xref: /openbmc/linux/security/keys/key.c (revision e0d77d0f38aa60ca61b3ce6e60d64fad2aa0853d)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /* Basic authentication token and access key management
3   *
4   * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
5   * Written by David Howells (dhowells@redhat.com)
6   */
7  
8  #include <linux/export.h>
9  #include <linux/init.h>
10  #include <linux/poison.h>
11  #include <linux/sched.h>
12  #include <linux/slab.h>
13  #include <linux/security.h>
14  #include <linux/workqueue.h>
15  #include <linux/random.h>
16  #include <linux/ima.h>
17  #include <linux/err.h>
18  #include "internal.h"
19  
20  struct kmem_cache *key_jar;
21  struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
22  DEFINE_SPINLOCK(key_serial_lock);
23  
24  struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
25  DEFINE_SPINLOCK(key_user_lock);
26  
27  unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
28  unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
29  unsigned int key_quota_maxkeys = 200;		/* general key count quota */
30  unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
31  
32  static LIST_HEAD(key_types_list);
33  static DECLARE_RWSEM(key_types_sem);
34  
35  /* We serialise key instantiation and link */
36  DEFINE_MUTEX(key_construction_mutex);
37  
38  #ifdef KEY_DEBUGGING
__key_check(const struct key * key)39  void __key_check(const struct key *key)
40  {
41  	printk("__key_check: key %p {%08x} should be {%08x}\n",
42  	       key, key->magic, KEY_DEBUG_MAGIC);
43  	BUG();
44  }
45  #endif
46  
47  /*
48   * Get the key quota record for a user, allocating a new record if one doesn't
49   * already exist.
50   */
key_user_lookup(kuid_t uid)51  struct key_user *key_user_lookup(kuid_t uid)
52  {
53  	struct key_user *candidate = NULL, *user;
54  	struct rb_node *parent, **p;
55  
56  try_again:
57  	parent = NULL;
58  	p = &key_user_tree.rb_node;
59  	spin_lock(&key_user_lock);
60  
61  	/* search the tree for a user record with a matching UID */
62  	while (*p) {
63  		parent = *p;
64  		user = rb_entry(parent, struct key_user, node);
65  
66  		if (uid_lt(uid, user->uid))
67  			p = &(*p)->rb_left;
68  		else if (uid_gt(uid, user->uid))
69  			p = &(*p)->rb_right;
70  		else
71  			goto found;
72  	}
73  
74  	/* if we get here, we failed to find a match in the tree */
75  	if (!candidate) {
76  		/* allocate a candidate user record if we don't already have
77  		 * one */
78  		spin_unlock(&key_user_lock);
79  
80  		user = NULL;
81  		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
82  		if (unlikely(!candidate))
83  			goto out;
84  
85  		/* the allocation may have scheduled, so we need to repeat the
86  		 * search lest someone else added the record whilst we were
87  		 * asleep */
88  		goto try_again;
89  	}
90  
91  	/* if we get here, then the user record still hadn't appeared on the
92  	 * second pass - so we use the candidate record */
93  	refcount_set(&candidate->usage, 1);
94  	atomic_set(&candidate->nkeys, 0);
95  	atomic_set(&candidate->nikeys, 0);
96  	candidate->uid = uid;
97  	candidate->qnkeys = 0;
98  	candidate->qnbytes = 0;
99  	spin_lock_init(&candidate->lock);
100  	mutex_init(&candidate->cons_lock);
101  
102  	rb_link_node(&candidate->node, parent, p);
103  	rb_insert_color(&candidate->node, &key_user_tree);
104  	spin_unlock(&key_user_lock);
105  	user = candidate;
106  	goto out;
107  
108  	/* okay - we found a user record for this UID */
109  found:
110  	refcount_inc(&user->usage);
111  	spin_unlock(&key_user_lock);
112  	kfree(candidate);
113  out:
114  	return user;
115  }
116  
117  /*
118   * Dispose of a user structure
119   */
key_user_put(struct key_user * user)120  void key_user_put(struct key_user *user)
121  {
122  	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
123  		rb_erase(&user->node, &key_user_tree);
124  		spin_unlock(&key_user_lock);
125  
126  		kfree(user);
127  	}
128  }
129  
130  /*
131   * Allocate a serial number for a key.  These are assigned randomly to avoid
132   * security issues through covert channel problems.
133   */
key_alloc_serial(struct key * key)134  static inline void key_alloc_serial(struct key *key)
135  {
136  	struct rb_node *parent, **p;
137  	struct key *xkey;
138  
139  	/* propose a random serial number and look for a hole for it in the
140  	 * serial number tree */
141  	do {
142  		get_random_bytes(&key->serial, sizeof(key->serial));
143  
144  		key->serial >>= 1; /* negative numbers are not permitted */
145  	} while (key->serial < 3);
146  
147  	spin_lock(&key_serial_lock);
148  
149  attempt_insertion:
150  	parent = NULL;
151  	p = &key_serial_tree.rb_node;
152  
153  	while (*p) {
154  		parent = *p;
155  		xkey = rb_entry(parent, struct key, serial_node);
156  
157  		if (key->serial < xkey->serial)
158  			p = &(*p)->rb_left;
159  		else if (key->serial > xkey->serial)
160  			p = &(*p)->rb_right;
161  		else
162  			goto serial_exists;
163  	}
164  
165  	/* we've found a suitable hole - arrange for this key to occupy it */
166  	rb_link_node(&key->serial_node, parent, p);
167  	rb_insert_color(&key->serial_node, &key_serial_tree);
168  
169  	spin_unlock(&key_serial_lock);
170  	return;
171  
172  	/* we found a key with the proposed serial number - walk the tree from
173  	 * that point looking for the next unused serial number */
174  serial_exists:
175  	for (;;) {
176  		key->serial++;
177  		if (key->serial < 3) {
178  			key->serial = 3;
179  			goto attempt_insertion;
180  		}
181  
182  		parent = rb_next(parent);
183  		if (!parent)
184  			goto attempt_insertion;
185  
186  		xkey = rb_entry(parent, struct key, serial_node);
187  		if (key->serial < xkey->serial)
188  			goto attempt_insertion;
189  	}
190  }
191  
192  /**
193   * key_alloc - Allocate a key of the specified type.
194   * @type: The type of key to allocate.
195   * @desc: The key description to allow the key to be searched out.
196   * @uid: The owner of the new key.
197   * @gid: The group ID for the new key's group permissions.
198   * @cred: The credentials specifying UID namespace.
199   * @perm: The permissions mask of the new key.
200   * @flags: Flags specifying quota properties.
201   * @restrict_link: Optional link restriction for new keyrings.
202   *
203   * Allocate a key of the specified type with the attributes given.  The key is
204   * returned in an uninstantiated state and the caller needs to instantiate the
205   * key before returning.
206   *
207   * The restrict_link structure (if not NULL) will be freed when the
208   * keyring is destroyed, so it must be dynamically allocated.
209   *
210   * The user's key count quota is updated to reflect the creation of the key and
211   * the user's key data quota has the default for the key type reserved.  The
212   * instantiation function should amend this as necessary.  If insufficient
213   * quota is available, -EDQUOT will be returned.
214   *
215   * The LSM security modules can prevent a key being created, in which case
216   * -EACCES will be returned.
217   *
218   * Returns a pointer to the new key if successful and an error code otherwise.
219   *
220   * Note that the caller needs to ensure the key type isn't uninstantiated.
221   * Internally this can be done by locking key_types_sem.  Externally, this can
222   * be done by either never unregistering the key type, or making sure
223   * key_alloc() calls don't race with module unloading.
224   */
key_alloc(struct key_type * type,const char * desc,kuid_t uid,kgid_t gid,const struct cred * cred,key_perm_t perm,unsigned long flags,struct key_restriction * restrict_link)225  struct key *key_alloc(struct key_type *type, const char *desc,
226  		      kuid_t uid, kgid_t gid, const struct cred *cred,
227  		      key_perm_t perm, unsigned long flags,
228  		      struct key_restriction *restrict_link)
229  {
230  	struct key_user *user = NULL;
231  	struct key *key;
232  	size_t desclen, quotalen;
233  	int ret;
234  
235  	key = ERR_PTR(-EINVAL);
236  	if (!desc || !*desc)
237  		goto error;
238  
239  	if (type->vet_description) {
240  		ret = type->vet_description(desc);
241  		if (ret < 0) {
242  			key = ERR_PTR(ret);
243  			goto error;
244  		}
245  	}
246  
247  	desclen = strlen(desc);
248  	quotalen = desclen + 1 + type->def_datalen;
249  
250  	/* get hold of the key tracking for this user */
251  	user = key_user_lookup(uid);
252  	if (!user)
253  		goto no_memory_1;
254  
255  	/* check that the user's quota permits allocation of another key and
256  	 * its description */
257  	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
258  		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
259  			key_quota_root_maxkeys : key_quota_maxkeys;
260  		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
261  			key_quota_root_maxbytes : key_quota_maxbytes;
262  
263  		spin_lock(&user->lock);
264  		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
265  			if (user->qnkeys + 1 > maxkeys ||
266  			    user->qnbytes + quotalen > maxbytes ||
267  			    user->qnbytes + quotalen < user->qnbytes)
268  				goto no_quota;
269  		}
270  
271  		user->qnkeys++;
272  		user->qnbytes += quotalen;
273  		spin_unlock(&user->lock);
274  	}
275  
276  	/* allocate and initialise the key and its description */
277  	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
278  	if (!key)
279  		goto no_memory_2;
280  
281  	key->index_key.desc_len = desclen;
282  	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
283  	if (!key->index_key.description)
284  		goto no_memory_3;
285  	key->index_key.type = type;
286  	key_set_index_key(&key->index_key);
287  
288  	refcount_set(&key->usage, 1);
289  	init_rwsem(&key->sem);
290  	lockdep_set_class(&key->sem, &type->lock_class);
291  	key->user = user;
292  	key->quotalen = quotalen;
293  	key->datalen = type->def_datalen;
294  	key->uid = uid;
295  	key->gid = gid;
296  	key->perm = perm;
297  	key->expiry = TIME64_MAX;
298  	key->restrict_link = restrict_link;
299  	key->last_used_at = ktime_get_real_seconds();
300  
301  	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
302  		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
303  	if (flags & KEY_ALLOC_BUILT_IN)
304  		key->flags |= 1 << KEY_FLAG_BUILTIN;
305  	if (flags & KEY_ALLOC_UID_KEYRING)
306  		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
307  	if (flags & KEY_ALLOC_SET_KEEP)
308  		key->flags |= 1 << KEY_FLAG_KEEP;
309  
310  #ifdef KEY_DEBUGGING
311  	key->magic = KEY_DEBUG_MAGIC;
312  #endif
313  
314  	/* let the security module know about the key */
315  	ret = security_key_alloc(key, cred, flags);
316  	if (ret < 0)
317  		goto security_error;
318  
319  	/* publish the key by giving it a serial number */
320  	refcount_inc(&key->domain_tag->usage);
321  	atomic_inc(&user->nkeys);
322  	key_alloc_serial(key);
323  
324  error:
325  	return key;
326  
327  security_error:
328  	kfree(key->description);
329  	kmem_cache_free(key_jar, key);
330  	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
331  		spin_lock(&user->lock);
332  		user->qnkeys--;
333  		user->qnbytes -= quotalen;
334  		spin_unlock(&user->lock);
335  	}
336  	key_user_put(user);
337  	key = ERR_PTR(ret);
338  	goto error;
339  
340  no_memory_3:
341  	kmem_cache_free(key_jar, key);
342  no_memory_2:
343  	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
344  		spin_lock(&user->lock);
345  		user->qnkeys--;
346  		user->qnbytes -= quotalen;
347  		spin_unlock(&user->lock);
348  	}
349  	key_user_put(user);
350  no_memory_1:
351  	key = ERR_PTR(-ENOMEM);
352  	goto error;
353  
354  no_quota:
355  	spin_unlock(&user->lock);
356  	key_user_put(user);
357  	key = ERR_PTR(-EDQUOT);
358  	goto error;
359  }
360  EXPORT_SYMBOL(key_alloc);
361  
362  /**
363   * key_payload_reserve - Adjust data quota reservation for the key's payload
364   * @key: The key to make the reservation for.
365   * @datalen: The amount of data payload the caller now wants.
366   *
367   * Adjust the amount of the owning user's key data quota that a key reserves.
368   * If the amount is increased, then -EDQUOT may be returned if there isn't
369   * enough free quota available.
370   *
371   * If successful, 0 is returned.
372   */
key_payload_reserve(struct key * key,size_t datalen)373  int key_payload_reserve(struct key *key, size_t datalen)
374  {
375  	int delta = (int)datalen - key->datalen;
376  	int ret = 0;
377  
378  	key_check(key);
379  
380  	/* contemplate the quota adjustment */
381  	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
382  		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
383  			key_quota_root_maxbytes : key_quota_maxbytes;
384  
385  		spin_lock(&key->user->lock);
386  
387  		if (delta > 0 &&
388  		    (key->user->qnbytes + delta > maxbytes ||
389  		     key->user->qnbytes + delta < key->user->qnbytes)) {
390  			ret = -EDQUOT;
391  		}
392  		else {
393  			key->user->qnbytes += delta;
394  			key->quotalen += delta;
395  		}
396  		spin_unlock(&key->user->lock);
397  	}
398  
399  	/* change the recorded data length if that didn't generate an error */
400  	if (ret == 0)
401  		key->datalen = datalen;
402  
403  	return ret;
404  }
405  EXPORT_SYMBOL(key_payload_reserve);
406  
407  /*
408   * Change the key state to being instantiated.
409   */
mark_key_instantiated(struct key * key,int reject_error)410  static void mark_key_instantiated(struct key *key, int reject_error)
411  {
412  	/* Commit the payload before setting the state; barrier versus
413  	 * key_read_state().
414  	 */
415  	smp_store_release(&key->state,
416  			  (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
417  }
418  
419  /*
420   * Instantiate a key and link it into the target keyring atomically.  Must be
421   * called with the target keyring's semaphore writelocked.  The target key's
422   * semaphore need not be locked as instantiation is serialised by
423   * key_construction_mutex.
424   */
__key_instantiate_and_link(struct key * key,struct key_preparsed_payload * prep,struct key * keyring,struct key * authkey,struct assoc_array_edit ** _edit)425  static int __key_instantiate_and_link(struct key *key,
426  				      struct key_preparsed_payload *prep,
427  				      struct key *keyring,
428  				      struct key *authkey,
429  				      struct assoc_array_edit **_edit)
430  {
431  	int ret, awaken;
432  
433  	key_check(key);
434  	key_check(keyring);
435  
436  	awaken = 0;
437  	ret = -EBUSY;
438  
439  	mutex_lock(&key_construction_mutex);
440  
441  	/* can't instantiate twice */
442  	if (key->state == KEY_IS_UNINSTANTIATED) {
443  		/* instantiate the key */
444  		ret = key->type->instantiate(key, prep);
445  
446  		if (ret == 0) {
447  			/* mark the key as being instantiated */
448  			atomic_inc(&key->user->nikeys);
449  			mark_key_instantiated(key, 0);
450  			notify_key(key, NOTIFY_KEY_INSTANTIATED, 0);
451  
452  			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
453  				awaken = 1;
454  
455  			/* and link it into the destination keyring */
456  			if (keyring) {
457  				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
458  					set_bit(KEY_FLAG_KEEP, &key->flags);
459  
460  				__key_link(keyring, key, _edit);
461  			}
462  
463  			/* disable the authorisation key */
464  			if (authkey)
465  				key_invalidate(authkey);
466  
467  			if (prep->expiry != TIME64_MAX)
468  				key_set_expiry(key, prep->expiry);
469  		}
470  	}
471  
472  	mutex_unlock(&key_construction_mutex);
473  
474  	/* wake up anyone waiting for a key to be constructed */
475  	if (awaken)
476  		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
477  
478  	return ret;
479  }
480  
481  /**
482   * key_instantiate_and_link - Instantiate a key and link it into the keyring.
483   * @key: The key to instantiate.
484   * @data: The data to use to instantiate the keyring.
485   * @datalen: The length of @data.
486   * @keyring: Keyring to create a link in on success (or NULL).
487   * @authkey: The authorisation token permitting instantiation.
488   *
489   * Instantiate a key that's in the uninstantiated state using the provided data
490   * and, if successful, link it in to the destination keyring if one is
491   * supplied.
492   *
493   * If successful, 0 is returned, the authorisation token is revoked and anyone
494   * waiting for the key is woken up.  If the key was already instantiated,
495   * -EBUSY will be returned.
496   */
key_instantiate_and_link(struct key * key,const void * data,size_t datalen,struct key * keyring,struct key * authkey)497  int key_instantiate_and_link(struct key *key,
498  			     const void *data,
499  			     size_t datalen,
500  			     struct key *keyring,
501  			     struct key *authkey)
502  {
503  	struct key_preparsed_payload prep;
504  	struct assoc_array_edit *edit = NULL;
505  	int ret;
506  
507  	memset(&prep, 0, sizeof(prep));
508  	prep.orig_description = key->description;
509  	prep.data = data;
510  	prep.datalen = datalen;
511  	prep.quotalen = key->type->def_datalen;
512  	prep.expiry = TIME64_MAX;
513  	if (key->type->preparse) {
514  		ret = key->type->preparse(&prep);
515  		if (ret < 0)
516  			goto error;
517  	}
518  
519  	if (keyring) {
520  		ret = __key_link_lock(keyring, &key->index_key);
521  		if (ret < 0)
522  			goto error;
523  
524  		ret = __key_link_begin(keyring, &key->index_key, &edit);
525  		if (ret < 0)
526  			goto error_link_end;
527  
528  		if (keyring->restrict_link && keyring->restrict_link->check) {
529  			struct key_restriction *keyres = keyring->restrict_link;
530  
531  			ret = keyres->check(keyring, key->type, &prep.payload,
532  					    keyres->key);
533  			if (ret < 0)
534  				goto error_link_end;
535  		}
536  	}
537  
538  	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
539  
540  error_link_end:
541  	if (keyring)
542  		__key_link_end(keyring, &key->index_key, edit);
543  
544  error:
545  	if (key->type->preparse)
546  		key->type->free_preparse(&prep);
547  	return ret;
548  }
549  
550  EXPORT_SYMBOL(key_instantiate_and_link);
551  
552  /**
553   * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
554   * @key: The key to instantiate.
555   * @timeout: The timeout on the negative key.
556   * @error: The error to return when the key is hit.
557   * @keyring: Keyring to create a link in on success (or NULL).
558   * @authkey: The authorisation token permitting instantiation.
559   *
560   * Negatively instantiate a key that's in the uninstantiated state and, if
561   * successful, set its timeout and stored error and link it in to the
562   * destination keyring if one is supplied.  The key and any links to the key
563   * will be automatically garbage collected after the timeout expires.
564   *
565   * Negative keys are used to rate limit repeated request_key() calls by causing
566   * them to return the stored error code (typically ENOKEY) until the negative
567   * key expires.
568   *
569   * If successful, 0 is returned, the authorisation token is revoked and anyone
570   * waiting for the key is woken up.  If the key was already instantiated,
571   * -EBUSY will be returned.
572   */
key_reject_and_link(struct key * key,unsigned timeout,unsigned error,struct key * keyring,struct key * authkey)573  int key_reject_and_link(struct key *key,
574  			unsigned timeout,
575  			unsigned error,
576  			struct key *keyring,
577  			struct key *authkey)
578  {
579  	struct assoc_array_edit *edit = NULL;
580  	int ret, awaken, link_ret = 0;
581  
582  	key_check(key);
583  	key_check(keyring);
584  
585  	awaken = 0;
586  	ret = -EBUSY;
587  
588  	if (keyring) {
589  		if (keyring->restrict_link)
590  			return -EPERM;
591  
592  		link_ret = __key_link_lock(keyring, &key->index_key);
593  		if (link_ret == 0) {
594  			link_ret = __key_link_begin(keyring, &key->index_key, &edit);
595  			if (link_ret < 0)
596  				__key_link_end(keyring, &key->index_key, edit);
597  		}
598  	}
599  
600  	mutex_lock(&key_construction_mutex);
601  
602  	/* can't instantiate twice */
603  	if (key->state == KEY_IS_UNINSTANTIATED) {
604  		/* mark the key as being negatively instantiated */
605  		atomic_inc(&key->user->nikeys);
606  		mark_key_instantiated(key, -error);
607  		notify_key(key, NOTIFY_KEY_INSTANTIATED, -error);
608  		key_set_expiry(key, ktime_get_real_seconds() + timeout);
609  
610  		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
611  			awaken = 1;
612  
613  		ret = 0;
614  
615  		/* and link it into the destination keyring */
616  		if (keyring && link_ret == 0)
617  			__key_link(keyring, key, &edit);
618  
619  		/* disable the authorisation key */
620  		if (authkey)
621  			key_invalidate(authkey);
622  	}
623  
624  	mutex_unlock(&key_construction_mutex);
625  
626  	if (keyring && link_ret == 0)
627  		__key_link_end(keyring, &key->index_key, edit);
628  
629  	/* wake up anyone waiting for a key to be constructed */
630  	if (awaken)
631  		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
632  
633  	return ret == 0 ? link_ret : ret;
634  }
635  EXPORT_SYMBOL(key_reject_and_link);
636  
637  /**
638   * key_put - Discard a reference to a key.
639   * @key: The key to discard a reference from.
640   *
641   * Discard a reference to a key, and when all the references are gone, we
642   * schedule the cleanup task to come and pull it out of the tree in process
643   * context at some later time.
644   */
key_put(struct key * key)645  void key_put(struct key *key)
646  {
647  	if (key) {
648  		key_check(key);
649  
650  		if (refcount_dec_and_test(&key->usage))
651  			schedule_work(&key_gc_work);
652  	}
653  }
654  EXPORT_SYMBOL(key_put);
655  
656  /*
657   * Find a key by its serial number.
658   */
key_lookup(key_serial_t id)659  struct key *key_lookup(key_serial_t id)
660  {
661  	struct rb_node *n;
662  	struct key *key;
663  
664  	spin_lock(&key_serial_lock);
665  
666  	/* search the tree for the specified key */
667  	n = key_serial_tree.rb_node;
668  	while (n) {
669  		key = rb_entry(n, struct key, serial_node);
670  
671  		if (id < key->serial)
672  			n = n->rb_left;
673  		else if (id > key->serial)
674  			n = n->rb_right;
675  		else
676  			goto found;
677  	}
678  
679  not_found:
680  	key = ERR_PTR(-ENOKEY);
681  	goto error;
682  
683  found:
684  	/* A key is allowed to be looked up only if someone still owns a
685  	 * reference to it - otherwise it's awaiting the gc.
686  	 */
687  	if (!refcount_inc_not_zero(&key->usage))
688  		goto not_found;
689  
690  error:
691  	spin_unlock(&key_serial_lock);
692  	return key;
693  }
694  
695  /*
696   * Find and lock the specified key type against removal.
697   *
698   * We return with the sem read-locked if successful.  If the type wasn't
699   * available -ENOKEY is returned instead.
700   */
key_type_lookup(const char * type)701  struct key_type *key_type_lookup(const char *type)
702  {
703  	struct key_type *ktype;
704  
705  	down_read(&key_types_sem);
706  
707  	/* look up the key type to see if it's one of the registered kernel
708  	 * types */
709  	list_for_each_entry(ktype, &key_types_list, link) {
710  		if (strcmp(ktype->name, type) == 0)
711  			goto found_kernel_type;
712  	}
713  
714  	up_read(&key_types_sem);
715  	ktype = ERR_PTR(-ENOKEY);
716  
717  found_kernel_type:
718  	return ktype;
719  }
720  
key_set_timeout(struct key * key,unsigned timeout)721  void key_set_timeout(struct key *key, unsigned timeout)
722  {
723  	time64_t expiry = TIME64_MAX;
724  
725  	/* make the changes with the locks held to prevent races */
726  	down_write(&key->sem);
727  
728  	if (timeout > 0)
729  		expiry = ktime_get_real_seconds() + timeout;
730  	key_set_expiry(key, expiry);
731  
732  	up_write(&key->sem);
733  }
734  EXPORT_SYMBOL_GPL(key_set_timeout);
735  
736  /*
737   * Unlock a key type locked by key_type_lookup().
738   */
key_type_put(struct key_type * ktype)739  void key_type_put(struct key_type *ktype)
740  {
741  	up_read(&key_types_sem);
742  }
743  
744  /*
745   * Attempt to update an existing key.
746   *
747   * The key is given to us with an incremented refcount that we need to discard
748   * if we get an error.
749   */
__key_update(key_ref_t key_ref,struct key_preparsed_payload * prep)750  static inline key_ref_t __key_update(key_ref_t key_ref,
751  				     struct key_preparsed_payload *prep)
752  {
753  	struct key *key = key_ref_to_ptr(key_ref);
754  	int ret;
755  
756  	/* need write permission on the key to update it */
757  	ret = key_permission(key_ref, KEY_NEED_WRITE);
758  	if (ret < 0)
759  		goto error;
760  
761  	ret = -EEXIST;
762  	if (!key->type->update)
763  		goto error;
764  
765  	down_write(&key->sem);
766  
767  	ret = key->type->update(key, prep);
768  	if (ret == 0) {
769  		/* Updating a negative key positively instantiates it */
770  		mark_key_instantiated(key, 0);
771  		notify_key(key, NOTIFY_KEY_UPDATED, 0);
772  	}
773  
774  	up_write(&key->sem);
775  
776  	if (ret < 0)
777  		goto error;
778  out:
779  	return key_ref;
780  
781  error:
782  	key_put(key);
783  	key_ref = ERR_PTR(ret);
784  	goto out;
785  }
786  
787  /*
788   * Create or potentially update a key. The combined logic behind
789   * key_create_or_update() and key_create()
790   */
__key_create_or_update(key_ref_t keyring_ref,const char * type,const char * description,const void * payload,size_t plen,key_perm_t perm,unsigned long flags,bool allow_update)791  static key_ref_t __key_create_or_update(key_ref_t keyring_ref,
792  					const char *type,
793  					const char *description,
794  					const void *payload,
795  					size_t plen,
796  					key_perm_t perm,
797  					unsigned long flags,
798  					bool allow_update)
799  {
800  	struct keyring_index_key index_key = {
801  		.description	= description,
802  	};
803  	struct key_preparsed_payload prep;
804  	struct assoc_array_edit *edit = NULL;
805  	const struct cred *cred = current_cred();
806  	struct key *keyring, *key = NULL;
807  	key_ref_t key_ref;
808  	int ret;
809  	struct key_restriction *restrict_link = NULL;
810  
811  	/* look up the key type to see if it's one of the registered kernel
812  	 * types */
813  	index_key.type = key_type_lookup(type);
814  	if (IS_ERR(index_key.type)) {
815  		key_ref = ERR_PTR(-ENODEV);
816  		goto error;
817  	}
818  
819  	key_ref = ERR_PTR(-EINVAL);
820  	if (!index_key.type->instantiate ||
821  	    (!index_key.description && !index_key.type->preparse))
822  		goto error_put_type;
823  
824  	keyring = key_ref_to_ptr(keyring_ref);
825  
826  	key_check(keyring);
827  
828  	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
829  		restrict_link = keyring->restrict_link;
830  
831  	key_ref = ERR_PTR(-ENOTDIR);
832  	if (keyring->type != &key_type_keyring)
833  		goto error_put_type;
834  
835  	memset(&prep, 0, sizeof(prep));
836  	prep.orig_description = description;
837  	prep.data = payload;
838  	prep.datalen = plen;
839  	prep.quotalen = index_key.type->def_datalen;
840  	prep.expiry = TIME64_MAX;
841  	if (index_key.type->preparse) {
842  		ret = index_key.type->preparse(&prep);
843  		if (ret < 0) {
844  			key_ref = ERR_PTR(ret);
845  			goto error_free_prep;
846  		}
847  		if (!index_key.description)
848  			index_key.description = prep.description;
849  		key_ref = ERR_PTR(-EINVAL);
850  		if (!index_key.description)
851  			goto error_free_prep;
852  	}
853  	index_key.desc_len = strlen(index_key.description);
854  	key_set_index_key(&index_key);
855  
856  	ret = __key_link_lock(keyring, &index_key);
857  	if (ret < 0) {
858  		key_ref = ERR_PTR(ret);
859  		goto error_free_prep;
860  	}
861  
862  	ret = __key_link_begin(keyring, &index_key, &edit);
863  	if (ret < 0) {
864  		key_ref = ERR_PTR(ret);
865  		goto error_link_end;
866  	}
867  
868  	if (restrict_link && restrict_link->check) {
869  		ret = restrict_link->check(keyring, index_key.type,
870  					   &prep.payload, restrict_link->key);
871  		if (ret < 0) {
872  			key_ref = ERR_PTR(ret);
873  			goto error_link_end;
874  		}
875  	}
876  
877  	/* if we're going to allocate a new key, we're going to have
878  	 * to modify the keyring */
879  	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
880  	if (ret < 0) {
881  		key_ref = ERR_PTR(ret);
882  		goto error_link_end;
883  	}
884  
885  	/* if it's requested and possible to update this type of key, search
886  	 * for an existing key of the same type and description in the
887  	 * destination keyring and update that instead if possible
888  	 */
889  	if (allow_update) {
890  		if (index_key.type->update) {
891  			key_ref = find_key_to_update(keyring_ref, &index_key);
892  			if (key_ref)
893  				goto found_matching_key;
894  		}
895  	} else {
896  		key_ref = find_key_to_update(keyring_ref, &index_key);
897  		if (key_ref) {
898  			key_ref_put(key_ref);
899  			key_ref = ERR_PTR(-EEXIST);
900  			goto error_link_end;
901  		}
902  	}
903  
904  	/* if the client doesn't provide, decide on the permissions we want */
905  	if (perm == KEY_PERM_UNDEF) {
906  		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
907  		perm |= KEY_USR_VIEW;
908  
909  		if (index_key.type->read)
910  			perm |= KEY_POS_READ;
911  
912  		if (index_key.type == &key_type_keyring ||
913  		    index_key.type->update)
914  			perm |= KEY_POS_WRITE;
915  	}
916  
917  	/* allocate a new key */
918  	key = key_alloc(index_key.type, index_key.description,
919  			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
920  	if (IS_ERR(key)) {
921  		key_ref = ERR_CAST(key);
922  		goto error_link_end;
923  	}
924  
925  	/* instantiate it and link it into the target keyring */
926  	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
927  	if (ret < 0) {
928  		key_put(key);
929  		key_ref = ERR_PTR(ret);
930  		goto error_link_end;
931  	}
932  
933  	ima_post_key_create_or_update(keyring, key, payload, plen,
934  				      flags, true);
935  
936  	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
937  
938  error_link_end:
939  	__key_link_end(keyring, &index_key, edit);
940  error_free_prep:
941  	if (index_key.type->preparse)
942  		index_key.type->free_preparse(&prep);
943  error_put_type:
944  	key_type_put(index_key.type);
945  error:
946  	return key_ref;
947  
948   found_matching_key:
949  	/* we found a matching key, so we're going to try to update it
950  	 * - we can drop the locks first as we have the key pinned
951  	 */
952  	__key_link_end(keyring, &index_key, edit);
953  
954  	key = key_ref_to_ptr(key_ref);
955  	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
956  		ret = wait_for_key_construction(key, true);
957  		if (ret < 0) {
958  			key_ref_put(key_ref);
959  			key_ref = ERR_PTR(ret);
960  			goto error_free_prep;
961  		}
962  	}
963  
964  	key_ref = __key_update(key_ref, &prep);
965  
966  	if (!IS_ERR(key_ref))
967  		ima_post_key_create_or_update(keyring, key,
968  					      payload, plen,
969  					      flags, false);
970  
971  	goto error_free_prep;
972  }
973  
974  /**
975   * key_create_or_update - Update or create and instantiate a key.
976   * @keyring_ref: A pointer to the destination keyring with possession flag.
977   * @type: The type of key.
978   * @description: The searchable description for the key.
979   * @payload: The data to use to instantiate or update the key.
980   * @plen: The length of @payload.
981   * @perm: The permissions mask for a new key.
982   * @flags: The quota flags for a new key.
983   *
984   * Search the destination keyring for a key of the same description and if one
985   * is found, update it, otherwise create and instantiate a new one and create a
986   * link to it from that keyring.
987   *
988   * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
989   * concocted.
990   *
991   * Returns a pointer to the new key if successful, -ENODEV if the key type
992   * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
993   * caller isn't permitted to modify the keyring or the LSM did not permit
994   * creation of the key.
995   *
996   * On success, the possession flag from the keyring ref will be tacked on to
997   * the key ref before it is returned.
998   */
key_create_or_update(key_ref_t keyring_ref,const char * type,const char * description,const void * payload,size_t plen,key_perm_t perm,unsigned long flags)999  key_ref_t key_create_or_update(key_ref_t keyring_ref,
1000  			       const char *type,
1001  			       const char *description,
1002  			       const void *payload,
1003  			       size_t plen,
1004  			       key_perm_t perm,
1005  			       unsigned long flags)
1006  {
1007  	return __key_create_or_update(keyring_ref, type, description, payload,
1008  				      plen, perm, flags, true);
1009  }
1010  EXPORT_SYMBOL(key_create_or_update);
1011  
1012  /**
1013   * key_create - Create and instantiate a key.
1014   * @keyring_ref: A pointer to the destination keyring with possession flag.
1015   * @type: The type of key.
1016   * @description: The searchable description for the key.
1017   * @payload: The data to use to instantiate or update the key.
1018   * @plen: The length of @payload.
1019   * @perm: The permissions mask for a new key.
1020   * @flags: The quota flags for a new key.
1021   *
1022   * Create and instantiate a new key and link to it from the destination keyring.
1023   *
1024   * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
1025   * concocted.
1026   *
1027   * Returns a pointer to the new key if successful, -EEXIST if a key with the
1028   * same description already exists, -ENODEV if the key type wasn't available,
1029   * -ENOTDIR if the keyring wasn't a keyring, -EACCES if the caller isn't
1030   * permitted to modify the keyring or the LSM did not permit creation of the
1031   * key.
1032   *
1033   * On success, the possession flag from the keyring ref will be tacked on to
1034   * the key ref before it is returned.
1035   */
key_create(key_ref_t keyring_ref,const char * type,const char * description,const void * payload,size_t plen,key_perm_t perm,unsigned long flags)1036  key_ref_t key_create(key_ref_t keyring_ref,
1037  		     const char *type,
1038  		     const char *description,
1039  		     const void *payload,
1040  		     size_t plen,
1041  		     key_perm_t perm,
1042  		     unsigned long flags)
1043  {
1044  	return __key_create_or_update(keyring_ref, type, description, payload,
1045  				      plen, perm, flags, false);
1046  }
1047  EXPORT_SYMBOL(key_create);
1048  
1049  /**
1050   * key_update - Update a key's contents.
1051   * @key_ref: The pointer (plus possession flag) to the key.
1052   * @payload: The data to be used to update the key.
1053   * @plen: The length of @payload.
1054   *
1055   * Attempt to update the contents of a key with the given payload data.  The
1056   * caller must be granted Write permission on the key.  Negative keys can be
1057   * instantiated by this method.
1058   *
1059   * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
1060   * type does not support updating.  The key type may return other errors.
1061   */
key_update(key_ref_t key_ref,const void * payload,size_t plen)1062  int key_update(key_ref_t key_ref, const void *payload, size_t plen)
1063  {
1064  	struct key_preparsed_payload prep;
1065  	struct key *key = key_ref_to_ptr(key_ref);
1066  	int ret;
1067  
1068  	key_check(key);
1069  
1070  	/* the key must be writable */
1071  	ret = key_permission(key_ref, KEY_NEED_WRITE);
1072  	if (ret < 0)
1073  		return ret;
1074  
1075  	/* attempt to update it if supported */
1076  	if (!key->type->update)
1077  		return -EOPNOTSUPP;
1078  
1079  	memset(&prep, 0, sizeof(prep));
1080  	prep.data = payload;
1081  	prep.datalen = plen;
1082  	prep.quotalen = key->type->def_datalen;
1083  	prep.expiry = TIME64_MAX;
1084  	if (key->type->preparse) {
1085  		ret = key->type->preparse(&prep);
1086  		if (ret < 0)
1087  			goto error;
1088  	}
1089  
1090  	down_write(&key->sem);
1091  
1092  	ret = key->type->update(key, &prep);
1093  	if (ret == 0) {
1094  		/* Updating a negative key positively instantiates it */
1095  		mark_key_instantiated(key, 0);
1096  		notify_key(key, NOTIFY_KEY_UPDATED, 0);
1097  	}
1098  
1099  	up_write(&key->sem);
1100  
1101  error:
1102  	if (key->type->preparse)
1103  		key->type->free_preparse(&prep);
1104  	return ret;
1105  }
1106  EXPORT_SYMBOL(key_update);
1107  
1108  /**
1109   * key_revoke - Revoke a key.
1110   * @key: The key to be revoked.
1111   *
1112   * Mark a key as being revoked and ask the type to free up its resources.  The
1113   * revocation timeout is set and the key and all its links will be
1114   * automatically garbage collected after key_gc_delay amount of time if they
1115   * are not manually dealt with first.
1116   */
key_revoke(struct key * key)1117  void key_revoke(struct key *key)
1118  {
1119  	time64_t time;
1120  
1121  	key_check(key);
1122  
1123  	/* make sure no one's trying to change or use the key when we mark it
1124  	 * - we tell lockdep that we might nest because we might be revoking an
1125  	 *   authorisation key whilst holding the sem on a key we've just
1126  	 *   instantiated
1127  	 */
1128  	down_write_nested(&key->sem, 1);
1129  	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) {
1130  		notify_key(key, NOTIFY_KEY_REVOKED, 0);
1131  		if (key->type->revoke)
1132  			key->type->revoke(key);
1133  
1134  		/* set the death time to no more than the expiry time */
1135  		time = ktime_get_real_seconds();
1136  		if (key->revoked_at == 0 || key->revoked_at > time) {
1137  			key->revoked_at = time;
1138  			key_schedule_gc(key->revoked_at + key_gc_delay);
1139  		}
1140  	}
1141  
1142  	up_write(&key->sem);
1143  }
1144  EXPORT_SYMBOL(key_revoke);
1145  
1146  /**
1147   * key_invalidate - Invalidate a key.
1148   * @key: The key to be invalidated.
1149   *
1150   * Mark a key as being invalidated and have it cleaned up immediately.  The key
1151   * is ignored by all searches and other operations from this point.
1152   */
key_invalidate(struct key * key)1153  void key_invalidate(struct key *key)
1154  {
1155  	kenter("%d", key_serial(key));
1156  
1157  	key_check(key);
1158  
1159  	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1160  		down_write_nested(&key->sem, 1);
1161  		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1162  			notify_key(key, NOTIFY_KEY_INVALIDATED, 0);
1163  			key_schedule_gc_links();
1164  		}
1165  		up_write(&key->sem);
1166  	}
1167  }
1168  EXPORT_SYMBOL(key_invalidate);
1169  
1170  /**
1171   * generic_key_instantiate - Simple instantiation of a key from preparsed data
1172   * @key: The key to be instantiated
1173   * @prep: The preparsed data to load.
1174   *
1175   * Instantiate a key from preparsed data.  We assume we can just copy the data
1176   * in directly and clear the old pointers.
1177   *
1178   * This can be pointed to directly by the key type instantiate op pointer.
1179   */
generic_key_instantiate(struct key * key,struct key_preparsed_payload * prep)1180  int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1181  {
1182  	int ret;
1183  
1184  	pr_devel("==>%s()\n", __func__);
1185  
1186  	ret = key_payload_reserve(key, prep->quotalen);
1187  	if (ret == 0) {
1188  		rcu_assign_keypointer(key, prep->payload.data[0]);
1189  		key->payload.data[1] = prep->payload.data[1];
1190  		key->payload.data[2] = prep->payload.data[2];
1191  		key->payload.data[3] = prep->payload.data[3];
1192  		prep->payload.data[0] = NULL;
1193  		prep->payload.data[1] = NULL;
1194  		prep->payload.data[2] = NULL;
1195  		prep->payload.data[3] = NULL;
1196  	}
1197  	pr_devel("<==%s() = %d\n", __func__, ret);
1198  	return ret;
1199  }
1200  EXPORT_SYMBOL(generic_key_instantiate);
1201  
1202  /**
1203   * register_key_type - Register a type of key.
1204   * @ktype: The new key type.
1205   *
1206   * Register a new key type.
1207   *
1208   * Returns 0 on success or -EEXIST if a type of this name already exists.
1209   */
register_key_type(struct key_type * ktype)1210  int register_key_type(struct key_type *ktype)
1211  {
1212  	struct key_type *p;
1213  	int ret;
1214  
1215  	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1216  
1217  	ret = -EEXIST;
1218  	down_write(&key_types_sem);
1219  
1220  	/* disallow key types with the same name */
1221  	list_for_each_entry(p, &key_types_list, link) {
1222  		if (strcmp(p->name, ktype->name) == 0)
1223  			goto out;
1224  	}
1225  
1226  	/* store the type */
1227  	list_add(&ktype->link, &key_types_list);
1228  
1229  	pr_notice("Key type %s registered\n", ktype->name);
1230  	ret = 0;
1231  
1232  out:
1233  	up_write(&key_types_sem);
1234  	return ret;
1235  }
1236  EXPORT_SYMBOL(register_key_type);
1237  
1238  /**
1239   * unregister_key_type - Unregister a type of key.
1240   * @ktype: The key type.
1241   *
1242   * Unregister a key type and mark all the extant keys of this type as dead.
1243   * Those keys of this type are then destroyed to get rid of their payloads and
1244   * they and their links will be garbage collected as soon as possible.
1245   */
unregister_key_type(struct key_type * ktype)1246  void unregister_key_type(struct key_type *ktype)
1247  {
1248  	down_write(&key_types_sem);
1249  	list_del_init(&ktype->link);
1250  	downgrade_write(&key_types_sem);
1251  	key_gc_keytype(ktype);
1252  	pr_notice("Key type %s unregistered\n", ktype->name);
1253  	up_read(&key_types_sem);
1254  }
1255  EXPORT_SYMBOL(unregister_key_type);
1256  
1257  /*
1258   * Initialise the key management state.
1259   */
key_init(void)1260  void __init key_init(void)
1261  {
1262  	/* allocate a slab in which we can store keys */
1263  	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1264  			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1265  
1266  	/* add the special key types */
1267  	list_add_tail(&key_type_keyring.link, &key_types_list);
1268  	list_add_tail(&key_type_dead.link, &key_types_list);
1269  	list_add_tail(&key_type_user.link, &key_types_list);
1270  	list_add_tail(&key_type_logon.link, &key_types_list);
1271  
1272  	/* record the root user tracking */
1273  	rb_link_node(&root_key_user.node,
1274  		     NULL,
1275  		     &key_user_tree.rb_node);
1276  
1277  	rb_insert_color(&root_key_user.node,
1278  			&key_user_tree);
1279  }
1280