1 /*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include <zlib.h>
27
28 #include "block/block-io.h"
29 #include "qapi/error.h"
30 #include "qcow2.h"
31 #include "qemu/bswap.h"
32 #include "qemu/memalign.h"
33 #include "trace.h"
34
qcow2_shrink_l1_table(BlockDriverState * bs,uint64_t exact_size)35 int coroutine_fn qcow2_shrink_l1_table(BlockDriverState *bs,
36 uint64_t exact_size)
37 {
38 BDRVQcow2State *s = bs->opaque;
39 int new_l1_size, i, ret;
40
41 if (exact_size >= s->l1_size) {
42 return 0;
43 }
44
45 new_l1_size = exact_size;
46
47 #ifdef DEBUG_ALLOC2
48 fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
49 #endif
50
51 BLKDBG_CO_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
52 ret = bdrv_co_pwrite_zeroes(bs->file,
53 s->l1_table_offset + new_l1_size * L1E_SIZE,
54 (s->l1_size - new_l1_size) * L1E_SIZE, 0);
55 if (ret < 0) {
56 goto fail;
57 }
58
59 ret = bdrv_co_flush(bs->file->bs);
60 if (ret < 0) {
61 goto fail;
62 }
63
64 BLKDBG_CO_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
65 for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
66 if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
67 continue;
68 }
69 qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
70 s->cluster_size, QCOW2_DISCARD_ALWAYS);
71 s->l1_table[i] = 0;
72 }
73 return 0;
74
75 fail:
76 /*
77 * If the write in the l1_table failed the image may contain a partially
78 * overwritten l1_table. In this case it would be better to clear the
79 * l1_table in memory to avoid possible image corruption.
80 */
81 memset(s->l1_table + new_l1_size, 0,
82 (s->l1_size - new_l1_size) * L1E_SIZE);
83 return ret;
84 }
85
qcow2_grow_l1_table(BlockDriverState * bs,uint64_t min_size,bool exact_size)86 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
87 bool exact_size)
88 {
89 BDRVQcow2State *s = bs->opaque;
90 int new_l1_size2, ret, i;
91 uint64_t *new_l1_table;
92 int64_t old_l1_table_offset, old_l1_size;
93 int64_t new_l1_table_offset, new_l1_size;
94 uint8_t data[12];
95
96 if (min_size <= s->l1_size)
97 return 0;
98
99 /* Do a sanity check on min_size before trying to calculate new_l1_size
100 * (this prevents overflows during the while loop for the calculation of
101 * new_l1_size) */
102 if (min_size > INT_MAX / L1E_SIZE) {
103 return -EFBIG;
104 }
105
106 if (exact_size) {
107 new_l1_size = min_size;
108 } else {
109 /* Bump size up to reduce the number of times we have to grow */
110 new_l1_size = s->l1_size;
111 if (new_l1_size == 0) {
112 new_l1_size = 1;
113 }
114 while (min_size > new_l1_size) {
115 new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
116 }
117 }
118
119 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
120 if (new_l1_size > QCOW_MAX_L1_SIZE / L1E_SIZE) {
121 return -EFBIG;
122 }
123
124 #ifdef DEBUG_ALLOC2
125 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
126 s->l1_size, new_l1_size);
127 #endif
128
129 new_l1_size2 = L1E_SIZE * new_l1_size;
130 new_l1_table = qemu_try_blockalign(bs->file->bs, new_l1_size2);
131 if (new_l1_table == NULL) {
132 return -ENOMEM;
133 }
134 memset(new_l1_table, 0, new_l1_size2);
135
136 if (s->l1_size) {
137 memcpy(new_l1_table, s->l1_table, s->l1_size * L1E_SIZE);
138 }
139
140 /* write new table (align to cluster) */
141 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
142 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
143 if (new_l1_table_offset < 0) {
144 qemu_vfree(new_l1_table);
145 return new_l1_table_offset;
146 }
147
148 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
149 if (ret < 0) {
150 goto fail;
151 }
152
153 /* the L1 position has not yet been updated, so these clusters must
154 * indeed be completely free */
155 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
156 new_l1_size2, false);
157 if (ret < 0) {
158 goto fail;
159 }
160
161 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
162 for(i = 0; i < s->l1_size; i++)
163 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
164 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_size2,
165 new_l1_table, 0);
166 if (ret < 0)
167 goto fail;
168 for(i = 0; i < s->l1_size; i++)
169 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
170
171 /* set new table */
172 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
173 stl_be_p(data, new_l1_size);
174 stq_be_p(data + 4, new_l1_table_offset);
175 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
176 sizeof(data), data, 0);
177 if (ret < 0) {
178 goto fail;
179 }
180 qemu_vfree(s->l1_table);
181 old_l1_table_offset = s->l1_table_offset;
182 s->l1_table_offset = new_l1_table_offset;
183 s->l1_table = new_l1_table;
184 old_l1_size = s->l1_size;
185 s->l1_size = new_l1_size;
186 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * L1E_SIZE,
187 QCOW2_DISCARD_OTHER);
188 return 0;
189 fail:
190 qemu_vfree(new_l1_table);
191 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
192 QCOW2_DISCARD_OTHER);
193 return ret;
194 }
195
196 /*
197 * l2_load
198 *
199 * @bs: The BlockDriverState
200 * @offset: A guest offset, used to calculate what slice of the L2
201 * table to load.
202 * @l2_offset: Offset to the L2 table in the image file.
203 * @l2_slice: Location to store the pointer to the L2 slice.
204 *
205 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
206 * that are loaded by the qcow2 cache). If the slice is in the cache,
207 * the cache is used; otherwise the L2 slice is loaded from the image
208 * file.
209 */
210 static int GRAPH_RDLOCK
l2_load(BlockDriverState * bs,uint64_t offset,uint64_t l2_offset,uint64_t ** l2_slice)211 l2_load(BlockDriverState *bs, uint64_t offset,
212 uint64_t l2_offset, uint64_t **l2_slice)
213 {
214 BDRVQcow2State *s = bs->opaque;
215 int start_of_slice = l2_entry_size(s) *
216 (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
217
218 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
219 (void **)l2_slice);
220 }
221
222 /*
223 * Writes an L1 entry to disk (note that depending on the alignment
224 * requirements this function may write more that just one entry in
225 * order to prevent bdrv_pwrite from performing a read-modify-write)
226 */
qcow2_write_l1_entry(BlockDriverState * bs,int l1_index)227 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
228 {
229 BDRVQcow2State *s = bs->opaque;
230 int l1_start_index;
231 int i, ret;
232 int bufsize = MAX(L1E_SIZE,
233 MIN(bs->file->bs->bl.request_alignment, s->cluster_size));
234 int nentries = bufsize / L1E_SIZE;
235 g_autofree uint64_t *buf = g_try_new0(uint64_t, nentries);
236
237 if (buf == NULL) {
238 return -ENOMEM;
239 }
240
241 l1_start_index = QEMU_ALIGN_DOWN(l1_index, nentries);
242 for (i = 0; i < MIN(nentries, s->l1_size - l1_start_index); i++) {
243 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
244 }
245
246 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
247 s->l1_table_offset + L1E_SIZE * l1_start_index, bufsize, false);
248 if (ret < 0) {
249 return ret;
250 }
251
252 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
253 ret = bdrv_pwrite_sync(bs->file,
254 s->l1_table_offset + L1E_SIZE * l1_start_index,
255 bufsize, buf, 0);
256 if (ret < 0) {
257 return ret;
258 }
259
260 return 0;
261 }
262
263 /*
264 * l2_allocate
265 *
266 * Allocate a new l2 entry in the file. If l1_index points to an already
267 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
268 * table) copy the contents of the old L2 table into the newly allocated one.
269 * Otherwise the new table is initialized with zeros.
270 *
271 */
272
l2_allocate(BlockDriverState * bs,int l1_index)273 static int GRAPH_RDLOCK l2_allocate(BlockDriverState *bs, int l1_index)
274 {
275 BDRVQcow2State *s = bs->opaque;
276 uint64_t old_l2_offset;
277 uint64_t *l2_slice = NULL;
278 unsigned slice, slice_size2, n_slices;
279 int64_t l2_offset;
280 int ret;
281
282 old_l2_offset = s->l1_table[l1_index];
283
284 trace_qcow2_l2_allocate(bs, l1_index);
285
286 /* allocate a new l2 entry */
287
288 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * l2_entry_size(s));
289 if (l2_offset < 0) {
290 ret = l2_offset;
291 goto fail;
292 }
293
294 /* The offset must fit in the offset field of the L1 table entry */
295 assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
296
297 /* If we're allocating the table at offset 0 then something is wrong */
298 if (l2_offset == 0) {
299 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
300 "allocation of L2 table at offset 0");
301 ret = -EIO;
302 goto fail;
303 }
304
305 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
306 if (ret < 0) {
307 goto fail;
308 }
309
310 /* allocate a new entry in the l2 cache */
311
312 slice_size2 = s->l2_slice_size * l2_entry_size(s);
313 n_slices = s->cluster_size / slice_size2;
314
315 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
316 for (slice = 0; slice < n_slices; slice++) {
317 ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
318 l2_offset + slice * slice_size2,
319 (void **) &l2_slice);
320 if (ret < 0) {
321 goto fail;
322 }
323
324 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
325 /* if there was no old l2 table, clear the new slice */
326 memset(l2_slice, 0, slice_size2);
327 } else {
328 uint64_t *old_slice;
329 uint64_t old_l2_slice_offset =
330 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
331
332 /* if there was an old l2 table, read a slice from the disk */
333 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
334 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
335 (void **) &old_slice);
336 if (ret < 0) {
337 goto fail;
338 }
339
340 memcpy(l2_slice, old_slice, slice_size2);
341
342 qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
343 }
344
345 /* write the l2 slice to the file */
346 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
347
348 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
349 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
350 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
351 }
352
353 ret = qcow2_cache_flush(bs, s->l2_table_cache);
354 if (ret < 0) {
355 goto fail;
356 }
357
358 /* update the L1 entry */
359 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
360 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
361 ret = qcow2_write_l1_entry(bs, l1_index);
362 if (ret < 0) {
363 goto fail;
364 }
365
366 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
367 return 0;
368
369 fail:
370 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
371 if (l2_slice != NULL) {
372 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
373 }
374 s->l1_table[l1_index] = old_l2_offset;
375 if (l2_offset > 0) {
376 qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
377 QCOW2_DISCARD_ALWAYS);
378 }
379 return ret;
380 }
381
382 /*
383 * For a given L2 entry, count the number of contiguous subclusters of
384 * the same type starting from @sc_from. Compressed clusters are
385 * treated as if they were divided into subclusters of size
386 * s->subcluster_size.
387 *
388 * Return the number of contiguous subclusters and set @type to the
389 * subcluster type.
390 *
391 * If the L2 entry is invalid return -errno and set @type to
392 * QCOW2_SUBCLUSTER_INVALID.
393 */
394 static int GRAPH_RDLOCK
qcow2_get_subcluster_range_type(BlockDriverState * bs,uint64_t l2_entry,uint64_t l2_bitmap,unsigned sc_from,QCow2SubclusterType * type)395 qcow2_get_subcluster_range_type(BlockDriverState *bs, uint64_t l2_entry,
396 uint64_t l2_bitmap, unsigned sc_from,
397 QCow2SubclusterType *type)
398 {
399 BDRVQcow2State *s = bs->opaque;
400 uint32_t val;
401
402 *type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_from);
403
404 if (*type == QCOW2_SUBCLUSTER_INVALID) {
405 return -EINVAL;
406 } else if (!has_subclusters(s) || *type == QCOW2_SUBCLUSTER_COMPRESSED) {
407 return s->subclusters_per_cluster - sc_from;
408 }
409
410 switch (*type) {
411 case QCOW2_SUBCLUSTER_NORMAL:
412 val = l2_bitmap | QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
413 return cto32(val) - sc_from;
414
415 case QCOW2_SUBCLUSTER_ZERO_PLAIN:
416 case QCOW2_SUBCLUSTER_ZERO_ALLOC:
417 val = (l2_bitmap | QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from)) >> 32;
418 return cto32(val) - sc_from;
419
420 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
421 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
422 val = ((l2_bitmap >> 32) | l2_bitmap)
423 & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
424 return ctz32(val) - sc_from;
425
426 default:
427 g_assert_not_reached();
428 }
429 }
430
431 /*
432 * Return the number of contiguous subclusters of the exact same type
433 * in a given L2 slice, starting from cluster @l2_index, subcluster
434 * @sc_index. Allocated subclusters are required to be contiguous in
435 * the image file.
436 * At most @nb_clusters are checked (note that this means clusters,
437 * not subclusters).
438 * Compressed clusters are always processed one by one but for the
439 * purpose of this count they are treated as if they were divided into
440 * subclusters of size s->subcluster_size.
441 * On failure return -errno and update @l2_index to point to the
442 * invalid entry.
443 */
444 static int GRAPH_RDLOCK
count_contiguous_subclusters(BlockDriverState * bs,int nb_clusters,unsigned sc_index,uint64_t * l2_slice,unsigned * l2_index)445 count_contiguous_subclusters(BlockDriverState *bs, int nb_clusters,
446 unsigned sc_index, uint64_t *l2_slice,
447 unsigned *l2_index)
448 {
449 BDRVQcow2State *s = bs->opaque;
450 int i, count = 0;
451 bool check_offset = false;
452 uint64_t expected_offset = 0;
453 QCow2SubclusterType expected_type = QCOW2_SUBCLUSTER_NORMAL, type;
454
455 assert(*l2_index + nb_clusters <= s->l2_slice_size);
456
457 for (i = 0; i < nb_clusters; i++) {
458 unsigned first_sc = (i == 0) ? sc_index : 0;
459 uint64_t l2_entry = get_l2_entry(s, l2_slice, *l2_index + i);
460 uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, *l2_index + i);
461 int ret = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
462 first_sc, &type);
463 if (ret < 0) {
464 *l2_index += i; /* Point to the invalid entry */
465 return -EIO;
466 }
467 if (i == 0) {
468 if (type == QCOW2_SUBCLUSTER_COMPRESSED) {
469 /* Compressed clusters are always processed one by one */
470 return ret;
471 }
472 expected_type = type;
473 expected_offset = l2_entry & L2E_OFFSET_MASK;
474 check_offset = (type == QCOW2_SUBCLUSTER_NORMAL ||
475 type == QCOW2_SUBCLUSTER_ZERO_ALLOC ||
476 type == QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC);
477 } else if (type != expected_type) {
478 break;
479 } else if (check_offset) {
480 expected_offset += s->cluster_size;
481 if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
482 break;
483 }
484 }
485 count += ret;
486 /* Stop if there are type changes before the end of the cluster */
487 if (first_sc + ret < s->subclusters_per_cluster) {
488 break;
489 }
490 }
491
492 return count;
493 }
494
495 static int coroutine_fn GRAPH_RDLOCK
do_perform_cow_read(BlockDriverState * bs,uint64_t src_cluster_offset,unsigned offset_in_cluster,QEMUIOVector * qiov)496 do_perform_cow_read(BlockDriverState *bs, uint64_t src_cluster_offset,
497 unsigned offset_in_cluster, QEMUIOVector *qiov)
498 {
499 int ret;
500
501 if (qiov->size == 0) {
502 return 0;
503 }
504
505 BLKDBG_CO_EVENT(bs->file, BLKDBG_COW_READ);
506
507 if (!bs->drv) {
508 return -ENOMEDIUM;
509 }
510
511 /*
512 * We never deal with requests that don't satisfy
513 * bdrv_check_qiov_request(), and aligning requests to clusters never
514 * breaks this condition. So, do some assertions before calling
515 * bs->drv->bdrv_co_preadv_part() which has int64_t arguments.
516 */
517 assert(src_cluster_offset <= INT64_MAX);
518 assert(src_cluster_offset + offset_in_cluster <= INT64_MAX);
519 /* Cast qiov->size to uint64_t to silence a compiler warning on -m32 */
520 assert((uint64_t)qiov->size <= INT64_MAX);
521 bdrv_check_qiov_request(src_cluster_offset + offset_in_cluster, qiov->size,
522 qiov, 0, &error_abort);
523 /*
524 * Call .bdrv_co_readv() directly instead of using the public block-layer
525 * interface. This avoids double I/O throttling and request tracking,
526 * which can lead to deadlock when block layer copy-on-read is enabled.
527 */
528 ret = bs->drv->bdrv_co_preadv_part(bs,
529 src_cluster_offset + offset_in_cluster,
530 qiov->size, qiov, 0, 0);
531 if (ret < 0) {
532 return ret;
533 }
534
535 return 0;
536 }
537
538 static int coroutine_fn GRAPH_RDLOCK
do_perform_cow_write(BlockDriverState * bs,uint64_t cluster_offset,unsigned offset_in_cluster,QEMUIOVector * qiov)539 do_perform_cow_write(BlockDriverState *bs, uint64_t cluster_offset,
540 unsigned offset_in_cluster, QEMUIOVector *qiov)
541 {
542 BDRVQcow2State *s = bs->opaque;
543 int ret;
544
545 if (qiov->size == 0) {
546 return 0;
547 }
548
549 ret = qcow2_pre_write_overlap_check(bs, 0,
550 cluster_offset + offset_in_cluster, qiov->size, true);
551 if (ret < 0) {
552 return ret;
553 }
554
555 BLKDBG_CO_EVENT(bs->file, BLKDBG_COW_WRITE);
556 ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
557 qiov->size, qiov, 0);
558 if (ret < 0) {
559 return ret;
560 }
561
562 return 0;
563 }
564
565
566 /*
567 * get_host_offset
568 *
569 * For a given offset of the virtual disk find the equivalent host
570 * offset in the qcow2 file and store it in *host_offset. Neither
571 * offset needs to be aligned to a cluster boundary.
572 *
573 * If the cluster is unallocated then *host_offset will be 0.
574 * If the cluster is compressed then *host_offset will contain the l2 entry.
575 *
576 * On entry, *bytes is the maximum number of contiguous bytes starting at
577 * offset that we are interested in.
578 *
579 * On exit, *bytes is the number of bytes starting at offset that have the same
580 * subcluster type and (if applicable) are stored contiguously in the image
581 * file. The subcluster type is stored in *subcluster_type.
582 * Compressed clusters are always processed one by one.
583 *
584 * Returns 0 on success, -errno in error cases.
585 */
qcow2_get_host_offset(BlockDriverState * bs,uint64_t offset,unsigned int * bytes,uint64_t * host_offset,QCow2SubclusterType * subcluster_type)586 int qcow2_get_host_offset(BlockDriverState *bs, uint64_t offset,
587 unsigned int *bytes, uint64_t *host_offset,
588 QCow2SubclusterType *subcluster_type)
589 {
590 BDRVQcow2State *s = bs->opaque;
591 unsigned int l2_index, sc_index;
592 uint64_t l1_index, l2_offset, *l2_slice, l2_entry, l2_bitmap;
593 int sc;
594 unsigned int offset_in_cluster;
595 uint64_t bytes_available, bytes_needed, nb_clusters;
596 QCow2SubclusterType type;
597 int ret;
598
599 offset_in_cluster = offset_into_cluster(s, offset);
600 bytes_needed = (uint64_t) *bytes + offset_in_cluster;
601
602 /* compute how many bytes there are between the start of the cluster
603 * containing offset and the end of the l2 slice that contains
604 * the entry pointing to it */
605 bytes_available =
606 ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
607 << s->cluster_bits;
608
609 if (bytes_needed > bytes_available) {
610 bytes_needed = bytes_available;
611 }
612
613 *host_offset = 0;
614
615 /* seek to the l2 offset in the l1 table */
616
617 l1_index = offset_to_l1_index(s, offset);
618 if (l1_index >= s->l1_size) {
619 type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
620 goto out;
621 }
622
623 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
624 if (!l2_offset) {
625 type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
626 goto out;
627 }
628
629 if (offset_into_cluster(s, l2_offset)) {
630 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
631 " unaligned (L1 index: %#" PRIx64 ")",
632 l2_offset, l1_index);
633 return -EIO;
634 }
635
636 /* load the l2 slice in memory */
637
638 ret = l2_load(bs, offset, l2_offset, &l2_slice);
639 if (ret < 0) {
640 return ret;
641 }
642
643 /* find the cluster offset for the given disk offset */
644
645 l2_index = offset_to_l2_slice_index(s, offset);
646 sc_index = offset_to_sc_index(s, offset);
647 l2_entry = get_l2_entry(s, l2_slice, l2_index);
648 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
649
650 nb_clusters = size_to_clusters(s, bytes_needed);
651 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
652 * integers; the minimum cluster size is 512, so this assertion is always
653 * true */
654 assert(nb_clusters <= INT_MAX);
655
656 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
657 if (s->qcow_version < 3 && (type == QCOW2_SUBCLUSTER_ZERO_PLAIN ||
658 type == QCOW2_SUBCLUSTER_ZERO_ALLOC)) {
659 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
660 " in pre-v3 image (L2 offset: %#" PRIx64
661 ", L2 index: %#x)", l2_offset, l2_index);
662 ret = -EIO;
663 goto fail;
664 }
665 switch (type) {
666 case QCOW2_SUBCLUSTER_INVALID:
667 break; /* This is handled by count_contiguous_subclusters() below */
668 case QCOW2_SUBCLUSTER_COMPRESSED:
669 if (has_data_file(bs)) {
670 qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
671 "entry found in image with external data "
672 "file (L2 offset: %#" PRIx64 ", L2 index: "
673 "%#x)", l2_offset, l2_index);
674 ret = -EIO;
675 goto fail;
676 }
677 *host_offset = l2_entry;
678 break;
679 case QCOW2_SUBCLUSTER_ZERO_PLAIN:
680 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
681 break;
682 case QCOW2_SUBCLUSTER_ZERO_ALLOC:
683 case QCOW2_SUBCLUSTER_NORMAL:
684 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: {
685 uint64_t host_cluster_offset = l2_entry & L2E_OFFSET_MASK;
686 *host_offset = host_cluster_offset + offset_in_cluster;
687 if (offset_into_cluster(s, host_cluster_offset)) {
688 qcow2_signal_corruption(bs, true, -1, -1,
689 "Cluster allocation offset %#"
690 PRIx64 " unaligned (L2 offset: %#" PRIx64
691 ", L2 index: %#x)", host_cluster_offset,
692 l2_offset, l2_index);
693 ret = -EIO;
694 goto fail;
695 }
696 if (has_data_file(bs) && *host_offset != offset) {
697 qcow2_signal_corruption(bs, true, -1, -1,
698 "External data file host cluster offset %#"
699 PRIx64 " does not match guest cluster "
700 "offset: %#" PRIx64
701 ", L2 index: %#x)", host_cluster_offset,
702 offset - offset_in_cluster, l2_index);
703 ret = -EIO;
704 goto fail;
705 }
706 break;
707 }
708 default:
709 abort();
710 }
711
712 sc = count_contiguous_subclusters(bs, nb_clusters, sc_index,
713 l2_slice, &l2_index);
714 if (sc < 0) {
715 qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster entry found "
716 " (L2 offset: %#" PRIx64 ", L2 index: %#x)",
717 l2_offset, l2_index);
718 ret = -EIO;
719 goto fail;
720 }
721 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
722
723 bytes_available = ((int64_t)sc + sc_index) << s->subcluster_bits;
724
725 out:
726 if (bytes_available > bytes_needed) {
727 bytes_available = bytes_needed;
728 }
729
730 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
731 * subtracting offset_in_cluster will therefore definitely yield something
732 * not exceeding UINT_MAX */
733 assert(bytes_available - offset_in_cluster <= UINT_MAX);
734 *bytes = bytes_available - offset_in_cluster;
735
736 *subcluster_type = type;
737
738 return 0;
739
740 fail:
741 qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
742 return ret;
743 }
744
745 /*
746 * get_cluster_table
747 *
748 * for a given disk offset, load (and allocate if needed)
749 * the appropriate slice of its l2 table.
750 *
751 * the cluster index in the l2 slice is given to the caller.
752 *
753 * Returns 0 on success, -errno in failure case
754 */
755 static int GRAPH_RDLOCK
get_cluster_table(BlockDriverState * bs,uint64_t offset,uint64_t ** new_l2_slice,int * new_l2_index)756 get_cluster_table(BlockDriverState *bs, uint64_t offset,
757 uint64_t **new_l2_slice, int *new_l2_index)
758 {
759 BDRVQcow2State *s = bs->opaque;
760 unsigned int l2_index;
761 uint64_t l1_index, l2_offset;
762 uint64_t *l2_slice = NULL;
763 int ret;
764
765 /* seek to the l2 offset in the l1 table */
766
767 l1_index = offset_to_l1_index(s, offset);
768 if (l1_index >= s->l1_size) {
769 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
770 if (ret < 0) {
771 return ret;
772 }
773 }
774
775 assert(l1_index < s->l1_size);
776 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
777 if (offset_into_cluster(s, l2_offset)) {
778 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
779 " unaligned (L1 index: %#" PRIx64 ")",
780 l2_offset, l1_index);
781 return -EIO;
782 }
783
784 if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
785 /* First allocate a new L2 table (and do COW if needed) */
786 ret = l2_allocate(bs, l1_index);
787 if (ret < 0) {
788 return ret;
789 }
790
791 /* Then decrease the refcount of the old table */
792 if (l2_offset) {
793 qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
794 QCOW2_DISCARD_OTHER);
795 }
796
797 /* Get the offset of the newly-allocated l2 table */
798 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
799 assert(offset_into_cluster(s, l2_offset) == 0);
800 }
801
802 /* load the l2 slice in memory */
803 ret = l2_load(bs, offset, l2_offset, &l2_slice);
804 if (ret < 0) {
805 return ret;
806 }
807
808 /* find the cluster offset for the given disk offset */
809
810 l2_index = offset_to_l2_slice_index(s, offset);
811
812 *new_l2_slice = l2_slice;
813 *new_l2_index = l2_index;
814
815 return 0;
816 }
817
818 /*
819 * alloc_compressed_cluster_offset
820 *
821 * For a given offset on the virtual disk, allocate a new compressed cluster
822 * and put the host offset of the cluster into *host_offset. If a cluster is
823 * already allocated at the offset, return an error.
824 *
825 * Return 0 on success and -errno in error cases
826 */
827 int coroutine_fn GRAPH_RDLOCK
qcow2_alloc_compressed_cluster_offset(BlockDriverState * bs,uint64_t offset,int compressed_size,uint64_t * host_offset)828 qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, uint64_t offset,
829 int compressed_size, uint64_t *host_offset)
830 {
831 BDRVQcow2State *s = bs->opaque;
832 int l2_index, ret;
833 uint64_t *l2_slice;
834 int64_t cluster_offset;
835 int nb_csectors;
836
837 if (has_data_file(bs)) {
838 return 0;
839 }
840
841 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
842 if (ret < 0) {
843 return ret;
844 }
845
846 /* Compression can't overwrite anything. Fail if the cluster was already
847 * allocated. */
848 cluster_offset = get_l2_entry(s, l2_slice, l2_index);
849 if (cluster_offset & L2E_OFFSET_MASK) {
850 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
851 return -EIO;
852 }
853
854 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
855 if (cluster_offset < 0) {
856 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
857 return cluster_offset;
858 }
859
860 nb_csectors =
861 (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
862 (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
863
864 /* The offset and size must fit in their fields of the L2 table entry */
865 assert((cluster_offset & s->cluster_offset_mask) == cluster_offset);
866 assert((nb_csectors & s->csize_mask) == nb_csectors);
867
868 cluster_offset |= QCOW_OFLAG_COMPRESSED |
869 ((uint64_t)nb_csectors << s->csize_shift);
870
871 /* update L2 table */
872
873 /* compressed clusters never have the copied flag */
874
875 BLKDBG_CO_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
876 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
877 set_l2_entry(s, l2_slice, l2_index, cluster_offset);
878 if (has_subclusters(s)) {
879 set_l2_bitmap(s, l2_slice, l2_index, 0);
880 }
881 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
882
883 *host_offset = cluster_offset & s->cluster_offset_mask;
884 return 0;
885 }
886
887 static int coroutine_fn GRAPH_RDLOCK
perform_cow(BlockDriverState * bs,QCowL2Meta * m)888 perform_cow(BlockDriverState *bs, QCowL2Meta *m)
889 {
890 BDRVQcow2State *s = bs->opaque;
891 Qcow2COWRegion *start = &m->cow_start;
892 Qcow2COWRegion *end = &m->cow_end;
893 unsigned buffer_size;
894 unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
895 bool merge_reads;
896 uint8_t *start_buffer, *end_buffer;
897 QEMUIOVector qiov;
898 int ret;
899
900 assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
901 assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
902 assert(start->offset + start->nb_bytes <= end->offset);
903
904 if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
905 return 0;
906 }
907
908 /* If we have to read both the start and end COW regions and the
909 * middle region is not too large then perform just one read
910 * operation */
911 merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
912 if (merge_reads) {
913 buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
914 } else {
915 /* If we have to do two reads, add some padding in the middle
916 * if necessary to make sure that the end region is optimally
917 * aligned. */
918 size_t align = bdrv_opt_mem_align(bs);
919 assert(align > 0 && align <= UINT_MAX);
920 assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
921 UINT_MAX - end->nb_bytes);
922 buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
923 }
924
925 /* Reserve a buffer large enough to store all the data that we're
926 * going to read */
927 start_buffer = qemu_try_blockalign(bs, buffer_size);
928 if (start_buffer == NULL) {
929 return -ENOMEM;
930 }
931 /* The part of the buffer where the end region is located */
932 end_buffer = start_buffer + buffer_size - end->nb_bytes;
933
934 qemu_iovec_init(&qiov, 2 + (m->data_qiov ?
935 qemu_iovec_subvec_niov(m->data_qiov,
936 m->data_qiov_offset,
937 data_bytes)
938 : 0));
939
940 qemu_co_mutex_unlock(&s->lock);
941 /* First we read the existing data from both COW regions. We
942 * either read the whole region in one go, or the start and end
943 * regions separately. */
944 if (merge_reads) {
945 qemu_iovec_add(&qiov, start_buffer, buffer_size);
946 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
947 } else {
948 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
949 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
950 if (ret < 0) {
951 goto fail;
952 }
953
954 qemu_iovec_reset(&qiov);
955 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
956 ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
957 }
958 if (ret < 0) {
959 goto fail;
960 }
961
962 /* Encrypt the data if necessary before writing it */
963 if (bs->encrypted) {
964 ret = qcow2_co_encrypt(bs,
965 m->alloc_offset + start->offset,
966 m->offset + start->offset,
967 start_buffer, start->nb_bytes);
968 if (ret < 0) {
969 goto fail;
970 }
971
972 ret = qcow2_co_encrypt(bs,
973 m->alloc_offset + end->offset,
974 m->offset + end->offset,
975 end_buffer, end->nb_bytes);
976 if (ret < 0) {
977 goto fail;
978 }
979 }
980
981 /* And now we can write everything. If we have the guest data we
982 * can write everything in one single operation */
983 if (m->data_qiov) {
984 qemu_iovec_reset(&qiov);
985 if (start->nb_bytes) {
986 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
987 }
988 qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes);
989 if (end->nb_bytes) {
990 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
991 }
992 /* NOTE: we have a write_aio blkdebug event here followed by
993 * a cow_write one in do_perform_cow_write(), but there's only
994 * one single I/O operation */
995 BLKDBG_CO_EVENT(bs->file, BLKDBG_WRITE_AIO);
996 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
997 } else {
998 /* If there's no guest data then write both COW regions separately */
999 qemu_iovec_reset(&qiov);
1000 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
1001 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
1002 if (ret < 0) {
1003 goto fail;
1004 }
1005
1006 qemu_iovec_reset(&qiov);
1007 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
1008 ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
1009 }
1010
1011 fail:
1012 qemu_co_mutex_lock(&s->lock);
1013
1014 /*
1015 * Before we update the L2 table to actually point to the new cluster, we
1016 * need to be sure that the refcounts have been increased and COW was
1017 * handled.
1018 */
1019 if (ret == 0) {
1020 qcow2_cache_depends_on_flush(s->l2_table_cache);
1021 }
1022
1023 qemu_vfree(start_buffer);
1024 qemu_iovec_destroy(&qiov);
1025 return ret;
1026 }
1027
qcow2_alloc_cluster_link_l2(BlockDriverState * bs,QCowL2Meta * m)1028 int coroutine_fn qcow2_alloc_cluster_link_l2(BlockDriverState *bs,
1029 QCowL2Meta *m)
1030 {
1031 BDRVQcow2State *s = bs->opaque;
1032 int i, j = 0, l2_index, ret;
1033 uint64_t *old_cluster, *l2_slice;
1034 uint64_t cluster_offset = m->alloc_offset;
1035
1036 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
1037 assert(m->nb_clusters > 0);
1038
1039 old_cluster = g_try_new(uint64_t, m->nb_clusters);
1040 if (old_cluster == NULL) {
1041 ret = -ENOMEM;
1042 goto err;
1043 }
1044
1045 /* copy content of unmodified sectors */
1046 ret = perform_cow(bs, m);
1047 if (ret < 0) {
1048 goto err;
1049 }
1050
1051 /* Update L2 table. */
1052 if (s->use_lazy_refcounts) {
1053 qcow2_mark_dirty(bs);
1054 }
1055 if (qcow2_need_accurate_refcounts(s)) {
1056 qcow2_cache_set_dependency(bs, s->l2_table_cache,
1057 s->refcount_block_cache);
1058 }
1059
1060 ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
1061 if (ret < 0) {
1062 goto err;
1063 }
1064 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1065
1066 assert(l2_index + m->nb_clusters <= s->l2_slice_size);
1067 assert(m->cow_end.offset + m->cow_end.nb_bytes <=
1068 m->nb_clusters << s->cluster_bits);
1069 for (i = 0; i < m->nb_clusters; i++) {
1070 uint64_t offset = cluster_offset + ((uint64_t)i << s->cluster_bits);
1071 /* if two concurrent writes happen to the same unallocated cluster
1072 * each write allocates separate cluster and writes data concurrently.
1073 * The first one to complete updates l2 table with pointer to its
1074 * cluster the second one has to do RMW (which is done above by
1075 * perform_cow()), update l2 table with its cluster pointer and free
1076 * old cluster. This is what this loop does */
1077 if (get_l2_entry(s, l2_slice, l2_index + i) != 0) {
1078 old_cluster[j++] = get_l2_entry(s, l2_slice, l2_index + i);
1079 }
1080
1081 /* The offset must fit in the offset field of the L2 table entry */
1082 assert((offset & L2E_OFFSET_MASK) == offset);
1083
1084 set_l2_entry(s, l2_slice, l2_index + i, offset | QCOW_OFLAG_COPIED);
1085
1086 /* Update bitmap with the subclusters that were just written */
1087 if (has_subclusters(s) && !m->prealloc) {
1088 uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1089 unsigned written_from = m->cow_start.offset;
1090 unsigned written_to = m->cow_end.offset + m->cow_end.nb_bytes;
1091 int first_sc, last_sc;
1092 /* Narrow written_from and written_to down to the current cluster */
1093 written_from = MAX(written_from, i << s->cluster_bits);
1094 written_to = MIN(written_to, (i + 1) << s->cluster_bits);
1095 assert(written_from < written_to);
1096 first_sc = offset_to_sc_index(s, written_from);
1097 last_sc = offset_to_sc_index(s, written_to - 1);
1098 l2_bitmap |= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc, last_sc + 1);
1099 l2_bitmap &= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc, last_sc + 1);
1100 set_l2_bitmap(s, l2_slice, l2_index + i, l2_bitmap);
1101 }
1102 }
1103
1104
1105 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1106
1107 /*
1108 * If this was a COW, we need to decrease the refcount of the old cluster.
1109 *
1110 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1111 * clusters), the next write will reuse them anyway.
1112 */
1113 if (!m->keep_old_clusters && j != 0) {
1114 for (i = 0; i < j; i++) {
1115 qcow2_free_any_cluster(bs, old_cluster[i], QCOW2_DISCARD_NEVER);
1116 }
1117 }
1118
1119 ret = 0;
1120 err:
1121 g_free(old_cluster);
1122 return ret;
1123 }
1124
1125 /**
1126 * Frees the allocated clusters because the request failed and they won't
1127 * actually be linked.
1128 */
qcow2_alloc_cluster_abort(BlockDriverState * bs,QCowL2Meta * m)1129 void coroutine_fn qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1130 {
1131 BDRVQcow2State *s = bs->opaque;
1132 if (!has_data_file(bs) && !m->keep_old_clusters) {
1133 qcow2_free_clusters(bs, m->alloc_offset,
1134 m->nb_clusters << s->cluster_bits,
1135 QCOW2_DISCARD_NEVER);
1136 }
1137 }
1138
1139 /*
1140 * For a given write request, create a new QCowL2Meta structure, add
1141 * it to @m and the BDRVQcow2State.cluster_allocs list. If the write
1142 * request does not need copy-on-write or changes to the L2 metadata
1143 * then this function does nothing.
1144 *
1145 * @host_cluster_offset points to the beginning of the first cluster.
1146 *
1147 * @guest_offset and @bytes indicate the offset and length of the
1148 * request.
1149 *
1150 * @l2_slice contains the L2 entries of all clusters involved in this
1151 * write request.
1152 *
1153 * If @keep_old is true it means that the clusters were already
1154 * allocated and will be overwritten. If false then the clusters are
1155 * new and we have to decrease the reference count of the old ones.
1156 *
1157 * Returns 0 on success, -errno on failure.
1158 */
1159 static int coroutine_fn GRAPH_RDLOCK
calculate_l2_meta(BlockDriverState * bs,uint64_t host_cluster_offset,uint64_t guest_offset,unsigned bytes,uint64_t * l2_slice,QCowL2Meta ** m,bool keep_old)1160 calculate_l2_meta(BlockDriverState *bs, uint64_t host_cluster_offset,
1161 uint64_t guest_offset, unsigned bytes, uint64_t *l2_slice,
1162 QCowL2Meta **m, bool keep_old)
1163 {
1164 BDRVQcow2State *s = bs->opaque;
1165 int sc_index, l2_index = offset_to_l2_slice_index(s, guest_offset);
1166 uint64_t l2_entry, l2_bitmap;
1167 unsigned cow_start_from, cow_end_to;
1168 unsigned cow_start_to = offset_into_cluster(s, guest_offset);
1169 unsigned cow_end_from = cow_start_to + bytes;
1170 unsigned nb_clusters = size_to_clusters(s, cow_end_from);
1171 QCowL2Meta *old_m = *m;
1172 QCow2SubclusterType type;
1173 int i;
1174 bool skip_cow = keep_old;
1175
1176 assert(nb_clusters <= s->l2_slice_size - l2_index);
1177
1178 /* Check the type of all affected subclusters */
1179 for (i = 0; i < nb_clusters; i++) {
1180 l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1181 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1182 if (skip_cow) {
1183 unsigned write_from = MAX(cow_start_to, i << s->cluster_bits);
1184 unsigned write_to = MIN(cow_end_from, (i + 1) << s->cluster_bits);
1185 int first_sc = offset_to_sc_index(s, write_from);
1186 int last_sc = offset_to_sc_index(s, write_to - 1);
1187 int cnt = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
1188 first_sc, &type);
1189 /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */
1190 if (type != QCOW2_SUBCLUSTER_NORMAL || first_sc + cnt <= last_sc) {
1191 skip_cow = false;
1192 }
1193 } else {
1194 /* If we can't skip the cow we can still look for invalid entries */
1195 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, 0);
1196 }
1197 if (type == QCOW2_SUBCLUSTER_INVALID) {
1198 int l1_index = offset_to_l1_index(s, guest_offset);
1199 uint64_t l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
1200 qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster "
1201 "entry found (L2 offset: %#" PRIx64
1202 ", L2 index: %#x)",
1203 l2_offset, l2_index + i);
1204 return -EIO;
1205 }
1206 }
1207
1208 if (skip_cow) {
1209 return 0;
1210 }
1211
1212 /* Get the L2 entry of the first cluster */
1213 l2_entry = get_l2_entry(s, l2_slice, l2_index);
1214 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1215 sc_index = offset_to_sc_index(s, guest_offset);
1216 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1217
1218 if (!keep_old) {
1219 switch (type) {
1220 case QCOW2_SUBCLUSTER_COMPRESSED:
1221 cow_start_from = 0;
1222 break;
1223 case QCOW2_SUBCLUSTER_NORMAL:
1224 case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1225 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1226 if (has_subclusters(s)) {
1227 /* Skip all leading zero and unallocated subclusters */
1228 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1229 cow_start_from =
1230 MIN(sc_index, ctz32(alloc_bitmap)) << s->subcluster_bits;
1231 } else {
1232 cow_start_from = 0;
1233 }
1234 break;
1235 case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1236 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1237 cow_start_from = sc_index << s->subcluster_bits;
1238 break;
1239 default:
1240 g_assert_not_reached();
1241 }
1242 } else {
1243 switch (type) {
1244 case QCOW2_SUBCLUSTER_NORMAL:
1245 cow_start_from = cow_start_to;
1246 break;
1247 case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1248 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1249 cow_start_from = sc_index << s->subcluster_bits;
1250 break;
1251 default:
1252 g_assert_not_reached();
1253 }
1254 }
1255
1256 /* Get the L2 entry of the last cluster */
1257 l2_index += nb_clusters - 1;
1258 l2_entry = get_l2_entry(s, l2_slice, l2_index);
1259 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1260 sc_index = offset_to_sc_index(s, guest_offset + bytes - 1);
1261 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1262
1263 if (!keep_old) {
1264 switch (type) {
1265 case QCOW2_SUBCLUSTER_COMPRESSED:
1266 cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1267 break;
1268 case QCOW2_SUBCLUSTER_NORMAL:
1269 case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1270 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1271 cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1272 if (has_subclusters(s)) {
1273 /* Skip all trailing zero and unallocated subclusters */
1274 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1275 cow_end_to -=
1276 MIN(s->subclusters_per_cluster - sc_index - 1,
1277 clz32(alloc_bitmap)) << s->subcluster_bits;
1278 }
1279 break;
1280 case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1281 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1282 cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1283 break;
1284 default:
1285 g_assert_not_reached();
1286 }
1287 } else {
1288 switch (type) {
1289 case QCOW2_SUBCLUSTER_NORMAL:
1290 cow_end_to = cow_end_from;
1291 break;
1292 case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1293 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1294 cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1295 break;
1296 default:
1297 g_assert_not_reached();
1298 }
1299 }
1300
1301 *m = g_malloc0(sizeof(**m));
1302 **m = (QCowL2Meta) {
1303 .next = old_m,
1304
1305 .alloc_offset = host_cluster_offset,
1306 .offset = start_of_cluster(s, guest_offset),
1307 .nb_clusters = nb_clusters,
1308
1309 .keep_old_clusters = keep_old,
1310
1311 .cow_start = {
1312 .offset = cow_start_from,
1313 .nb_bytes = cow_start_to - cow_start_from,
1314 },
1315 .cow_end = {
1316 .offset = cow_end_from,
1317 .nb_bytes = cow_end_to - cow_end_from,
1318 },
1319 };
1320
1321 qemu_co_queue_init(&(*m)->dependent_requests);
1322 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1323
1324 return 0;
1325 }
1326
1327 /*
1328 * Returns true if writing to the cluster pointed to by @l2_entry
1329 * requires a new allocation (that is, if the cluster is unallocated
1330 * or has refcount > 1 and therefore cannot be written in-place).
1331 */
1332 static bool GRAPH_RDLOCK
cluster_needs_new_alloc(BlockDriverState * bs,uint64_t l2_entry)1333 cluster_needs_new_alloc(BlockDriverState *bs, uint64_t l2_entry)
1334 {
1335 switch (qcow2_get_cluster_type(bs, l2_entry)) {
1336 case QCOW2_CLUSTER_NORMAL:
1337 case QCOW2_CLUSTER_ZERO_ALLOC:
1338 if (l2_entry & QCOW_OFLAG_COPIED) {
1339 return false;
1340 }
1341 /* fallthrough */
1342 case QCOW2_CLUSTER_UNALLOCATED:
1343 case QCOW2_CLUSTER_COMPRESSED:
1344 case QCOW2_CLUSTER_ZERO_PLAIN:
1345 return true;
1346 default:
1347 abort();
1348 }
1349 }
1350
1351 /*
1352 * Returns the number of contiguous clusters that can be written to
1353 * using one single write request, starting from @l2_index.
1354 * At most @nb_clusters are checked.
1355 *
1356 * If @new_alloc is true this counts clusters that are either
1357 * unallocated, or allocated but with refcount > 1 (so they need to be
1358 * newly allocated and COWed).
1359 *
1360 * If @new_alloc is false this counts clusters that are already
1361 * allocated and can be overwritten in-place (this includes clusters
1362 * of type QCOW2_CLUSTER_ZERO_ALLOC).
1363 */
1364 static int GRAPH_RDLOCK
count_single_write_clusters(BlockDriverState * bs,int nb_clusters,uint64_t * l2_slice,int l2_index,bool new_alloc)1365 count_single_write_clusters(BlockDriverState *bs, int nb_clusters,
1366 uint64_t *l2_slice, int l2_index, bool new_alloc)
1367 {
1368 BDRVQcow2State *s = bs->opaque;
1369 uint64_t l2_entry = get_l2_entry(s, l2_slice, l2_index);
1370 uint64_t expected_offset = l2_entry & L2E_OFFSET_MASK;
1371 int i;
1372
1373 for (i = 0; i < nb_clusters; i++) {
1374 l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1375 if (cluster_needs_new_alloc(bs, l2_entry) != new_alloc) {
1376 break;
1377 }
1378 if (!new_alloc) {
1379 if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
1380 break;
1381 }
1382 expected_offset += s->cluster_size;
1383 }
1384 }
1385
1386 assert(i <= nb_clusters);
1387 return i;
1388 }
1389
1390 /*
1391 * Check if there already is an AIO write request in flight which allocates
1392 * the same cluster. In this case we need to wait until the previous
1393 * request has completed and updated the L2 table accordingly.
1394 *
1395 * Returns:
1396 * 0 if there was no dependency. *cur_bytes indicates the number of
1397 * bytes from guest_offset that can be read before the next
1398 * dependency must be processed (or the request is complete)
1399 *
1400 * -EAGAIN if we had to wait for another request, previously gathered
1401 * information on cluster allocation may be invalid now. The caller
1402 * must start over anyway, so consider *cur_bytes undefined.
1403 */
handle_dependencies(BlockDriverState * bs,uint64_t guest_offset,uint64_t * cur_bytes,QCowL2Meta ** m)1404 static int coroutine_fn handle_dependencies(BlockDriverState *bs,
1405 uint64_t guest_offset,
1406 uint64_t *cur_bytes, QCowL2Meta **m)
1407 {
1408 BDRVQcow2State *s = bs->opaque;
1409 QCowL2Meta *old_alloc;
1410 uint64_t bytes = *cur_bytes;
1411
1412 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1413
1414 uint64_t start = guest_offset;
1415 uint64_t end = start + bytes;
1416 uint64_t old_start = start_of_cluster(s, l2meta_cow_start(old_alloc));
1417 uint64_t old_end = ROUND_UP(l2meta_cow_end(old_alloc), s->cluster_size);
1418
1419 if (end <= old_start || start >= old_end) {
1420 /* No intersection */
1421 continue;
1422 }
1423
1424 if (old_alloc->keep_old_clusters &&
1425 (end <= l2meta_cow_start(old_alloc) ||
1426 start >= l2meta_cow_end(old_alloc)))
1427 {
1428 /*
1429 * Clusters intersect but COW areas don't. And cluster itself is
1430 * already allocated. So, there is no actual conflict.
1431 */
1432 continue;
1433 }
1434
1435 /* Conflict */
1436
1437 if (start < old_start) {
1438 /* Stop at the start of a running allocation */
1439 bytes = old_start - start;
1440 } else {
1441 bytes = 0;
1442 }
1443
1444 /*
1445 * Stop if an l2meta already exists. After yielding, it wouldn't
1446 * be valid any more, so we'd have to clean up the old L2Metas
1447 * and deal with requests depending on them before starting to
1448 * gather new ones. Not worth the trouble.
1449 */
1450 if (bytes == 0 && *m) {
1451 *cur_bytes = 0;
1452 return 0;
1453 }
1454
1455 if (bytes == 0) {
1456 /*
1457 * Wait for the dependency to complete. We need to recheck
1458 * the free/allocated clusters when we continue.
1459 */
1460 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1461 return -EAGAIN;
1462 }
1463 }
1464
1465 /* Make sure that existing clusters and new allocations are only used up to
1466 * the next dependency if we shortened the request above */
1467 *cur_bytes = bytes;
1468
1469 return 0;
1470 }
1471
1472 /*
1473 * Checks how many already allocated clusters that don't require a new
1474 * allocation there are at the given guest_offset (up to *bytes).
1475 * If *host_offset is not INV_OFFSET, only physically contiguous clusters
1476 * beginning at this host offset are counted.
1477 *
1478 * Note that guest_offset may not be cluster aligned. In this case, the
1479 * returned *host_offset points to exact byte referenced by guest_offset and
1480 * therefore isn't cluster aligned as well.
1481 *
1482 * Returns:
1483 * 0: if no allocated clusters are available at the given offset.
1484 * *bytes is normally unchanged. It is set to 0 if the cluster
1485 * is allocated and can be overwritten in-place but doesn't have
1486 * the right physical offset.
1487 *
1488 * 1: if allocated clusters that can be overwritten in place are
1489 * available at the requested offset. *bytes may have decreased
1490 * and describes the length of the area that can be written to.
1491 *
1492 * -errno: in error cases
1493 */
1494 static int coroutine_fn GRAPH_RDLOCK
handle_copied(BlockDriverState * bs,uint64_t guest_offset,uint64_t * host_offset,uint64_t * bytes,QCowL2Meta ** m)1495 handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1496 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1497 {
1498 BDRVQcow2State *s = bs->opaque;
1499 int l2_index;
1500 uint64_t l2_entry, cluster_offset;
1501 uint64_t *l2_slice;
1502 uint64_t nb_clusters;
1503 unsigned int keep_clusters;
1504 int ret;
1505
1506 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1507 *bytes);
1508
1509 assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1510 == offset_into_cluster(s, *host_offset));
1511
1512 /*
1513 * Calculate the number of clusters to look for. We stop at L2 slice
1514 * boundaries to keep things simple.
1515 */
1516 nb_clusters =
1517 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1518
1519 l2_index = offset_to_l2_slice_index(s, guest_offset);
1520 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1521 /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */
1522 nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1523
1524 /* Find L2 entry for the first involved cluster */
1525 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1526 if (ret < 0) {
1527 return ret;
1528 }
1529
1530 l2_entry = get_l2_entry(s, l2_slice, l2_index);
1531 cluster_offset = l2_entry & L2E_OFFSET_MASK;
1532
1533 if (!cluster_needs_new_alloc(bs, l2_entry)) {
1534 if (offset_into_cluster(s, cluster_offset)) {
1535 qcow2_signal_corruption(bs, true, -1, -1, "%s cluster offset "
1536 "%#" PRIx64 " unaligned (guest offset: %#"
1537 PRIx64 ")", l2_entry & QCOW_OFLAG_ZERO ?
1538 "Preallocated zero" : "Data",
1539 cluster_offset, guest_offset);
1540 ret = -EIO;
1541 goto out;
1542 }
1543
1544 /* If a specific host_offset is required, check it */
1545 if (*host_offset != INV_OFFSET && cluster_offset != *host_offset) {
1546 *bytes = 0;
1547 ret = 0;
1548 goto out;
1549 }
1550
1551 /* We keep all QCOW_OFLAG_COPIED clusters */
1552 keep_clusters = count_single_write_clusters(bs, nb_clusters, l2_slice,
1553 l2_index, false);
1554 assert(keep_clusters <= nb_clusters);
1555
1556 *bytes = MIN(*bytes,
1557 keep_clusters * s->cluster_size
1558 - offset_into_cluster(s, guest_offset));
1559 assert(*bytes != 0);
1560
1561 ret = calculate_l2_meta(bs, cluster_offset, guest_offset,
1562 *bytes, l2_slice, m, true);
1563 if (ret < 0) {
1564 goto out;
1565 }
1566
1567 ret = 1;
1568 } else {
1569 ret = 0;
1570 }
1571
1572 /* Cleanup */
1573 out:
1574 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1575
1576 /* Only return a host offset if we actually made progress. Otherwise we
1577 * would make requirements for handle_alloc() that it can't fulfill */
1578 if (ret > 0) {
1579 *host_offset = cluster_offset + offset_into_cluster(s, guest_offset);
1580 }
1581
1582 return ret;
1583 }
1584
1585 /*
1586 * Allocates new clusters for the given guest_offset.
1587 *
1588 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1589 * contain the number of clusters that have been allocated and are contiguous
1590 * in the image file.
1591 *
1592 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1593 * at which the new clusters must start. *nb_clusters can be 0 on return in
1594 * this case if the cluster at host_offset is already in use. If *host_offset
1595 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1596 *
1597 * *host_offset is updated to contain the offset into the image file at which
1598 * the first allocated cluster starts.
1599 *
1600 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1601 * function has been waiting for another request and the allocation must be
1602 * restarted, but the whole request should not be failed.
1603 */
1604 static int coroutine_fn GRAPH_RDLOCK
do_alloc_cluster_offset(BlockDriverState * bs,uint64_t guest_offset,uint64_t * host_offset,uint64_t * nb_clusters)1605 do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1606 uint64_t *host_offset, uint64_t *nb_clusters)
1607 {
1608 BDRVQcow2State *s = bs->opaque;
1609
1610 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1611 *host_offset, *nb_clusters);
1612
1613 if (has_data_file(bs)) {
1614 assert(*host_offset == INV_OFFSET ||
1615 *host_offset == start_of_cluster(s, guest_offset));
1616 *host_offset = start_of_cluster(s, guest_offset);
1617 return 0;
1618 }
1619
1620 /* Allocate new clusters */
1621 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1622 if (*host_offset == INV_OFFSET) {
1623 int64_t cluster_offset =
1624 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1625 if (cluster_offset < 0) {
1626 return cluster_offset;
1627 }
1628 *host_offset = cluster_offset;
1629 return 0;
1630 } else {
1631 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1632 if (ret < 0) {
1633 return ret;
1634 }
1635 *nb_clusters = ret;
1636 return 0;
1637 }
1638 }
1639
1640 /*
1641 * Allocates new clusters for an area that is either still unallocated or
1642 * cannot be overwritten in-place. If *host_offset is not INV_OFFSET,
1643 * clusters are only allocated if the new allocation can match the specified
1644 * host offset.
1645 *
1646 * Note that guest_offset may not be cluster aligned. In this case, the
1647 * returned *host_offset points to exact byte referenced by guest_offset and
1648 * therefore isn't cluster aligned as well.
1649 *
1650 * Returns:
1651 * 0: if no clusters could be allocated. *bytes is set to 0,
1652 * *host_offset is left unchanged.
1653 *
1654 * 1: if new clusters were allocated. *bytes may be decreased if the
1655 * new allocation doesn't cover all of the requested area.
1656 * *host_offset is updated to contain the host offset of the first
1657 * newly allocated cluster.
1658 *
1659 * -errno: in error cases
1660 */
1661 static int coroutine_fn GRAPH_RDLOCK
handle_alloc(BlockDriverState * bs,uint64_t guest_offset,uint64_t * host_offset,uint64_t * bytes,QCowL2Meta ** m)1662 handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1663 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1664 {
1665 BDRVQcow2State *s = bs->opaque;
1666 int l2_index;
1667 uint64_t *l2_slice;
1668 uint64_t nb_clusters;
1669 int ret;
1670
1671 uint64_t alloc_cluster_offset;
1672
1673 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1674 *bytes);
1675 assert(*bytes > 0);
1676
1677 /*
1678 * Calculate the number of clusters to look for. We stop at L2 slice
1679 * boundaries to keep things simple.
1680 */
1681 nb_clusters =
1682 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1683
1684 l2_index = offset_to_l2_slice_index(s, guest_offset);
1685 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1686 /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */
1687 nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1688
1689 /* Find L2 entry for the first involved cluster */
1690 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1691 if (ret < 0) {
1692 return ret;
1693 }
1694
1695 nb_clusters = count_single_write_clusters(bs, nb_clusters,
1696 l2_slice, l2_index, true);
1697
1698 /* This function is only called when there were no non-COW clusters, so if
1699 * we can't find any unallocated or COW clusters either, something is
1700 * wrong with our code. */
1701 assert(nb_clusters > 0);
1702
1703 /* Allocate at a given offset in the image file */
1704 alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1705 start_of_cluster(s, *host_offset);
1706 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1707 &nb_clusters);
1708 if (ret < 0) {
1709 goto out;
1710 }
1711
1712 /* Can't extend contiguous allocation */
1713 if (nb_clusters == 0) {
1714 *bytes = 0;
1715 ret = 0;
1716 goto out;
1717 }
1718
1719 assert(alloc_cluster_offset != INV_OFFSET);
1720
1721 /*
1722 * Save info needed for meta data update.
1723 *
1724 * requested_bytes: Number of bytes from the start of the first
1725 * newly allocated cluster to the end of the (possibly shortened
1726 * before) write request.
1727 *
1728 * avail_bytes: Number of bytes from the start of the first
1729 * newly allocated to the end of the last newly allocated cluster.
1730 *
1731 * nb_bytes: The number of bytes from the start of the first
1732 * newly allocated cluster to the end of the area that the write
1733 * request actually writes to (excluding COW at the end)
1734 */
1735 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1736 int avail_bytes = nb_clusters << s->cluster_bits;
1737 int nb_bytes = MIN(requested_bytes, avail_bytes);
1738
1739 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1740 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1741 assert(*bytes != 0);
1742
1743 ret = calculate_l2_meta(bs, alloc_cluster_offset, guest_offset, *bytes,
1744 l2_slice, m, false);
1745 if (ret < 0) {
1746 goto out;
1747 }
1748
1749 ret = 1;
1750
1751 out:
1752 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1753 return ret;
1754 }
1755
1756 /*
1757 * For a given area on the virtual disk defined by @offset and @bytes,
1758 * find the corresponding area on the qcow2 image, allocating new
1759 * clusters (or subclusters) if necessary. The result can span a
1760 * combination of allocated and previously unallocated clusters.
1761 *
1762 * Note that offset may not be cluster aligned. In this case, the returned
1763 * *host_offset points to exact byte referenced by offset and therefore
1764 * isn't cluster aligned as well.
1765 *
1766 * On return, @host_offset is set to the beginning of the requested
1767 * area. This area is guaranteed to be contiguous on the qcow2 file
1768 * but it can be smaller than initially requested. In this case @bytes
1769 * is updated with the actual size.
1770 *
1771 * If any clusters or subclusters were allocated then @m contains a
1772 * list with the information of all the affected regions. Note that
1773 * this can happen regardless of whether this function succeeds or
1774 * not. The caller is responsible for updating the L2 metadata of the
1775 * allocated clusters (on success) or freeing them (on failure), and
1776 * for clearing the contents of @m afterwards in both cases.
1777 *
1778 * If the request conflicts with another write request in flight, the coroutine
1779 * is queued and will be reentered when the dependency has completed.
1780 *
1781 * Return 0 on success and -errno in error cases
1782 */
qcow2_alloc_host_offset(BlockDriverState * bs,uint64_t offset,unsigned int * bytes,uint64_t * host_offset,QCowL2Meta ** m)1783 int coroutine_fn qcow2_alloc_host_offset(BlockDriverState *bs, uint64_t offset,
1784 unsigned int *bytes,
1785 uint64_t *host_offset,
1786 QCowL2Meta **m)
1787 {
1788 BDRVQcow2State *s = bs->opaque;
1789 uint64_t start, remaining;
1790 uint64_t cluster_offset;
1791 uint64_t cur_bytes;
1792 int ret;
1793
1794 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1795
1796 again:
1797 start = offset;
1798 remaining = *bytes;
1799 cluster_offset = INV_OFFSET;
1800 *host_offset = INV_OFFSET;
1801 cur_bytes = 0;
1802 *m = NULL;
1803
1804 while (true) {
1805
1806 if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1807 *host_offset = cluster_offset;
1808 }
1809
1810 assert(remaining >= cur_bytes);
1811
1812 start += cur_bytes;
1813 remaining -= cur_bytes;
1814
1815 if (cluster_offset != INV_OFFSET) {
1816 cluster_offset += cur_bytes;
1817 }
1818
1819 if (remaining == 0) {
1820 break;
1821 }
1822
1823 cur_bytes = remaining;
1824
1825 /*
1826 * Now start gathering as many contiguous clusters as possible:
1827 *
1828 * 1. Check for overlaps with in-flight allocations
1829 *
1830 * a) Overlap not in the first cluster -> shorten this request and
1831 * let the caller handle the rest in its next loop iteration.
1832 *
1833 * b) Real overlaps of two requests. Yield and restart the search
1834 * for contiguous clusters (the situation could have changed
1835 * while we were sleeping)
1836 *
1837 * c) TODO: Request starts in the same cluster as the in-flight
1838 * allocation ends. Shorten the COW of the in-fight allocation,
1839 * set cluster_offset to write to the same cluster and set up
1840 * the right synchronisation between the in-flight request and
1841 * the new one.
1842 */
1843 ret = handle_dependencies(bs, start, &cur_bytes, m);
1844 if (ret == -EAGAIN) {
1845 /* Currently handle_dependencies() doesn't yield if we already had
1846 * an allocation. If it did, we would have to clean up the L2Meta
1847 * structs before starting over. */
1848 assert(*m == NULL);
1849 goto again;
1850 } else if (ret < 0) {
1851 return ret;
1852 } else if (cur_bytes == 0) {
1853 break;
1854 } else {
1855 /* handle_dependencies() may have decreased cur_bytes (shortened
1856 * the allocations below) so that the next dependency is processed
1857 * correctly during the next loop iteration. */
1858 }
1859
1860 /*
1861 * 2. Count contiguous COPIED clusters.
1862 */
1863 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1864 if (ret < 0) {
1865 return ret;
1866 } else if (ret) {
1867 continue;
1868 } else if (cur_bytes == 0) {
1869 break;
1870 }
1871
1872 /*
1873 * 3. If the request still hasn't completed, allocate new clusters,
1874 * considering any cluster_offset of steps 1c or 2.
1875 */
1876 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1877 if (ret < 0) {
1878 return ret;
1879 } else if (ret) {
1880 continue;
1881 } else {
1882 assert(cur_bytes == 0);
1883 break;
1884 }
1885 }
1886
1887 *bytes -= remaining;
1888 assert(*bytes > 0);
1889 assert(*host_offset != INV_OFFSET);
1890 assert(offset_into_cluster(s, *host_offset) ==
1891 offset_into_cluster(s, offset));
1892
1893 return 0;
1894 }
1895
1896 /*
1897 * This discards as many clusters of nb_clusters as possible at once (i.e.
1898 * all clusters in the same L2 slice) and returns the number of discarded
1899 * clusters.
1900 */
1901 static int GRAPH_RDLOCK
discard_in_l2_slice(BlockDriverState * bs,uint64_t offset,uint64_t nb_clusters,enum qcow2_discard_type type,bool full_discard)1902 discard_in_l2_slice(BlockDriverState *bs, uint64_t offset, uint64_t nb_clusters,
1903 enum qcow2_discard_type type, bool full_discard)
1904 {
1905 BDRVQcow2State *s = bs->opaque;
1906 uint64_t *l2_slice;
1907 int l2_index;
1908 int ret;
1909 int i;
1910
1911 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1912 if (ret < 0) {
1913 return ret;
1914 }
1915
1916 /* Limit nb_clusters to one L2 slice */
1917 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1918 assert(nb_clusters <= INT_MAX);
1919
1920 for (i = 0; i < nb_clusters; i++) {
1921 uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1922 uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1923 uint64_t new_l2_entry = old_l2_entry;
1924 uint64_t new_l2_bitmap = old_l2_bitmap;
1925 QCow2ClusterType cluster_type =
1926 qcow2_get_cluster_type(bs, old_l2_entry);
1927 bool keep_reference = (cluster_type != QCOW2_CLUSTER_COMPRESSED) &&
1928 !full_discard &&
1929 (s->discard_no_unref &&
1930 type == QCOW2_DISCARD_REQUEST);
1931
1932 /*
1933 * If full_discard is true, the cluster should not read back as zeroes,
1934 * but rather fall through to the backing file.
1935 *
1936 * If full_discard is false, make sure that a discarded area reads back
1937 * as zeroes for v3 images (we cannot do it for v2 without actually
1938 * writing a zero-filled buffer). We can skip the operation if the
1939 * cluster is already marked as zero, or if it's unallocated and we
1940 * don't have a backing file.
1941 *
1942 * TODO We might want to use bdrv_block_status(bs) here, but we're
1943 * holding s->lock, so that doesn't work today.
1944 */
1945 if (full_discard) {
1946 new_l2_entry = new_l2_bitmap = 0;
1947 } else if (bs->backing || qcow2_cluster_is_allocated(cluster_type)) {
1948 if (has_subclusters(s)) {
1949 if (keep_reference) {
1950 new_l2_entry = old_l2_entry;
1951 } else {
1952 new_l2_entry = 0;
1953 }
1954 new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
1955 } else {
1956 if (s->qcow_version >= 3) {
1957 if (keep_reference) {
1958 new_l2_entry |= QCOW_OFLAG_ZERO;
1959 } else {
1960 new_l2_entry = QCOW_OFLAG_ZERO;
1961 }
1962 } else {
1963 new_l2_entry = 0;
1964 }
1965 }
1966 }
1967
1968 if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
1969 continue;
1970 }
1971
1972 /* First remove L2 entries */
1973 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1974 set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
1975 if (has_subclusters(s)) {
1976 set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
1977 }
1978 if (!keep_reference) {
1979 /* Then decrease the refcount */
1980 qcow2_free_any_cluster(bs, old_l2_entry, type);
1981 } else if (s->discard_passthrough[type] &&
1982 (cluster_type == QCOW2_CLUSTER_NORMAL ||
1983 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC)) {
1984 /* If we keep the reference, pass on the discard still */
1985 bdrv_pdiscard(s->data_file, old_l2_entry & L2E_OFFSET_MASK,
1986 s->cluster_size);
1987 }
1988 }
1989
1990 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1991
1992 return nb_clusters;
1993 }
1994
qcow2_cluster_discard(BlockDriverState * bs,uint64_t offset,uint64_t bytes,enum qcow2_discard_type type,bool full_discard)1995 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1996 uint64_t bytes, enum qcow2_discard_type type,
1997 bool full_discard)
1998 {
1999 BDRVQcow2State *s = bs->opaque;
2000 uint64_t end_offset = offset + bytes;
2001 uint64_t nb_clusters;
2002 int64_t cleared;
2003 int ret;
2004
2005 /* Caller must pass aligned values, except at image end */
2006 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
2007 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
2008 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
2009
2010 nb_clusters = size_to_clusters(s, bytes);
2011
2012 s->cache_discards = true;
2013
2014 /* Each L2 slice is handled by its own loop iteration */
2015 while (nb_clusters > 0) {
2016 cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
2017 full_discard);
2018 if (cleared < 0) {
2019 ret = cleared;
2020 goto fail;
2021 }
2022
2023 nb_clusters -= cleared;
2024 offset += (cleared * s->cluster_size);
2025 }
2026
2027 ret = 0;
2028 fail:
2029 s->cache_discards = false;
2030 qcow2_process_discards(bs, ret);
2031
2032 return ret;
2033 }
2034
2035 /*
2036 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
2037 * all clusters in the same L2 slice) and returns the number of zeroed
2038 * clusters.
2039 */
2040 static int coroutine_fn GRAPH_RDLOCK
zero_in_l2_slice(BlockDriverState * bs,uint64_t offset,uint64_t nb_clusters,int flags)2041 zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
2042 uint64_t nb_clusters, int flags)
2043 {
2044 BDRVQcow2State *s = bs->opaque;
2045 uint64_t *l2_slice;
2046 int l2_index;
2047 int ret;
2048 int i;
2049
2050 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2051 if (ret < 0) {
2052 return ret;
2053 }
2054
2055 /* Limit nb_clusters to one L2 slice */
2056 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
2057 assert(nb_clusters <= INT_MAX);
2058
2059 for (i = 0; i < nb_clusters; i++) {
2060 uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
2061 uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
2062 QCow2ClusterType type = qcow2_get_cluster_type(bs, old_l2_entry);
2063 bool unmap = (type == QCOW2_CLUSTER_COMPRESSED) ||
2064 ((flags & BDRV_REQ_MAY_UNMAP) && qcow2_cluster_is_allocated(type));
2065 bool keep_reference =
2066 (s->discard_no_unref && type != QCOW2_CLUSTER_COMPRESSED);
2067 uint64_t new_l2_entry = old_l2_entry;
2068 uint64_t new_l2_bitmap = old_l2_bitmap;
2069
2070 if (unmap && !keep_reference) {
2071 new_l2_entry = 0;
2072 }
2073
2074 if (has_subclusters(s)) {
2075 new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
2076 } else {
2077 new_l2_entry |= QCOW_OFLAG_ZERO;
2078 }
2079
2080 if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
2081 continue;
2082 }
2083
2084 /* First update L2 entries */
2085 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2086 set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
2087 if (has_subclusters(s)) {
2088 set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
2089 }
2090
2091 if (unmap) {
2092 if (!keep_reference) {
2093 /* Then decrease the refcount */
2094 qcow2_free_any_cluster(bs, old_l2_entry, QCOW2_DISCARD_REQUEST);
2095 } else if (s->discard_passthrough[QCOW2_DISCARD_REQUEST] &&
2096 (type == QCOW2_CLUSTER_NORMAL ||
2097 type == QCOW2_CLUSTER_ZERO_ALLOC)) {
2098 /* If we keep the reference, pass on the discard still */
2099 bdrv_pdiscard(s->data_file, old_l2_entry & L2E_OFFSET_MASK,
2100 s->cluster_size);
2101 }
2102 }
2103 }
2104
2105 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2106
2107 return nb_clusters;
2108 }
2109
2110 static int coroutine_fn GRAPH_RDLOCK
zero_l2_subclusters(BlockDriverState * bs,uint64_t offset,unsigned nb_subclusters)2111 zero_l2_subclusters(BlockDriverState *bs, uint64_t offset,
2112 unsigned nb_subclusters)
2113 {
2114 BDRVQcow2State *s = bs->opaque;
2115 uint64_t *l2_slice;
2116 uint64_t old_l2_bitmap, l2_bitmap;
2117 int l2_index, ret, sc = offset_to_sc_index(s, offset);
2118
2119 /* For full clusters use zero_in_l2_slice() instead */
2120 assert(nb_subclusters > 0 && nb_subclusters < s->subclusters_per_cluster);
2121 assert(sc + nb_subclusters <= s->subclusters_per_cluster);
2122 assert(offset_into_subcluster(s, offset) == 0);
2123
2124 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2125 if (ret < 0) {
2126 return ret;
2127 }
2128
2129 switch (qcow2_get_cluster_type(bs, get_l2_entry(s, l2_slice, l2_index))) {
2130 case QCOW2_CLUSTER_COMPRESSED:
2131 ret = -ENOTSUP; /* We cannot partially zeroize compressed clusters */
2132 goto out;
2133 case QCOW2_CLUSTER_NORMAL:
2134 case QCOW2_CLUSTER_UNALLOCATED:
2135 break;
2136 default:
2137 g_assert_not_reached();
2138 }
2139
2140 old_l2_bitmap = l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
2141
2142 l2_bitmap |= QCOW_OFLAG_SUB_ZERO_RANGE(sc, sc + nb_subclusters);
2143 l2_bitmap &= ~QCOW_OFLAG_SUB_ALLOC_RANGE(sc, sc + nb_subclusters);
2144
2145 if (old_l2_bitmap != l2_bitmap) {
2146 set_l2_bitmap(s, l2_slice, l2_index, l2_bitmap);
2147 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2148 }
2149
2150 ret = 0;
2151 out:
2152 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2153
2154 return ret;
2155 }
2156
qcow2_subcluster_zeroize(BlockDriverState * bs,uint64_t offset,uint64_t bytes,int flags)2157 int coroutine_fn qcow2_subcluster_zeroize(BlockDriverState *bs, uint64_t offset,
2158 uint64_t bytes, int flags)
2159 {
2160 BDRVQcow2State *s = bs->opaque;
2161 uint64_t end_offset = offset + bytes;
2162 uint64_t nb_clusters;
2163 unsigned head, tail;
2164 int64_t cleared;
2165 int ret;
2166
2167 /* If we have to stay in sync with an external data file, zero out
2168 * s->data_file first. */
2169 if (data_file_is_raw(bs)) {
2170 assert(has_data_file(bs));
2171 ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
2172 if (ret < 0) {
2173 return ret;
2174 }
2175 }
2176
2177 /* Caller must pass aligned values, except at image end */
2178 assert(offset_into_subcluster(s, offset) == 0);
2179 assert(offset_into_subcluster(s, end_offset) == 0 ||
2180 end_offset >= bs->total_sectors << BDRV_SECTOR_BITS);
2181
2182 /*
2183 * The zero flag is only supported by version 3 and newer. However, if we
2184 * have no backing file, we can resort to discard in version 2.
2185 */
2186 if (s->qcow_version < 3) {
2187 if (!bs->backing) {
2188 return qcow2_cluster_discard(bs, offset, bytes,
2189 QCOW2_DISCARD_REQUEST, false);
2190 }
2191 return -ENOTSUP;
2192 }
2193
2194 head = MIN(end_offset, ROUND_UP(offset, s->cluster_size)) - offset;
2195 offset += head;
2196
2197 tail = (end_offset >= bs->total_sectors << BDRV_SECTOR_BITS) ? 0 :
2198 end_offset - MAX(offset, start_of_cluster(s, end_offset));
2199 end_offset -= tail;
2200
2201 s->cache_discards = true;
2202
2203 if (head) {
2204 ret = zero_l2_subclusters(bs, offset - head,
2205 size_to_subclusters(s, head));
2206 if (ret < 0) {
2207 goto fail;
2208 }
2209 }
2210
2211 /* Each L2 slice is handled by its own loop iteration */
2212 nb_clusters = size_to_clusters(s, end_offset - offset);
2213
2214 while (nb_clusters > 0) {
2215 cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
2216 if (cleared < 0) {
2217 ret = cleared;
2218 goto fail;
2219 }
2220
2221 nb_clusters -= cleared;
2222 offset += (cleared * s->cluster_size);
2223 }
2224
2225 if (tail) {
2226 ret = zero_l2_subclusters(bs, end_offset, size_to_subclusters(s, tail));
2227 if (ret < 0) {
2228 goto fail;
2229 }
2230 }
2231
2232 ret = 0;
2233 fail:
2234 s->cache_discards = false;
2235 qcow2_process_discards(bs, ret);
2236
2237 return ret;
2238 }
2239
2240 /*
2241 * Expands all zero clusters in a specific L1 table (or deallocates them, for
2242 * non-backed non-pre-allocated zero clusters).
2243 *
2244 * l1_entries and *visited_l1_entries are used to keep track of progress for
2245 * status_cb(). l1_entries contains the total number of L1 entries and
2246 * *visited_l1_entries counts all visited L1 entries.
2247 */
2248 static int GRAPH_RDLOCK
expand_zero_clusters_in_l1(BlockDriverState * bs,uint64_t * l1_table,int l1_size,int64_t * visited_l1_entries,int64_t l1_entries,BlockDriverAmendStatusCB * status_cb,void * cb_opaque)2249 expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
2250 int l1_size, int64_t *visited_l1_entries,
2251 int64_t l1_entries,
2252 BlockDriverAmendStatusCB *status_cb,
2253 void *cb_opaque)
2254 {
2255 BDRVQcow2State *s = bs->opaque;
2256 bool is_active_l1 = (l1_table == s->l1_table);
2257 uint64_t *l2_slice = NULL;
2258 unsigned slice, slice_size2, n_slices;
2259 int ret;
2260 int i, j;
2261
2262 /* qcow2_downgrade() is not allowed in images with subclusters */
2263 assert(!has_subclusters(s));
2264
2265 slice_size2 = s->l2_slice_size * l2_entry_size(s);
2266 n_slices = s->cluster_size / slice_size2;
2267
2268 if (!is_active_l1) {
2269 /* inactive L2 tables require a buffer to be stored in when loading
2270 * them from disk */
2271 l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
2272 if (l2_slice == NULL) {
2273 return -ENOMEM;
2274 }
2275 }
2276
2277 for (i = 0; i < l1_size; i++) {
2278 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
2279 uint64_t l2_refcount;
2280
2281 if (!l2_offset) {
2282 /* unallocated */
2283 (*visited_l1_entries)++;
2284 if (status_cb) {
2285 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2286 }
2287 continue;
2288 }
2289
2290 if (offset_into_cluster(s, l2_offset)) {
2291 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
2292 PRIx64 " unaligned (L1 index: %#x)",
2293 l2_offset, i);
2294 ret = -EIO;
2295 goto fail;
2296 }
2297
2298 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
2299 &l2_refcount);
2300 if (ret < 0) {
2301 goto fail;
2302 }
2303
2304 for (slice = 0; slice < n_slices; slice++) {
2305 uint64_t slice_offset = l2_offset + slice * slice_size2;
2306 bool l2_dirty = false;
2307 if (is_active_l1) {
2308 /* get active L2 tables from cache */
2309 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
2310 (void **)&l2_slice);
2311 } else {
2312 /* load inactive L2 tables from disk */
2313 ret = bdrv_pread(bs->file, slice_offset, slice_size2,
2314 l2_slice, 0);
2315 }
2316 if (ret < 0) {
2317 goto fail;
2318 }
2319
2320 for (j = 0; j < s->l2_slice_size; j++) {
2321 uint64_t l2_entry = get_l2_entry(s, l2_slice, j);
2322 int64_t offset = l2_entry & L2E_OFFSET_MASK;
2323 QCow2ClusterType cluster_type =
2324 qcow2_get_cluster_type(bs, l2_entry);
2325
2326 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
2327 cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
2328 continue;
2329 }
2330
2331 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2332 if (!bs->backing) {
2333 /*
2334 * not backed; therefore we can simply deallocate the
2335 * cluster. No need to call set_l2_bitmap(), this
2336 * function doesn't support images with subclusters.
2337 */
2338 set_l2_entry(s, l2_slice, j, 0);
2339 l2_dirty = true;
2340 continue;
2341 }
2342
2343 offset = qcow2_alloc_clusters(bs, s->cluster_size);
2344 if (offset < 0) {
2345 ret = offset;
2346 goto fail;
2347 }
2348
2349 /* The offset must fit in the offset field */
2350 assert((offset & L2E_OFFSET_MASK) == offset);
2351
2352 if (l2_refcount > 1) {
2353 /* For shared L2 tables, set the refcount accordingly
2354 * (it is already 1 and needs to be l2_refcount) */
2355 ret = qcow2_update_cluster_refcount(
2356 bs, offset >> s->cluster_bits,
2357 refcount_diff(1, l2_refcount), false,
2358 QCOW2_DISCARD_OTHER);
2359 if (ret < 0) {
2360 qcow2_free_clusters(bs, offset, s->cluster_size,
2361 QCOW2_DISCARD_OTHER);
2362 goto fail;
2363 }
2364 }
2365 }
2366
2367 if (offset_into_cluster(s, offset)) {
2368 int l2_index = slice * s->l2_slice_size + j;
2369 qcow2_signal_corruption(
2370 bs, true, -1, -1,
2371 "Cluster allocation offset "
2372 "%#" PRIx64 " unaligned (L2 offset: %#"
2373 PRIx64 ", L2 index: %#x)", offset,
2374 l2_offset, l2_index);
2375 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2376 qcow2_free_clusters(bs, offset, s->cluster_size,
2377 QCOW2_DISCARD_ALWAYS);
2378 }
2379 ret = -EIO;
2380 goto fail;
2381 }
2382
2383 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
2384 s->cluster_size, true);
2385 if (ret < 0) {
2386 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2387 qcow2_free_clusters(bs, offset, s->cluster_size,
2388 QCOW2_DISCARD_ALWAYS);
2389 }
2390 goto fail;
2391 }
2392
2393 ret = bdrv_pwrite_zeroes(s->data_file, offset,
2394 s->cluster_size, 0);
2395 if (ret < 0) {
2396 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2397 qcow2_free_clusters(bs, offset, s->cluster_size,
2398 QCOW2_DISCARD_ALWAYS);
2399 }
2400 goto fail;
2401 }
2402
2403 if (l2_refcount == 1) {
2404 set_l2_entry(s, l2_slice, j, offset | QCOW_OFLAG_COPIED);
2405 } else {
2406 set_l2_entry(s, l2_slice, j, offset);
2407 }
2408 /*
2409 * No need to call set_l2_bitmap() after set_l2_entry() because
2410 * this function doesn't support images with subclusters.
2411 */
2412 l2_dirty = true;
2413 }
2414
2415 if (is_active_l1) {
2416 if (l2_dirty) {
2417 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2418 qcow2_cache_depends_on_flush(s->l2_table_cache);
2419 }
2420 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2421 } else {
2422 if (l2_dirty) {
2423 ret = qcow2_pre_write_overlap_check(
2424 bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
2425 slice_offset, slice_size2, false);
2426 if (ret < 0) {
2427 goto fail;
2428 }
2429
2430 ret = bdrv_pwrite(bs->file, slice_offset, slice_size2,
2431 l2_slice, 0);
2432 if (ret < 0) {
2433 goto fail;
2434 }
2435 }
2436 }
2437 }
2438
2439 (*visited_l1_entries)++;
2440 if (status_cb) {
2441 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2442 }
2443 }
2444
2445 ret = 0;
2446
2447 fail:
2448 if (l2_slice) {
2449 if (!is_active_l1) {
2450 qemu_vfree(l2_slice);
2451 } else {
2452 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2453 }
2454 }
2455 return ret;
2456 }
2457
2458 /*
2459 * For backed images, expands all zero clusters on the image. For non-backed
2460 * images, deallocates all non-pre-allocated zero clusters (and claims the
2461 * allocation for pre-allocated ones). This is important for downgrading to a
2462 * qcow2 version which doesn't yet support metadata zero clusters.
2463 */
qcow2_expand_zero_clusters(BlockDriverState * bs,BlockDriverAmendStatusCB * status_cb,void * cb_opaque)2464 int qcow2_expand_zero_clusters(BlockDriverState *bs,
2465 BlockDriverAmendStatusCB *status_cb,
2466 void *cb_opaque)
2467 {
2468 BDRVQcow2State *s = bs->opaque;
2469 uint64_t *l1_table = NULL;
2470 int64_t l1_entries = 0, visited_l1_entries = 0;
2471 int ret;
2472 int i, j;
2473
2474 if (status_cb) {
2475 l1_entries = s->l1_size;
2476 for (i = 0; i < s->nb_snapshots; i++) {
2477 l1_entries += s->snapshots[i].l1_size;
2478 }
2479 }
2480
2481 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2482 &visited_l1_entries, l1_entries,
2483 status_cb, cb_opaque);
2484 if (ret < 0) {
2485 goto fail;
2486 }
2487
2488 /* Inactive L1 tables may point to active L2 tables - therefore it is
2489 * necessary to flush the L2 table cache before trying to access the L2
2490 * tables pointed to by inactive L1 entries (else we might try to expand
2491 * zero clusters that have already been expanded); furthermore, it is also
2492 * necessary to empty the L2 table cache, since it may contain tables which
2493 * are now going to be modified directly on disk, bypassing the cache.
2494 * qcow2_cache_empty() does both for us. */
2495 ret = qcow2_cache_empty(bs, s->l2_table_cache);
2496 if (ret < 0) {
2497 goto fail;
2498 }
2499
2500 for (i = 0; i < s->nb_snapshots; i++) {
2501 int l1_size2;
2502 uint64_t *new_l1_table;
2503 Error *local_err = NULL;
2504
2505 ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2506 s->snapshots[i].l1_size, L1E_SIZE,
2507 QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2508 &local_err);
2509 if (ret < 0) {
2510 error_report_err(local_err);
2511 goto fail;
2512 }
2513
2514 l1_size2 = s->snapshots[i].l1_size * L1E_SIZE;
2515 new_l1_table = g_try_realloc(l1_table, l1_size2);
2516
2517 if (!new_l1_table) {
2518 ret = -ENOMEM;
2519 goto fail;
2520 }
2521
2522 l1_table = new_l1_table;
2523
2524 ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset, l1_size2,
2525 l1_table, 0);
2526 if (ret < 0) {
2527 goto fail;
2528 }
2529
2530 for (j = 0; j < s->snapshots[i].l1_size; j++) {
2531 be64_to_cpus(&l1_table[j]);
2532 }
2533
2534 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2535 &visited_l1_entries, l1_entries,
2536 status_cb, cb_opaque);
2537 if (ret < 0) {
2538 goto fail;
2539 }
2540 }
2541
2542 ret = 0;
2543
2544 fail:
2545 g_free(l1_table);
2546 return ret;
2547 }
2548
qcow2_parse_compressed_l2_entry(BlockDriverState * bs,uint64_t l2_entry,uint64_t * coffset,int * csize)2549 void qcow2_parse_compressed_l2_entry(BlockDriverState *bs, uint64_t l2_entry,
2550 uint64_t *coffset, int *csize)
2551 {
2552 BDRVQcow2State *s = bs->opaque;
2553 int nb_csectors;
2554
2555 assert(qcow2_get_cluster_type(bs, l2_entry) == QCOW2_CLUSTER_COMPRESSED);
2556
2557 *coffset = l2_entry & s->cluster_offset_mask;
2558
2559 nb_csectors = ((l2_entry >> s->csize_shift) & s->csize_mask) + 1;
2560 *csize = nb_csectors * QCOW2_COMPRESSED_SECTOR_SIZE -
2561 (*coffset & (QCOW2_COMPRESSED_SECTOR_SIZE - 1));
2562 }
2563