xref: /openbmc/linux/kernel/exit.c (revision 79ad410c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72 
73 #include <linux/uaccess.h>
74 #include <asm/unistd.h>
75 #include <asm/mmu_context.h>
76 
77 /*
78  * The default value should be high enough to not crash a system that randomly
79  * crashes its kernel from time to time, but low enough to at least not permit
80  * overflowing 32-bit refcounts or the ldsem writer count.
81  */
82 static unsigned int oops_limit = 10000;
83 
84 #ifdef CONFIG_SYSCTL
85 static struct ctl_table kern_exit_table[] = {
86 	{
87 		.procname       = "oops_limit",
88 		.data           = &oops_limit,
89 		.maxlen         = sizeof(oops_limit),
90 		.mode           = 0644,
91 		.proc_handler   = proc_douintvec,
92 	},
93 	{ }
94 };
95 
kernel_exit_sysctls_init(void)96 static __init int kernel_exit_sysctls_init(void)
97 {
98 	register_sysctl_init("kernel", kern_exit_table);
99 	return 0;
100 }
101 late_initcall(kernel_exit_sysctls_init);
102 #endif
103 
104 static atomic_t oops_count = ATOMIC_INIT(0);
105 
106 #ifdef CONFIG_SYSFS
oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)107 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
108 			       char *page)
109 {
110 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
111 }
112 
113 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
114 
kernel_exit_sysfs_init(void)115 static __init int kernel_exit_sysfs_init(void)
116 {
117 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
118 	return 0;
119 }
120 late_initcall(kernel_exit_sysfs_init);
121 #endif
122 
__unhash_process(struct task_struct * p,bool group_dead)123 static void __unhash_process(struct task_struct *p, bool group_dead)
124 {
125 	nr_threads--;
126 	detach_pid(p, PIDTYPE_PID);
127 	if (group_dead) {
128 		detach_pid(p, PIDTYPE_TGID);
129 		detach_pid(p, PIDTYPE_PGID);
130 		detach_pid(p, PIDTYPE_SID);
131 
132 		list_del_rcu(&p->tasks);
133 		list_del_init(&p->sibling);
134 		__this_cpu_dec(process_counts);
135 	}
136 	list_del_rcu(&p->thread_group);
137 	list_del_rcu(&p->thread_node);
138 }
139 
140 /*
141  * This function expects the tasklist_lock write-locked.
142  */
__exit_signal(struct task_struct * tsk)143 static void __exit_signal(struct task_struct *tsk)
144 {
145 	struct signal_struct *sig = tsk->signal;
146 	bool group_dead = thread_group_leader(tsk);
147 	struct sighand_struct *sighand;
148 	struct tty_struct *tty;
149 	u64 utime, stime;
150 
151 	sighand = rcu_dereference_check(tsk->sighand,
152 					lockdep_tasklist_lock_is_held());
153 	spin_lock(&sighand->siglock);
154 
155 #ifdef CONFIG_POSIX_TIMERS
156 	posix_cpu_timers_exit(tsk);
157 	if (group_dead)
158 		posix_cpu_timers_exit_group(tsk);
159 #endif
160 
161 	if (group_dead) {
162 		tty = sig->tty;
163 		sig->tty = NULL;
164 	} else {
165 		/*
166 		 * If there is any task waiting for the group exit
167 		 * then notify it:
168 		 */
169 		if (sig->notify_count > 0 && !--sig->notify_count)
170 			wake_up_process(sig->group_exec_task);
171 
172 		if (tsk == sig->curr_target)
173 			sig->curr_target = next_thread(tsk);
174 	}
175 
176 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
177 			      sizeof(unsigned long long));
178 
179 	/*
180 	 * Accumulate here the counters for all threads as they die. We could
181 	 * skip the group leader because it is the last user of signal_struct,
182 	 * but we want to avoid the race with thread_group_cputime() which can
183 	 * see the empty ->thread_head list.
184 	 */
185 	task_cputime(tsk, &utime, &stime);
186 	write_seqlock(&sig->stats_lock);
187 	sig->utime += utime;
188 	sig->stime += stime;
189 	sig->gtime += task_gtime(tsk);
190 	sig->min_flt += tsk->min_flt;
191 	sig->maj_flt += tsk->maj_flt;
192 	sig->nvcsw += tsk->nvcsw;
193 	sig->nivcsw += tsk->nivcsw;
194 	sig->inblock += task_io_get_inblock(tsk);
195 	sig->oublock += task_io_get_oublock(tsk);
196 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
197 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
198 	sig->nr_threads--;
199 	__unhash_process(tsk, group_dead);
200 	write_sequnlock(&sig->stats_lock);
201 
202 	/*
203 	 * Do this under ->siglock, we can race with another thread
204 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
205 	 */
206 	flush_sigqueue(&tsk->pending);
207 	tsk->sighand = NULL;
208 	spin_unlock(&sighand->siglock);
209 
210 	__cleanup_sighand(sighand);
211 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
212 	if (group_dead) {
213 		flush_sigqueue(&sig->shared_pending);
214 		tty_kref_put(tty);
215 	}
216 }
217 
delayed_put_task_struct(struct rcu_head * rhp)218 static void delayed_put_task_struct(struct rcu_head *rhp)
219 {
220 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
221 
222 	kprobe_flush_task(tsk);
223 	rethook_flush_task(tsk);
224 	perf_event_delayed_put(tsk);
225 	trace_sched_process_free(tsk);
226 	put_task_struct(tsk);
227 }
228 
put_task_struct_rcu_user(struct task_struct * task)229 void put_task_struct_rcu_user(struct task_struct *task)
230 {
231 	if (refcount_dec_and_test(&task->rcu_users))
232 		call_rcu(&task->rcu, delayed_put_task_struct);
233 }
234 
release_thread(struct task_struct * dead_task)235 void __weak release_thread(struct task_struct *dead_task)
236 {
237 }
238 
release_task(struct task_struct * p)239 void release_task(struct task_struct *p)
240 {
241 	struct task_struct *leader;
242 	struct pid *thread_pid;
243 	int zap_leader;
244 repeat:
245 	/* don't need to get the RCU readlock here - the process is dead and
246 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
247 	rcu_read_lock();
248 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
249 	rcu_read_unlock();
250 
251 	cgroup_release(p);
252 
253 	write_lock_irq(&tasklist_lock);
254 	ptrace_release_task(p);
255 	thread_pid = get_pid(p->thread_pid);
256 	__exit_signal(p);
257 
258 	/*
259 	 * If we are the last non-leader member of the thread
260 	 * group, and the leader is zombie, then notify the
261 	 * group leader's parent process. (if it wants notification.)
262 	 */
263 	zap_leader = 0;
264 	leader = p->group_leader;
265 	if (leader != p && thread_group_empty(leader)
266 			&& leader->exit_state == EXIT_ZOMBIE) {
267 		/*
268 		 * If we were the last child thread and the leader has
269 		 * exited already, and the leader's parent ignores SIGCHLD,
270 		 * then we are the one who should release the leader.
271 		 */
272 		zap_leader = do_notify_parent(leader, leader->exit_signal);
273 		if (zap_leader)
274 			leader->exit_state = EXIT_DEAD;
275 	}
276 
277 	write_unlock_irq(&tasklist_lock);
278 	seccomp_filter_release(p);
279 	proc_flush_pid(thread_pid);
280 	put_pid(thread_pid);
281 	release_thread(p);
282 	put_task_struct_rcu_user(p);
283 
284 	p = leader;
285 	if (unlikely(zap_leader))
286 		goto repeat;
287 }
288 
rcuwait_wake_up(struct rcuwait * w)289 int rcuwait_wake_up(struct rcuwait *w)
290 {
291 	int ret = 0;
292 	struct task_struct *task;
293 
294 	rcu_read_lock();
295 
296 	/*
297 	 * Order condition vs @task, such that everything prior to the load
298 	 * of @task is visible. This is the condition as to why the user called
299 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
300 	 * barrier (A) in rcuwait_wait_event().
301 	 *
302 	 *    WAIT                WAKE
303 	 *    [S] tsk = current	  [S] cond = true
304 	 *        MB (A)	      MB (B)
305 	 *    [L] cond		  [L] tsk
306 	 */
307 	smp_mb(); /* (B) */
308 
309 	task = rcu_dereference(w->task);
310 	if (task)
311 		ret = wake_up_process(task);
312 	rcu_read_unlock();
313 
314 	return ret;
315 }
316 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
317 
318 /*
319  * Determine if a process group is "orphaned", according to the POSIX
320  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
321  * by terminal-generated stop signals.  Newly orphaned process groups are
322  * to receive a SIGHUP and a SIGCONT.
323  *
324  * "I ask you, have you ever known what it is to be an orphan?"
325  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)326 static int will_become_orphaned_pgrp(struct pid *pgrp,
327 					struct task_struct *ignored_task)
328 {
329 	struct task_struct *p;
330 
331 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
332 		if ((p == ignored_task) ||
333 		    (p->exit_state && thread_group_empty(p)) ||
334 		    is_global_init(p->real_parent))
335 			continue;
336 
337 		if (task_pgrp(p->real_parent) != pgrp &&
338 		    task_session(p->real_parent) == task_session(p))
339 			return 0;
340 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
341 
342 	return 1;
343 }
344 
is_current_pgrp_orphaned(void)345 int is_current_pgrp_orphaned(void)
346 {
347 	int retval;
348 
349 	read_lock(&tasklist_lock);
350 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
351 	read_unlock(&tasklist_lock);
352 
353 	return retval;
354 }
355 
has_stopped_jobs(struct pid * pgrp)356 static bool has_stopped_jobs(struct pid *pgrp)
357 {
358 	struct task_struct *p;
359 
360 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
361 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
362 			return true;
363 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
364 
365 	return false;
366 }
367 
368 /*
369  * Check to see if any process groups have become orphaned as
370  * a result of our exiting, and if they have any stopped jobs,
371  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
372  */
373 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)374 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
375 {
376 	struct pid *pgrp = task_pgrp(tsk);
377 	struct task_struct *ignored_task = tsk;
378 
379 	if (!parent)
380 		/* exit: our father is in a different pgrp than
381 		 * we are and we were the only connection outside.
382 		 */
383 		parent = tsk->real_parent;
384 	else
385 		/* reparent: our child is in a different pgrp than
386 		 * we are, and it was the only connection outside.
387 		 */
388 		ignored_task = NULL;
389 
390 	if (task_pgrp(parent) != pgrp &&
391 	    task_session(parent) == task_session(tsk) &&
392 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
393 	    has_stopped_jobs(pgrp)) {
394 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
395 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
396 	}
397 }
398 
coredump_task_exit(struct task_struct * tsk)399 static void coredump_task_exit(struct task_struct *tsk)
400 {
401 	struct core_state *core_state;
402 
403 	/*
404 	 * Serialize with any possible pending coredump.
405 	 * We must hold siglock around checking core_state
406 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
407 	 * will increment ->nr_threads for each thread in the
408 	 * group without PF_POSTCOREDUMP set.
409 	 */
410 	spin_lock_irq(&tsk->sighand->siglock);
411 	tsk->flags |= PF_POSTCOREDUMP;
412 	core_state = tsk->signal->core_state;
413 	spin_unlock_irq(&tsk->sighand->siglock);
414 
415 	/* The vhost_worker does not particpate in coredumps */
416 	if (core_state &&
417 	    ((tsk->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)) {
418 		struct core_thread self;
419 
420 		self.task = current;
421 		if (self.task->flags & PF_SIGNALED)
422 			self.next = xchg(&core_state->dumper.next, &self);
423 		else
424 			self.task = NULL;
425 		/*
426 		 * Implies mb(), the result of xchg() must be visible
427 		 * to core_state->dumper.
428 		 */
429 		if (atomic_dec_and_test(&core_state->nr_threads))
430 			complete(&core_state->startup);
431 
432 		for (;;) {
433 			set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
434 			if (!self.task) /* see coredump_finish() */
435 				break;
436 			schedule();
437 		}
438 		__set_current_state(TASK_RUNNING);
439 	}
440 }
441 
442 #ifdef CONFIG_MEMCG
443 /*
444  * A task is exiting.   If it owned this mm, find a new owner for the mm.
445  */
mm_update_next_owner(struct mm_struct * mm)446 void mm_update_next_owner(struct mm_struct *mm)
447 {
448 	struct task_struct *c, *g, *p = current;
449 
450 retry:
451 	/*
452 	 * If the exiting or execing task is not the owner, it's
453 	 * someone else's problem.
454 	 */
455 	if (mm->owner != p)
456 		return;
457 	/*
458 	 * The current owner is exiting/execing and there are no other
459 	 * candidates.  Do not leave the mm pointing to a possibly
460 	 * freed task structure.
461 	 */
462 	if (atomic_read(&mm->mm_users) <= 1) {
463 		WRITE_ONCE(mm->owner, NULL);
464 		return;
465 	}
466 
467 	read_lock(&tasklist_lock);
468 	/*
469 	 * Search in the children
470 	 */
471 	list_for_each_entry(c, &p->children, sibling) {
472 		if (c->mm == mm)
473 			goto assign_new_owner;
474 	}
475 
476 	/*
477 	 * Search in the siblings
478 	 */
479 	list_for_each_entry(c, &p->real_parent->children, sibling) {
480 		if (c->mm == mm)
481 			goto assign_new_owner;
482 	}
483 
484 	/*
485 	 * Search through everything else, we should not get here often.
486 	 */
487 	for_each_process(g) {
488 		if (atomic_read(&mm->mm_users) <= 1)
489 			break;
490 		if (g->flags & PF_KTHREAD)
491 			continue;
492 		for_each_thread(g, c) {
493 			if (c->mm == mm)
494 				goto assign_new_owner;
495 			if (c->mm)
496 				break;
497 		}
498 	}
499 	read_unlock(&tasklist_lock);
500 	/*
501 	 * We found no owner yet mm_users > 1: this implies that we are
502 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
503 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
504 	 */
505 	WRITE_ONCE(mm->owner, NULL);
506 	return;
507 
508 assign_new_owner:
509 	BUG_ON(c == p);
510 	get_task_struct(c);
511 	/*
512 	 * The task_lock protects c->mm from changing.
513 	 * We always want mm->owner->mm == mm
514 	 */
515 	task_lock(c);
516 	/*
517 	 * Delay read_unlock() till we have the task_lock()
518 	 * to ensure that c does not slip away underneath us
519 	 */
520 	read_unlock(&tasklist_lock);
521 	if (c->mm != mm) {
522 		task_unlock(c);
523 		put_task_struct(c);
524 		goto retry;
525 	}
526 	WRITE_ONCE(mm->owner, c);
527 	lru_gen_migrate_mm(mm);
528 	task_unlock(c);
529 	put_task_struct(c);
530 }
531 #endif /* CONFIG_MEMCG */
532 
533 /*
534  * Turn us into a lazy TLB process if we
535  * aren't already..
536  */
exit_mm(void)537 static void exit_mm(void)
538 {
539 	struct mm_struct *mm = current->mm;
540 
541 	exit_mm_release(current, mm);
542 	if (!mm)
543 		return;
544 	sync_mm_rss(mm);
545 	mmap_read_lock(mm);
546 	mmgrab_lazy_tlb(mm);
547 	BUG_ON(mm != current->active_mm);
548 	/* more a memory barrier than a real lock */
549 	task_lock(current);
550 	/*
551 	 * When a thread stops operating on an address space, the loop
552 	 * in membarrier_private_expedited() may not observe that
553 	 * tsk->mm, and the loop in membarrier_global_expedited() may
554 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
555 	 * rq->membarrier_state, so those would not issue an IPI.
556 	 * Membarrier requires a memory barrier after accessing
557 	 * user-space memory, before clearing tsk->mm or the
558 	 * rq->membarrier_state.
559 	 */
560 	smp_mb__after_spinlock();
561 	local_irq_disable();
562 	current->mm = NULL;
563 	membarrier_update_current_mm(NULL);
564 	enter_lazy_tlb(mm, current);
565 	local_irq_enable();
566 	task_unlock(current);
567 	mmap_read_unlock(mm);
568 	mm_update_next_owner(mm);
569 	mmput(mm);
570 	if (test_thread_flag(TIF_MEMDIE))
571 		exit_oom_victim();
572 }
573 
find_alive_thread(struct task_struct * p)574 static struct task_struct *find_alive_thread(struct task_struct *p)
575 {
576 	struct task_struct *t;
577 
578 	for_each_thread(p, t) {
579 		if (!(t->flags & PF_EXITING))
580 			return t;
581 	}
582 	return NULL;
583 }
584 
find_child_reaper(struct task_struct * father,struct list_head * dead)585 static struct task_struct *find_child_reaper(struct task_struct *father,
586 						struct list_head *dead)
587 	__releases(&tasklist_lock)
588 	__acquires(&tasklist_lock)
589 {
590 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
591 	struct task_struct *reaper = pid_ns->child_reaper;
592 	struct task_struct *p, *n;
593 
594 	if (likely(reaper != father))
595 		return reaper;
596 
597 	reaper = find_alive_thread(father);
598 	if (reaper) {
599 		pid_ns->child_reaper = reaper;
600 		return reaper;
601 	}
602 
603 	write_unlock_irq(&tasklist_lock);
604 
605 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
606 		list_del_init(&p->ptrace_entry);
607 		release_task(p);
608 	}
609 
610 	zap_pid_ns_processes(pid_ns);
611 	write_lock_irq(&tasklist_lock);
612 
613 	return father;
614 }
615 
616 /*
617  * When we die, we re-parent all our children, and try to:
618  * 1. give them to another thread in our thread group, if such a member exists
619  * 2. give it to the first ancestor process which prctl'd itself as a
620  *    child_subreaper for its children (like a service manager)
621  * 3. give it to the init process (PID 1) in our pid namespace
622  */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)623 static struct task_struct *find_new_reaper(struct task_struct *father,
624 					   struct task_struct *child_reaper)
625 {
626 	struct task_struct *thread, *reaper;
627 
628 	thread = find_alive_thread(father);
629 	if (thread)
630 		return thread;
631 
632 	if (father->signal->has_child_subreaper) {
633 		unsigned int ns_level = task_pid(father)->level;
634 		/*
635 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
636 		 * We can't check reaper != child_reaper to ensure we do not
637 		 * cross the namespaces, the exiting parent could be injected
638 		 * by setns() + fork().
639 		 * We check pid->level, this is slightly more efficient than
640 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
641 		 */
642 		for (reaper = father->real_parent;
643 		     task_pid(reaper)->level == ns_level;
644 		     reaper = reaper->real_parent) {
645 			if (reaper == &init_task)
646 				break;
647 			if (!reaper->signal->is_child_subreaper)
648 				continue;
649 			thread = find_alive_thread(reaper);
650 			if (thread)
651 				return thread;
652 		}
653 	}
654 
655 	return child_reaper;
656 }
657 
658 /*
659 * Any that need to be release_task'd are put on the @dead list.
660  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)661 static void reparent_leader(struct task_struct *father, struct task_struct *p,
662 				struct list_head *dead)
663 {
664 	if (unlikely(p->exit_state == EXIT_DEAD))
665 		return;
666 
667 	/* We don't want people slaying init. */
668 	p->exit_signal = SIGCHLD;
669 
670 	/* If it has exited notify the new parent about this child's death. */
671 	if (!p->ptrace &&
672 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
673 		if (do_notify_parent(p, p->exit_signal)) {
674 			p->exit_state = EXIT_DEAD;
675 			list_add(&p->ptrace_entry, dead);
676 		}
677 	}
678 
679 	kill_orphaned_pgrp(p, father);
680 }
681 
682 /*
683  * This does two things:
684  *
685  * A.  Make init inherit all the child processes
686  * B.  Check to see if any process groups have become orphaned
687  *	as a result of our exiting, and if they have any stopped
688  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
689  */
forget_original_parent(struct task_struct * father,struct list_head * dead)690 static void forget_original_parent(struct task_struct *father,
691 					struct list_head *dead)
692 {
693 	struct task_struct *p, *t, *reaper;
694 
695 	if (unlikely(!list_empty(&father->ptraced)))
696 		exit_ptrace(father, dead);
697 
698 	/* Can drop and reacquire tasklist_lock */
699 	reaper = find_child_reaper(father, dead);
700 	if (list_empty(&father->children))
701 		return;
702 
703 	reaper = find_new_reaper(father, reaper);
704 	list_for_each_entry(p, &father->children, sibling) {
705 		for_each_thread(p, t) {
706 			RCU_INIT_POINTER(t->real_parent, reaper);
707 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
708 			if (likely(!t->ptrace))
709 				t->parent = t->real_parent;
710 			if (t->pdeath_signal)
711 				group_send_sig_info(t->pdeath_signal,
712 						    SEND_SIG_NOINFO, t,
713 						    PIDTYPE_TGID);
714 		}
715 		/*
716 		 * If this is a threaded reparent there is no need to
717 		 * notify anyone anything has happened.
718 		 */
719 		if (!same_thread_group(reaper, father))
720 			reparent_leader(father, p, dead);
721 	}
722 	list_splice_tail_init(&father->children, &reaper->children);
723 }
724 
725 /*
726  * Send signals to all our closest relatives so that they know
727  * to properly mourn us..
728  */
exit_notify(struct task_struct * tsk,int group_dead)729 static void exit_notify(struct task_struct *tsk, int group_dead)
730 {
731 	bool autoreap;
732 	struct task_struct *p, *n;
733 	LIST_HEAD(dead);
734 
735 	write_lock_irq(&tasklist_lock);
736 	forget_original_parent(tsk, &dead);
737 
738 	if (group_dead)
739 		kill_orphaned_pgrp(tsk->group_leader, NULL);
740 
741 	tsk->exit_state = EXIT_ZOMBIE;
742 	if (unlikely(tsk->ptrace)) {
743 		int sig = thread_group_leader(tsk) &&
744 				thread_group_empty(tsk) &&
745 				!ptrace_reparented(tsk) ?
746 			tsk->exit_signal : SIGCHLD;
747 		autoreap = do_notify_parent(tsk, sig);
748 	} else if (thread_group_leader(tsk)) {
749 		autoreap = thread_group_empty(tsk) &&
750 			do_notify_parent(tsk, tsk->exit_signal);
751 	} else {
752 		autoreap = true;
753 	}
754 
755 	if (autoreap) {
756 		tsk->exit_state = EXIT_DEAD;
757 		list_add(&tsk->ptrace_entry, &dead);
758 	}
759 
760 	/* mt-exec, de_thread() is waiting for group leader */
761 	if (unlikely(tsk->signal->notify_count < 0))
762 		wake_up_process(tsk->signal->group_exec_task);
763 	write_unlock_irq(&tasklist_lock);
764 
765 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
766 		list_del_init(&p->ptrace_entry);
767 		release_task(p);
768 	}
769 }
770 
771 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)772 static void check_stack_usage(void)
773 {
774 	static DEFINE_SPINLOCK(low_water_lock);
775 	static int lowest_to_date = THREAD_SIZE;
776 	unsigned long free;
777 
778 	free = stack_not_used(current);
779 
780 	if (free >= lowest_to_date)
781 		return;
782 
783 	spin_lock(&low_water_lock);
784 	if (free < lowest_to_date) {
785 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
786 			current->comm, task_pid_nr(current), free);
787 		lowest_to_date = free;
788 	}
789 	spin_unlock(&low_water_lock);
790 }
791 #else
check_stack_usage(void)792 static inline void check_stack_usage(void) {}
793 #endif
794 
synchronize_group_exit(struct task_struct * tsk,long code)795 static void synchronize_group_exit(struct task_struct *tsk, long code)
796 {
797 	struct sighand_struct *sighand = tsk->sighand;
798 	struct signal_struct *signal = tsk->signal;
799 
800 	spin_lock_irq(&sighand->siglock);
801 	signal->quick_threads--;
802 	if ((signal->quick_threads == 0) &&
803 	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
804 		signal->flags = SIGNAL_GROUP_EXIT;
805 		signal->group_exit_code = code;
806 		signal->group_stop_count = 0;
807 	}
808 	spin_unlock_irq(&sighand->siglock);
809 }
810 
do_exit(long code)811 void __noreturn do_exit(long code)
812 {
813 	struct task_struct *tsk = current;
814 	int group_dead;
815 
816 	WARN_ON(irqs_disabled());
817 
818 	synchronize_group_exit(tsk, code);
819 
820 	WARN_ON(tsk->plug);
821 
822 	kcov_task_exit(tsk);
823 	kmsan_task_exit(tsk);
824 
825 	coredump_task_exit(tsk);
826 	ptrace_event(PTRACE_EVENT_EXIT, code);
827 	user_events_exit(tsk);
828 
829 	io_uring_files_cancel();
830 	exit_signals(tsk);  /* sets PF_EXITING */
831 
832 	/* sync mm's RSS info before statistics gathering */
833 	if (tsk->mm)
834 		sync_mm_rss(tsk->mm);
835 	acct_update_integrals(tsk);
836 	group_dead = atomic_dec_and_test(&tsk->signal->live);
837 	if (group_dead) {
838 		/*
839 		 * If the last thread of global init has exited, panic
840 		 * immediately to get a useable coredump.
841 		 */
842 		if (unlikely(is_global_init(tsk)))
843 			panic("Attempted to kill init! exitcode=0x%08x\n",
844 				tsk->signal->group_exit_code ?: (int)code);
845 
846 #ifdef CONFIG_POSIX_TIMERS
847 		hrtimer_cancel(&tsk->signal->real_timer);
848 		exit_itimers(tsk);
849 #endif
850 		if (tsk->mm)
851 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
852 	}
853 	acct_collect(code, group_dead);
854 	if (group_dead)
855 		tty_audit_exit();
856 	audit_free(tsk);
857 
858 	tsk->exit_code = code;
859 	taskstats_exit(tsk, group_dead);
860 
861 	exit_mm();
862 
863 	if (group_dead)
864 		acct_process();
865 	trace_sched_process_exit(tsk);
866 
867 	exit_sem(tsk);
868 	exit_shm(tsk);
869 	exit_files(tsk);
870 	exit_fs(tsk);
871 	if (group_dead)
872 		disassociate_ctty(1);
873 	exit_task_namespaces(tsk);
874 	exit_task_work(tsk);
875 	exit_thread(tsk);
876 
877 	/*
878 	 * Flush inherited counters to the parent - before the parent
879 	 * gets woken up by child-exit notifications.
880 	 *
881 	 * because of cgroup mode, must be called before cgroup_exit()
882 	 */
883 	perf_event_exit_task(tsk);
884 
885 	sched_autogroup_exit_task(tsk);
886 	cgroup_exit(tsk);
887 
888 	/*
889 	 * FIXME: do that only when needed, using sched_exit tracepoint
890 	 */
891 	flush_ptrace_hw_breakpoint(tsk);
892 
893 	exit_tasks_rcu_start();
894 	exit_notify(tsk, group_dead);
895 	proc_exit_connector(tsk);
896 	mpol_put_task_policy(tsk);
897 #ifdef CONFIG_FUTEX
898 	if (unlikely(current->pi_state_cache))
899 		kfree(current->pi_state_cache);
900 #endif
901 	/*
902 	 * Make sure we are holding no locks:
903 	 */
904 	debug_check_no_locks_held();
905 
906 	if (tsk->io_context)
907 		exit_io_context(tsk);
908 
909 	if (tsk->splice_pipe)
910 		free_pipe_info(tsk->splice_pipe);
911 
912 	if (tsk->task_frag.page)
913 		put_page(tsk->task_frag.page);
914 
915 	exit_task_stack_account(tsk);
916 
917 	check_stack_usage();
918 	preempt_disable();
919 	if (tsk->nr_dirtied)
920 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
921 	exit_rcu();
922 	exit_tasks_rcu_finish();
923 
924 	lockdep_free_task(tsk);
925 	do_task_dead();
926 }
927 
make_task_dead(int signr)928 void __noreturn make_task_dead(int signr)
929 {
930 	/*
931 	 * Take the task off the cpu after something catastrophic has
932 	 * happened.
933 	 *
934 	 * We can get here from a kernel oops, sometimes with preemption off.
935 	 * Start by checking for critical errors.
936 	 * Then fix up important state like USER_DS and preemption.
937 	 * Then do everything else.
938 	 */
939 	struct task_struct *tsk = current;
940 	unsigned int limit;
941 
942 	if (unlikely(in_interrupt()))
943 		panic("Aiee, killing interrupt handler!");
944 	if (unlikely(!tsk->pid))
945 		panic("Attempted to kill the idle task!");
946 
947 	if (unlikely(irqs_disabled())) {
948 		pr_info("note: %s[%d] exited with irqs disabled\n",
949 			current->comm, task_pid_nr(current));
950 		local_irq_enable();
951 	}
952 	if (unlikely(in_atomic())) {
953 		pr_info("note: %s[%d] exited with preempt_count %d\n",
954 			current->comm, task_pid_nr(current),
955 			preempt_count());
956 		preempt_count_set(PREEMPT_ENABLED);
957 	}
958 
959 	/*
960 	 * Every time the system oopses, if the oops happens while a reference
961 	 * to an object was held, the reference leaks.
962 	 * If the oops doesn't also leak memory, repeated oopsing can cause
963 	 * reference counters to wrap around (if they're not using refcount_t).
964 	 * This means that repeated oopsing can make unexploitable-looking bugs
965 	 * exploitable through repeated oopsing.
966 	 * To make sure this can't happen, place an upper bound on how often the
967 	 * kernel may oops without panic().
968 	 */
969 	limit = READ_ONCE(oops_limit);
970 	if (atomic_inc_return(&oops_count) >= limit && limit)
971 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
972 
973 	/*
974 	 * We're taking recursive faults here in make_task_dead. Safest is to just
975 	 * leave this task alone and wait for reboot.
976 	 */
977 	if (unlikely(tsk->flags & PF_EXITING)) {
978 		pr_alert("Fixing recursive fault but reboot is needed!\n");
979 		futex_exit_recursive(tsk);
980 		tsk->exit_state = EXIT_DEAD;
981 		refcount_inc(&tsk->rcu_users);
982 		do_task_dead();
983 	}
984 
985 	do_exit(signr);
986 }
987 
SYSCALL_DEFINE1(exit,int,error_code)988 SYSCALL_DEFINE1(exit, int, error_code)
989 {
990 	do_exit((error_code&0xff)<<8);
991 }
992 
993 /*
994  * Take down every thread in the group.  This is called by fatal signals
995  * as well as by sys_exit_group (below).
996  */
997 void __noreturn
do_group_exit(int exit_code)998 do_group_exit(int exit_code)
999 {
1000 	struct signal_struct *sig = current->signal;
1001 
1002 	if (sig->flags & SIGNAL_GROUP_EXIT)
1003 		exit_code = sig->group_exit_code;
1004 	else if (sig->group_exec_task)
1005 		exit_code = 0;
1006 	else {
1007 		struct sighand_struct *const sighand = current->sighand;
1008 
1009 		spin_lock_irq(&sighand->siglock);
1010 		if (sig->flags & SIGNAL_GROUP_EXIT)
1011 			/* Another thread got here before we took the lock.  */
1012 			exit_code = sig->group_exit_code;
1013 		else if (sig->group_exec_task)
1014 			exit_code = 0;
1015 		else {
1016 			sig->group_exit_code = exit_code;
1017 			sig->flags = SIGNAL_GROUP_EXIT;
1018 			zap_other_threads(current);
1019 		}
1020 		spin_unlock_irq(&sighand->siglock);
1021 	}
1022 
1023 	do_exit(exit_code);
1024 	/* NOTREACHED */
1025 }
1026 
1027 /*
1028  * this kills every thread in the thread group. Note that any externally
1029  * wait4()-ing process will get the correct exit code - even if this
1030  * thread is not the thread group leader.
1031  */
SYSCALL_DEFINE1(exit_group,int,error_code)1032 SYSCALL_DEFINE1(exit_group, int, error_code)
1033 {
1034 	do_group_exit((error_code & 0xff) << 8);
1035 	/* NOTREACHED */
1036 	return 0;
1037 }
1038 
1039 struct waitid_info {
1040 	pid_t pid;
1041 	uid_t uid;
1042 	int status;
1043 	int cause;
1044 };
1045 
1046 struct wait_opts {
1047 	enum pid_type		wo_type;
1048 	int			wo_flags;
1049 	struct pid		*wo_pid;
1050 
1051 	struct waitid_info	*wo_info;
1052 	int			wo_stat;
1053 	struct rusage		*wo_rusage;
1054 
1055 	wait_queue_entry_t		child_wait;
1056 	int			notask_error;
1057 };
1058 
eligible_pid(struct wait_opts * wo,struct task_struct * p)1059 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1060 {
1061 	return	wo->wo_type == PIDTYPE_MAX ||
1062 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1063 }
1064 
1065 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1066 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1067 {
1068 	if (!eligible_pid(wo, p))
1069 		return 0;
1070 
1071 	/*
1072 	 * Wait for all children (clone and not) if __WALL is set or
1073 	 * if it is traced by us.
1074 	 */
1075 	if (ptrace || (wo->wo_flags & __WALL))
1076 		return 1;
1077 
1078 	/*
1079 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1080 	 * otherwise, wait for non-clone children *only*.
1081 	 *
1082 	 * Note: a "clone" child here is one that reports to its parent
1083 	 * using a signal other than SIGCHLD, or a non-leader thread which
1084 	 * we can only see if it is traced by us.
1085 	 */
1086 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1087 		return 0;
1088 
1089 	return 1;
1090 }
1091 
1092 /*
1093  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1094  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1095  * the lock and this task is uninteresting.  If we return nonzero, we have
1096  * released the lock and the system call should return.
1097  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1098 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1099 {
1100 	int state, status;
1101 	pid_t pid = task_pid_vnr(p);
1102 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1103 	struct waitid_info *infop;
1104 
1105 	if (!likely(wo->wo_flags & WEXITED))
1106 		return 0;
1107 
1108 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1109 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1110 			? p->signal->group_exit_code : p->exit_code;
1111 		get_task_struct(p);
1112 		read_unlock(&tasklist_lock);
1113 		sched_annotate_sleep();
1114 		if (wo->wo_rusage)
1115 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1116 		put_task_struct(p);
1117 		goto out_info;
1118 	}
1119 	/*
1120 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1121 	 */
1122 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1123 		EXIT_TRACE : EXIT_DEAD;
1124 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1125 		return 0;
1126 	/*
1127 	 * We own this thread, nobody else can reap it.
1128 	 */
1129 	read_unlock(&tasklist_lock);
1130 	sched_annotate_sleep();
1131 
1132 	/*
1133 	 * Check thread_group_leader() to exclude the traced sub-threads.
1134 	 */
1135 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1136 		struct signal_struct *sig = p->signal;
1137 		struct signal_struct *psig = current->signal;
1138 		unsigned long maxrss;
1139 		u64 tgutime, tgstime;
1140 
1141 		/*
1142 		 * The resource counters for the group leader are in its
1143 		 * own task_struct.  Those for dead threads in the group
1144 		 * are in its signal_struct, as are those for the child
1145 		 * processes it has previously reaped.  All these
1146 		 * accumulate in the parent's signal_struct c* fields.
1147 		 *
1148 		 * We don't bother to take a lock here to protect these
1149 		 * p->signal fields because the whole thread group is dead
1150 		 * and nobody can change them.
1151 		 *
1152 		 * psig->stats_lock also protects us from our sub-threads
1153 		 * which can reap other children at the same time. Until
1154 		 * we change k_getrusage()-like users to rely on this lock
1155 		 * we have to take ->siglock as well.
1156 		 *
1157 		 * We use thread_group_cputime_adjusted() to get times for
1158 		 * the thread group, which consolidates times for all threads
1159 		 * in the group including the group leader.
1160 		 */
1161 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1162 		spin_lock_irq(&current->sighand->siglock);
1163 		write_seqlock(&psig->stats_lock);
1164 		psig->cutime += tgutime + sig->cutime;
1165 		psig->cstime += tgstime + sig->cstime;
1166 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1167 		psig->cmin_flt +=
1168 			p->min_flt + sig->min_flt + sig->cmin_flt;
1169 		psig->cmaj_flt +=
1170 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1171 		psig->cnvcsw +=
1172 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1173 		psig->cnivcsw +=
1174 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1175 		psig->cinblock +=
1176 			task_io_get_inblock(p) +
1177 			sig->inblock + sig->cinblock;
1178 		psig->coublock +=
1179 			task_io_get_oublock(p) +
1180 			sig->oublock + sig->coublock;
1181 		maxrss = max(sig->maxrss, sig->cmaxrss);
1182 		if (psig->cmaxrss < maxrss)
1183 			psig->cmaxrss = maxrss;
1184 		task_io_accounting_add(&psig->ioac, &p->ioac);
1185 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1186 		write_sequnlock(&psig->stats_lock);
1187 		spin_unlock_irq(&current->sighand->siglock);
1188 	}
1189 
1190 	if (wo->wo_rusage)
1191 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1192 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1193 		? p->signal->group_exit_code : p->exit_code;
1194 	wo->wo_stat = status;
1195 
1196 	if (state == EXIT_TRACE) {
1197 		write_lock_irq(&tasklist_lock);
1198 		/* We dropped tasklist, ptracer could die and untrace */
1199 		ptrace_unlink(p);
1200 
1201 		/* If parent wants a zombie, don't release it now */
1202 		state = EXIT_ZOMBIE;
1203 		if (do_notify_parent(p, p->exit_signal))
1204 			state = EXIT_DEAD;
1205 		p->exit_state = state;
1206 		write_unlock_irq(&tasklist_lock);
1207 	}
1208 	if (state == EXIT_DEAD)
1209 		release_task(p);
1210 
1211 out_info:
1212 	infop = wo->wo_info;
1213 	if (infop) {
1214 		if ((status & 0x7f) == 0) {
1215 			infop->cause = CLD_EXITED;
1216 			infop->status = status >> 8;
1217 		} else {
1218 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1219 			infop->status = status & 0x7f;
1220 		}
1221 		infop->pid = pid;
1222 		infop->uid = uid;
1223 	}
1224 
1225 	return pid;
1226 }
1227 
task_stopped_code(struct task_struct * p,bool ptrace)1228 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1229 {
1230 	if (ptrace) {
1231 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1232 			return &p->exit_code;
1233 	} else {
1234 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1235 			return &p->signal->group_exit_code;
1236 	}
1237 	return NULL;
1238 }
1239 
1240 /**
1241  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1242  * @wo: wait options
1243  * @ptrace: is the wait for ptrace
1244  * @p: task to wait for
1245  *
1246  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1247  *
1248  * CONTEXT:
1249  * read_lock(&tasklist_lock), which is released if return value is
1250  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1251  *
1252  * RETURNS:
1253  * 0 if wait condition didn't exist and search for other wait conditions
1254  * should continue.  Non-zero return, -errno on failure and @p's pid on
1255  * success, implies that tasklist_lock is released and wait condition
1256  * search should terminate.
1257  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1258 static int wait_task_stopped(struct wait_opts *wo,
1259 				int ptrace, struct task_struct *p)
1260 {
1261 	struct waitid_info *infop;
1262 	int exit_code, *p_code, why;
1263 	uid_t uid = 0; /* unneeded, required by compiler */
1264 	pid_t pid;
1265 
1266 	/*
1267 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1268 	 */
1269 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1270 		return 0;
1271 
1272 	if (!task_stopped_code(p, ptrace))
1273 		return 0;
1274 
1275 	exit_code = 0;
1276 	spin_lock_irq(&p->sighand->siglock);
1277 
1278 	p_code = task_stopped_code(p, ptrace);
1279 	if (unlikely(!p_code))
1280 		goto unlock_sig;
1281 
1282 	exit_code = *p_code;
1283 	if (!exit_code)
1284 		goto unlock_sig;
1285 
1286 	if (!unlikely(wo->wo_flags & WNOWAIT))
1287 		*p_code = 0;
1288 
1289 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1290 unlock_sig:
1291 	spin_unlock_irq(&p->sighand->siglock);
1292 	if (!exit_code)
1293 		return 0;
1294 
1295 	/*
1296 	 * Now we are pretty sure this task is interesting.
1297 	 * Make sure it doesn't get reaped out from under us while we
1298 	 * give up the lock and then examine it below.  We don't want to
1299 	 * keep holding onto the tasklist_lock while we call getrusage and
1300 	 * possibly take page faults for user memory.
1301 	 */
1302 	get_task_struct(p);
1303 	pid = task_pid_vnr(p);
1304 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1305 	read_unlock(&tasklist_lock);
1306 	sched_annotate_sleep();
1307 	if (wo->wo_rusage)
1308 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1309 	put_task_struct(p);
1310 
1311 	if (likely(!(wo->wo_flags & WNOWAIT)))
1312 		wo->wo_stat = (exit_code << 8) | 0x7f;
1313 
1314 	infop = wo->wo_info;
1315 	if (infop) {
1316 		infop->cause = why;
1317 		infop->status = exit_code;
1318 		infop->pid = pid;
1319 		infop->uid = uid;
1320 	}
1321 	return pid;
1322 }
1323 
1324 /*
1325  * Handle do_wait work for one task in a live, non-stopped state.
1326  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1327  * the lock and this task is uninteresting.  If we return nonzero, we have
1328  * released the lock and the system call should return.
1329  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1330 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1331 {
1332 	struct waitid_info *infop;
1333 	pid_t pid;
1334 	uid_t uid;
1335 
1336 	if (!unlikely(wo->wo_flags & WCONTINUED))
1337 		return 0;
1338 
1339 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1340 		return 0;
1341 
1342 	spin_lock_irq(&p->sighand->siglock);
1343 	/* Re-check with the lock held.  */
1344 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1345 		spin_unlock_irq(&p->sighand->siglock);
1346 		return 0;
1347 	}
1348 	if (!unlikely(wo->wo_flags & WNOWAIT))
1349 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1350 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1351 	spin_unlock_irq(&p->sighand->siglock);
1352 
1353 	pid = task_pid_vnr(p);
1354 	get_task_struct(p);
1355 	read_unlock(&tasklist_lock);
1356 	sched_annotate_sleep();
1357 	if (wo->wo_rusage)
1358 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1359 	put_task_struct(p);
1360 
1361 	infop = wo->wo_info;
1362 	if (!infop) {
1363 		wo->wo_stat = 0xffff;
1364 	} else {
1365 		infop->cause = CLD_CONTINUED;
1366 		infop->pid = pid;
1367 		infop->uid = uid;
1368 		infop->status = SIGCONT;
1369 	}
1370 	return pid;
1371 }
1372 
1373 /*
1374  * Consider @p for a wait by @parent.
1375  *
1376  * -ECHILD should be in ->notask_error before the first call.
1377  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1378  * Returns zero if the search for a child should continue;
1379  * then ->notask_error is 0 if @p is an eligible child,
1380  * or still -ECHILD.
1381  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1382 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1383 				struct task_struct *p)
1384 {
1385 	/*
1386 	 * We can race with wait_task_zombie() from another thread.
1387 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1388 	 * can't confuse the checks below.
1389 	 */
1390 	int exit_state = READ_ONCE(p->exit_state);
1391 	int ret;
1392 
1393 	if (unlikely(exit_state == EXIT_DEAD))
1394 		return 0;
1395 
1396 	ret = eligible_child(wo, ptrace, p);
1397 	if (!ret)
1398 		return ret;
1399 
1400 	if (unlikely(exit_state == EXIT_TRACE)) {
1401 		/*
1402 		 * ptrace == 0 means we are the natural parent. In this case
1403 		 * we should clear notask_error, debugger will notify us.
1404 		 */
1405 		if (likely(!ptrace))
1406 			wo->notask_error = 0;
1407 		return 0;
1408 	}
1409 
1410 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1411 		/*
1412 		 * If it is traced by its real parent's group, just pretend
1413 		 * the caller is ptrace_do_wait() and reap this child if it
1414 		 * is zombie.
1415 		 *
1416 		 * This also hides group stop state from real parent; otherwise
1417 		 * a single stop can be reported twice as group and ptrace stop.
1418 		 * If a ptracer wants to distinguish these two events for its
1419 		 * own children it should create a separate process which takes
1420 		 * the role of real parent.
1421 		 */
1422 		if (!ptrace_reparented(p))
1423 			ptrace = 1;
1424 	}
1425 
1426 	/* slay zombie? */
1427 	if (exit_state == EXIT_ZOMBIE) {
1428 		/* we don't reap group leaders with subthreads */
1429 		if (!delay_group_leader(p)) {
1430 			/*
1431 			 * A zombie ptracee is only visible to its ptracer.
1432 			 * Notification and reaping will be cascaded to the
1433 			 * real parent when the ptracer detaches.
1434 			 */
1435 			if (unlikely(ptrace) || likely(!p->ptrace))
1436 				return wait_task_zombie(wo, p);
1437 		}
1438 
1439 		/*
1440 		 * Allow access to stopped/continued state via zombie by
1441 		 * falling through.  Clearing of notask_error is complex.
1442 		 *
1443 		 * When !@ptrace:
1444 		 *
1445 		 * If WEXITED is set, notask_error should naturally be
1446 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1447 		 * so, if there are live subthreads, there are events to
1448 		 * wait for.  If all subthreads are dead, it's still safe
1449 		 * to clear - this function will be called again in finite
1450 		 * amount time once all the subthreads are released and
1451 		 * will then return without clearing.
1452 		 *
1453 		 * When @ptrace:
1454 		 *
1455 		 * Stopped state is per-task and thus can't change once the
1456 		 * target task dies.  Only continued and exited can happen.
1457 		 * Clear notask_error if WCONTINUED | WEXITED.
1458 		 */
1459 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1460 			wo->notask_error = 0;
1461 	} else {
1462 		/*
1463 		 * @p is alive and it's gonna stop, continue or exit, so
1464 		 * there always is something to wait for.
1465 		 */
1466 		wo->notask_error = 0;
1467 	}
1468 
1469 	/*
1470 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1471 	 * is used and the two don't interact with each other.
1472 	 */
1473 	ret = wait_task_stopped(wo, ptrace, p);
1474 	if (ret)
1475 		return ret;
1476 
1477 	/*
1478 	 * Wait for continued.  There's only one continued state and the
1479 	 * ptracer can consume it which can confuse the real parent.  Don't
1480 	 * use WCONTINUED from ptracer.  You don't need or want it.
1481 	 */
1482 	return wait_task_continued(wo, p);
1483 }
1484 
1485 /*
1486  * Do the work of do_wait() for one thread in the group, @tsk.
1487  *
1488  * -ECHILD should be in ->notask_error before the first call.
1489  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1490  * Returns zero if the search for a child should continue; then
1491  * ->notask_error is 0 if there were any eligible children,
1492  * or still -ECHILD.
1493  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1494 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1495 {
1496 	struct task_struct *p;
1497 
1498 	list_for_each_entry(p, &tsk->children, sibling) {
1499 		int ret = wait_consider_task(wo, 0, p);
1500 
1501 		if (ret)
1502 			return ret;
1503 	}
1504 
1505 	return 0;
1506 }
1507 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1508 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1509 {
1510 	struct task_struct *p;
1511 
1512 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1513 		int ret = wait_consider_task(wo, 1, p);
1514 
1515 		if (ret)
1516 			return ret;
1517 	}
1518 
1519 	return 0;
1520 }
1521 
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1522 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1523 				int sync, void *key)
1524 {
1525 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1526 						child_wait);
1527 	struct task_struct *p = key;
1528 
1529 	if (!eligible_pid(wo, p))
1530 		return 0;
1531 
1532 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1533 		return 0;
1534 
1535 	return default_wake_function(wait, mode, sync, key);
1536 }
1537 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1538 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1539 {
1540 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1541 			   TASK_INTERRUPTIBLE, p);
1542 }
1543 
is_effectively_child(struct wait_opts * wo,bool ptrace,struct task_struct * target)1544 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1545 				 struct task_struct *target)
1546 {
1547 	struct task_struct *parent =
1548 		!ptrace ? target->real_parent : target->parent;
1549 
1550 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1551 				     same_thread_group(current, parent));
1552 }
1553 
1554 /*
1555  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1556  * and tracee lists to find the target task.
1557  */
do_wait_pid(struct wait_opts * wo)1558 static int do_wait_pid(struct wait_opts *wo)
1559 {
1560 	bool ptrace;
1561 	struct task_struct *target;
1562 	int retval;
1563 
1564 	ptrace = false;
1565 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1566 	if (target && is_effectively_child(wo, ptrace, target)) {
1567 		retval = wait_consider_task(wo, ptrace, target);
1568 		if (retval)
1569 			return retval;
1570 	}
1571 
1572 	ptrace = true;
1573 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1574 	if (target && target->ptrace &&
1575 	    is_effectively_child(wo, ptrace, target)) {
1576 		retval = wait_consider_task(wo, ptrace, target);
1577 		if (retval)
1578 			return retval;
1579 	}
1580 
1581 	return 0;
1582 }
1583 
do_wait(struct wait_opts * wo)1584 static long do_wait(struct wait_opts *wo)
1585 {
1586 	int retval;
1587 
1588 	trace_sched_process_wait(wo->wo_pid);
1589 
1590 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1591 	wo->child_wait.private = current;
1592 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1593 repeat:
1594 	/*
1595 	 * If there is nothing that can match our criteria, just get out.
1596 	 * We will clear ->notask_error to zero if we see any child that
1597 	 * might later match our criteria, even if we are not able to reap
1598 	 * it yet.
1599 	 */
1600 	wo->notask_error = -ECHILD;
1601 	if ((wo->wo_type < PIDTYPE_MAX) &&
1602 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1603 		goto notask;
1604 
1605 	set_current_state(TASK_INTERRUPTIBLE);
1606 	read_lock(&tasklist_lock);
1607 
1608 	if (wo->wo_type == PIDTYPE_PID) {
1609 		retval = do_wait_pid(wo);
1610 		if (retval)
1611 			goto end;
1612 	} else {
1613 		struct task_struct *tsk = current;
1614 
1615 		do {
1616 			retval = do_wait_thread(wo, tsk);
1617 			if (retval)
1618 				goto end;
1619 
1620 			retval = ptrace_do_wait(wo, tsk);
1621 			if (retval)
1622 				goto end;
1623 
1624 			if (wo->wo_flags & __WNOTHREAD)
1625 				break;
1626 		} while_each_thread(current, tsk);
1627 	}
1628 	read_unlock(&tasklist_lock);
1629 
1630 notask:
1631 	retval = wo->notask_error;
1632 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1633 		retval = -ERESTARTSYS;
1634 		if (!signal_pending(current)) {
1635 			schedule();
1636 			goto repeat;
1637 		}
1638 	}
1639 end:
1640 	__set_current_state(TASK_RUNNING);
1641 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1642 	return retval;
1643 }
1644 
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1645 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1646 			  int options, struct rusage *ru)
1647 {
1648 	struct wait_opts wo;
1649 	struct pid *pid = NULL;
1650 	enum pid_type type;
1651 	long ret;
1652 	unsigned int f_flags = 0;
1653 
1654 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1655 			__WNOTHREAD|__WCLONE|__WALL))
1656 		return -EINVAL;
1657 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1658 		return -EINVAL;
1659 
1660 	switch (which) {
1661 	case P_ALL:
1662 		type = PIDTYPE_MAX;
1663 		break;
1664 	case P_PID:
1665 		type = PIDTYPE_PID;
1666 		if (upid <= 0)
1667 			return -EINVAL;
1668 
1669 		pid = find_get_pid(upid);
1670 		break;
1671 	case P_PGID:
1672 		type = PIDTYPE_PGID;
1673 		if (upid < 0)
1674 			return -EINVAL;
1675 
1676 		if (upid)
1677 			pid = find_get_pid(upid);
1678 		else
1679 			pid = get_task_pid(current, PIDTYPE_PGID);
1680 		break;
1681 	case P_PIDFD:
1682 		type = PIDTYPE_PID;
1683 		if (upid < 0)
1684 			return -EINVAL;
1685 
1686 		pid = pidfd_get_pid(upid, &f_flags);
1687 		if (IS_ERR(pid))
1688 			return PTR_ERR(pid);
1689 
1690 		break;
1691 	default:
1692 		return -EINVAL;
1693 	}
1694 
1695 	wo.wo_type	= type;
1696 	wo.wo_pid	= pid;
1697 	wo.wo_flags	= options;
1698 	wo.wo_info	= infop;
1699 	wo.wo_rusage	= ru;
1700 	if (f_flags & O_NONBLOCK)
1701 		wo.wo_flags |= WNOHANG;
1702 
1703 	ret = do_wait(&wo);
1704 	if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1705 		ret = -EAGAIN;
1706 
1707 	put_pid(pid);
1708 	return ret;
1709 }
1710 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1711 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1712 		infop, int, options, struct rusage __user *, ru)
1713 {
1714 	struct rusage r;
1715 	struct waitid_info info = {.status = 0};
1716 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1717 	int signo = 0;
1718 
1719 	if (err > 0) {
1720 		signo = SIGCHLD;
1721 		err = 0;
1722 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1723 			return -EFAULT;
1724 	}
1725 	if (!infop)
1726 		return err;
1727 
1728 	if (!user_write_access_begin(infop, sizeof(*infop)))
1729 		return -EFAULT;
1730 
1731 	unsafe_put_user(signo, &infop->si_signo, Efault);
1732 	unsafe_put_user(0, &infop->si_errno, Efault);
1733 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1734 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1735 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1736 	unsafe_put_user(info.status, &infop->si_status, Efault);
1737 	user_write_access_end();
1738 	return err;
1739 Efault:
1740 	user_write_access_end();
1741 	return -EFAULT;
1742 }
1743 
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1744 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1745 		  struct rusage *ru)
1746 {
1747 	struct wait_opts wo;
1748 	struct pid *pid = NULL;
1749 	enum pid_type type;
1750 	long ret;
1751 
1752 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1753 			__WNOTHREAD|__WCLONE|__WALL))
1754 		return -EINVAL;
1755 
1756 	/* -INT_MIN is not defined */
1757 	if (upid == INT_MIN)
1758 		return -ESRCH;
1759 
1760 	if (upid == -1)
1761 		type = PIDTYPE_MAX;
1762 	else if (upid < 0) {
1763 		type = PIDTYPE_PGID;
1764 		pid = find_get_pid(-upid);
1765 	} else if (upid == 0) {
1766 		type = PIDTYPE_PGID;
1767 		pid = get_task_pid(current, PIDTYPE_PGID);
1768 	} else /* upid > 0 */ {
1769 		type = PIDTYPE_PID;
1770 		pid = find_get_pid(upid);
1771 	}
1772 
1773 	wo.wo_type	= type;
1774 	wo.wo_pid	= pid;
1775 	wo.wo_flags	= options | WEXITED;
1776 	wo.wo_info	= NULL;
1777 	wo.wo_stat	= 0;
1778 	wo.wo_rusage	= ru;
1779 	ret = do_wait(&wo);
1780 	put_pid(pid);
1781 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1782 		ret = -EFAULT;
1783 
1784 	return ret;
1785 }
1786 
kernel_wait(pid_t pid,int * stat)1787 int kernel_wait(pid_t pid, int *stat)
1788 {
1789 	struct wait_opts wo = {
1790 		.wo_type	= PIDTYPE_PID,
1791 		.wo_pid		= find_get_pid(pid),
1792 		.wo_flags	= WEXITED,
1793 	};
1794 	int ret;
1795 
1796 	ret = do_wait(&wo);
1797 	if (ret > 0 && wo.wo_stat)
1798 		*stat = wo.wo_stat;
1799 	put_pid(wo.wo_pid);
1800 	return ret;
1801 }
1802 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1803 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1804 		int, options, struct rusage __user *, ru)
1805 {
1806 	struct rusage r;
1807 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1808 
1809 	if (err > 0) {
1810 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1811 			return -EFAULT;
1812 	}
1813 	return err;
1814 }
1815 
1816 #ifdef __ARCH_WANT_SYS_WAITPID
1817 
1818 /*
1819  * sys_waitpid() remains for compatibility. waitpid() should be
1820  * implemented by calling sys_wait4() from libc.a.
1821  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1822 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1823 {
1824 	return kernel_wait4(pid, stat_addr, options, NULL);
1825 }
1826 
1827 #endif
1828 
1829 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1830 COMPAT_SYSCALL_DEFINE4(wait4,
1831 	compat_pid_t, pid,
1832 	compat_uint_t __user *, stat_addr,
1833 	int, options,
1834 	struct compat_rusage __user *, ru)
1835 {
1836 	struct rusage r;
1837 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1838 	if (err > 0) {
1839 		if (ru && put_compat_rusage(&r, ru))
1840 			return -EFAULT;
1841 	}
1842 	return err;
1843 }
1844 
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1845 COMPAT_SYSCALL_DEFINE5(waitid,
1846 		int, which, compat_pid_t, pid,
1847 		struct compat_siginfo __user *, infop, int, options,
1848 		struct compat_rusage __user *, uru)
1849 {
1850 	struct rusage ru;
1851 	struct waitid_info info = {.status = 0};
1852 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1853 	int signo = 0;
1854 	if (err > 0) {
1855 		signo = SIGCHLD;
1856 		err = 0;
1857 		if (uru) {
1858 			/* kernel_waitid() overwrites everything in ru */
1859 			if (COMPAT_USE_64BIT_TIME)
1860 				err = copy_to_user(uru, &ru, sizeof(ru));
1861 			else
1862 				err = put_compat_rusage(&ru, uru);
1863 			if (err)
1864 				return -EFAULT;
1865 		}
1866 	}
1867 
1868 	if (!infop)
1869 		return err;
1870 
1871 	if (!user_write_access_begin(infop, sizeof(*infop)))
1872 		return -EFAULT;
1873 
1874 	unsafe_put_user(signo, &infop->si_signo, Efault);
1875 	unsafe_put_user(0, &infop->si_errno, Efault);
1876 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1877 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1878 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1879 	unsafe_put_user(info.status, &infop->si_status, Efault);
1880 	user_write_access_end();
1881 	return err;
1882 Efault:
1883 	user_write_access_end();
1884 	return -EFAULT;
1885 }
1886 #endif
1887 
1888 /**
1889  * thread_group_exited - check that a thread group has exited
1890  * @pid: tgid of thread group to be checked.
1891  *
1892  * Test if the thread group represented by tgid has exited (all
1893  * threads are zombies, dead or completely gone).
1894  *
1895  * Return: true if the thread group has exited. false otherwise.
1896  */
thread_group_exited(struct pid * pid)1897 bool thread_group_exited(struct pid *pid)
1898 {
1899 	struct task_struct *task;
1900 	bool exited;
1901 
1902 	rcu_read_lock();
1903 	task = pid_task(pid, PIDTYPE_PID);
1904 	exited = !task ||
1905 		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1906 	rcu_read_unlock();
1907 
1908 	return exited;
1909 }
1910 EXPORT_SYMBOL(thread_group_exited);
1911 
1912 /*
1913  * This needs to be __function_aligned as GCC implicitly makes any
1914  * implementation of abort() cold and drops alignment specified by
1915  * -falign-functions=N.
1916  *
1917  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1918  */
abort(void)1919 __weak __function_aligned void abort(void)
1920 {
1921 	BUG();
1922 
1923 	/* if that doesn't kill us, halt */
1924 	panic("Oops failed to kill thread");
1925 }
1926 EXPORT_SYMBOL(abort);
1927