1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6 */
7
8 /*
9 * UBI wear-leveling sub-system.
10 *
11 * This sub-system is responsible for wear-leveling. It works in terms of
12 * physical eraseblocks and erase counters and knows nothing about logical
13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17 *
18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
20 *
21 * When physical eraseblocks are returned to the WL sub-system by means of the
22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23 * done asynchronously in context of the per-UBI device background thread,
24 * which is also managed by the WL sub-system.
25 *
26 * The wear-leveling is ensured by means of moving the contents of used
27 * physical eraseblocks with low erase counter to free physical eraseblocks
28 * with high erase counter.
29 *
30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31 * bad.
32 *
33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34 * in a physical eraseblock, it has to be moved. Technically this is the same
35 * as moving it for wear-leveling reasons.
36 *
37 * As it was said, for the UBI sub-system all physical eraseblocks are either
38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
41 *
42 * When the WL sub-system returns a physical eraseblock, the physical
43 * eraseblock is protected from being moved for some "time". For this reason,
44 * the physical eraseblock is not directly moved from the @wl->free tree to the
45 * @wl->used tree. There is a protection queue in between where this
46 * physical eraseblock is temporarily stored (@wl->pq).
47 *
48 * All this protection stuff is needed because:
49 * o we don't want to move physical eraseblocks just after we have given them
50 * to the user; instead, we first want to let users fill them up with data;
51 *
52 * o there is a chance that the user will put the physical eraseblock very
53 * soon, so it makes sense not to move it for some time, but wait.
54 *
55 * Physical eraseblocks stay protected only for limited time. But the "time" is
56 * measured in erase cycles in this case. This is implemented with help of the
57 * protection queue. Eraseblocks are put to the tail of this queue when they
58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59 * head of the queue on each erase operation (for any eraseblock). So the
60 * length of the queue defines how may (global) erase cycles PEBs are protected.
61 *
62 * To put it differently, each physical eraseblock has 2 main states: free and
63 * used. The former state corresponds to the @wl->free tree. The latter state
64 * is split up on several sub-states:
65 * o the WL movement is allowed (@wl->used tree);
66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67 * erroneous - e.g., there was a read error;
68 * o the WL movement is temporarily prohibited (@wl->pq queue);
69 * o scrubbing is needed (@wl->scrub tree).
70 *
71 * Depending on the sub-state, wear-leveling entries of the used physical
72 * eraseblocks may be kept in one of those structures.
73 *
74 * Note, in this implementation, we keep a small in-RAM object for each physical
75 * eraseblock. This is surely not a scalable solution. But it appears to be good
76 * enough for moderately large flashes and it is simple. In future, one may
77 * re-work this sub-system and make it more scalable.
78 *
79 * At the moment this sub-system does not utilize the sequence number, which
80 * was introduced relatively recently. But it would be wise to do this because
81 * the sequence number of a logical eraseblock characterizes how old is it. For
82 * example, when we move a PEB with low erase counter, and we need to pick the
83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84 * pick target PEB with an average EC if our PEB is not very "old". This is a
85 * room for future re-works of the WL sub-system.
86 */
87
88 #include <linux/slab.h>
89 #include <linux/crc32.h>
90 #include <linux/freezer.h>
91 #include <linux/kthread.h>
92 #include "ubi.h"
93 #include "wl.h"
94
95 /* Number of physical eraseblocks reserved for wear-leveling purposes */
96 #define WL_RESERVED_PEBS 1
97
98 /*
99 * Maximum difference between two erase counters. If this threshold is
100 * exceeded, the WL sub-system starts moving data from used physical
101 * eraseblocks with low erase counter to free physical eraseblocks with high
102 * erase counter.
103 */
104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
105
106 /*
107 * When a physical eraseblock is moved, the WL sub-system has to pick the target
108 * physical eraseblock to move to. The simplest way would be just to pick the
109 * one with the highest erase counter. But in certain workloads this could lead
110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111 * situation when the picked physical eraseblock is constantly erased after the
112 * data is written to it. So, we have a constant which limits the highest erase
113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114 * does not pick eraseblocks with erase counter greater than the lowest erase
115 * counter plus %WL_FREE_MAX_DIFF.
116 */
117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
118
119 /*
120 * Maximum number of consecutive background thread failures which is enough to
121 * switch to read-only mode.
122 */
123 #define WL_MAX_FAILURES 32
124
125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
126 static int self_check_in_wl_tree(const struct ubi_device *ubi,
127 struct ubi_wl_entry *e, struct rb_root *root);
128 static int self_check_in_pq(const struct ubi_device *ubi,
129 struct ubi_wl_entry *e);
130
131 /**
132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133 * @e: the wear-leveling entry to add
134 * @root: the root of the tree
135 *
136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137 * the @ubi->used and @ubi->free RB-trees.
138 */
wl_tree_add(struct ubi_wl_entry * e,struct rb_root * root)139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
140 {
141 struct rb_node **p, *parent = NULL;
142
143 p = &root->rb_node;
144 while (*p) {
145 struct ubi_wl_entry *e1;
146
147 parent = *p;
148 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
149
150 if (e->ec < e1->ec)
151 p = &(*p)->rb_left;
152 else if (e->ec > e1->ec)
153 p = &(*p)->rb_right;
154 else {
155 ubi_assert(e->pnum != e1->pnum);
156 if (e->pnum < e1->pnum)
157 p = &(*p)->rb_left;
158 else
159 p = &(*p)->rb_right;
160 }
161 }
162
163 rb_link_node(&e->u.rb, parent, p);
164 rb_insert_color(&e->u.rb, root);
165 }
166
167 /**
168 * wl_entry_destroy - destroy a wear-leveling entry.
169 * @ubi: UBI device description object
170 * @e: the wear-leveling entry to add
171 *
172 * This function destroys a wear leveling entry and removes
173 * the reference from the lookup table.
174 */
wl_entry_destroy(struct ubi_device * ubi,struct ubi_wl_entry * e)175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
176 {
177 ubi->lookuptbl[e->pnum] = NULL;
178 kmem_cache_free(ubi_wl_entry_slab, e);
179 }
180
181 /**
182 * do_work - do one pending work.
183 * @ubi: UBI device description object
184 *
185 * This function returns zero in case of success and a negative error code in
186 * case of failure.
187 */
do_work(struct ubi_device * ubi)188 static int do_work(struct ubi_device *ubi)
189 {
190 int err;
191 struct ubi_work *wrk;
192
193 cond_resched();
194
195 /*
196 * @ubi->work_sem is used to synchronize with the workers. Workers take
197 * it in read mode, so many of them may be doing works at a time. But
198 * the queue flush code has to be sure the whole queue of works is
199 * done, and it takes the mutex in write mode.
200 */
201 down_read(&ubi->work_sem);
202 spin_lock(&ubi->wl_lock);
203 if (list_empty(&ubi->works)) {
204 spin_unlock(&ubi->wl_lock);
205 up_read(&ubi->work_sem);
206 return 0;
207 }
208
209 wrk = list_entry(ubi->works.next, struct ubi_work, list);
210 list_del(&wrk->list);
211 ubi->works_count -= 1;
212 ubi_assert(ubi->works_count >= 0);
213 spin_unlock(&ubi->wl_lock);
214
215 /*
216 * Call the worker function. Do not touch the work structure
217 * after this call as it will have been freed or reused by that
218 * time by the worker function.
219 */
220 err = wrk->func(ubi, wrk, 0);
221 if (err)
222 ubi_err(ubi, "work failed with error code %d", err);
223 up_read(&ubi->work_sem);
224
225 return err;
226 }
227
228 /**
229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
230 * @e: the wear-leveling entry to check
231 * @root: the root of the tree
232 *
233 * This function returns non-zero if @e is in the @root RB-tree and zero if it
234 * is not.
235 */
in_wl_tree(struct ubi_wl_entry * e,struct rb_root * root)236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
237 {
238 struct rb_node *p;
239
240 p = root->rb_node;
241 while (p) {
242 struct ubi_wl_entry *e1;
243
244 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
245
246 if (e->pnum == e1->pnum) {
247 ubi_assert(e == e1);
248 return 1;
249 }
250
251 if (e->ec < e1->ec)
252 p = p->rb_left;
253 else if (e->ec > e1->ec)
254 p = p->rb_right;
255 else {
256 ubi_assert(e->pnum != e1->pnum);
257 if (e->pnum < e1->pnum)
258 p = p->rb_left;
259 else
260 p = p->rb_right;
261 }
262 }
263
264 return 0;
265 }
266
267 /**
268 * in_pq - check if a wear-leveling entry is present in the protection queue.
269 * @ubi: UBI device description object
270 * @e: the wear-leveling entry to check
271 *
272 * This function returns non-zero if @e is in the protection queue and zero
273 * if it is not.
274 */
in_pq(const struct ubi_device * ubi,struct ubi_wl_entry * e)275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
276 {
277 struct ubi_wl_entry *p;
278 int i;
279
280 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
281 list_for_each_entry(p, &ubi->pq[i], u.list)
282 if (p == e)
283 return 1;
284
285 return 0;
286 }
287
288 /**
289 * prot_queue_add - add physical eraseblock to the protection queue.
290 * @ubi: UBI device description object
291 * @e: the physical eraseblock to add
292 *
293 * This function adds @e to the tail of the protection queue @ubi->pq, where
294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
296 * be locked.
297 */
prot_queue_add(struct ubi_device * ubi,struct ubi_wl_entry * e)298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
299 {
300 int pq_tail = ubi->pq_head - 1;
301
302 if (pq_tail < 0)
303 pq_tail = UBI_PROT_QUEUE_LEN - 1;
304 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
305 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
306 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
307 }
308
309 /**
310 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
311 * @ubi: UBI device description object
312 * @root: the RB-tree where to look for
313 * @diff: maximum possible difference from the smallest erase counter
314 *
315 * This function looks for a wear leveling entry with erase counter closest to
316 * min + @diff, where min is the smallest erase counter.
317 */
find_wl_entry(struct ubi_device * ubi,struct rb_root * root,int diff)318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
319 struct rb_root *root, int diff)
320 {
321 struct rb_node *p;
322 struct ubi_wl_entry *e;
323 int max;
324
325 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
326 max = e->ec + diff;
327
328 p = root->rb_node;
329 while (p) {
330 struct ubi_wl_entry *e1;
331
332 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
333 if (e1->ec >= max)
334 p = p->rb_left;
335 else {
336 p = p->rb_right;
337 e = e1;
338 }
339 }
340
341 return e;
342 }
343
344 /**
345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346 * @ubi: UBI device description object
347 * @root: the RB-tree where to look for
348 *
349 * This function looks for a wear leveling entry with medium erase counter,
350 * but not greater or equivalent than the lowest erase counter plus
351 * %WL_FREE_MAX_DIFF/2.
352 */
find_mean_wl_entry(struct ubi_device * ubi,struct rb_root * root)353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354 struct rb_root *root)
355 {
356 struct ubi_wl_entry *e, *first, *last;
357
358 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360
361 if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363
364 /* If no fastmap has been written and this WL entry can be used
365 * as anchor PEB, hold it back and return the second best
366 * WL entry such that fastmap can use the anchor PEB later. */
367 e = may_reserve_for_fm(ubi, e, root);
368 } else
369 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370
371 return e;
372 }
373
374 /**
375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376 * refill_wl_user_pool().
377 * @ubi: UBI device description object
378 *
379 * This function returns a wear leveling entry in case of success and
380 * NULL in case of failure.
381 */
wl_get_wle(struct ubi_device * ubi)382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383 {
384 struct ubi_wl_entry *e;
385
386 e = find_mean_wl_entry(ubi, &ubi->free);
387 if (!e) {
388 ubi_err(ubi, "no free eraseblocks");
389 return NULL;
390 }
391
392 self_check_in_wl_tree(ubi, e, &ubi->free);
393
394 /*
395 * Move the physical eraseblock to the protection queue where it will
396 * be protected from being moved for some time.
397 */
398 rb_erase(&e->u.rb, &ubi->free);
399 ubi->free_count--;
400 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401
402 return e;
403 }
404
405 /**
406 * prot_queue_del - remove a physical eraseblock from the protection queue.
407 * @ubi: UBI device description object
408 * @pnum: the physical eraseblock to remove
409 *
410 * This function deletes PEB @pnum from the protection queue and returns zero
411 * in case of success and %-ENODEV if the PEB was not found.
412 */
prot_queue_del(struct ubi_device * ubi,int pnum)413 static int prot_queue_del(struct ubi_device *ubi, int pnum)
414 {
415 struct ubi_wl_entry *e;
416
417 e = ubi->lookuptbl[pnum];
418 if (!e)
419 return -ENODEV;
420
421 if (self_check_in_pq(ubi, e))
422 return -ENODEV;
423
424 list_del(&e->u.list);
425 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426 return 0;
427 }
428
429 /**
430 * sync_erase - synchronously erase a physical eraseblock.
431 * @ubi: UBI device description object
432 * @e: the physical eraseblock to erase
433 * @torture: if the physical eraseblock has to be tortured
434 *
435 * This function returns zero in case of success and a negative error code in
436 * case of failure.
437 */
sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int torture)438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439 int torture)
440 {
441 int err;
442 struct ubi_ec_hdr *ec_hdr;
443 unsigned long long ec = e->ec;
444
445 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446
447 err = self_check_ec(ubi, e->pnum, e->ec);
448 if (err)
449 return -EINVAL;
450
451 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452 if (!ec_hdr)
453 return -ENOMEM;
454
455 err = ubi_io_sync_erase(ubi, e->pnum, torture);
456 if (err < 0)
457 goto out_free;
458
459 ec += err;
460 if (ec > UBI_MAX_ERASECOUNTER) {
461 /*
462 * Erase counter overflow. Upgrade UBI and use 64-bit
463 * erase counters internally.
464 */
465 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466 e->pnum, ec);
467 err = -EINVAL;
468 goto out_free;
469 }
470
471 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472
473 ec_hdr->ec = cpu_to_be64(ec);
474
475 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476 if (err)
477 goto out_free;
478
479 e->ec = ec;
480 spin_lock(&ubi->wl_lock);
481 if (e->ec > ubi->max_ec)
482 ubi->max_ec = e->ec;
483 spin_unlock(&ubi->wl_lock);
484
485 out_free:
486 kfree(ec_hdr);
487 return err;
488 }
489
490 /**
491 * serve_prot_queue - check if it is time to stop protecting PEBs.
492 * @ubi: UBI device description object
493 *
494 * This function is called after each erase operation and removes PEBs from the
495 * tail of the protection queue. These PEBs have been protected for long enough
496 * and should be moved to the used tree.
497 */
serve_prot_queue(struct ubi_device * ubi)498 static void serve_prot_queue(struct ubi_device *ubi)
499 {
500 struct ubi_wl_entry *e, *tmp;
501 int count;
502
503 /*
504 * There may be several protected physical eraseblock to remove,
505 * process them all.
506 */
507 repeat:
508 count = 0;
509 spin_lock(&ubi->wl_lock);
510 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511 dbg_wl("PEB %d EC %d protection over, move to used tree",
512 e->pnum, e->ec);
513
514 list_del(&e->u.list);
515 wl_tree_add(e, &ubi->used);
516 if (count++ > 32) {
517 /*
518 * Let's be nice and avoid holding the spinlock for
519 * too long.
520 */
521 spin_unlock(&ubi->wl_lock);
522 cond_resched();
523 goto repeat;
524 }
525 }
526
527 ubi->pq_head += 1;
528 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529 ubi->pq_head = 0;
530 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531 spin_unlock(&ubi->wl_lock);
532 }
533
534 /**
535 * __schedule_ubi_work - schedule a work.
536 * @ubi: UBI device description object
537 * @wrk: the work to schedule
538 *
539 * This function adds a work defined by @wrk to the tail of the pending works
540 * list. Can only be used if ubi->work_sem is already held in read mode!
541 */
__schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543 {
544 spin_lock(&ubi->wl_lock);
545 list_add_tail(&wrk->list, &ubi->works);
546 ubi_assert(ubi->works_count >= 0);
547 ubi->works_count += 1;
548 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549 wake_up_process(ubi->bgt_thread);
550 spin_unlock(&ubi->wl_lock);
551 }
552
553 /**
554 * schedule_ubi_work - schedule a work.
555 * @ubi: UBI device description object
556 * @wrk: the work to schedule
557 *
558 * This function adds a work defined by @wrk to the tail of the pending works
559 * list.
560 */
schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562 {
563 down_read(&ubi->work_sem);
564 __schedule_ubi_work(ubi, wrk);
565 up_read(&ubi->work_sem);
566 }
567
568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569 int shutdown);
570
571 /**
572 * schedule_erase - schedule an erase work.
573 * @ubi: UBI device description object
574 * @e: the WL entry of the physical eraseblock to erase
575 * @vol_id: the volume ID that last used this PEB
576 * @lnum: the last used logical eraseblock number for the PEB
577 * @torture: if the physical eraseblock has to be tortured
578 * @nested: denotes whether the work_sem is already held
579 *
580 * This function returns zero in case of success and a %-ENOMEM in case of
581 * failure.
582 */
schedule_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture,bool nested)583 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
584 int vol_id, int lnum, int torture, bool nested)
585 {
586 struct ubi_work *wl_wrk;
587
588 ubi_assert(e);
589
590 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
591 e->pnum, e->ec, torture);
592
593 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
594 if (!wl_wrk)
595 return -ENOMEM;
596
597 wl_wrk->func = &erase_worker;
598 wl_wrk->e = e;
599 wl_wrk->vol_id = vol_id;
600 wl_wrk->lnum = lnum;
601 wl_wrk->torture = torture;
602
603 if (nested)
604 __schedule_ubi_work(ubi, wl_wrk);
605 else
606 schedule_ubi_work(ubi, wl_wrk);
607 return 0;
608 }
609
610 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
611 /**
612 * do_sync_erase - run the erase worker synchronously.
613 * @ubi: UBI device description object
614 * @e: the WL entry of the physical eraseblock to erase
615 * @vol_id: the volume ID that last used this PEB
616 * @lnum: the last used logical eraseblock number for the PEB
617 * @torture: if the physical eraseblock has to be tortured
618 *
619 */
do_sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture)620 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
621 int vol_id, int lnum, int torture)
622 {
623 struct ubi_work wl_wrk;
624
625 dbg_wl("sync erase of PEB %i", e->pnum);
626
627 wl_wrk.e = e;
628 wl_wrk.vol_id = vol_id;
629 wl_wrk.lnum = lnum;
630 wl_wrk.torture = torture;
631
632 return __erase_worker(ubi, &wl_wrk);
633 }
634
635 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
636 /**
637 * wear_leveling_worker - wear-leveling worker function.
638 * @ubi: UBI device description object
639 * @wrk: the work object
640 * @shutdown: non-zero if the worker has to free memory and exit
641 * because the WL-subsystem is shutting down
642 *
643 * This function copies a more worn out physical eraseblock to a less worn out
644 * one. Returns zero in case of success and a negative error code in case of
645 * failure.
646 */
wear_leveling_worker(struct ubi_device * ubi,struct ubi_work * wrk,int shutdown)647 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
648 int shutdown)
649 {
650 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
651 int erase = 0, keep = 0, vol_id = -1, lnum = -1;
652 struct ubi_wl_entry *e1, *e2;
653 struct ubi_vid_io_buf *vidb;
654 struct ubi_vid_hdr *vid_hdr;
655 int dst_leb_clean = 0;
656
657 kfree(wrk);
658 if (shutdown)
659 return 0;
660
661 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
662 if (!vidb)
663 return -ENOMEM;
664
665 vid_hdr = ubi_get_vid_hdr(vidb);
666
667 down_read(&ubi->fm_eba_sem);
668 mutex_lock(&ubi->move_mutex);
669 spin_lock(&ubi->wl_lock);
670 ubi_assert(!ubi->move_from && !ubi->move_to);
671 ubi_assert(!ubi->move_to_put);
672
673 #ifdef CONFIG_MTD_UBI_FASTMAP
674 if (!next_peb_for_wl(ubi) ||
675 #else
676 if (!ubi->free.rb_node ||
677 #endif
678 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
679 /*
680 * No free physical eraseblocks? Well, they must be waiting in
681 * the queue to be erased. Cancel movement - it will be
682 * triggered again when a free physical eraseblock appears.
683 *
684 * No used physical eraseblocks? They must be temporarily
685 * protected from being moved. They will be moved to the
686 * @ubi->used tree later and the wear-leveling will be
687 * triggered again.
688 */
689 dbg_wl("cancel WL, a list is empty: free %d, used %d",
690 !ubi->free.rb_node, !ubi->used.rb_node);
691 goto out_cancel;
692 }
693
694 #ifdef CONFIG_MTD_UBI_FASTMAP
695 e1 = find_anchor_wl_entry(&ubi->used);
696 if (e1 && ubi->fm_anchor &&
697 (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) {
698 ubi->fm_do_produce_anchor = 1;
699 /*
700 * fm_anchor is no longer considered a good anchor.
701 * NULL assignment also prevents multiple wear level checks
702 * of this PEB.
703 */
704 wl_tree_add(ubi->fm_anchor, &ubi->free);
705 ubi->fm_anchor = NULL;
706 ubi->free_count++;
707 }
708
709 if (ubi->fm_do_produce_anchor) {
710 if (!e1)
711 goto out_cancel;
712 e2 = get_peb_for_wl(ubi);
713 if (!e2)
714 goto out_cancel;
715
716 self_check_in_wl_tree(ubi, e1, &ubi->used);
717 rb_erase(&e1->u.rb, &ubi->used);
718 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
719 ubi->fm_do_produce_anchor = 0;
720 } else if (!ubi->scrub.rb_node) {
721 #else
722 if (!ubi->scrub.rb_node) {
723 #endif
724 /*
725 * Now pick the least worn-out used physical eraseblock and a
726 * highly worn-out free physical eraseblock. If the erase
727 * counters differ much enough, start wear-leveling.
728 */
729 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
730 e2 = get_peb_for_wl(ubi);
731 if (!e2)
732 goto out_cancel;
733
734 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
735 dbg_wl("no WL needed: min used EC %d, max free EC %d",
736 e1->ec, e2->ec);
737
738 /* Give the unused PEB back */
739 wl_tree_add(e2, &ubi->free);
740 ubi->free_count++;
741 goto out_cancel;
742 }
743 self_check_in_wl_tree(ubi, e1, &ubi->used);
744 rb_erase(&e1->u.rb, &ubi->used);
745 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
746 e1->pnum, e1->ec, e2->pnum, e2->ec);
747 } else {
748 /* Perform scrubbing */
749 scrubbing = 1;
750 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
751 e2 = get_peb_for_wl(ubi);
752 if (!e2)
753 goto out_cancel;
754
755 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
756 rb_erase(&e1->u.rb, &ubi->scrub);
757 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
758 }
759
760 ubi->move_from = e1;
761 ubi->move_to = e2;
762 spin_unlock(&ubi->wl_lock);
763
764 /*
765 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
766 * We so far do not know which logical eraseblock our physical
767 * eraseblock (@e1) belongs to. We have to read the volume identifier
768 * header first.
769 *
770 * Note, we are protected from this PEB being unmapped and erased. The
771 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
772 * which is being moved was unmapped.
773 */
774
775 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
776 if (err && err != UBI_IO_BITFLIPS) {
777 dst_leb_clean = 1;
778 if (err == UBI_IO_FF) {
779 /*
780 * We are trying to move PEB without a VID header. UBI
781 * always write VID headers shortly after the PEB was
782 * given, so we have a situation when it has not yet
783 * had a chance to write it, because it was preempted.
784 * So add this PEB to the protection queue so far,
785 * because presumably more data will be written there
786 * (including the missing VID header), and then we'll
787 * move it.
788 */
789 dbg_wl("PEB %d has no VID header", e1->pnum);
790 protect = 1;
791 goto out_not_moved;
792 } else if (err == UBI_IO_FF_BITFLIPS) {
793 /*
794 * The same situation as %UBI_IO_FF, but bit-flips were
795 * detected. It is better to schedule this PEB for
796 * scrubbing.
797 */
798 dbg_wl("PEB %d has no VID header but has bit-flips",
799 e1->pnum);
800 scrubbing = 1;
801 goto out_not_moved;
802 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
803 /*
804 * While a full scan would detect interrupted erasures
805 * at attach time we can face them here when attached from
806 * Fastmap.
807 */
808 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
809 e1->pnum);
810 erase = 1;
811 goto out_not_moved;
812 }
813
814 ubi_err(ubi, "error %d while reading VID header from PEB %d",
815 err, e1->pnum);
816 goto out_error;
817 }
818
819 vol_id = be32_to_cpu(vid_hdr->vol_id);
820 lnum = be32_to_cpu(vid_hdr->lnum);
821
822 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
823 if (err) {
824 if (err == MOVE_CANCEL_RACE) {
825 /*
826 * The LEB has not been moved because the volume is
827 * being deleted or the PEB has been put meanwhile. We
828 * should prevent this PEB from being selected for
829 * wear-leveling movement again, so put it to the
830 * protection queue.
831 */
832 protect = 1;
833 dst_leb_clean = 1;
834 goto out_not_moved;
835 }
836 if (err == MOVE_RETRY) {
837 scrubbing = 1;
838 dst_leb_clean = 1;
839 goto out_not_moved;
840 }
841 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
842 err == MOVE_TARGET_RD_ERR) {
843 /*
844 * Target PEB had bit-flips or write error - torture it.
845 */
846 torture = 1;
847 keep = 1;
848 goto out_not_moved;
849 }
850
851 if (err == MOVE_SOURCE_RD_ERR) {
852 /*
853 * An error happened while reading the source PEB. Do
854 * not switch to R/O mode in this case, and give the
855 * upper layers a possibility to recover from this,
856 * e.g. by unmapping corresponding LEB. Instead, just
857 * put this PEB to the @ubi->erroneous list to prevent
858 * UBI from trying to move it over and over again.
859 */
860 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
861 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
862 ubi->erroneous_peb_count);
863 goto out_error;
864 }
865 dst_leb_clean = 1;
866 erroneous = 1;
867 goto out_not_moved;
868 }
869
870 if (err < 0)
871 goto out_error;
872
873 ubi_assert(0);
874 }
875
876 /* The PEB has been successfully moved */
877 if (scrubbing)
878 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
879 e1->pnum, vol_id, lnum, e2->pnum);
880 ubi_free_vid_buf(vidb);
881
882 spin_lock(&ubi->wl_lock);
883 if (!ubi->move_to_put) {
884 wl_tree_add(e2, &ubi->used);
885 e2 = NULL;
886 }
887 ubi->move_from = ubi->move_to = NULL;
888 ubi->move_to_put = ubi->wl_scheduled = 0;
889 spin_unlock(&ubi->wl_lock);
890
891 err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
892 if (err) {
893 if (e2) {
894 spin_lock(&ubi->wl_lock);
895 wl_entry_destroy(ubi, e2);
896 spin_unlock(&ubi->wl_lock);
897 }
898 goto out_ro;
899 }
900
901 if (e2) {
902 /*
903 * Well, the target PEB was put meanwhile, schedule it for
904 * erasure.
905 */
906 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
907 e2->pnum, vol_id, lnum);
908 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
909 if (err)
910 goto out_ro;
911 }
912
913 dbg_wl("done");
914 mutex_unlock(&ubi->move_mutex);
915 up_read(&ubi->fm_eba_sem);
916 return 0;
917
918 /*
919 * For some reasons the LEB was not moved, might be an error, might be
920 * something else. @e1 was not changed, so return it back. @e2 might
921 * have been changed, schedule it for erasure.
922 */
923 out_not_moved:
924 if (vol_id != -1)
925 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
926 e1->pnum, vol_id, lnum, e2->pnum, err);
927 else
928 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
929 e1->pnum, e2->pnum, err);
930 spin_lock(&ubi->wl_lock);
931 if (protect)
932 prot_queue_add(ubi, e1);
933 else if (erroneous) {
934 wl_tree_add(e1, &ubi->erroneous);
935 ubi->erroneous_peb_count += 1;
936 } else if (scrubbing)
937 wl_tree_add(e1, &ubi->scrub);
938 else if (keep)
939 wl_tree_add(e1, &ubi->used);
940 if (dst_leb_clean) {
941 wl_tree_add(e2, &ubi->free);
942 ubi->free_count++;
943 }
944
945 ubi_assert(!ubi->move_to_put);
946 ubi->move_from = ubi->move_to = NULL;
947 ubi->wl_scheduled = 0;
948 spin_unlock(&ubi->wl_lock);
949
950 ubi_free_vid_buf(vidb);
951 if (dst_leb_clean) {
952 ensure_wear_leveling(ubi, 1);
953 } else {
954 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
955 if (err)
956 goto out_ro;
957 }
958
959 if (erase) {
960 err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
961 if (err)
962 goto out_ro;
963 }
964
965 mutex_unlock(&ubi->move_mutex);
966 up_read(&ubi->fm_eba_sem);
967 return 0;
968
969 out_error:
970 if (vol_id != -1)
971 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
972 err, e1->pnum, e2->pnum);
973 else
974 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
975 err, e1->pnum, vol_id, lnum, e2->pnum);
976 spin_lock(&ubi->wl_lock);
977 ubi->move_from = ubi->move_to = NULL;
978 ubi->move_to_put = ubi->wl_scheduled = 0;
979 wl_entry_destroy(ubi, e1);
980 wl_entry_destroy(ubi, e2);
981 spin_unlock(&ubi->wl_lock);
982
983 ubi_free_vid_buf(vidb);
984
985 out_ro:
986 ubi_ro_mode(ubi);
987 mutex_unlock(&ubi->move_mutex);
988 up_read(&ubi->fm_eba_sem);
989 ubi_assert(err != 0);
990 return err < 0 ? err : -EIO;
991
992 out_cancel:
993 ubi->wl_scheduled = 0;
994 spin_unlock(&ubi->wl_lock);
995 mutex_unlock(&ubi->move_mutex);
996 up_read(&ubi->fm_eba_sem);
997 ubi_free_vid_buf(vidb);
998 return 0;
999 }
1000
1001 /**
1002 * ensure_wear_leveling - schedule wear-leveling if it is needed.
1003 * @ubi: UBI device description object
1004 * @nested: set to non-zero if this function is called from UBI worker
1005 *
1006 * This function checks if it is time to start wear-leveling and schedules it
1007 * if yes. This function returns zero in case of success and a negative error
1008 * code in case of failure.
1009 */
1010 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1011 {
1012 int err = 0;
1013 struct ubi_work *wrk;
1014
1015 spin_lock(&ubi->wl_lock);
1016 if (ubi->wl_scheduled)
1017 /* Wear-leveling is already in the work queue */
1018 goto out_unlock;
1019
1020 /*
1021 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1022 * WL worker has to be scheduled anyway.
1023 */
1024 if (!ubi->scrub.rb_node) {
1025 #ifdef CONFIG_MTD_UBI_FASTMAP
1026 if (!need_wear_leveling(ubi))
1027 goto out_unlock;
1028 #else
1029 struct ubi_wl_entry *e1;
1030 struct ubi_wl_entry *e2;
1031
1032 if (!ubi->used.rb_node || !ubi->free.rb_node)
1033 /* No physical eraseblocks - no deal */
1034 goto out_unlock;
1035
1036 /*
1037 * We schedule wear-leveling only if the difference between the
1038 * lowest erase counter of used physical eraseblocks and a high
1039 * erase counter of free physical eraseblocks is greater than
1040 * %UBI_WL_THRESHOLD.
1041 */
1042 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1043 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1044
1045 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1046 goto out_unlock;
1047 #endif
1048 dbg_wl("schedule wear-leveling");
1049 } else
1050 dbg_wl("schedule scrubbing");
1051
1052 ubi->wl_scheduled = 1;
1053 spin_unlock(&ubi->wl_lock);
1054
1055 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1056 if (!wrk) {
1057 err = -ENOMEM;
1058 goto out_cancel;
1059 }
1060
1061 wrk->func = &wear_leveling_worker;
1062 if (nested)
1063 __schedule_ubi_work(ubi, wrk);
1064 else
1065 schedule_ubi_work(ubi, wrk);
1066 return err;
1067
1068 out_cancel:
1069 spin_lock(&ubi->wl_lock);
1070 ubi->wl_scheduled = 0;
1071 out_unlock:
1072 spin_unlock(&ubi->wl_lock);
1073 return err;
1074 }
1075
1076 /**
1077 * __erase_worker - physical eraseblock erase worker function.
1078 * @ubi: UBI device description object
1079 * @wl_wrk: the work object
1080 *
1081 * This function erases a physical eraseblock and perform torture testing if
1082 * needed. It also takes care about marking the physical eraseblock bad if
1083 * needed. Returns zero in case of success and a negative error code in case of
1084 * failure.
1085 */
1086 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1087 {
1088 struct ubi_wl_entry *e = wl_wrk->e;
1089 int pnum = e->pnum;
1090 int vol_id = wl_wrk->vol_id;
1091 int lnum = wl_wrk->lnum;
1092 int err, available_consumed = 0;
1093
1094 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1095 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1096
1097 err = sync_erase(ubi, e, wl_wrk->torture);
1098 if (!err) {
1099 spin_lock(&ubi->wl_lock);
1100
1101 if (!ubi->fm_disabled && !ubi->fm_anchor &&
1102 e->pnum < UBI_FM_MAX_START) {
1103 /*
1104 * Abort anchor production, if needed it will be
1105 * enabled again in the wear leveling started below.
1106 */
1107 ubi->fm_anchor = e;
1108 ubi->fm_do_produce_anchor = 0;
1109 } else {
1110 wl_tree_add(e, &ubi->free);
1111 ubi->free_count++;
1112 }
1113
1114 spin_unlock(&ubi->wl_lock);
1115
1116 /*
1117 * One more erase operation has happened, take care about
1118 * protected physical eraseblocks.
1119 */
1120 serve_prot_queue(ubi);
1121
1122 /* And take care about wear-leveling */
1123 err = ensure_wear_leveling(ubi, 1);
1124 return err;
1125 }
1126
1127 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1128
1129 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1130 err == -EBUSY) {
1131 int err1;
1132
1133 /* Re-schedule the LEB for erasure */
1134 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, true);
1135 if (err1) {
1136 spin_lock(&ubi->wl_lock);
1137 wl_entry_destroy(ubi, e);
1138 spin_unlock(&ubi->wl_lock);
1139 err = err1;
1140 goto out_ro;
1141 }
1142 return err;
1143 }
1144
1145 spin_lock(&ubi->wl_lock);
1146 wl_entry_destroy(ubi, e);
1147 spin_unlock(&ubi->wl_lock);
1148 if (err != -EIO)
1149 /*
1150 * If this is not %-EIO, we have no idea what to do. Scheduling
1151 * this physical eraseblock for erasure again would cause
1152 * errors again and again. Well, lets switch to R/O mode.
1153 */
1154 goto out_ro;
1155
1156 /* It is %-EIO, the PEB went bad */
1157
1158 if (!ubi->bad_allowed) {
1159 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1160 goto out_ro;
1161 }
1162
1163 spin_lock(&ubi->volumes_lock);
1164 if (ubi->beb_rsvd_pebs == 0) {
1165 if (ubi->avail_pebs == 0) {
1166 spin_unlock(&ubi->volumes_lock);
1167 ubi_err(ubi, "no reserved/available physical eraseblocks");
1168 goto out_ro;
1169 }
1170 ubi->avail_pebs -= 1;
1171 available_consumed = 1;
1172 }
1173 spin_unlock(&ubi->volumes_lock);
1174
1175 ubi_msg(ubi, "mark PEB %d as bad", pnum);
1176 err = ubi_io_mark_bad(ubi, pnum);
1177 if (err)
1178 goto out_ro;
1179
1180 spin_lock(&ubi->volumes_lock);
1181 if (ubi->beb_rsvd_pebs > 0) {
1182 if (available_consumed) {
1183 /*
1184 * The amount of reserved PEBs increased since we last
1185 * checked.
1186 */
1187 ubi->avail_pebs += 1;
1188 available_consumed = 0;
1189 }
1190 ubi->beb_rsvd_pebs -= 1;
1191 }
1192 ubi->bad_peb_count += 1;
1193 ubi->good_peb_count -= 1;
1194 ubi_calculate_reserved(ubi);
1195 if (available_consumed)
1196 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1197 else if (ubi->beb_rsvd_pebs)
1198 ubi_msg(ubi, "%d PEBs left in the reserve",
1199 ubi->beb_rsvd_pebs);
1200 else
1201 ubi_warn(ubi, "last PEB from the reserve was used");
1202 spin_unlock(&ubi->volumes_lock);
1203
1204 return err;
1205
1206 out_ro:
1207 if (available_consumed) {
1208 spin_lock(&ubi->volumes_lock);
1209 ubi->avail_pebs += 1;
1210 spin_unlock(&ubi->volumes_lock);
1211 }
1212 ubi_ro_mode(ubi);
1213 return err;
1214 }
1215
1216 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1217 int shutdown)
1218 {
1219 int ret;
1220
1221 if (shutdown) {
1222 struct ubi_wl_entry *e = wl_wrk->e;
1223
1224 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1225 kfree(wl_wrk);
1226 wl_entry_destroy(ubi, e);
1227 return 0;
1228 }
1229
1230 ret = __erase_worker(ubi, wl_wrk);
1231 kfree(wl_wrk);
1232 return ret;
1233 }
1234
1235 /**
1236 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1237 * @ubi: UBI device description object
1238 * @vol_id: the volume ID that last used this PEB
1239 * @lnum: the last used logical eraseblock number for the PEB
1240 * @pnum: physical eraseblock to return
1241 * @torture: if this physical eraseblock has to be tortured
1242 *
1243 * This function is called to return physical eraseblock @pnum to the pool of
1244 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1245 * occurred to this @pnum and it has to be tested. This function returns zero
1246 * in case of success, and a negative error code in case of failure.
1247 */
1248 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1249 int pnum, int torture)
1250 {
1251 int err;
1252 struct ubi_wl_entry *e;
1253
1254 dbg_wl("PEB %d", pnum);
1255 ubi_assert(pnum >= 0);
1256 ubi_assert(pnum < ubi->peb_count);
1257
1258 down_read(&ubi->fm_protect);
1259
1260 retry:
1261 spin_lock(&ubi->wl_lock);
1262 e = ubi->lookuptbl[pnum];
1263 if (!e) {
1264 /*
1265 * This wl entry has been removed for some errors by other
1266 * process (eg. wear leveling worker), corresponding process
1267 * (except __erase_worker, which cannot concurrent with
1268 * ubi_wl_put_peb) will set ubi ro_mode at the same time,
1269 * just ignore this wl entry.
1270 */
1271 spin_unlock(&ubi->wl_lock);
1272 up_read(&ubi->fm_protect);
1273 return 0;
1274 }
1275 if (e == ubi->move_from) {
1276 /*
1277 * User is putting the physical eraseblock which was selected to
1278 * be moved. It will be scheduled for erasure in the
1279 * wear-leveling worker.
1280 */
1281 dbg_wl("PEB %d is being moved, wait", pnum);
1282 spin_unlock(&ubi->wl_lock);
1283
1284 /* Wait for the WL worker by taking the @ubi->move_mutex */
1285 mutex_lock(&ubi->move_mutex);
1286 mutex_unlock(&ubi->move_mutex);
1287 goto retry;
1288 } else if (e == ubi->move_to) {
1289 /*
1290 * User is putting the physical eraseblock which was selected
1291 * as the target the data is moved to. It may happen if the EBA
1292 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1293 * but the WL sub-system has not put the PEB to the "used" tree
1294 * yet, but it is about to do this. So we just set a flag which
1295 * will tell the WL worker that the PEB is not needed anymore
1296 * and should be scheduled for erasure.
1297 */
1298 dbg_wl("PEB %d is the target of data moving", pnum);
1299 ubi_assert(!ubi->move_to_put);
1300 ubi->move_to_put = 1;
1301 spin_unlock(&ubi->wl_lock);
1302 up_read(&ubi->fm_protect);
1303 return 0;
1304 } else {
1305 if (in_wl_tree(e, &ubi->used)) {
1306 self_check_in_wl_tree(ubi, e, &ubi->used);
1307 rb_erase(&e->u.rb, &ubi->used);
1308 } else if (in_wl_tree(e, &ubi->scrub)) {
1309 self_check_in_wl_tree(ubi, e, &ubi->scrub);
1310 rb_erase(&e->u.rb, &ubi->scrub);
1311 } else if (in_wl_tree(e, &ubi->erroneous)) {
1312 self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1313 rb_erase(&e->u.rb, &ubi->erroneous);
1314 ubi->erroneous_peb_count -= 1;
1315 ubi_assert(ubi->erroneous_peb_count >= 0);
1316 /* Erroneous PEBs should be tortured */
1317 torture = 1;
1318 } else {
1319 err = prot_queue_del(ubi, e->pnum);
1320 if (err) {
1321 ubi_err(ubi, "PEB %d not found", pnum);
1322 ubi_ro_mode(ubi);
1323 spin_unlock(&ubi->wl_lock);
1324 up_read(&ubi->fm_protect);
1325 return err;
1326 }
1327 }
1328 }
1329 spin_unlock(&ubi->wl_lock);
1330
1331 err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1332 if (err) {
1333 spin_lock(&ubi->wl_lock);
1334 wl_tree_add(e, &ubi->used);
1335 spin_unlock(&ubi->wl_lock);
1336 }
1337
1338 up_read(&ubi->fm_protect);
1339 return err;
1340 }
1341
1342 /**
1343 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1344 * @ubi: UBI device description object
1345 * @pnum: the physical eraseblock to schedule
1346 *
1347 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1348 * needs scrubbing. This function schedules a physical eraseblock for
1349 * scrubbing which is done in background. This function returns zero in case of
1350 * success and a negative error code in case of failure.
1351 */
1352 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1353 {
1354 struct ubi_wl_entry *e;
1355
1356 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1357
1358 retry:
1359 spin_lock(&ubi->wl_lock);
1360 e = ubi->lookuptbl[pnum];
1361 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1362 in_wl_tree(e, &ubi->erroneous)) {
1363 spin_unlock(&ubi->wl_lock);
1364 return 0;
1365 }
1366
1367 if (e == ubi->move_to) {
1368 /*
1369 * This physical eraseblock was used to move data to. The data
1370 * was moved but the PEB was not yet inserted to the proper
1371 * tree. We should just wait a little and let the WL worker
1372 * proceed.
1373 */
1374 spin_unlock(&ubi->wl_lock);
1375 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1376 yield();
1377 goto retry;
1378 }
1379
1380 if (in_wl_tree(e, &ubi->used)) {
1381 self_check_in_wl_tree(ubi, e, &ubi->used);
1382 rb_erase(&e->u.rb, &ubi->used);
1383 } else {
1384 int err;
1385
1386 err = prot_queue_del(ubi, e->pnum);
1387 if (err) {
1388 ubi_err(ubi, "PEB %d not found", pnum);
1389 ubi_ro_mode(ubi);
1390 spin_unlock(&ubi->wl_lock);
1391 return err;
1392 }
1393 }
1394
1395 wl_tree_add(e, &ubi->scrub);
1396 spin_unlock(&ubi->wl_lock);
1397
1398 /*
1399 * Technically scrubbing is the same as wear-leveling, so it is done
1400 * by the WL worker.
1401 */
1402 return ensure_wear_leveling(ubi, 0);
1403 }
1404
1405 /**
1406 * ubi_wl_flush - flush all pending works.
1407 * @ubi: UBI device description object
1408 * @vol_id: the volume id to flush for
1409 * @lnum: the logical eraseblock number to flush for
1410 *
1411 * This function executes all pending works for a particular volume id /
1412 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1413 * acts as a wildcard for all of the corresponding volume numbers or logical
1414 * eraseblock numbers. It returns zero in case of success and a negative error
1415 * code in case of failure.
1416 */
1417 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1418 {
1419 int err = 0;
1420 int found = 1;
1421
1422 /*
1423 * Erase while the pending works queue is not empty, but not more than
1424 * the number of currently pending works.
1425 */
1426 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1427 vol_id, lnum, ubi->works_count);
1428
1429 while (found) {
1430 struct ubi_work *wrk, *tmp;
1431 found = 0;
1432
1433 down_read(&ubi->work_sem);
1434 spin_lock(&ubi->wl_lock);
1435 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1436 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1437 (lnum == UBI_ALL || wrk->lnum == lnum)) {
1438 list_del(&wrk->list);
1439 ubi->works_count -= 1;
1440 ubi_assert(ubi->works_count >= 0);
1441 spin_unlock(&ubi->wl_lock);
1442
1443 err = wrk->func(ubi, wrk, 0);
1444 if (err) {
1445 up_read(&ubi->work_sem);
1446 return err;
1447 }
1448
1449 spin_lock(&ubi->wl_lock);
1450 found = 1;
1451 break;
1452 }
1453 }
1454 spin_unlock(&ubi->wl_lock);
1455 up_read(&ubi->work_sem);
1456 }
1457
1458 /*
1459 * Make sure all the works which have been done in parallel are
1460 * finished.
1461 */
1462 down_write(&ubi->work_sem);
1463 up_write(&ubi->work_sem);
1464
1465 return err;
1466 }
1467
1468 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1469 {
1470 if (in_wl_tree(e, &ubi->scrub))
1471 return false;
1472 else if (in_wl_tree(e, &ubi->erroneous))
1473 return false;
1474 else if (ubi->move_from == e)
1475 return false;
1476 else if (ubi->move_to == e)
1477 return false;
1478
1479 return true;
1480 }
1481
1482 /**
1483 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1484 * @ubi: UBI device description object
1485 * @pnum: the physical eraseblock to schedule
1486 * @force: don't read the block, assume bitflips happened and take action.
1487 *
1488 * This function reads the given eraseblock and checks if bitflips occured.
1489 * In case of bitflips, the eraseblock is scheduled for scrubbing.
1490 * If scrubbing is forced with @force, the eraseblock is not read,
1491 * but scheduled for scrubbing right away.
1492 *
1493 * Returns:
1494 * %EINVAL, PEB is out of range
1495 * %ENOENT, PEB is no longer used by UBI
1496 * %EBUSY, PEB cannot be checked now or a check is currently running on it
1497 * %EAGAIN, bit flips happened but scrubbing is currently not possible
1498 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1499 * %0, no bit flips detected
1500 */
1501 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1502 {
1503 int err = 0;
1504 struct ubi_wl_entry *e;
1505
1506 if (pnum < 0 || pnum >= ubi->peb_count) {
1507 err = -EINVAL;
1508 goto out;
1509 }
1510
1511 /*
1512 * Pause all parallel work, otherwise it can happen that the
1513 * erase worker frees a wl entry under us.
1514 */
1515 down_write(&ubi->work_sem);
1516
1517 /*
1518 * Make sure that the wl entry does not change state while
1519 * inspecting it.
1520 */
1521 spin_lock(&ubi->wl_lock);
1522 e = ubi->lookuptbl[pnum];
1523 if (!e) {
1524 spin_unlock(&ubi->wl_lock);
1525 err = -ENOENT;
1526 goto out_resume;
1527 }
1528
1529 /*
1530 * Does it make sense to check this PEB?
1531 */
1532 if (!scrub_possible(ubi, e)) {
1533 spin_unlock(&ubi->wl_lock);
1534 err = -EBUSY;
1535 goto out_resume;
1536 }
1537 spin_unlock(&ubi->wl_lock);
1538
1539 if (!force) {
1540 mutex_lock(&ubi->buf_mutex);
1541 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1542 mutex_unlock(&ubi->buf_mutex);
1543 }
1544
1545 if (force || err == UBI_IO_BITFLIPS) {
1546 /*
1547 * Okay, bit flip happened, let's figure out what we can do.
1548 */
1549 spin_lock(&ubi->wl_lock);
1550
1551 /*
1552 * Recheck. We released wl_lock, UBI might have killed the
1553 * wl entry under us.
1554 */
1555 e = ubi->lookuptbl[pnum];
1556 if (!e) {
1557 spin_unlock(&ubi->wl_lock);
1558 err = -ENOENT;
1559 goto out_resume;
1560 }
1561
1562 /*
1563 * Need to re-check state
1564 */
1565 if (!scrub_possible(ubi, e)) {
1566 spin_unlock(&ubi->wl_lock);
1567 err = -EBUSY;
1568 goto out_resume;
1569 }
1570
1571 if (in_pq(ubi, e)) {
1572 prot_queue_del(ubi, e->pnum);
1573 wl_tree_add(e, &ubi->scrub);
1574 spin_unlock(&ubi->wl_lock);
1575
1576 err = ensure_wear_leveling(ubi, 1);
1577 } else if (in_wl_tree(e, &ubi->used)) {
1578 rb_erase(&e->u.rb, &ubi->used);
1579 wl_tree_add(e, &ubi->scrub);
1580 spin_unlock(&ubi->wl_lock);
1581
1582 err = ensure_wear_leveling(ubi, 1);
1583 } else if (in_wl_tree(e, &ubi->free)) {
1584 rb_erase(&e->u.rb, &ubi->free);
1585 ubi->free_count--;
1586 spin_unlock(&ubi->wl_lock);
1587
1588 /*
1589 * This PEB is empty we can schedule it for
1590 * erasure right away. No wear leveling needed.
1591 */
1592 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1593 force ? 0 : 1, true);
1594 } else {
1595 spin_unlock(&ubi->wl_lock);
1596 err = -EAGAIN;
1597 }
1598
1599 if (!err && !force)
1600 err = -EUCLEAN;
1601 } else {
1602 err = 0;
1603 }
1604
1605 out_resume:
1606 up_write(&ubi->work_sem);
1607 out:
1608
1609 return err;
1610 }
1611
1612 /**
1613 * tree_destroy - destroy an RB-tree.
1614 * @ubi: UBI device description object
1615 * @root: the root of the tree to destroy
1616 */
1617 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1618 {
1619 struct rb_node *rb;
1620 struct ubi_wl_entry *e;
1621
1622 rb = root->rb_node;
1623 while (rb) {
1624 if (rb->rb_left)
1625 rb = rb->rb_left;
1626 else if (rb->rb_right)
1627 rb = rb->rb_right;
1628 else {
1629 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1630
1631 rb = rb_parent(rb);
1632 if (rb) {
1633 if (rb->rb_left == &e->u.rb)
1634 rb->rb_left = NULL;
1635 else
1636 rb->rb_right = NULL;
1637 }
1638
1639 wl_entry_destroy(ubi, e);
1640 }
1641 }
1642 }
1643
1644 /**
1645 * ubi_thread - UBI background thread.
1646 * @u: the UBI device description object pointer
1647 */
1648 int ubi_thread(void *u)
1649 {
1650 int failures = 0;
1651 struct ubi_device *ubi = u;
1652
1653 ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1654 ubi->bgt_name, task_pid_nr(current));
1655
1656 set_freezable();
1657 for (;;) {
1658 int err;
1659
1660 if (kthread_should_stop())
1661 break;
1662
1663 if (try_to_freeze())
1664 continue;
1665
1666 spin_lock(&ubi->wl_lock);
1667 if (list_empty(&ubi->works) || ubi->ro_mode ||
1668 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1669 set_current_state(TASK_INTERRUPTIBLE);
1670 spin_unlock(&ubi->wl_lock);
1671
1672 /*
1673 * Check kthread_should_stop() after we set the task
1674 * state to guarantee that we either see the stop bit
1675 * and exit or the task state is reset to runnable such
1676 * that it's not scheduled out indefinitely and detects
1677 * the stop bit at kthread_should_stop().
1678 */
1679 if (kthread_should_stop()) {
1680 set_current_state(TASK_RUNNING);
1681 break;
1682 }
1683
1684 schedule();
1685 continue;
1686 }
1687 spin_unlock(&ubi->wl_lock);
1688
1689 err = do_work(ubi);
1690 if (err) {
1691 ubi_err(ubi, "%s: work failed with error code %d",
1692 ubi->bgt_name, err);
1693 if (failures++ > WL_MAX_FAILURES) {
1694 /*
1695 * Too many failures, disable the thread and
1696 * switch to read-only mode.
1697 */
1698 ubi_msg(ubi, "%s: %d consecutive failures",
1699 ubi->bgt_name, WL_MAX_FAILURES);
1700 ubi_ro_mode(ubi);
1701 ubi->thread_enabled = 0;
1702 continue;
1703 }
1704 } else
1705 failures = 0;
1706
1707 cond_resched();
1708 }
1709
1710 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1711 ubi->thread_enabled = 0;
1712 return 0;
1713 }
1714
1715 /**
1716 * shutdown_work - shutdown all pending works.
1717 * @ubi: UBI device description object
1718 */
1719 static void shutdown_work(struct ubi_device *ubi)
1720 {
1721 while (!list_empty(&ubi->works)) {
1722 struct ubi_work *wrk;
1723
1724 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1725 list_del(&wrk->list);
1726 wrk->func(ubi, wrk, 1);
1727 ubi->works_count -= 1;
1728 ubi_assert(ubi->works_count >= 0);
1729 }
1730 }
1731
1732 /**
1733 * erase_aeb - erase a PEB given in UBI attach info PEB
1734 * @ubi: UBI device description object
1735 * @aeb: UBI attach info PEB
1736 * @sync: If true, erase synchronously. Otherwise schedule for erasure
1737 */
1738 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1739 {
1740 struct ubi_wl_entry *e;
1741 int err;
1742
1743 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1744 if (!e)
1745 return -ENOMEM;
1746
1747 e->pnum = aeb->pnum;
1748 e->ec = aeb->ec;
1749 ubi->lookuptbl[e->pnum] = e;
1750
1751 if (sync) {
1752 err = sync_erase(ubi, e, false);
1753 if (err)
1754 goto out_free;
1755
1756 wl_tree_add(e, &ubi->free);
1757 ubi->free_count++;
1758 } else {
1759 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1760 if (err)
1761 goto out_free;
1762 }
1763
1764 return 0;
1765
1766 out_free:
1767 wl_entry_destroy(ubi, e);
1768
1769 return err;
1770 }
1771
1772 /**
1773 * ubi_wl_init - initialize the WL sub-system using attaching information.
1774 * @ubi: UBI device description object
1775 * @ai: attaching information
1776 *
1777 * This function returns zero in case of success, and a negative error code in
1778 * case of failure.
1779 */
1780 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1781 {
1782 int err, i, reserved_pebs, found_pebs = 0;
1783 struct rb_node *rb1, *rb2;
1784 struct ubi_ainf_volume *av;
1785 struct ubi_ainf_peb *aeb, *tmp;
1786 struct ubi_wl_entry *e;
1787
1788 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1789 spin_lock_init(&ubi->wl_lock);
1790 mutex_init(&ubi->move_mutex);
1791 init_rwsem(&ubi->work_sem);
1792 ubi->max_ec = ai->max_ec;
1793 INIT_LIST_HEAD(&ubi->works);
1794
1795 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1796
1797 err = -ENOMEM;
1798 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1799 if (!ubi->lookuptbl)
1800 return err;
1801
1802 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1803 INIT_LIST_HEAD(&ubi->pq[i]);
1804 ubi->pq_head = 0;
1805
1806 ubi->free_count = 0;
1807 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1808 cond_resched();
1809
1810 err = erase_aeb(ubi, aeb, false);
1811 if (err)
1812 goto out_free;
1813
1814 found_pebs++;
1815 }
1816
1817 list_for_each_entry(aeb, &ai->free, u.list) {
1818 cond_resched();
1819
1820 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1821 if (!e) {
1822 err = -ENOMEM;
1823 goto out_free;
1824 }
1825
1826 e->pnum = aeb->pnum;
1827 e->ec = aeb->ec;
1828 ubi_assert(e->ec >= 0);
1829
1830 wl_tree_add(e, &ubi->free);
1831 ubi->free_count++;
1832
1833 ubi->lookuptbl[e->pnum] = e;
1834
1835 found_pebs++;
1836 }
1837
1838 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1839 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1840 cond_resched();
1841
1842 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1843 if (!e) {
1844 err = -ENOMEM;
1845 goto out_free;
1846 }
1847
1848 e->pnum = aeb->pnum;
1849 e->ec = aeb->ec;
1850 ubi->lookuptbl[e->pnum] = e;
1851
1852 if (!aeb->scrub) {
1853 dbg_wl("add PEB %d EC %d to the used tree",
1854 e->pnum, e->ec);
1855 wl_tree_add(e, &ubi->used);
1856 } else {
1857 dbg_wl("add PEB %d EC %d to the scrub tree",
1858 e->pnum, e->ec);
1859 wl_tree_add(e, &ubi->scrub);
1860 }
1861
1862 found_pebs++;
1863 }
1864 }
1865
1866 list_for_each_entry(aeb, &ai->fastmap, u.list) {
1867 cond_resched();
1868
1869 e = ubi_find_fm_block(ubi, aeb->pnum);
1870
1871 if (e) {
1872 ubi_assert(!ubi->lookuptbl[e->pnum]);
1873 ubi->lookuptbl[e->pnum] = e;
1874 } else {
1875 bool sync = false;
1876
1877 /*
1878 * Usually old Fastmap PEBs are scheduled for erasure
1879 * and we don't have to care about them but if we face
1880 * an power cut before scheduling them we need to
1881 * take care of them here.
1882 */
1883 if (ubi->lookuptbl[aeb->pnum])
1884 continue;
1885
1886 /*
1887 * The fastmap update code might not find a free PEB for
1888 * writing the fastmap anchor to and then reuses the
1889 * current fastmap anchor PEB. When this PEB gets erased
1890 * and a power cut happens before it is written again we
1891 * must make sure that the fastmap attach code doesn't
1892 * find any outdated fastmap anchors, hence we erase the
1893 * outdated fastmap anchor PEBs synchronously here.
1894 */
1895 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1896 sync = true;
1897
1898 err = erase_aeb(ubi, aeb, sync);
1899 if (err)
1900 goto out_free;
1901 }
1902
1903 found_pebs++;
1904 }
1905
1906 dbg_wl("found %i PEBs", found_pebs);
1907
1908 ubi_assert(ubi->good_peb_count == found_pebs);
1909
1910 reserved_pebs = WL_RESERVED_PEBS;
1911 ubi_fastmap_init(ubi, &reserved_pebs);
1912
1913 if (ubi->avail_pebs < reserved_pebs) {
1914 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1915 ubi->avail_pebs, reserved_pebs);
1916 if (ubi->corr_peb_count)
1917 ubi_err(ubi, "%d PEBs are corrupted and not used",
1918 ubi->corr_peb_count);
1919 err = -ENOSPC;
1920 goto out_free;
1921 }
1922 ubi->avail_pebs -= reserved_pebs;
1923 ubi->rsvd_pebs += reserved_pebs;
1924
1925 /* Schedule wear-leveling if needed */
1926 err = ensure_wear_leveling(ubi, 0);
1927 if (err)
1928 goto out_free;
1929
1930 #ifdef CONFIG_MTD_UBI_FASTMAP
1931 if (!ubi->ro_mode && !ubi->fm_disabled)
1932 ubi_ensure_anchor_pebs(ubi);
1933 #endif
1934 return 0;
1935
1936 out_free:
1937 shutdown_work(ubi);
1938 tree_destroy(ubi, &ubi->used);
1939 tree_destroy(ubi, &ubi->free);
1940 tree_destroy(ubi, &ubi->scrub);
1941 kfree(ubi->lookuptbl);
1942 return err;
1943 }
1944
1945 /**
1946 * protection_queue_destroy - destroy the protection queue.
1947 * @ubi: UBI device description object
1948 */
1949 static void protection_queue_destroy(struct ubi_device *ubi)
1950 {
1951 int i;
1952 struct ubi_wl_entry *e, *tmp;
1953
1954 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1955 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1956 list_del(&e->u.list);
1957 wl_entry_destroy(ubi, e);
1958 }
1959 }
1960 }
1961
1962 /**
1963 * ubi_wl_close - close the wear-leveling sub-system.
1964 * @ubi: UBI device description object
1965 */
1966 void ubi_wl_close(struct ubi_device *ubi)
1967 {
1968 dbg_wl("close the WL sub-system");
1969 ubi_fastmap_close(ubi);
1970 shutdown_work(ubi);
1971 protection_queue_destroy(ubi);
1972 tree_destroy(ubi, &ubi->used);
1973 tree_destroy(ubi, &ubi->erroneous);
1974 tree_destroy(ubi, &ubi->free);
1975 tree_destroy(ubi, &ubi->scrub);
1976 kfree(ubi->lookuptbl);
1977 }
1978
1979 /**
1980 * self_check_ec - make sure that the erase counter of a PEB is correct.
1981 * @ubi: UBI device description object
1982 * @pnum: the physical eraseblock number to check
1983 * @ec: the erase counter to check
1984 *
1985 * This function returns zero if the erase counter of physical eraseblock @pnum
1986 * is equivalent to @ec, and a negative error code if not or if an error
1987 * occurred.
1988 */
1989 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1990 {
1991 int err;
1992 long long read_ec;
1993 struct ubi_ec_hdr *ec_hdr;
1994
1995 if (!ubi_dbg_chk_gen(ubi))
1996 return 0;
1997
1998 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1999 if (!ec_hdr)
2000 return -ENOMEM;
2001
2002 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2003 if (err && err != UBI_IO_BITFLIPS) {
2004 /* The header does not have to exist */
2005 err = 0;
2006 goto out_free;
2007 }
2008
2009 read_ec = be64_to_cpu(ec_hdr->ec);
2010 if (ec != read_ec && read_ec - ec > 1) {
2011 ubi_err(ubi, "self-check failed for PEB %d", pnum);
2012 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
2013 dump_stack();
2014 err = 1;
2015 } else
2016 err = 0;
2017
2018 out_free:
2019 kfree(ec_hdr);
2020 return err;
2021 }
2022
2023 /**
2024 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2025 * @ubi: UBI device description object
2026 * @e: the wear-leveling entry to check
2027 * @root: the root of the tree
2028 *
2029 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2030 * is not.
2031 */
2032 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2033 struct ubi_wl_entry *e, struct rb_root *root)
2034 {
2035 if (!ubi_dbg_chk_gen(ubi))
2036 return 0;
2037
2038 if (in_wl_tree(e, root))
2039 return 0;
2040
2041 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2042 e->pnum, e->ec, root);
2043 dump_stack();
2044 return -EINVAL;
2045 }
2046
2047 /**
2048 * self_check_in_pq - check if wear-leveling entry is in the protection
2049 * queue.
2050 * @ubi: UBI device description object
2051 * @e: the wear-leveling entry to check
2052 *
2053 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2054 */
2055 static int self_check_in_pq(const struct ubi_device *ubi,
2056 struct ubi_wl_entry *e)
2057 {
2058 if (!ubi_dbg_chk_gen(ubi))
2059 return 0;
2060
2061 if (in_pq(ubi, e))
2062 return 0;
2063
2064 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2065 e->pnum, e->ec);
2066 dump_stack();
2067 return -EINVAL;
2068 }
2069 #ifndef CONFIG_MTD_UBI_FASTMAP
2070 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2071 {
2072 struct ubi_wl_entry *e;
2073
2074 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2075 self_check_in_wl_tree(ubi, e, &ubi->free);
2076 ubi->free_count--;
2077 ubi_assert(ubi->free_count >= 0);
2078 rb_erase(&e->u.rb, &ubi->free);
2079
2080 return e;
2081 }
2082
2083 /**
2084 * produce_free_peb - produce a free physical eraseblock.
2085 * @ubi: UBI device description object
2086 *
2087 * This function tries to make a free PEB by means of synchronous execution of
2088 * pending works. This may be needed if, for example the background thread is
2089 * disabled. Returns zero in case of success and a negative error code in case
2090 * of failure.
2091 */
2092 static int produce_free_peb(struct ubi_device *ubi)
2093 {
2094 int err;
2095
2096 while (!ubi->free.rb_node && ubi->works_count) {
2097 spin_unlock(&ubi->wl_lock);
2098
2099 dbg_wl("do one work synchronously");
2100 err = do_work(ubi);
2101
2102 spin_lock(&ubi->wl_lock);
2103 if (err)
2104 return err;
2105 }
2106
2107 return 0;
2108 }
2109
2110 /**
2111 * ubi_wl_get_peb - get a physical eraseblock.
2112 * @ubi: UBI device description object
2113 *
2114 * This function returns a physical eraseblock in case of success and a
2115 * negative error code in case of failure.
2116 * Returns with ubi->fm_eba_sem held in read mode!
2117 */
2118 int ubi_wl_get_peb(struct ubi_device *ubi)
2119 {
2120 int err;
2121 struct ubi_wl_entry *e;
2122
2123 retry:
2124 down_read(&ubi->fm_eba_sem);
2125 spin_lock(&ubi->wl_lock);
2126 if (!ubi->free.rb_node) {
2127 if (ubi->works_count == 0) {
2128 ubi_err(ubi, "no free eraseblocks");
2129 ubi_assert(list_empty(&ubi->works));
2130 spin_unlock(&ubi->wl_lock);
2131 return -ENOSPC;
2132 }
2133
2134 err = produce_free_peb(ubi);
2135 if (err < 0) {
2136 spin_unlock(&ubi->wl_lock);
2137 return err;
2138 }
2139 spin_unlock(&ubi->wl_lock);
2140 up_read(&ubi->fm_eba_sem);
2141 goto retry;
2142
2143 }
2144 e = wl_get_wle(ubi);
2145 prot_queue_add(ubi, e);
2146 spin_unlock(&ubi->wl_lock);
2147
2148 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2149 ubi->peb_size - ubi->vid_hdr_aloffset);
2150 if (err) {
2151 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2152 return err;
2153 }
2154
2155 return e->pnum;
2156 }
2157 #else
2158 #include "fastmap-wl.c"
2159 #endif
2160