xref: /openbmc/linux/arch/s390/kernel/time.c (revision 2612e3bbc0386368a850140a6c9b990cd496a5ec)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *    Time of day based timer functions.
4   *
5   *  S390 version
6   *    Copyright IBM Corp. 1999, 2008
7   *    Author(s): Hartmut Penner (hp@de.ibm.com),
8   *               Martin Schwidefsky (schwidefsky@de.ibm.com),
9   *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10   *
11   *  Derived from "arch/i386/kernel/time.c"
12   *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
13   */
14  
15  #define KMSG_COMPONENT "time"
16  #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17  
18  #include <linux/kernel_stat.h>
19  #include <linux/errno.h>
20  #include <linux/export.h>
21  #include <linux/sched.h>
22  #include <linux/sched/clock.h>
23  #include <linux/kernel.h>
24  #include <linux/param.h>
25  #include <linux/string.h>
26  #include <linux/mm.h>
27  #include <linux/interrupt.h>
28  #include <linux/cpu.h>
29  #include <linux/stop_machine.h>
30  #include <linux/time.h>
31  #include <linux/device.h>
32  #include <linux/delay.h>
33  #include <linux/init.h>
34  #include <linux/smp.h>
35  #include <linux/types.h>
36  #include <linux/profile.h>
37  #include <linux/timex.h>
38  #include <linux/notifier.h>
39  #include <linux/timekeeper_internal.h>
40  #include <linux/clockchips.h>
41  #include <linux/gfp.h>
42  #include <linux/kprobes.h>
43  #include <linux/uaccess.h>
44  #include <vdso/vsyscall.h>
45  #include <vdso/clocksource.h>
46  #include <vdso/helpers.h>
47  #include <asm/facility.h>
48  #include <asm/delay.h>
49  #include <asm/div64.h>
50  #include <asm/vdso.h>
51  #include <asm/irq.h>
52  #include <asm/irq_regs.h>
53  #include <asm/vtimer.h>
54  #include <asm/stp.h>
55  #include <asm/cio.h>
56  #include "entry.h"
57  
58  union tod_clock tod_clock_base __section(".data");
59  EXPORT_SYMBOL_GPL(tod_clock_base);
60  
61  u64 clock_comparator_max = -1ULL;
62  EXPORT_SYMBOL_GPL(clock_comparator_max);
63  
64  static DEFINE_PER_CPU(struct clock_event_device, comparators);
65  
66  ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
67  EXPORT_SYMBOL(s390_epoch_delta_notifier);
68  
69  unsigned char ptff_function_mask[16];
70  
71  static unsigned long lpar_offset;
72  static unsigned long initial_leap_seconds;
73  static unsigned long tod_steering_end;
74  static long tod_steering_delta;
75  
76  /*
77   * Get time offsets with PTFF
78   */
time_early_init(void)79  void __init time_early_init(void)
80  {
81  	struct ptff_qto qto;
82  	struct ptff_qui qui;
83  	int cs;
84  
85  	/* Initialize TOD steering parameters */
86  	tod_steering_end = tod_clock_base.tod;
87  	for (cs = 0; cs < CS_BASES; cs++)
88  		vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
89  
90  	if (!test_facility(28))
91  		return;
92  
93  	ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
94  
95  	/* get LPAR offset */
96  	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
97  		lpar_offset = qto.tod_epoch_difference;
98  
99  	/* get initial leap seconds */
100  	if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
101  		initial_leap_seconds = (unsigned long)
102  			((long) qui.old_leap * 4096000000L);
103  }
104  
sched_clock_noinstr(void)105  unsigned long long noinstr sched_clock_noinstr(void)
106  {
107  	return tod_to_ns(__get_tod_clock_monotonic());
108  }
109  
110  /*
111   * Scheduler clock - returns current time in nanosec units.
112   */
sched_clock(void)113  unsigned long long notrace sched_clock(void)
114  {
115  	return tod_to_ns(get_tod_clock_monotonic());
116  }
117  NOKPROBE_SYMBOL(sched_clock);
118  
ext_to_timespec64(union tod_clock * clk,struct timespec64 * xt)119  static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt)
120  {
121  	unsigned long rem, sec, nsec;
122  
123  	sec = clk->us;
124  	rem = do_div(sec, 1000000);
125  	nsec = ((clk->sus + (rem << 12)) * 125) >> 9;
126  	xt->tv_sec = sec;
127  	xt->tv_nsec = nsec;
128  }
129  
clock_comparator_work(void)130  void clock_comparator_work(void)
131  {
132  	struct clock_event_device *cd;
133  
134  	S390_lowcore.clock_comparator = clock_comparator_max;
135  	cd = this_cpu_ptr(&comparators);
136  	cd->event_handler(cd);
137  }
138  
s390_next_event(unsigned long delta,struct clock_event_device * evt)139  static int s390_next_event(unsigned long delta,
140  			   struct clock_event_device *evt)
141  {
142  	S390_lowcore.clock_comparator = get_tod_clock() + delta;
143  	set_clock_comparator(S390_lowcore.clock_comparator);
144  	return 0;
145  }
146  
147  /*
148   * Set up lowcore and control register of the current cpu to
149   * enable TOD clock and clock comparator interrupts.
150   */
init_cpu_timer(void)151  void init_cpu_timer(void)
152  {
153  	struct clock_event_device *cd;
154  	int cpu;
155  
156  	S390_lowcore.clock_comparator = clock_comparator_max;
157  	set_clock_comparator(S390_lowcore.clock_comparator);
158  
159  	cpu = smp_processor_id();
160  	cd = &per_cpu(comparators, cpu);
161  	cd->name		= "comparator";
162  	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
163  	cd->mult		= 16777;
164  	cd->shift		= 12;
165  	cd->min_delta_ns	= 1;
166  	cd->min_delta_ticks	= 1;
167  	cd->max_delta_ns	= LONG_MAX;
168  	cd->max_delta_ticks	= ULONG_MAX;
169  	cd->rating		= 400;
170  	cd->cpumask		= cpumask_of(cpu);
171  	cd->set_next_event	= s390_next_event;
172  
173  	clockevents_register_device(cd);
174  
175  	/* Enable clock comparator timer interrupt. */
176  	__ctl_set_bit(0,11);
177  
178  	/* Always allow the timing alert external interrupt. */
179  	__ctl_set_bit(0, 4);
180  }
181  
clock_comparator_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)182  static void clock_comparator_interrupt(struct ext_code ext_code,
183  				       unsigned int param32,
184  				       unsigned long param64)
185  {
186  	inc_irq_stat(IRQEXT_CLK);
187  	if (S390_lowcore.clock_comparator == clock_comparator_max)
188  		set_clock_comparator(S390_lowcore.clock_comparator);
189  }
190  
191  static void stp_timing_alert(struct stp_irq_parm *);
192  
timing_alert_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)193  static void timing_alert_interrupt(struct ext_code ext_code,
194  				   unsigned int param32, unsigned long param64)
195  {
196  	inc_irq_stat(IRQEXT_TLA);
197  	if (param32 & 0x00038000)
198  		stp_timing_alert((struct stp_irq_parm *) &param32);
199  }
200  
201  static void stp_reset(void);
202  
read_persistent_clock64(struct timespec64 * ts)203  void read_persistent_clock64(struct timespec64 *ts)
204  {
205  	union tod_clock clk;
206  	u64 delta;
207  
208  	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
209  	store_tod_clock_ext(&clk);
210  	clk.eitod -= delta;
211  	ext_to_timespec64(&clk, ts);
212  }
213  
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)214  void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
215  						 struct timespec64 *boot_offset)
216  {
217  	struct timespec64 boot_time;
218  	union tod_clock clk;
219  	u64 delta;
220  
221  	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
222  	clk = tod_clock_base;
223  	clk.eitod -= delta;
224  	ext_to_timespec64(&clk, &boot_time);
225  
226  	read_persistent_clock64(wall_time);
227  	*boot_offset = timespec64_sub(*wall_time, boot_time);
228  }
229  
read_tod_clock(struct clocksource * cs)230  static u64 read_tod_clock(struct clocksource *cs)
231  {
232  	unsigned long now, adj;
233  
234  	preempt_disable(); /* protect from changes to steering parameters */
235  	now = get_tod_clock();
236  	adj = tod_steering_end - now;
237  	if (unlikely((s64) adj > 0))
238  		/*
239  		 * manually steer by 1 cycle every 2^16 cycles. This
240  		 * corresponds to shifting the tod delta by 15. 1s is
241  		 * therefore steered in ~9h. The adjust will decrease
242  		 * over time, until it finally reaches 0.
243  		 */
244  		now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
245  	preempt_enable();
246  	return now;
247  }
248  
249  static struct clocksource clocksource_tod = {
250  	.name		= "tod",
251  	.rating		= 400,
252  	.read		= read_tod_clock,
253  	.mask		= CLOCKSOURCE_MASK(64),
254  	.mult		= 1000,
255  	.shift		= 12,
256  	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
257  	.vdso_clock_mode = VDSO_CLOCKMODE_TOD,
258  };
259  
clocksource_default_clock(void)260  struct clocksource * __init clocksource_default_clock(void)
261  {
262  	return &clocksource_tod;
263  }
264  
265  /*
266   * Initialize the TOD clock and the CPU timer of
267   * the boot cpu.
268   */
time_init(void)269  void __init time_init(void)
270  {
271  	/* Reset time synchronization interfaces. */
272  	stp_reset();
273  
274  	/* request the clock comparator external interrupt */
275  	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
276  		panic("Couldn't request external interrupt 0x1004");
277  
278  	/* request the timing alert external interrupt */
279  	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
280  		panic("Couldn't request external interrupt 0x1406");
281  
282  	if (__clocksource_register(&clocksource_tod) != 0)
283  		panic("Could not register TOD clock source");
284  
285  	/* Enable TOD clock interrupts on the boot cpu. */
286  	init_cpu_timer();
287  
288  	/* Enable cpu timer interrupts on the boot cpu. */
289  	vtime_init();
290  }
291  
292  static DEFINE_PER_CPU(atomic_t, clock_sync_word);
293  static DEFINE_MUTEX(stp_mutex);
294  static unsigned long clock_sync_flags;
295  
296  #define CLOCK_SYNC_HAS_STP		0
297  #define CLOCK_SYNC_STP			1
298  #define CLOCK_SYNC_STPINFO_VALID	2
299  
300  /*
301   * The get_clock function for the physical clock. It will get the current
302   * TOD clock, subtract the LPAR offset and write the result to *clock.
303   * The function returns 0 if the clock is in sync with the external time
304   * source. If the clock mode is local it will return -EOPNOTSUPP and
305   * -EAGAIN if the clock is not in sync with the external reference.
306   */
get_phys_clock(unsigned long * clock)307  int get_phys_clock(unsigned long *clock)
308  {
309  	atomic_t *sw_ptr;
310  	unsigned int sw0, sw1;
311  
312  	sw_ptr = &get_cpu_var(clock_sync_word);
313  	sw0 = atomic_read(sw_ptr);
314  	*clock = get_tod_clock() - lpar_offset;
315  	sw1 = atomic_read(sw_ptr);
316  	put_cpu_var(clock_sync_word);
317  	if (sw0 == sw1 && (sw0 & 0x80000000U))
318  		/* Success: time is in sync. */
319  		return 0;
320  	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
321  		return -EOPNOTSUPP;
322  	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
323  		return -EACCES;
324  	return -EAGAIN;
325  }
326  EXPORT_SYMBOL(get_phys_clock);
327  
328  /*
329   * Make get_phys_clock() return -EAGAIN.
330   */
disable_sync_clock(void * dummy)331  static void disable_sync_clock(void *dummy)
332  {
333  	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
334  	/*
335  	 * Clear the in-sync bit 2^31. All get_phys_clock calls will
336  	 * fail until the sync bit is turned back on. In addition
337  	 * increase the "sequence" counter to avoid the race of an
338  	 * stp event and the complete recovery against get_phys_clock.
339  	 */
340  	atomic_andnot(0x80000000, sw_ptr);
341  	atomic_inc(sw_ptr);
342  }
343  
344  /*
345   * Make get_phys_clock() return 0 again.
346   * Needs to be called from a context disabled for preemption.
347   */
enable_sync_clock(void)348  static void enable_sync_clock(void)
349  {
350  	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
351  	atomic_or(0x80000000, sw_ptr);
352  }
353  
354  /*
355   * Function to check if the clock is in sync.
356   */
check_sync_clock(void)357  static inline int check_sync_clock(void)
358  {
359  	atomic_t *sw_ptr;
360  	int rc;
361  
362  	sw_ptr = &get_cpu_var(clock_sync_word);
363  	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
364  	put_cpu_var(clock_sync_word);
365  	return rc;
366  }
367  
368  /*
369   * Apply clock delta to the global data structures.
370   * This is called once on the CPU that performed the clock sync.
371   */
clock_sync_global(long delta)372  static void clock_sync_global(long delta)
373  {
374  	unsigned long now, adj;
375  	struct ptff_qto qto;
376  	int cs;
377  
378  	/* Fixup the monotonic sched clock. */
379  	tod_clock_base.eitod += delta;
380  	/* Adjust TOD steering parameters. */
381  	now = get_tod_clock();
382  	adj = tod_steering_end - now;
383  	if (unlikely((s64) adj >= 0))
384  		/* Calculate how much of the old adjustment is left. */
385  		tod_steering_delta = (tod_steering_delta < 0) ?
386  			-(adj >> 15) : (adj >> 15);
387  	tod_steering_delta += delta;
388  	if ((abs(tod_steering_delta) >> 48) != 0)
389  		panic("TOD clock sync offset %li is too large to drift\n",
390  		      tod_steering_delta);
391  	tod_steering_end = now + (abs(tod_steering_delta) << 15);
392  	for (cs = 0; cs < CS_BASES; cs++) {
393  		vdso_data[cs].arch_data.tod_steering_end = tod_steering_end;
394  		vdso_data[cs].arch_data.tod_steering_delta = tod_steering_delta;
395  	}
396  
397  	/* Update LPAR offset. */
398  	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
399  		lpar_offset = qto.tod_epoch_difference;
400  	/* Call the TOD clock change notifier. */
401  	atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
402  }
403  
404  /*
405   * Apply clock delta to the per-CPU data structures of this CPU.
406   * This is called for each online CPU after the call to clock_sync_global.
407   */
clock_sync_local(long delta)408  static void clock_sync_local(long delta)
409  {
410  	/* Add the delta to the clock comparator. */
411  	if (S390_lowcore.clock_comparator != clock_comparator_max) {
412  		S390_lowcore.clock_comparator += delta;
413  		set_clock_comparator(S390_lowcore.clock_comparator);
414  	}
415  	/* Adjust the last_update_clock time-stamp. */
416  	S390_lowcore.last_update_clock += delta;
417  }
418  
419  /* Single threaded workqueue used for stp sync events */
420  static struct workqueue_struct *time_sync_wq;
421  
time_init_wq(void)422  static void __init time_init_wq(void)
423  {
424  	if (time_sync_wq)
425  		return;
426  	time_sync_wq = create_singlethread_workqueue("timesync");
427  }
428  
429  struct clock_sync_data {
430  	atomic_t cpus;
431  	int in_sync;
432  	long clock_delta;
433  };
434  
435  /*
436   * Server Time Protocol (STP) code.
437   */
438  static bool stp_online;
439  static struct stp_sstpi stp_info;
440  static void *stp_page;
441  
442  static void stp_work_fn(struct work_struct *work);
443  static DECLARE_WORK(stp_work, stp_work_fn);
444  static struct timer_list stp_timer;
445  
early_parse_stp(char * p)446  static int __init early_parse_stp(char *p)
447  {
448  	return kstrtobool(p, &stp_online);
449  }
450  early_param("stp", early_parse_stp);
451  
452  /*
453   * Reset STP attachment.
454   */
stp_reset(void)455  static void __init stp_reset(void)
456  {
457  	int rc;
458  
459  	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
460  	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
461  	if (rc == 0)
462  		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
463  	else if (stp_online) {
464  		pr_warn("The real or virtual hardware system does not provide an STP interface\n");
465  		free_page((unsigned long) stp_page);
466  		stp_page = NULL;
467  		stp_online = false;
468  	}
469  }
470  
stp_timeout(struct timer_list * unused)471  static void stp_timeout(struct timer_list *unused)
472  {
473  	queue_work(time_sync_wq, &stp_work);
474  }
475  
stp_init(void)476  static int __init stp_init(void)
477  {
478  	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
479  		return 0;
480  	timer_setup(&stp_timer, stp_timeout, 0);
481  	time_init_wq();
482  	if (!stp_online)
483  		return 0;
484  	queue_work(time_sync_wq, &stp_work);
485  	return 0;
486  }
487  
488  arch_initcall(stp_init);
489  
490  /*
491   * STP timing alert. There are three causes:
492   * 1) timing status change
493   * 2) link availability change
494   * 3) time control parameter change
495   * In all three cases we are only interested in the clock source state.
496   * If a STP clock source is now available use it.
497   */
stp_timing_alert(struct stp_irq_parm * intparm)498  static void stp_timing_alert(struct stp_irq_parm *intparm)
499  {
500  	if (intparm->tsc || intparm->lac || intparm->tcpc)
501  		queue_work(time_sync_wq, &stp_work);
502  }
503  
504  /*
505   * STP sync check machine check. This is called when the timing state
506   * changes from the synchronized state to the unsynchronized state.
507   * After a STP sync check the clock is not in sync. The machine check
508   * is broadcasted to all cpus at the same time.
509   */
stp_sync_check(void)510  int stp_sync_check(void)
511  {
512  	disable_sync_clock(NULL);
513  	return 1;
514  }
515  
516  /*
517   * STP island condition machine check. This is called when an attached
518   * server  attempts to communicate over an STP link and the servers
519   * have matching CTN ids and have a valid stratum-1 configuration
520   * but the configurations do not match.
521   */
stp_island_check(void)522  int stp_island_check(void)
523  {
524  	disable_sync_clock(NULL);
525  	return 1;
526  }
527  
stp_queue_work(void)528  void stp_queue_work(void)
529  {
530  	queue_work(time_sync_wq, &stp_work);
531  }
532  
__store_stpinfo(void)533  static int __store_stpinfo(void)
534  {
535  	int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
536  
537  	if (rc)
538  		clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
539  	else
540  		set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
541  	return rc;
542  }
543  
stpinfo_valid(void)544  static int stpinfo_valid(void)
545  {
546  	return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
547  }
548  
stp_sync_clock(void * data)549  static int stp_sync_clock(void *data)
550  {
551  	struct clock_sync_data *sync = data;
552  	long clock_delta, flags;
553  	static int first;
554  	int rc;
555  
556  	enable_sync_clock();
557  	if (xchg(&first, 1) == 0) {
558  		/* Wait until all other cpus entered the sync function. */
559  		while (atomic_read(&sync->cpus) != 0)
560  			cpu_relax();
561  		rc = 0;
562  		if (stp_info.todoff || stp_info.tmd != 2) {
563  			flags = vdso_update_begin();
564  			rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
565  					&clock_delta);
566  			if (rc == 0) {
567  				sync->clock_delta = clock_delta;
568  				clock_sync_global(clock_delta);
569  				rc = __store_stpinfo();
570  				if (rc == 0 && stp_info.tmd != 2)
571  					rc = -EAGAIN;
572  			}
573  			vdso_update_end(flags);
574  		}
575  		sync->in_sync = rc ? -EAGAIN : 1;
576  		xchg(&first, 0);
577  	} else {
578  		/* Slave */
579  		atomic_dec(&sync->cpus);
580  		/* Wait for in_sync to be set. */
581  		while (READ_ONCE(sync->in_sync) == 0)
582  			__udelay(1);
583  	}
584  	if (sync->in_sync != 1)
585  		/* Didn't work. Clear per-cpu in sync bit again. */
586  		disable_sync_clock(NULL);
587  	/* Apply clock delta to per-CPU fields of this CPU. */
588  	clock_sync_local(sync->clock_delta);
589  
590  	return 0;
591  }
592  
stp_clear_leap(void)593  static int stp_clear_leap(void)
594  {
595  	struct __kernel_timex txc;
596  	int ret;
597  
598  	memset(&txc, 0, sizeof(txc));
599  
600  	ret = do_adjtimex(&txc);
601  	if (ret < 0)
602  		return ret;
603  
604  	txc.modes = ADJ_STATUS;
605  	txc.status &= ~(STA_INS|STA_DEL);
606  	return do_adjtimex(&txc);
607  }
608  
stp_check_leap(void)609  static void stp_check_leap(void)
610  {
611  	struct stp_stzi stzi;
612  	struct stp_lsoib *lsoib = &stzi.lsoib;
613  	struct __kernel_timex txc;
614  	int64_t timediff;
615  	int leapdiff, ret;
616  
617  	if (!stp_info.lu || !check_sync_clock()) {
618  		/*
619  		 * Either a scheduled leap second was removed by the operator,
620  		 * or STP is out of sync. In both cases, clear the leap second
621  		 * kernel flags.
622  		 */
623  		if (stp_clear_leap() < 0)
624  			pr_err("failed to clear leap second flags\n");
625  		return;
626  	}
627  
628  	if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) {
629  		pr_err("stzi failed\n");
630  		return;
631  	}
632  
633  	timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC;
634  	leapdiff = lsoib->nlso - lsoib->also;
635  
636  	if (leapdiff != 1 && leapdiff != -1) {
637  		pr_err("Cannot schedule %d leap seconds\n", leapdiff);
638  		return;
639  	}
640  
641  	if (timediff < 0) {
642  		if (stp_clear_leap() < 0)
643  			pr_err("failed to clear leap second flags\n");
644  	} else if (timediff < 7200) {
645  		memset(&txc, 0, sizeof(txc));
646  		ret = do_adjtimex(&txc);
647  		if (ret < 0)
648  			return;
649  
650  		txc.modes = ADJ_STATUS;
651  		if (leapdiff > 0)
652  			txc.status |= STA_INS;
653  		else
654  			txc.status |= STA_DEL;
655  		ret = do_adjtimex(&txc);
656  		if (ret < 0)
657  			pr_err("failed to set leap second flags\n");
658  		/* arm Timer to clear leap second flags */
659  		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC));
660  	} else {
661  		/* The day the leap second is scheduled for hasn't been reached. Retry
662  		 * in one hour.
663  		 */
664  		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC));
665  	}
666  }
667  
668  /*
669   * STP work. Check for the STP state and take over the clock
670   * synchronization if the STP clock source is usable.
671   */
stp_work_fn(struct work_struct * work)672  static void stp_work_fn(struct work_struct *work)
673  {
674  	struct clock_sync_data stp_sync;
675  	int rc;
676  
677  	/* prevent multiple execution. */
678  	mutex_lock(&stp_mutex);
679  
680  	if (!stp_online) {
681  		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
682  		del_timer_sync(&stp_timer);
683  		goto out_unlock;
684  	}
685  
686  	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL);
687  	if (rc)
688  		goto out_unlock;
689  
690  	rc = __store_stpinfo();
691  	if (rc || stp_info.c == 0)
692  		goto out_unlock;
693  
694  	/* Skip synchronization if the clock is already in sync. */
695  	if (!check_sync_clock()) {
696  		memset(&stp_sync, 0, sizeof(stp_sync));
697  		cpus_read_lock();
698  		atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
699  		stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
700  		cpus_read_unlock();
701  	}
702  
703  	if (!check_sync_clock())
704  		/*
705  		 * There is a usable clock but the synchronization failed.
706  		 * Retry after a second.
707  		 */
708  		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC));
709  	else if (stp_info.lu)
710  		stp_check_leap();
711  
712  out_unlock:
713  	mutex_unlock(&stp_mutex);
714  }
715  
716  /*
717   * STP subsys sysfs interface functions
718   */
719  static struct bus_type stp_subsys = {
720  	.name		= "stp",
721  	.dev_name	= "stp",
722  };
723  
ctn_id_show(struct device * dev,struct device_attribute * attr,char * buf)724  static ssize_t ctn_id_show(struct device *dev,
725  				struct device_attribute *attr,
726  				char *buf)
727  {
728  	ssize_t ret = -ENODATA;
729  
730  	mutex_lock(&stp_mutex);
731  	if (stpinfo_valid())
732  		ret = sprintf(buf, "%016lx\n",
733  			      *(unsigned long *) stp_info.ctnid);
734  	mutex_unlock(&stp_mutex);
735  	return ret;
736  }
737  
738  static DEVICE_ATTR_RO(ctn_id);
739  
ctn_type_show(struct device * dev,struct device_attribute * attr,char * buf)740  static ssize_t ctn_type_show(struct device *dev,
741  				struct device_attribute *attr,
742  				char *buf)
743  {
744  	ssize_t ret = -ENODATA;
745  
746  	mutex_lock(&stp_mutex);
747  	if (stpinfo_valid())
748  		ret = sprintf(buf, "%i\n", stp_info.ctn);
749  	mutex_unlock(&stp_mutex);
750  	return ret;
751  }
752  
753  static DEVICE_ATTR_RO(ctn_type);
754  
dst_offset_show(struct device * dev,struct device_attribute * attr,char * buf)755  static ssize_t dst_offset_show(struct device *dev,
756  				   struct device_attribute *attr,
757  				   char *buf)
758  {
759  	ssize_t ret = -ENODATA;
760  
761  	mutex_lock(&stp_mutex);
762  	if (stpinfo_valid() && (stp_info.vbits & 0x2000))
763  		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
764  	mutex_unlock(&stp_mutex);
765  	return ret;
766  }
767  
768  static DEVICE_ATTR_RO(dst_offset);
769  
leap_seconds_show(struct device * dev,struct device_attribute * attr,char * buf)770  static ssize_t leap_seconds_show(struct device *dev,
771  					struct device_attribute *attr,
772  					char *buf)
773  {
774  	ssize_t ret = -ENODATA;
775  
776  	mutex_lock(&stp_mutex);
777  	if (stpinfo_valid() && (stp_info.vbits & 0x8000))
778  		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
779  	mutex_unlock(&stp_mutex);
780  	return ret;
781  }
782  
783  static DEVICE_ATTR_RO(leap_seconds);
784  
leap_seconds_scheduled_show(struct device * dev,struct device_attribute * attr,char * buf)785  static ssize_t leap_seconds_scheduled_show(struct device *dev,
786  						struct device_attribute *attr,
787  						char *buf)
788  {
789  	struct stp_stzi stzi;
790  	ssize_t ret;
791  
792  	mutex_lock(&stp_mutex);
793  	if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) {
794  		mutex_unlock(&stp_mutex);
795  		return -ENODATA;
796  	}
797  
798  	ret = chsc_stzi(stp_page, &stzi, sizeof(stzi));
799  	mutex_unlock(&stp_mutex);
800  	if (ret < 0)
801  		return ret;
802  
803  	if (!stzi.lsoib.p)
804  		return sprintf(buf, "0,0\n");
805  
806  	return sprintf(buf, "%lu,%d\n",
807  		       tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC,
808  		       stzi.lsoib.nlso - stzi.lsoib.also);
809  }
810  
811  static DEVICE_ATTR_RO(leap_seconds_scheduled);
812  
stratum_show(struct device * dev,struct device_attribute * attr,char * buf)813  static ssize_t stratum_show(struct device *dev,
814  				struct device_attribute *attr,
815  				char *buf)
816  {
817  	ssize_t ret = -ENODATA;
818  
819  	mutex_lock(&stp_mutex);
820  	if (stpinfo_valid())
821  		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
822  	mutex_unlock(&stp_mutex);
823  	return ret;
824  }
825  
826  static DEVICE_ATTR_RO(stratum);
827  
time_offset_show(struct device * dev,struct device_attribute * attr,char * buf)828  static ssize_t time_offset_show(struct device *dev,
829  				struct device_attribute *attr,
830  				char *buf)
831  {
832  	ssize_t ret = -ENODATA;
833  
834  	mutex_lock(&stp_mutex);
835  	if (stpinfo_valid() && (stp_info.vbits & 0x0800))
836  		ret = sprintf(buf, "%i\n", (int) stp_info.tto);
837  	mutex_unlock(&stp_mutex);
838  	return ret;
839  }
840  
841  static DEVICE_ATTR_RO(time_offset);
842  
time_zone_offset_show(struct device * dev,struct device_attribute * attr,char * buf)843  static ssize_t time_zone_offset_show(struct device *dev,
844  				struct device_attribute *attr,
845  				char *buf)
846  {
847  	ssize_t ret = -ENODATA;
848  
849  	mutex_lock(&stp_mutex);
850  	if (stpinfo_valid() && (stp_info.vbits & 0x4000))
851  		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
852  	mutex_unlock(&stp_mutex);
853  	return ret;
854  }
855  
856  static DEVICE_ATTR_RO(time_zone_offset);
857  
timing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)858  static ssize_t timing_mode_show(struct device *dev,
859  				struct device_attribute *attr,
860  				char *buf)
861  {
862  	ssize_t ret = -ENODATA;
863  
864  	mutex_lock(&stp_mutex);
865  	if (stpinfo_valid())
866  		ret = sprintf(buf, "%i\n", stp_info.tmd);
867  	mutex_unlock(&stp_mutex);
868  	return ret;
869  }
870  
871  static DEVICE_ATTR_RO(timing_mode);
872  
timing_state_show(struct device * dev,struct device_attribute * attr,char * buf)873  static ssize_t timing_state_show(struct device *dev,
874  				struct device_attribute *attr,
875  				char *buf)
876  {
877  	ssize_t ret = -ENODATA;
878  
879  	mutex_lock(&stp_mutex);
880  	if (stpinfo_valid())
881  		ret = sprintf(buf, "%i\n", stp_info.tst);
882  	mutex_unlock(&stp_mutex);
883  	return ret;
884  }
885  
886  static DEVICE_ATTR_RO(timing_state);
887  
online_show(struct device * dev,struct device_attribute * attr,char * buf)888  static ssize_t online_show(struct device *dev,
889  				struct device_attribute *attr,
890  				char *buf)
891  {
892  	return sprintf(buf, "%i\n", stp_online);
893  }
894  
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)895  static ssize_t online_store(struct device *dev,
896  				struct device_attribute *attr,
897  				const char *buf, size_t count)
898  {
899  	unsigned int value;
900  
901  	value = simple_strtoul(buf, NULL, 0);
902  	if (value != 0 && value != 1)
903  		return -EINVAL;
904  	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
905  		return -EOPNOTSUPP;
906  	mutex_lock(&stp_mutex);
907  	stp_online = value;
908  	if (stp_online)
909  		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
910  	else
911  		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
912  	queue_work(time_sync_wq, &stp_work);
913  	mutex_unlock(&stp_mutex);
914  	return count;
915  }
916  
917  /*
918   * Can't use DEVICE_ATTR because the attribute should be named
919   * stp/online but dev_attr_online already exists in this file ..
920   */
921  static DEVICE_ATTR_RW(online);
922  
923  static struct attribute *stp_dev_attrs[] = {
924  	&dev_attr_ctn_id.attr,
925  	&dev_attr_ctn_type.attr,
926  	&dev_attr_dst_offset.attr,
927  	&dev_attr_leap_seconds.attr,
928  	&dev_attr_online.attr,
929  	&dev_attr_leap_seconds_scheduled.attr,
930  	&dev_attr_stratum.attr,
931  	&dev_attr_time_offset.attr,
932  	&dev_attr_time_zone_offset.attr,
933  	&dev_attr_timing_mode.attr,
934  	&dev_attr_timing_state.attr,
935  	NULL
936  };
937  ATTRIBUTE_GROUPS(stp_dev);
938  
stp_init_sysfs(void)939  static int __init stp_init_sysfs(void)
940  {
941  	return subsys_system_register(&stp_subsys, stp_dev_groups);
942  }
943  
944  device_initcall(stp_init_sysfs);
945