1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/tcp.h>
8 #include <linux/udp.h>
9 #include <linux/ip.h>
10 #include <linux/pm_runtime.h>
11 #include <net/pkt_sched.h>
12 #include <linux/bpf_trace.h>
13 #include <net/xdp_sock_drv.h>
14 #include <linux/pci.h>
15
16 #include <net/ipv6.h>
17
18 #include "igc.h"
19 #include "igc_hw.h"
20 #include "igc_tsn.h"
21 #include "igc_xdp.h"
22
23 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
24
25 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
26
27 #define IGC_XDP_PASS 0
28 #define IGC_XDP_CONSUMED BIT(0)
29 #define IGC_XDP_TX BIT(1)
30 #define IGC_XDP_REDIRECT BIT(2)
31
32 static int debug = -1;
33
34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39
40 char igc_driver_name[] = "igc";
41 static const char igc_driver_string[] = DRV_SUMMARY;
42 static const char igc_copyright[] =
43 "Copyright(c) 2018 Intel Corporation.";
44
45 static const struct igc_info *igc_info_tbl[] = {
46 [board_base] = &igc_base_info,
47 };
48
49 static const struct pci_device_id igc_pci_tbl[] = {
50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
57 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
58 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
59 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
60 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
61 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
62 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
63 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
64 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
65 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
66 /* required last entry */
67 {0, }
68 };
69
70 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
71
72 enum latency_range {
73 lowest_latency = 0,
74 low_latency = 1,
75 bulk_latency = 2,
76 latency_invalid = 255
77 };
78
igc_reset(struct igc_adapter * adapter)79 void igc_reset(struct igc_adapter *adapter)
80 {
81 struct net_device *dev = adapter->netdev;
82 struct igc_hw *hw = &adapter->hw;
83 struct igc_fc_info *fc = &hw->fc;
84 u32 pba, hwm;
85
86 /* Repartition PBA for greater than 9k MTU if required */
87 pba = IGC_PBA_34K;
88
89 /* flow control settings
90 * The high water mark must be low enough to fit one full frame
91 * after transmitting the pause frame. As such we must have enough
92 * space to allow for us to complete our current transmit and then
93 * receive the frame that is in progress from the link partner.
94 * Set it to:
95 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 */
97 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98
99 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
100 fc->low_water = fc->high_water - 16;
101 fc->pause_time = 0xFFFF;
102 fc->send_xon = 1;
103 fc->current_mode = fc->requested_mode;
104
105 hw->mac.ops.reset_hw(hw);
106
107 if (hw->mac.ops.init_hw(hw))
108 netdev_err(dev, "Error on hardware initialization\n");
109
110 /* Re-establish EEE setting */
111 igc_set_eee_i225(hw, true, true, true);
112
113 if (!netif_running(adapter->netdev))
114 igc_power_down_phy_copper_base(&adapter->hw);
115
116 /* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
117 wr32(IGC_VET, ETH_P_8021Q);
118
119 /* Re-enable PTP, where applicable. */
120 igc_ptp_reset(adapter);
121
122 /* Re-enable TSN offloading, where applicable. */
123 igc_tsn_reset(adapter);
124
125 igc_get_phy_info(hw);
126 }
127
128 /**
129 * igc_power_up_link - Power up the phy link
130 * @adapter: address of board private structure
131 */
igc_power_up_link(struct igc_adapter * adapter)132 static void igc_power_up_link(struct igc_adapter *adapter)
133 {
134 igc_reset_phy(&adapter->hw);
135
136 igc_power_up_phy_copper(&adapter->hw);
137
138 igc_setup_link(&adapter->hw);
139 }
140
141 /**
142 * igc_release_hw_control - release control of the h/w to f/w
143 * @adapter: address of board private structure
144 *
145 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
146 * For ASF and Pass Through versions of f/w this means that the
147 * driver is no longer loaded.
148 */
igc_release_hw_control(struct igc_adapter * adapter)149 static void igc_release_hw_control(struct igc_adapter *adapter)
150 {
151 struct igc_hw *hw = &adapter->hw;
152 u32 ctrl_ext;
153
154 if (!pci_device_is_present(adapter->pdev))
155 return;
156
157 /* Let firmware take over control of h/w */
158 ctrl_ext = rd32(IGC_CTRL_EXT);
159 wr32(IGC_CTRL_EXT,
160 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
161 }
162
163 /**
164 * igc_get_hw_control - get control of the h/w from f/w
165 * @adapter: address of board private structure
166 *
167 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
168 * For ASF and Pass Through versions of f/w this means that
169 * the driver is loaded.
170 */
igc_get_hw_control(struct igc_adapter * adapter)171 static void igc_get_hw_control(struct igc_adapter *adapter)
172 {
173 struct igc_hw *hw = &adapter->hw;
174 u32 ctrl_ext;
175
176 /* Let firmware know the driver has taken over */
177 ctrl_ext = rd32(IGC_CTRL_EXT);
178 wr32(IGC_CTRL_EXT,
179 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
180 }
181
igc_unmap_tx_buffer(struct device * dev,struct igc_tx_buffer * buf)182 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
183 {
184 dma_unmap_single(dev, dma_unmap_addr(buf, dma),
185 dma_unmap_len(buf, len), DMA_TO_DEVICE);
186
187 dma_unmap_len_set(buf, len, 0);
188 }
189
190 /**
191 * igc_clean_tx_ring - Free Tx Buffers
192 * @tx_ring: ring to be cleaned
193 */
igc_clean_tx_ring(struct igc_ring * tx_ring)194 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
195 {
196 u16 i = tx_ring->next_to_clean;
197 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
198 u32 xsk_frames = 0;
199
200 while (i != tx_ring->next_to_use) {
201 union igc_adv_tx_desc *eop_desc, *tx_desc;
202
203 switch (tx_buffer->type) {
204 case IGC_TX_BUFFER_TYPE_XSK:
205 xsk_frames++;
206 break;
207 case IGC_TX_BUFFER_TYPE_XDP:
208 xdp_return_frame(tx_buffer->xdpf);
209 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
210 break;
211 case IGC_TX_BUFFER_TYPE_SKB:
212 dev_kfree_skb_any(tx_buffer->skb);
213 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
214 break;
215 default:
216 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
217 break;
218 }
219
220 /* check for eop_desc to determine the end of the packet */
221 eop_desc = tx_buffer->next_to_watch;
222 tx_desc = IGC_TX_DESC(tx_ring, i);
223
224 /* unmap remaining buffers */
225 while (tx_desc != eop_desc) {
226 tx_buffer++;
227 tx_desc++;
228 i++;
229 if (unlikely(i == tx_ring->count)) {
230 i = 0;
231 tx_buffer = tx_ring->tx_buffer_info;
232 tx_desc = IGC_TX_DESC(tx_ring, 0);
233 }
234
235 /* unmap any remaining paged data */
236 if (dma_unmap_len(tx_buffer, len))
237 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
238 }
239
240 tx_buffer->next_to_watch = NULL;
241
242 /* move us one more past the eop_desc for start of next pkt */
243 tx_buffer++;
244 i++;
245 if (unlikely(i == tx_ring->count)) {
246 i = 0;
247 tx_buffer = tx_ring->tx_buffer_info;
248 }
249 }
250
251 if (tx_ring->xsk_pool && xsk_frames)
252 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
253
254 /* reset BQL for queue */
255 netdev_tx_reset_queue(txring_txq(tx_ring));
256
257 /* Zero out the buffer ring */
258 memset(tx_ring->tx_buffer_info, 0,
259 sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
260
261 /* Zero out the descriptor ring */
262 memset(tx_ring->desc, 0, tx_ring->size);
263
264 /* reset next_to_use and next_to_clean */
265 tx_ring->next_to_use = 0;
266 tx_ring->next_to_clean = 0;
267 }
268
269 /**
270 * igc_free_tx_resources - Free Tx Resources per Queue
271 * @tx_ring: Tx descriptor ring for a specific queue
272 *
273 * Free all transmit software resources
274 */
igc_free_tx_resources(struct igc_ring * tx_ring)275 void igc_free_tx_resources(struct igc_ring *tx_ring)
276 {
277 igc_disable_tx_ring(tx_ring);
278
279 vfree(tx_ring->tx_buffer_info);
280 tx_ring->tx_buffer_info = NULL;
281
282 /* if not set, then don't free */
283 if (!tx_ring->desc)
284 return;
285
286 dma_free_coherent(tx_ring->dev, tx_ring->size,
287 tx_ring->desc, tx_ring->dma);
288
289 tx_ring->desc = NULL;
290 }
291
292 /**
293 * igc_free_all_tx_resources - Free Tx Resources for All Queues
294 * @adapter: board private structure
295 *
296 * Free all transmit software resources
297 */
igc_free_all_tx_resources(struct igc_adapter * adapter)298 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
299 {
300 int i;
301
302 for (i = 0; i < adapter->num_tx_queues; i++)
303 igc_free_tx_resources(adapter->tx_ring[i]);
304 }
305
306 /**
307 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
308 * @adapter: board private structure
309 */
igc_clean_all_tx_rings(struct igc_adapter * adapter)310 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
311 {
312 int i;
313
314 for (i = 0; i < adapter->num_tx_queues; i++)
315 if (adapter->tx_ring[i])
316 igc_clean_tx_ring(adapter->tx_ring[i]);
317 }
318
igc_disable_tx_ring_hw(struct igc_ring * ring)319 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
320 {
321 struct igc_hw *hw = &ring->q_vector->adapter->hw;
322 u8 idx = ring->reg_idx;
323 u32 txdctl;
324
325 txdctl = rd32(IGC_TXDCTL(idx));
326 txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
327 txdctl |= IGC_TXDCTL_SWFLUSH;
328 wr32(IGC_TXDCTL(idx), txdctl);
329 }
330
331 /**
332 * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
333 * @adapter: board private structure
334 */
igc_disable_all_tx_rings_hw(struct igc_adapter * adapter)335 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
336 {
337 int i;
338
339 for (i = 0; i < adapter->num_tx_queues; i++) {
340 struct igc_ring *tx_ring = adapter->tx_ring[i];
341
342 igc_disable_tx_ring_hw(tx_ring);
343 }
344 }
345
346 /**
347 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
348 * @tx_ring: tx descriptor ring (for a specific queue) to setup
349 *
350 * Return 0 on success, negative on failure
351 */
igc_setup_tx_resources(struct igc_ring * tx_ring)352 int igc_setup_tx_resources(struct igc_ring *tx_ring)
353 {
354 struct net_device *ndev = tx_ring->netdev;
355 struct device *dev = tx_ring->dev;
356 int size = 0;
357
358 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
359 tx_ring->tx_buffer_info = vzalloc(size);
360 if (!tx_ring->tx_buffer_info)
361 goto err;
362
363 /* round up to nearest 4K */
364 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
365 tx_ring->size = ALIGN(tx_ring->size, 4096);
366
367 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
368 &tx_ring->dma, GFP_KERNEL);
369
370 if (!tx_ring->desc)
371 goto err;
372
373 tx_ring->next_to_use = 0;
374 tx_ring->next_to_clean = 0;
375
376 return 0;
377
378 err:
379 vfree(tx_ring->tx_buffer_info);
380 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
381 return -ENOMEM;
382 }
383
384 /**
385 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
386 * @adapter: board private structure
387 *
388 * Return 0 on success, negative on failure
389 */
igc_setup_all_tx_resources(struct igc_adapter * adapter)390 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
391 {
392 struct net_device *dev = adapter->netdev;
393 int i, err = 0;
394
395 for (i = 0; i < adapter->num_tx_queues; i++) {
396 err = igc_setup_tx_resources(adapter->tx_ring[i]);
397 if (err) {
398 netdev_err(dev, "Error on Tx queue %u setup\n", i);
399 for (i--; i >= 0; i--)
400 igc_free_tx_resources(adapter->tx_ring[i]);
401 break;
402 }
403 }
404
405 return err;
406 }
407
igc_clean_rx_ring_page_shared(struct igc_ring * rx_ring)408 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
409 {
410 u16 i = rx_ring->next_to_clean;
411
412 dev_kfree_skb(rx_ring->skb);
413 rx_ring->skb = NULL;
414
415 /* Free all the Rx ring sk_buffs */
416 while (i != rx_ring->next_to_alloc) {
417 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
418
419 /* Invalidate cache lines that may have been written to by
420 * device so that we avoid corrupting memory.
421 */
422 dma_sync_single_range_for_cpu(rx_ring->dev,
423 buffer_info->dma,
424 buffer_info->page_offset,
425 igc_rx_bufsz(rx_ring),
426 DMA_FROM_DEVICE);
427
428 /* free resources associated with mapping */
429 dma_unmap_page_attrs(rx_ring->dev,
430 buffer_info->dma,
431 igc_rx_pg_size(rx_ring),
432 DMA_FROM_DEVICE,
433 IGC_RX_DMA_ATTR);
434 __page_frag_cache_drain(buffer_info->page,
435 buffer_info->pagecnt_bias);
436
437 i++;
438 if (i == rx_ring->count)
439 i = 0;
440 }
441 }
442
igc_clean_rx_ring_xsk_pool(struct igc_ring * ring)443 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
444 {
445 struct igc_rx_buffer *bi;
446 u16 i;
447
448 for (i = 0; i < ring->count; i++) {
449 bi = &ring->rx_buffer_info[i];
450 if (!bi->xdp)
451 continue;
452
453 xsk_buff_free(bi->xdp);
454 bi->xdp = NULL;
455 }
456 }
457
458 /**
459 * igc_clean_rx_ring - Free Rx Buffers per Queue
460 * @ring: ring to free buffers from
461 */
igc_clean_rx_ring(struct igc_ring * ring)462 static void igc_clean_rx_ring(struct igc_ring *ring)
463 {
464 if (ring->xsk_pool)
465 igc_clean_rx_ring_xsk_pool(ring);
466 else
467 igc_clean_rx_ring_page_shared(ring);
468
469 clear_ring_uses_large_buffer(ring);
470
471 ring->next_to_alloc = 0;
472 ring->next_to_clean = 0;
473 ring->next_to_use = 0;
474 }
475
476 /**
477 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
478 * @adapter: board private structure
479 */
igc_clean_all_rx_rings(struct igc_adapter * adapter)480 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
481 {
482 int i;
483
484 for (i = 0; i < adapter->num_rx_queues; i++)
485 if (adapter->rx_ring[i])
486 igc_clean_rx_ring(adapter->rx_ring[i]);
487 }
488
489 /**
490 * igc_free_rx_resources - Free Rx Resources
491 * @rx_ring: ring to clean the resources from
492 *
493 * Free all receive software resources
494 */
igc_free_rx_resources(struct igc_ring * rx_ring)495 void igc_free_rx_resources(struct igc_ring *rx_ring)
496 {
497 igc_clean_rx_ring(rx_ring);
498
499 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
500
501 vfree(rx_ring->rx_buffer_info);
502 rx_ring->rx_buffer_info = NULL;
503
504 /* if not set, then don't free */
505 if (!rx_ring->desc)
506 return;
507
508 dma_free_coherent(rx_ring->dev, rx_ring->size,
509 rx_ring->desc, rx_ring->dma);
510
511 rx_ring->desc = NULL;
512 }
513
514 /**
515 * igc_free_all_rx_resources - Free Rx Resources for All Queues
516 * @adapter: board private structure
517 *
518 * Free all receive software resources
519 */
igc_free_all_rx_resources(struct igc_adapter * adapter)520 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
521 {
522 int i;
523
524 for (i = 0; i < adapter->num_rx_queues; i++)
525 igc_free_rx_resources(adapter->rx_ring[i]);
526 }
527
528 /**
529 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
530 * @rx_ring: rx descriptor ring (for a specific queue) to setup
531 *
532 * Returns 0 on success, negative on failure
533 */
igc_setup_rx_resources(struct igc_ring * rx_ring)534 int igc_setup_rx_resources(struct igc_ring *rx_ring)
535 {
536 struct net_device *ndev = rx_ring->netdev;
537 struct device *dev = rx_ring->dev;
538 u8 index = rx_ring->queue_index;
539 int size, desc_len, res;
540
541 /* XDP RX-queue info */
542 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
543 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
544 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
545 rx_ring->q_vector->napi.napi_id);
546 if (res < 0) {
547 netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
548 index);
549 return res;
550 }
551
552 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
553 rx_ring->rx_buffer_info = vzalloc(size);
554 if (!rx_ring->rx_buffer_info)
555 goto err;
556
557 desc_len = sizeof(union igc_adv_rx_desc);
558
559 /* Round up to nearest 4K */
560 rx_ring->size = rx_ring->count * desc_len;
561 rx_ring->size = ALIGN(rx_ring->size, 4096);
562
563 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
564 &rx_ring->dma, GFP_KERNEL);
565
566 if (!rx_ring->desc)
567 goto err;
568
569 rx_ring->next_to_alloc = 0;
570 rx_ring->next_to_clean = 0;
571 rx_ring->next_to_use = 0;
572
573 return 0;
574
575 err:
576 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
577 vfree(rx_ring->rx_buffer_info);
578 rx_ring->rx_buffer_info = NULL;
579 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
580 return -ENOMEM;
581 }
582
583 /**
584 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
585 * (Descriptors) for all queues
586 * @adapter: board private structure
587 *
588 * Return 0 on success, negative on failure
589 */
igc_setup_all_rx_resources(struct igc_adapter * adapter)590 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
591 {
592 struct net_device *dev = adapter->netdev;
593 int i, err = 0;
594
595 for (i = 0; i < adapter->num_rx_queues; i++) {
596 err = igc_setup_rx_resources(adapter->rx_ring[i]);
597 if (err) {
598 netdev_err(dev, "Error on Rx queue %u setup\n", i);
599 for (i--; i >= 0; i--)
600 igc_free_rx_resources(adapter->rx_ring[i]);
601 break;
602 }
603 }
604
605 return err;
606 }
607
igc_get_xsk_pool(struct igc_adapter * adapter,struct igc_ring * ring)608 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
609 struct igc_ring *ring)
610 {
611 if (!igc_xdp_is_enabled(adapter) ||
612 !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
613 return NULL;
614
615 return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
616 }
617
618 /**
619 * igc_configure_rx_ring - Configure a receive ring after Reset
620 * @adapter: board private structure
621 * @ring: receive ring to be configured
622 *
623 * Configure the Rx unit of the MAC after a reset.
624 */
igc_configure_rx_ring(struct igc_adapter * adapter,struct igc_ring * ring)625 static void igc_configure_rx_ring(struct igc_adapter *adapter,
626 struct igc_ring *ring)
627 {
628 struct igc_hw *hw = &adapter->hw;
629 union igc_adv_rx_desc *rx_desc;
630 int reg_idx = ring->reg_idx;
631 u32 srrctl = 0, rxdctl = 0;
632 u64 rdba = ring->dma;
633 u32 buf_size;
634
635 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
636 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
637 if (ring->xsk_pool) {
638 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
639 MEM_TYPE_XSK_BUFF_POOL,
640 NULL));
641 xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
642 } else {
643 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
644 MEM_TYPE_PAGE_SHARED,
645 NULL));
646 }
647
648 if (igc_xdp_is_enabled(adapter))
649 set_ring_uses_large_buffer(ring);
650
651 /* disable the queue */
652 wr32(IGC_RXDCTL(reg_idx), 0);
653
654 /* Set DMA base address registers */
655 wr32(IGC_RDBAL(reg_idx),
656 rdba & 0x00000000ffffffffULL);
657 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
658 wr32(IGC_RDLEN(reg_idx),
659 ring->count * sizeof(union igc_adv_rx_desc));
660
661 /* initialize head and tail */
662 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
663 wr32(IGC_RDH(reg_idx), 0);
664 writel(0, ring->tail);
665
666 /* reset next-to- use/clean to place SW in sync with hardware */
667 ring->next_to_clean = 0;
668 ring->next_to_use = 0;
669
670 if (ring->xsk_pool)
671 buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
672 else if (ring_uses_large_buffer(ring))
673 buf_size = IGC_RXBUFFER_3072;
674 else
675 buf_size = IGC_RXBUFFER_2048;
676
677 srrctl = rd32(IGC_SRRCTL(reg_idx));
678 srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
679 IGC_SRRCTL_DESCTYPE_MASK);
680 srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
681 srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
682 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
683
684 wr32(IGC_SRRCTL(reg_idx), srrctl);
685
686 rxdctl |= IGC_RX_PTHRESH;
687 rxdctl |= IGC_RX_HTHRESH << 8;
688 rxdctl |= IGC_RX_WTHRESH << 16;
689
690 /* initialize rx_buffer_info */
691 memset(ring->rx_buffer_info, 0,
692 sizeof(struct igc_rx_buffer) * ring->count);
693
694 /* initialize Rx descriptor 0 */
695 rx_desc = IGC_RX_DESC(ring, 0);
696 rx_desc->wb.upper.length = 0;
697
698 /* enable receive descriptor fetching */
699 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
700
701 wr32(IGC_RXDCTL(reg_idx), rxdctl);
702 }
703
704 /**
705 * igc_configure_rx - Configure receive Unit after Reset
706 * @adapter: board private structure
707 *
708 * Configure the Rx unit of the MAC after a reset.
709 */
igc_configure_rx(struct igc_adapter * adapter)710 static void igc_configure_rx(struct igc_adapter *adapter)
711 {
712 int i;
713
714 /* Setup the HW Rx Head and Tail Descriptor Pointers and
715 * the Base and Length of the Rx Descriptor Ring
716 */
717 for (i = 0; i < adapter->num_rx_queues; i++)
718 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
719 }
720
721 /**
722 * igc_configure_tx_ring - Configure transmit ring after Reset
723 * @adapter: board private structure
724 * @ring: tx ring to configure
725 *
726 * Configure a transmit ring after a reset.
727 */
igc_configure_tx_ring(struct igc_adapter * adapter,struct igc_ring * ring)728 static void igc_configure_tx_ring(struct igc_adapter *adapter,
729 struct igc_ring *ring)
730 {
731 struct igc_hw *hw = &adapter->hw;
732 int reg_idx = ring->reg_idx;
733 u64 tdba = ring->dma;
734 u32 txdctl = 0;
735
736 ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
737
738 /* disable the queue */
739 wr32(IGC_TXDCTL(reg_idx), 0);
740 wrfl();
741
742 wr32(IGC_TDLEN(reg_idx),
743 ring->count * sizeof(union igc_adv_tx_desc));
744 wr32(IGC_TDBAL(reg_idx),
745 tdba & 0x00000000ffffffffULL);
746 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
747
748 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
749 wr32(IGC_TDH(reg_idx), 0);
750 writel(0, ring->tail);
751
752 txdctl |= IGC_TX_PTHRESH;
753 txdctl |= IGC_TX_HTHRESH << 8;
754 txdctl |= IGC_TX_WTHRESH << 16;
755
756 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
757 wr32(IGC_TXDCTL(reg_idx), txdctl);
758 }
759
760 /**
761 * igc_configure_tx - Configure transmit Unit after Reset
762 * @adapter: board private structure
763 *
764 * Configure the Tx unit of the MAC after a reset.
765 */
igc_configure_tx(struct igc_adapter * adapter)766 static void igc_configure_tx(struct igc_adapter *adapter)
767 {
768 int i;
769
770 for (i = 0; i < adapter->num_tx_queues; i++)
771 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
772 }
773
774 /**
775 * igc_setup_mrqc - configure the multiple receive queue control registers
776 * @adapter: Board private structure
777 */
igc_setup_mrqc(struct igc_adapter * adapter)778 static void igc_setup_mrqc(struct igc_adapter *adapter)
779 {
780 struct igc_hw *hw = &adapter->hw;
781 u32 j, num_rx_queues;
782 u32 mrqc, rxcsum;
783 u32 rss_key[10];
784
785 netdev_rss_key_fill(rss_key, sizeof(rss_key));
786 for (j = 0; j < 10; j++)
787 wr32(IGC_RSSRK(j), rss_key[j]);
788
789 num_rx_queues = adapter->rss_queues;
790
791 if (adapter->rss_indir_tbl_init != num_rx_queues) {
792 for (j = 0; j < IGC_RETA_SIZE; j++)
793 adapter->rss_indir_tbl[j] =
794 (j * num_rx_queues) / IGC_RETA_SIZE;
795 adapter->rss_indir_tbl_init = num_rx_queues;
796 }
797 igc_write_rss_indir_tbl(adapter);
798
799 /* Disable raw packet checksumming so that RSS hash is placed in
800 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
801 * offloads as they are enabled by default
802 */
803 rxcsum = rd32(IGC_RXCSUM);
804 rxcsum |= IGC_RXCSUM_PCSD;
805
806 /* Enable Receive Checksum Offload for SCTP */
807 rxcsum |= IGC_RXCSUM_CRCOFL;
808
809 /* Don't need to set TUOFL or IPOFL, they default to 1 */
810 wr32(IGC_RXCSUM, rxcsum);
811
812 /* Generate RSS hash based on packet types, TCP/UDP
813 * port numbers and/or IPv4/v6 src and dst addresses
814 */
815 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
816 IGC_MRQC_RSS_FIELD_IPV4_TCP |
817 IGC_MRQC_RSS_FIELD_IPV6 |
818 IGC_MRQC_RSS_FIELD_IPV6_TCP |
819 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
820
821 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
822 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
823 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
824 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
825
826 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
827
828 wr32(IGC_MRQC, mrqc);
829 }
830
831 /**
832 * igc_setup_rctl - configure the receive control registers
833 * @adapter: Board private structure
834 */
igc_setup_rctl(struct igc_adapter * adapter)835 static void igc_setup_rctl(struct igc_adapter *adapter)
836 {
837 struct igc_hw *hw = &adapter->hw;
838 u32 rctl;
839
840 rctl = rd32(IGC_RCTL);
841
842 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
843 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
844
845 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
846 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
847
848 /* enable stripping of CRC. Newer features require
849 * that the HW strips the CRC.
850 */
851 rctl |= IGC_RCTL_SECRC;
852
853 /* disable store bad packets and clear size bits. */
854 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
855
856 /* enable LPE to allow for reception of jumbo frames */
857 rctl |= IGC_RCTL_LPE;
858
859 /* disable queue 0 to prevent tail write w/o re-config */
860 wr32(IGC_RXDCTL(0), 0);
861
862 /* This is useful for sniffing bad packets. */
863 if (adapter->netdev->features & NETIF_F_RXALL) {
864 /* UPE and MPE will be handled by normal PROMISC logic
865 * in set_rx_mode
866 */
867 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
868 IGC_RCTL_BAM | /* RX All Bcast Pkts */
869 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
870
871 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
872 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
873 }
874
875 wr32(IGC_RCTL, rctl);
876 }
877
878 /**
879 * igc_setup_tctl - configure the transmit control registers
880 * @adapter: Board private structure
881 */
igc_setup_tctl(struct igc_adapter * adapter)882 static void igc_setup_tctl(struct igc_adapter *adapter)
883 {
884 struct igc_hw *hw = &adapter->hw;
885 u32 tctl;
886
887 /* disable queue 0 which icould be enabled by default */
888 wr32(IGC_TXDCTL(0), 0);
889
890 /* Program the Transmit Control Register */
891 tctl = rd32(IGC_TCTL);
892 tctl &= ~IGC_TCTL_CT;
893 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
894 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
895
896 /* Enable transmits */
897 tctl |= IGC_TCTL_EN;
898
899 wr32(IGC_TCTL, tctl);
900 }
901
902 /**
903 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
904 * @adapter: Pointer to adapter where the filter should be set
905 * @index: Filter index
906 * @type: MAC address filter type (source or destination)
907 * @addr: MAC address
908 * @queue: If non-negative, queue assignment feature is enabled and frames
909 * matching the filter are enqueued onto 'queue'. Otherwise, queue
910 * assignment is disabled.
911 */
igc_set_mac_filter_hw(struct igc_adapter * adapter,int index,enum igc_mac_filter_type type,const u8 * addr,int queue)912 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
913 enum igc_mac_filter_type type,
914 const u8 *addr, int queue)
915 {
916 struct net_device *dev = adapter->netdev;
917 struct igc_hw *hw = &adapter->hw;
918 u32 ral, rah;
919
920 if (WARN_ON(index >= hw->mac.rar_entry_count))
921 return;
922
923 ral = le32_to_cpup((__le32 *)(addr));
924 rah = le16_to_cpup((__le16 *)(addr + 4));
925
926 if (type == IGC_MAC_FILTER_TYPE_SRC) {
927 rah &= ~IGC_RAH_ASEL_MASK;
928 rah |= IGC_RAH_ASEL_SRC_ADDR;
929 }
930
931 if (queue >= 0) {
932 rah &= ~IGC_RAH_QSEL_MASK;
933 rah |= (queue << IGC_RAH_QSEL_SHIFT);
934 rah |= IGC_RAH_QSEL_ENABLE;
935 }
936
937 rah |= IGC_RAH_AV;
938
939 wr32(IGC_RAL(index), ral);
940 wr32(IGC_RAH(index), rah);
941
942 netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
943 }
944
945 /**
946 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
947 * @adapter: Pointer to adapter where the filter should be cleared
948 * @index: Filter index
949 */
igc_clear_mac_filter_hw(struct igc_adapter * adapter,int index)950 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
951 {
952 struct net_device *dev = adapter->netdev;
953 struct igc_hw *hw = &adapter->hw;
954
955 if (WARN_ON(index >= hw->mac.rar_entry_count))
956 return;
957
958 wr32(IGC_RAL(index), 0);
959 wr32(IGC_RAH(index), 0);
960
961 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
962 }
963
964 /* Set default MAC address for the PF in the first RAR entry */
igc_set_default_mac_filter(struct igc_adapter * adapter)965 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
966 {
967 struct net_device *dev = adapter->netdev;
968 u8 *addr = adapter->hw.mac.addr;
969
970 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
971
972 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
973 }
974
975 /**
976 * igc_set_mac - Change the Ethernet Address of the NIC
977 * @netdev: network interface device structure
978 * @p: pointer to an address structure
979 *
980 * Returns 0 on success, negative on failure
981 */
igc_set_mac(struct net_device * netdev,void * p)982 static int igc_set_mac(struct net_device *netdev, void *p)
983 {
984 struct igc_adapter *adapter = netdev_priv(netdev);
985 struct igc_hw *hw = &adapter->hw;
986 struct sockaddr *addr = p;
987
988 if (!is_valid_ether_addr(addr->sa_data))
989 return -EADDRNOTAVAIL;
990
991 eth_hw_addr_set(netdev, addr->sa_data);
992 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
993
994 /* set the correct pool for the new PF MAC address in entry 0 */
995 igc_set_default_mac_filter(adapter);
996
997 return 0;
998 }
999
1000 /**
1001 * igc_write_mc_addr_list - write multicast addresses to MTA
1002 * @netdev: network interface device structure
1003 *
1004 * Writes multicast address list to the MTA hash table.
1005 * Returns: -ENOMEM on failure
1006 * 0 on no addresses written
1007 * X on writing X addresses to MTA
1008 **/
igc_write_mc_addr_list(struct net_device * netdev)1009 static int igc_write_mc_addr_list(struct net_device *netdev)
1010 {
1011 struct igc_adapter *adapter = netdev_priv(netdev);
1012 struct igc_hw *hw = &adapter->hw;
1013 struct netdev_hw_addr *ha;
1014 u8 *mta_list;
1015 int i;
1016
1017 if (netdev_mc_empty(netdev)) {
1018 /* nothing to program, so clear mc list */
1019 igc_update_mc_addr_list(hw, NULL, 0);
1020 return 0;
1021 }
1022
1023 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1024 if (!mta_list)
1025 return -ENOMEM;
1026
1027 /* The shared function expects a packed array of only addresses. */
1028 i = 0;
1029 netdev_for_each_mc_addr(ha, netdev)
1030 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1031
1032 igc_update_mc_addr_list(hw, mta_list, i);
1033 kfree(mta_list);
1034
1035 return netdev_mc_count(netdev);
1036 }
1037
igc_tx_launchtime(struct igc_ring * ring,ktime_t txtime,bool * first_flag,bool * insert_empty)1038 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1039 bool *first_flag, bool *insert_empty)
1040 {
1041 struct igc_adapter *adapter = netdev_priv(ring->netdev);
1042 ktime_t cycle_time = adapter->cycle_time;
1043 ktime_t base_time = adapter->base_time;
1044 ktime_t now = ktime_get_clocktai();
1045 ktime_t baset_est, end_of_cycle;
1046 s32 launchtime;
1047 s64 n;
1048
1049 n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1050
1051 baset_est = ktime_add_ns(base_time, cycle_time * (n));
1052 end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1053
1054 if (ktime_compare(txtime, end_of_cycle) >= 0) {
1055 if (baset_est != ring->last_ff_cycle) {
1056 *first_flag = true;
1057 ring->last_ff_cycle = baset_est;
1058
1059 if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1060 *insert_empty = true;
1061 }
1062 }
1063
1064 /* Introducing a window at end of cycle on which packets
1065 * potentially not honor launchtime. Window of 5us chosen
1066 * considering software update the tail pointer and packets
1067 * are dma'ed to packet buffer.
1068 */
1069 if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1070 netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1071 txtime);
1072
1073 ring->last_tx_cycle = end_of_cycle;
1074
1075 launchtime = ktime_sub_ns(txtime, baset_est);
1076 if (launchtime > 0)
1077 div_s64_rem(launchtime, cycle_time, &launchtime);
1078 else
1079 launchtime = 0;
1080
1081 return cpu_to_le32(launchtime);
1082 }
1083
igc_init_empty_frame(struct igc_ring * ring,struct igc_tx_buffer * buffer,struct sk_buff * skb)1084 static int igc_init_empty_frame(struct igc_ring *ring,
1085 struct igc_tx_buffer *buffer,
1086 struct sk_buff *skb)
1087 {
1088 unsigned int size;
1089 dma_addr_t dma;
1090
1091 size = skb_headlen(skb);
1092
1093 dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1094 if (dma_mapping_error(ring->dev, dma)) {
1095 netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1096 return -ENOMEM;
1097 }
1098
1099 buffer->skb = skb;
1100 buffer->protocol = 0;
1101 buffer->bytecount = skb->len;
1102 buffer->gso_segs = 1;
1103 buffer->time_stamp = jiffies;
1104 dma_unmap_len_set(buffer, len, skb->len);
1105 dma_unmap_addr_set(buffer, dma, dma);
1106
1107 return 0;
1108 }
1109
igc_init_tx_empty_descriptor(struct igc_ring * ring,struct sk_buff * skb,struct igc_tx_buffer * first)1110 static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1111 struct sk_buff *skb,
1112 struct igc_tx_buffer *first)
1113 {
1114 union igc_adv_tx_desc *desc;
1115 u32 cmd_type, olinfo_status;
1116 int err;
1117
1118 if (!igc_desc_unused(ring))
1119 return -EBUSY;
1120
1121 err = igc_init_empty_frame(ring, first, skb);
1122 if (err)
1123 return err;
1124
1125 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1126 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1127 first->bytecount;
1128 olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1129
1130 desc = IGC_TX_DESC(ring, ring->next_to_use);
1131 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1132 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1133 desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1134
1135 netdev_tx_sent_queue(txring_txq(ring), skb->len);
1136
1137 first->next_to_watch = desc;
1138
1139 ring->next_to_use++;
1140 if (ring->next_to_use == ring->count)
1141 ring->next_to_use = 0;
1142
1143 return 0;
1144 }
1145
1146 #define IGC_EMPTY_FRAME_SIZE 60
1147
igc_tx_ctxtdesc(struct igc_ring * tx_ring,__le32 launch_time,bool first_flag,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)1148 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1149 __le32 launch_time, bool first_flag,
1150 u32 vlan_macip_lens, u32 type_tucmd,
1151 u32 mss_l4len_idx)
1152 {
1153 struct igc_adv_tx_context_desc *context_desc;
1154 u16 i = tx_ring->next_to_use;
1155
1156 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1157
1158 i++;
1159 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1160
1161 /* set bits to identify this as an advanced context descriptor */
1162 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1163
1164 /* For i225, context index must be unique per ring. */
1165 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1166 mss_l4len_idx |= tx_ring->reg_idx << 4;
1167
1168 if (first_flag)
1169 mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1170
1171 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1172 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1173 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1174 context_desc->launch_time = launch_time;
1175 }
1176
igc_tx_csum(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag)1177 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1178 __le32 launch_time, bool first_flag)
1179 {
1180 struct sk_buff *skb = first->skb;
1181 u32 vlan_macip_lens = 0;
1182 u32 type_tucmd = 0;
1183
1184 if (skb->ip_summed != CHECKSUM_PARTIAL) {
1185 csum_failed:
1186 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1187 !tx_ring->launchtime_enable)
1188 return;
1189 goto no_csum;
1190 }
1191
1192 switch (skb->csum_offset) {
1193 case offsetof(struct tcphdr, check):
1194 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1195 fallthrough;
1196 case offsetof(struct udphdr, check):
1197 break;
1198 case offsetof(struct sctphdr, checksum):
1199 /* validate that this is actually an SCTP request */
1200 if (skb_csum_is_sctp(skb)) {
1201 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1202 break;
1203 }
1204 fallthrough;
1205 default:
1206 skb_checksum_help(skb);
1207 goto csum_failed;
1208 }
1209
1210 /* update TX checksum flag */
1211 first->tx_flags |= IGC_TX_FLAGS_CSUM;
1212 vlan_macip_lens = skb_checksum_start_offset(skb) -
1213 skb_network_offset(skb);
1214 no_csum:
1215 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1216 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1217
1218 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1219 vlan_macip_lens, type_tucmd, 0);
1220 }
1221
__igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1222 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1223 {
1224 struct net_device *netdev = tx_ring->netdev;
1225
1226 netif_stop_subqueue(netdev, tx_ring->queue_index);
1227
1228 /* memory barriier comment */
1229 smp_mb();
1230
1231 /* We need to check again in a case another CPU has just
1232 * made room available.
1233 */
1234 if (igc_desc_unused(tx_ring) < size)
1235 return -EBUSY;
1236
1237 /* A reprieve! */
1238 netif_wake_subqueue(netdev, tx_ring->queue_index);
1239
1240 u64_stats_update_begin(&tx_ring->tx_syncp2);
1241 tx_ring->tx_stats.restart_queue2++;
1242 u64_stats_update_end(&tx_ring->tx_syncp2);
1243
1244 return 0;
1245 }
1246
igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1247 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1248 {
1249 if (igc_desc_unused(tx_ring) >= size)
1250 return 0;
1251 return __igc_maybe_stop_tx(tx_ring, size);
1252 }
1253
1254 #define IGC_SET_FLAG(_input, _flag, _result) \
1255 (((_flag) <= (_result)) ? \
1256 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \
1257 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1258
igc_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)1259 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1260 {
1261 /* set type for advanced descriptor with frame checksum insertion */
1262 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1263 IGC_ADVTXD_DCMD_DEXT |
1264 IGC_ADVTXD_DCMD_IFCS;
1265
1266 /* set HW vlan bit if vlan is present */
1267 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1268 IGC_ADVTXD_DCMD_VLE);
1269
1270 /* set segmentation bits for TSO */
1271 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1272 (IGC_ADVTXD_DCMD_TSE));
1273
1274 /* set timestamp bit if present, will select the register set
1275 * based on the _TSTAMP(_X) bit.
1276 */
1277 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1278 (IGC_ADVTXD_MAC_TSTAMP));
1279
1280 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_1,
1281 (IGC_ADVTXD_TSTAMP_REG_1));
1282
1283 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_2,
1284 (IGC_ADVTXD_TSTAMP_REG_2));
1285
1286 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP_3,
1287 (IGC_ADVTXD_TSTAMP_REG_3));
1288
1289 /* insert frame checksum */
1290 cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1291
1292 return cmd_type;
1293 }
1294
igc_tx_olinfo_status(struct igc_ring * tx_ring,union igc_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)1295 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1296 union igc_adv_tx_desc *tx_desc,
1297 u32 tx_flags, unsigned int paylen)
1298 {
1299 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1300
1301 /* insert L4 checksum */
1302 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1303 ((IGC_TXD_POPTS_TXSM << 8) /
1304 IGC_TX_FLAGS_CSUM);
1305
1306 /* insert IPv4 checksum */
1307 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1308 (((IGC_TXD_POPTS_IXSM << 8)) /
1309 IGC_TX_FLAGS_IPV4);
1310
1311 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1312 }
1313
igc_tx_map(struct igc_ring * tx_ring,struct igc_tx_buffer * first,const u8 hdr_len)1314 static int igc_tx_map(struct igc_ring *tx_ring,
1315 struct igc_tx_buffer *first,
1316 const u8 hdr_len)
1317 {
1318 struct sk_buff *skb = first->skb;
1319 struct igc_tx_buffer *tx_buffer;
1320 union igc_adv_tx_desc *tx_desc;
1321 u32 tx_flags = first->tx_flags;
1322 skb_frag_t *frag;
1323 u16 i = tx_ring->next_to_use;
1324 unsigned int data_len, size;
1325 dma_addr_t dma;
1326 u32 cmd_type;
1327
1328 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1329 tx_desc = IGC_TX_DESC(tx_ring, i);
1330
1331 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1332
1333 size = skb_headlen(skb);
1334 data_len = skb->data_len;
1335
1336 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1337
1338 tx_buffer = first;
1339
1340 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1341 if (dma_mapping_error(tx_ring->dev, dma))
1342 goto dma_error;
1343
1344 /* record length, and DMA address */
1345 dma_unmap_len_set(tx_buffer, len, size);
1346 dma_unmap_addr_set(tx_buffer, dma, dma);
1347
1348 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1349
1350 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1351 tx_desc->read.cmd_type_len =
1352 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1353
1354 i++;
1355 tx_desc++;
1356 if (i == tx_ring->count) {
1357 tx_desc = IGC_TX_DESC(tx_ring, 0);
1358 i = 0;
1359 }
1360 tx_desc->read.olinfo_status = 0;
1361
1362 dma += IGC_MAX_DATA_PER_TXD;
1363 size -= IGC_MAX_DATA_PER_TXD;
1364
1365 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1366 }
1367
1368 if (likely(!data_len))
1369 break;
1370
1371 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1372
1373 i++;
1374 tx_desc++;
1375 if (i == tx_ring->count) {
1376 tx_desc = IGC_TX_DESC(tx_ring, 0);
1377 i = 0;
1378 }
1379 tx_desc->read.olinfo_status = 0;
1380
1381 size = skb_frag_size(frag);
1382 data_len -= size;
1383
1384 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1385 size, DMA_TO_DEVICE);
1386
1387 tx_buffer = &tx_ring->tx_buffer_info[i];
1388 }
1389
1390 /* write last descriptor with RS and EOP bits */
1391 cmd_type |= size | IGC_TXD_DCMD;
1392 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1393
1394 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1395
1396 /* set the timestamp */
1397 first->time_stamp = jiffies;
1398
1399 skb_tx_timestamp(skb);
1400
1401 /* Force memory writes to complete before letting h/w know there
1402 * are new descriptors to fetch. (Only applicable for weak-ordered
1403 * memory model archs, such as IA-64).
1404 *
1405 * We also need this memory barrier to make certain all of the
1406 * status bits have been updated before next_to_watch is written.
1407 */
1408 wmb();
1409
1410 /* set next_to_watch value indicating a packet is present */
1411 first->next_to_watch = tx_desc;
1412
1413 i++;
1414 if (i == tx_ring->count)
1415 i = 0;
1416
1417 tx_ring->next_to_use = i;
1418
1419 /* Make sure there is space in the ring for the next send. */
1420 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1421
1422 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1423 writel(i, tx_ring->tail);
1424 }
1425
1426 return 0;
1427 dma_error:
1428 netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1429 tx_buffer = &tx_ring->tx_buffer_info[i];
1430
1431 /* clear dma mappings for failed tx_buffer_info map */
1432 while (tx_buffer != first) {
1433 if (dma_unmap_len(tx_buffer, len))
1434 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1435
1436 if (i-- == 0)
1437 i += tx_ring->count;
1438 tx_buffer = &tx_ring->tx_buffer_info[i];
1439 }
1440
1441 if (dma_unmap_len(tx_buffer, len))
1442 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1443
1444 dev_kfree_skb_any(tx_buffer->skb);
1445 tx_buffer->skb = NULL;
1446
1447 tx_ring->next_to_use = i;
1448
1449 return -1;
1450 }
1451
igc_tso(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag,u8 * hdr_len)1452 static int igc_tso(struct igc_ring *tx_ring,
1453 struct igc_tx_buffer *first,
1454 __le32 launch_time, bool first_flag,
1455 u8 *hdr_len)
1456 {
1457 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1458 struct sk_buff *skb = first->skb;
1459 union {
1460 struct iphdr *v4;
1461 struct ipv6hdr *v6;
1462 unsigned char *hdr;
1463 } ip;
1464 union {
1465 struct tcphdr *tcp;
1466 struct udphdr *udp;
1467 unsigned char *hdr;
1468 } l4;
1469 u32 paylen, l4_offset;
1470 int err;
1471
1472 if (skb->ip_summed != CHECKSUM_PARTIAL)
1473 return 0;
1474
1475 if (!skb_is_gso(skb))
1476 return 0;
1477
1478 err = skb_cow_head(skb, 0);
1479 if (err < 0)
1480 return err;
1481
1482 ip.hdr = skb_network_header(skb);
1483 l4.hdr = skb_checksum_start(skb);
1484
1485 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1486 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1487
1488 /* initialize outer IP header fields */
1489 if (ip.v4->version == 4) {
1490 unsigned char *csum_start = skb_checksum_start(skb);
1491 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1492
1493 /* IP header will have to cancel out any data that
1494 * is not a part of the outer IP header
1495 */
1496 ip.v4->check = csum_fold(csum_partial(trans_start,
1497 csum_start - trans_start,
1498 0));
1499 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1500
1501 ip.v4->tot_len = 0;
1502 first->tx_flags |= IGC_TX_FLAGS_TSO |
1503 IGC_TX_FLAGS_CSUM |
1504 IGC_TX_FLAGS_IPV4;
1505 } else {
1506 ip.v6->payload_len = 0;
1507 first->tx_flags |= IGC_TX_FLAGS_TSO |
1508 IGC_TX_FLAGS_CSUM;
1509 }
1510
1511 /* determine offset of inner transport header */
1512 l4_offset = l4.hdr - skb->data;
1513
1514 /* remove payload length from inner checksum */
1515 paylen = skb->len - l4_offset;
1516 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1517 /* compute length of segmentation header */
1518 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1519 csum_replace_by_diff(&l4.tcp->check,
1520 (__force __wsum)htonl(paylen));
1521 } else {
1522 /* compute length of segmentation header */
1523 *hdr_len = sizeof(*l4.udp) + l4_offset;
1524 csum_replace_by_diff(&l4.udp->check,
1525 (__force __wsum)htonl(paylen));
1526 }
1527
1528 /* update gso size and bytecount with header size */
1529 first->gso_segs = skb_shinfo(skb)->gso_segs;
1530 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1531
1532 /* MSS L4LEN IDX */
1533 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1534 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1535
1536 /* VLAN MACLEN IPLEN */
1537 vlan_macip_lens = l4.hdr - ip.hdr;
1538 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1539 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1540
1541 igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1542 vlan_macip_lens, type_tucmd, mss_l4len_idx);
1543
1544 return 1;
1545 }
1546
igc_request_tx_tstamp(struct igc_adapter * adapter,struct sk_buff * skb,u32 * flags)1547 static bool igc_request_tx_tstamp(struct igc_adapter *adapter, struct sk_buff *skb, u32 *flags)
1548 {
1549 int i;
1550
1551 for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
1552 struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
1553
1554 if (tstamp->skb)
1555 continue;
1556
1557 tstamp->skb = skb_get(skb);
1558 tstamp->start = jiffies;
1559 *flags = tstamp->flags;
1560
1561 return true;
1562 }
1563
1564 return false;
1565 }
1566
igc_xmit_frame_ring(struct sk_buff * skb,struct igc_ring * tx_ring)1567 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1568 struct igc_ring *tx_ring)
1569 {
1570 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1571 bool first_flag = false, insert_empty = false;
1572 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1573 __be16 protocol = vlan_get_protocol(skb);
1574 struct igc_tx_buffer *first;
1575 __le32 launch_time = 0;
1576 u32 tx_flags = 0;
1577 unsigned short f;
1578 ktime_t txtime;
1579 u8 hdr_len = 0;
1580 int tso = 0;
1581
1582 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1583 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1584 * + 2 desc gap to keep tail from touching head,
1585 * + 1 desc for context descriptor,
1586 * otherwise try next time
1587 */
1588 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1589 count += TXD_USE_COUNT(skb_frag_size(
1590 &skb_shinfo(skb)->frags[f]));
1591
1592 if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1593 /* this is a hard error */
1594 return NETDEV_TX_BUSY;
1595 }
1596
1597 if (!tx_ring->launchtime_enable)
1598 goto done;
1599
1600 txtime = skb->tstamp;
1601 skb->tstamp = ktime_set(0, 0);
1602 launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1603
1604 if (insert_empty) {
1605 struct igc_tx_buffer *empty_info;
1606 struct sk_buff *empty;
1607 void *data;
1608
1609 empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1610 empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1611 if (!empty)
1612 goto done;
1613
1614 data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1615 memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1616
1617 igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1618
1619 if (igc_init_tx_empty_descriptor(tx_ring,
1620 empty,
1621 empty_info) < 0)
1622 dev_kfree_skb_any(empty);
1623 }
1624
1625 done:
1626 /* record the location of the first descriptor for this packet */
1627 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1628 first->type = IGC_TX_BUFFER_TYPE_SKB;
1629 first->skb = skb;
1630 first->bytecount = skb->len;
1631 first->gso_segs = 1;
1632
1633 if (adapter->qbv_transition || tx_ring->oper_gate_closed)
1634 goto out_drop;
1635
1636 if (tx_ring->max_sdu > 0 && first->bytecount > tx_ring->max_sdu) {
1637 adapter->stats.txdrop++;
1638 goto out_drop;
1639 }
1640
1641 if (unlikely(test_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags) &&
1642 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1643 unsigned long flags;
1644 u32 tstamp_flags;
1645
1646 spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1647 if (igc_request_tx_tstamp(adapter, skb, &tstamp_flags)) {
1648 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1649 tx_flags |= IGC_TX_FLAGS_TSTAMP | tstamp_flags;
1650 } else {
1651 adapter->tx_hwtstamp_skipped++;
1652 }
1653
1654 spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1655 }
1656
1657 if (skb_vlan_tag_present(skb)) {
1658 tx_flags |= IGC_TX_FLAGS_VLAN;
1659 tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1660 }
1661
1662 /* record initial flags and protocol */
1663 first->tx_flags = tx_flags;
1664 first->protocol = protocol;
1665
1666 tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1667 if (tso < 0)
1668 goto out_drop;
1669 else if (!tso)
1670 igc_tx_csum(tx_ring, first, launch_time, first_flag);
1671
1672 igc_tx_map(tx_ring, first, hdr_len);
1673
1674 return NETDEV_TX_OK;
1675
1676 out_drop:
1677 dev_kfree_skb_any(first->skb);
1678 first->skb = NULL;
1679
1680 return NETDEV_TX_OK;
1681 }
1682
igc_tx_queue_mapping(struct igc_adapter * adapter,struct sk_buff * skb)1683 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1684 struct sk_buff *skb)
1685 {
1686 unsigned int r_idx = skb->queue_mapping;
1687
1688 if (r_idx >= adapter->num_tx_queues)
1689 r_idx = r_idx % adapter->num_tx_queues;
1690
1691 return adapter->tx_ring[r_idx];
1692 }
1693
igc_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1694 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1695 struct net_device *netdev)
1696 {
1697 struct igc_adapter *adapter = netdev_priv(netdev);
1698
1699 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1700 * in order to meet this minimum size requirement.
1701 */
1702 if (skb->len < 17) {
1703 if (skb_padto(skb, 17))
1704 return NETDEV_TX_OK;
1705 skb->len = 17;
1706 }
1707
1708 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1709 }
1710
igc_rx_checksum(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1711 static void igc_rx_checksum(struct igc_ring *ring,
1712 union igc_adv_rx_desc *rx_desc,
1713 struct sk_buff *skb)
1714 {
1715 skb_checksum_none_assert(skb);
1716
1717 /* Ignore Checksum bit is set */
1718 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1719 return;
1720
1721 /* Rx checksum disabled via ethtool */
1722 if (!(ring->netdev->features & NETIF_F_RXCSUM))
1723 return;
1724
1725 /* TCP/UDP checksum error bit is set */
1726 if (igc_test_staterr(rx_desc,
1727 IGC_RXDEXT_STATERR_L4E |
1728 IGC_RXDEXT_STATERR_IPE)) {
1729 /* work around errata with sctp packets where the TCPE aka
1730 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1731 * packets (aka let the stack check the crc32c)
1732 */
1733 if (!(skb->len == 60 &&
1734 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1735 u64_stats_update_begin(&ring->rx_syncp);
1736 ring->rx_stats.csum_err++;
1737 u64_stats_update_end(&ring->rx_syncp);
1738 }
1739 /* let the stack verify checksum errors */
1740 return;
1741 }
1742 /* It must be a TCP or UDP packet with a valid checksum */
1743 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1744 IGC_RXD_STAT_UDPCS))
1745 skb->ip_summed = CHECKSUM_UNNECESSARY;
1746
1747 netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1748 le32_to_cpu(rx_desc->wb.upper.status_error));
1749 }
1750
1751 /* Mapping HW RSS Type to enum pkt_hash_types */
1752 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1753 [IGC_RSS_TYPE_NO_HASH] = PKT_HASH_TYPE_L2,
1754 [IGC_RSS_TYPE_HASH_TCP_IPV4] = PKT_HASH_TYPE_L4,
1755 [IGC_RSS_TYPE_HASH_IPV4] = PKT_HASH_TYPE_L3,
1756 [IGC_RSS_TYPE_HASH_TCP_IPV6] = PKT_HASH_TYPE_L4,
1757 [IGC_RSS_TYPE_HASH_IPV6_EX] = PKT_HASH_TYPE_L3,
1758 [IGC_RSS_TYPE_HASH_IPV6] = PKT_HASH_TYPE_L3,
1759 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1760 [IGC_RSS_TYPE_HASH_UDP_IPV4] = PKT_HASH_TYPE_L4,
1761 [IGC_RSS_TYPE_HASH_UDP_IPV6] = PKT_HASH_TYPE_L4,
1762 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1763 [10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */
1764 [11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask */
1765 [12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons */
1766 [13] = PKT_HASH_TYPE_NONE,
1767 [14] = PKT_HASH_TYPE_NONE,
1768 [15] = PKT_HASH_TYPE_NONE,
1769 };
1770
igc_rx_hash(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1771 static inline void igc_rx_hash(struct igc_ring *ring,
1772 union igc_adv_rx_desc *rx_desc,
1773 struct sk_buff *skb)
1774 {
1775 if (ring->netdev->features & NETIF_F_RXHASH) {
1776 u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1777 u32 rss_type = igc_rss_type(rx_desc);
1778
1779 skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1780 }
1781 }
1782
igc_rx_vlan(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1783 static void igc_rx_vlan(struct igc_ring *rx_ring,
1784 union igc_adv_rx_desc *rx_desc,
1785 struct sk_buff *skb)
1786 {
1787 struct net_device *dev = rx_ring->netdev;
1788 u16 vid;
1789
1790 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1791 igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1792 if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1793 test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1794 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1795 else
1796 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1797
1798 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1799 }
1800 }
1801
1802 /**
1803 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1804 * @rx_ring: rx descriptor ring packet is being transacted on
1805 * @rx_desc: pointer to the EOP Rx descriptor
1806 * @skb: pointer to current skb being populated
1807 *
1808 * This function checks the ring, descriptor, and packet information in order
1809 * to populate the hash, checksum, VLAN, protocol, and other fields within the
1810 * skb.
1811 */
igc_process_skb_fields(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1812 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1813 union igc_adv_rx_desc *rx_desc,
1814 struct sk_buff *skb)
1815 {
1816 igc_rx_hash(rx_ring, rx_desc, skb);
1817
1818 igc_rx_checksum(rx_ring, rx_desc, skb);
1819
1820 igc_rx_vlan(rx_ring, rx_desc, skb);
1821
1822 skb_record_rx_queue(skb, rx_ring->queue_index);
1823
1824 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1825 }
1826
igc_vlan_mode(struct net_device * netdev,netdev_features_t features)1827 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1828 {
1829 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1830 struct igc_adapter *adapter = netdev_priv(netdev);
1831 struct igc_hw *hw = &adapter->hw;
1832 u32 ctrl;
1833
1834 ctrl = rd32(IGC_CTRL);
1835
1836 if (enable) {
1837 /* enable VLAN tag insert/strip */
1838 ctrl |= IGC_CTRL_VME;
1839 } else {
1840 /* disable VLAN tag insert/strip */
1841 ctrl &= ~IGC_CTRL_VME;
1842 }
1843 wr32(IGC_CTRL, ctrl);
1844 }
1845
igc_restore_vlan(struct igc_adapter * adapter)1846 static void igc_restore_vlan(struct igc_adapter *adapter)
1847 {
1848 igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1849 }
1850
igc_get_rx_buffer(struct igc_ring * rx_ring,const unsigned int size,int * rx_buffer_pgcnt)1851 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1852 const unsigned int size,
1853 int *rx_buffer_pgcnt)
1854 {
1855 struct igc_rx_buffer *rx_buffer;
1856
1857 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1858 *rx_buffer_pgcnt =
1859 #if (PAGE_SIZE < 8192)
1860 page_count(rx_buffer->page);
1861 #else
1862 0;
1863 #endif
1864 prefetchw(rx_buffer->page);
1865
1866 /* we are reusing so sync this buffer for CPU use */
1867 dma_sync_single_range_for_cpu(rx_ring->dev,
1868 rx_buffer->dma,
1869 rx_buffer->page_offset,
1870 size,
1871 DMA_FROM_DEVICE);
1872
1873 rx_buffer->pagecnt_bias--;
1874
1875 return rx_buffer;
1876 }
1877
igc_rx_buffer_flip(struct igc_rx_buffer * buffer,unsigned int truesize)1878 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1879 unsigned int truesize)
1880 {
1881 #if (PAGE_SIZE < 8192)
1882 buffer->page_offset ^= truesize;
1883 #else
1884 buffer->page_offset += truesize;
1885 #endif
1886 }
1887
igc_get_rx_frame_truesize(struct igc_ring * ring,unsigned int size)1888 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1889 unsigned int size)
1890 {
1891 unsigned int truesize;
1892
1893 #if (PAGE_SIZE < 8192)
1894 truesize = igc_rx_pg_size(ring) / 2;
1895 #else
1896 truesize = ring_uses_build_skb(ring) ?
1897 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1898 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1899 SKB_DATA_ALIGN(size);
1900 #endif
1901 return truesize;
1902 }
1903
1904 /**
1905 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1906 * @rx_ring: rx descriptor ring to transact packets on
1907 * @rx_buffer: buffer containing page to add
1908 * @skb: sk_buff to place the data into
1909 * @size: size of buffer to be added
1910 *
1911 * This function will add the data contained in rx_buffer->page to the skb.
1912 */
igc_add_rx_frag(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1913 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1914 struct igc_rx_buffer *rx_buffer,
1915 struct sk_buff *skb,
1916 unsigned int size)
1917 {
1918 unsigned int truesize;
1919
1920 #if (PAGE_SIZE < 8192)
1921 truesize = igc_rx_pg_size(rx_ring) / 2;
1922 #else
1923 truesize = ring_uses_build_skb(rx_ring) ?
1924 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1925 SKB_DATA_ALIGN(size);
1926 #endif
1927 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1928 rx_buffer->page_offset, size, truesize);
1929
1930 igc_rx_buffer_flip(rx_buffer, truesize);
1931 }
1932
igc_build_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct xdp_buff * xdp)1933 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1934 struct igc_rx_buffer *rx_buffer,
1935 struct xdp_buff *xdp)
1936 {
1937 unsigned int size = xdp->data_end - xdp->data;
1938 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1939 unsigned int metasize = xdp->data - xdp->data_meta;
1940 struct sk_buff *skb;
1941
1942 /* prefetch first cache line of first page */
1943 net_prefetch(xdp->data_meta);
1944
1945 /* build an skb around the page buffer */
1946 skb = napi_build_skb(xdp->data_hard_start, truesize);
1947 if (unlikely(!skb))
1948 return NULL;
1949
1950 /* update pointers within the skb to store the data */
1951 skb_reserve(skb, xdp->data - xdp->data_hard_start);
1952 __skb_put(skb, size);
1953 if (metasize)
1954 skb_metadata_set(skb, metasize);
1955
1956 igc_rx_buffer_flip(rx_buffer, truesize);
1957 return skb;
1958 }
1959
igc_construct_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)1960 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1961 struct igc_rx_buffer *rx_buffer,
1962 struct xdp_buff *xdp,
1963 ktime_t timestamp)
1964 {
1965 unsigned int metasize = xdp->data - xdp->data_meta;
1966 unsigned int size = xdp->data_end - xdp->data;
1967 unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1968 void *va = xdp->data;
1969 unsigned int headlen;
1970 struct sk_buff *skb;
1971
1972 /* prefetch first cache line of first page */
1973 net_prefetch(xdp->data_meta);
1974
1975 /* allocate a skb to store the frags */
1976 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1977 IGC_RX_HDR_LEN + metasize);
1978 if (unlikely(!skb))
1979 return NULL;
1980
1981 if (timestamp)
1982 skb_hwtstamps(skb)->hwtstamp = timestamp;
1983
1984 /* Determine available headroom for copy */
1985 headlen = size;
1986 if (headlen > IGC_RX_HDR_LEN)
1987 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1988
1989 /* align pull length to size of long to optimize memcpy performance */
1990 memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1991 ALIGN(headlen + metasize, sizeof(long)));
1992
1993 if (metasize) {
1994 skb_metadata_set(skb, metasize);
1995 __skb_pull(skb, metasize);
1996 }
1997
1998 /* update all of the pointers */
1999 size -= headlen;
2000 if (size) {
2001 skb_add_rx_frag(skb, 0, rx_buffer->page,
2002 (va + headlen) - page_address(rx_buffer->page),
2003 size, truesize);
2004 igc_rx_buffer_flip(rx_buffer, truesize);
2005 } else {
2006 rx_buffer->pagecnt_bias++;
2007 }
2008
2009 return skb;
2010 }
2011
2012 /**
2013 * igc_reuse_rx_page - page flip buffer and store it back on the ring
2014 * @rx_ring: rx descriptor ring to store buffers on
2015 * @old_buff: donor buffer to have page reused
2016 *
2017 * Synchronizes page for reuse by the adapter
2018 */
igc_reuse_rx_page(struct igc_ring * rx_ring,struct igc_rx_buffer * old_buff)2019 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
2020 struct igc_rx_buffer *old_buff)
2021 {
2022 u16 nta = rx_ring->next_to_alloc;
2023 struct igc_rx_buffer *new_buff;
2024
2025 new_buff = &rx_ring->rx_buffer_info[nta];
2026
2027 /* update, and store next to alloc */
2028 nta++;
2029 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
2030
2031 /* Transfer page from old buffer to new buffer.
2032 * Move each member individually to avoid possible store
2033 * forwarding stalls.
2034 */
2035 new_buff->dma = old_buff->dma;
2036 new_buff->page = old_buff->page;
2037 new_buff->page_offset = old_buff->page_offset;
2038 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
2039 }
2040
igc_can_reuse_rx_page(struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2041 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2042 int rx_buffer_pgcnt)
2043 {
2044 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2045 struct page *page = rx_buffer->page;
2046
2047 /* avoid re-using remote and pfmemalloc pages */
2048 if (!dev_page_is_reusable(page))
2049 return false;
2050
2051 #if (PAGE_SIZE < 8192)
2052 /* if we are only owner of page we can reuse it */
2053 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2054 return false;
2055 #else
2056 #define IGC_LAST_OFFSET \
2057 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2058
2059 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2060 return false;
2061 #endif
2062
2063 /* If we have drained the page fragment pool we need to update
2064 * the pagecnt_bias and page count so that we fully restock the
2065 * number of references the driver holds.
2066 */
2067 if (unlikely(pagecnt_bias == 1)) {
2068 page_ref_add(page, USHRT_MAX - 1);
2069 rx_buffer->pagecnt_bias = USHRT_MAX;
2070 }
2071
2072 return true;
2073 }
2074
2075 /**
2076 * igc_is_non_eop - process handling of non-EOP buffers
2077 * @rx_ring: Rx ring being processed
2078 * @rx_desc: Rx descriptor for current buffer
2079 *
2080 * This function updates next to clean. If the buffer is an EOP buffer
2081 * this function exits returning false, otherwise it will place the
2082 * sk_buff in the next buffer to be chained and return true indicating
2083 * that this is in fact a non-EOP buffer.
2084 */
igc_is_non_eop(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc)2085 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2086 union igc_adv_rx_desc *rx_desc)
2087 {
2088 u32 ntc = rx_ring->next_to_clean + 1;
2089
2090 /* fetch, update, and store next to clean */
2091 ntc = (ntc < rx_ring->count) ? ntc : 0;
2092 rx_ring->next_to_clean = ntc;
2093
2094 prefetch(IGC_RX_DESC(rx_ring, ntc));
2095
2096 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2097 return false;
2098
2099 return true;
2100 }
2101
2102 /**
2103 * igc_cleanup_headers - Correct corrupted or empty headers
2104 * @rx_ring: rx descriptor ring packet is being transacted on
2105 * @rx_desc: pointer to the EOP Rx descriptor
2106 * @skb: pointer to current skb being fixed
2107 *
2108 * Address the case where we are pulling data in on pages only
2109 * and as such no data is present in the skb header.
2110 *
2111 * In addition if skb is not at least 60 bytes we need to pad it so that
2112 * it is large enough to qualify as a valid Ethernet frame.
2113 *
2114 * Returns true if an error was encountered and skb was freed.
2115 */
igc_cleanup_headers(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)2116 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2117 union igc_adv_rx_desc *rx_desc,
2118 struct sk_buff *skb)
2119 {
2120 /* XDP packets use error pointer so abort at this point */
2121 if (IS_ERR(skb))
2122 return true;
2123
2124 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2125 struct net_device *netdev = rx_ring->netdev;
2126
2127 if (!(netdev->features & NETIF_F_RXALL)) {
2128 dev_kfree_skb_any(skb);
2129 return true;
2130 }
2131 }
2132
2133 /* if eth_skb_pad returns an error the skb was freed */
2134 if (eth_skb_pad(skb))
2135 return true;
2136
2137 return false;
2138 }
2139
igc_put_rx_buffer(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2140 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2141 struct igc_rx_buffer *rx_buffer,
2142 int rx_buffer_pgcnt)
2143 {
2144 if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2145 /* hand second half of page back to the ring */
2146 igc_reuse_rx_page(rx_ring, rx_buffer);
2147 } else {
2148 /* We are not reusing the buffer so unmap it and free
2149 * any references we are holding to it
2150 */
2151 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2152 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2153 IGC_RX_DMA_ATTR);
2154 __page_frag_cache_drain(rx_buffer->page,
2155 rx_buffer->pagecnt_bias);
2156 }
2157
2158 /* clear contents of rx_buffer */
2159 rx_buffer->page = NULL;
2160 }
2161
igc_rx_offset(struct igc_ring * rx_ring)2162 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2163 {
2164 struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2165
2166 if (ring_uses_build_skb(rx_ring))
2167 return IGC_SKB_PAD;
2168 if (igc_xdp_is_enabled(adapter))
2169 return XDP_PACKET_HEADROOM;
2170
2171 return 0;
2172 }
2173
igc_alloc_mapped_page(struct igc_ring * rx_ring,struct igc_rx_buffer * bi)2174 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2175 struct igc_rx_buffer *bi)
2176 {
2177 struct page *page = bi->page;
2178 dma_addr_t dma;
2179
2180 /* since we are recycling buffers we should seldom need to alloc */
2181 if (likely(page))
2182 return true;
2183
2184 /* alloc new page for storage */
2185 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2186 if (unlikely(!page)) {
2187 rx_ring->rx_stats.alloc_failed++;
2188 return false;
2189 }
2190
2191 /* map page for use */
2192 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2193 igc_rx_pg_size(rx_ring),
2194 DMA_FROM_DEVICE,
2195 IGC_RX_DMA_ATTR);
2196
2197 /* if mapping failed free memory back to system since
2198 * there isn't much point in holding memory we can't use
2199 */
2200 if (dma_mapping_error(rx_ring->dev, dma)) {
2201 __free_page(page);
2202
2203 rx_ring->rx_stats.alloc_failed++;
2204 return false;
2205 }
2206
2207 bi->dma = dma;
2208 bi->page = page;
2209 bi->page_offset = igc_rx_offset(rx_ring);
2210 page_ref_add(page, USHRT_MAX - 1);
2211 bi->pagecnt_bias = USHRT_MAX;
2212
2213 return true;
2214 }
2215
2216 /**
2217 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2218 * @rx_ring: rx descriptor ring
2219 * @cleaned_count: number of buffers to clean
2220 */
igc_alloc_rx_buffers(struct igc_ring * rx_ring,u16 cleaned_count)2221 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2222 {
2223 union igc_adv_rx_desc *rx_desc;
2224 u16 i = rx_ring->next_to_use;
2225 struct igc_rx_buffer *bi;
2226 u16 bufsz;
2227
2228 /* nothing to do */
2229 if (!cleaned_count)
2230 return;
2231
2232 rx_desc = IGC_RX_DESC(rx_ring, i);
2233 bi = &rx_ring->rx_buffer_info[i];
2234 i -= rx_ring->count;
2235
2236 bufsz = igc_rx_bufsz(rx_ring);
2237
2238 do {
2239 if (!igc_alloc_mapped_page(rx_ring, bi))
2240 break;
2241
2242 /* sync the buffer for use by the device */
2243 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2244 bi->page_offset, bufsz,
2245 DMA_FROM_DEVICE);
2246
2247 /* Refresh the desc even if buffer_addrs didn't change
2248 * because each write-back erases this info.
2249 */
2250 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2251
2252 rx_desc++;
2253 bi++;
2254 i++;
2255 if (unlikely(!i)) {
2256 rx_desc = IGC_RX_DESC(rx_ring, 0);
2257 bi = rx_ring->rx_buffer_info;
2258 i -= rx_ring->count;
2259 }
2260
2261 /* clear the length for the next_to_use descriptor */
2262 rx_desc->wb.upper.length = 0;
2263
2264 cleaned_count--;
2265 } while (cleaned_count);
2266
2267 i += rx_ring->count;
2268
2269 if (rx_ring->next_to_use != i) {
2270 /* record the next descriptor to use */
2271 rx_ring->next_to_use = i;
2272
2273 /* update next to alloc since we have filled the ring */
2274 rx_ring->next_to_alloc = i;
2275
2276 /* Force memory writes to complete before letting h/w
2277 * know there are new descriptors to fetch. (Only
2278 * applicable for weak-ordered memory model archs,
2279 * such as IA-64).
2280 */
2281 wmb();
2282 writel(i, rx_ring->tail);
2283 }
2284 }
2285
igc_alloc_rx_buffers_zc(struct igc_ring * ring,u16 count)2286 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2287 {
2288 union igc_adv_rx_desc *desc;
2289 u16 i = ring->next_to_use;
2290 struct igc_rx_buffer *bi;
2291 dma_addr_t dma;
2292 bool ok = true;
2293
2294 if (!count)
2295 return ok;
2296
2297 XSK_CHECK_PRIV_TYPE(struct igc_xdp_buff);
2298
2299 desc = IGC_RX_DESC(ring, i);
2300 bi = &ring->rx_buffer_info[i];
2301 i -= ring->count;
2302
2303 do {
2304 bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2305 if (!bi->xdp) {
2306 ok = false;
2307 break;
2308 }
2309
2310 dma = xsk_buff_xdp_get_dma(bi->xdp);
2311 desc->read.pkt_addr = cpu_to_le64(dma);
2312
2313 desc++;
2314 bi++;
2315 i++;
2316 if (unlikely(!i)) {
2317 desc = IGC_RX_DESC(ring, 0);
2318 bi = ring->rx_buffer_info;
2319 i -= ring->count;
2320 }
2321
2322 /* Clear the length for the next_to_use descriptor. */
2323 desc->wb.upper.length = 0;
2324
2325 count--;
2326 } while (count);
2327
2328 i += ring->count;
2329
2330 if (ring->next_to_use != i) {
2331 ring->next_to_use = i;
2332
2333 /* Force memory writes to complete before letting h/w
2334 * know there are new descriptors to fetch. (Only
2335 * applicable for weak-ordered memory model archs,
2336 * such as IA-64).
2337 */
2338 wmb();
2339 writel(i, ring->tail);
2340 }
2341
2342 return ok;
2343 }
2344
2345 /* This function requires __netif_tx_lock is held by the caller. */
igc_xdp_init_tx_descriptor(struct igc_ring * ring,struct xdp_frame * xdpf)2346 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2347 struct xdp_frame *xdpf)
2348 {
2349 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2350 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2351 u16 count, index = ring->next_to_use;
2352 struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2353 struct igc_tx_buffer *buffer = head;
2354 union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2355 u32 olinfo_status, len = xdpf->len, cmd_type;
2356 void *data = xdpf->data;
2357 u16 i;
2358
2359 count = TXD_USE_COUNT(len);
2360 for (i = 0; i < nr_frags; i++)
2361 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2362
2363 if (igc_maybe_stop_tx(ring, count + 3)) {
2364 /* this is a hard error */
2365 return -EBUSY;
2366 }
2367
2368 i = 0;
2369 head->bytecount = xdp_get_frame_len(xdpf);
2370 head->type = IGC_TX_BUFFER_TYPE_XDP;
2371 head->gso_segs = 1;
2372 head->xdpf = xdpf;
2373
2374 olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2375 desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2376
2377 for (;;) {
2378 dma_addr_t dma;
2379
2380 dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2381 if (dma_mapping_error(ring->dev, dma)) {
2382 netdev_err_once(ring->netdev,
2383 "Failed to map DMA for TX\n");
2384 goto unmap;
2385 }
2386
2387 dma_unmap_len_set(buffer, len, len);
2388 dma_unmap_addr_set(buffer, dma, dma);
2389
2390 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2391 IGC_ADVTXD_DCMD_IFCS | len;
2392
2393 desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2394 desc->read.buffer_addr = cpu_to_le64(dma);
2395
2396 buffer->protocol = 0;
2397
2398 if (++index == ring->count)
2399 index = 0;
2400
2401 if (i == nr_frags)
2402 break;
2403
2404 buffer = &ring->tx_buffer_info[index];
2405 desc = IGC_TX_DESC(ring, index);
2406 desc->read.olinfo_status = 0;
2407
2408 data = skb_frag_address(&sinfo->frags[i]);
2409 len = skb_frag_size(&sinfo->frags[i]);
2410 i++;
2411 }
2412 desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2413
2414 netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2415 /* set the timestamp */
2416 head->time_stamp = jiffies;
2417 /* set next_to_watch value indicating a packet is present */
2418 head->next_to_watch = desc;
2419 ring->next_to_use = index;
2420
2421 return 0;
2422
2423 unmap:
2424 for (;;) {
2425 buffer = &ring->tx_buffer_info[index];
2426 if (dma_unmap_len(buffer, len))
2427 dma_unmap_page(ring->dev,
2428 dma_unmap_addr(buffer, dma),
2429 dma_unmap_len(buffer, len),
2430 DMA_TO_DEVICE);
2431 dma_unmap_len_set(buffer, len, 0);
2432 if (buffer == head)
2433 break;
2434
2435 if (!index)
2436 index += ring->count;
2437 index--;
2438 }
2439
2440 return -ENOMEM;
2441 }
2442
igc_xdp_get_tx_ring(struct igc_adapter * adapter,int cpu)2443 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2444 int cpu)
2445 {
2446 int index = cpu;
2447
2448 if (unlikely(index < 0))
2449 index = 0;
2450
2451 while (index >= adapter->num_tx_queues)
2452 index -= adapter->num_tx_queues;
2453
2454 return adapter->tx_ring[index];
2455 }
2456
igc_xdp_xmit_back(struct igc_adapter * adapter,struct xdp_buff * xdp)2457 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2458 {
2459 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2460 int cpu = smp_processor_id();
2461 struct netdev_queue *nq;
2462 struct igc_ring *ring;
2463 int res;
2464
2465 if (unlikely(!xdpf))
2466 return -EFAULT;
2467
2468 ring = igc_xdp_get_tx_ring(adapter, cpu);
2469 nq = txring_txq(ring);
2470
2471 __netif_tx_lock(nq, cpu);
2472 /* Avoid transmit queue timeout since we share it with the slow path */
2473 txq_trans_cond_update(nq);
2474 res = igc_xdp_init_tx_descriptor(ring, xdpf);
2475 __netif_tx_unlock(nq);
2476 return res;
2477 }
2478
2479 /* This function assumes rcu_read_lock() is held by the caller. */
__igc_xdp_run_prog(struct igc_adapter * adapter,struct bpf_prog * prog,struct xdp_buff * xdp)2480 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2481 struct bpf_prog *prog,
2482 struct xdp_buff *xdp)
2483 {
2484 u32 act = bpf_prog_run_xdp(prog, xdp);
2485
2486 switch (act) {
2487 case XDP_PASS:
2488 return IGC_XDP_PASS;
2489 case XDP_TX:
2490 if (igc_xdp_xmit_back(adapter, xdp) < 0)
2491 goto out_failure;
2492 return IGC_XDP_TX;
2493 case XDP_REDIRECT:
2494 if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2495 goto out_failure;
2496 return IGC_XDP_REDIRECT;
2497 break;
2498 default:
2499 bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2500 fallthrough;
2501 case XDP_ABORTED:
2502 out_failure:
2503 trace_xdp_exception(adapter->netdev, prog, act);
2504 fallthrough;
2505 case XDP_DROP:
2506 return IGC_XDP_CONSUMED;
2507 }
2508 }
2509
igc_xdp_run_prog(struct igc_adapter * adapter,struct xdp_buff * xdp)2510 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2511 struct xdp_buff *xdp)
2512 {
2513 struct bpf_prog *prog;
2514 int res;
2515
2516 prog = READ_ONCE(adapter->xdp_prog);
2517 if (!prog) {
2518 res = IGC_XDP_PASS;
2519 goto out;
2520 }
2521
2522 res = __igc_xdp_run_prog(adapter, prog, xdp);
2523
2524 out:
2525 return ERR_PTR(-res);
2526 }
2527
2528 /* This function assumes __netif_tx_lock is held by the caller. */
igc_flush_tx_descriptors(struct igc_ring * ring)2529 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2530 {
2531 /* Once tail pointer is updated, hardware can fetch the descriptors
2532 * any time so we issue a write membar here to ensure all memory
2533 * writes are complete before the tail pointer is updated.
2534 */
2535 wmb();
2536 writel(ring->next_to_use, ring->tail);
2537 }
2538
igc_finalize_xdp(struct igc_adapter * adapter,int status)2539 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2540 {
2541 int cpu = smp_processor_id();
2542 struct netdev_queue *nq;
2543 struct igc_ring *ring;
2544
2545 if (status & IGC_XDP_TX) {
2546 ring = igc_xdp_get_tx_ring(adapter, cpu);
2547 nq = txring_txq(ring);
2548
2549 __netif_tx_lock(nq, cpu);
2550 igc_flush_tx_descriptors(ring);
2551 __netif_tx_unlock(nq);
2552 }
2553
2554 if (status & IGC_XDP_REDIRECT)
2555 xdp_do_flush();
2556 }
2557
igc_update_rx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2558 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2559 unsigned int packets, unsigned int bytes)
2560 {
2561 struct igc_ring *ring = q_vector->rx.ring;
2562
2563 u64_stats_update_begin(&ring->rx_syncp);
2564 ring->rx_stats.packets += packets;
2565 ring->rx_stats.bytes += bytes;
2566 u64_stats_update_end(&ring->rx_syncp);
2567
2568 q_vector->rx.total_packets += packets;
2569 q_vector->rx.total_bytes += bytes;
2570 }
2571
igc_clean_rx_irq(struct igc_q_vector * q_vector,const int budget)2572 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2573 {
2574 unsigned int total_bytes = 0, total_packets = 0;
2575 struct igc_adapter *adapter = q_vector->adapter;
2576 struct igc_ring *rx_ring = q_vector->rx.ring;
2577 struct sk_buff *skb = rx_ring->skb;
2578 u16 cleaned_count = igc_desc_unused(rx_ring);
2579 int xdp_status = 0, rx_buffer_pgcnt;
2580
2581 while (likely(total_packets < budget)) {
2582 union igc_adv_rx_desc *rx_desc;
2583 struct igc_rx_buffer *rx_buffer;
2584 unsigned int size, truesize;
2585 struct igc_xdp_buff ctx;
2586 ktime_t timestamp = 0;
2587 int pkt_offset = 0;
2588 void *pktbuf;
2589
2590 /* return some buffers to hardware, one at a time is too slow */
2591 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2592 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2593 cleaned_count = 0;
2594 }
2595
2596 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2597 size = le16_to_cpu(rx_desc->wb.upper.length);
2598 if (!size)
2599 break;
2600
2601 /* This memory barrier is needed to keep us from reading
2602 * any other fields out of the rx_desc until we know the
2603 * descriptor has been written back
2604 */
2605 dma_rmb();
2606
2607 rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2608 truesize = igc_get_rx_frame_truesize(rx_ring, size);
2609
2610 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2611
2612 if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2613 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2614 pktbuf);
2615 ctx.rx_ts = timestamp;
2616 pkt_offset = IGC_TS_HDR_LEN;
2617 size -= IGC_TS_HDR_LEN;
2618 }
2619
2620 if (!skb) {
2621 xdp_init_buff(&ctx.xdp, truesize, &rx_ring->xdp_rxq);
2622 xdp_prepare_buff(&ctx.xdp, pktbuf - igc_rx_offset(rx_ring),
2623 igc_rx_offset(rx_ring) + pkt_offset,
2624 size, true);
2625 xdp_buff_clear_frags_flag(&ctx.xdp);
2626 ctx.rx_desc = rx_desc;
2627
2628 skb = igc_xdp_run_prog(adapter, &ctx.xdp);
2629 }
2630
2631 if (IS_ERR(skb)) {
2632 unsigned int xdp_res = -PTR_ERR(skb);
2633
2634 switch (xdp_res) {
2635 case IGC_XDP_CONSUMED:
2636 rx_buffer->pagecnt_bias++;
2637 break;
2638 case IGC_XDP_TX:
2639 case IGC_XDP_REDIRECT:
2640 igc_rx_buffer_flip(rx_buffer, truesize);
2641 xdp_status |= xdp_res;
2642 break;
2643 }
2644
2645 total_packets++;
2646 total_bytes += size;
2647 } else if (skb)
2648 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2649 else if (ring_uses_build_skb(rx_ring))
2650 skb = igc_build_skb(rx_ring, rx_buffer, &ctx.xdp);
2651 else
2652 skb = igc_construct_skb(rx_ring, rx_buffer, &ctx.xdp,
2653 timestamp);
2654
2655 /* exit if we failed to retrieve a buffer */
2656 if (!skb) {
2657 rx_ring->rx_stats.alloc_failed++;
2658 rx_buffer->pagecnt_bias++;
2659 break;
2660 }
2661
2662 igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2663 cleaned_count++;
2664
2665 /* fetch next buffer in frame if non-eop */
2666 if (igc_is_non_eop(rx_ring, rx_desc))
2667 continue;
2668
2669 /* verify the packet layout is correct */
2670 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2671 skb = NULL;
2672 continue;
2673 }
2674
2675 /* probably a little skewed due to removing CRC */
2676 total_bytes += skb->len;
2677
2678 /* populate checksum, VLAN, and protocol */
2679 igc_process_skb_fields(rx_ring, rx_desc, skb);
2680
2681 napi_gro_receive(&q_vector->napi, skb);
2682
2683 /* reset skb pointer */
2684 skb = NULL;
2685
2686 /* update budget accounting */
2687 total_packets++;
2688 }
2689
2690 if (xdp_status)
2691 igc_finalize_xdp(adapter, xdp_status);
2692
2693 /* place incomplete frames back on ring for completion */
2694 rx_ring->skb = skb;
2695
2696 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2697
2698 if (cleaned_count)
2699 igc_alloc_rx_buffers(rx_ring, cleaned_count);
2700
2701 return total_packets;
2702 }
2703
igc_construct_skb_zc(struct igc_ring * ring,struct xdp_buff * xdp)2704 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2705 struct xdp_buff *xdp)
2706 {
2707 unsigned int totalsize = xdp->data_end - xdp->data_meta;
2708 unsigned int metasize = xdp->data - xdp->data_meta;
2709 struct sk_buff *skb;
2710
2711 net_prefetch(xdp->data_meta);
2712
2713 skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize,
2714 GFP_ATOMIC | __GFP_NOWARN);
2715 if (unlikely(!skb))
2716 return NULL;
2717
2718 memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2719 ALIGN(totalsize, sizeof(long)));
2720
2721 if (metasize) {
2722 skb_metadata_set(skb, metasize);
2723 __skb_pull(skb, metasize);
2724 }
2725
2726 return skb;
2727 }
2728
igc_dispatch_skb_zc(struct igc_q_vector * q_vector,union igc_adv_rx_desc * desc,struct xdp_buff * xdp,ktime_t timestamp)2729 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2730 union igc_adv_rx_desc *desc,
2731 struct xdp_buff *xdp,
2732 ktime_t timestamp)
2733 {
2734 struct igc_ring *ring = q_vector->rx.ring;
2735 struct sk_buff *skb;
2736
2737 skb = igc_construct_skb_zc(ring, xdp);
2738 if (!skb) {
2739 ring->rx_stats.alloc_failed++;
2740 return;
2741 }
2742
2743 if (timestamp)
2744 skb_hwtstamps(skb)->hwtstamp = timestamp;
2745
2746 if (igc_cleanup_headers(ring, desc, skb))
2747 return;
2748
2749 igc_process_skb_fields(ring, desc, skb);
2750 napi_gro_receive(&q_vector->napi, skb);
2751 }
2752
xsk_buff_to_igc_ctx(struct xdp_buff * xdp)2753 static struct igc_xdp_buff *xsk_buff_to_igc_ctx(struct xdp_buff *xdp)
2754 {
2755 /* xdp_buff pointer used by ZC code path is alloc as xdp_buff_xsk. The
2756 * igc_xdp_buff shares its layout with xdp_buff_xsk and private
2757 * igc_xdp_buff fields fall into xdp_buff_xsk->cb
2758 */
2759 return (struct igc_xdp_buff *)xdp;
2760 }
2761
igc_clean_rx_irq_zc(struct igc_q_vector * q_vector,const int budget)2762 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2763 {
2764 struct igc_adapter *adapter = q_vector->adapter;
2765 struct igc_ring *ring = q_vector->rx.ring;
2766 u16 cleaned_count = igc_desc_unused(ring);
2767 int total_bytes = 0, total_packets = 0;
2768 u16 ntc = ring->next_to_clean;
2769 struct bpf_prog *prog;
2770 bool failure = false;
2771 int xdp_status = 0;
2772
2773 rcu_read_lock();
2774
2775 prog = READ_ONCE(adapter->xdp_prog);
2776
2777 while (likely(total_packets < budget)) {
2778 union igc_adv_rx_desc *desc;
2779 struct igc_rx_buffer *bi;
2780 struct igc_xdp_buff *ctx;
2781 ktime_t timestamp = 0;
2782 unsigned int size;
2783 int res;
2784
2785 desc = IGC_RX_DESC(ring, ntc);
2786 size = le16_to_cpu(desc->wb.upper.length);
2787 if (!size)
2788 break;
2789
2790 /* This memory barrier is needed to keep us from reading
2791 * any other fields out of the rx_desc until we know the
2792 * descriptor has been written back
2793 */
2794 dma_rmb();
2795
2796 bi = &ring->rx_buffer_info[ntc];
2797
2798 ctx = xsk_buff_to_igc_ctx(bi->xdp);
2799 ctx->rx_desc = desc;
2800
2801 if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2802 timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2803 bi->xdp->data);
2804 ctx->rx_ts = timestamp;
2805
2806 bi->xdp->data += IGC_TS_HDR_LEN;
2807
2808 /* HW timestamp has been copied into local variable. Metadata
2809 * length when XDP program is called should be 0.
2810 */
2811 bi->xdp->data_meta += IGC_TS_HDR_LEN;
2812 size -= IGC_TS_HDR_LEN;
2813 }
2814
2815 bi->xdp->data_end = bi->xdp->data + size;
2816 xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2817
2818 res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2819 switch (res) {
2820 case IGC_XDP_PASS:
2821 igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2822 fallthrough;
2823 case IGC_XDP_CONSUMED:
2824 xsk_buff_free(bi->xdp);
2825 break;
2826 case IGC_XDP_TX:
2827 case IGC_XDP_REDIRECT:
2828 xdp_status |= res;
2829 break;
2830 }
2831
2832 bi->xdp = NULL;
2833 total_bytes += size;
2834 total_packets++;
2835 cleaned_count++;
2836 ntc++;
2837 if (ntc == ring->count)
2838 ntc = 0;
2839 }
2840
2841 ring->next_to_clean = ntc;
2842 rcu_read_unlock();
2843
2844 if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2845 failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2846
2847 if (xdp_status)
2848 igc_finalize_xdp(adapter, xdp_status);
2849
2850 igc_update_rx_stats(q_vector, total_packets, total_bytes);
2851
2852 if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2853 if (failure || ring->next_to_clean == ring->next_to_use)
2854 xsk_set_rx_need_wakeup(ring->xsk_pool);
2855 else
2856 xsk_clear_rx_need_wakeup(ring->xsk_pool);
2857 return total_packets;
2858 }
2859
2860 return failure ? budget : total_packets;
2861 }
2862
igc_update_tx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2863 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2864 unsigned int packets, unsigned int bytes)
2865 {
2866 struct igc_ring *ring = q_vector->tx.ring;
2867
2868 u64_stats_update_begin(&ring->tx_syncp);
2869 ring->tx_stats.bytes += bytes;
2870 ring->tx_stats.packets += packets;
2871 u64_stats_update_end(&ring->tx_syncp);
2872
2873 q_vector->tx.total_bytes += bytes;
2874 q_vector->tx.total_packets += packets;
2875 }
2876
igc_xdp_xmit_zc(struct igc_ring * ring)2877 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2878 {
2879 struct xsk_buff_pool *pool = ring->xsk_pool;
2880 struct netdev_queue *nq = txring_txq(ring);
2881 union igc_adv_tx_desc *tx_desc = NULL;
2882 int cpu = smp_processor_id();
2883 struct xdp_desc xdp_desc;
2884 u16 budget, ntu;
2885
2886 if (!netif_carrier_ok(ring->netdev))
2887 return;
2888
2889 __netif_tx_lock(nq, cpu);
2890
2891 /* Avoid transmit queue timeout since we share it with the slow path */
2892 txq_trans_cond_update(nq);
2893
2894 ntu = ring->next_to_use;
2895 budget = igc_desc_unused(ring);
2896
2897 while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2898 u32 cmd_type, olinfo_status;
2899 struct igc_tx_buffer *bi;
2900 dma_addr_t dma;
2901
2902 cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2903 IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2904 xdp_desc.len;
2905 olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2906
2907 dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2908 xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2909
2910 tx_desc = IGC_TX_DESC(ring, ntu);
2911 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2912 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2913 tx_desc->read.buffer_addr = cpu_to_le64(dma);
2914
2915 bi = &ring->tx_buffer_info[ntu];
2916 bi->type = IGC_TX_BUFFER_TYPE_XSK;
2917 bi->protocol = 0;
2918 bi->bytecount = xdp_desc.len;
2919 bi->gso_segs = 1;
2920 bi->time_stamp = jiffies;
2921 bi->next_to_watch = tx_desc;
2922
2923 netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2924
2925 ntu++;
2926 if (ntu == ring->count)
2927 ntu = 0;
2928 }
2929
2930 ring->next_to_use = ntu;
2931 if (tx_desc) {
2932 igc_flush_tx_descriptors(ring);
2933 xsk_tx_release(pool);
2934 }
2935
2936 __netif_tx_unlock(nq);
2937 }
2938
2939 /**
2940 * igc_clean_tx_irq - Reclaim resources after transmit completes
2941 * @q_vector: pointer to q_vector containing needed info
2942 * @napi_budget: Used to determine if we are in netpoll
2943 *
2944 * returns true if ring is completely cleaned
2945 */
igc_clean_tx_irq(struct igc_q_vector * q_vector,int napi_budget)2946 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2947 {
2948 struct igc_adapter *adapter = q_vector->adapter;
2949 unsigned int total_bytes = 0, total_packets = 0;
2950 unsigned int budget = q_vector->tx.work_limit;
2951 struct igc_ring *tx_ring = q_vector->tx.ring;
2952 unsigned int i = tx_ring->next_to_clean;
2953 struct igc_tx_buffer *tx_buffer;
2954 union igc_adv_tx_desc *tx_desc;
2955 u32 xsk_frames = 0;
2956
2957 if (test_bit(__IGC_DOWN, &adapter->state))
2958 return true;
2959
2960 tx_buffer = &tx_ring->tx_buffer_info[i];
2961 tx_desc = IGC_TX_DESC(tx_ring, i);
2962 i -= tx_ring->count;
2963
2964 do {
2965 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2966
2967 /* if next_to_watch is not set then there is no work pending */
2968 if (!eop_desc)
2969 break;
2970
2971 /* prevent any other reads prior to eop_desc */
2972 smp_rmb();
2973
2974 /* if DD is not set pending work has not been completed */
2975 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2976 break;
2977
2978 /* clear next_to_watch to prevent false hangs */
2979 tx_buffer->next_to_watch = NULL;
2980
2981 /* update the statistics for this packet */
2982 total_bytes += tx_buffer->bytecount;
2983 total_packets += tx_buffer->gso_segs;
2984
2985 switch (tx_buffer->type) {
2986 case IGC_TX_BUFFER_TYPE_XSK:
2987 xsk_frames++;
2988 break;
2989 case IGC_TX_BUFFER_TYPE_XDP:
2990 xdp_return_frame(tx_buffer->xdpf);
2991 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2992 break;
2993 case IGC_TX_BUFFER_TYPE_SKB:
2994 napi_consume_skb(tx_buffer->skb, napi_budget);
2995 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2996 break;
2997 default:
2998 netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2999 break;
3000 }
3001
3002 /* clear last DMA location and unmap remaining buffers */
3003 while (tx_desc != eop_desc) {
3004 tx_buffer++;
3005 tx_desc++;
3006 i++;
3007 if (unlikely(!i)) {
3008 i -= tx_ring->count;
3009 tx_buffer = tx_ring->tx_buffer_info;
3010 tx_desc = IGC_TX_DESC(tx_ring, 0);
3011 }
3012
3013 /* unmap any remaining paged data */
3014 if (dma_unmap_len(tx_buffer, len))
3015 igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
3016 }
3017
3018 /* move us one more past the eop_desc for start of next pkt */
3019 tx_buffer++;
3020 tx_desc++;
3021 i++;
3022 if (unlikely(!i)) {
3023 i -= tx_ring->count;
3024 tx_buffer = tx_ring->tx_buffer_info;
3025 tx_desc = IGC_TX_DESC(tx_ring, 0);
3026 }
3027
3028 /* issue prefetch for next Tx descriptor */
3029 prefetch(tx_desc);
3030
3031 /* update budget accounting */
3032 budget--;
3033 } while (likely(budget));
3034
3035 netdev_tx_completed_queue(txring_txq(tx_ring),
3036 total_packets, total_bytes);
3037
3038 i += tx_ring->count;
3039 tx_ring->next_to_clean = i;
3040
3041 igc_update_tx_stats(q_vector, total_packets, total_bytes);
3042
3043 if (tx_ring->xsk_pool) {
3044 if (xsk_frames)
3045 xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
3046 if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
3047 xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
3048 igc_xdp_xmit_zc(tx_ring);
3049 }
3050
3051 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3052 struct igc_hw *hw = &adapter->hw;
3053
3054 /* Detect a transmit hang in hardware, this serializes the
3055 * check with the clearing of time_stamp and movement of i
3056 */
3057 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3058 if (tx_buffer->next_to_watch &&
3059 time_after(jiffies, tx_buffer->time_stamp +
3060 (adapter->tx_timeout_factor * HZ)) &&
3061 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3062 (rd32(IGC_TDH(tx_ring->reg_idx)) != readl(tx_ring->tail)) &&
3063 !tx_ring->oper_gate_closed) {
3064 /* detected Tx unit hang */
3065 netdev_err(tx_ring->netdev,
3066 "Detected Tx Unit Hang\n"
3067 " Tx Queue <%d>\n"
3068 " TDH <%x>\n"
3069 " TDT <%x>\n"
3070 " next_to_use <%x>\n"
3071 " next_to_clean <%x>\n"
3072 "buffer_info[next_to_clean]\n"
3073 " time_stamp <%lx>\n"
3074 " next_to_watch <%p>\n"
3075 " jiffies <%lx>\n"
3076 " desc.status <%x>\n",
3077 tx_ring->queue_index,
3078 rd32(IGC_TDH(tx_ring->reg_idx)),
3079 readl(tx_ring->tail),
3080 tx_ring->next_to_use,
3081 tx_ring->next_to_clean,
3082 tx_buffer->time_stamp,
3083 tx_buffer->next_to_watch,
3084 jiffies,
3085 tx_buffer->next_to_watch->wb.status);
3086 netif_stop_subqueue(tx_ring->netdev,
3087 tx_ring->queue_index);
3088
3089 /* we are about to reset, no point in enabling stuff */
3090 return true;
3091 }
3092 }
3093
3094 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3095 if (unlikely(total_packets &&
3096 netif_carrier_ok(tx_ring->netdev) &&
3097 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3098 /* Make sure that anybody stopping the queue after this
3099 * sees the new next_to_clean.
3100 */
3101 smp_mb();
3102 if (__netif_subqueue_stopped(tx_ring->netdev,
3103 tx_ring->queue_index) &&
3104 !(test_bit(__IGC_DOWN, &adapter->state))) {
3105 netif_wake_subqueue(tx_ring->netdev,
3106 tx_ring->queue_index);
3107
3108 u64_stats_update_begin(&tx_ring->tx_syncp);
3109 tx_ring->tx_stats.restart_queue++;
3110 u64_stats_update_end(&tx_ring->tx_syncp);
3111 }
3112 }
3113
3114 return !!budget;
3115 }
3116
igc_find_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3117 static int igc_find_mac_filter(struct igc_adapter *adapter,
3118 enum igc_mac_filter_type type, const u8 *addr)
3119 {
3120 struct igc_hw *hw = &adapter->hw;
3121 int max_entries = hw->mac.rar_entry_count;
3122 u32 ral, rah;
3123 int i;
3124
3125 for (i = 0; i < max_entries; i++) {
3126 ral = rd32(IGC_RAL(i));
3127 rah = rd32(IGC_RAH(i));
3128
3129 if (!(rah & IGC_RAH_AV))
3130 continue;
3131 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3132 continue;
3133 if ((rah & IGC_RAH_RAH_MASK) !=
3134 le16_to_cpup((__le16 *)(addr + 4)))
3135 continue;
3136 if (ral != le32_to_cpup((__le32 *)(addr)))
3137 continue;
3138
3139 return i;
3140 }
3141
3142 return -1;
3143 }
3144
igc_get_avail_mac_filter_slot(struct igc_adapter * adapter)3145 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3146 {
3147 struct igc_hw *hw = &adapter->hw;
3148 int max_entries = hw->mac.rar_entry_count;
3149 u32 rah;
3150 int i;
3151
3152 for (i = 0; i < max_entries; i++) {
3153 rah = rd32(IGC_RAH(i));
3154
3155 if (!(rah & IGC_RAH_AV))
3156 return i;
3157 }
3158
3159 return -1;
3160 }
3161
3162 /**
3163 * igc_add_mac_filter() - Add MAC address filter
3164 * @adapter: Pointer to adapter where the filter should be added
3165 * @type: MAC address filter type (source or destination)
3166 * @addr: MAC address
3167 * @queue: If non-negative, queue assignment feature is enabled and frames
3168 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3169 * assignment is disabled.
3170 *
3171 * Return: 0 in case of success, negative errno code otherwise.
3172 */
igc_add_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr,int queue)3173 static int igc_add_mac_filter(struct igc_adapter *adapter,
3174 enum igc_mac_filter_type type, const u8 *addr,
3175 int queue)
3176 {
3177 struct net_device *dev = adapter->netdev;
3178 int index;
3179
3180 index = igc_find_mac_filter(adapter, type, addr);
3181 if (index >= 0)
3182 goto update_filter;
3183
3184 index = igc_get_avail_mac_filter_slot(adapter);
3185 if (index < 0)
3186 return -ENOSPC;
3187
3188 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3189 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3190 addr, queue);
3191
3192 update_filter:
3193 igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3194 return 0;
3195 }
3196
3197 /**
3198 * igc_del_mac_filter() - Delete MAC address filter
3199 * @adapter: Pointer to adapter where the filter should be deleted from
3200 * @type: MAC address filter type (source or destination)
3201 * @addr: MAC address
3202 */
igc_del_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3203 static void igc_del_mac_filter(struct igc_adapter *adapter,
3204 enum igc_mac_filter_type type, const u8 *addr)
3205 {
3206 struct net_device *dev = adapter->netdev;
3207 int index;
3208
3209 index = igc_find_mac_filter(adapter, type, addr);
3210 if (index < 0)
3211 return;
3212
3213 if (index == 0) {
3214 /* If this is the default filter, we don't actually delete it.
3215 * We just reset to its default value i.e. disable queue
3216 * assignment.
3217 */
3218 netdev_dbg(dev, "Disable default MAC filter queue assignment");
3219
3220 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3221 } else {
3222 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3223 index,
3224 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3225 addr);
3226
3227 igc_clear_mac_filter_hw(adapter, index);
3228 }
3229 }
3230
3231 /**
3232 * igc_add_vlan_prio_filter() - Add VLAN priority filter
3233 * @adapter: Pointer to adapter where the filter should be added
3234 * @prio: VLAN priority value
3235 * @queue: Queue number which matching frames are assigned to
3236 *
3237 * Return: 0 in case of success, negative errno code otherwise.
3238 */
igc_add_vlan_prio_filter(struct igc_adapter * adapter,int prio,int queue)3239 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3240 int queue)
3241 {
3242 struct net_device *dev = adapter->netdev;
3243 struct igc_hw *hw = &adapter->hw;
3244 u32 vlanpqf;
3245
3246 vlanpqf = rd32(IGC_VLANPQF);
3247
3248 if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3249 netdev_dbg(dev, "VLAN priority filter already in use\n");
3250 return -EEXIST;
3251 }
3252
3253 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3254 vlanpqf |= IGC_VLANPQF_VALID(prio);
3255
3256 wr32(IGC_VLANPQF, vlanpqf);
3257
3258 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3259 prio, queue);
3260 return 0;
3261 }
3262
3263 /**
3264 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3265 * @adapter: Pointer to adapter where the filter should be deleted from
3266 * @prio: VLAN priority value
3267 */
igc_del_vlan_prio_filter(struct igc_adapter * adapter,int prio)3268 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3269 {
3270 struct igc_hw *hw = &adapter->hw;
3271 u32 vlanpqf;
3272
3273 vlanpqf = rd32(IGC_VLANPQF);
3274
3275 vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3276 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3277
3278 wr32(IGC_VLANPQF, vlanpqf);
3279
3280 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3281 prio);
3282 }
3283
igc_get_avail_etype_filter_slot(struct igc_adapter * adapter)3284 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3285 {
3286 struct igc_hw *hw = &adapter->hw;
3287 int i;
3288
3289 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3290 u32 etqf = rd32(IGC_ETQF(i));
3291
3292 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3293 return i;
3294 }
3295
3296 return -1;
3297 }
3298
3299 /**
3300 * igc_add_etype_filter() - Add ethertype filter
3301 * @adapter: Pointer to adapter where the filter should be added
3302 * @etype: Ethertype value
3303 * @queue: If non-negative, queue assignment feature is enabled and frames
3304 * matching the filter are enqueued onto 'queue'. Otherwise, queue
3305 * assignment is disabled.
3306 *
3307 * Return: 0 in case of success, negative errno code otherwise.
3308 */
igc_add_etype_filter(struct igc_adapter * adapter,u16 etype,int queue)3309 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3310 int queue)
3311 {
3312 struct igc_hw *hw = &adapter->hw;
3313 int index;
3314 u32 etqf;
3315
3316 index = igc_get_avail_etype_filter_slot(adapter);
3317 if (index < 0)
3318 return -ENOSPC;
3319
3320 etqf = rd32(IGC_ETQF(index));
3321
3322 etqf &= ~IGC_ETQF_ETYPE_MASK;
3323 etqf |= etype;
3324
3325 if (queue >= 0) {
3326 etqf &= ~IGC_ETQF_QUEUE_MASK;
3327 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3328 etqf |= IGC_ETQF_QUEUE_ENABLE;
3329 }
3330
3331 etqf |= IGC_ETQF_FILTER_ENABLE;
3332
3333 wr32(IGC_ETQF(index), etqf);
3334
3335 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3336 etype, queue);
3337 return 0;
3338 }
3339
igc_find_etype_filter(struct igc_adapter * adapter,u16 etype)3340 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3341 {
3342 struct igc_hw *hw = &adapter->hw;
3343 int i;
3344
3345 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3346 u32 etqf = rd32(IGC_ETQF(i));
3347
3348 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3349 return i;
3350 }
3351
3352 return -1;
3353 }
3354
3355 /**
3356 * igc_del_etype_filter() - Delete ethertype filter
3357 * @adapter: Pointer to adapter where the filter should be deleted from
3358 * @etype: Ethertype value
3359 */
igc_del_etype_filter(struct igc_adapter * adapter,u16 etype)3360 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3361 {
3362 struct igc_hw *hw = &adapter->hw;
3363 int index;
3364
3365 index = igc_find_etype_filter(adapter, etype);
3366 if (index < 0)
3367 return;
3368
3369 wr32(IGC_ETQF(index), 0);
3370
3371 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3372 etype);
3373 }
3374
igc_flex_filter_select(struct igc_adapter * adapter,struct igc_flex_filter * input,u32 * fhft)3375 static int igc_flex_filter_select(struct igc_adapter *adapter,
3376 struct igc_flex_filter *input,
3377 u32 *fhft)
3378 {
3379 struct igc_hw *hw = &adapter->hw;
3380 u8 fhft_index;
3381 u32 fhftsl;
3382
3383 if (input->index >= MAX_FLEX_FILTER) {
3384 dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n");
3385 return -EINVAL;
3386 }
3387
3388 /* Indirect table select register */
3389 fhftsl = rd32(IGC_FHFTSL);
3390 fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3391 switch (input->index) {
3392 case 0 ... 7:
3393 fhftsl |= 0x00;
3394 break;
3395 case 8 ... 15:
3396 fhftsl |= 0x01;
3397 break;
3398 case 16 ... 23:
3399 fhftsl |= 0x02;
3400 break;
3401 case 24 ... 31:
3402 fhftsl |= 0x03;
3403 break;
3404 }
3405 wr32(IGC_FHFTSL, fhftsl);
3406
3407 /* Normalize index down to host table register */
3408 fhft_index = input->index % 8;
3409
3410 *fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3411 IGC_FHFT_EXT(fhft_index - 4);
3412
3413 return 0;
3414 }
3415
igc_write_flex_filter_ll(struct igc_adapter * adapter,struct igc_flex_filter * input)3416 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3417 struct igc_flex_filter *input)
3418 {
3419 struct device *dev = &adapter->pdev->dev;
3420 struct igc_hw *hw = &adapter->hw;
3421 u8 *data = input->data;
3422 u8 *mask = input->mask;
3423 u32 queuing;
3424 u32 fhft;
3425 u32 wufc;
3426 int ret;
3427 int i;
3428
3429 /* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3430 * out early to avoid surprises later.
3431 */
3432 if (input->length % 8 != 0) {
3433 dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n");
3434 return -EINVAL;
3435 }
3436
3437 /* Select corresponding flex filter register and get base for host table. */
3438 ret = igc_flex_filter_select(adapter, input, &fhft);
3439 if (ret)
3440 return ret;
3441
3442 /* When adding a filter globally disable flex filter feature. That is
3443 * recommended within the datasheet.
3444 */
3445 wufc = rd32(IGC_WUFC);
3446 wufc &= ~IGC_WUFC_FLEX_HQ;
3447 wr32(IGC_WUFC, wufc);
3448
3449 /* Configure filter */
3450 queuing = input->length & IGC_FHFT_LENGTH_MASK;
3451 queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK;
3452 queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK;
3453
3454 if (input->immediate_irq)
3455 queuing |= IGC_FHFT_IMM_INT;
3456
3457 if (input->drop)
3458 queuing |= IGC_FHFT_DROP;
3459
3460 wr32(fhft + 0xFC, queuing);
3461
3462 /* Write data (128 byte) and mask (128 bit) */
3463 for (i = 0; i < 16; ++i) {
3464 const size_t data_idx = i * 8;
3465 const size_t row_idx = i * 16;
3466 u32 dw0 =
3467 (data[data_idx + 0] << 0) |
3468 (data[data_idx + 1] << 8) |
3469 (data[data_idx + 2] << 16) |
3470 (data[data_idx + 3] << 24);
3471 u32 dw1 =
3472 (data[data_idx + 4] << 0) |
3473 (data[data_idx + 5] << 8) |
3474 (data[data_idx + 6] << 16) |
3475 (data[data_idx + 7] << 24);
3476 u32 tmp;
3477
3478 /* Write row: dw0, dw1 and mask */
3479 wr32(fhft + row_idx, dw0);
3480 wr32(fhft + row_idx + 4, dw1);
3481
3482 /* mask is only valid for MASK(7, 0) */
3483 tmp = rd32(fhft + row_idx + 8);
3484 tmp &= ~GENMASK(7, 0);
3485 tmp |= mask[i];
3486 wr32(fhft + row_idx + 8, tmp);
3487 }
3488
3489 /* Enable filter. */
3490 wufc |= IGC_WUFC_FLEX_HQ;
3491 if (input->index > 8) {
3492 /* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3493 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3494
3495 wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3496
3497 wr32(IGC_WUFC_EXT, wufc_ext);
3498 } else {
3499 wufc |= (IGC_WUFC_FLX0 << input->index);
3500 }
3501 wr32(IGC_WUFC, wufc);
3502
3503 dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n",
3504 input->index);
3505
3506 return 0;
3507 }
3508
igc_flex_filter_add_field(struct igc_flex_filter * flex,const void * src,unsigned int offset,size_t len,const void * mask)3509 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3510 const void *src, unsigned int offset,
3511 size_t len, const void *mask)
3512 {
3513 int i;
3514
3515 /* data */
3516 memcpy(&flex->data[offset], src, len);
3517
3518 /* mask */
3519 for (i = 0; i < len; ++i) {
3520 const unsigned int idx = i + offset;
3521 const u8 *ptr = mask;
3522
3523 if (mask) {
3524 if (ptr[i] & 0xff)
3525 flex->mask[idx / 8] |= BIT(idx % 8);
3526
3527 continue;
3528 }
3529
3530 flex->mask[idx / 8] |= BIT(idx % 8);
3531 }
3532 }
3533
igc_find_avail_flex_filter_slot(struct igc_adapter * adapter)3534 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3535 {
3536 struct igc_hw *hw = &adapter->hw;
3537 u32 wufc, wufc_ext;
3538 int i;
3539
3540 wufc = rd32(IGC_WUFC);
3541 wufc_ext = rd32(IGC_WUFC_EXT);
3542
3543 for (i = 0; i < MAX_FLEX_FILTER; i++) {
3544 if (i < 8) {
3545 if (!(wufc & (IGC_WUFC_FLX0 << i)))
3546 return i;
3547 } else {
3548 if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3549 return i;
3550 }
3551 }
3552
3553 return -ENOSPC;
3554 }
3555
igc_flex_filter_in_use(struct igc_adapter * adapter)3556 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3557 {
3558 struct igc_hw *hw = &adapter->hw;
3559 u32 wufc, wufc_ext;
3560
3561 wufc = rd32(IGC_WUFC);
3562 wufc_ext = rd32(IGC_WUFC_EXT);
3563
3564 if (wufc & IGC_WUFC_FILTER_MASK)
3565 return true;
3566
3567 if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3568 return true;
3569
3570 return false;
3571 }
3572
igc_add_flex_filter(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3573 static int igc_add_flex_filter(struct igc_adapter *adapter,
3574 struct igc_nfc_rule *rule)
3575 {
3576 struct igc_flex_filter flex = { };
3577 struct igc_nfc_filter *filter = &rule->filter;
3578 unsigned int eth_offset, user_offset;
3579 int ret, index;
3580 bool vlan;
3581
3582 index = igc_find_avail_flex_filter_slot(adapter);
3583 if (index < 0)
3584 return -ENOSPC;
3585
3586 /* Construct the flex filter:
3587 * -> dest_mac [6]
3588 * -> src_mac [6]
3589 * -> tpid [2]
3590 * -> vlan tci [2]
3591 * -> ether type [2]
3592 * -> user data [8]
3593 * -> = 26 bytes => 32 length
3594 */
3595 flex.index = index;
3596 flex.length = 32;
3597 flex.rx_queue = rule->action;
3598
3599 vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3600 eth_offset = vlan ? 16 : 12;
3601 user_offset = vlan ? 18 : 14;
3602
3603 /* Add destination MAC */
3604 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3605 igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3606 ETH_ALEN, NULL);
3607
3608 /* Add source MAC */
3609 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3610 igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3611 ETH_ALEN, NULL);
3612
3613 /* Add VLAN etype */
3614 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE)
3615 igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12,
3616 sizeof(filter->vlan_etype),
3617 NULL);
3618
3619 /* Add VLAN TCI */
3620 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3621 igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3622 sizeof(filter->vlan_tci), NULL);
3623
3624 /* Add Ether type */
3625 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3626 __be16 etype = cpu_to_be16(filter->etype);
3627
3628 igc_flex_filter_add_field(&flex, &etype, eth_offset,
3629 sizeof(etype), NULL);
3630 }
3631
3632 /* Add user data */
3633 if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3634 igc_flex_filter_add_field(&flex, &filter->user_data,
3635 user_offset,
3636 sizeof(filter->user_data),
3637 filter->user_mask);
3638
3639 /* Add it down to the hardware and enable it. */
3640 ret = igc_write_flex_filter_ll(adapter, &flex);
3641 if (ret)
3642 return ret;
3643
3644 filter->flex_index = index;
3645
3646 return 0;
3647 }
3648
igc_del_flex_filter(struct igc_adapter * adapter,u16 reg_index)3649 static void igc_del_flex_filter(struct igc_adapter *adapter,
3650 u16 reg_index)
3651 {
3652 struct igc_hw *hw = &adapter->hw;
3653 u32 wufc;
3654
3655 /* Just disable the filter. The filter table itself is kept
3656 * intact. Another flex_filter_add() should override the "old" data
3657 * then.
3658 */
3659 if (reg_index > 8) {
3660 u32 wufc_ext = rd32(IGC_WUFC_EXT);
3661
3662 wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3663 wr32(IGC_WUFC_EXT, wufc_ext);
3664 } else {
3665 wufc = rd32(IGC_WUFC);
3666
3667 wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3668 wr32(IGC_WUFC, wufc);
3669 }
3670
3671 if (igc_flex_filter_in_use(adapter))
3672 return;
3673
3674 /* No filters are in use, we may disable flex filters */
3675 wufc = rd32(IGC_WUFC);
3676 wufc &= ~IGC_WUFC_FLEX_HQ;
3677 wr32(IGC_WUFC, wufc);
3678 }
3679
igc_enable_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3680 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3681 struct igc_nfc_rule *rule)
3682 {
3683 int err;
3684
3685 if (rule->flex) {
3686 return igc_add_flex_filter(adapter, rule);
3687 }
3688
3689 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3690 err = igc_add_etype_filter(adapter, rule->filter.etype,
3691 rule->action);
3692 if (err)
3693 return err;
3694 }
3695
3696 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3697 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3698 rule->filter.src_addr, rule->action);
3699 if (err)
3700 return err;
3701 }
3702
3703 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3704 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3705 rule->filter.dst_addr, rule->action);
3706 if (err)
3707 return err;
3708 }
3709
3710 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3711 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3712 VLAN_PRIO_SHIFT;
3713
3714 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3715 if (err)
3716 return err;
3717 }
3718
3719 return 0;
3720 }
3721
igc_disable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)3722 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3723 const struct igc_nfc_rule *rule)
3724 {
3725 if (rule->flex) {
3726 igc_del_flex_filter(adapter, rule->filter.flex_index);
3727 return;
3728 }
3729
3730 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3731 igc_del_etype_filter(adapter, rule->filter.etype);
3732
3733 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3734 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3735 VLAN_PRIO_SHIFT;
3736
3737 igc_del_vlan_prio_filter(adapter, prio);
3738 }
3739
3740 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3741 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3742 rule->filter.src_addr);
3743
3744 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3745 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3746 rule->filter.dst_addr);
3747 }
3748
3749 /**
3750 * igc_get_nfc_rule() - Get NFC rule
3751 * @adapter: Pointer to adapter
3752 * @location: Rule location
3753 *
3754 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3755 *
3756 * Return: Pointer to NFC rule at @location. If not found, NULL.
3757 */
igc_get_nfc_rule(struct igc_adapter * adapter,u32 location)3758 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3759 u32 location)
3760 {
3761 struct igc_nfc_rule *rule;
3762
3763 list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3764 if (rule->location == location)
3765 return rule;
3766 if (rule->location > location)
3767 break;
3768 }
3769
3770 return NULL;
3771 }
3772
3773 /**
3774 * igc_del_nfc_rule() - Delete NFC rule
3775 * @adapter: Pointer to adapter
3776 * @rule: Pointer to rule to be deleted
3777 *
3778 * Disable NFC rule in hardware and delete it from adapter.
3779 *
3780 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3781 */
igc_del_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3782 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3783 {
3784 igc_disable_nfc_rule(adapter, rule);
3785
3786 list_del(&rule->list);
3787 adapter->nfc_rule_count--;
3788
3789 kfree(rule);
3790 }
3791
igc_flush_nfc_rules(struct igc_adapter * adapter)3792 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3793 {
3794 struct igc_nfc_rule *rule, *tmp;
3795
3796 mutex_lock(&adapter->nfc_rule_lock);
3797
3798 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3799 igc_del_nfc_rule(adapter, rule);
3800
3801 mutex_unlock(&adapter->nfc_rule_lock);
3802 }
3803
3804 /**
3805 * igc_add_nfc_rule() - Add NFC rule
3806 * @adapter: Pointer to adapter
3807 * @rule: Pointer to rule to be added
3808 *
3809 * Enable NFC rule in hardware and add it to adapter.
3810 *
3811 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3812 *
3813 * Return: 0 on success, negative errno on failure.
3814 */
igc_add_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3815 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3816 {
3817 struct igc_nfc_rule *pred, *cur;
3818 int err;
3819
3820 err = igc_enable_nfc_rule(adapter, rule);
3821 if (err)
3822 return err;
3823
3824 pred = NULL;
3825 list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3826 if (cur->location >= rule->location)
3827 break;
3828 pred = cur;
3829 }
3830
3831 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3832 adapter->nfc_rule_count++;
3833 return 0;
3834 }
3835
igc_restore_nfc_rules(struct igc_adapter * adapter)3836 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3837 {
3838 struct igc_nfc_rule *rule;
3839
3840 mutex_lock(&adapter->nfc_rule_lock);
3841
3842 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3843 igc_enable_nfc_rule(adapter, rule);
3844
3845 mutex_unlock(&adapter->nfc_rule_lock);
3846 }
3847
igc_uc_sync(struct net_device * netdev,const unsigned char * addr)3848 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3849 {
3850 struct igc_adapter *adapter = netdev_priv(netdev);
3851
3852 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3853 }
3854
igc_uc_unsync(struct net_device * netdev,const unsigned char * addr)3855 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3856 {
3857 struct igc_adapter *adapter = netdev_priv(netdev);
3858
3859 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3860 return 0;
3861 }
3862
3863 /**
3864 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3865 * @netdev: network interface device structure
3866 *
3867 * The set_rx_mode entry point is called whenever the unicast or multicast
3868 * address lists or the network interface flags are updated. This routine is
3869 * responsible for configuring the hardware for proper unicast, multicast,
3870 * promiscuous mode, and all-multi behavior.
3871 */
igc_set_rx_mode(struct net_device * netdev)3872 static void igc_set_rx_mode(struct net_device *netdev)
3873 {
3874 struct igc_adapter *adapter = netdev_priv(netdev);
3875 struct igc_hw *hw = &adapter->hw;
3876 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3877 int count;
3878
3879 /* Check for Promiscuous and All Multicast modes */
3880 if (netdev->flags & IFF_PROMISC) {
3881 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3882 } else {
3883 if (netdev->flags & IFF_ALLMULTI) {
3884 rctl |= IGC_RCTL_MPE;
3885 } else {
3886 /* Write addresses to the MTA, if the attempt fails
3887 * then we should just turn on promiscuous mode so
3888 * that we can at least receive multicast traffic
3889 */
3890 count = igc_write_mc_addr_list(netdev);
3891 if (count < 0)
3892 rctl |= IGC_RCTL_MPE;
3893 }
3894 }
3895
3896 /* Write addresses to available RAR registers, if there is not
3897 * sufficient space to store all the addresses then enable
3898 * unicast promiscuous mode
3899 */
3900 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3901 rctl |= IGC_RCTL_UPE;
3902
3903 /* update state of unicast and multicast */
3904 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3905 wr32(IGC_RCTL, rctl);
3906
3907 #if (PAGE_SIZE < 8192)
3908 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3909 rlpml = IGC_MAX_FRAME_BUILD_SKB;
3910 #endif
3911 wr32(IGC_RLPML, rlpml);
3912 }
3913
3914 /**
3915 * igc_configure - configure the hardware for RX and TX
3916 * @adapter: private board structure
3917 */
igc_configure(struct igc_adapter * adapter)3918 static void igc_configure(struct igc_adapter *adapter)
3919 {
3920 struct net_device *netdev = adapter->netdev;
3921 int i = 0;
3922
3923 igc_get_hw_control(adapter);
3924 igc_set_rx_mode(netdev);
3925
3926 igc_restore_vlan(adapter);
3927
3928 igc_setup_tctl(adapter);
3929 igc_setup_mrqc(adapter);
3930 igc_setup_rctl(adapter);
3931
3932 igc_set_default_mac_filter(adapter);
3933 igc_restore_nfc_rules(adapter);
3934
3935 igc_configure_tx(adapter);
3936 igc_configure_rx(adapter);
3937
3938 igc_rx_fifo_flush_base(&adapter->hw);
3939
3940 /* call igc_desc_unused which always leaves
3941 * at least 1 descriptor unused to make sure
3942 * next_to_use != next_to_clean
3943 */
3944 for (i = 0; i < adapter->num_rx_queues; i++) {
3945 struct igc_ring *ring = adapter->rx_ring[i];
3946
3947 if (ring->xsk_pool)
3948 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3949 else
3950 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3951 }
3952 }
3953
3954 /**
3955 * igc_write_ivar - configure ivar for given MSI-X vector
3956 * @hw: pointer to the HW structure
3957 * @msix_vector: vector number we are allocating to a given ring
3958 * @index: row index of IVAR register to write within IVAR table
3959 * @offset: column offset of in IVAR, should be multiple of 8
3960 *
3961 * The IVAR table consists of 2 columns,
3962 * each containing an cause allocation for an Rx and Tx ring, and a
3963 * variable number of rows depending on the number of queues supported.
3964 */
igc_write_ivar(struct igc_hw * hw,int msix_vector,int index,int offset)3965 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3966 int index, int offset)
3967 {
3968 u32 ivar = array_rd32(IGC_IVAR0, index);
3969
3970 /* clear any bits that are currently set */
3971 ivar &= ~((u32)0xFF << offset);
3972
3973 /* write vector and valid bit */
3974 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3975
3976 array_wr32(IGC_IVAR0, index, ivar);
3977 }
3978
igc_assign_vector(struct igc_q_vector * q_vector,int msix_vector)3979 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3980 {
3981 struct igc_adapter *adapter = q_vector->adapter;
3982 struct igc_hw *hw = &adapter->hw;
3983 int rx_queue = IGC_N0_QUEUE;
3984 int tx_queue = IGC_N0_QUEUE;
3985
3986 if (q_vector->rx.ring)
3987 rx_queue = q_vector->rx.ring->reg_idx;
3988 if (q_vector->tx.ring)
3989 tx_queue = q_vector->tx.ring->reg_idx;
3990
3991 switch (hw->mac.type) {
3992 case igc_i225:
3993 if (rx_queue > IGC_N0_QUEUE)
3994 igc_write_ivar(hw, msix_vector,
3995 rx_queue >> 1,
3996 (rx_queue & 0x1) << 4);
3997 if (tx_queue > IGC_N0_QUEUE)
3998 igc_write_ivar(hw, msix_vector,
3999 tx_queue >> 1,
4000 ((tx_queue & 0x1) << 4) + 8);
4001 q_vector->eims_value = BIT(msix_vector);
4002 break;
4003 default:
4004 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
4005 break;
4006 }
4007
4008 /* add q_vector eims value to global eims_enable_mask */
4009 adapter->eims_enable_mask |= q_vector->eims_value;
4010
4011 /* configure q_vector to set itr on first interrupt */
4012 q_vector->set_itr = 1;
4013 }
4014
4015 /**
4016 * igc_configure_msix - Configure MSI-X hardware
4017 * @adapter: Pointer to adapter structure
4018 *
4019 * igc_configure_msix sets up the hardware to properly
4020 * generate MSI-X interrupts.
4021 */
igc_configure_msix(struct igc_adapter * adapter)4022 static void igc_configure_msix(struct igc_adapter *adapter)
4023 {
4024 struct igc_hw *hw = &adapter->hw;
4025 int i, vector = 0;
4026 u32 tmp;
4027
4028 adapter->eims_enable_mask = 0;
4029
4030 /* set vector for other causes, i.e. link changes */
4031 switch (hw->mac.type) {
4032 case igc_i225:
4033 /* Turn on MSI-X capability first, or our settings
4034 * won't stick. And it will take days to debug.
4035 */
4036 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
4037 IGC_GPIE_PBA | IGC_GPIE_EIAME |
4038 IGC_GPIE_NSICR);
4039
4040 /* enable msix_other interrupt */
4041 adapter->eims_other = BIT(vector);
4042 tmp = (vector++ | IGC_IVAR_VALID) << 8;
4043
4044 wr32(IGC_IVAR_MISC, tmp);
4045 break;
4046 default:
4047 /* do nothing, since nothing else supports MSI-X */
4048 break;
4049 } /* switch (hw->mac.type) */
4050
4051 adapter->eims_enable_mask |= adapter->eims_other;
4052
4053 for (i = 0; i < adapter->num_q_vectors; i++)
4054 igc_assign_vector(adapter->q_vector[i], vector++);
4055
4056 wrfl();
4057 }
4058
4059 /**
4060 * igc_irq_enable - Enable default interrupt generation settings
4061 * @adapter: board private structure
4062 */
igc_irq_enable(struct igc_adapter * adapter)4063 static void igc_irq_enable(struct igc_adapter *adapter)
4064 {
4065 struct igc_hw *hw = &adapter->hw;
4066
4067 if (adapter->msix_entries) {
4068 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4069 u32 regval = rd32(IGC_EIAC);
4070
4071 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4072 regval = rd32(IGC_EIAM);
4073 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4074 wr32(IGC_EIMS, adapter->eims_enable_mask);
4075 wr32(IGC_IMS, ims);
4076 } else {
4077 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4078 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4079 }
4080 }
4081
4082 /**
4083 * igc_irq_disable - Mask off interrupt generation on the NIC
4084 * @adapter: board private structure
4085 */
igc_irq_disable(struct igc_adapter * adapter)4086 static void igc_irq_disable(struct igc_adapter *adapter)
4087 {
4088 struct igc_hw *hw = &adapter->hw;
4089
4090 if (adapter->msix_entries) {
4091 u32 regval = rd32(IGC_EIAM);
4092
4093 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4094 wr32(IGC_EIMC, adapter->eims_enable_mask);
4095 regval = rd32(IGC_EIAC);
4096 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4097 }
4098
4099 wr32(IGC_IAM, 0);
4100 wr32(IGC_IMC, ~0);
4101 wrfl();
4102
4103 if (adapter->msix_entries) {
4104 int vector = 0, i;
4105
4106 synchronize_irq(adapter->msix_entries[vector++].vector);
4107
4108 for (i = 0; i < adapter->num_q_vectors; i++)
4109 synchronize_irq(adapter->msix_entries[vector++].vector);
4110 } else {
4111 synchronize_irq(adapter->pdev->irq);
4112 }
4113 }
4114
igc_set_flag_queue_pairs(struct igc_adapter * adapter,const u32 max_rss_queues)4115 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4116 const u32 max_rss_queues)
4117 {
4118 /* Determine if we need to pair queues. */
4119 /* If rss_queues > half of max_rss_queues, pair the queues in
4120 * order to conserve interrupts due to limited supply.
4121 */
4122 if (adapter->rss_queues > (max_rss_queues / 2))
4123 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4124 else
4125 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4126 }
4127
igc_get_max_rss_queues(struct igc_adapter * adapter)4128 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4129 {
4130 return IGC_MAX_RX_QUEUES;
4131 }
4132
igc_init_queue_configuration(struct igc_adapter * adapter)4133 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4134 {
4135 u32 max_rss_queues;
4136
4137 max_rss_queues = igc_get_max_rss_queues(adapter);
4138 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4139
4140 igc_set_flag_queue_pairs(adapter, max_rss_queues);
4141 }
4142
4143 /**
4144 * igc_reset_q_vector - Reset config for interrupt vector
4145 * @adapter: board private structure to initialize
4146 * @v_idx: Index of vector to be reset
4147 *
4148 * If NAPI is enabled it will delete any references to the
4149 * NAPI struct. This is preparation for igc_free_q_vector.
4150 */
igc_reset_q_vector(struct igc_adapter * adapter,int v_idx)4151 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4152 {
4153 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4154
4155 /* if we're coming from igc_set_interrupt_capability, the vectors are
4156 * not yet allocated
4157 */
4158 if (!q_vector)
4159 return;
4160
4161 if (q_vector->tx.ring)
4162 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4163
4164 if (q_vector->rx.ring)
4165 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4166
4167 netif_napi_del(&q_vector->napi);
4168 }
4169
4170 /**
4171 * igc_free_q_vector - Free memory allocated for specific interrupt vector
4172 * @adapter: board private structure to initialize
4173 * @v_idx: Index of vector to be freed
4174 *
4175 * This function frees the memory allocated to the q_vector.
4176 */
igc_free_q_vector(struct igc_adapter * adapter,int v_idx)4177 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4178 {
4179 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4180
4181 adapter->q_vector[v_idx] = NULL;
4182
4183 /* igc_get_stats64() might access the rings on this vector,
4184 * we must wait a grace period before freeing it.
4185 */
4186 if (q_vector)
4187 kfree_rcu(q_vector, rcu);
4188 }
4189
4190 /**
4191 * igc_free_q_vectors - Free memory allocated for interrupt vectors
4192 * @adapter: board private structure to initialize
4193 *
4194 * This function frees the memory allocated to the q_vectors. In addition if
4195 * NAPI is enabled it will delete any references to the NAPI struct prior
4196 * to freeing the q_vector.
4197 */
igc_free_q_vectors(struct igc_adapter * adapter)4198 static void igc_free_q_vectors(struct igc_adapter *adapter)
4199 {
4200 int v_idx = adapter->num_q_vectors;
4201
4202 adapter->num_tx_queues = 0;
4203 adapter->num_rx_queues = 0;
4204 adapter->num_q_vectors = 0;
4205
4206 while (v_idx--) {
4207 igc_reset_q_vector(adapter, v_idx);
4208 igc_free_q_vector(adapter, v_idx);
4209 }
4210 }
4211
4212 /**
4213 * igc_update_itr - update the dynamic ITR value based on statistics
4214 * @q_vector: pointer to q_vector
4215 * @ring_container: ring info to update the itr for
4216 *
4217 * Stores a new ITR value based on packets and byte
4218 * counts during the last interrupt. The advantage of per interrupt
4219 * computation is faster updates and more accurate ITR for the current
4220 * traffic pattern. Constants in this function were computed
4221 * based on theoretical maximum wire speed and thresholds were set based
4222 * on testing data as well as attempting to minimize response time
4223 * while increasing bulk throughput.
4224 * NOTE: These calculations are only valid when operating in a single-
4225 * queue environment.
4226 */
igc_update_itr(struct igc_q_vector * q_vector,struct igc_ring_container * ring_container)4227 static void igc_update_itr(struct igc_q_vector *q_vector,
4228 struct igc_ring_container *ring_container)
4229 {
4230 unsigned int packets = ring_container->total_packets;
4231 unsigned int bytes = ring_container->total_bytes;
4232 u8 itrval = ring_container->itr;
4233
4234 /* no packets, exit with status unchanged */
4235 if (packets == 0)
4236 return;
4237
4238 switch (itrval) {
4239 case lowest_latency:
4240 /* handle TSO and jumbo frames */
4241 if (bytes / packets > 8000)
4242 itrval = bulk_latency;
4243 else if ((packets < 5) && (bytes > 512))
4244 itrval = low_latency;
4245 break;
4246 case low_latency: /* 50 usec aka 20000 ints/s */
4247 if (bytes > 10000) {
4248 /* this if handles the TSO accounting */
4249 if (bytes / packets > 8000)
4250 itrval = bulk_latency;
4251 else if ((packets < 10) || ((bytes / packets) > 1200))
4252 itrval = bulk_latency;
4253 else if ((packets > 35))
4254 itrval = lowest_latency;
4255 } else if (bytes / packets > 2000) {
4256 itrval = bulk_latency;
4257 } else if (packets <= 2 && bytes < 512) {
4258 itrval = lowest_latency;
4259 }
4260 break;
4261 case bulk_latency: /* 250 usec aka 4000 ints/s */
4262 if (bytes > 25000) {
4263 if (packets > 35)
4264 itrval = low_latency;
4265 } else if (bytes < 1500) {
4266 itrval = low_latency;
4267 }
4268 break;
4269 }
4270
4271 /* clear work counters since we have the values we need */
4272 ring_container->total_bytes = 0;
4273 ring_container->total_packets = 0;
4274
4275 /* write updated itr to ring container */
4276 ring_container->itr = itrval;
4277 }
4278
igc_set_itr(struct igc_q_vector * q_vector)4279 static void igc_set_itr(struct igc_q_vector *q_vector)
4280 {
4281 struct igc_adapter *adapter = q_vector->adapter;
4282 u32 new_itr = q_vector->itr_val;
4283 u8 current_itr = 0;
4284
4285 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4286 switch (adapter->link_speed) {
4287 case SPEED_10:
4288 case SPEED_100:
4289 current_itr = 0;
4290 new_itr = IGC_4K_ITR;
4291 goto set_itr_now;
4292 default:
4293 break;
4294 }
4295
4296 igc_update_itr(q_vector, &q_vector->tx);
4297 igc_update_itr(q_vector, &q_vector->rx);
4298
4299 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4300
4301 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4302 if (current_itr == lowest_latency &&
4303 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4304 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4305 current_itr = low_latency;
4306
4307 switch (current_itr) {
4308 /* counts and packets in update_itr are dependent on these numbers */
4309 case lowest_latency:
4310 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4311 break;
4312 case low_latency:
4313 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4314 break;
4315 case bulk_latency:
4316 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
4317 break;
4318 default:
4319 break;
4320 }
4321
4322 set_itr_now:
4323 if (new_itr != q_vector->itr_val) {
4324 /* this attempts to bias the interrupt rate towards Bulk
4325 * by adding intermediate steps when interrupt rate is
4326 * increasing
4327 */
4328 new_itr = new_itr > q_vector->itr_val ?
4329 max((new_itr * q_vector->itr_val) /
4330 (new_itr + (q_vector->itr_val >> 2)),
4331 new_itr) : new_itr;
4332 /* Don't write the value here; it resets the adapter's
4333 * internal timer, and causes us to delay far longer than
4334 * we should between interrupts. Instead, we write the ITR
4335 * value at the beginning of the next interrupt so the timing
4336 * ends up being correct.
4337 */
4338 q_vector->itr_val = new_itr;
4339 q_vector->set_itr = 1;
4340 }
4341 }
4342
igc_reset_interrupt_capability(struct igc_adapter * adapter)4343 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4344 {
4345 int v_idx = adapter->num_q_vectors;
4346
4347 if (adapter->msix_entries) {
4348 pci_disable_msix(adapter->pdev);
4349 kfree(adapter->msix_entries);
4350 adapter->msix_entries = NULL;
4351 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4352 pci_disable_msi(adapter->pdev);
4353 }
4354
4355 while (v_idx--)
4356 igc_reset_q_vector(adapter, v_idx);
4357 }
4358
4359 /**
4360 * igc_set_interrupt_capability - set MSI or MSI-X if supported
4361 * @adapter: Pointer to adapter structure
4362 * @msix: boolean value for MSI-X capability
4363 *
4364 * Attempt to configure interrupts using the best available
4365 * capabilities of the hardware and kernel.
4366 */
igc_set_interrupt_capability(struct igc_adapter * adapter,bool msix)4367 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4368 bool msix)
4369 {
4370 int numvecs, i;
4371 int err;
4372
4373 if (!msix)
4374 goto msi_only;
4375 adapter->flags |= IGC_FLAG_HAS_MSIX;
4376
4377 /* Number of supported queues. */
4378 adapter->num_rx_queues = adapter->rss_queues;
4379
4380 adapter->num_tx_queues = adapter->rss_queues;
4381
4382 /* start with one vector for every Rx queue */
4383 numvecs = adapter->num_rx_queues;
4384
4385 /* if Tx handler is separate add 1 for every Tx queue */
4386 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4387 numvecs += adapter->num_tx_queues;
4388
4389 /* store the number of vectors reserved for queues */
4390 adapter->num_q_vectors = numvecs;
4391
4392 /* add 1 vector for link status interrupts */
4393 numvecs++;
4394
4395 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4396 GFP_KERNEL);
4397
4398 if (!adapter->msix_entries)
4399 return;
4400
4401 /* populate entry values */
4402 for (i = 0; i < numvecs; i++)
4403 adapter->msix_entries[i].entry = i;
4404
4405 err = pci_enable_msix_range(adapter->pdev,
4406 adapter->msix_entries,
4407 numvecs,
4408 numvecs);
4409 if (err > 0)
4410 return;
4411
4412 kfree(adapter->msix_entries);
4413 adapter->msix_entries = NULL;
4414
4415 igc_reset_interrupt_capability(adapter);
4416
4417 msi_only:
4418 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4419
4420 adapter->rss_queues = 1;
4421 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4422 adapter->num_rx_queues = 1;
4423 adapter->num_tx_queues = 1;
4424 adapter->num_q_vectors = 1;
4425 if (!pci_enable_msi(adapter->pdev))
4426 adapter->flags |= IGC_FLAG_HAS_MSI;
4427 }
4428
4429 /**
4430 * igc_update_ring_itr - update the dynamic ITR value based on packet size
4431 * @q_vector: pointer to q_vector
4432 *
4433 * Stores a new ITR value based on strictly on packet size. This
4434 * algorithm is less sophisticated than that used in igc_update_itr,
4435 * due to the difficulty of synchronizing statistics across multiple
4436 * receive rings. The divisors and thresholds used by this function
4437 * were determined based on theoretical maximum wire speed and testing
4438 * data, in order to minimize response time while increasing bulk
4439 * throughput.
4440 * NOTE: This function is called only when operating in a multiqueue
4441 * receive environment.
4442 */
igc_update_ring_itr(struct igc_q_vector * q_vector)4443 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4444 {
4445 struct igc_adapter *adapter = q_vector->adapter;
4446 int new_val = q_vector->itr_val;
4447 int avg_wire_size = 0;
4448 unsigned int packets;
4449
4450 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4451 * ints/sec - ITR timer value of 120 ticks.
4452 */
4453 switch (adapter->link_speed) {
4454 case SPEED_10:
4455 case SPEED_100:
4456 new_val = IGC_4K_ITR;
4457 goto set_itr_val;
4458 default:
4459 break;
4460 }
4461
4462 packets = q_vector->rx.total_packets;
4463 if (packets)
4464 avg_wire_size = q_vector->rx.total_bytes / packets;
4465
4466 packets = q_vector->tx.total_packets;
4467 if (packets)
4468 avg_wire_size = max_t(u32, avg_wire_size,
4469 q_vector->tx.total_bytes / packets);
4470
4471 /* if avg_wire_size isn't set no work was done */
4472 if (!avg_wire_size)
4473 goto clear_counts;
4474
4475 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4476 avg_wire_size += 24;
4477
4478 /* Don't starve jumbo frames */
4479 avg_wire_size = min(avg_wire_size, 3000);
4480
4481 /* Give a little boost to mid-size frames */
4482 if (avg_wire_size > 300 && avg_wire_size < 1200)
4483 new_val = avg_wire_size / 3;
4484 else
4485 new_val = avg_wire_size / 2;
4486
4487 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4488 if (new_val < IGC_20K_ITR &&
4489 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4490 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4491 new_val = IGC_20K_ITR;
4492
4493 set_itr_val:
4494 if (new_val != q_vector->itr_val) {
4495 q_vector->itr_val = new_val;
4496 q_vector->set_itr = 1;
4497 }
4498 clear_counts:
4499 q_vector->rx.total_bytes = 0;
4500 q_vector->rx.total_packets = 0;
4501 q_vector->tx.total_bytes = 0;
4502 q_vector->tx.total_packets = 0;
4503 }
4504
igc_ring_irq_enable(struct igc_q_vector * q_vector)4505 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4506 {
4507 struct igc_adapter *adapter = q_vector->adapter;
4508 struct igc_hw *hw = &adapter->hw;
4509
4510 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4511 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4512 if (adapter->num_q_vectors == 1)
4513 igc_set_itr(q_vector);
4514 else
4515 igc_update_ring_itr(q_vector);
4516 }
4517
4518 if (!test_bit(__IGC_DOWN, &adapter->state)) {
4519 if (adapter->msix_entries)
4520 wr32(IGC_EIMS, q_vector->eims_value);
4521 else
4522 igc_irq_enable(adapter);
4523 }
4524 }
4525
igc_add_ring(struct igc_ring * ring,struct igc_ring_container * head)4526 static void igc_add_ring(struct igc_ring *ring,
4527 struct igc_ring_container *head)
4528 {
4529 head->ring = ring;
4530 head->count++;
4531 }
4532
4533 /**
4534 * igc_cache_ring_register - Descriptor ring to register mapping
4535 * @adapter: board private structure to initialize
4536 *
4537 * Once we know the feature-set enabled for the device, we'll cache
4538 * the register offset the descriptor ring is assigned to.
4539 */
igc_cache_ring_register(struct igc_adapter * adapter)4540 static void igc_cache_ring_register(struct igc_adapter *adapter)
4541 {
4542 int i = 0, j = 0;
4543
4544 switch (adapter->hw.mac.type) {
4545 case igc_i225:
4546 default:
4547 for (; i < adapter->num_rx_queues; i++)
4548 adapter->rx_ring[i]->reg_idx = i;
4549 for (; j < adapter->num_tx_queues; j++)
4550 adapter->tx_ring[j]->reg_idx = j;
4551 break;
4552 }
4553 }
4554
4555 /**
4556 * igc_poll - NAPI Rx polling callback
4557 * @napi: napi polling structure
4558 * @budget: count of how many packets we should handle
4559 */
igc_poll(struct napi_struct * napi,int budget)4560 static int igc_poll(struct napi_struct *napi, int budget)
4561 {
4562 struct igc_q_vector *q_vector = container_of(napi,
4563 struct igc_q_vector,
4564 napi);
4565 struct igc_ring *rx_ring = q_vector->rx.ring;
4566 bool clean_complete = true;
4567 int work_done = 0;
4568
4569 if (q_vector->tx.ring)
4570 clean_complete = igc_clean_tx_irq(q_vector, budget);
4571
4572 if (rx_ring) {
4573 int cleaned = rx_ring->xsk_pool ?
4574 igc_clean_rx_irq_zc(q_vector, budget) :
4575 igc_clean_rx_irq(q_vector, budget);
4576
4577 work_done += cleaned;
4578 if (cleaned >= budget)
4579 clean_complete = false;
4580 }
4581
4582 /* If all work not completed, return budget and keep polling */
4583 if (!clean_complete)
4584 return budget;
4585
4586 /* Exit the polling mode, but don't re-enable interrupts if stack might
4587 * poll us due to busy-polling
4588 */
4589 if (likely(napi_complete_done(napi, work_done)))
4590 igc_ring_irq_enable(q_vector);
4591
4592 return min(work_done, budget - 1);
4593 }
4594
4595 /**
4596 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4597 * @adapter: board private structure to initialize
4598 * @v_count: q_vectors allocated on adapter, used for ring interleaving
4599 * @v_idx: index of vector in adapter struct
4600 * @txr_count: total number of Tx rings to allocate
4601 * @txr_idx: index of first Tx ring to allocate
4602 * @rxr_count: total number of Rx rings to allocate
4603 * @rxr_idx: index of first Rx ring to allocate
4604 *
4605 * We allocate one q_vector. If allocation fails we return -ENOMEM.
4606 */
igc_alloc_q_vector(struct igc_adapter * adapter,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)4607 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4608 unsigned int v_count, unsigned int v_idx,
4609 unsigned int txr_count, unsigned int txr_idx,
4610 unsigned int rxr_count, unsigned int rxr_idx)
4611 {
4612 struct igc_q_vector *q_vector;
4613 struct igc_ring *ring;
4614 int ring_count;
4615
4616 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
4617 if (txr_count > 1 || rxr_count > 1)
4618 return -ENOMEM;
4619
4620 ring_count = txr_count + rxr_count;
4621
4622 /* allocate q_vector and rings */
4623 q_vector = adapter->q_vector[v_idx];
4624 if (!q_vector)
4625 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4626 GFP_KERNEL);
4627 else
4628 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4629 if (!q_vector)
4630 return -ENOMEM;
4631
4632 /* initialize NAPI */
4633 netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4634
4635 /* tie q_vector and adapter together */
4636 adapter->q_vector[v_idx] = q_vector;
4637 q_vector->adapter = adapter;
4638
4639 /* initialize work limits */
4640 q_vector->tx.work_limit = adapter->tx_work_limit;
4641
4642 /* initialize ITR configuration */
4643 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4644 q_vector->itr_val = IGC_START_ITR;
4645
4646 /* initialize pointer to rings */
4647 ring = q_vector->ring;
4648
4649 /* initialize ITR */
4650 if (rxr_count) {
4651 /* rx or rx/tx vector */
4652 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4653 q_vector->itr_val = adapter->rx_itr_setting;
4654 } else {
4655 /* tx only vector */
4656 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4657 q_vector->itr_val = adapter->tx_itr_setting;
4658 }
4659
4660 if (txr_count) {
4661 /* assign generic ring traits */
4662 ring->dev = &adapter->pdev->dev;
4663 ring->netdev = adapter->netdev;
4664
4665 /* configure backlink on ring */
4666 ring->q_vector = q_vector;
4667
4668 /* update q_vector Tx values */
4669 igc_add_ring(ring, &q_vector->tx);
4670
4671 /* apply Tx specific ring traits */
4672 ring->count = adapter->tx_ring_count;
4673 ring->queue_index = txr_idx;
4674
4675 /* assign ring to adapter */
4676 adapter->tx_ring[txr_idx] = ring;
4677
4678 /* push pointer to next ring */
4679 ring++;
4680 }
4681
4682 if (rxr_count) {
4683 /* assign generic ring traits */
4684 ring->dev = &adapter->pdev->dev;
4685 ring->netdev = adapter->netdev;
4686
4687 /* configure backlink on ring */
4688 ring->q_vector = q_vector;
4689
4690 /* update q_vector Rx values */
4691 igc_add_ring(ring, &q_vector->rx);
4692
4693 /* apply Rx specific ring traits */
4694 ring->count = adapter->rx_ring_count;
4695 ring->queue_index = rxr_idx;
4696
4697 /* assign ring to adapter */
4698 adapter->rx_ring[rxr_idx] = ring;
4699 }
4700
4701 return 0;
4702 }
4703
4704 /**
4705 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4706 * @adapter: board private structure to initialize
4707 *
4708 * We allocate one q_vector per queue interrupt. If allocation fails we
4709 * return -ENOMEM.
4710 */
igc_alloc_q_vectors(struct igc_adapter * adapter)4711 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4712 {
4713 int rxr_remaining = adapter->num_rx_queues;
4714 int txr_remaining = adapter->num_tx_queues;
4715 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4716 int q_vectors = adapter->num_q_vectors;
4717 int err;
4718
4719 if (q_vectors >= (rxr_remaining + txr_remaining)) {
4720 for (; rxr_remaining; v_idx++) {
4721 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4722 0, 0, 1, rxr_idx);
4723
4724 if (err)
4725 goto err_out;
4726
4727 /* update counts and index */
4728 rxr_remaining--;
4729 rxr_idx++;
4730 }
4731 }
4732
4733 for (; v_idx < q_vectors; v_idx++) {
4734 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4735 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4736
4737 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4738 tqpv, txr_idx, rqpv, rxr_idx);
4739
4740 if (err)
4741 goto err_out;
4742
4743 /* update counts and index */
4744 rxr_remaining -= rqpv;
4745 txr_remaining -= tqpv;
4746 rxr_idx++;
4747 txr_idx++;
4748 }
4749
4750 return 0;
4751
4752 err_out:
4753 adapter->num_tx_queues = 0;
4754 adapter->num_rx_queues = 0;
4755 adapter->num_q_vectors = 0;
4756
4757 while (v_idx--)
4758 igc_free_q_vector(adapter, v_idx);
4759
4760 return -ENOMEM;
4761 }
4762
4763 /**
4764 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4765 * @adapter: Pointer to adapter structure
4766 * @msix: boolean for MSI-X capability
4767 *
4768 * This function initializes the interrupts and allocates all of the queues.
4769 */
igc_init_interrupt_scheme(struct igc_adapter * adapter,bool msix)4770 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4771 {
4772 struct net_device *dev = adapter->netdev;
4773 int err = 0;
4774
4775 igc_set_interrupt_capability(adapter, msix);
4776
4777 err = igc_alloc_q_vectors(adapter);
4778 if (err) {
4779 netdev_err(dev, "Unable to allocate memory for vectors\n");
4780 goto err_alloc_q_vectors;
4781 }
4782
4783 igc_cache_ring_register(adapter);
4784
4785 return 0;
4786
4787 err_alloc_q_vectors:
4788 igc_reset_interrupt_capability(adapter);
4789 return err;
4790 }
4791
4792 /**
4793 * igc_sw_init - Initialize general software structures (struct igc_adapter)
4794 * @adapter: board private structure to initialize
4795 *
4796 * igc_sw_init initializes the Adapter private data structure.
4797 * Fields are initialized based on PCI device information and
4798 * OS network device settings (MTU size).
4799 */
igc_sw_init(struct igc_adapter * adapter)4800 static int igc_sw_init(struct igc_adapter *adapter)
4801 {
4802 struct net_device *netdev = adapter->netdev;
4803 struct pci_dev *pdev = adapter->pdev;
4804 struct igc_hw *hw = &adapter->hw;
4805
4806 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4807
4808 /* set default ring sizes */
4809 adapter->tx_ring_count = IGC_DEFAULT_TXD;
4810 adapter->rx_ring_count = IGC_DEFAULT_RXD;
4811
4812 /* set default ITR values */
4813 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4814 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4815
4816 /* set default work limits */
4817 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4818
4819 /* adjust max frame to be at least the size of a standard frame */
4820 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4821 VLAN_HLEN;
4822 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4823
4824 mutex_init(&adapter->nfc_rule_lock);
4825 INIT_LIST_HEAD(&adapter->nfc_rule_list);
4826 adapter->nfc_rule_count = 0;
4827
4828 spin_lock_init(&adapter->stats64_lock);
4829 spin_lock_init(&adapter->qbv_tx_lock);
4830 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4831 adapter->flags |= IGC_FLAG_HAS_MSIX;
4832
4833 igc_init_queue_configuration(adapter);
4834
4835 /* This call may decrease the number of queues */
4836 if (igc_init_interrupt_scheme(adapter, true)) {
4837 netdev_err(netdev, "Unable to allocate memory for queues\n");
4838 return -ENOMEM;
4839 }
4840
4841 /* Explicitly disable IRQ since the NIC can be in any state. */
4842 igc_irq_disable(adapter);
4843
4844 set_bit(__IGC_DOWN, &adapter->state);
4845
4846 return 0;
4847 }
4848
4849 /**
4850 * igc_up - Open the interface and prepare it to handle traffic
4851 * @adapter: board private structure
4852 */
igc_up(struct igc_adapter * adapter)4853 void igc_up(struct igc_adapter *adapter)
4854 {
4855 struct igc_hw *hw = &adapter->hw;
4856 int i = 0;
4857
4858 /* hardware has been reset, we need to reload some things */
4859 igc_configure(adapter);
4860
4861 clear_bit(__IGC_DOWN, &adapter->state);
4862
4863 for (i = 0; i < adapter->num_q_vectors; i++)
4864 napi_enable(&adapter->q_vector[i]->napi);
4865
4866 if (adapter->msix_entries)
4867 igc_configure_msix(adapter);
4868 else
4869 igc_assign_vector(adapter->q_vector[0], 0);
4870
4871 /* Clear any pending interrupts. */
4872 rd32(IGC_ICR);
4873 igc_irq_enable(adapter);
4874
4875 netif_tx_start_all_queues(adapter->netdev);
4876
4877 /* start the watchdog. */
4878 hw->mac.get_link_status = true;
4879 schedule_work(&adapter->watchdog_task);
4880 }
4881
4882 /**
4883 * igc_update_stats - Update the board statistics counters
4884 * @adapter: board private structure
4885 */
igc_update_stats(struct igc_adapter * adapter)4886 void igc_update_stats(struct igc_adapter *adapter)
4887 {
4888 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4889 struct pci_dev *pdev = adapter->pdev;
4890 struct igc_hw *hw = &adapter->hw;
4891 u64 _bytes, _packets;
4892 u64 bytes, packets;
4893 unsigned int start;
4894 u32 mpc;
4895 int i;
4896
4897 /* Prevent stats update while adapter is being reset, or if the pci
4898 * connection is down.
4899 */
4900 if (adapter->link_speed == 0)
4901 return;
4902 if (pci_channel_offline(pdev))
4903 return;
4904
4905 packets = 0;
4906 bytes = 0;
4907
4908 rcu_read_lock();
4909 for (i = 0; i < adapter->num_rx_queues; i++) {
4910 struct igc_ring *ring = adapter->rx_ring[i];
4911 u32 rqdpc = rd32(IGC_RQDPC(i));
4912
4913 if (hw->mac.type >= igc_i225)
4914 wr32(IGC_RQDPC(i), 0);
4915
4916 if (rqdpc) {
4917 ring->rx_stats.drops += rqdpc;
4918 net_stats->rx_fifo_errors += rqdpc;
4919 }
4920
4921 do {
4922 start = u64_stats_fetch_begin(&ring->rx_syncp);
4923 _bytes = ring->rx_stats.bytes;
4924 _packets = ring->rx_stats.packets;
4925 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
4926 bytes += _bytes;
4927 packets += _packets;
4928 }
4929
4930 net_stats->rx_bytes = bytes;
4931 net_stats->rx_packets = packets;
4932
4933 packets = 0;
4934 bytes = 0;
4935 for (i = 0; i < adapter->num_tx_queues; i++) {
4936 struct igc_ring *ring = adapter->tx_ring[i];
4937
4938 do {
4939 start = u64_stats_fetch_begin(&ring->tx_syncp);
4940 _bytes = ring->tx_stats.bytes;
4941 _packets = ring->tx_stats.packets;
4942 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
4943 bytes += _bytes;
4944 packets += _packets;
4945 }
4946 net_stats->tx_bytes = bytes;
4947 net_stats->tx_packets = packets;
4948 rcu_read_unlock();
4949
4950 /* read stats registers */
4951 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4952 adapter->stats.gprc += rd32(IGC_GPRC);
4953 adapter->stats.gorc += rd32(IGC_GORCL);
4954 rd32(IGC_GORCH); /* clear GORCL */
4955 adapter->stats.bprc += rd32(IGC_BPRC);
4956 adapter->stats.mprc += rd32(IGC_MPRC);
4957 adapter->stats.roc += rd32(IGC_ROC);
4958
4959 adapter->stats.prc64 += rd32(IGC_PRC64);
4960 adapter->stats.prc127 += rd32(IGC_PRC127);
4961 adapter->stats.prc255 += rd32(IGC_PRC255);
4962 adapter->stats.prc511 += rd32(IGC_PRC511);
4963 adapter->stats.prc1023 += rd32(IGC_PRC1023);
4964 adapter->stats.prc1522 += rd32(IGC_PRC1522);
4965 adapter->stats.tlpic += rd32(IGC_TLPIC);
4966 adapter->stats.rlpic += rd32(IGC_RLPIC);
4967 adapter->stats.hgptc += rd32(IGC_HGPTC);
4968
4969 mpc = rd32(IGC_MPC);
4970 adapter->stats.mpc += mpc;
4971 net_stats->rx_fifo_errors += mpc;
4972 adapter->stats.scc += rd32(IGC_SCC);
4973 adapter->stats.ecol += rd32(IGC_ECOL);
4974 adapter->stats.mcc += rd32(IGC_MCC);
4975 adapter->stats.latecol += rd32(IGC_LATECOL);
4976 adapter->stats.dc += rd32(IGC_DC);
4977 adapter->stats.rlec += rd32(IGC_RLEC);
4978 adapter->stats.xonrxc += rd32(IGC_XONRXC);
4979 adapter->stats.xontxc += rd32(IGC_XONTXC);
4980 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4981 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4982 adapter->stats.fcruc += rd32(IGC_FCRUC);
4983 adapter->stats.gptc += rd32(IGC_GPTC);
4984 adapter->stats.gotc += rd32(IGC_GOTCL);
4985 rd32(IGC_GOTCH); /* clear GOTCL */
4986 adapter->stats.rnbc += rd32(IGC_RNBC);
4987 adapter->stats.ruc += rd32(IGC_RUC);
4988 adapter->stats.rfc += rd32(IGC_RFC);
4989 adapter->stats.rjc += rd32(IGC_RJC);
4990 adapter->stats.tor += rd32(IGC_TORH);
4991 adapter->stats.tot += rd32(IGC_TOTH);
4992 adapter->stats.tpr += rd32(IGC_TPR);
4993
4994 adapter->stats.ptc64 += rd32(IGC_PTC64);
4995 adapter->stats.ptc127 += rd32(IGC_PTC127);
4996 adapter->stats.ptc255 += rd32(IGC_PTC255);
4997 adapter->stats.ptc511 += rd32(IGC_PTC511);
4998 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4999 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
5000
5001 adapter->stats.mptc += rd32(IGC_MPTC);
5002 adapter->stats.bptc += rd32(IGC_BPTC);
5003
5004 adapter->stats.tpt += rd32(IGC_TPT);
5005 adapter->stats.colc += rd32(IGC_COLC);
5006 adapter->stats.colc += rd32(IGC_RERC);
5007
5008 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
5009
5010 adapter->stats.tsctc += rd32(IGC_TSCTC);
5011
5012 adapter->stats.iac += rd32(IGC_IAC);
5013
5014 /* Fill out the OS statistics structure */
5015 net_stats->multicast = adapter->stats.mprc;
5016 net_stats->collisions = adapter->stats.colc;
5017
5018 /* Rx Errors */
5019
5020 /* RLEC on some newer hardware can be incorrect so build
5021 * our own version based on RUC and ROC
5022 */
5023 net_stats->rx_errors = adapter->stats.rxerrc +
5024 adapter->stats.crcerrs + adapter->stats.algnerrc +
5025 adapter->stats.ruc + adapter->stats.roc +
5026 adapter->stats.cexterr;
5027 net_stats->rx_length_errors = adapter->stats.ruc +
5028 adapter->stats.roc;
5029 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5030 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5031 net_stats->rx_missed_errors = adapter->stats.mpc;
5032
5033 /* Tx Errors */
5034 net_stats->tx_errors = adapter->stats.ecol +
5035 adapter->stats.latecol;
5036 net_stats->tx_aborted_errors = adapter->stats.ecol;
5037 net_stats->tx_window_errors = adapter->stats.latecol;
5038 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5039
5040 /* Tx Dropped */
5041 net_stats->tx_dropped = adapter->stats.txdrop;
5042
5043 /* Management Stats */
5044 adapter->stats.mgptc += rd32(IGC_MGTPTC);
5045 adapter->stats.mgprc += rd32(IGC_MGTPRC);
5046 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
5047 }
5048
5049 /**
5050 * igc_down - Close the interface
5051 * @adapter: board private structure
5052 */
igc_down(struct igc_adapter * adapter)5053 void igc_down(struct igc_adapter *adapter)
5054 {
5055 struct net_device *netdev = adapter->netdev;
5056 struct igc_hw *hw = &adapter->hw;
5057 u32 tctl, rctl;
5058 int i = 0;
5059
5060 set_bit(__IGC_DOWN, &adapter->state);
5061
5062 igc_ptp_suspend(adapter);
5063
5064 if (pci_device_is_present(adapter->pdev)) {
5065 /* disable receives in the hardware */
5066 rctl = rd32(IGC_RCTL);
5067 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5068 /* flush and sleep below */
5069 }
5070 /* set trans_start so we don't get spurious watchdogs during reset */
5071 netif_trans_update(netdev);
5072
5073 netif_carrier_off(netdev);
5074 netif_tx_stop_all_queues(netdev);
5075
5076 if (pci_device_is_present(adapter->pdev)) {
5077 /* disable transmits in the hardware */
5078 tctl = rd32(IGC_TCTL);
5079 tctl &= ~IGC_TCTL_EN;
5080 wr32(IGC_TCTL, tctl);
5081 /* flush both disables and wait for them to finish */
5082 wrfl();
5083 usleep_range(10000, 20000);
5084
5085 igc_irq_disable(adapter);
5086 }
5087
5088 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5089
5090 for (i = 0; i < adapter->num_q_vectors; i++) {
5091 if (adapter->q_vector[i]) {
5092 napi_synchronize(&adapter->q_vector[i]->napi);
5093 napi_disable(&adapter->q_vector[i]->napi);
5094 }
5095 }
5096
5097 del_timer_sync(&adapter->watchdog_timer);
5098 del_timer_sync(&adapter->phy_info_timer);
5099
5100 /* record the stats before reset*/
5101 spin_lock(&adapter->stats64_lock);
5102 igc_update_stats(adapter);
5103 spin_unlock(&adapter->stats64_lock);
5104
5105 adapter->link_speed = 0;
5106 adapter->link_duplex = 0;
5107
5108 if (!pci_channel_offline(adapter->pdev))
5109 igc_reset(adapter);
5110
5111 /* clear VLAN promisc flag so VFTA will be updated if necessary */
5112 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5113
5114 igc_disable_all_tx_rings_hw(adapter);
5115 igc_clean_all_tx_rings(adapter);
5116 igc_clean_all_rx_rings(adapter);
5117 }
5118
igc_reinit_locked(struct igc_adapter * adapter)5119 void igc_reinit_locked(struct igc_adapter *adapter)
5120 {
5121 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5122 usleep_range(1000, 2000);
5123 igc_down(adapter);
5124 igc_up(adapter);
5125 clear_bit(__IGC_RESETTING, &adapter->state);
5126 }
5127
igc_reset_task(struct work_struct * work)5128 static void igc_reset_task(struct work_struct *work)
5129 {
5130 struct igc_adapter *adapter;
5131
5132 adapter = container_of(work, struct igc_adapter, reset_task);
5133
5134 rtnl_lock();
5135 /* If we're already down or resetting, just bail */
5136 if (test_bit(__IGC_DOWN, &adapter->state) ||
5137 test_bit(__IGC_RESETTING, &adapter->state)) {
5138 rtnl_unlock();
5139 return;
5140 }
5141
5142 igc_rings_dump(adapter);
5143 igc_regs_dump(adapter);
5144 netdev_err(adapter->netdev, "Reset adapter\n");
5145 igc_reinit_locked(adapter);
5146 rtnl_unlock();
5147 }
5148
5149 /**
5150 * igc_change_mtu - Change the Maximum Transfer Unit
5151 * @netdev: network interface device structure
5152 * @new_mtu: new value for maximum frame size
5153 *
5154 * Returns 0 on success, negative on failure
5155 */
igc_change_mtu(struct net_device * netdev,int new_mtu)5156 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5157 {
5158 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5159 struct igc_adapter *adapter = netdev_priv(netdev);
5160
5161 if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5162 netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5163 return -EINVAL;
5164 }
5165
5166 /* adjust max frame to be at least the size of a standard frame */
5167 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5168 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5169
5170 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5171 usleep_range(1000, 2000);
5172
5173 /* igc_down has a dependency on max_frame_size */
5174 adapter->max_frame_size = max_frame;
5175
5176 if (netif_running(netdev))
5177 igc_down(adapter);
5178
5179 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5180 netdev->mtu = new_mtu;
5181
5182 if (netif_running(netdev))
5183 igc_up(adapter);
5184 else
5185 igc_reset(adapter);
5186
5187 clear_bit(__IGC_RESETTING, &adapter->state);
5188
5189 return 0;
5190 }
5191
5192 /**
5193 * igc_tx_timeout - Respond to a Tx Hang
5194 * @netdev: network interface device structure
5195 * @txqueue: queue number that timed out
5196 **/
igc_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)5197 static void igc_tx_timeout(struct net_device *netdev,
5198 unsigned int __always_unused txqueue)
5199 {
5200 struct igc_adapter *adapter = netdev_priv(netdev);
5201 struct igc_hw *hw = &adapter->hw;
5202
5203 /* Do the reset outside of interrupt context */
5204 adapter->tx_timeout_count++;
5205 schedule_work(&adapter->reset_task);
5206 wr32(IGC_EICS,
5207 (adapter->eims_enable_mask & ~adapter->eims_other));
5208 }
5209
5210 /**
5211 * igc_get_stats64 - Get System Network Statistics
5212 * @netdev: network interface device structure
5213 * @stats: rtnl_link_stats64 pointer
5214 *
5215 * Returns the address of the device statistics structure.
5216 * The statistics are updated here and also from the timer callback.
5217 */
igc_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5218 static void igc_get_stats64(struct net_device *netdev,
5219 struct rtnl_link_stats64 *stats)
5220 {
5221 struct igc_adapter *adapter = netdev_priv(netdev);
5222
5223 spin_lock(&adapter->stats64_lock);
5224 if (!test_bit(__IGC_RESETTING, &adapter->state))
5225 igc_update_stats(adapter);
5226 memcpy(stats, &adapter->stats64, sizeof(*stats));
5227 spin_unlock(&adapter->stats64_lock);
5228 }
5229
igc_fix_features(struct net_device * netdev,netdev_features_t features)5230 static netdev_features_t igc_fix_features(struct net_device *netdev,
5231 netdev_features_t features)
5232 {
5233 /* Since there is no support for separate Rx/Tx vlan accel
5234 * enable/disable make sure Tx flag is always in same state as Rx.
5235 */
5236 if (features & NETIF_F_HW_VLAN_CTAG_RX)
5237 features |= NETIF_F_HW_VLAN_CTAG_TX;
5238 else
5239 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5240
5241 return features;
5242 }
5243
igc_set_features(struct net_device * netdev,netdev_features_t features)5244 static int igc_set_features(struct net_device *netdev,
5245 netdev_features_t features)
5246 {
5247 netdev_features_t changed = netdev->features ^ features;
5248 struct igc_adapter *adapter = netdev_priv(netdev);
5249
5250 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5251 igc_vlan_mode(netdev, features);
5252
5253 /* Add VLAN support */
5254 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5255 return 0;
5256
5257 if (!(features & NETIF_F_NTUPLE))
5258 igc_flush_nfc_rules(adapter);
5259
5260 netdev->features = features;
5261
5262 if (netif_running(netdev))
5263 igc_reinit_locked(adapter);
5264 else
5265 igc_reset(adapter);
5266
5267 return 1;
5268 }
5269
5270 static netdev_features_t
igc_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)5271 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5272 netdev_features_t features)
5273 {
5274 unsigned int network_hdr_len, mac_hdr_len;
5275
5276 /* Make certain the headers can be described by a context descriptor */
5277 mac_hdr_len = skb_network_header(skb) - skb->data;
5278 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5279 return features & ~(NETIF_F_HW_CSUM |
5280 NETIF_F_SCTP_CRC |
5281 NETIF_F_HW_VLAN_CTAG_TX |
5282 NETIF_F_TSO |
5283 NETIF_F_TSO6);
5284
5285 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5286 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
5287 return features & ~(NETIF_F_HW_CSUM |
5288 NETIF_F_SCTP_CRC |
5289 NETIF_F_TSO |
5290 NETIF_F_TSO6);
5291
5292 /* We can only support IPv4 TSO in tunnels if we can mangle the
5293 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5294 */
5295 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5296 features &= ~NETIF_F_TSO;
5297
5298 return features;
5299 }
5300
igc_tsync_interrupt(struct igc_adapter * adapter)5301 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5302 {
5303 struct igc_hw *hw = &adapter->hw;
5304 u32 tsauxc, sec, nsec, tsicr;
5305 struct ptp_clock_event event;
5306 struct timespec64 ts;
5307
5308 tsicr = rd32(IGC_TSICR);
5309
5310 if (tsicr & IGC_TSICR_SYS_WRAP) {
5311 event.type = PTP_CLOCK_PPS;
5312 if (adapter->ptp_caps.pps)
5313 ptp_clock_event(adapter->ptp_clock, &event);
5314 }
5315
5316 if (tsicr & IGC_TSICR_TXTS) {
5317 /* retrieve hardware timestamp */
5318 igc_ptp_tx_tstamp_event(adapter);
5319 }
5320
5321 if (tsicr & IGC_TSICR_TT0) {
5322 spin_lock(&adapter->tmreg_lock);
5323 ts = timespec64_add(adapter->perout[0].start,
5324 adapter->perout[0].period);
5325 wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5326 wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5327 tsauxc = rd32(IGC_TSAUXC);
5328 tsauxc |= IGC_TSAUXC_EN_TT0;
5329 wr32(IGC_TSAUXC, tsauxc);
5330 adapter->perout[0].start = ts;
5331 spin_unlock(&adapter->tmreg_lock);
5332 }
5333
5334 if (tsicr & IGC_TSICR_TT1) {
5335 spin_lock(&adapter->tmreg_lock);
5336 ts = timespec64_add(adapter->perout[1].start,
5337 adapter->perout[1].period);
5338 wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5339 wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5340 tsauxc = rd32(IGC_TSAUXC);
5341 tsauxc |= IGC_TSAUXC_EN_TT1;
5342 wr32(IGC_TSAUXC, tsauxc);
5343 adapter->perout[1].start = ts;
5344 spin_unlock(&adapter->tmreg_lock);
5345 }
5346
5347 if (tsicr & IGC_TSICR_AUTT0) {
5348 nsec = rd32(IGC_AUXSTMPL0);
5349 sec = rd32(IGC_AUXSTMPH0);
5350 event.type = PTP_CLOCK_EXTTS;
5351 event.index = 0;
5352 event.timestamp = sec * NSEC_PER_SEC + nsec;
5353 ptp_clock_event(adapter->ptp_clock, &event);
5354 }
5355
5356 if (tsicr & IGC_TSICR_AUTT1) {
5357 nsec = rd32(IGC_AUXSTMPL1);
5358 sec = rd32(IGC_AUXSTMPH1);
5359 event.type = PTP_CLOCK_EXTTS;
5360 event.index = 1;
5361 event.timestamp = sec * NSEC_PER_SEC + nsec;
5362 ptp_clock_event(adapter->ptp_clock, &event);
5363 }
5364 }
5365
5366 /**
5367 * igc_msix_other - msix other interrupt handler
5368 * @irq: interrupt number
5369 * @data: pointer to a q_vector
5370 */
igc_msix_other(int irq,void * data)5371 static irqreturn_t igc_msix_other(int irq, void *data)
5372 {
5373 struct igc_adapter *adapter = data;
5374 struct igc_hw *hw = &adapter->hw;
5375 u32 icr = rd32(IGC_ICR);
5376
5377 /* reading ICR causes bit 31 of EICR to be cleared */
5378 if (icr & IGC_ICR_DRSTA)
5379 schedule_work(&adapter->reset_task);
5380
5381 if (icr & IGC_ICR_DOUTSYNC) {
5382 /* HW is reporting DMA is out of sync */
5383 adapter->stats.doosync++;
5384 }
5385
5386 if (icr & IGC_ICR_LSC) {
5387 hw->mac.get_link_status = true;
5388 /* guard against interrupt when we're going down */
5389 if (!test_bit(__IGC_DOWN, &adapter->state))
5390 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5391 }
5392
5393 if (icr & IGC_ICR_TS)
5394 igc_tsync_interrupt(adapter);
5395
5396 wr32(IGC_EIMS, adapter->eims_other);
5397
5398 return IRQ_HANDLED;
5399 }
5400
igc_write_itr(struct igc_q_vector * q_vector)5401 static void igc_write_itr(struct igc_q_vector *q_vector)
5402 {
5403 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5404
5405 if (!q_vector->set_itr)
5406 return;
5407
5408 if (!itr_val)
5409 itr_val = IGC_ITR_VAL_MASK;
5410
5411 itr_val |= IGC_EITR_CNT_IGNR;
5412
5413 writel(itr_val, q_vector->itr_register);
5414 q_vector->set_itr = 0;
5415 }
5416
igc_msix_ring(int irq,void * data)5417 static irqreturn_t igc_msix_ring(int irq, void *data)
5418 {
5419 struct igc_q_vector *q_vector = data;
5420
5421 /* Write the ITR value calculated from the previous interrupt. */
5422 igc_write_itr(q_vector);
5423
5424 napi_schedule(&q_vector->napi);
5425
5426 return IRQ_HANDLED;
5427 }
5428
5429 /**
5430 * igc_request_msix - Initialize MSI-X interrupts
5431 * @adapter: Pointer to adapter structure
5432 *
5433 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5434 * kernel.
5435 */
igc_request_msix(struct igc_adapter * adapter)5436 static int igc_request_msix(struct igc_adapter *adapter)
5437 {
5438 unsigned int num_q_vectors = adapter->num_q_vectors;
5439 int i = 0, err = 0, vector = 0, free_vector = 0;
5440 struct net_device *netdev = adapter->netdev;
5441
5442 err = request_irq(adapter->msix_entries[vector].vector,
5443 &igc_msix_other, 0, netdev->name, adapter);
5444 if (err)
5445 goto err_out;
5446
5447 if (num_q_vectors > MAX_Q_VECTORS) {
5448 num_q_vectors = MAX_Q_VECTORS;
5449 dev_warn(&adapter->pdev->dev,
5450 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5451 adapter->num_q_vectors, MAX_Q_VECTORS);
5452 }
5453 for (i = 0; i < num_q_vectors; i++) {
5454 struct igc_q_vector *q_vector = adapter->q_vector[i];
5455
5456 vector++;
5457
5458 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5459
5460 if (q_vector->rx.ring && q_vector->tx.ring)
5461 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5462 q_vector->rx.ring->queue_index);
5463 else if (q_vector->tx.ring)
5464 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5465 q_vector->tx.ring->queue_index);
5466 else if (q_vector->rx.ring)
5467 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5468 q_vector->rx.ring->queue_index);
5469 else
5470 sprintf(q_vector->name, "%s-unused", netdev->name);
5471
5472 err = request_irq(adapter->msix_entries[vector].vector,
5473 igc_msix_ring, 0, q_vector->name,
5474 q_vector);
5475 if (err)
5476 goto err_free;
5477 }
5478
5479 igc_configure_msix(adapter);
5480 return 0;
5481
5482 err_free:
5483 /* free already assigned IRQs */
5484 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5485
5486 vector--;
5487 for (i = 0; i < vector; i++) {
5488 free_irq(adapter->msix_entries[free_vector++].vector,
5489 adapter->q_vector[i]);
5490 }
5491 err_out:
5492 return err;
5493 }
5494
5495 /**
5496 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5497 * @adapter: Pointer to adapter structure
5498 *
5499 * This function resets the device so that it has 0 rx queues, tx queues, and
5500 * MSI-X interrupts allocated.
5501 */
igc_clear_interrupt_scheme(struct igc_adapter * adapter)5502 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5503 {
5504 igc_free_q_vectors(adapter);
5505 igc_reset_interrupt_capability(adapter);
5506 }
5507
5508 /* Need to wait a few seconds after link up to get diagnostic information from
5509 * the phy
5510 */
igc_update_phy_info(struct timer_list * t)5511 static void igc_update_phy_info(struct timer_list *t)
5512 {
5513 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5514
5515 igc_get_phy_info(&adapter->hw);
5516 }
5517
5518 /**
5519 * igc_has_link - check shared code for link and determine up/down
5520 * @adapter: pointer to driver private info
5521 */
igc_has_link(struct igc_adapter * adapter)5522 bool igc_has_link(struct igc_adapter *adapter)
5523 {
5524 struct igc_hw *hw = &adapter->hw;
5525 bool link_active = false;
5526
5527 /* get_link_status is set on LSC (link status) interrupt or
5528 * rx sequence error interrupt. get_link_status will stay
5529 * false until the igc_check_for_link establishes link
5530 * for copper adapters ONLY
5531 */
5532 if (!hw->mac.get_link_status)
5533 return true;
5534 hw->mac.ops.check_for_link(hw);
5535 link_active = !hw->mac.get_link_status;
5536
5537 if (hw->mac.type == igc_i225) {
5538 if (!netif_carrier_ok(adapter->netdev)) {
5539 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5540 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5541 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5542 adapter->link_check_timeout = jiffies;
5543 }
5544 }
5545
5546 return link_active;
5547 }
5548
5549 /**
5550 * igc_watchdog - Timer Call-back
5551 * @t: timer for the watchdog
5552 */
igc_watchdog(struct timer_list * t)5553 static void igc_watchdog(struct timer_list *t)
5554 {
5555 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5556 /* Do the rest outside of interrupt context */
5557 schedule_work(&adapter->watchdog_task);
5558 }
5559
igc_watchdog_task(struct work_struct * work)5560 static void igc_watchdog_task(struct work_struct *work)
5561 {
5562 struct igc_adapter *adapter = container_of(work,
5563 struct igc_adapter,
5564 watchdog_task);
5565 struct net_device *netdev = adapter->netdev;
5566 struct igc_hw *hw = &adapter->hw;
5567 struct igc_phy_info *phy = &hw->phy;
5568 u16 phy_data, retry_count = 20;
5569 u32 link;
5570 int i;
5571
5572 link = igc_has_link(adapter);
5573
5574 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5575 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5576 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5577 else
5578 link = false;
5579 }
5580
5581 if (link) {
5582 /* Cancel scheduled suspend requests. */
5583 pm_runtime_resume(netdev->dev.parent);
5584
5585 if (!netif_carrier_ok(netdev)) {
5586 u32 ctrl;
5587
5588 hw->mac.ops.get_speed_and_duplex(hw,
5589 &adapter->link_speed,
5590 &adapter->link_duplex);
5591
5592 ctrl = rd32(IGC_CTRL);
5593 /* Link status message must follow this format */
5594 netdev_info(netdev,
5595 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5596 adapter->link_speed,
5597 adapter->link_duplex == FULL_DUPLEX ?
5598 "Full" : "Half",
5599 (ctrl & IGC_CTRL_TFCE) &&
5600 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5601 (ctrl & IGC_CTRL_RFCE) ? "RX" :
5602 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
5603
5604 /* disable EEE if enabled */
5605 if ((adapter->flags & IGC_FLAG_EEE) &&
5606 adapter->link_duplex == HALF_DUPLEX) {
5607 netdev_info(netdev,
5608 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5609 adapter->hw.dev_spec._base.eee_enable = false;
5610 adapter->flags &= ~IGC_FLAG_EEE;
5611 }
5612
5613 /* check if SmartSpeed worked */
5614 igc_check_downshift(hw);
5615 if (phy->speed_downgraded)
5616 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5617
5618 /* adjust timeout factor according to speed/duplex */
5619 adapter->tx_timeout_factor = 1;
5620 switch (adapter->link_speed) {
5621 case SPEED_10:
5622 adapter->tx_timeout_factor = 14;
5623 break;
5624 case SPEED_100:
5625 case SPEED_1000:
5626 case SPEED_2500:
5627 adapter->tx_timeout_factor = 1;
5628 break;
5629 }
5630
5631 /* Once the launch time has been set on the wire, there
5632 * is a delay before the link speed can be determined
5633 * based on link-up activity. Write into the register
5634 * as soon as we know the correct link speed.
5635 */
5636 igc_tsn_adjust_txtime_offset(adapter);
5637
5638 if (adapter->link_speed != SPEED_1000)
5639 goto no_wait;
5640
5641 /* wait for Remote receiver status OK */
5642 retry_read_status:
5643 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5644 &phy_data)) {
5645 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5646 retry_count) {
5647 msleep(100);
5648 retry_count--;
5649 goto retry_read_status;
5650 } else if (!retry_count) {
5651 netdev_err(netdev, "exceed max 2 second\n");
5652 }
5653 } else {
5654 netdev_err(netdev, "read 1000Base-T Status Reg\n");
5655 }
5656 no_wait:
5657 netif_carrier_on(netdev);
5658
5659 /* link state has changed, schedule phy info update */
5660 if (!test_bit(__IGC_DOWN, &adapter->state))
5661 mod_timer(&adapter->phy_info_timer,
5662 round_jiffies(jiffies + 2 * HZ));
5663 }
5664 } else {
5665 if (netif_carrier_ok(netdev)) {
5666 adapter->link_speed = 0;
5667 adapter->link_duplex = 0;
5668
5669 /* Links status message must follow this format */
5670 netdev_info(netdev, "NIC Link is Down\n");
5671 netif_carrier_off(netdev);
5672
5673 /* link state has changed, schedule phy info update */
5674 if (!test_bit(__IGC_DOWN, &adapter->state))
5675 mod_timer(&adapter->phy_info_timer,
5676 round_jiffies(jiffies + 2 * HZ));
5677
5678 pm_schedule_suspend(netdev->dev.parent,
5679 MSEC_PER_SEC * 5);
5680 }
5681 }
5682
5683 spin_lock(&adapter->stats64_lock);
5684 igc_update_stats(adapter);
5685 spin_unlock(&adapter->stats64_lock);
5686
5687 for (i = 0; i < adapter->num_tx_queues; i++) {
5688 struct igc_ring *tx_ring = adapter->tx_ring[i];
5689
5690 if (!netif_carrier_ok(netdev)) {
5691 /* We've lost link, so the controller stops DMA,
5692 * but we've got queued Tx work that's never going
5693 * to get done, so reset controller to flush Tx.
5694 * (Do the reset outside of interrupt context).
5695 */
5696 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5697 adapter->tx_timeout_count++;
5698 schedule_work(&adapter->reset_task);
5699 /* return immediately since reset is imminent */
5700 return;
5701 }
5702 }
5703
5704 /* Force detection of hung controller every watchdog period */
5705 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5706 }
5707
5708 /* Cause software interrupt to ensure Rx ring is cleaned */
5709 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5710 u32 eics = 0;
5711
5712 for (i = 0; i < adapter->num_q_vectors; i++)
5713 eics |= adapter->q_vector[i]->eims_value;
5714 wr32(IGC_EICS, eics);
5715 } else {
5716 wr32(IGC_ICS, IGC_ICS_RXDMT0);
5717 }
5718
5719 igc_ptp_tx_hang(adapter);
5720
5721 /* Reset the timer */
5722 if (!test_bit(__IGC_DOWN, &adapter->state)) {
5723 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5724 mod_timer(&adapter->watchdog_timer,
5725 round_jiffies(jiffies + HZ));
5726 else
5727 mod_timer(&adapter->watchdog_timer,
5728 round_jiffies(jiffies + 2 * HZ));
5729 }
5730 }
5731
5732 /**
5733 * igc_intr_msi - Interrupt Handler
5734 * @irq: interrupt number
5735 * @data: pointer to a network interface device structure
5736 */
igc_intr_msi(int irq,void * data)5737 static irqreturn_t igc_intr_msi(int irq, void *data)
5738 {
5739 struct igc_adapter *adapter = data;
5740 struct igc_q_vector *q_vector = adapter->q_vector[0];
5741 struct igc_hw *hw = &adapter->hw;
5742 /* read ICR disables interrupts using IAM */
5743 u32 icr = rd32(IGC_ICR);
5744
5745 igc_write_itr(q_vector);
5746
5747 if (icr & IGC_ICR_DRSTA)
5748 schedule_work(&adapter->reset_task);
5749
5750 if (icr & IGC_ICR_DOUTSYNC) {
5751 /* HW is reporting DMA is out of sync */
5752 adapter->stats.doosync++;
5753 }
5754
5755 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5756 hw->mac.get_link_status = true;
5757 if (!test_bit(__IGC_DOWN, &adapter->state))
5758 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5759 }
5760
5761 if (icr & IGC_ICR_TS)
5762 igc_tsync_interrupt(adapter);
5763
5764 napi_schedule(&q_vector->napi);
5765
5766 return IRQ_HANDLED;
5767 }
5768
5769 /**
5770 * igc_intr - Legacy Interrupt Handler
5771 * @irq: interrupt number
5772 * @data: pointer to a network interface device structure
5773 */
igc_intr(int irq,void * data)5774 static irqreturn_t igc_intr(int irq, void *data)
5775 {
5776 struct igc_adapter *adapter = data;
5777 struct igc_q_vector *q_vector = adapter->q_vector[0];
5778 struct igc_hw *hw = &adapter->hw;
5779 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5780 * need for the IMC write
5781 */
5782 u32 icr = rd32(IGC_ICR);
5783
5784 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5785 * not set, then the adapter didn't send an interrupt
5786 */
5787 if (!(icr & IGC_ICR_INT_ASSERTED))
5788 return IRQ_NONE;
5789
5790 igc_write_itr(q_vector);
5791
5792 if (icr & IGC_ICR_DRSTA)
5793 schedule_work(&adapter->reset_task);
5794
5795 if (icr & IGC_ICR_DOUTSYNC) {
5796 /* HW is reporting DMA is out of sync */
5797 adapter->stats.doosync++;
5798 }
5799
5800 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5801 hw->mac.get_link_status = true;
5802 /* guard against interrupt when we're going down */
5803 if (!test_bit(__IGC_DOWN, &adapter->state))
5804 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5805 }
5806
5807 if (icr & IGC_ICR_TS)
5808 igc_tsync_interrupt(adapter);
5809
5810 napi_schedule(&q_vector->napi);
5811
5812 return IRQ_HANDLED;
5813 }
5814
igc_free_irq(struct igc_adapter * adapter)5815 static void igc_free_irq(struct igc_adapter *adapter)
5816 {
5817 if (adapter->msix_entries) {
5818 int vector = 0, i;
5819
5820 free_irq(adapter->msix_entries[vector++].vector, adapter);
5821
5822 for (i = 0; i < adapter->num_q_vectors; i++)
5823 free_irq(adapter->msix_entries[vector++].vector,
5824 adapter->q_vector[i]);
5825 } else {
5826 free_irq(adapter->pdev->irq, adapter);
5827 }
5828 }
5829
5830 /**
5831 * igc_request_irq - initialize interrupts
5832 * @adapter: Pointer to adapter structure
5833 *
5834 * Attempts to configure interrupts using the best available
5835 * capabilities of the hardware and kernel.
5836 */
igc_request_irq(struct igc_adapter * adapter)5837 static int igc_request_irq(struct igc_adapter *adapter)
5838 {
5839 struct net_device *netdev = adapter->netdev;
5840 struct pci_dev *pdev = adapter->pdev;
5841 int err = 0;
5842
5843 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5844 err = igc_request_msix(adapter);
5845 if (!err)
5846 goto request_done;
5847 /* fall back to MSI */
5848 igc_free_all_tx_resources(adapter);
5849 igc_free_all_rx_resources(adapter);
5850
5851 igc_clear_interrupt_scheme(adapter);
5852 err = igc_init_interrupt_scheme(adapter, false);
5853 if (err)
5854 goto request_done;
5855 igc_setup_all_tx_resources(adapter);
5856 igc_setup_all_rx_resources(adapter);
5857 igc_configure(adapter);
5858 }
5859
5860 igc_assign_vector(adapter->q_vector[0], 0);
5861
5862 if (adapter->flags & IGC_FLAG_HAS_MSI) {
5863 err = request_irq(pdev->irq, &igc_intr_msi, 0,
5864 netdev->name, adapter);
5865 if (!err)
5866 goto request_done;
5867
5868 /* fall back to legacy interrupts */
5869 igc_reset_interrupt_capability(adapter);
5870 adapter->flags &= ~IGC_FLAG_HAS_MSI;
5871 }
5872
5873 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5874 netdev->name, adapter);
5875
5876 if (err)
5877 netdev_err(netdev, "Error %d getting interrupt\n", err);
5878
5879 request_done:
5880 return err;
5881 }
5882
5883 /**
5884 * __igc_open - Called when a network interface is made active
5885 * @netdev: network interface device structure
5886 * @resuming: boolean indicating if the device is resuming
5887 *
5888 * Returns 0 on success, negative value on failure
5889 *
5890 * The open entry point is called when a network interface is made
5891 * active by the system (IFF_UP). At this point all resources needed
5892 * for transmit and receive operations are allocated, the interrupt
5893 * handler is registered with the OS, the watchdog timer is started,
5894 * and the stack is notified that the interface is ready.
5895 */
__igc_open(struct net_device * netdev,bool resuming)5896 static int __igc_open(struct net_device *netdev, bool resuming)
5897 {
5898 struct igc_adapter *adapter = netdev_priv(netdev);
5899 struct pci_dev *pdev = adapter->pdev;
5900 struct igc_hw *hw = &adapter->hw;
5901 int err = 0;
5902 int i = 0;
5903
5904 /* disallow open during test */
5905
5906 if (test_bit(__IGC_TESTING, &adapter->state)) {
5907 WARN_ON(resuming);
5908 return -EBUSY;
5909 }
5910
5911 if (!resuming)
5912 pm_runtime_get_sync(&pdev->dev);
5913
5914 netif_carrier_off(netdev);
5915
5916 /* allocate transmit descriptors */
5917 err = igc_setup_all_tx_resources(adapter);
5918 if (err)
5919 goto err_setup_tx;
5920
5921 /* allocate receive descriptors */
5922 err = igc_setup_all_rx_resources(adapter);
5923 if (err)
5924 goto err_setup_rx;
5925
5926 igc_power_up_link(adapter);
5927
5928 igc_configure(adapter);
5929
5930 err = igc_request_irq(adapter);
5931 if (err)
5932 goto err_req_irq;
5933
5934 /* Notify the stack of the actual queue counts. */
5935 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5936 if (err)
5937 goto err_set_queues;
5938
5939 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5940 if (err)
5941 goto err_set_queues;
5942
5943 clear_bit(__IGC_DOWN, &adapter->state);
5944
5945 for (i = 0; i < adapter->num_q_vectors; i++)
5946 napi_enable(&adapter->q_vector[i]->napi);
5947
5948 /* Clear any pending interrupts. */
5949 rd32(IGC_ICR);
5950 igc_irq_enable(adapter);
5951
5952 if (!resuming)
5953 pm_runtime_put(&pdev->dev);
5954
5955 netif_tx_start_all_queues(netdev);
5956
5957 /* start the watchdog. */
5958 hw->mac.get_link_status = true;
5959 schedule_work(&adapter->watchdog_task);
5960
5961 return IGC_SUCCESS;
5962
5963 err_set_queues:
5964 igc_free_irq(adapter);
5965 err_req_irq:
5966 igc_release_hw_control(adapter);
5967 igc_power_down_phy_copper_base(&adapter->hw);
5968 igc_free_all_rx_resources(adapter);
5969 err_setup_rx:
5970 igc_free_all_tx_resources(adapter);
5971 err_setup_tx:
5972 igc_reset(adapter);
5973 if (!resuming)
5974 pm_runtime_put(&pdev->dev);
5975
5976 return err;
5977 }
5978
igc_open(struct net_device * netdev)5979 int igc_open(struct net_device *netdev)
5980 {
5981 return __igc_open(netdev, false);
5982 }
5983
5984 /**
5985 * __igc_close - Disables a network interface
5986 * @netdev: network interface device structure
5987 * @suspending: boolean indicating the device is suspending
5988 *
5989 * Returns 0, this is not allowed to fail
5990 *
5991 * The close entry point is called when an interface is de-activated
5992 * by the OS. The hardware is still under the driver's control, but
5993 * needs to be disabled. A global MAC reset is issued to stop the
5994 * hardware, and all transmit and receive resources are freed.
5995 */
__igc_close(struct net_device * netdev,bool suspending)5996 static int __igc_close(struct net_device *netdev, bool suspending)
5997 {
5998 struct igc_adapter *adapter = netdev_priv(netdev);
5999 struct pci_dev *pdev = adapter->pdev;
6000
6001 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
6002
6003 if (!suspending)
6004 pm_runtime_get_sync(&pdev->dev);
6005
6006 igc_down(adapter);
6007
6008 igc_release_hw_control(adapter);
6009
6010 igc_free_irq(adapter);
6011
6012 igc_free_all_tx_resources(adapter);
6013 igc_free_all_rx_resources(adapter);
6014
6015 if (!suspending)
6016 pm_runtime_put_sync(&pdev->dev);
6017
6018 return 0;
6019 }
6020
igc_close(struct net_device * netdev)6021 int igc_close(struct net_device *netdev)
6022 {
6023 if (netif_device_present(netdev) || netdev->dismantle)
6024 return __igc_close(netdev, false);
6025 return 0;
6026 }
6027
6028 /**
6029 * igc_ioctl - Access the hwtstamp interface
6030 * @netdev: network interface device structure
6031 * @ifr: interface request data
6032 * @cmd: ioctl command
6033 **/
igc_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)6034 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6035 {
6036 switch (cmd) {
6037 case SIOCGHWTSTAMP:
6038 return igc_ptp_get_ts_config(netdev, ifr);
6039 case SIOCSHWTSTAMP:
6040 return igc_ptp_set_ts_config(netdev, ifr);
6041 default:
6042 return -EOPNOTSUPP;
6043 }
6044 }
6045
igc_save_launchtime_params(struct igc_adapter * adapter,int queue,bool enable)6046 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6047 bool enable)
6048 {
6049 struct igc_ring *ring;
6050
6051 if (queue < 0 || queue >= adapter->num_tx_queues)
6052 return -EINVAL;
6053
6054 ring = adapter->tx_ring[queue];
6055 ring->launchtime_enable = enable;
6056
6057 return 0;
6058 }
6059
is_base_time_past(ktime_t base_time,const struct timespec64 * now)6060 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6061 {
6062 struct timespec64 b;
6063
6064 b = ktime_to_timespec64(base_time);
6065
6066 return timespec64_compare(now, &b) > 0;
6067 }
6068
validate_schedule(struct igc_adapter * adapter,const struct tc_taprio_qopt_offload * qopt)6069 static bool validate_schedule(struct igc_adapter *adapter,
6070 const struct tc_taprio_qopt_offload *qopt)
6071 {
6072 int queue_uses[IGC_MAX_TX_QUEUES] = { };
6073 struct igc_hw *hw = &adapter->hw;
6074 struct timespec64 now;
6075 size_t n;
6076
6077 if (qopt->cycle_time_extension)
6078 return false;
6079
6080 igc_ptp_read(adapter, &now);
6081
6082 /* If we program the controller's BASET registers with a time
6083 * in the future, it will hold all the packets until that
6084 * time, causing a lot of TX Hangs, so to avoid that, we
6085 * reject schedules that would start in the future.
6086 * Note: Limitation above is no longer in i226.
6087 */
6088 if (!is_base_time_past(qopt->base_time, &now) &&
6089 igc_is_device_id_i225(hw))
6090 return false;
6091
6092 for (n = 0; n < qopt->num_entries; n++) {
6093 const struct tc_taprio_sched_entry *e, *prev;
6094 int i;
6095
6096 prev = n ? &qopt->entries[n - 1] : NULL;
6097 e = &qopt->entries[n];
6098
6099 /* i225 only supports "global" frame preemption
6100 * settings.
6101 */
6102 if (e->command != TC_TAPRIO_CMD_SET_GATES)
6103 return false;
6104
6105 for (i = 0; i < adapter->num_tx_queues; i++)
6106 if (e->gate_mask & BIT(i)) {
6107 queue_uses[i]++;
6108
6109 /* There are limitations: A single queue cannot
6110 * be opened and closed multiple times per cycle
6111 * unless the gate stays open. Check for it.
6112 */
6113 if (queue_uses[i] > 1 &&
6114 !(prev->gate_mask & BIT(i)))
6115 return false;
6116 }
6117 }
6118
6119 return true;
6120 }
6121
igc_tsn_enable_launchtime(struct igc_adapter * adapter,struct tc_etf_qopt_offload * qopt)6122 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6123 struct tc_etf_qopt_offload *qopt)
6124 {
6125 struct igc_hw *hw = &adapter->hw;
6126 int err;
6127
6128 if (hw->mac.type != igc_i225)
6129 return -EOPNOTSUPP;
6130
6131 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6132 if (err)
6133 return err;
6134
6135 return igc_tsn_offload_apply(adapter);
6136 }
6137
igc_qbv_clear_schedule(struct igc_adapter * adapter)6138 static int igc_qbv_clear_schedule(struct igc_adapter *adapter)
6139 {
6140 unsigned long flags;
6141 int i;
6142
6143 adapter->base_time = 0;
6144 adapter->cycle_time = NSEC_PER_SEC;
6145 adapter->taprio_offload_enable = false;
6146 adapter->qbv_config_change_errors = 0;
6147 adapter->qbv_count = 0;
6148
6149 for (i = 0; i < adapter->num_tx_queues; i++) {
6150 struct igc_ring *ring = adapter->tx_ring[i];
6151
6152 ring->start_time = 0;
6153 ring->end_time = NSEC_PER_SEC;
6154 ring->max_sdu = 0;
6155 }
6156
6157 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6158
6159 adapter->qbv_transition = false;
6160
6161 for (i = 0; i < adapter->num_tx_queues; i++) {
6162 struct igc_ring *ring = adapter->tx_ring[i];
6163
6164 ring->oper_gate_closed = false;
6165 ring->admin_gate_closed = false;
6166 }
6167
6168 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6169
6170 return 0;
6171 }
6172
igc_tsn_clear_schedule(struct igc_adapter * adapter)6173 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6174 {
6175 igc_qbv_clear_schedule(adapter);
6176
6177 return 0;
6178 }
6179
igc_taprio_stats(struct net_device * dev,struct tc_taprio_qopt_stats * stats)6180 static void igc_taprio_stats(struct net_device *dev,
6181 struct tc_taprio_qopt_stats *stats)
6182 {
6183 /* When Strict_End is enabled, the tx_overruns counter
6184 * will always be zero.
6185 */
6186 stats->tx_overruns = 0;
6187 }
6188
igc_taprio_queue_stats(struct net_device * dev,struct tc_taprio_qopt_queue_stats * queue_stats)6189 static void igc_taprio_queue_stats(struct net_device *dev,
6190 struct tc_taprio_qopt_queue_stats *queue_stats)
6191 {
6192 struct tc_taprio_qopt_stats *stats = &queue_stats->stats;
6193
6194 /* When Strict_End is enabled, the tx_overruns counter
6195 * will always be zero.
6196 */
6197 stats->tx_overruns = 0;
6198 }
6199
igc_save_qbv_schedule(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6200 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6201 struct tc_taprio_qopt_offload *qopt)
6202 {
6203 bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6204 struct igc_hw *hw = &adapter->hw;
6205 u32 start_time = 0, end_time = 0;
6206 struct timespec64 now;
6207 unsigned long flags;
6208 size_t n;
6209 int i;
6210
6211 if (qopt->base_time < 0)
6212 return -ERANGE;
6213
6214 if (igc_is_device_id_i225(hw) && adapter->taprio_offload_enable)
6215 return -EALREADY;
6216
6217 if (!validate_schedule(adapter, qopt))
6218 return -EINVAL;
6219
6220 igc_ptp_read(adapter, &now);
6221
6222 if (igc_tsn_is_taprio_activated_by_user(adapter) &&
6223 is_base_time_past(qopt->base_time, &now))
6224 adapter->qbv_config_change_errors++;
6225
6226 adapter->cycle_time = qopt->cycle_time;
6227 adapter->base_time = qopt->base_time;
6228 adapter->taprio_offload_enable = true;
6229
6230 for (n = 0; n < qopt->num_entries; n++) {
6231 struct tc_taprio_sched_entry *e = &qopt->entries[n];
6232
6233 end_time += e->interval;
6234
6235 /* If any of the conditions below are true, we need to manually
6236 * control the end time of the cycle.
6237 * 1. Qbv users can specify a cycle time that is not equal
6238 * to the total GCL intervals. Hence, recalculation is
6239 * necessary here to exclude the time interval that
6240 * exceeds the cycle time.
6241 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6242 * once the end of the list is reached, it will switch
6243 * to the END_OF_CYCLE state and leave the gates in the
6244 * same state until the next cycle is started.
6245 */
6246 if (end_time > adapter->cycle_time ||
6247 n + 1 == qopt->num_entries)
6248 end_time = adapter->cycle_time;
6249
6250 for (i = 0; i < adapter->num_tx_queues; i++) {
6251 struct igc_ring *ring = adapter->tx_ring[i];
6252
6253 if (!(e->gate_mask & BIT(i)))
6254 continue;
6255
6256 /* Check whether a queue stays open for more than one
6257 * entry. If so, keep the start and advance the end
6258 * time.
6259 */
6260 if (!queue_configured[i])
6261 ring->start_time = start_time;
6262 ring->end_time = end_time;
6263
6264 if (ring->start_time >= adapter->cycle_time)
6265 queue_configured[i] = false;
6266 else
6267 queue_configured[i] = true;
6268 }
6269
6270 start_time += e->interval;
6271 }
6272
6273 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6274
6275 /* Check whether a queue gets configured.
6276 * If not, set the start and end time to be end time.
6277 */
6278 for (i = 0; i < adapter->num_tx_queues; i++) {
6279 struct igc_ring *ring = adapter->tx_ring[i];
6280
6281 if (!is_base_time_past(qopt->base_time, &now)) {
6282 ring->admin_gate_closed = false;
6283 } else {
6284 ring->oper_gate_closed = false;
6285 ring->admin_gate_closed = false;
6286 }
6287
6288 if (!queue_configured[i]) {
6289 if (!is_base_time_past(qopt->base_time, &now))
6290 ring->admin_gate_closed = true;
6291 else
6292 ring->oper_gate_closed = true;
6293
6294 ring->start_time = end_time;
6295 ring->end_time = end_time;
6296 }
6297 }
6298
6299 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6300
6301 for (i = 0; i < adapter->num_tx_queues; i++) {
6302 struct igc_ring *ring = adapter->tx_ring[i];
6303 struct net_device *dev = adapter->netdev;
6304
6305 if (qopt->max_sdu[i])
6306 ring->max_sdu = qopt->max_sdu[i] + dev->hard_header_len - ETH_TLEN;
6307 else
6308 ring->max_sdu = 0;
6309 }
6310
6311 return 0;
6312 }
6313
igc_tsn_enable_qbv_scheduling(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6314 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6315 struct tc_taprio_qopt_offload *qopt)
6316 {
6317 struct igc_hw *hw = &adapter->hw;
6318 int err;
6319
6320 if (hw->mac.type != igc_i225)
6321 return -EOPNOTSUPP;
6322
6323 switch (qopt->cmd) {
6324 case TAPRIO_CMD_REPLACE:
6325 err = igc_save_qbv_schedule(adapter, qopt);
6326 break;
6327 case TAPRIO_CMD_DESTROY:
6328 err = igc_tsn_clear_schedule(adapter);
6329 break;
6330 case TAPRIO_CMD_STATS:
6331 igc_taprio_stats(adapter->netdev, &qopt->stats);
6332 return 0;
6333 case TAPRIO_CMD_QUEUE_STATS:
6334 igc_taprio_queue_stats(adapter->netdev, &qopt->queue_stats);
6335 return 0;
6336 default:
6337 return -EOPNOTSUPP;
6338 }
6339
6340 if (err)
6341 return err;
6342
6343 return igc_tsn_offload_apply(adapter);
6344 }
6345
igc_save_cbs_params(struct igc_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)6346 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6347 bool enable, int idleslope, int sendslope,
6348 int hicredit, int locredit)
6349 {
6350 bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6351 struct net_device *netdev = adapter->netdev;
6352 struct igc_ring *ring;
6353 int i;
6354
6355 /* i225 has two sets of credit-based shaper logic.
6356 * Supporting it only on the top two priority queues
6357 */
6358 if (queue < 0 || queue > 1)
6359 return -EINVAL;
6360
6361 ring = adapter->tx_ring[queue];
6362
6363 for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6364 if (adapter->tx_ring[i])
6365 cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6366
6367 /* CBS should be enabled on the highest priority queue first in order
6368 * for the CBS algorithm to operate as intended.
6369 */
6370 if (enable) {
6371 if (queue == 1 && !cbs_status[0]) {
6372 netdev_err(netdev,
6373 "Enabling CBS on queue1 before queue0\n");
6374 return -EINVAL;
6375 }
6376 } else {
6377 if (queue == 0 && cbs_status[1]) {
6378 netdev_err(netdev,
6379 "Disabling CBS on queue0 before queue1\n");
6380 return -EINVAL;
6381 }
6382 }
6383
6384 ring->cbs_enable = enable;
6385 ring->idleslope = idleslope;
6386 ring->sendslope = sendslope;
6387 ring->hicredit = hicredit;
6388 ring->locredit = locredit;
6389
6390 return 0;
6391 }
6392
igc_tsn_enable_cbs(struct igc_adapter * adapter,struct tc_cbs_qopt_offload * qopt)6393 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6394 struct tc_cbs_qopt_offload *qopt)
6395 {
6396 struct igc_hw *hw = &adapter->hw;
6397 int err;
6398
6399 if (hw->mac.type != igc_i225)
6400 return -EOPNOTSUPP;
6401
6402 if (qopt->queue < 0 || qopt->queue > 1)
6403 return -EINVAL;
6404
6405 err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6406 qopt->idleslope, qopt->sendslope,
6407 qopt->hicredit, qopt->locredit);
6408 if (err)
6409 return err;
6410
6411 return igc_tsn_offload_apply(adapter);
6412 }
6413
igc_tc_query_caps(struct igc_adapter * adapter,struct tc_query_caps_base * base)6414 static int igc_tc_query_caps(struct igc_adapter *adapter,
6415 struct tc_query_caps_base *base)
6416 {
6417 struct igc_hw *hw = &adapter->hw;
6418
6419 switch (base->type) {
6420 case TC_SETUP_QDISC_TAPRIO: {
6421 struct tc_taprio_caps *caps = base->caps;
6422
6423 caps->broken_mqprio = true;
6424
6425 if (hw->mac.type == igc_i225) {
6426 caps->supports_queue_max_sdu = true;
6427 caps->gate_mask_per_txq = true;
6428 }
6429
6430 return 0;
6431 }
6432 default:
6433 return -EOPNOTSUPP;
6434 }
6435 }
6436
igc_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)6437 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6438 void *type_data)
6439 {
6440 struct igc_adapter *adapter = netdev_priv(dev);
6441
6442 adapter->tc_setup_type = type;
6443
6444 switch (type) {
6445 case TC_QUERY_CAPS:
6446 return igc_tc_query_caps(adapter, type_data);
6447 case TC_SETUP_QDISC_TAPRIO:
6448 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6449
6450 case TC_SETUP_QDISC_ETF:
6451 return igc_tsn_enable_launchtime(adapter, type_data);
6452
6453 case TC_SETUP_QDISC_CBS:
6454 return igc_tsn_enable_cbs(adapter, type_data);
6455
6456 default:
6457 return -EOPNOTSUPP;
6458 }
6459 }
6460
igc_bpf(struct net_device * dev,struct netdev_bpf * bpf)6461 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6462 {
6463 struct igc_adapter *adapter = netdev_priv(dev);
6464
6465 switch (bpf->command) {
6466 case XDP_SETUP_PROG:
6467 return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6468 case XDP_SETUP_XSK_POOL:
6469 return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6470 bpf->xsk.queue_id);
6471 default:
6472 return -EOPNOTSUPP;
6473 }
6474 }
6475
igc_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)6476 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6477 struct xdp_frame **frames, u32 flags)
6478 {
6479 struct igc_adapter *adapter = netdev_priv(dev);
6480 int cpu = smp_processor_id();
6481 struct netdev_queue *nq;
6482 struct igc_ring *ring;
6483 int i, nxmit;
6484
6485 if (unlikely(!netif_carrier_ok(dev)))
6486 return -ENETDOWN;
6487
6488 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6489 return -EINVAL;
6490
6491 ring = igc_xdp_get_tx_ring(adapter, cpu);
6492 nq = txring_txq(ring);
6493
6494 __netif_tx_lock(nq, cpu);
6495
6496 /* Avoid transmit queue timeout since we share it with the slow path */
6497 txq_trans_cond_update(nq);
6498
6499 nxmit = 0;
6500 for (i = 0; i < num_frames; i++) {
6501 int err;
6502 struct xdp_frame *xdpf = frames[i];
6503
6504 err = igc_xdp_init_tx_descriptor(ring, xdpf);
6505 if (err)
6506 break;
6507 nxmit++;
6508 }
6509
6510 if (flags & XDP_XMIT_FLUSH)
6511 igc_flush_tx_descriptors(ring);
6512
6513 __netif_tx_unlock(nq);
6514
6515 return nxmit;
6516 }
6517
igc_trigger_rxtxq_interrupt(struct igc_adapter * adapter,struct igc_q_vector * q_vector)6518 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6519 struct igc_q_vector *q_vector)
6520 {
6521 struct igc_hw *hw = &adapter->hw;
6522 u32 eics = 0;
6523
6524 eics |= q_vector->eims_value;
6525 wr32(IGC_EICS, eics);
6526 }
6527
igc_xsk_wakeup(struct net_device * dev,u32 queue_id,u32 flags)6528 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6529 {
6530 struct igc_adapter *adapter = netdev_priv(dev);
6531 struct igc_q_vector *q_vector;
6532 struct igc_ring *ring;
6533
6534 if (test_bit(__IGC_DOWN, &adapter->state))
6535 return -ENETDOWN;
6536
6537 if (!igc_xdp_is_enabled(adapter))
6538 return -ENXIO;
6539
6540 if (queue_id >= adapter->num_rx_queues)
6541 return -EINVAL;
6542
6543 ring = adapter->rx_ring[queue_id];
6544
6545 if (!ring->xsk_pool)
6546 return -ENXIO;
6547
6548 q_vector = adapter->q_vector[queue_id];
6549 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6550 igc_trigger_rxtxq_interrupt(adapter, q_vector);
6551
6552 return 0;
6553 }
6554
6555 static const struct net_device_ops igc_netdev_ops = {
6556 .ndo_open = igc_open,
6557 .ndo_stop = igc_close,
6558 .ndo_start_xmit = igc_xmit_frame,
6559 .ndo_set_rx_mode = igc_set_rx_mode,
6560 .ndo_set_mac_address = igc_set_mac,
6561 .ndo_change_mtu = igc_change_mtu,
6562 .ndo_tx_timeout = igc_tx_timeout,
6563 .ndo_get_stats64 = igc_get_stats64,
6564 .ndo_fix_features = igc_fix_features,
6565 .ndo_set_features = igc_set_features,
6566 .ndo_features_check = igc_features_check,
6567 .ndo_eth_ioctl = igc_ioctl,
6568 .ndo_setup_tc = igc_setup_tc,
6569 .ndo_bpf = igc_bpf,
6570 .ndo_xdp_xmit = igc_xdp_xmit,
6571 .ndo_xsk_wakeup = igc_xsk_wakeup,
6572 };
6573
6574 /* PCIe configuration access */
igc_read_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)6575 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6576 {
6577 struct igc_adapter *adapter = hw->back;
6578
6579 pci_read_config_word(adapter->pdev, reg, value);
6580 }
6581
igc_write_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)6582 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6583 {
6584 struct igc_adapter *adapter = hw->back;
6585
6586 pci_write_config_word(adapter->pdev, reg, *value);
6587 }
6588
igc_read_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)6589 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6590 {
6591 struct igc_adapter *adapter = hw->back;
6592
6593 if (!pci_is_pcie(adapter->pdev))
6594 return -IGC_ERR_CONFIG;
6595
6596 pcie_capability_read_word(adapter->pdev, reg, value);
6597
6598 return IGC_SUCCESS;
6599 }
6600
igc_write_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)6601 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6602 {
6603 struct igc_adapter *adapter = hw->back;
6604
6605 if (!pci_is_pcie(adapter->pdev))
6606 return -IGC_ERR_CONFIG;
6607
6608 pcie_capability_write_word(adapter->pdev, reg, *value);
6609
6610 return IGC_SUCCESS;
6611 }
6612
igc_rd32(struct igc_hw * hw,u32 reg)6613 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6614 {
6615 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6616 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6617 u32 value = 0;
6618
6619 if (IGC_REMOVED(hw_addr))
6620 return ~value;
6621
6622 value = readl(&hw_addr[reg]);
6623
6624 /* reads should not return all F's */
6625 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6626 struct net_device *netdev = igc->netdev;
6627
6628 hw->hw_addr = NULL;
6629 netif_device_detach(netdev);
6630 netdev_err(netdev, "PCIe link lost, device now detached\n");
6631 WARN(pci_device_is_present(igc->pdev),
6632 "igc: Failed to read reg 0x%x!\n", reg);
6633 }
6634
6635 return value;
6636 }
6637
6638 /* Mapping HW RSS Type to enum xdp_rss_hash_type */
6639 static enum xdp_rss_hash_type igc_xdp_rss_type[IGC_RSS_TYPE_MAX_TABLE] = {
6640 [IGC_RSS_TYPE_NO_HASH] = XDP_RSS_TYPE_L2,
6641 [IGC_RSS_TYPE_HASH_TCP_IPV4] = XDP_RSS_TYPE_L4_IPV4_TCP,
6642 [IGC_RSS_TYPE_HASH_IPV4] = XDP_RSS_TYPE_L3_IPV4,
6643 [IGC_RSS_TYPE_HASH_TCP_IPV6] = XDP_RSS_TYPE_L4_IPV6_TCP,
6644 [IGC_RSS_TYPE_HASH_IPV6_EX] = XDP_RSS_TYPE_L3_IPV6_EX,
6645 [IGC_RSS_TYPE_HASH_IPV6] = XDP_RSS_TYPE_L3_IPV6,
6646 [IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_TCP_EX,
6647 [IGC_RSS_TYPE_HASH_UDP_IPV4] = XDP_RSS_TYPE_L4_IPV4_UDP,
6648 [IGC_RSS_TYPE_HASH_UDP_IPV6] = XDP_RSS_TYPE_L4_IPV6_UDP,
6649 [IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = XDP_RSS_TYPE_L4_IPV6_UDP_EX,
6650 [10] = XDP_RSS_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW */
6651 [11] = XDP_RSS_TYPE_NONE, /* keep array sized for SW bit-mask */
6652 [12] = XDP_RSS_TYPE_NONE, /* to handle future HW revisons */
6653 [13] = XDP_RSS_TYPE_NONE,
6654 [14] = XDP_RSS_TYPE_NONE,
6655 [15] = XDP_RSS_TYPE_NONE,
6656 };
6657
igc_xdp_rx_hash(const struct xdp_md * _ctx,u32 * hash,enum xdp_rss_hash_type * rss_type)6658 static int igc_xdp_rx_hash(const struct xdp_md *_ctx, u32 *hash,
6659 enum xdp_rss_hash_type *rss_type)
6660 {
6661 const struct igc_xdp_buff *ctx = (void *)_ctx;
6662
6663 if (!(ctx->xdp.rxq->dev->features & NETIF_F_RXHASH))
6664 return -ENODATA;
6665
6666 *hash = le32_to_cpu(ctx->rx_desc->wb.lower.hi_dword.rss);
6667 *rss_type = igc_xdp_rss_type[igc_rss_type(ctx->rx_desc)];
6668
6669 return 0;
6670 }
6671
igc_xdp_rx_timestamp(const struct xdp_md * _ctx,u64 * timestamp)6672 static int igc_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
6673 {
6674 const struct igc_xdp_buff *ctx = (void *)_ctx;
6675
6676 if (igc_test_staterr(ctx->rx_desc, IGC_RXDADV_STAT_TSIP)) {
6677 *timestamp = ctx->rx_ts;
6678
6679 return 0;
6680 }
6681
6682 return -ENODATA;
6683 }
6684
6685 static const struct xdp_metadata_ops igc_xdp_metadata_ops = {
6686 .xmo_rx_hash = igc_xdp_rx_hash,
6687 .xmo_rx_timestamp = igc_xdp_rx_timestamp,
6688 };
6689
igc_qbv_scheduling_timer(struct hrtimer * timer)6690 static enum hrtimer_restart igc_qbv_scheduling_timer(struct hrtimer *timer)
6691 {
6692 struct igc_adapter *adapter = container_of(timer, struct igc_adapter,
6693 hrtimer);
6694 unsigned long flags;
6695 unsigned int i;
6696
6697 spin_lock_irqsave(&adapter->qbv_tx_lock, flags);
6698
6699 adapter->qbv_transition = true;
6700 for (i = 0; i < adapter->num_tx_queues; i++) {
6701 struct igc_ring *tx_ring = adapter->tx_ring[i];
6702
6703 if (tx_ring->admin_gate_closed) {
6704 tx_ring->admin_gate_closed = false;
6705 tx_ring->oper_gate_closed = true;
6706 } else {
6707 tx_ring->oper_gate_closed = false;
6708 }
6709 }
6710 adapter->qbv_transition = false;
6711
6712 spin_unlock_irqrestore(&adapter->qbv_tx_lock, flags);
6713
6714 return HRTIMER_NORESTART;
6715 }
6716
6717 /**
6718 * igc_probe - Device Initialization Routine
6719 * @pdev: PCI device information struct
6720 * @ent: entry in igc_pci_tbl
6721 *
6722 * Returns 0 on success, negative on failure
6723 *
6724 * igc_probe initializes an adapter identified by a pci_dev structure.
6725 * The OS initialization, configuring the adapter private structure,
6726 * and a hardware reset occur.
6727 */
igc_probe(struct pci_dev * pdev,const struct pci_device_id * ent)6728 static int igc_probe(struct pci_dev *pdev,
6729 const struct pci_device_id *ent)
6730 {
6731 struct igc_adapter *adapter;
6732 struct net_device *netdev;
6733 struct igc_hw *hw;
6734 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6735 int err;
6736
6737 err = pci_enable_device_mem(pdev);
6738 if (err)
6739 return err;
6740
6741 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6742 if (err) {
6743 dev_err(&pdev->dev,
6744 "No usable DMA configuration, aborting\n");
6745 goto err_dma;
6746 }
6747
6748 err = pci_request_mem_regions(pdev, igc_driver_name);
6749 if (err)
6750 goto err_pci_reg;
6751
6752 err = pci_enable_ptm(pdev, NULL);
6753 if (err < 0)
6754 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6755
6756 pci_set_master(pdev);
6757
6758 err = -ENOMEM;
6759 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6760 IGC_MAX_TX_QUEUES);
6761
6762 if (!netdev)
6763 goto err_alloc_etherdev;
6764
6765 SET_NETDEV_DEV(netdev, &pdev->dev);
6766
6767 pci_set_drvdata(pdev, netdev);
6768 adapter = netdev_priv(netdev);
6769 adapter->netdev = netdev;
6770 adapter->pdev = pdev;
6771 hw = &adapter->hw;
6772 hw->back = adapter;
6773 adapter->port_num = hw->bus.func;
6774 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6775
6776 err = pci_save_state(pdev);
6777 if (err)
6778 goto err_ioremap;
6779
6780 err = -EIO;
6781 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6782 pci_resource_len(pdev, 0));
6783 if (!adapter->io_addr)
6784 goto err_ioremap;
6785
6786 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6787 hw->hw_addr = adapter->io_addr;
6788
6789 netdev->netdev_ops = &igc_netdev_ops;
6790 netdev->xdp_metadata_ops = &igc_xdp_metadata_ops;
6791 igc_ethtool_set_ops(netdev);
6792 netdev->watchdog_timeo = 5 * HZ;
6793
6794 netdev->mem_start = pci_resource_start(pdev, 0);
6795 netdev->mem_end = pci_resource_end(pdev, 0);
6796
6797 /* PCI config space info */
6798 hw->vendor_id = pdev->vendor;
6799 hw->device_id = pdev->device;
6800 hw->revision_id = pdev->revision;
6801 hw->subsystem_vendor_id = pdev->subsystem_vendor;
6802 hw->subsystem_device_id = pdev->subsystem_device;
6803
6804 /* Copy the default MAC and PHY function pointers */
6805 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6806 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6807
6808 /* Initialize skew-specific constants */
6809 err = ei->get_invariants(hw);
6810 if (err)
6811 goto err_sw_init;
6812
6813 /* Add supported features to the features list*/
6814 netdev->features |= NETIF_F_SG;
6815 netdev->features |= NETIF_F_TSO;
6816 netdev->features |= NETIF_F_TSO6;
6817 netdev->features |= NETIF_F_TSO_ECN;
6818 netdev->features |= NETIF_F_RXHASH;
6819 netdev->features |= NETIF_F_RXCSUM;
6820 netdev->features |= NETIF_F_HW_CSUM;
6821 netdev->features |= NETIF_F_SCTP_CRC;
6822 netdev->features |= NETIF_F_HW_TC;
6823
6824 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
6825 NETIF_F_GSO_GRE_CSUM | \
6826 NETIF_F_GSO_IPXIP4 | \
6827 NETIF_F_GSO_IPXIP6 | \
6828 NETIF_F_GSO_UDP_TUNNEL | \
6829 NETIF_F_GSO_UDP_TUNNEL_CSUM)
6830
6831 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
6832 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
6833
6834 /* setup the private structure */
6835 err = igc_sw_init(adapter);
6836 if (err)
6837 goto err_sw_init;
6838
6839 /* copy netdev features into list of user selectable features */
6840 netdev->hw_features |= NETIF_F_NTUPLE;
6841 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
6842 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
6843 netdev->hw_features |= netdev->features;
6844
6845 netdev->features |= NETIF_F_HIGHDMA;
6846
6847 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6848 netdev->mpls_features |= NETIF_F_HW_CSUM;
6849 netdev->hw_enc_features |= netdev->vlan_features;
6850
6851 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
6852 NETDEV_XDP_ACT_XSK_ZEROCOPY;
6853
6854 /* MTU range: 68 - 9216 */
6855 netdev->min_mtu = ETH_MIN_MTU;
6856 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
6857
6858 /* before reading the NVM, reset the controller to put the device in a
6859 * known good starting state
6860 */
6861 hw->mac.ops.reset_hw(hw);
6862
6863 if (igc_get_flash_presence_i225(hw)) {
6864 if (hw->nvm.ops.validate(hw) < 0) {
6865 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6866 err = -EIO;
6867 goto err_eeprom;
6868 }
6869 }
6870
6871 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
6872 /* copy the MAC address out of the NVM */
6873 if (hw->mac.ops.read_mac_addr(hw))
6874 dev_err(&pdev->dev, "NVM Read Error\n");
6875 }
6876
6877 eth_hw_addr_set(netdev, hw->mac.addr);
6878
6879 if (!is_valid_ether_addr(netdev->dev_addr)) {
6880 dev_err(&pdev->dev, "Invalid MAC Address\n");
6881 err = -EIO;
6882 goto err_eeprom;
6883 }
6884
6885 /* configure RXPBSIZE and TXPBSIZE */
6886 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6887 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6888
6889 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6890 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6891
6892 INIT_WORK(&adapter->reset_task, igc_reset_task);
6893 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6894
6895 hrtimer_init(&adapter->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6896 adapter->hrtimer.function = &igc_qbv_scheduling_timer;
6897
6898 /* Initialize link properties that are user-changeable */
6899 adapter->fc_autoneg = true;
6900 hw->mac.autoneg = true;
6901 hw->phy.autoneg_advertised = 0xaf;
6902
6903 hw->fc.requested_mode = igc_fc_default;
6904 hw->fc.current_mode = igc_fc_default;
6905
6906 /* By default, support wake on port A */
6907 adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6908
6909 /* initialize the wol settings based on the eeprom settings */
6910 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6911 adapter->wol |= IGC_WUFC_MAG;
6912
6913 device_set_wakeup_enable(&adapter->pdev->dev,
6914 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6915
6916 igc_ptp_init(adapter);
6917
6918 igc_tsn_clear_schedule(adapter);
6919
6920 /* reset the hardware with the new settings */
6921 igc_reset(adapter);
6922
6923 /* let the f/w know that the h/w is now under the control of the
6924 * driver.
6925 */
6926 igc_get_hw_control(adapter);
6927
6928 strncpy(netdev->name, "eth%d", IFNAMSIZ);
6929 err = register_netdev(netdev);
6930 if (err)
6931 goto err_register;
6932
6933 /* carrier off reporting is important to ethtool even BEFORE open */
6934 netif_carrier_off(netdev);
6935
6936 /* Check if Media Autosense is enabled */
6937 adapter->ei = *ei;
6938
6939 /* print pcie link status and MAC address */
6940 pcie_print_link_status(pdev);
6941 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6942
6943 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6944 /* Disable EEE for internal PHY devices */
6945 hw->dev_spec._base.eee_enable = false;
6946 adapter->flags &= ~IGC_FLAG_EEE;
6947 igc_set_eee_i225(hw, false, false, false);
6948
6949 pm_runtime_put_noidle(&pdev->dev);
6950
6951 return 0;
6952
6953 err_register:
6954 igc_release_hw_control(adapter);
6955 err_eeprom:
6956 if (!igc_check_reset_block(hw))
6957 igc_reset_phy(hw);
6958 err_sw_init:
6959 igc_clear_interrupt_scheme(adapter);
6960 iounmap(adapter->io_addr);
6961 err_ioremap:
6962 free_netdev(netdev);
6963 err_alloc_etherdev:
6964 pci_release_mem_regions(pdev);
6965 err_pci_reg:
6966 err_dma:
6967 pci_disable_device(pdev);
6968 return err;
6969 }
6970
6971 /**
6972 * igc_remove - Device Removal Routine
6973 * @pdev: PCI device information struct
6974 *
6975 * igc_remove is called by the PCI subsystem to alert the driver
6976 * that it should release a PCI device. This could be caused by a
6977 * Hot-Plug event, or because the driver is going to be removed from
6978 * memory.
6979 */
igc_remove(struct pci_dev * pdev)6980 static void igc_remove(struct pci_dev *pdev)
6981 {
6982 struct net_device *netdev = pci_get_drvdata(pdev);
6983 struct igc_adapter *adapter = netdev_priv(netdev);
6984
6985 pm_runtime_get_noresume(&pdev->dev);
6986
6987 igc_flush_nfc_rules(adapter);
6988
6989 igc_ptp_stop(adapter);
6990
6991 pci_disable_ptm(pdev);
6992 pci_clear_master(pdev);
6993
6994 set_bit(__IGC_DOWN, &adapter->state);
6995
6996 del_timer_sync(&adapter->watchdog_timer);
6997 del_timer_sync(&adapter->phy_info_timer);
6998
6999 cancel_work_sync(&adapter->reset_task);
7000 cancel_work_sync(&adapter->watchdog_task);
7001 hrtimer_cancel(&adapter->hrtimer);
7002
7003 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7004 * would have already happened in close and is redundant.
7005 */
7006 igc_release_hw_control(adapter);
7007 unregister_netdev(netdev);
7008
7009 igc_clear_interrupt_scheme(adapter);
7010 pci_iounmap(pdev, adapter->io_addr);
7011 pci_release_mem_regions(pdev);
7012
7013 free_netdev(netdev);
7014
7015 pci_disable_device(pdev);
7016 }
7017
__igc_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)7018 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
7019 bool runtime)
7020 {
7021 struct net_device *netdev = pci_get_drvdata(pdev);
7022 struct igc_adapter *adapter = netdev_priv(netdev);
7023 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
7024 struct igc_hw *hw = &adapter->hw;
7025 u32 ctrl, rctl, status;
7026 bool wake;
7027
7028 rtnl_lock();
7029 netif_device_detach(netdev);
7030
7031 if (netif_running(netdev))
7032 __igc_close(netdev, true);
7033
7034 igc_ptp_suspend(adapter);
7035
7036 igc_clear_interrupt_scheme(adapter);
7037 rtnl_unlock();
7038
7039 status = rd32(IGC_STATUS);
7040 if (status & IGC_STATUS_LU)
7041 wufc &= ~IGC_WUFC_LNKC;
7042
7043 if (wufc) {
7044 igc_setup_rctl(adapter);
7045 igc_set_rx_mode(netdev);
7046
7047 /* turn on all-multi mode if wake on multicast is enabled */
7048 if (wufc & IGC_WUFC_MC) {
7049 rctl = rd32(IGC_RCTL);
7050 rctl |= IGC_RCTL_MPE;
7051 wr32(IGC_RCTL, rctl);
7052 }
7053
7054 ctrl = rd32(IGC_CTRL);
7055 ctrl |= IGC_CTRL_ADVD3WUC;
7056 wr32(IGC_CTRL, ctrl);
7057
7058 /* Allow time for pending master requests to run */
7059 igc_disable_pcie_master(hw);
7060
7061 wr32(IGC_WUC, IGC_WUC_PME_EN);
7062 wr32(IGC_WUFC, wufc);
7063 } else {
7064 wr32(IGC_WUC, 0);
7065 wr32(IGC_WUFC, 0);
7066 }
7067
7068 wake = wufc || adapter->en_mng_pt;
7069 if (!wake)
7070 igc_power_down_phy_copper_base(&adapter->hw);
7071 else
7072 igc_power_up_link(adapter);
7073
7074 if (enable_wake)
7075 *enable_wake = wake;
7076
7077 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7078 * would have already happened in close and is redundant.
7079 */
7080 igc_release_hw_control(adapter);
7081
7082 pci_disable_device(pdev);
7083
7084 return 0;
7085 }
7086
7087 #ifdef CONFIG_PM
igc_runtime_suspend(struct device * dev)7088 static int __maybe_unused igc_runtime_suspend(struct device *dev)
7089 {
7090 return __igc_shutdown(to_pci_dev(dev), NULL, 1);
7091 }
7092
igc_deliver_wake_packet(struct net_device * netdev)7093 static void igc_deliver_wake_packet(struct net_device *netdev)
7094 {
7095 struct igc_adapter *adapter = netdev_priv(netdev);
7096 struct igc_hw *hw = &adapter->hw;
7097 struct sk_buff *skb;
7098 u32 wupl;
7099
7100 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
7101
7102 /* WUPM stores only the first 128 bytes of the wake packet.
7103 * Read the packet only if we have the whole thing.
7104 */
7105 if (wupl == 0 || wupl > IGC_WUPM_BYTES)
7106 return;
7107
7108 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
7109 if (!skb)
7110 return;
7111
7112 skb_put(skb, wupl);
7113
7114 /* Ensure reads are 32-bit aligned */
7115 wupl = roundup(wupl, 4);
7116
7117 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
7118
7119 skb->protocol = eth_type_trans(skb, netdev);
7120 netif_rx(skb);
7121 }
7122
igc_resume(struct device * dev)7123 static int __maybe_unused igc_resume(struct device *dev)
7124 {
7125 struct pci_dev *pdev = to_pci_dev(dev);
7126 struct net_device *netdev = pci_get_drvdata(pdev);
7127 struct igc_adapter *adapter = netdev_priv(netdev);
7128 struct igc_hw *hw = &adapter->hw;
7129 u32 err, val;
7130
7131 pci_set_power_state(pdev, PCI_D0);
7132 pci_restore_state(pdev);
7133 pci_save_state(pdev);
7134
7135 if (!pci_device_is_present(pdev))
7136 return -ENODEV;
7137 err = pci_enable_device_mem(pdev);
7138 if (err) {
7139 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
7140 return err;
7141 }
7142 pci_set_master(pdev);
7143
7144 pci_enable_wake(pdev, PCI_D3hot, 0);
7145 pci_enable_wake(pdev, PCI_D3cold, 0);
7146
7147 if (igc_init_interrupt_scheme(adapter, true)) {
7148 netdev_err(netdev, "Unable to allocate memory for queues\n");
7149 return -ENOMEM;
7150 }
7151
7152 igc_reset(adapter);
7153
7154 /* let the f/w know that the h/w is now under the control of the
7155 * driver.
7156 */
7157 igc_get_hw_control(adapter);
7158
7159 val = rd32(IGC_WUS);
7160 if (val & WAKE_PKT_WUS)
7161 igc_deliver_wake_packet(netdev);
7162
7163 wr32(IGC_WUS, ~0);
7164
7165 rtnl_lock();
7166 if (!err && netif_running(netdev))
7167 err = __igc_open(netdev, true);
7168
7169 if (!err)
7170 netif_device_attach(netdev);
7171 rtnl_unlock();
7172
7173 return err;
7174 }
7175
igc_runtime_resume(struct device * dev)7176 static int __maybe_unused igc_runtime_resume(struct device *dev)
7177 {
7178 return igc_resume(dev);
7179 }
7180
igc_suspend(struct device * dev)7181 static int __maybe_unused igc_suspend(struct device *dev)
7182 {
7183 return __igc_shutdown(to_pci_dev(dev), NULL, 0);
7184 }
7185
igc_runtime_idle(struct device * dev)7186 static int __maybe_unused igc_runtime_idle(struct device *dev)
7187 {
7188 struct net_device *netdev = dev_get_drvdata(dev);
7189 struct igc_adapter *adapter = netdev_priv(netdev);
7190
7191 if (!igc_has_link(adapter))
7192 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7193
7194 return -EBUSY;
7195 }
7196 #endif /* CONFIG_PM */
7197
igc_shutdown(struct pci_dev * pdev)7198 static void igc_shutdown(struct pci_dev *pdev)
7199 {
7200 bool wake;
7201
7202 __igc_shutdown(pdev, &wake, 0);
7203
7204 if (system_state == SYSTEM_POWER_OFF) {
7205 pci_wake_from_d3(pdev, wake);
7206 pci_set_power_state(pdev, PCI_D3hot);
7207 }
7208 }
7209
7210 /**
7211 * igc_io_error_detected - called when PCI error is detected
7212 * @pdev: Pointer to PCI device
7213 * @state: The current PCI connection state
7214 *
7215 * This function is called after a PCI bus error affecting
7216 * this device has been detected.
7217 **/
igc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)7218 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
7219 pci_channel_state_t state)
7220 {
7221 struct net_device *netdev = pci_get_drvdata(pdev);
7222 struct igc_adapter *adapter = netdev_priv(netdev);
7223
7224 netif_device_detach(netdev);
7225
7226 if (state == pci_channel_io_perm_failure)
7227 return PCI_ERS_RESULT_DISCONNECT;
7228
7229 if (netif_running(netdev))
7230 igc_down(adapter);
7231 pci_disable_device(pdev);
7232
7233 /* Request a slot reset. */
7234 return PCI_ERS_RESULT_NEED_RESET;
7235 }
7236
7237 /**
7238 * igc_io_slot_reset - called after the PCI bus has been reset.
7239 * @pdev: Pointer to PCI device
7240 *
7241 * Restart the card from scratch, as if from a cold-boot. Implementation
7242 * resembles the first-half of the igc_resume routine.
7243 **/
igc_io_slot_reset(struct pci_dev * pdev)7244 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7245 {
7246 struct net_device *netdev = pci_get_drvdata(pdev);
7247 struct igc_adapter *adapter = netdev_priv(netdev);
7248 struct igc_hw *hw = &adapter->hw;
7249 pci_ers_result_t result;
7250
7251 if (pci_enable_device_mem(pdev)) {
7252 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7253 result = PCI_ERS_RESULT_DISCONNECT;
7254 } else {
7255 pci_set_master(pdev);
7256 pci_restore_state(pdev);
7257 pci_save_state(pdev);
7258
7259 pci_enable_wake(pdev, PCI_D3hot, 0);
7260 pci_enable_wake(pdev, PCI_D3cold, 0);
7261
7262 /* In case of PCI error, adapter loses its HW address
7263 * so we should re-assign it here.
7264 */
7265 hw->hw_addr = adapter->io_addr;
7266
7267 igc_reset(adapter);
7268 wr32(IGC_WUS, ~0);
7269 result = PCI_ERS_RESULT_RECOVERED;
7270 }
7271
7272 return result;
7273 }
7274
7275 /**
7276 * igc_io_resume - called when traffic can start to flow again.
7277 * @pdev: Pointer to PCI device
7278 *
7279 * This callback is called when the error recovery driver tells us that
7280 * its OK to resume normal operation. Implementation resembles the
7281 * second-half of the igc_resume routine.
7282 */
igc_io_resume(struct pci_dev * pdev)7283 static void igc_io_resume(struct pci_dev *pdev)
7284 {
7285 struct net_device *netdev = pci_get_drvdata(pdev);
7286 struct igc_adapter *adapter = netdev_priv(netdev);
7287
7288 rtnl_lock();
7289 if (netif_running(netdev)) {
7290 if (igc_open(netdev)) {
7291 rtnl_unlock();
7292 netdev_err(netdev, "igc_open failed after reset\n");
7293 return;
7294 }
7295 }
7296
7297 netif_device_attach(netdev);
7298
7299 /* let the f/w know that the h/w is now under the control of the
7300 * driver.
7301 */
7302 igc_get_hw_control(adapter);
7303 rtnl_unlock();
7304 }
7305
7306 static const struct pci_error_handlers igc_err_handler = {
7307 .error_detected = igc_io_error_detected,
7308 .slot_reset = igc_io_slot_reset,
7309 .resume = igc_io_resume,
7310 };
7311
7312 #ifdef CONFIG_PM
7313 static const struct dev_pm_ops igc_pm_ops = {
7314 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
7315 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
7316 igc_runtime_idle)
7317 };
7318 #endif
7319
7320 static struct pci_driver igc_driver = {
7321 .name = igc_driver_name,
7322 .id_table = igc_pci_tbl,
7323 .probe = igc_probe,
7324 .remove = igc_remove,
7325 #ifdef CONFIG_PM
7326 .driver.pm = &igc_pm_ops,
7327 #endif
7328 .shutdown = igc_shutdown,
7329 .err_handler = &igc_err_handler,
7330 };
7331
7332 /**
7333 * igc_reinit_queues - return error
7334 * @adapter: pointer to adapter structure
7335 */
igc_reinit_queues(struct igc_adapter * adapter)7336 int igc_reinit_queues(struct igc_adapter *adapter)
7337 {
7338 struct net_device *netdev = adapter->netdev;
7339 int err = 0;
7340
7341 if (netif_running(netdev))
7342 igc_close(netdev);
7343
7344 igc_reset_interrupt_capability(adapter);
7345
7346 if (igc_init_interrupt_scheme(adapter, true)) {
7347 netdev_err(netdev, "Unable to allocate memory for queues\n");
7348 return -ENOMEM;
7349 }
7350
7351 if (netif_running(netdev))
7352 err = igc_open(netdev);
7353
7354 return err;
7355 }
7356
7357 /**
7358 * igc_get_hw_dev - return device
7359 * @hw: pointer to hardware structure
7360 *
7361 * used by hardware layer to print debugging information
7362 */
igc_get_hw_dev(struct igc_hw * hw)7363 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7364 {
7365 struct igc_adapter *adapter = hw->back;
7366
7367 return adapter->netdev;
7368 }
7369
igc_disable_rx_ring_hw(struct igc_ring * ring)7370 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7371 {
7372 struct igc_hw *hw = &ring->q_vector->adapter->hw;
7373 u8 idx = ring->reg_idx;
7374 u32 rxdctl;
7375
7376 rxdctl = rd32(IGC_RXDCTL(idx));
7377 rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7378 rxdctl |= IGC_RXDCTL_SWFLUSH;
7379 wr32(IGC_RXDCTL(idx), rxdctl);
7380 }
7381
igc_disable_rx_ring(struct igc_ring * ring)7382 void igc_disable_rx_ring(struct igc_ring *ring)
7383 {
7384 igc_disable_rx_ring_hw(ring);
7385 igc_clean_rx_ring(ring);
7386 }
7387
igc_enable_rx_ring(struct igc_ring * ring)7388 void igc_enable_rx_ring(struct igc_ring *ring)
7389 {
7390 struct igc_adapter *adapter = ring->q_vector->adapter;
7391
7392 igc_configure_rx_ring(adapter, ring);
7393
7394 if (ring->xsk_pool)
7395 igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7396 else
7397 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7398 }
7399
igc_disable_tx_ring(struct igc_ring * ring)7400 void igc_disable_tx_ring(struct igc_ring *ring)
7401 {
7402 igc_disable_tx_ring_hw(ring);
7403 igc_clean_tx_ring(ring);
7404 }
7405
igc_enable_tx_ring(struct igc_ring * ring)7406 void igc_enable_tx_ring(struct igc_ring *ring)
7407 {
7408 struct igc_adapter *adapter = ring->q_vector->adapter;
7409
7410 igc_configure_tx_ring(adapter, ring);
7411 }
7412
7413 /**
7414 * igc_init_module - Driver Registration Routine
7415 *
7416 * igc_init_module is the first routine called when the driver is
7417 * loaded. All it does is register with the PCI subsystem.
7418 */
igc_init_module(void)7419 static int __init igc_init_module(void)
7420 {
7421 int ret;
7422
7423 pr_info("%s\n", igc_driver_string);
7424 pr_info("%s\n", igc_copyright);
7425
7426 ret = pci_register_driver(&igc_driver);
7427 return ret;
7428 }
7429
7430 module_init(igc_init_module);
7431
7432 /**
7433 * igc_exit_module - Driver Exit Cleanup Routine
7434 *
7435 * igc_exit_module is called just before the driver is removed
7436 * from memory.
7437 */
igc_exit_module(void)7438 static void __exit igc_exit_module(void)
7439 {
7440 pci_unregister_driver(&igc_driver);
7441 }
7442
7443 module_exit(igc_exit_module);
7444 /* igc_main.c */
7445