)2291 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2292 {
2293 vcpu->run->exit_reason = KVM_EXIT_INTR;
2294 vcpu->stat.signal_exits++;
2295 }
2296 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2297
2298 /*
2299 * If more than one page is being (un)accounted, @virt must be the address of
2300 * the first page of a block of pages what were allocated together (i.e
2301 * accounted together).
2302 *
2303 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2304 * is thread-safe.
2305 */
kvm_account_pgtable_pages(void * virt,int nr)2306 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2307 {
2308 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2309 }
2310
2311 /*
2312 * This defines how many reserved entries we want to keep before we
2313 * kick the vcpu to the userspace to avoid dirty ring full. This
2314 * value can be tuned to higher if e.g. PML is enabled on the host.
2315 */
2316 #define KVM_DIRTY_RING_RSVD_ENTRIES 64
2317
2318 /* Max number of entries allowed for each kvm dirty ring */
2319 #define KVM_DIRTY_RING_MAX_ENTRIES 65536
2320
2321 #endif
2322