1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/prefetch.h>
32 #include <linux/bpf.h>
33 #include <linux/bpf_trace.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/etherdevice.h>
36 #include <linux/lockdep.h>
37 #ifdef CONFIG_IGB_DCA
38 #include <linux/dca.h>
39 #endif
40 #include <linux/i2c.h>
41 #include "igb.h"
42
43 enum queue_mode {
44 QUEUE_MODE_STRICT_PRIORITY,
45 QUEUE_MODE_STREAM_RESERVATION,
46 };
47
48 enum tx_queue_prio {
49 TX_QUEUE_PRIO_HIGH,
50 TX_QUEUE_PRIO_LOW,
51 };
52
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57 "Copyright (c) 2007-2014 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61 };
62
63 static const struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99 /* required last entry */
100 {0, }
101 };
102
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
111 static void igb_remove(struct pci_dev *pdev);
112 static void igb_init_queue_configuration(struct igb_adapter *adapter);
113 static int igb_sw_init(struct igb_adapter *);
114 int igb_open(struct net_device *);
115 int igb_close(struct net_device *);
116 static void igb_configure(struct igb_adapter *);
117 static void igb_configure_tx(struct igb_adapter *);
118 static void igb_configure_rx(struct igb_adapter *);
119 static void igb_clean_all_tx_rings(struct igb_adapter *);
120 static void igb_clean_all_rx_rings(struct igb_adapter *);
121 static void igb_clean_tx_ring(struct igb_ring *);
122 static void igb_clean_rx_ring(struct igb_ring *);
123 static void igb_set_rx_mode(struct net_device *);
124 static void igb_update_phy_info(struct timer_list *);
125 static void igb_watchdog(struct timer_list *);
126 static void igb_watchdog_task(struct work_struct *);
127 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
128 static void igb_get_stats64(struct net_device *dev,
129 struct rtnl_link_stats64 *stats);
130 static int igb_change_mtu(struct net_device *, int);
131 static int igb_set_mac(struct net_device *, void *);
132 static void igb_set_uta(struct igb_adapter *adapter, bool set);
133 static irqreturn_t igb_intr(int irq, void *);
134 static irqreturn_t igb_intr_msi(int irq, void *);
135 static irqreturn_t igb_msix_other(int irq, void *);
136 static irqreturn_t igb_msix_ring(int irq, void *);
137 #ifdef CONFIG_IGB_DCA
138 static void igb_update_dca(struct igb_q_vector *);
139 static void igb_setup_dca(struct igb_adapter *);
140 #endif /* CONFIG_IGB_DCA */
141 static int igb_poll(struct napi_struct *, int);
142 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
143 static int igb_clean_rx_irq(struct igb_q_vector *, int);
144 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
145 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
146 static void igb_reset_task(struct work_struct *);
147 static void igb_vlan_mode(struct net_device *netdev,
148 netdev_features_t features);
149 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
150 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
151 static void igb_restore_vlan(struct igb_adapter *);
152 static void igb_rar_set_index(struct igb_adapter *, u32);
153 static void igb_ping_all_vfs(struct igb_adapter *);
154 static void igb_msg_task(struct igb_adapter *);
155 static void igb_vmm_control(struct igb_adapter *);
156 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
157 static void igb_flush_mac_table(struct igb_adapter *);
158 static int igb_available_rars(struct igb_adapter *, u8);
159 static void igb_set_default_mac_filter(struct igb_adapter *);
160 static int igb_uc_sync(struct net_device *, const unsigned char *);
161 static int igb_uc_unsync(struct net_device *, const unsigned char *);
162 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
163 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
164 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
165 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
166 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
167 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
168 bool setting);
169 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
170 bool setting);
171 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
172 struct ifla_vf_info *ivi);
173 static void igb_check_vf_rate_limit(struct igb_adapter *);
174 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
175 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
176
177 #ifdef CONFIG_PCI_IOV
178 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
179 static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
180 #endif
181
182 static int igb_suspend(struct device *);
183 static int igb_resume(struct device *);
184 static int igb_runtime_suspend(struct device *dev);
185 static int igb_runtime_resume(struct device *dev);
186 static int igb_runtime_idle(struct device *dev);
187 #ifdef CONFIG_PM
188 static const struct dev_pm_ops igb_pm_ops = {
189 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191 igb_runtime_idle)
192 };
193 #endif
194 static void igb_shutdown(struct pci_dev *);
195 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
196 #ifdef CONFIG_IGB_DCA
197 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
198 static struct notifier_block dca_notifier = {
199 .notifier_call = igb_notify_dca,
200 .next = NULL,
201 .priority = 0
202 };
203 #endif
204 #ifdef CONFIG_PCI_IOV
205 static unsigned int max_vfs;
206 module_param(max_vfs, uint, 0);
207 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
208 #endif /* CONFIG_PCI_IOV */
209
210 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
211 pci_channel_state_t);
212 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
213 static void igb_io_resume(struct pci_dev *);
214
215 static const struct pci_error_handlers igb_err_handler = {
216 .error_detected = igb_io_error_detected,
217 .slot_reset = igb_io_slot_reset,
218 .resume = igb_io_resume,
219 };
220
221 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
222
223 static struct pci_driver igb_driver = {
224 .name = igb_driver_name,
225 .id_table = igb_pci_tbl,
226 .probe = igb_probe,
227 .remove = igb_remove,
228 #ifdef CONFIG_PM
229 .driver.pm = &igb_pm_ops,
230 #endif
231 .shutdown = igb_shutdown,
232 .sriov_configure = igb_pci_sriov_configure,
233 .err_handler = &igb_err_handler
234 };
235
236 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
237 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
238 MODULE_LICENSE("GPL v2");
239
240 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
241 static int debug = -1;
242 module_param(debug, int, 0);
243 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
244
245 struct igb_reg_info {
246 u32 ofs;
247 char *name;
248 };
249
250 static const struct igb_reg_info igb_reg_info_tbl[] = {
251
252 /* General Registers */
253 {E1000_CTRL, "CTRL"},
254 {E1000_STATUS, "STATUS"},
255 {E1000_CTRL_EXT, "CTRL_EXT"},
256
257 /* Interrupt Registers */
258 {E1000_ICR, "ICR"},
259
260 /* RX Registers */
261 {E1000_RCTL, "RCTL"},
262 {E1000_RDLEN(0), "RDLEN"},
263 {E1000_RDH(0), "RDH"},
264 {E1000_RDT(0), "RDT"},
265 {E1000_RXDCTL(0), "RXDCTL"},
266 {E1000_RDBAL(0), "RDBAL"},
267 {E1000_RDBAH(0), "RDBAH"},
268
269 /* TX Registers */
270 {E1000_TCTL, "TCTL"},
271 {E1000_TDBAL(0), "TDBAL"},
272 {E1000_TDBAH(0), "TDBAH"},
273 {E1000_TDLEN(0), "TDLEN"},
274 {E1000_TDH(0), "TDH"},
275 {E1000_TDT(0), "TDT"},
276 {E1000_TXDCTL(0), "TXDCTL"},
277 {E1000_TDFH, "TDFH"},
278 {E1000_TDFT, "TDFT"},
279 {E1000_TDFHS, "TDFHS"},
280 {E1000_TDFPC, "TDFPC"},
281
282 /* List Terminator */
283 {}
284 };
285
286 /* igb_regdump - register printout routine */
igb_regdump(struct e1000_hw * hw,struct igb_reg_info * reginfo)287 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
288 {
289 int n = 0;
290 char rname[16];
291 u32 regs[8];
292
293 switch (reginfo->ofs) {
294 case E1000_RDLEN(0):
295 for (n = 0; n < 4; n++)
296 regs[n] = rd32(E1000_RDLEN(n));
297 break;
298 case E1000_RDH(0):
299 for (n = 0; n < 4; n++)
300 regs[n] = rd32(E1000_RDH(n));
301 break;
302 case E1000_RDT(0):
303 for (n = 0; n < 4; n++)
304 regs[n] = rd32(E1000_RDT(n));
305 break;
306 case E1000_RXDCTL(0):
307 for (n = 0; n < 4; n++)
308 regs[n] = rd32(E1000_RXDCTL(n));
309 break;
310 case E1000_RDBAL(0):
311 for (n = 0; n < 4; n++)
312 regs[n] = rd32(E1000_RDBAL(n));
313 break;
314 case E1000_RDBAH(0):
315 for (n = 0; n < 4; n++)
316 regs[n] = rd32(E1000_RDBAH(n));
317 break;
318 case E1000_TDBAL(0):
319 for (n = 0; n < 4; n++)
320 regs[n] = rd32(E1000_TDBAL(n));
321 break;
322 case E1000_TDBAH(0):
323 for (n = 0; n < 4; n++)
324 regs[n] = rd32(E1000_TDBAH(n));
325 break;
326 case E1000_TDLEN(0):
327 for (n = 0; n < 4; n++)
328 regs[n] = rd32(E1000_TDLEN(n));
329 break;
330 case E1000_TDH(0):
331 for (n = 0; n < 4; n++)
332 regs[n] = rd32(E1000_TDH(n));
333 break;
334 case E1000_TDT(0):
335 for (n = 0; n < 4; n++)
336 regs[n] = rd32(E1000_TDT(n));
337 break;
338 case E1000_TXDCTL(0):
339 for (n = 0; n < 4; n++)
340 regs[n] = rd32(E1000_TXDCTL(n));
341 break;
342 default:
343 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
344 return;
345 }
346
347 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
348 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
349 regs[2], regs[3]);
350 }
351
352 /* igb_dump - Print registers, Tx-rings and Rx-rings */
igb_dump(struct igb_adapter * adapter)353 static void igb_dump(struct igb_adapter *adapter)
354 {
355 struct net_device *netdev = adapter->netdev;
356 struct e1000_hw *hw = &adapter->hw;
357 struct igb_reg_info *reginfo;
358 struct igb_ring *tx_ring;
359 union e1000_adv_tx_desc *tx_desc;
360 struct my_u0 { __le64 a; __le64 b; } *u0;
361 struct igb_ring *rx_ring;
362 union e1000_adv_rx_desc *rx_desc;
363 u32 staterr;
364 u16 i, n;
365
366 if (!netif_msg_hw(adapter))
367 return;
368
369 /* Print netdevice Info */
370 if (netdev) {
371 dev_info(&adapter->pdev->dev, "Net device Info\n");
372 pr_info("Device Name state trans_start\n");
373 pr_info("%-15s %016lX %016lX\n", netdev->name,
374 netdev->state, dev_trans_start(netdev));
375 }
376
377 /* Print Registers */
378 dev_info(&adapter->pdev->dev, "Register Dump\n");
379 pr_info(" Register Name Value\n");
380 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
381 reginfo->name; reginfo++) {
382 igb_regdump(hw, reginfo);
383 }
384
385 /* Print TX Ring Summary */
386 if (!netdev || !netif_running(netdev))
387 goto exit;
388
389 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
390 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
391 for (n = 0; n < adapter->num_tx_queues; n++) {
392 struct igb_tx_buffer *buffer_info;
393 tx_ring = adapter->tx_ring[n];
394 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
395 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
396 n, tx_ring->next_to_use, tx_ring->next_to_clean,
397 (u64)dma_unmap_addr(buffer_info, dma),
398 dma_unmap_len(buffer_info, len),
399 buffer_info->next_to_watch,
400 (u64)buffer_info->time_stamp);
401 }
402
403 /* Print TX Rings */
404 if (!netif_msg_tx_done(adapter))
405 goto rx_ring_summary;
406
407 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
408
409 /* Transmit Descriptor Formats
410 *
411 * Advanced Transmit Descriptor
412 * +--------------------------------------------------------------+
413 * 0 | Buffer Address [63:0] |
414 * +--------------------------------------------------------------+
415 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
416 * +--------------------------------------------------------------+
417 * 63 46 45 40 39 38 36 35 32 31 24 15 0
418 */
419
420 for (n = 0; n < adapter->num_tx_queues; n++) {
421 tx_ring = adapter->tx_ring[n];
422 pr_info("------------------------------------\n");
423 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
424 pr_info("------------------------------------\n");
425 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
426
427 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
428 const char *next_desc;
429 struct igb_tx_buffer *buffer_info;
430 tx_desc = IGB_TX_DESC(tx_ring, i);
431 buffer_info = &tx_ring->tx_buffer_info[i];
432 u0 = (struct my_u0 *)tx_desc;
433 if (i == tx_ring->next_to_use &&
434 i == tx_ring->next_to_clean)
435 next_desc = " NTC/U";
436 else if (i == tx_ring->next_to_use)
437 next_desc = " NTU";
438 else if (i == tx_ring->next_to_clean)
439 next_desc = " NTC";
440 else
441 next_desc = "";
442
443 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
444 i, le64_to_cpu(u0->a),
445 le64_to_cpu(u0->b),
446 (u64)dma_unmap_addr(buffer_info, dma),
447 dma_unmap_len(buffer_info, len),
448 buffer_info->next_to_watch,
449 (u64)buffer_info->time_stamp,
450 buffer_info->skb, next_desc);
451
452 if (netif_msg_pktdata(adapter) && buffer_info->skb)
453 print_hex_dump(KERN_INFO, "",
454 DUMP_PREFIX_ADDRESS,
455 16, 1, buffer_info->skb->data,
456 dma_unmap_len(buffer_info, len),
457 true);
458 }
459 }
460
461 /* Print RX Rings Summary */
462 rx_ring_summary:
463 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
464 pr_info("Queue [NTU] [NTC]\n");
465 for (n = 0; n < adapter->num_rx_queues; n++) {
466 rx_ring = adapter->rx_ring[n];
467 pr_info(" %5d %5X %5X\n",
468 n, rx_ring->next_to_use, rx_ring->next_to_clean);
469 }
470
471 /* Print RX Rings */
472 if (!netif_msg_rx_status(adapter))
473 goto exit;
474
475 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
476
477 /* Advanced Receive Descriptor (Read) Format
478 * 63 1 0
479 * +-----------------------------------------------------+
480 * 0 | Packet Buffer Address [63:1] |A0/NSE|
481 * +----------------------------------------------+------+
482 * 8 | Header Buffer Address [63:1] | DD |
483 * +-----------------------------------------------------+
484 *
485 *
486 * Advanced Receive Descriptor (Write-Back) Format
487 *
488 * 63 48 47 32 31 30 21 20 17 16 4 3 0
489 * +------------------------------------------------------+
490 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
491 * | Checksum Ident | | | | Type | Type |
492 * +------------------------------------------------------+
493 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
494 * +------------------------------------------------------+
495 * 63 48 47 32 31 20 19 0
496 */
497
498 for (n = 0; n < adapter->num_rx_queues; n++) {
499 rx_ring = adapter->rx_ring[n];
500 pr_info("------------------------------------\n");
501 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
502 pr_info("------------------------------------\n");
503 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
504 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
505
506 for (i = 0; i < rx_ring->count; i++) {
507 const char *next_desc;
508 struct igb_rx_buffer *buffer_info;
509 buffer_info = &rx_ring->rx_buffer_info[i];
510 rx_desc = IGB_RX_DESC(rx_ring, i);
511 u0 = (struct my_u0 *)rx_desc;
512 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
513
514 if (i == rx_ring->next_to_use)
515 next_desc = " NTU";
516 else if (i == rx_ring->next_to_clean)
517 next_desc = " NTC";
518 else
519 next_desc = "";
520
521 if (staterr & E1000_RXD_STAT_DD) {
522 /* Descriptor Done */
523 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
524 "RWB", i,
525 le64_to_cpu(u0->a),
526 le64_to_cpu(u0->b),
527 next_desc);
528 } else {
529 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
530 "R ", i,
531 le64_to_cpu(u0->a),
532 le64_to_cpu(u0->b),
533 (u64)buffer_info->dma,
534 next_desc);
535
536 if (netif_msg_pktdata(adapter) &&
537 buffer_info->dma && buffer_info->page) {
538 print_hex_dump(KERN_INFO, "",
539 DUMP_PREFIX_ADDRESS,
540 16, 1,
541 page_address(buffer_info->page) +
542 buffer_info->page_offset,
543 igb_rx_bufsz(rx_ring), true);
544 }
545 }
546 }
547 }
548
549 exit:
550 return;
551 }
552
553 /**
554 * igb_get_i2c_data - Reads the I2C SDA data bit
555 * @data: opaque pointer to adapter struct
556 *
557 * Returns the I2C data bit value
558 **/
igb_get_i2c_data(void * data)559 static int igb_get_i2c_data(void *data)
560 {
561 struct igb_adapter *adapter = (struct igb_adapter *)data;
562 struct e1000_hw *hw = &adapter->hw;
563 s32 i2cctl = rd32(E1000_I2CPARAMS);
564
565 return !!(i2cctl & E1000_I2C_DATA_IN);
566 }
567
568 /**
569 * igb_set_i2c_data - Sets the I2C data bit
570 * @data: pointer to hardware structure
571 * @state: I2C data value (0 or 1) to set
572 *
573 * Sets the I2C data bit
574 **/
igb_set_i2c_data(void * data,int state)575 static void igb_set_i2c_data(void *data, int state)
576 {
577 struct igb_adapter *adapter = (struct igb_adapter *)data;
578 struct e1000_hw *hw = &adapter->hw;
579 s32 i2cctl = rd32(E1000_I2CPARAMS);
580
581 if (state) {
582 i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
583 } else {
584 i2cctl &= ~E1000_I2C_DATA_OE_N;
585 i2cctl &= ~E1000_I2C_DATA_OUT;
586 }
587
588 wr32(E1000_I2CPARAMS, i2cctl);
589 wrfl();
590 }
591
592 /**
593 * igb_set_i2c_clk - Sets the I2C SCL clock
594 * @data: pointer to hardware structure
595 * @state: state to set clock
596 *
597 * Sets the I2C clock line to state
598 **/
igb_set_i2c_clk(void * data,int state)599 static void igb_set_i2c_clk(void *data, int state)
600 {
601 struct igb_adapter *adapter = (struct igb_adapter *)data;
602 struct e1000_hw *hw = &adapter->hw;
603 s32 i2cctl = rd32(E1000_I2CPARAMS);
604
605 if (state) {
606 i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
607 } else {
608 i2cctl &= ~E1000_I2C_CLK_OUT;
609 i2cctl &= ~E1000_I2C_CLK_OE_N;
610 }
611 wr32(E1000_I2CPARAMS, i2cctl);
612 wrfl();
613 }
614
615 /**
616 * igb_get_i2c_clk - Gets the I2C SCL clock state
617 * @data: pointer to hardware structure
618 *
619 * Gets the I2C clock state
620 **/
igb_get_i2c_clk(void * data)621 static int igb_get_i2c_clk(void *data)
622 {
623 struct igb_adapter *adapter = (struct igb_adapter *)data;
624 struct e1000_hw *hw = &adapter->hw;
625 s32 i2cctl = rd32(E1000_I2CPARAMS);
626
627 return !!(i2cctl & E1000_I2C_CLK_IN);
628 }
629
630 static const struct i2c_algo_bit_data igb_i2c_algo = {
631 .setsda = igb_set_i2c_data,
632 .setscl = igb_set_i2c_clk,
633 .getsda = igb_get_i2c_data,
634 .getscl = igb_get_i2c_clk,
635 .udelay = 5,
636 .timeout = 20,
637 };
638
639 /**
640 * igb_get_hw_dev - return device
641 * @hw: pointer to hardware structure
642 *
643 * used by hardware layer to print debugging information
644 **/
igb_get_hw_dev(struct e1000_hw * hw)645 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
646 {
647 struct igb_adapter *adapter = hw->back;
648 return adapter->netdev;
649 }
650
651 /**
652 * igb_init_module - Driver Registration Routine
653 *
654 * igb_init_module is the first routine called when the driver is
655 * loaded. All it does is register with the PCI subsystem.
656 **/
igb_init_module(void)657 static int __init igb_init_module(void)
658 {
659 int ret;
660
661 pr_info("%s\n", igb_driver_string);
662 pr_info("%s\n", igb_copyright);
663
664 #ifdef CONFIG_IGB_DCA
665 dca_register_notify(&dca_notifier);
666 #endif
667 ret = pci_register_driver(&igb_driver);
668 #ifdef CONFIG_IGB_DCA
669 if (ret)
670 dca_unregister_notify(&dca_notifier);
671 #endif
672 return ret;
673 }
674
675 module_init(igb_init_module);
676
677 /**
678 * igb_exit_module - Driver Exit Cleanup Routine
679 *
680 * igb_exit_module is called just before the driver is removed
681 * from memory.
682 **/
igb_exit_module(void)683 static void __exit igb_exit_module(void)
684 {
685 #ifdef CONFIG_IGB_DCA
686 dca_unregister_notify(&dca_notifier);
687 #endif
688 pci_unregister_driver(&igb_driver);
689 }
690
691 module_exit(igb_exit_module);
692
693 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
694 /**
695 * igb_cache_ring_register - Descriptor ring to register mapping
696 * @adapter: board private structure to initialize
697 *
698 * Once we know the feature-set enabled for the device, we'll cache
699 * the register offset the descriptor ring is assigned to.
700 **/
igb_cache_ring_register(struct igb_adapter * adapter)701 static void igb_cache_ring_register(struct igb_adapter *adapter)
702 {
703 int i = 0, j = 0;
704 u32 rbase_offset = adapter->vfs_allocated_count;
705
706 switch (adapter->hw.mac.type) {
707 case e1000_82576:
708 /* The queues are allocated for virtualization such that VF 0
709 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
710 * In order to avoid collision we start at the first free queue
711 * and continue consuming queues in the same sequence
712 */
713 if (adapter->vfs_allocated_count) {
714 for (; i < adapter->rss_queues; i++)
715 adapter->rx_ring[i]->reg_idx = rbase_offset +
716 Q_IDX_82576(i);
717 }
718 fallthrough;
719 case e1000_82575:
720 case e1000_82580:
721 case e1000_i350:
722 case e1000_i354:
723 case e1000_i210:
724 case e1000_i211:
725 default:
726 for (; i < adapter->num_rx_queues; i++)
727 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
728 for (; j < adapter->num_tx_queues; j++)
729 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
730 break;
731 }
732 }
733
igb_rd32(struct e1000_hw * hw,u32 reg)734 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
735 {
736 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
737 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
738 u32 value = 0;
739
740 if (E1000_REMOVED(hw_addr))
741 return ~value;
742
743 value = readl(&hw_addr[reg]);
744
745 /* reads should not return all F's */
746 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
747 struct net_device *netdev = igb->netdev;
748 hw->hw_addr = NULL;
749 netdev_err(netdev, "PCIe link lost\n");
750 WARN(pci_device_is_present(igb->pdev),
751 "igb: Failed to read reg 0x%x!\n", reg);
752 }
753
754 return value;
755 }
756
757 /**
758 * igb_write_ivar - configure ivar for given MSI-X vector
759 * @hw: pointer to the HW structure
760 * @msix_vector: vector number we are allocating to a given ring
761 * @index: row index of IVAR register to write within IVAR table
762 * @offset: column offset of in IVAR, should be multiple of 8
763 *
764 * This function is intended to handle the writing of the IVAR register
765 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
766 * each containing an cause allocation for an Rx and Tx ring, and a
767 * variable number of rows depending on the number of queues supported.
768 **/
igb_write_ivar(struct e1000_hw * hw,int msix_vector,int index,int offset)769 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
770 int index, int offset)
771 {
772 u32 ivar = array_rd32(E1000_IVAR0, index);
773
774 /* clear any bits that are currently set */
775 ivar &= ~((u32)0xFF << offset);
776
777 /* write vector and valid bit */
778 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
779
780 array_wr32(E1000_IVAR0, index, ivar);
781 }
782
783 #define IGB_N0_QUEUE -1
igb_assign_vector(struct igb_q_vector * q_vector,int msix_vector)784 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
785 {
786 struct igb_adapter *adapter = q_vector->adapter;
787 struct e1000_hw *hw = &adapter->hw;
788 int rx_queue = IGB_N0_QUEUE;
789 int tx_queue = IGB_N0_QUEUE;
790 u32 msixbm = 0;
791
792 if (q_vector->rx.ring)
793 rx_queue = q_vector->rx.ring->reg_idx;
794 if (q_vector->tx.ring)
795 tx_queue = q_vector->tx.ring->reg_idx;
796
797 switch (hw->mac.type) {
798 case e1000_82575:
799 /* The 82575 assigns vectors using a bitmask, which matches the
800 * bitmask for the EICR/EIMS/EIMC registers. To assign one
801 * or more queues to a vector, we write the appropriate bits
802 * into the MSIXBM register for that vector.
803 */
804 if (rx_queue > IGB_N0_QUEUE)
805 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
806 if (tx_queue > IGB_N0_QUEUE)
807 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
808 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
809 msixbm |= E1000_EIMS_OTHER;
810 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
811 q_vector->eims_value = msixbm;
812 break;
813 case e1000_82576:
814 /* 82576 uses a table that essentially consists of 2 columns
815 * with 8 rows. The ordering is column-major so we use the
816 * lower 3 bits as the row index, and the 4th bit as the
817 * column offset.
818 */
819 if (rx_queue > IGB_N0_QUEUE)
820 igb_write_ivar(hw, msix_vector,
821 rx_queue & 0x7,
822 (rx_queue & 0x8) << 1);
823 if (tx_queue > IGB_N0_QUEUE)
824 igb_write_ivar(hw, msix_vector,
825 tx_queue & 0x7,
826 ((tx_queue & 0x8) << 1) + 8);
827 q_vector->eims_value = BIT(msix_vector);
828 break;
829 case e1000_82580:
830 case e1000_i350:
831 case e1000_i354:
832 case e1000_i210:
833 case e1000_i211:
834 /* On 82580 and newer adapters the scheme is similar to 82576
835 * however instead of ordering column-major we have things
836 * ordered row-major. So we traverse the table by using
837 * bit 0 as the column offset, and the remaining bits as the
838 * row index.
839 */
840 if (rx_queue > IGB_N0_QUEUE)
841 igb_write_ivar(hw, msix_vector,
842 rx_queue >> 1,
843 (rx_queue & 0x1) << 4);
844 if (tx_queue > IGB_N0_QUEUE)
845 igb_write_ivar(hw, msix_vector,
846 tx_queue >> 1,
847 ((tx_queue & 0x1) << 4) + 8);
848 q_vector->eims_value = BIT(msix_vector);
849 break;
850 default:
851 BUG();
852 break;
853 }
854
855 /* add q_vector eims value to global eims_enable_mask */
856 adapter->eims_enable_mask |= q_vector->eims_value;
857
858 /* configure q_vector to set itr on first interrupt */
859 q_vector->set_itr = 1;
860 }
861
862 /**
863 * igb_configure_msix - Configure MSI-X hardware
864 * @adapter: board private structure to initialize
865 *
866 * igb_configure_msix sets up the hardware to properly
867 * generate MSI-X interrupts.
868 **/
igb_configure_msix(struct igb_adapter * adapter)869 static void igb_configure_msix(struct igb_adapter *adapter)
870 {
871 u32 tmp;
872 int i, vector = 0;
873 struct e1000_hw *hw = &adapter->hw;
874
875 adapter->eims_enable_mask = 0;
876
877 /* set vector for other causes, i.e. link changes */
878 switch (hw->mac.type) {
879 case e1000_82575:
880 tmp = rd32(E1000_CTRL_EXT);
881 /* enable MSI-X PBA support*/
882 tmp |= E1000_CTRL_EXT_PBA_CLR;
883
884 /* Auto-Mask interrupts upon ICR read. */
885 tmp |= E1000_CTRL_EXT_EIAME;
886 tmp |= E1000_CTRL_EXT_IRCA;
887
888 wr32(E1000_CTRL_EXT, tmp);
889
890 /* enable msix_other interrupt */
891 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
892 adapter->eims_other = E1000_EIMS_OTHER;
893
894 break;
895
896 case e1000_82576:
897 case e1000_82580:
898 case e1000_i350:
899 case e1000_i354:
900 case e1000_i210:
901 case e1000_i211:
902 /* Turn on MSI-X capability first, or our settings
903 * won't stick. And it will take days to debug.
904 */
905 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
906 E1000_GPIE_PBA | E1000_GPIE_EIAME |
907 E1000_GPIE_NSICR);
908
909 /* enable msix_other interrupt */
910 adapter->eims_other = BIT(vector);
911 tmp = (vector++ | E1000_IVAR_VALID) << 8;
912
913 wr32(E1000_IVAR_MISC, tmp);
914 break;
915 default:
916 /* do nothing, since nothing else supports MSI-X */
917 break;
918 } /* switch (hw->mac.type) */
919
920 adapter->eims_enable_mask |= adapter->eims_other;
921
922 for (i = 0; i < adapter->num_q_vectors; i++)
923 igb_assign_vector(adapter->q_vector[i], vector++);
924
925 wrfl();
926 }
927
928 /**
929 * igb_request_msix - Initialize MSI-X interrupts
930 * @adapter: board private structure to initialize
931 *
932 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
933 * kernel.
934 **/
igb_request_msix(struct igb_adapter * adapter)935 static int igb_request_msix(struct igb_adapter *adapter)
936 {
937 unsigned int num_q_vectors = adapter->num_q_vectors;
938 struct net_device *netdev = adapter->netdev;
939 int i, err = 0, vector = 0, free_vector = 0;
940
941 err = request_irq(adapter->msix_entries[vector].vector,
942 igb_msix_other, 0, netdev->name, adapter);
943 if (err)
944 goto err_out;
945
946 if (num_q_vectors > MAX_Q_VECTORS) {
947 num_q_vectors = MAX_Q_VECTORS;
948 dev_warn(&adapter->pdev->dev,
949 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
950 adapter->num_q_vectors, MAX_Q_VECTORS);
951 }
952 for (i = 0; i < num_q_vectors; i++) {
953 struct igb_q_vector *q_vector = adapter->q_vector[i];
954
955 vector++;
956
957 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
958
959 if (q_vector->rx.ring && q_vector->tx.ring)
960 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
961 q_vector->rx.ring->queue_index);
962 else if (q_vector->tx.ring)
963 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
964 q_vector->tx.ring->queue_index);
965 else if (q_vector->rx.ring)
966 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
967 q_vector->rx.ring->queue_index);
968 else
969 sprintf(q_vector->name, "%s-unused", netdev->name);
970
971 err = request_irq(adapter->msix_entries[vector].vector,
972 igb_msix_ring, 0, q_vector->name,
973 q_vector);
974 if (err)
975 goto err_free;
976 }
977
978 igb_configure_msix(adapter);
979 return 0;
980
981 err_free:
982 /* free already assigned IRQs */
983 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
984
985 vector--;
986 for (i = 0; i < vector; i++) {
987 free_irq(adapter->msix_entries[free_vector++].vector,
988 adapter->q_vector[i]);
989 }
990 err_out:
991 return err;
992 }
993
994 /**
995 * igb_free_q_vector - Free memory allocated for specific interrupt vector
996 * @adapter: board private structure to initialize
997 * @v_idx: Index of vector to be freed
998 *
999 * This function frees the memory allocated to the q_vector.
1000 **/
igb_free_q_vector(struct igb_adapter * adapter,int v_idx)1001 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1002 {
1003 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1004
1005 adapter->q_vector[v_idx] = NULL;
1006
1007 /* igb_get_stats64() might access the rings on this vector,
1008 * we must wait a grace period before freeing it.
1009 */
1010 if (q_vector)
1011 kfree_rcu(q_vector, rcu);
1012 }
1013
1014 /**
1015 * igb_reset_q_vector - Reset config for interrupt vector
1016 * @adapter: board private structure to initialize
1017 * @v_idx: Index of vector to be reset
1018 *
1019 * If NAPI is enabled it will delete any references to the
1020 * NAPI struct. This is preparation for igb_free_q_vector.
1021 **/
igb_reset_q_vector(struct igb_adapter * adapter,int v_idx)1022 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1023 {
1024 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1025
1026 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1027 * allocated. So, q_vector is NULL so we should stop here.
1028 */
1029 if (!q_vector)
1030 return;
1031
1032 if (q_vector->tx.ring)
1033 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1034
1035 if (q_vector->rx.ring)
1036 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1037
1038 netif_napi_del(&q_vector->napi);
1039
1040 }
1041
igb_reset_interrupt_capability(struct igb_adapter * adapter)1042 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1043 {
1044 int v_idx = adapter->num_q_vectors;
1045
1046 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1047 pci_disable_msix(adapter->pdev);
1048 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1049 pci_disable_msi(adapter->pdev);
1050
1051 while (v_idx--)
1052 igb_reset_q_vector(adapter, v_idx);
1053 }
1054
1055 /**
1056 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1057 * @adapter: board private structure to initialize
1058 *
1059 * This function frees the memory allocated to the q_vectors. In addition if
1060 * NAPI is enabled it will delete any references to the NAPI struct prior
1061 * to freeing the q_vector.
1062 **/
igb_free_q_vectors(struct igb_adapter * adapter)1063 static void igb_free_q_vectors(struct igb_adapter *adapter)
1064 {
1065 int v_idx = adapter->num_q_vectors;
1066
1067 adapter->num_tx_queues = 0;
1068 adapter->num_rx_queues = 0;
1069 adapter->num_q_vectors = 0;
1070
1071 while (v_idx--) {
1072 igb_reset_q_vector(adapter, v_idx);
1073 igb_free_q_vector(adapter, v_idx);
1074 }
1075 }
1076
1077 /**
1078 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1079 * @adapter: board private structure to initialize
1080 *
1081 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1082 * MSI-X interrupts allocated.
1083 */
igb_clear_interrupt_scheme(struct igb_adapter * adapter)1084 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1085 {
1086 igb_free_q_vectors(adapter);
1087 igb_reset_interrupt_capability(adapter);
1088 }
1089
1090 /**
1091 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1092 * @adapter: board private structure to initialize
1093 * @msix: boolean value of MSIX capability
1094 *
1095 * Attempt to configure interrupts using the best available
1096 * capabilities of the hardware and kernel.
1097 **/
igb_set_interrupt_capability(struct igb_adapter * adapter,bool msix)1098 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1099 {
1100 int err;
1101 int numvecs, i;
1102
1103 if (!msix)
1104 goto msi_only;
1105 adapter->flags |= IGB_FLAG_HAS_MSIX;
1106
1107 /* Number of supported queues. */
1108 adapter->num_rx_queues = adapter->rss_queues;
1109 if (adapter->vfs_allocated_count)
1110 adapter->num_tx_queues = 1;
1111 else
1112 adapter->num_tx_queues = adapter->rss_queues;
1113
1114 /* start with one vector for every Rx queue */
1115 numvecs = adapter->num_rx_queues;
1116
1117 /* if Tx handler is separate add 1 for every Tx queue */
1118 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1119 numvecs += adapter->num_tx_queues;
1120
1121 /* store the number of vectors reserved for queues */
1122 adapter->num_q_vectors = numvecs;
1123
1124 /* add 1 vector for link status interrupts */
1125 numvecs++;
1126 for (i = 0; i < numvecs; i++)
1127 adapter->msix_entries[i].entry = i;
1128
1129 err = pci_enable_msix_range(adapter->pdev,
1130 adapter->msix_entries,
1131 numvecs,
1132 numvecs);
1133 if (err > 0)
1134 return;
1135
1136 igb_reset_interrupt_capability(adapter);
1137
1138 /* If we can't do MSI-X, try MSI */
1139 msi_only:
1140 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1141 #ifdef CONFIG_PCI_IOV
1142 /* disable SR-IOV for non MSI-X configurations */
1143 if (adapter->vf_data) {
1144 struct e1000_hw *hw = &adapter->hw;
1145 /* disable iov and allow time for transactions to clear */
1146 pci_disable_sriov(adapter->pdev);
1147 msleep(500);
1148
1149 kfree(adapter->vf_mac_list);
1150 adapter->vf_mac_list = NULL;
1151 kfree(adapter->vf_data);
1152 adapter->vf_data = NULL;
1153 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1154 wrfl();
1155 msleep(100);
1156 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1157 }
1158 #endif
1159 adapter->vfs_allocated_count = 0;
1160 adapter->rss_queues = 1;
1161 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1162 adapter->num_rx_queues = 1;
1163 adapter->num_tx_queues = 1;
1164 adapter->num_q_vectors = 1;
1165 if (!pci_enable_msi(adapter->pdev))
1166 adapter->flags |= IGB_FLAG_HAS_MSI;
1167 }
1168
igb_add_ring(struct igb_ring * ring,struct igb_ring_container * head)1169 static void igb_add_ring(struct igb_ring *ring,
1170 struct igb_ring_container *head)
1171 {
1172 head->ring = ring;
1173 head->count++;
1174 }
1175
1176 /**
1177 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1178 * @adapter: board private structure to initialize
1179 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1180 * @v_idx: index of vector in adapter struct
1181 * @txr_count: total number of Tx rings to allocate
1182 * @txr_idx: index of first Tx ring to allocate
1183 * @rxr_count: total number of Rx rings to allocate
1184 * @rxr_idx: index of first Rx ring to allocate
1185 *
1186 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1187 **/
igb_alloc_q_vector(struct igb_adapter * adapter,int v_count,int v_idx,int txr_count,int txr_idx,int rxr_count,int rxr_idx)1188 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1189 int v_count, int v_idx,
1190 int txr_count, int txr_idx,
1191 int rxr_count, int rxr_idx)
1192 {
1193 struct igb_q_vector *q_vector;
1194 struct igb_ring *ring;
1195 int ring_count;
1196 size_t size;
1197
1198 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1199 if (txr_count > 1 || rxr_count > 1)
1200 return -ENOMEM;
1201
1202 ring_count = txr_count + rxr_count;
1203 size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1204
1205 /* allocate q_vector and rings */
1206 q_vector = adapter->q_vector[v_idx];
1207 if (!q_vector) {
1208 q_vector = kzalloc(size, GFP_KERNEL);
1209 } else if (size > ksize(q_vector)) {
1210 struct igb_q_vector *new_q_vector;
1211
1212 new_q_vector = kzalloc(size, GFP_KERNEL);
1213 if (new_q_vector)
1214 kfree_rcu(q_vector, rcu);
1215 q_vector = new_q_vector;
1216 } else {
1217 memset(q_vector, 0, size);
1218 }
1219 if (!q_vector)
1220 return -ENOMEM;
1221
1222 /* initialize NAPI */
1223 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
1224
1225 /* tie q_vector and adapter together */
1226 adapter->q_vector[v_idx] = q_vector;
1227 q_vector->adapter = adapter;
1228
1229 /* initialize work limits */
1230 q_vector->tx.work_limit = adapter->tx_work_limit;
1231
1232 /* initialize ITR configuration */
1233 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1234 q_vector->itr_val = IGB_START_ITR;
1235
1236 /* initialize pointer to rings */
1237 ring = q_vector->ring;
1238
1239 /* intialize ITR */
1240 if (rxr_count) {
1241 /* rx or rx/tx vector */
1242 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1243 q_vector->itr_val = adapter->rx_itr_setting;
1244 } else {
1245 /* tx only vector */
1246 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1247 q_vector->itr_val = adapter->tx_itr_setting;
1248 }
1249
1250 if (txr_count) {
1251 /* assign generic ring traits */
1252 ring->dev = &adapter->pdev->dev;
1253 ring->netdev = adapter->netdev;
1254
1255 /* configure backlink on ring */
1256 ring->q_vector = q_vector;
1257
1258 /* update q_vector Tx values */
1259 igb_add_ring(ring, &q_vector->tx);
1260
1261 /* For 82575, context index must be unique per ring. */
1262 if (adapter->hw.mac.type == e1000_82575)
1263 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1264
1265 /* apply Tx specific ring traits */
1266 ring->count = adapter->tx_ring_count;
1267 ring->queue_index = txr_idx;
1268
1269 ring->cbs_enable = false;
1270 ring->idleslope = 0;
1271 ring->sendslope = 0;
1272 ring->hicredit = 0;
1273 ring->locredit = 0;
1274
1275 u64_stats_init(&ring->tx_syncp);
1276 u64_stats_init(&ring->tx_syncp2);
1277
1278 /* assign ring to adapter */
1279 adapter->tx_ring[txr_idx] = ring;
1280
1281 /* push pointer to next ring */
1282 ring++;
1283 }
1284
1285 if (rxr_count) {
1286 /* assign generic ring traits */
1287 ring->dev = &adapter->pdev->dev;
1288 ring->netdev = adapter->netdev;
1289
1290 /* configure backlink on ring */
1291 ring->q_vector = q_vector;
1292
1293 /* update q_vector Rx values */
1294 igb_add_ring(ring, &q_vector->rx);
1295
1296 /* set flag indicating ring supports SCTP checksum offload */
1297 if (adapter->hw.mac.type >= e1000_82576)
1298 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1299
1300 /* On i350, i354, i210, and i211, loopback VLAN packets
1301 * have the tag byte-swapped.
1302 */
1303 if (adapter->hw.mac.type >= e1000_i350)
1304 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1305
1306 /* apply Rx specific ring traits */
1307 ring->count = adapter->rx_ring_count;
1308 ring->queue_index = rxr_idx;
1309
1310 u64_stats_init(&ring->rx_syncp);
1311
1312 /* assign ring to adapter */
1313 adapter->rx_ring[rxr_idx] = ring;
1314 }
1315
1316 return 0;
1317 }
1318
1319
1320 /**
1321 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1322 * @adapter: board private structure to initialize
1323 *
1324 * We allocate one q_vector per queue interrupt. If allocation fails we
1325 * return -ENOMEM.
1326 **/
igb_alloc_q_vectors(struct igb_adapter * adapter)1327 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1328 {
1329 int q_vectors = adapter->num_q_vectors;
1330 int rxr_remaining = adapter->num_rx_queues;
1331 int txr_remaining = adapter->num_tx_queues;
1332 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1333 int err;
1334
1335 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1336 for (; rxr_remaining; v_idx++) {
1337 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1338 0, 0, 1, rxr_idx);
1339
1340 if (err)
1341 goto err_out;
1342
1343 /* update counts and index */
1344 rxr_remaining--;
1345 rxr_idx++;
1346 }
1347 }
1348
1349 for (; v_idx < q_vectors; v_idx++) {
1350 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1351 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1352
1353 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1354 tqpv, txr_idx, rqpv, rxr_idx);
1355
1356 if (err)
1357 goto err_out;
1358
1359 /* update counts and index */
1360 rxr_remaining -= rqpv;
1361 txr_remaining -= tqpv;
1362 rxr_idx++;
1363 txr_idx++;
1364 }
1365
1366 return 0;
1367
1368 err_out:
1369 adapter->num_tx_queues = 0;
1370 adapter->num_rx_queues = 0;
1371 adapter->num_q_vectors = 0;
1372
1373 while (v_idx--)
1374 igb_free_q_vector(adapter, v_idx);
1375
1376 return -ENOMEM;
1377 }
1378
1379 /**
1380 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1381 * @adapter: board private structure to initialize
1382 * @msix: boolean value of MSIX capability
1383 *
1384 * This function initializes the interrupts and allocates all of the queues.
1385 **/
igb_init_interrupt_scheme(struct igb_adapter * adapter,bool msix)1386 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1387 {
1388 struct pci_dev *pdev = adapter->pdev;
1389 int err;
1390
1391 igb_set_interrupt_capability(adapter, msix);
1392
1393 err = igb_alloc_q_vectors(adapter);
1394 if (err) {
1395 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1396 goto err_alloc_q_vectors;
1397 }
1398
1399 igb_cache_ring_register(adapter);
1400
1401 return 0;
1402
1403 err_alloc_q_vectors:
1404 igb_reset_interrupt_capability(adapter);
1405 return err;
1406 }
1407
1408 /**
1409 * igb_request_irq - initialize interrupts
1410 * @adapter: board private structure to initialize
1411 *
1412 * Attempts to configure interrupts using the best available
1413 * capabilities of the hardware and kernel.
1414 **/
igb_request_irq(struct igb_adapter * adapter)1415 static int igb_request_irq(struct igb_adapter *adapter)
1416 {
1417 struct net_device *netdev = adapter->netdev;
1418 struct pci_dev *pdev = adapter->pdev;
1419 int err = 0;
1420
1421 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1422 err = igb_request_msix(adapter);
1423 if (!err)
1424 goto request_done;
1425 /* fall back to MSI */
1426 igb_free_all_tx_resources(adapter);
1427 igb_free_all_rx_resources(adapter);
1428
1429 igb_clear_interrupt_scheme(adapter);
1430 err = igb_init_interrupt_scheme(adapter, false);
1431 if (err)
1432 goto request_done;
1433
1434 igb_setup_all_tx_resources(adapter);
1435 igb_setup_all_rx_resources(adapter);
1436 igb_configure(adapter);
1437 }
1438
1439 igb_assign_vector(adapter->q_vector[0], 0);
1440
1441 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1442 err = request_irq(pdev->irq, igb_intr_msi, 0,
1443 netdev->name, adapter);
1444 if (!err)
1445 goto request_done;
1446
1447 /* fall back to legacy interrupts */
1448 igb_reset_interrupt_capability(adapter);
1449 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1450 }
1451
1452 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1453 netdev->name, adapter);
1454
1455 if (err)
1456 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1457 err);
1458
1459 request_done:
1460 return err;
1461 }
1462
igb_free_irq(struct igb_adapter * adapter)1463 static void igb_free_irq(struct igb_adapter *adapter)
1464 {
1465 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1466 int vector = 0, i;
1467
1468 free_irq(adapter->msix_entries[vector++].vector, adapter);
1469
1470 for (i = 0; i < adapter->num_q_vectors; i++)
1471 free_irq(adapter->msix_entries[vector++].vector,
1472 adapter->q_vector[i]);
1473 } else {
1474 free_irq(adapter->pdev->irq, adapter);
1475 }
1476 }
1477
1478 /**
1479 * igb_irq_disable - Mask off interrupt generation on the NIC
1480 * @adapter: board private structure
1481 **/
igb_irq_disable(struct igb_adapter * adapter)1482 static void igb_irq_disable(struct igb_adapter *adapter)
1483 {
1484 struct e1000_hw *hw = &adapter->hw;
1485
1486 /* we need to be careful when disabling interrupts. The VFs are also
1487 * mapped into these registers and so clearing the bits can cause
1488 * issues on the VF drivers so we only need to clear what we set
1489 */
1490 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1491 u32 regval = rd32(E1000_EIAM);
1492
1493 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1494 wr32(E1000_EIMC, adapter->eims_enable_mask);
1495 regval = rd32(E1000_EIAC);
1496 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1497 }
1498
1499 wr32(E1000_IAM, 0);
1500 wr32(E1000_IMC, ~0);
1501 wrfl();
1502 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1503 int i;
1504
1505 for (i = 0; i < adapter->num_q_vectors; i++)
1506 synchronize_irq(adapter->msix_entries[i].vector);
1507 } else {
1508 synchronize_irq(adapter->pdev->irq);
1509 }
1510 }
1511
1512 /**
1513 * igb_irq_enable - Enable default interrupt generation settings
1514 * @adapter: board private structure
1515 **/
igb_irq_enable(struct igb_adapter * adapter)1516 static void igb_irq_enable(struct igb_adapter *adapter)
1517 {
1518 struct e1000_hw *hw = &adapter->hw;
1519
1520 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1521 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1522 u32 regval = rd32(E1000_EIAC);
1523
1524 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1525 regval = rd32(E1000_EIAM);
1526 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1527 wr32(E1000_EIMS, adapter->eims_enable_mask);
1528 if (adapter->vfs_allocated_count) {
1529 wr32(E1000_MBVFIMR, 0xFF);
1530 ims |= E1000_IMS_VMMB;
1531 }
1532 wr32(E1000_IMS, ims);
1533 } else {
1534 wr32(E1000_IMS, IMS_ENABLE_MASK |
1535 E1000_IMS_DRSTA);
1536 wr32(E1000_IAM, IMS_ENABLE_MASK |
1537 E1000_IMS_DRSTA);
1538 }
1539 }
1540
igb_update_mng_vlan(struct igb_adapter * adapter)1541 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1542 {
1543 struct e1000_hw *hw = &adapter->hw;
1544 u16 pf_id = adapter->vfs_allocated_count;
1545 u16 vid = adapter->hw.mng_cookie.vlan_id;
1546 u16 old_vid = adapter->mng_vlan_id;
1547
1548 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1549 /* add VID to filter table */
1550 igb_vfta_set(hw, vid, pf_id, true, true);
1551 adapter->mng_vlan_id = vid;
1552 } else {
1553 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1554 }
1555
1556 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1557 (vid != old_vid) &&
1558 !test_bit(old_vid, adapter->active_vlans)) {
1559 /* remove VID from filter table */
1560 igb_vfta_set(hw, vid, pf_id, false, true);
1561 }
1562 }
1563
1564 /**
1565 * igb_release_hw_control - release control of the h/w to f/w
1566 * @adapter: address of board private structure
1567 *
1568 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1569 * For ASF and Pass Through versions of f/w this means that the
1570 * driver is no longer loaded.
1571 **/
igb_release_hw_control(struct igb_adapter * adapter)1572 static void igb_release_hw_control(struct igb_adapter *adapter)
1573 {
1574 struct e1000_hw *hw = &adapter->hw;
1575 u32 ctrl_ext;
1576
1577 /* Let firmware take over control of h/w */
1578 ctrl_ext = rd32(E1000_CTRL_EXT);
1579 wr32(E1000_CTRL_EXT,
1580 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1581 }
1582
1583 /**
1584 * igb_get_hw_control - get control of the h/w from f/w
1585 * @adapter: address of board private structure
1586 *
1587 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1588 * For ASF and Pass Through versions of f/w this means that
1589 * the driver is loaded.
1590 **/
igb_get_hw_control(struct igb_adapter * adapter)1591 static void igb_get_hw_control(struct igb_adapter *adapter)
1592 {
1593 struct e1000_hw *hw = &adapter->hw;
1594 u32 ctrl_ext;
1595
1596 /* Let firmware know the driver has taken over */
1597 ctrl_ext = rd32(E1000_CTRL_EXT);
1598 wr32(E1000_CTRL_EXT,
1599 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1600 }
1601
enable_fqtss(struct igb_adapter * adapter,bool enable)1602 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1603 {
1604 struct net_device *netdev = adapter->netdev;
1605 struct e1000_hw *hw = &adapter->hw;
1606
1607 WARN_ON(hw->mac.type != e1000_i210);
1608
1609 if (enable)
1610 adapter->flags |= IGB_FLAG_FQTSS;
1611 else
1612 adapter->flags &= ~IGB_FLAG_FQTSS;
1613
1614 if (netif_running(netdev))
1615 schedule_work(&adapter->reset_task);
1616 }
1617
is_fqtss_enabled(struct igb_adapter * adapter)1618 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1619 {
1620 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1621 }
1622
set_tx_desc_fetch_prio(struct e1000_hw * hw,int queue,enum tx_queue_prio prio)1623 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1624 enum tx_queue_prio prio)
1625 {
1626 u32 val;
1627
1628 WARN_ON(hw->mac.type != e1000_i210);
1629 WARN_ON(queue < 0 || queue > 4);
1630
1631 val = rd32(E1000_I210_TXDCTL(queue));
1632
1633 if (prio == TX_QUEUE_PRIO_HIGH)
1634 val |= E1000_TXDCTL_PRIORITY;
1635 else
1636 val &= ~E1000_TXDCTL_PRIORITY;
1637
1638 wr32(E1000_I210_TXDCTL(queue), val);
1639 }
1640
set_queue_mode(struct e1000_hw * hw,int queue,enum queue_mode mode)1641 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1642 {
1643 u32 val;
1644
1645 WARN_ON(hw->mac.type != e1000_i210);
1646 WARN_ON(queue < 0 || queue > 1);
1647
1648 val = rd32(E1000_I210_TQAVCC(queue));
1649
1650 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1651 val |= E1000_TQAVCC_QUEUEMODE;
1652 else
1653 val &= ~E1000_TQAVCC_QUEUEMODE;
1654
1655 wr32(E1000_I210_TQAVCC(queue), val);
1656 }
1657
is_any_cbs_enabled(struct igb_adapter * adapter)1658 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1659 {
1660 int i;
1661
1662 for (i = 0; i < adapter->num_tx_queues; i++) {
1663 if (adapter->tx_ring[i]->cbs_enable)
1664 return true;
1665 }
1666
1667 return false;
1668 }
1669
is_any_txtime_enabled(struct igb_adapter * adapter)1670 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1671 {
1672 int i;
1673
1674 for (i = 0; i < adapter->num_tx_queues; i++) {
1675 if (adapter->tx_ring[i]->launchtime_enable)
1676 return true;
1677 }
1678
1679 return false;
1680 }
1681
1682 /**
1683 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1684 * @adapter: pointer to adapter struct
1685 * @queue: queue number
1686 *
1687 * Configure CBS and Launchtime for a given hardware queue.
1688 * Parameters are retrieved from the correct Tx ring, so
1689 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1690 * for setting those correctly prior to this function being called.
1691 **/
igb_config_tx_modes(struct igb_adapter * adapter,int queue)1692 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1693 {
1694 struct net_device *netdev = adapter->netdev;
1695 struct e1000_hw *hw = &adapter->hw;
1696 struct igb_ring *ring;
1697 u32 tqavcc, tqavctrl;
1698 u16 value;
1699
1700 WARN_ON(hw->mac.type != e1000_i210);
1701 WARN_ON(queue < 0 || queue > 1);
1702 ring = adapter->tx_ring[queue];
1703
1704 /* If any of the Qav features is enabled, configure queues as SR and
1705 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1706 * as SP.
1707 */
1708 if (ring->cbs_enable || ring->launchtime_enable) {
1709 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1710 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1711 } else {
1712 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1713 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1714 }
1715
1716 /* If CBS is enabled, set DataTranARB and config its parameters. */
1717 if (ring->cbs_enable || queue == 0) {
1718 /* i210 does not allow the queue 0 to be in the Strict
1719 * Priority mode while the Qav mode is enabled, so,
1720 * instead of disabling strict priority mode, we give
1721 * queue 0 the maximum of credits possible.
1722 *
1723 * See section 8.12.19 of the i210 datasheet, "Note:
1724 * Queue0 QueueMode must be set to 1b when
1725 * TransmitMode is set to Qav."
1726 */
1727 if (queue == 0 && !ring->cbs_enable) {
1728 /* max "linkspeed" idleslope in kbps */
1729 ring->idleslope = 1000000;
1730 ring->hicredit = ETH_FRAME_LEN;
1731 }
1732
1733 /* Always set data transfer arbitration to credit-based
1734 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1735 * the queues.
1736 */
1737 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1738 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1739 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1740
1741 /* According to i210 datasheet section 7.2.7.7, we should set
1742 * the 'idleSlope' field from TQAVCC register following the
1743 * equation:
1744 *
1745 * For 100 Mbps link speed:
1746 *
1747 * value = BW * 0x7735 * 0.2 (E1)
1748 *
1749 * For 1000Mbps link speed:
1750 *
1751 * value = BW * 0x7735 * 2 (E2)
1752 *
1753 * E1 and E2 can be merged into one equation as shown below.
1754 * Note that 'link-speed' is in Mbps.
1755 *
1756 * value = BW * 0x7735 * 2 * link-speed
1757 * -------------- (E3)
1758 * 1000
1759 *
1760 * 'BW' is the percentage bandwidth out of full link speed
1761 * which can be found with the following equation. Note that
1762 * idleSlope here is the parameter from this function which
1763 * is in kbps.
1764 *
1765 * BW = idleSlope
1766 * ----------------- (E4)
1767 * link-speed * 1000
1768 *
1769 * That said, we can come up with a generic equation to
1770 * calculate the value we should set it TQAVCC register by
1771 * replacing 'BW' in E3 by E4. The resulting equation is:
1772 *
1773 * value = idleSlope * 0x7735 * 2 * link-speed
1774 * ----------------- -------------- (E5)
1775 * link-speed * 1000 1000
1776 *
1777 * 'link-speed' is present in both sides of the fraction so
1778 * it is canceled out. The final equation is the following:
1779 *
1780 * value = idleSlope * 61034
1781 * ----------------- (E6)
1782 * 1000000
1783 *
1784 * NOTE: For i210, given the above, we can see that idleslope
1785 * is represented in 16.38431 kbps units by the value at
1786 * the TQAVCC register (1Gbps / 61034), which reduces
1787 * the granularity for idleslope increments.
1788 * For instance, if you want to configure a 2576kbps
1789 * idleslope, the value to be written on the register
1790 * would have to be 157.23. If rounded down, you end
1791 * up with less bandwidth available than originally
1792 * required (~2572 kbps). If rounded up, you end up
1793 * with a higher bandwidth (~2589 kbps). Below the
1794 * approach we take is to always round up the
1795 * calculated value, so the resulting bandwidth might
1796 * be slightly higher for some configurations.
1797 */
1798 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1799
1800 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1801 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1802 tqavcc |= value;
1803 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1804
1805 wr32(E1000_I210_TQAVHC(queue),
1806 0x80000000 + ring->hicredit * 0x7735);
1807 } else {
1808
1809 /* Set idleSlope to zero. */
1810 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1811 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1812 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1813
1814 /* Set hiCredit to zero. */
1815 wr32(E1000_I210_TQAVHC(queue), 0);
1816
1817 /* If CBS is not enabled for any queues anymore, then return to
1818 * the default state of Data Transmission Arbitration on
1819 * TQAVCTRL.
1820 */
1821 if (!is_any_cbs_enabled(adapter)) {
1822 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1823 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1824 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1825 }
1826 }
1827
1828 /* If LaunchTime is enabled, set DataTranTIM. */
1829 if (ring->launchtime_enable) {
1830 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1831 * for any of the SR queues, and configure fetchtime delta.
1832 * XXX NOTE:
1833 * - LaunchTime will be enabled for all SR queues.
1834 * - A fixed offset can be added relative to the launch
1835 * time of all packets if configured at reg LAUNCH_OS0.
1836 * We are keeping it as 0 for now (default value).
1837 */
1838 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1839 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1840 E1000_TQAVCTRL_FETCHTIME_DELTA;
1841 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1842 } else {
1843 /* If Launchtime is not enabled for any SR queues anymore,
1844 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1845 * effectively disabling Launchtime.
1846 */
1847 if (!is_any_txtime_enabled(adapter)) {
1848 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1849 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1850 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1851 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1852 }
1853 }
1854
1855 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1856 * CBS are not configurable by software so we don't do any 'controller
1857 * configuration' in respect to these parameters.
1858 */
1859
1860 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1861 ring->cbs_enable ? "enabled" : "disabled",
1862 ring->launchtime_enable ? "enabled" : "disabled",
1863 queue,
1864 ring->idleslope, ring->sendslope,
1865 ring->hicredit, ring->locredit);
1866 }
1867
igb_save_txtime_params(struct igb_adapter * adapter,int queue,bool enable)1868 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1869 bool enable)
1870 {
1871 struct igb_ring *ring;
1872
1873 if (queue < 0 || queue > adapter->num_tx_queues)
1874 return -EINVAL;
1875
1876 ring = adapter->tx_ring[queue];
1877 ring->launchtime_enable = enable;
1878
1879 return 0;
1880 }
1881
igb_save_cbs_params(struct igb_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)1882 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1883 bool enable, int idleslope, int sendslope,
1884 int hicredit, int locredit)
1885 {
1886 struct igb_ring *ring;
1887
1888 if (queue < 0 || queue > adapter->num_tx_queues)
1889 return -EINVAL;
1890
1891 ring = adapter->tx_ring[queue];
1892
1893 ring->cbs_enable = enable;
1894 ring->idleslope = idleslope;
1895 ring->sendslope = sendslope;
1896 ring->hicredit = hicredit;
1897 ring->locredit = locredit;
1898
1899 return 0;
1900 }
1901
1902 /**
1903 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1904 * @adapter: pointer to adapter struct
1905 *
1906 * Configure TQAVCTRL register switching the controller's Tx mode
1907 * if FQTSS mode is enabled or disabled. Additionally, will issue
1908 * a call to igb_config_tx_modes() per queue so any previously saved
1909 * Tx parameters are applied.
1910 **/
igb_setup_tx_mode(struct igb_adapter * adapter)1911 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1912 {
1913 struct net_device *netdev = adapter->netdev;
1914 struct e1000_hw *hw = &adapter->hw;
1915 u32 val;
1916
1917 /* Only i210 controller supports changing the transmission mode. */
1918 if (hw->mac.type != e1000_i210)
1919 return;
1920
1921 if (is_fqtss_enabled(adapter)) {
1922 int i, max_queue;
1923
1924 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1925 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1926 * so SP queues wait for SR ones.
1927 */
1928 val = rd32(E1000_I210_TQAVCTRL);
1929 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1930 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1931 wr32(E1000_I210_TQAVCTRL, val);
1932
1933 /* Configure Tx and Rx packet buffers sizes as described in
1934 * i210 datasheet section 7.2.7.7.
1935 */
1936 val = rd32(E1000_TXPBS);
1937 val &= ~I210_TXPBSIZE_MASK;
1938 val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1939 I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1940 wr32(E1000_TXPBS, val);
1941
1942 val = rd32(E1000_RXPBS);
1943 val &= ~I210_RXPBSIZE_MASK;
1944 val |= I210_RXPBSIZE_PB_30KB;
1945 wr32(E1000_RXPBS, val);
1946
1947 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1948 * register should not exceed the buffer size programmed in
1949 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1950 * so according to the datasheet we should set MAX_TPKT_SIZE to
1951 * 4kB / 64.
1952 *
1953 * However, when we do so, no frame from queue 2 and 3 are
1954 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1955 * or _equal_ to the buffer size programmed in TXPBS. For this
1956 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1957 */
1958 val = (4096 - 1) / 64;
1959 wr32(E1000_I210_DTXMXPKTSZ, val);
1960
1961 /* Since FQTSS mode is enabled, apply any CBS configuration
1962 * previously set. If no previous CBS configuration has been
1963 * done, then the initial configuration is applied, which means
1964 * CBS is disabled.
1965 */
1966 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1967 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1968
1969 for (i = 0; i < max_queue; i++) {
1970 igb_config_tx_modes(adapter, i);
1971 }
1972 } else {
1973 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1974 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1975 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1976
1977 val = rd32(E1000_I210_TQAVCTRL);
1978 /* According to Section 8.12.21, the other flags we've set when
1979 * enabling FQTSS are not relevant when disabling FQTSS so we
1980 * don't set they here.
1981 */
1982 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1983 wr32(E1000_I210_TQAVCTRL, val);
1984 }
1985
1986 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1987 "enabled" : "disabled");
1988 }
1989
1990 /**
1991 * igb_configure - configure the hardware for RX and TX
1992 * @adapter: private board structure
1993 **/
igb_configure(struct igb_adapter * adapter)1994 static void igb_configure(struct igb_adapter *adapter)
1995 {
1996 struct net_device *netdev = adapter->netdev;
1997 int i;
1998
1999 igb_get_hw_control(adapter);
2000 igb_set_rx_mode(netdev);
2001 igb_setup_tx_mode(adapter);
2002
2003 igb_restore_vlan(adapter);
2004
2005 igb_setup_tctl(adapter);
2006 igb_setup_mrqc(adapter);
2007 igb_setup_rctl(adapter);
2008
2009 igb_nfc_filter_restore(adapter);
2010 igb_configure_tx(adapter);
2011 igb_configure_rx(adapter);
2012
2013 igb_rx_fifo_flush_82575(&adapter->hw);
2014
2015 /* call igb_desc_unused which always leaves
2016 * at least 1 descriptor unused to make sure
2017 * next_to_use != next_to_clean
2018 */
2019 for (i = 0; i < adapter->num_rx_queues; i++) {
2020 struct igb_ring *ring = adapter->rx_ring[i];
2021 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2022 }
2023 }
2024
2025 /**
2026 * igb_power_up_link - Power up the phy/serdes link
2027 * @adapter: address of board private structure
2028 **/
igb_power_up_link(struct igb_adapter * adapter)2029 void igb_power_up_link(struct igb_adapter *adapter)
2030 {
2031 igb_reset_phy(&adapter->hw);
2032
2033 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2034 igb_power_up_phy_copper(&adapter->hw);
2035 else
2036 igb_power_up_serdes_link_82575(&adapter->hw);
2037
2038 igb_setup_link(&adapter->hw);
2039 }
2040
2041 /**
2042 * igb_power_down_link - Power down the phy/serdes link
2043 * @adapter: address of board private structure
2044 */
igb_power_down_link(struct igb_adapter * adapter)2045 static void igb_power_down_link(struct igb_adapter *adapter)
2046 {
2047 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2048 igb_power_down_phy_copper_82575(&adapter->hw);
2049 else
2050 igb_shutdown_serdes_link_82575(&adapter->hw);
2051 }
2052
2053 /**
2054 * igb_check_swap_media - Detect and switch function for Media Auto Sense
2055 * @adapter: address of the board private structure
2056 **/
igb_check_swap_media(struct igb_adapter * adapter)2057 static void igb_check_swap_media(struct igb_adapter *adapter)
2058 {
2059 struct e1000_hw *hw = &adapter->hw;
2060 u32 ctrl_ext, connsw;
2061 bool swap_now = false;
2062
2063 ctrl_ext = rd32(E1000_CTRL_EXT);
2064 connsw = rd32(E1000_CONNSW);
2065
2066 /* need to live swap if current media is copper and we have fiber/serdes
2067 * to go to.
2068 */
2069
2070 if ((hw->phy.media_type == e1000_media_type_copper) &&
2071 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2072 swap_now = true;
2073 } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2074 !(connsw & E1000_CONNSW_SERDESD)) {
2075 /* copper signal takes time to appear */
2076 if (adapter->copper_tries < 4) {
2077 adapter->copper_tries++;
2078 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2079 wr32(E1000_CONNSW, connsw);
2080 return;
2081 } else {
2082 adapter->copper_tries = 0;
2083 if ((connsw & E1000_CONNSW_PHYSD) &&
2084 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2085 swap_now = true;
2086 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2087 wr32(E1000_CONNSW, connsw);
2088 }
2089 }
2090 }
2091
2092 if (!swap_now)
2093 return;
2094
2095 switch (hw->phy.media_type) {
2096 case e1000_media_type_copper:
2097 netdev_info(adapter->netdev,
2098 "MAS: changing media to fiber/serdes\n");
2099 ctrl_ext |=
2100 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2101 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2102 adapter->copper_tries = 0;
2103 break;
2104 case e1000_media_type_internal_serdes:
2105 case e1000_media_type_fiber:
2106 netdev_info(adapter->netdev,
2107 "MAS: changing media to copper\n");
2108 ctrl_ext &=
2109 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2110 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2111 break;
2112 default:
2113 /* shouldn't get here during regular operation */
2114 netdev_err(adapter->netdev,
2115 "AMS: Invalid media type found, returning\n");
2116 break;
2117 }
2118 wr32(E1000_CTRL_EXT, ctrl_ext);
2119 }
2120
2121 /**
2122 * igb_up - Open the interface and prepare it to handle traffic
2123 * @adapter: board private structure
2124 **/
igb_up(struct igb_adapter * adapter)2125 int igb_up(struct igb_adapter *adapter)
2126 {
2127 struct e1000_hw *hw = &adapter->hw;
2128 int i;
2129
2130 /* hardware has been reset, we need to reload some things */
2131 igb_configure(adapter);
2132
2133 clear_bit(__IGB_DOWN, &adapter->state);
2134
2135 for (i = 0; i < adapter->num_q_vectors; i++)
2136 napi_enable(&(adapter->q_vector[i]->napi));
2137
2138 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2139 igb_configure_msix(adapter);
2140 else
2141 igb_assign_vector(adapter->q_vector[0], 0);
2142
2143 /* Clear any pending interrupts. */
2144 rd32(E1000_TSICR);
2145 rd32(E1000_ICR);
2146 igb_irq_enable(adapter);
2147
2148 /* notify VFs that reset has been completed */
2149 if (adapter->vfs_allocated_count) {
2150 u32 reg_data = rd32(E1000_CTRL_EXT);
2151
2152 reg_data |= E1000_CTRL_EXT_PFRSTD;
2153 wr32(E1000_CTRL_EXT, reg_data);
2154 }
2155
2156 netif_tx_start_all_queues(adapter->netdev);
2157
2158 /* start the watchdog. */
2159 hw->mac.get_link_status = 1;
2160 schedule_work(&adapter->watchdog_task);
2161
2162 if ((adapter->flags & IGB_FLAG_EEE) &&
2163 (!hw->dev_spec._82575.eee_disable))
2164 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2165
2166 return 0;
2167 }
2168
igb_down(struct igb_adapter * adapter)2169 void igb_down(struct igb_adapter *adapter)
2170 {
2171 struct net_device *netdev = adapter->netdev;
2172 struct e1000_hw *hw = &adapter->hw;
2173 u32 tctl, rctl;
2174 int i;
2175
2176 /* signal that we're down so the interrupt handler does not
2177 * reschedule our watchdog timer
2178 */
2179 set_bit(__IGB_DOWN, &adapter->state);
2180
2181 /* disable receives in the hardware */
2182 rctl = rd32(E1000_RCTL);
2183 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2184 /* flush and sleep below */
2185
2186 igb_nfc_filter_exit(adapter);
2187
2188 netif_carrier_off(netdev);
2189 netif_tx_stop_all_queues(netdev);
2190
2191 /* disable transmits in the hardware */
2192 tctl = rd32(E1000_TCTL);
2193 tctl &= ~E1000_TCTL_EN;
2194 wr32(E1000_TCTL, tctl);
2195 /* flush both disables and wait for them to finish */
2196 wrfl();
2197 usleep_range(10000, 11000);
2198
2199 igb_irq_disable(adapter);
2200
2201 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2202
2203 for (i = 0; i < adapter->num_q_vectors; i++) {
2204 if (adapter->q_vector[i]) {
2205 napi_synchronize(&adapter->q_vector[i]->napi);
2206 napi_disable(&adapter->q_vector[i]->napi);
2207 }
2208 }
2209
2210 del_timer_sync(&adapter->watchdog_timer);
2211 del_timer_sync(&adapter->phy_info_timer);
2212
2213 /* record the stats before reset*/
2214 spin_lock(&adapter->stats64_lock);
2215 igb_update_stats(adapter);
2216 spin_unlock(&adapter->stats64_lock);
2217
2218 adapter->link_speed = 0;
2219 adapter->link_duplex = 0;
2220
2221 if (!pci_channel_offline(adapter->pdev))
2222 igb_reset(adapter);
2223
2224 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2225 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2226
2227 igb_clean_all_tx_rings(adapter);
2228 igb_clean_all_rx_rings(adapter);
2229 #ifdef CONFIG_IGB_DCA
2230
2231 /* since we reset the hardware DCA settings were cleared */
2232 igb_setup_dca(adapter);
2233 #endif
2234 }
2235
igb_reinit_locked(struct igb_adapter * adapter)2236 void igb_reinit_locked(struct igb_adapter *adapter)
2237 {
2238 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2239 usleep_range(1000, 2000);
2240 igb_down(adapter);
2241 igb_up(adapter);
2242 clear_bit(__IGB_RESETTING, &adapter->state);
2243 }
2244
2245 /** igb_enable_mas - Media Autosense re-enable after swap
2246 *
2247 * @adapter: adapter struct
2248 **/
igb_enable_mas(struct igb_adapter * adapter)2249 static void igb_enable_mas(struct igb_adapter *adapter)
2250 {
2251 struct e1000_hw *hw = &adapter->hw;
2252 u32 connsw = rd32(E1000_CONNSW);
2253
2254 /* configure for SerDes media detect */
2255 if ((hw->phy.media_type == e1000_media_type_copper) &&
2256 (!(connsw & E1000_CONNSW_SERDESD))) {
2257 connsw |= E1000_CONNSW_ENRGSRC;
2258 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2259 wr32(E1000_CONNSW, connsw);
2260 wrfl();
2261 }
2262 }
2263
2264 #ifdef CONFIG_IGB_HWMON
2265 /**
2266 * igb_set_i2c_bb - Init I2C interface
2267 * @hw: pointer to hardware structure
2268 **/
igb_set_i2c_bb(struct e1000_hw * hw)2269 static void igb_set_i2c_bb(struct e1000_hw *hw)
2270 {
2271 u32 ctrl_ext;
2272 s32 i2cctl;
2273
2274 ctrl_ext = rd32(E1000_CTRL_EXT);
2275 ctrl_ext |= E1000_CTRL_I2C_ENA;
2276 wr32(E1000_CTRL_EXT, ctrl_ext);
2277 wrfl();
2278
2279 i2cctl = rd32(E1000_I2CPARAMS);
2280 i2cctl |= E1000_I2CBB_EN
2281 | E1000_I2C_CLK_OE_N
2282 | E1000_I2C_DATA_OE_N;
2283 wr32(E1000_I2CPARAMS, i2cctl);
2284 wrfl();
2285 }
2286 #endif
2287
igb_reset(struct igb_adapter * adapter)2288 void igb_reset(struct igb_adapter *adapter)
2289 {
2290 struct pci_dev *pdev = adapter->pdev;
2291 struct e1000_hw *hw = &adapter->hw;
2292 struct e1000_mac_info *mac = &hw->mac;
2293 struct e1000_fc_info *fc = &hw->fc;
2294 u32 pba, hwm;
2295
2296 /* Repartition Pba for greater than 9k mtu
2297 * To take effect CTRL.RST is required.
2298 */
2299 switch (mac->type) {
2300 case e1000_i350:
2301 case e1000_i354:
2302 case e1000_82580:
2303 pba = rd32(E1000_RXPBS);
2304 pba = igb_rxpbs_adjust_82580(pba);
2305 break;
2306 case e1000_82576:
2307 pba = rd32(E1000_RXPBS);
2308 pba &= E1000_RXPBS_SIZE_MASK_82576;
2309 break;
2310 case e1000_82575:
2311 case e1000_i210:
2312 case e1000_i211:
2313 default:
2314 pba = E1000_PBA_34K;
2315 break;
2316 }
2317
2318 if (mac->type == e1000_82575) {
2319 u32 min_rx_space, min_tx_space, needed_tx_space;
2320
2321 /* write Rx PBA so that hardware can report correct Tx PBA */
2322 wr32(E1000_PBA, pba);
2323
2324 /* To maintain wire speed transmits, the Tx FIFO should be
2325 * large enough to accommodate two full transmit packets,
2326 * rounded up to the next 1KB and expressed in KB. Likewise,
2327 * the Rx FIFO should be large enough to accommodate at least
2328 * one full receive packet and is similarly rounded up and
2329 * expressed in KB.
2330 */
2331 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2332
2333 /* The Tx FIFO also stores 16 bytes of information about the Tx
2334 * but don't include Ethernet FCS because hardware appends it.
2335 * We only need to round down to the nearest 512 byte block
2336 * count since the value we care about is 2 frames, not 1.
2337 */
2338 min_tx_space = adapter->max_frame_size;
2339 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2340 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2341
2342 /* upper 16 bits has Tx packet buffer allocation size in KB */
2343 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2344
2345 /* If current Tx allocation is less than the min Tx FIFO size,
2346 * and the min Tx FIFO size is less than the current Rx FIFO
2347 * allocation, take space away from current Rx allocation.
2348 */
2349 if (needed_tx_space < pba) {
2350 pba -= needed_tx_space;
2351
2352 /* if short on Rx space, Rx wins and must trump Tx
2353 * adjustment
2354 */
2355 if (pba < min_rx_space)
2356 pba = min_rx_space;
2357 }
2358
2359 /* adjust PBA for jumbo frames */
2360 wr32(E1000_PBA, pba);
2361 }
2362
2363 /* flow control settings
2364 * The high water mark must be low enough to fit one full frame
2365 * after transmitting the pause frame. As such we must have enough
2366 * space to allow for us to complete our current transmit and then
2367 * receive the frame that is in progress from the link partner.
2368 * Set it to:
2369 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2370 */
2371 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2372
2373 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2374 fc->low_water = fc->high_water - 16;
2375 fc->pause_time = 0xFFFF;
2376 fc->send_xon = 1;
2377 fc->current_mode = fc->requested_mode;
2378
2379 /* disable receive for all VFs and wait one second */
2380 if (adapter->vfs_allocated_count) {
2381 int i;
2382
2383 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2384 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2385
2386 /* ping all the active vfs to let them know we are going down */
2387 igb_ping_all_vfs(adapter);
2388
2389 /* disable transmits and receives */
2390 wr32(E1000_VFRE, 0);
2391 wr32(E1000_VFTE, 0);
2392 }
2393
2394 /* Allow time for pending master requests to run */
2395 hw->mac.ops.reset_hw(hw);
2396 wr32(E1000_WUC, 0);
2397
2398 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2399 /* need to resetup here after media swap */
2400 adapter->ei.get_invariants(hw);
2401 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2402 }
2403 if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2404 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2405 igb_enable_mas(adapter);
2406 }
2407 if (hw->mac.ops.init_hw(hw))
2408 dev_err(&pdev->dev, "Hardware Error\n");
2409
2410 /* RAR registers were cleared during init_hw, clear mac table */
2411 igb_flush_mac_table(adapter);
2412 __dev_uc_unsync(adapter->netdev, NULL);
2413
2414 /* Recover default RAR entry */
2415 igb_set_default_mac_filter(adapter);
2416
2417 /* Flow control settings reset on hardware reset, so guarantee flow
2418 * control is off when forcing speed.
2419 */
2420 if (!hw->mac.autoneg)
2421 igb_force_mac_fc(hw);
2422
2423 igb_init_dmac(adapter, pba);
2424 #ifdef CONFIG_IGB_HWMON
2425 /* Re-initialize the thermal sensor on i350 devices. */
2426 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2427 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2428 /* If present, re-initialize the external thermal sensor
2429 * interface.
2430 */
2431 if (adapter->ets)
2432 igb_set_i2c_bb(hw);
2433 mac->ops.init_thermal_sensor_thresh(hw);
2434 }
2435 }
2436 #endif
2437 /* Re-establish EEE setting */
2438 if (hw->phy.media_type == e1000_media_type_copper) {
2439 switch (mac->type) {
2440 case e1000_i350:
2441 case e1000_i210:
2442 case e1000_i211:
2443 igb_set_eee_i350(hw, true, true);
2444 break;
2445 case e1000_i354:
2446 igb_set_eee_i354(hw, true, true);
2447 break;
2448 default:
2449 break;
2450 }
2451 }
2452 if (!netif_running(adapter->netdev))
2453 igb_power_down_link(adapter);
2454
2455 igb_update_mng_vlan(adapter);
2456
2457 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2458 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2459
2460 /* Re-enable PTP, where applicable. */
2461 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2462 igb_ptp_reset(adapter);
2463
2464 igb_get_phy_info(hw);
2465 }
2466
igb_fix_features(struct net_device * netdev,netdev_features_t features)2467 static netdev_features_t igb_fix_features(struct net_device *netdev,
2468 netdev_features_t features)
2469 {
2470 /* Since there is no support for separate Rx/Tx vlan accel
2471 * enable/disable make sure Tx flag is always in same state as Rx.
2472 */
2473 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2474 features |= NETIF_F_HW_VLAN_CTAG_TX;
2475 else
2476 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2477
2478 return features;
2479 }
2480
igb_set_features(struct net_device * netdev,netdev_features_t features)2481 static int igb_set_features(struct net_device *netdev,
2482 netdev_features_t features)
2483 {
2484 netdev_features_t changed = netdev->features ^ features;
2485 struct igb_adapter *adapter = netdev_priv(netdev);
2486
2487 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2488 igb_vlan_mode(netdev, features);
2489
2490 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2491 return 0;
2492
2493 if (!(features & NETIF_F_NTUPLE)) {
2494 struct hlist_node *node2;
2495 struct igb_nfc_filter *rule;
2496
2497 spin_lock(&adapter->nfc_lock);
2498 hlist_for_each_entry_safe(rule, node2,
2499 &adapter->nfc_filter_list, nfc_node) {
2500 igb_erase_filter(adapter, rule);
2501 hlist_del(&rule->nfc_node);
2502 kfree(rule);
2503 }
2504 spin_unlock(&adapter->nfc_lock);
2505 adapter->nfc_filter_count = 0;
2506 }
2507
2508 netdev->features = features;
2509
2510 if (netif_running(netdev))
2511 igb_reinit_locked(adapter);
2512 else
2513 igb_reset(adapter);
2514
2515 return 1;
2516 }
2517
igb_ndo_fdb_add(struct ndmsg * ndm,struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack * extack)2518 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2519 struct net_device *dev,
2520 const unsigned char *addr, u16 vid,
2521 u16 flags,
2522 struct netlink_ext_ack *extack)
2523 {
2524 /* guarantee we can provide a unique filter for the unicast address */
2525 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2526 struct igb_adapter *adapter = netdev_priv(dev);
2527 int vfn = adapter->vfs_allocated_count;
2528
2529 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2530 return -ENOMEM;
2531 }
2532
2533 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2534 }
2535
2536 #define IGB_MAX_MAC_HDR_LEN 127
2537 #define IGB_MAX_NETWORK_HDR_LEN 511
2538
2539 static netdev_features_t
igb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2540 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2541 netdev_features_t features)
2542 {
2543 unsigned int network_hdr_len, mac_hdr_len;
2544
2545 /* Make certain the headers can be described by a context descriptor */
2546 mac_hdr_len = skb_network_header(skb) - skb->data;
2547 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2548 return features & ~(NETIF_F_HW_CSUM |
2549 NETIF_F_SCTP_CRC |
2550 NETIF_F_GSO_UDP_L4 |
2551 NETIF_F_HW_VLAN_CTAG_TX |
2552 NETIF_F_TSO |
2553 NETIF_F_TSO6);
2554
2555 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2556 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2557 return features & ~(NETIF_F_HW_CSUM |
2558 NETIF_F_SCTP_CRC |
2559 NETIF_F_GSO_UDP_L4 |
2560 NETIF_F_TSO |
2561 NETIF_F_TSO6);
2562
2563 /* We can only support IPV4 TSO in tunnels if we can mangle the
2564 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2565 */
2566 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2567 features &= ~NETIF_F_TSO;
2568
2569 return features;
2570 }
2571
igb_offload_apply(struct igb_adapter * adapter,s32 queue)2572 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2573 {
2574 if (!is_fqtss_enabled(adapter)) {
2575 enable_fqtss(adapter, true);
2576 return;
2577 }
2578
2579 igb_config_tx_modes(adapter, queue);
2580
2581 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2582 enable_fqtss(adapter, false);
2583 }
2584
igb_offload_cbs(struct igb_adapter * adapter,struct tc_cbs_qopt_offload * qopt)2585 static int igb_offload_cbs(struct igb_adapter *adapter,
2586 struct tc_cbs_qopt_offload *qopt)
2587 {
2588 struct e1000_hw *hw = &adapter->hw;
2589 int err;
2590
2591 /* CBS offloading is only supported by i210 controller. */
2592 if (hw->mac.type != e1000_i210)
2593 return -EOPNOTSUPP;
2594
2595 /* CBS offloading is only supported by queue 0 and queue 1. */
2596 if (qopt->queue < 0 || qopt->queue > 1)
2597 return -EINVAL;
2598
2599 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2600 qopt->idleslope, qopt->sendslope,
2601 qopt->hicredit, qopt->locredit);
2602 if (err)
2603 return err;
2604
2605 igb_offload_apply(adapter, qopt->queue);
2606
2607 return 0;
2608 }
2609
2610 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2611 #define VLAN_PRIO_FULL_MASK (0x07)
2612
igb_parse_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * f,int traffic_class,struct igb_nfc_filter * input)2613 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2614 struct flow_cls_offload *f,
2615 int traffic_class,
2616 struct igb_nfc_filter *input)
2617 {
2618 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2619 struct flow_dissector *dissector = rule->match.dissector;
2620 struct netlink_ext_ack *extack = f->common.extack;
2621
2622 if (dissector->used_keys &
2623 ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
2624 BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
2625 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2626 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN))) {
2627 NL_SET_ERR_MSG_MOD(extack,
2628 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2629 return -EOPNOTSUPP;
2630 }
2631
2632 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2633 struct flow_match_eth_addrs match;
2634
2635 flow_rule_match_eth_addrs(rule, &match);
2636 if (!is_zero_ether_addr(match.mask->dst)) {
2637 if (!is_broadcast_ether_addr(match.mask->dst)) {
2638 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2639 return -EINVAL;
2640 }
2641
2642 input->filter.match_flags |=
2643 IGB_FILTER_FLAG_DST_MAC_ADDR;
2644 ether_addr_copy(input->filter.dst_addr, match.key->dst);
2645 }
2646
2647 if (!is_zero_ether_addr(match.mask->src)) {
2648 if (!is_broadcast_ether_addr(match.mask->src)) {
2649 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2650 return -EINVAL;
2651 }
2652
2653 input->filter.match_flags |=
2654 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2655 ether_addr_copy(input->filter.src_addr, match.key->src);
2656 }
2657 }
2658
2659 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2660 struct flow_match_basic match;
2661
2662 flow_rule_match_basic(rule, &match);
2663 if (match.mask->n_proto) {
2664 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2665 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2666 return -EINVAL;
2667 }
2668
2669 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2670 input->filter.etype = match.key->n_proto;
2671 }
2672 }
2673
2674 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2675 struct flow_match_vlan match;
2676
2677 flow_rule_match_vlan(rule, &match);
2678 if (match.mask->vlan_priority) {
2679 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2680 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2681 return -EINVAL;
2682 }
2683
2684 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2685 input->filter.vlan_tci =
2686 (__force __be16)match.key->vlan_priority;
2687 }
2688 }
2689
2690 input->action = traffic_class;
2691 input->cookie = f->cookie;
2692
2693 return 0;
2694 }
2695
igb_configure_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2696 static int igb_configure_clsflower(struct igb_adapter *adapter,
2697 struct flow_cls_offload *cls_flower)
2698 {
2699 struct netlink_ext_ack *extack = cls_flower->common.extack;
2700 struct igb_nfc_filter *filter, *f;
2701 int err, tc;
2702
2703 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2704 if (tc < 0) {
2705 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2706 return -EINVAL;
2707 }
2708
2709 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2710 if (!filter)
2711 return -ENOMEM;
2712
2713 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2714 if (err < 0)
2715 goto err_parse;
2716
2717 spin_lock(&adapter->nfc_lock);
2718
2719 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2720 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2721 err = -EEXIST;
2722 NL_SET_ERR_MSG_MOD(extack,
2723 "This filter is already set in ethtool");
2724 goto err_locked;
2725 }
2726 }
2727
2728 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2729 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2730 err = -EEXIST;
2731 NL_SET_ERR_MSG_MOD(extack,
2732 "This filter is already set in cls_flower");
2733 goto err_locked;
2734 }
2735 }
2736
2737 err = igb_add_filter(adapter, filter);
2738 if (err < 0) {
2739 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2740 goto err_locked;
2741 }
2742
2743 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2744
2745 spin_unlock(&adapter->nfc_lock);
2746
2747 return 0;
2748
2749 err_locked:
2750 spin_unlock(&adapter->nfc_lock);
2751
2752 err_parse:
2753 kfree(filter);
2754
2755 return err;
2756 }
2757
igb_delete_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2758 static int igb_delete_clsflower(struct igb_adapter *adapter,
2759 struct flow_cls_offload *cls_flower)
2760 {
2761 struct igb_nfc_filter *filter;
2762 int err;
2763
2764 spin_lock(&adapter->nfc_lock);
2765
2766 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2767 if (filter->cookie == cls_flower->cookie)
2768 break;
2769
2770 if (!filter) {
2771 err = -ENOENT;
2772 goto out;
2773 }
2774
2775 err = igb_erase_filter(adapter, filter);
2776 if (err < 0)
2777 goto out;
2778
2779 hlist_del(&filter->nfc_node);
2780 kfree(filter);
2781
2782 out:
2783 spin_unlock(&adapter->nfc_lock);
2784
2785 return err;
2786 }
2787
igb_setup_tc_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2788 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2789 struct flow_cls_offload *cls_flower)
2790 {
2791 switch (cls_flower->command) {
2792 case FLOW_CLS_REPLACE:
2793 return igb_configure_clsflower(adapter, cls_flower);
2794 case FLOW_CLS_DESTROY:
2795 return igb_delete_clsflower(adapter, cls_flower);
2796 case FLOW_CLS_STATS:
2797 return -EOPNOTSUPP;
2798 default:
2799 return -EOPNOTSUPP;
2800 }
2801 }
2802
igb_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2803 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2804 void *cb_priv)
2805 {
2806 struct igb_adapter *adapter = cb_priv;
2807
2808 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2809 return -EOPNOTSUPP;
2810
2811 switch (type) {
2812 case TC_SETUP_CLSFLOWER:
2813 return igb_setup_tc_cls_flower(adapter, type_data);
2814
2815 default:
2816 return -EOPNOTSUPP;
2817 }
2818 }
2819
igb_offload_txtime(struct igb_adapter * adapter,struct tc_etf_qopt_offload * qopt)2820 static int igb_offload_txtime(struct igb_adapter *adapter,
2821 struct tc_etf_qopt_offload *qopt)
2822 {
2823 struct e1000_hw *hw = &adapter->hw;
2824 int err;
2825
2826 /* Launchtime offloading is only supported by i210 controller. */
2827 if (hw->mac.type != e1000_i210)
2828 return -EOPNOTSUPP;
2829
2830 /* Launchtime offloading is only supported by queues 0 and 1. */
2831 if (qopt->queue < 0 || qopt->queue > 1)
2832 return -EINVAL;
2833
2834 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2835 if (err)
2836 return err;
2837
2838 igb_offload_apply(adapter, qopt->queue);
2839
2840 return 0;
2841 }
2842
igb_tc_query_caps(struct igb_adapter * adapter,struct tc_query_caps_base * base)2843 static int igb_tc_query_caps(struct igb_adapter *adapter,
2844 struct tc_query_caps_base *base)
2845 {
2846 switch (base->type) {
2847 case TC_SETUP_QDISC_TAPRIO: {
2848 struct tc_taprio_caps *caps = base->caps;
2849
2850 caps->broken_mqprio = true;
2851
2852 return 0;
2853 }
2854 default:
2855 return -EOPNOTSUPP;
2856 }
2857 }
2858
2859 static LIST_HEAD(igb_block_cb_list);
2860
igb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)2861 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2862 void *type_data)
2863 {
2864 struct igb_adapter *adapter = netdev_priv(dev);
2865
2866 switch (type) {
2867 case TC_QUERY_CAPS:
2868 return igb_tc_query_caps(adapter, type_data);
2869 case TC_SETUP_QDISC_CBS:
2870 return igb_offload_cbs(adapter, type_data);
2871 case TC_SETUP_BLOCK:
2872 return flow_block_cb_setup_simple(type_data,
2873 &igb_block_cb_list,
2874 igb_setup_tc_block_cb,
2875 adapter, adapter, true);
2876
2877 case TC_SETUP_QDISC_ETF:
2878 return igb_offload_txtime(adapter, type_data);
2879
2880 default:
2881 return -EOPNOTSUPP;
2882 }
2883 }
2884
igb_xdp_setup(struct net_device * dev,struct netdev_bpf * bpf)2885 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2886 {
2887 int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2888 struct igb_adapter *adapter = netdev_priv(dev);
2889 struct bpf_prog *prog = bpf->prog, *old_prog;
2890 bool running = netif_running(dev);
2891 bool need_reset;
2892
2893 /* verify igb ring attributes are sufficient for XDP */
2894 for (i = 0; i < adapter->num_rx_queues; i++) {
2895 struct igb_ring *ring = adapter->rx_ring[i];
2896
2897 if (frame_size > igb_rx_bufsz(ring)) {
2898 NL_SET_ERR_MSG_MOD(bpf->extack,
2899 "The RX buffer size is too small for the frame size");
2900 netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2901 igb_rx_bufsz(ring), frame_size);
2902 return -EINVAL;
2903 }
2904 }
2905
2906 old_prog = xchg(&adapter->xdp_prog, prog);
2907 need_reset = (!!prog != !!old_prog);
2908
2909 /* device is up and bpf is added/removed, must setup the RX queues */
2910 if (need_reset && running) {
2911 igb_close(dev);
2912 } else {
2913 for (i = 0; i < adapter->num_rx_queues; i++)
2914 (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2915 adapter->xdp_prog);
2916 }
2917
2918 if (old_prog)
2919 bpf_prog_put(old_prog);
2920
2921 /* bpf is just replaced, RXQ and MTU are already setup */
2922 if (!need_reset) {
2923 return 0;
2924 } else {
2925 if (prog)
2926 xdp_features_set_redirect_target(dev, true);
2927 else
2928 xdp_features_clear_redirect_target(dev);
2929 }
2930
2931 if (running)
2932 igb_open(dev);
2933
2934 return 0;
2935 }
2936
igb_xdp(struct net_device * dev,struct netdev_bpf * xdp)2937 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2938 {
2939 switch (xdp->command) {
2940 case XDP_SETUP_PROG:
2941 return igb_xdp_setup(dev, xdp);
2942 default:
2943 return -EINVAL;
2944 }
2945 }
2946
2947 /* This function assumes __netif_tx_lock is held by the caller. */
igb_xdp_ring_update_tail(struct igb_ring * ring)2948 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2949 {
2950 lockdep_assert_held(&txring_txq(ring)->_xmit_lock);
2951
2952 /* Force memory writes to complete before letting h/w know there
2953 * are new descriptors to fetch.
2954 */
2955 wmb();
2956 writel(ring->next_to_use, ring->tail);
2957 }
2958
igb_xdp_tx_queue_mapping(struct igb_adapter * adapter)2959 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2960 {
2961 unsigned int r_idx = smp_processor_id();
2962
2963 if (r_idx >= adapter->num_tx_queues)
2964 r_idx = r_idx % adapter->num_tx_queues;
2965
2966 return adapter->tx_ring[r_idx];
2967 }
2968
igb_xdp_xmit_back(struct igb_adapter * adapter,struct xdp_buff * xdp)2969 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2970 {
2971 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2972 int cpu = smp_processor_id();
2973 struct igb_ring *tx_ring;
2974 struct netdev_queue *nq;
2975 u32 ret;
2976
2977 if (unlikely(!xdpf))
2978 return IGB_XDP_CONSUMED;
2979
2980 /* During program transitions its possible adapter->xdp_prog is assigned
2981 * but ring has not been configured yet. In this case simply abort xmit.
2982 */
2983 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2984 if (unlikely(!tx_ring))
2985 return IGB_XDP_CONSUMED;
2986
2987 nq = txring_txq(tx_ring);
2988 __netif_tx_lock(nq, cpu);
2989 /* Avoid transmit queue timeout since we share it with the slow path */
2990 txq_trans_cond_update(nq);
2991 ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2992 __netif_tx_unlock(nq);
2993
2994 return ret;
2995 }
2996
igb_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)2997 static int igb_xdp_xmit(struct net_device *dev, int n,
2998 struct xdp_frame **frames, u32 flags)
2999 {
3000 struct igb_adapter *adapter = netdev_priv(dev);
3001 int cpu = smp_processor_id();
3002 struct igb_ring *tx_ring;
3003 struct netdev_queue *nq;
3004 int nxmit = 0;
3005 int i;
3006
3007 if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
3008 return -ENETDOWN;
3009
3010 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3011 return -EINVAL;
3012
3013 /* During program transitions its possible adapter->xdp_prog is assigned
3014 * but ring has not been configured yet. In this case simply abort xmit.
3015 */
3016 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
3017 if (unlikely(!tx_ring))
3018 return -ENXIO;
3019
3020 nq = txring_txq(tx_ring);
3021 __netif_tx_lock(nq, cpu);
3022
3023 /* Avoid transmit queue timeout since we share it with the slow path */
3024 txq_trans_cond_update(nq);
3025
3026 for (i = 0; i < n; i++) {
3027 struct xdp_frame *xdpf = frames[i];
3028 int err;
3029
3030 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
3031 if (err != IGB_XDP_TX)
3032 break;
3033 nxmit++;
3034 }
3035
3036 if (unlikely(flags & XDP_XMIT_FLUSH))
3037 igb_xdp_ring_update_tail(tx_ring);
3038
3039 __netif_tx_unlock(nq);
3040
3041 return nxmit;
3042 }
3043
3044 static const struct net_device_ops igb_netdev_ops = {
3045 .ndo_open = igb_open,
3046 .ndo_stop = igb_close,
3047 .ndo_start_xmit = igb_xmit_frame,
3048 .ndo_get_stats64 = igb_get_stats64,
3049 .ndo_set_rx_mode = igb_set_rx_mode,
3050 .ndo_set_mac_address = igb_set_mac,
3051 .ndo_change_mtu = igb_change_mtu,
3052 .ndo_eth_ioctl = igb_ioctl,
3053 .ndo_tx_timeout = igb_tx_timeout,
3054 .ndo_validate_addr = eth_validate_addr,
3055 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
3056 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
3057 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
3058 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
3059 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
3060 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
3061 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
3062 .ndo_get_vf_config = igb_ndo_get_vf_config,
3063 .ndo_fix_features = igb_fix_features,
3064 .ndo_set_features = igb_set_features,
3065 .ndo_fdb_add = igb_ndo_fdb_add,
3066 .ndo_features_check = igb_features_check,
3067 .ndo_setup_tc = igb_setup_tc,
3068 .ndo_bpf = igb_xdp,
3069 .ndo_xdp_xmit = igb_xdp_xmit,
3070 };
3071
3072 /**
3073 * igb_set_fw_version - Configure version string for ethtool
3074 * @adapter: adapter struct
3075 **/
igb_set_fw_version(struct igb_adapter * adapter)3076 void igb_set_fw_version(struct igb_adapter *adapter)
3077 {
3078 struct e1000_hw *hw = &adapter->hw;
3079 struct e1000_fw_version fw;
3080
3081 igb_get_fw_version(hw, &fw);
3082
3083 switch (hw->mac.type) {
3084 case e1000_i210:
3085 case e1000_i211:
3086 if (!(igb_get_flash_presence_i210(hw))) {
3087 snprintf(adapter->fw_version,
3088 sizeof(adapter->fw_version),
3089 "%2d.%2d-%d",
3090 fw.invm_major, fw.invm_minor,
3091 fw.invm_img_type);
3092 break;
3093 }
3094 fallthrough;
3095 default:
3096 /* if option is rom valid, display its version too */
3097 if (fw.or_valid) {
3098 snprintf(adapter->fw_version,
3099 sizeof(adapter->fw_version),
3100 "%d.%d, 0x%08x, %d.%d.%d",
3101 fw.eep_major, fw.eep_minor, fw.etrack_id,
3102 fw.or_major, fw.or_build, fw.or_patch);
3103 /* no option rom */
3104 } else if (fw.etrack_id != 0X0000) {
3105 snprintf(adapter->fw_version,
3106 sizeof(adapter->fw_version),
3107 "%d.%d, 0x%08x",
3108 fw.eep_major, fw.eep_minor, fw.etrack_id);
3109 } else {
3110 snprintf(adapter->fw_version,
3111 sizeof(adapter->fw_version),
3112 "%d.%d.%d",
3113 fw.eep_major, fw.eep_minor, fw.eep_build);
3114 }
3115 break;
3116 }
3117 }
3118
3119 /**
3120 * igb_init_mas - init Media Autosense feature if enabled in the NVM
3121 *
3122 * @adapter: adapter struct
3123 **/
igb_init_mas(struct igb_adapter * adapter)3124 static void igb_init_mas(struct igb_adapter *adapter)
3125 {
3126 struct e1000_hw *hw = &adapter->hw;
3127 u16 eeprom_data;
3128
3129 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3130 switch (hw->bus.func) {
3131 case E1000_FUNC_0:
3132 if (eeprom_data & IGB_MAS_ENABLE_0) {
3133 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3134 netdev_info(adapter->netdev,
3135 "MAS: Enabling Media Autosense for port %d\n",
3136 hw->bus.func);
3137 }
3138 break;
3139 case E1000_FUNC_1:
3140 if (eeprom_data & IGB_MAS_ENABLE_1) {
3141 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3142 netdev_info(adapter->netdev,
3143 "MAS: Enabling Media Autosense for port %d\n",
3144 hw->bus.func);
3145 }
3146 break;
3147 case E1000_FUNC_2:
3148 if (eeprom_data & IGB_MAS_ENABLE_2) {
3149 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3150 netdev_info(adapter->netdev,
3151 "MAS: Enabling Media Autosense for port %d\n",
3152 hw->bus.func);
3153 }
3154 break;
3155 case E1000_FUNC_3:
3156 if (eeprom_data & IGB_MAS_ENABLE_3) {
3157 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3158 netdev_info(adapter->netdev,
3159 "MAS: Enabling Media Autosense for port %d\n",
3160 hw->bus.func);
3161 }
3162 break;
3163 default:
3164 /* Shouldn't get here */
3165 netdev_err(adapter->netdev,
3166 "MAS: Invalid port configuration, returning\n");
3167 break;
3168 }
3169 }
3170
3171 /**
3172 * igb_init_i2c - Init I2C interface
3173 * @adapter: pointer to adapter structure
3174 **/
igb_init_i2c(struct igb_adapter * adapter)3175 static s32 igb_init_i2c(struct igb_adapter *adapter)
3176 {
3177 s32 status = 0;
3178
3179 /* I2C interface supported on i350 devices */
3180 if (adapter->hw.mac.type != e1000_i350)
3181 return 0;
3182
3183 /* Initialize the i2c bus which is controlled by the registers.
3184 * This bus will use the i2c_algo_bit structure that implements
3185 * the protocol through toggling of the 4 bits in the register.
3186 */
3187 adapter->i2c_adap.owner = THIS_MODULE;
3188 adapter->i2c_algo = igb_i2c_algo;
3189 adapter->i2c_algo.data = adapter;
3190 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3191 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3192 strscpy(adapter->i2c_adap.name, "igb BB",
3193 sizeof(adapter->i2c_adap.name));
3194 status = i2c_bit_add_bus(&adapter->i2c_adap);
3195 return status;
3196 }
3197
3198 /**
3199 * igb_probe - Device Initialization Routine
3200 * @pdev: PCI device information struct
3201 * @ent: entry in igb_pci_tbl
3202 *
3203 * Returns 0 on success, negative on failure
3204 *
3205 * igb_probe initializes an adapter identified by a pci_dev structure.
3206 * The OS initialization, configuring of the adapter private structure,
3207 * and a hardware reset occur.
3208 **/
igb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3209 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3210 {
3211 struct net_device *netdev;
3212 struct igb_adapter *adapter;
3213 struct e1000_hw *hw;
3214 u16 eeprom_data = 0;
3215 s32 ret_val;
3216 static int global_quad_port_a; /* global quad port a indication */
3217 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3218 u8 part_str[E1000_PBANUM_LENGTH];
3219 int err;
3220
3221 /* Catch broken hardware that put the wrong VF device ID in
3222 * the PCIe SR-IOV capability.
3223 */
3224 if (pdev->is_virtfn) {
3225 WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3226 pci_name(pdev), pdev->vendor, pdev->device);
3227 return -EINVAL;
3228 }
3229
3230 err = pci_enable_device_mem(pdev);
3231 if (err)
3232 return err;
3233
3234 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3235 if (err) {
3236 dev_err(&pdev->dev,
3237 "No usable DMA configuration, aborting\n");
3238 goto err_dma;
3239 }
3240
3241 err = pci_request_mem_regions(pdev, igb_driver_name);
3242 if (err)
3243 goto err_pci_reg;
3244
3245 pci_set_master(pdev);
3246 pci_save_state(pdev);
3247
3248 err = -ENOMEM;
3249 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3250 IGB_MAX_TX_QUEUES);
3251 if (!netdev)
3252 goto err_alloc_etherdev;
3253
3254 SET_NETDEV_DEV(netdev, &pdev->dev);
3255
3256 pci_set_drvdata(pdev, netdev);
3257 adapter = netdev_priv(netdev);
3258 adapter->netdev = netdev;
3259 adapter->pdev = pdev;
3260 hw = &adapter->hw;
3261 hw->back = adapter;
3262 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3263
3264 err = -EIO;
3265 adapter->io_addr = pci_iomap(pdev, 0, 0);
3266 if (!adapter->io_addr)
3267 goto err_ioremap;
3268 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3269 hw->hw_addr = adapter->io_addr;
3270
3271 netdev->netdev_ops = &igb_netdev_ops;
3272 igb_set_ethtool_ops(netdev);
3273 netdev->watchdog_timeo = 5 * HZ;
3274
3275 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3276
3277 netdev->mem_start = pci_resource_start(pdev, 0);
3278 netdev->mem_end = pci_resource_end(pdev, 0);
3279
3280 /* PCI config space info */
3281 hw->vendor_id = pdev->vendor;
3282 hw->device_id = pdev->device;
3283 hw->revision_id = pdev->revision;
3284 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3285 hw->subsystem_device_id = pdev->subsystem_device;
3286
3287 /* Copy the default MAC, PHY and NVM function pointers */
3288 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3289 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3290 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3291 /* Initialize skew-specific constants */
3292 err = ei->get_invariants(hw);
3293 if (err)
3294 goto err_sw_init;
3295
3296 /* setup the private structure */
3297 err = igb_sw_init(adapter);
3298 if (err)
3299 goto err_sw_init;
3300
3301 igb_get_bus_info_pcie(hw);
3302
3303 hw->phy.autoneg_wait_to_complete = false;
3304
3305 /* Copper options */
3306 if (hw->phy.media_type == e1000_media_type_copper) {
3307 hw->phy.mdix = AUTO_ALL_MODES;
3308 hw->phy.disable_polarity_correction = false;
3309 hw->phy.ms_type = e1000_ms_hw_default;
3310 }
3311
3312 if (igb_check_reset_block(hw))
3313 dev_info(&pdev->dev,
3314 "PHY reset is blocked due to SOL/IDER session.\n");
3315
3316 /* features is initialized to 0 in allocation, it might have bits
3317 * set by igb_sw_init so we should use an or instead of an
3318 * assignment.
3319 */
3320 netdev->features |= NETIF_F_SG |
3321 NETIF_F_TSO |
3322 NETIF_F_TSO6 |
3323 NETIF_F_RXHASH |
3324 NETIF_F_RXCSUM |
3325 NETIF_F_HW_CSUM;
3326
3327 if (hw->mac.type >= e1000_82576)
3328 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3329
3330 if (hw->mac.type >= e1000_i350)
3331 netdev->features |= NETIF_F_HW_TC;
3332
3333 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3334 NETIF_F_GSO_GRE_CSUM | \
3335 NETIF_F_GSO_IPXIP4 | \
3336 NETIF_F_GSO_IPXIP6 | \
3337 NETIF_F_GSO_UDP_TUNNEL | \
3338 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3339
3340 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3341 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3342
3343 /* copy netdev features into list of user selectable features */
3344 netdev->hw_features |= netdev->features |
3345 NETIF_F_HW_VLAN_CTAG_RX |
3346 NETIF_F_HW_VLAN_CTAG_TX |
3347 NETIF_F_RXALL;
3348
3349 if (hw->mac.type >= e1000_i350)
3350 netdev->hw_features |= NETIF_F_NTUPLE;
3351
3352 netdev->features |= NETIF_F_HIGHDMA;
3353
3354 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3355 netdev->mpls_features |= NETIF_F_HW_CSUM;
3356 netdev->hw_enc_features |= netdev->vlan_features;
3357
3358 /* set this bit last since it cannot be part of vlan_features */
3359 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3360 NETIF_F_HW_VLAN_CTAG_RX |
3361 NETIF_F_HW_VLAN_CTAG_TX;
3362
3363 netdev->priv_flags |= IFF_SUPP_NOFCS;
3364
3365 netdev->priv_flags |= IFF_UNICAST_FLT;
3366 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT;
3367
3368 /* MTU range: 68 - 9216 */
3369 netdev->min_mtu = ETH_MIN_MTU;
3370 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3371
3372 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3373
3374 /* before reading the NVM, reset the controller to put the device in a
3375 * known good starting state
3376 */
3377 hw->mac.ops.reset_hw(hw);
3378
3379 /* make sure the NVM is good , i211/i210 parts can have special NVM
3380 * that doesn't contain a checksum
3381 */
3382 switch (hw->mac.type) {
3383 case e1000_i210:
3384 case e1000_i211:
3385 if (igb_get_flash_presence_i210(hw)) {
3386 if (hw->nvm.ops.validate(hw) < 0) {
3387 dev_err(&pdev->dev,
3388 "The NVM Checksum Is Not Valid\n");
3389 err = -EIO;
3390 goto err_eeprom;
3391 }
3392 }
3393 break;
3394 default:
3395 if (hw->nvm.ops.validate(hw) < 0) {
3396 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3397 err = -EIO;
3398 goto err_eeprom;
3399 }
3400 break;
3401 }
3402
3403 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3404 /* copy the MAC address out of the NVM */
3405 if (hw->mac.ops.read_mac_addr(hw))
3406 dev_err(&pdev->dev, "NVM Read Error\n");
3407 }
3408
3409 eth_hw_addr_set(netdev, hw->mac.addr);
3410
3411 if (!is_valid_ether_addr(netdev->dev_addr)) {
3412 dev_err(&pdev->dev, "Invalid MAC Address\n");
3413 err = -EIO;
3414 goto err_eeprom;
3415 }
3416
3417 igb_set_default_mac_filter(adapter);
3418
3419 /* get firmware version for ethtool -i */
3420 igb_set_fw_version(adapter);
3421
3422 /* configure RXPBSIZE and TXPBSIZE */
3423 if (hw->mac.type == e1000_i210) {
3424 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3425 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3426 }
3427
3428 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3429 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3430
3431 INIT_WORK(&adapter->reset_task, igb_reset_task);
3432 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3433
3434 /* Initialize link properties that are user-changeable */
3435 adapter->fc_autoneg = true;
3436 hw->mac.autoneg = true;
3437 hw->phy.autoneg_advertised = 0x2f;
3438
3439 hw->fc.requested_mode = e1000_fc_default;
3440 hw->fc.current_mode = e1000_fc_default;
3441
3442 igb_validate_mdi_setting(hw);
3443
3444 /* By default, support wake on port A */
3445 if (hw->bus.func == 0)
3446 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3447
3448 /* Check the NVM for wake support on non-port A ports */
3449 if (hw->mac.type >= e1000_82580)
3450 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3451 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3452 &eeprom_data);
3453 else if (hw->bus.func == 1)
3454 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3455
3456 if (eeprom_data & IGB_EEPROM_APME)
3457 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3458
3459 /* now that we have the eeprom settings, apply the special cases where
3460 * the eeprom may be wrong or the board simply won't support wake on
3461 * lan on a particular port
3462 */
3463 switch (pdev->device) {
3464 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3465 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3466 break;
3467 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3468 case E1000_DEV_ID_82576_FIBER:
3469 case E1000_DEV_ID_82576_SERDES:
3470 /* Wake events only supported on port A for dual fiber
3471 * regardless of eeprom setting
3472 */
3473 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3474 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3475 break;
3476 case E1000_DEV_ID_82576_QUAD_COPPER:
3477 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3478 /* if quad port adapter, disable WoL on all but port A */
3479 if (global_quad_port_a != 0)
3480 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3481 else
3482 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3483 /* Reset for multiple quad port adapters */
3484 if (++global_quad_port_a == 4)
3485 global_quad_port_a = 0;
3486 break;
3487 default:
3488 /* If the device can't wake, don't set software support */
3489 if (!device_can_wakeup(&adapter->pdev->dev))
3490 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3491 }
3492
3493 /* initialize the wol settings based on the eeprom settings */
3494 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3495 adapter->wol |= E1000_WUFC_MAG;
3496
3497 /* Some vendors want WoL disabled by default, but still supported */
3498 if ((hw->mac.type == e1000_i350) &&
3499 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3500 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3501 adapter->wol = 0;
3502 }
3503
3504 /* Some vendors want the ability to Use the EEPROM setting as
3505 * enable/disable only, and not for capability
3506 */
3507 if (((hw->mac.type == e1000_i350) ||
3508 (hw->mac.type == e1000_i354)) &&
3509 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3510 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3511 adapter->wol = 0;
3512 }
3513 if (hw->mac.type == e1000_i350) {
3514 if (((pdev->subsystem_device == 0x5001) ||
3515 (pdev->subsystem_device == 0x5002)) &&
3516 (hw->bus.func == 0)) {
3517 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3518 adapter->wol = 0;
3519 }
3520 if (pdev->subsystem_device == 0x1F52)
3521 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3522 }
3523
3524 device_set_wakeup_enable(&adapter->pdev->dev,
3525 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3526
3527 /* reset the hardware with the new settings */
3528 igb_reset(adapter);
3529
3530 /* Init the I2C interface */
3531 err = igb_init_i2c(adapter);
3532 if (err) {
3533 dev_err(&pdev->dev, "failed to init i2c interface\n");
3534 goto err_eeprom;
3535 }
3536
3537 /* let the f/w know that the h/w is now under the control of the
3538 * driver.
3539 */
3540 igb_get_hw_control(adapter);
3541
3542 strcpy(netdev->name, "eth%d");
3543 err = register_netdev(netdev);
3544 if (err)
3545 goto err_register;
3546
3547 /* carrier off reporting is important to ethtool even BEFORE open */
3548 netif_carrier_off(netdev);
3549
3550 #ifdef CONFIG_IGB_DCA
3551 if (dca_add_requester(&pdev->dev) == 0) {
3552 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3553 dev_info(&pdev->dev, "DCA enabled\n");
3554 igb_setup_dca(adapter);
3555 }
3556
3557 #endif
3558 #ifdef CONFIG_IGB_HWMON
3559 /* Initialize the thermal sensor on i350 devices. */
3560 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3561 u16 ets_word;
3562
3563 /* Read the NVM to determine if this i350 device supports an
3564 * external thermal sensor.
3565 */
3566 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3567 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3568 adapter->ets = true;
3569 else
3570 adapter->ets = false;
3571 /* Only enable I2C bit banging if an external thermal
3572 * sensor is supported.
3573 */
3574 if (adapter->ets)
3575 igb_set_i2c_bb(hw);
3576 hw->mac.ops.init_thermal_sensor_thresh(hw);
3577 if (igb_sysfs_init(adapter))
3578 dev_err(&pdev->dev,
3579 "failed to allocate sysfs resources\n");
3580 } else {
3581 adapter->ets = false;
3582 }
3583 #endif
3584 /* Check if Media Autosense is enabled */
3585 adapter->ei = *ei;
3586 if (hw->dev_spec._82575.mas_capable)
3587 igb_init_mas(adapter);
3588
3589 /* do hw tstamp init after resetting */
3590 igb_ptp_init(adapter);
3591
3592 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3593 /* print bus type/speed/width info, not applicable to i354 */
3594 if (hw->mac.type != e1000_i354) {
3595 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3596 netdev->name,
3597 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3598 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3599 "unknown"),
3600 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3601 "Width x4" :
3602 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3603 "Width x2" :
3604 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3605 "Width x1" : "unknown"), netdev->dev_addr);
3606 }
3607
3608 if ((hw->mac.type == e1000_82576 &&
3609 rd32(E1000_EECD) & E1000_EECD_PRES) ||
3610 (hw->mac.type >= e1000_i210 ||
3611 igb_get_flash_presence_i210(hw))) {
3612 ret_val = igb_read_part_string(hw, part_str,
3613 E1000_PBANUM_LENGTH);
3614 } else {
3615 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3616 }
3617
3618 if (ret_val)
3619 strcpy(part_str, "Unknown");
3620 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3621 dev_info(&pdev->dev,
3622 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3623 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3624 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3625 adapter->num_rx_queues, adapter->num_tx_queues);
3626 if (hw->phy.media_type == e1000_media_type_copper) {
3627 switch (hw->mac.type) {
3628 case e1000_i350:
3629 case e1000_i210:
3630 case e1000_i211:
3631 /* Enable EEE for internal copper PHY devices */
3632 err = igb_set_eee_i350(hw, true, true);
3633 if ((!err) &&
3634 (!hw->dev_spec._82575.eee_disable)) {
3635 adapter->eee_advert =
3636 MDIO_EEE_100TX | MDIO_EEE_1000T;
3637 adapter->flags |= IGB_FLAG_EEE;
3638 }
3639 break;
3640 case e1000_i354:
3641 if ((rd32(E1000_CTRL_EXT) &
3642 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3643 err = igb_set_eee_i354(hw, true, true);
3644 if ((!err) &&
3645 (!hw->dev_spec._82575.eee_disable)) {
3646 adapter->eee_advert =
3647 MDIO_EEE_100TX | MDIO_EEE_1000T;
3648 adapter->flags |= IGB_FLAG_EEE;
3649 }
3650 }
3651 break;
3652 default:
3653 break;
3654 }
3655 }
3656
3657 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3658
3659 pm_runtime_put_noidle(&pdev->dev);
3660 return 0;
3661
3662 err_register:
3663 igb_release_hw_control(adapter);
3664 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3665 err_eeprom:
3666 if (!igb_check_reset_block(hw))
3667 igb_reset_phy(hw);
3668
3669 if (hw->flash_address)
3670 iounmap(hw->flash_address);
3671 err_sw_init:
3672 kfree(adapter->mac_table);
3673 kfree(adapter->shadow_vfta);
3674 igb_clear_interrupt_scheme(adapter);
3675 #ifdef CONFIG_PCI_IOV
3676 igb_disable_sriov(pdev, false);
3677 #endif
3678 pci_iounmap(pdev, adapter->io_addr);
3679 err_ioremap:
3680 free_netdev(netdev);
3681 err_alloc_etherdev:
3682 pci_release_mem_regions(pdev);
3683 err_pci_reg:
3684 err_dma:
3685 pci_disable_device(pdev);
3686 return err;
3687 }
3688
3689 #ifdef CONFIG_PCI_IOV
igb_sriov_reinit(struct pci_dev * dev)3690 static int igb_sriov_reinit(struct pci_dev *dev)
3691 {
3692 struct net_device *netdev = pci_get_drvdata(dev);
3693 struct igb_adapter *adapter = netdev_priv(netdev);
3694 struct pci_dev *pdev = adapter->pdev;
3695
3696 rtnl_lock();
3697
3698 if (netif_running(netdev))
3699 igb_close(netdev);
3700 else
3701 igb_reset(adapter);
3702
3703 igb_clear_interrupt_scheme(adapter);
3704
3705 igb_init_queue_configuration(adapter);
3706
3707 if (igb_init_interrupt_scheme(adapter, true)) {
3708 rtnl_unlock();
3709 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3710 return -ENOMEM;
3711 }
3712
3713 if (netif_running(netdev))
3714 igb_open(netdev);
3715
3716 rtnl_unlock();
3717
3718 return 0;
3719 }
3720
igb_disable_sriov(struct pci_dev * pdev,bool reinit)3721 static int igb_disable_sriov(struct pci_dev *pdev, bool reinit)
3722 {
3723 struct net_device *netdev = pci_get_drvdata(pdev);
3724 struct igb_adapter *adapter = netdev_priv(netdev);
3725 struct e1000_hw *hw = &adapter->hw;
3726 unsigned long flags;
3727
3728 /* reclaim resources allocated to VFs */
3729 if (adapter->vf_data) {
3730 /* disable iov and allow time for transactions to clear */
3731 if (pci_vfs_assigned(pdev)) {
3732 dev_warn(&pdev->dev,
3733 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3734 return -EPERM;
3735 } else {
3736 pci_disable_sriov(pdev);
3737 msleep(500);
3738 }
3739 spin_lock_irqsave(&adapter->vfs_lock, flags);
3740 kfree(adapter->vf_mac_list);
3741 adapter->vf_mac_list = NULL;
3742 kfree(adapter->vf_data);
3743 adapter->vf_data = NULL;
3744 adapter->vfs_allocated_count = 0;
3745 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3746 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3747 wrfl();
3748 msleep(100);
3749 dev_info(&pdev->dev, "IOV Disabled\n");
3750
3751 /* Re-enable DMA Coalescing flag since IOV is turned off */
3752 adapter->flags |= IGB_FLAG_DMAC;
3753 }
3754
3755 return reinit ? igb_sriov_reinit(pdev) : 0;
3756 }
3757
igb_enable_sriov(struct pci_dev * pdev,int num_vfs,bool reinit)3758 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs, bool reinit)
3759 {
3760 struct net_device *netdev = pci_get_drvdata(pdev);
3761 struct igb_adapter *adapter = netdev_priv(netdev);
3762 int old_vfs = pci_num_vf(pdev);
3763 struct vf_mac_filter *mac_list;
3764 int err = 0;
3765 int num_vf_mac_filters, i;
3766
3767 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3768 err = -EPERM;
3769 goto out;
3770 }
3771 if (!num_vfs)
3772 goto out;
3773
3774 if (old_vfs) {
3775 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3776 old_vfs, max_vfs);
3777 adapter->vfs_allocated_count = old_vfs;
3778 } else
3779 adapter->vfs_allocated_count = num_vfs;
3780
3781 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3782 sizeof(struct vf_data_storage), GFP_KERNEL);
3783
3784 /* if allocation failed then we do not support SR-IOV */
3785 if (!adapter->vf_data) {
3786 adapter->vfs_allocated_count = 0;
3787 err = -ENOMEM;
3788 goto out;
3789 }
3790
3791 /* Due to the limited number of RAR entries calculate potential
3792 * number of MAC filters available for the VFs. Reserve entries
3793 * for PF default MAC, PF MAC filters and at least one RAR entry
3794 * for each VF for VF MAC.
3795 */
3796 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3797 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3798 adapter->vfs_allocated_count);
3799
3800 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3801 sizeof(struct vf_mac_filter),
3802 GFP_KERNEL);
3803
3804 mac_list = adapter->vf_mac_list;
3805 INIT_LIST_HEAD(&adapter->vf_macs.l);
3806
3807 if (adapter->vf_mac_list) {
3808 /* Initialize list of VF MAC filters */
3809 for (i = 0; i < num_vf_mac_filters; i++) {
3810 mac_list->vf = -1;
3811 mac_list->free = true;
3812 list_add(&mac_list->l, &adapter->vf_macs.l);
3813 mac_list++;
3814 }
3815 } else {
3816 /* If we could not allocate memory for the VF MAC filters
3817 * we can continue without this feature but warn user.
3818 */
3819 dev_err(&pdev->dev,
3820 "Unable to allocate memory for VF MAC filter list\n");
3821 }
3822
3823 dev_info(&pdev->dev, "%d VFs allocated\n",
3824 adapter->vfs_allocated_count);
3825 for (i = 0; i < adapter->vfs_allocated_count; i++)
3826 igb_vf_configure(adapter, i);
3827
3828 /* DMA Coalescing is not supported in IOV mode. */
3829 adapter->flags &= ~IGB_FLAG_DMAC;
3830
3831 if (reinit) {
3832 err = igb_sriov_reinit(pdev);
3833 if (err)
3834 goto err_out;
3835 }
3836
3837 /* only call pci_enable_sriov() if no VFs are allocated already */
3838 if (!old_vfs) {
3839 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3840 if (err)
3841 goto err_out;
3842 }
3843
3844 goto out;
3845
3846 err_out:
3847 kfree(adapter->vf_mac_list);
3848 adapter->vf_mac_list = NULL;
3849 kfree(adapter->vf_data);
3850 adapter->vf_data = NULL;
3851 adapter->vfs_allocated_count = 0;
3852 out:
3853 return err;
3854 }
3855
3856 #endif
3857 /**
3858 * igb_remove_i2c - Cleanup I2C interface
3859 * @adapter: pointer to adapter structure
3860 **/
igb_remove_i2c(struct igb_adapter * adapter)3861 static void igb_remove_i2c(struct igb_adapter *adapter)
3862 {
3863 /* free the adapter bus structure */
3864 i2c_del_adapter(&adapter->i2c_adap);
3865 }
3866
3867 /**
3868 * igb_remove - Device Removal Routine
3869 * @pdev: PCI device information struct
3870 *
3871 * igb_remove is called by the PCI subsystem to alert the driver
3872 * that it should release a PCI device. The could be caused by a
3873 * Hot-Plug event, or because the driver is going to be removed from
3874 * memory.
3875 **/
igb_remove(struct pci_dev * pdev)3876 static void igb_remove(struct pci_dev *pdev)
3877 {
3878 struct net_device *netdev = pci_get_drvdata(pdev);
3879 struct igb_adapter *adapter = netdev_priv(netdev);
3880 struct e1000_hw *hw = &adapter->hw;
3881
3882 pm_runtime_get_noresume(&pdev->dev);
3883 #ifdef CONFIG_IGB_HWMON
3884 igb_sysfs_exit(adapter);
3885 #endif
3886 igb_remove_i2c(adapter);
3887 igb_ptp_stop(adapter);
3888 /* The watchdog timer may be rescheduled, so explicitly
3889 * disable watchdog from being rescheduled.
3890 */
3891 set_bit(__IGB_DOWN, &adapter->state);
3892 del_timer_sync(&adapter->watchdog_timer);
3893 del_timer_sync(&adapter->phy_info_timer);
3894
3895 cancel_work_sync(&adapter->reset_task);
3896 cancel_work_sync(&adapter->watchdog_task);
3897
3898 #ifdef CONFIG_IGB_DCA
3899 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3900 dev_info(&pdev->dev, "DCA disabled\n");
3901 dca_remove_requester(&pdev->dev);
3902 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3903 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3904 }
3905 #endif
3906
3907 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3908 * would have already happened in close and is redundant.
3909 */
3910 igb_release_hw_control(adapter);
3911
3912 #ifdef CONFIG_PCI_IOV
3913 igb_disable_sriov(pdev, false);
3914 #endif
3915
3916 unregister_netdev(netdev);
3917
3918 igb_clear_interrupt_scheme(adapter);
3919
3920 pci_iounmap(pdev, adapter->io_addr);
3921 if (hw->flash_address)
3922 iounmap(hw->flash_address);
3923 pci_release_mem_regions(pdev);
3924
3925 kfree(adapter->mac_table);
3926 kfree(adapter->shadow_vfta);
3927 free_netdev(netdev);
3928
3929 pci_disable_device(pdev);
3930 }
3931
3932 /**
3933 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3934 * @adapter: board private structure to initialize
3935 *
3936 * This function initializes the vf specific data storage and then attempts to
3937 * allocate the VFs. The reason for ordering it this way is because it is much
3938 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3939 * the memory for the VFs.
3940 **/
igb_probe_vfs(struct igb_adapter * adapter)3941 static void igb_probe_vfs(struct igb_adapter *adapter)
3942 {
3943 #ifdef CONFIG_PCI_IOV
3944 struct pci_dev *pdev = adapter->pdev;
3945 struct e1000_hw *hw = &adapter->hw;
3946
3947 /* Virtualization features not supported on i210 and 82580 family. */
3948 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
3949 (hw->mac.type == e1000_82580))
3950 return;
3951
3952 /* Of the below we really only want the effect of getting
3953 * IGB_FLAG_HAS_MSIX set (if available), without which
3954 * igb_enable_sriov() has no effect.
3955 */
3956 igb_set_interrupt_capability(adapter, true);
3957 igb_reset_interrupt_capability(adapter);
3958
3959 pci_sriov_set_totalvfs(pdev, 7);
3960 igb_enable_sriov(pdev, max_vfs, false);
3961
3962 #endif /* CONFIG_PCI_IOV */
3963 }
3964
igb_get_max_rss_queues(struct igb_adapter * adapter)3965 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3966 {
3967 struct e1000_hw *hw = &adapter->hw;
3968 unsigned int max_rss_queues;
3969
3970 /* Determine the maximum number of RSS queues supported. */
3971 switch (hw->mac.type) {
3972 case e1000_i211:
3973 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3974 break;
3975 case e1000_82575:
3976 case e1000_i210:
3977 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3978 break;
3979 case e1000_i350:
3980 /* I350 cannot do RSS and SR-IOV at the same time */
3981 if (!!adapter->vfs_allocated_count) {
3982 max_rss_queues = 1;
3983 break;
3984 }
3985 fallthrough;
3986 case e1000_82576:
3987 if (!!adapter->vfs_allocated_count) {
3988 max_rss_queues = 2;
3989 break;
3990 }
3991 fallthrough;
3992 case e1000_82580:
3993 case e1000_i354:
3994 default:
3995 max_rss_queues = IGB_MAX_RX_QUEUES;
3996 break;
3997 }
3998
3999 return max_rss_queues;
4000 }
4001
igb_init_queue_configuration(struct igb_adapter * adapter)4002 static void igb_init_queue_configuration(struct igb_adapter *adapter)
4003 {
4004 u32 max_rss_queues;
4005
4006 max_rss_queues = igb_get_max_rss_queues(adapter);
4007 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4008
4009 igb_set_flag_queue_pairs(adapter, max_rss_queues);
4010 }
4011
igb_set_flag_queue_pairs(struct igb_adapter * adapter,const u32 max_rss_queues)4012 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
4013 const u32 max_rss_queues)
4014 {
4015 struct e1000_hw *hw = &adapter->hw;
4016
4017 /* Determine if we need to pair queues. */
4018 switch (hw->mac.type) {
4019 case e1000_82575:
4020 case e1000_i211:
4021 /* Device supports enough interrupts without queue pairing. */
4022 break;
4023 case e1000_82576:
4024 case e1000_82580:
4025 case e1000_i350:
4026 case e1000_i354:
4027 case e1000_i210:
4028 default:
4029 /* If rss_queues > half of max_rss_queues, pair the queues in
4030 * order to conserve interrupts due to limited supply.
4031 */
4032 if (adapter->rss_queues > (max_rss_queues / 2))
4033 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
4034 else
4035 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
4036 break;
4037 }
4038 }
4039
4040 /**
4041 * igb_sw_init - Initialize general software structures (struct igb_adapter)
4042 * @adapter: board private structure to initialize
4043 *
4044 * igb_sw_init initializes the Adapter private data structure.
4045 * Fields are initialized based on PCI device information and
4046 * OS network device settings (MTU size).
4047 **/
igb_sw_init(struct igb_adapter * adapter)4048 static int igb_sw_init(struct igb_adapter *adapter)
4049 {
4050 struct e1000_hw *hw = &adapter->hw;
4051 struct net_device *netdev = adapter->netdev;
4052 struct pci_dev *pdev = adapter->pdev;
4053
4054 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4055
4056 /* set default ring sizes */
4057 adapter->tx_ring_count = IGB_DEFAULT_TXD;
4058 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4059
4060 /* set default ITR values */
4061 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
4062 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
4063
4064 /* set default work limits */
4065 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
4066
4067 adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
4068 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4069
4070 spin_lock_init(&adapter->nfc_lock);
4071 spin_lock_init(&adapter->stats64_lock);
4072
4073 /* init spinlock to avoid concurrency of VF resources */
4074 spin_lock_init(&adapter->vfs_lock);
4075 #ifdef CONFIG_PCI_IOV
4076 switch (hw->mac.type) {
4077 case e1000_82576:
4078 case e1000_i350:
4079 if (max_vfs > 7) {
4080 dev_warn(&pdev->dev,
4081 "Maximum of 7 VFs per PF, using max\n");
4082 max_vfs = adapter->vfs_allocated_count = 7;
4083 } else
4084 adapter->vfs_allocated_count = max_vfs;
4085 if (adapter->vfs_allocated_count)
4086 dev_warn(&pdev->dev,
4087 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4088 break;
4089 default:
4090 break;
4091 }
4092 #endif /* CONFIG_PCI_IOV */
4093
4094 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4095 adapter->flags |= IGB_FLAG_HAS_MSIX;
4096
4097 adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4098 sizeof(struct igb_mac_addr),
4099 GFP_KERNEL);
4100 if (!adapter->mac_table)
4101 return -ENOMEM;
4102
4103 igb_probe_vfs(adapter);
4104
4105 igb_init_queue_configuration(adapter);
4106
4107 /* Setup and initialize a copy of the hw vlan table array */
4108 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4109 GFP_KERNEL);
4110 if (!adapter->shadow_vfta)
4111 return -ENOMEM;
4112
4113 /* This call may decrease the number of queues */
4114 if (igb_init_interrupt_scheme(adapter, true)) {
4115 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4116 return -ENOMEM;
4117 }
4118
4119 /* Explicitly disable IRQ since the NIC can be in any state. */
4120 igb_irq_disable(adapter);
4121
4122 if (hw->mac.type >= e1000_i350)
4123 adapter->flags &= ~IGB_FLAG_DMAC;
4124
4125 set_bit(__IGB_DOWN, &adapter->state);
4126 return 0;
4127 }
4128
4129 /**
4130 * __igb_open - Called when a network interface is made active
4131 * @netdev: network interface device structure
4132 * @resuming: indicates whether we are in a resume call
4133 *
4134 * Returns 0 on success, negative value on failure
4135 *
4136 * The open entry point is called when a network interface is made
4137 * active by the system (IFF_UP). At this point all resources needed
4138 * for transmit and receive operations are allocated, the interrupt
4139 * handler is registered with the OS, the watchdog timer is started,
4140 * and the stack is notified that the interface is ready.
4141 **/
__igb_open(struct net_device * netdev,bool resuming)4142 static int __igb_open(struct net_device *netdev, bool resuming)
4143 {
4144 struct igb_adapter *adapter = netdev_priv(netdev);
4145 struct e1000_hw *hw = &adapter->hw;
4146 struct pci_dev *pdev = adapter->pdev;
4147 int err;
4148 int i;
4149
4150 /* disallow open during test */
4151 if (test_bit(__IGB_TESTING, &adapter->state)) {
4152 WARN_ON(resuming);
4153 return -EBUSY;
4154 }
4155
4156 if (!resuming)
4157 pm_runtime_get_sync(&pdev->dev);
4158
4159 netif_carrier_off(netdev);
4160
4161 /* allocate transmit descriptors */
4162 err = igb_setup_all_tx_resources(adapter);
4163 if (err)
4164 goto err_setup_tx;
4165
4166 /* allocate receive descriptors */
4167 err = igb_setup_all_rx_resources(adapter);
4168 if (err)
4169 goto err_setup_rx;
4170
4171 igb_power_up_link(adapter);
4172
4173 /* before we allocate an interrupt, we must be ready to handle it.
4174 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4175 * as soon as we call pci_request_irq, so we have to setup our
4176 * clean_rx handler before we do so.
4177 */
4178 igb_configure(adapter);
4179
4180 err = igb_request_irq(adapter);
4181 if (err)
4182 goto err_req_irq;
4183
4184 /* Notify the stack of the actual queue counts. */
4185 err = netif_set_real_num_tx_queues(adapter->netdev,
4186 adapter->num_tx_queues);
4187 if (err)
4188 goto err_set_queues;
4189
4190 err = netif_set_real_num_rx_queues(adapter->netdev,
4191 adapter->num_rx_queues);
4192 if (err)
4193 goto err_set_queues;
4194
4195 /* From here on the code is the same as igb_up() */
4196 clear_bit(__IGB_DOWN, &adapter->state);
4197
4198 for (i = 0; i < adapter->num_q_vectors; i++)
4199 napi_enable(&(adapter->q_vector[i]->napi));
4200
4201 /* Clear any pending interrupts. */
4202 rd32(E1000_TSICR);
4203 rd32(E1000_ICR);
4204
4205 igb_irq_enable(adapter);
4206
4207 /* notify VFs that reset has been completed */
4208 if (adapter->vfs_allocated_count) {
4209 u32 reg_data = rd32(E1000_CTRL_EXT);
4210
4211 reg_data |= E1000_CTRL_EXT_PFRSTD;
4212 wr32(E1000_CTRL_EXT, reg_data);
4213 }
4214
4215 netif_tx_start_all_queues(netdev);
4216
4217 if (!resuming)
4218 pm_runtime_put(&pdev->dev);
4219
4220 /* start the watchdog. */
4221 hw->mac.get_link_status = 1;
4222 schedule_work(&adapter->watchdog_task);
4223
4224 return 0;
4225
4226 err_set_queues:
4227 igb_free_irq(adapter);
4228 err_req_irq:
4229 igb_release_hw_control(adapter);
4230 igb_power_down_link(adapter);
4231 igb_free_all_rx_resources(adapter);
4232 err_setup_rx:
4233 igb_free_all_tx_resources(adapter);
4234 err_setup_tx:
4235 igb_reset(adapter);
4236 if (!resuming)
4237 pm_runtime_put(&pdev->dev);
4238
4239 return err;
4240 }
4241
igb_open(struct net_device * netdev)4242 int igb_open(struct net_device *netdev)
4243 {
4244 return __igb_open(netdev, false);
4245 }
4246
4247 /**
4248 * __igb_close - Disables a network interface
4249 * @netdev: network interface device structure
4250 * @suspending: indicates we are in a suspend call
4251 *
4252 * Returns 0, this is not allowed to fail
4253 *
4254 * The close entry point is called when an interface is de-activated
4255 * by the OS. The hardware is still under the driver's control, but
4256 * needs to be disabled. A global MAC reset is issued to stop the
4257 * hardware, and all transmit and receive resources are freed.
4258 **/
__igb_close(struct net_device * netdev,bool suspending)4259 static int __igb_close(struct net_device *netdev, bool suspending)
4260 {
4261 struct igb_adapter *adapter = netdev_priv(netdev);
4262 struct pci_dev *pdev = adapter->pdev;
4263
4264 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4265
4266 if (!suspending)
4267 pm_runtime_get_sync(&pdev->dev);
4268
4269 igb_down(adapter);
4270 igb_free_irq(adapter);
4271
4272 igb_free_all_tx_resources(adapter);
4273 igb_free_all_rx_resources(adapter);
4274
4275 if (!suspending)
4276 pm_runtime_put_sync(&pdev->dev);
4277 return 0;
4278 }
4279
igb_close(struct net_device * netdev)4280 int igb_close(struct net_device *netdev)
4281 {
4282 if (netif_device_present(netdev) || netdev->dismantle)
4283 return __igb_close(netdev, false);
4284 return 0;
4285 }
4286
4287 /**
4288 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4289 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4290 *
4291 * Return 0 on success, negative on failure
4292 **/
igb_setup_tx_resources(struct igb_ring * tx_ring)4293 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4294 {
4295 struct device *dev = tx_ring->dev;
4296 int size;
4297
4298 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4299
4300 tx_ring->tx_buffer_info = vmalloc(size);
4301 if (!tx_ring->tx_buffer_info)
4302 goto err;
4303
4304 /* round up to nearest 4K */
4305 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4306 tx_ring->size = ALIGN(tx_ring->size, 4096);
4307
4308 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4309 &tx_ring->dma, GFP_KERNEL);
4310 if (!tx_ring->desc)
4311 goto err;
4312
4313 tx_ring->next_to_use = 0;
4314 tx_ring->next_to_clean = 0;
4315
4316 return 0;
4317
4318 err:
4319 vfree(tx_ring->tx_buffer_info);
4320 tx_ring->tx_buffer_info = NULL;
4321 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4322 return -ENOMEM;
4323 }
4324
4325 /**
4326 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4327 * (Descriptors) for all queues
4328 * @adapter: board private structure
4329 *
4330 * Return 0 on success, negative on failure
4331 **/
igb_setup_all_tx_resources(struct igb_adapter * adapter)4332 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4333 {
4334 struct pci_dev *pdev = adapter->pdev;
4335 int i, err = 0;
4336
4337 for (i = 0; i < adapter->num_tx_queues; i++) {
4338 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4339 if (err) {
4340 dev_err(&pdev->dev,
4341 "Allocation for Tx Queue %u failed\n", i);
4342 for (i--; i >= 0; i--)
4343 igb_free_tx_resources(adapter->tx_ring[i]);
4344 break;
4345 }
4346 }
4347
4348 return err;
4349 }
4350
4351 /**
4352 * igb_setup_tctl - configure the transmit control registers
4353 * @adapter: Board private structure
4354 **/
igb_setup_tctl(struct igb_adapter * adapter)4355 void igb_setup_tctl(struct igb_adapter *adapter)
4356 {
4357 struct e1000_hw *hw = &adapter->hw;
4358 u32 tctl;
4359
4360 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4361 wr32(E1000_TXDCTL(0), 0);
4362
4363 /* Program the Transmit Control Register */
4364 tctl = rd32(E1000_TCTL);
4365 tctl &= ~E1000_TCTL_CT;
4366 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4367 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4368
4369 igb_config_collision_dist(hw);
4370
4371 /* Enable transmits */
4372 tctl |= E1000_TCTL_EN;
4373
4374 wr32(E1000_TCTL, tctl);
4375 }
4376
4377 /**
4378 * igb_configure_tx_ring - Configure transmit ring after Reset
4379 * @adapter: board private structure
4380 * @ring: tx ring to configure
4381 *
4382 * Configure a transmit ring after a reset.
4383 **/
igb_configure_tx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4384 void igb_configure_tx_ring(struct igb_adapter *adapter,
4385 struct igb_ring *ring)
4386 {
4387 struct e1000_hw *hw = &adapter->hw;
4388 u32 txdctl = 0;
4389 u64 tdba = ring->dma;
4390 int reg_idx = ring->reg_idx;
4391
4392 wr32(E1000_TDLEN(reg_idx),
4393 ring->count * sizeof(union e1000_adv_tx_desc));
4394 wr32(E1000_TDBAL(reg_idx),
4395 tdba & 0x00000000ffffffffULL);
4396 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4397
4398 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4399 wr32(E1000_TDH(reg_idx), 0);
4400 writel(0, ring->tail);
4401
4402 txdctl |= IGB_TX_PTHRESH;
4403 txdctl |= IGB_TX_HTHRESH << 8;
4404 txdctl |= IGB_TX_WTHRESH << 16;
4405
4406 /* reinitialize tx_buffer_info */
4407 memset(ring->tx_buffer_info, 0,
4408 sizeof(struct igb_tx_buffer) * ring->count);
4409
4410 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4411 wr32(E1000_TXDCTL(reg_idx), txdctl);
4412 }
4413
4414 /**
4415 * igb_configure_tx - Configure transmit Unit after Reset
4416 * @adapter: board private structure
4417 *
4418 * Configure the Tx unit of the MAC after a reset.
4419 **/
igb_configure_tx(struct igb_adapter * adapter)4420 static void igb_configure_tx(struct igb_adapter *adapter)
4421 {
4422 struct e1000_hw *hw = &adapter->hw;
4423 int i;
4424
4425 /* disable the queues */
4426 for (i = 0; i < adapter->num_tx_queues; i++)
4427 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4428
4429 wrfl();
4430 usleep_range(10000, 20000);
4431
4432 for (i = 0; i < adapter->num_tx_queues; i++)
4433 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4434 }
4435
4436 /**
4437 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4438 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4439 *
4440 * Returns 0 on success, negative on failure
4441 **/
igb_setup_rx_resources(struct igb_ring * rx_ring)4442 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4443 {
4444 struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4445 struct device *dev = rx_ring->dev;
4446 int size, res;
4447
4448 /* XDP RX-queue info */
4449 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4450 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4451 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4452 rx_ring->queue_index, 0);
4453 if (res < 0) {
4454 dev_err(dev, "Failed to register xdp_rxq index %u\n",
4455 rx_ring->queue_index);
4456 return res;
4457 }
4458
4459 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4460
4461 rx_ring->rx_buffer_info = vmalloc(size);
4462 if (!rx_ring->rx_buffer_info)
4463 goto err;
4464
4465 /* Round up to nearest 4K */
4466 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4467 rx_ring->size = ALIGN(rx_ring->size, 4096);
4468
4469 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4470 &rx_ring->dma, GFP_KERNEL);
4471 if (!rx_ring->desc)
4472 goto err;
4473
4474 rx_ring->next_to_alloc = 0;
4475 rx_ring->next_to_clean = 0;
4476 rx_ring->next_to_use = 0;
4477
4478 rx_ring->xdp_prog = adapter->xdp_prog;
4479
4480 return 0;
4481
4482 err:
4483 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4484 vfree(rx_ring->rx_buffer_info);
4485 rx_ring->rx_buffer_info = NULL;
4486 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4487 return -ENOMEM;
4488 }
4489
4490 /**
4491 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4492 * (Descriptors) for all queues
4493 * @adapter: board private structure
4494 *
4495 * Return 0 on success, negative on failure
4496 **/
igb_setup_all_rx_resources(struct igb_adapter * adapter)4497 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4498 {
4499 struct pci_dev *pdev = adapter->pdev;
4500 int i, err = 0;
4501
4502 for (i = 0; i < adapter->num_rx_queues; i++) {
4503 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4504 if (err) {
4505 dev_err(&pdev->dev,
4506 "Allocation for Rx Queue %u failed\n", i);
4507 for (i--; i >= 0; i--)
4508 igb_free_rx_resources(adapter->rx_ring[i]);
4509 break;
4510 }
4511 }
4512
4513 return err;
4514 }
4515
4516 /**
4517 * igb_setup_mrqc - configure the multiple receive queue control registers
4518 * @adapter: Board private structure
4519 **/
igb_setup_mrqc(struct igb_adapter * adapter)4520 static void igb_setup_mrqc(struct igb_adapter *adapter)
4521 {
4522 struct e1000_hw *hw = &adapter->hw;
4523 u32 mrqc, rxcsum;
4524 u32 j, num_rx_queues;
4525 u32 rss_key[10];
4526
4527 netdev_rss_key_fill(rss_key, sizeof(rss_key));
4528 for (j = 0; j < 10; j++)
4529 wr32(E1000_RSSRK(j), rss_key[j]);
4530
4531 num_rx_queues = adapter->rss_queues;
4532
4533 switch (hw->mac.type) {
4534 case e1000_82576:
4535 /* 82576 supports 2 RSS queues for SR-IOV */
4536 if (adapter->vfs_allocated_count)
4537 num_rx_queues = 2;
4538 break;
4539 default:
4540 break;
4541 }
4542
4543 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4544 for (j = 0; j < IGB_RETA_SIZE; j++)
4545 adapter->rss_indir_tbl[j] =
4546 (j * num_rx_queues) / IGB_RETA_SIZE;
4547 adapter->rss_indir_tbl_init = num_rx_queues;
4548 }
4549 igb_write_rss_indir_tbl(adapter);
4550
4551 /* Disable raw packet checksumming so that RSS hash is placed in
4552 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4553 * offloads as they are enabled by default
4554 */
4555 rxcsum = rd32(E1000_RXCSUM);
4556 rxcsum |= E1000_RXCSUM_PCSD;
4557
4558 if (adapter->hw.mac.type >= e1000_82576)
4559 /* Enable Receive Checksum Offload for SCTP */
4560 rxcsum |= E1000_RXCSUM_CRCOFL;
4561
4562 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4563 wr32(E1000_RXCSUM, rxcsum);
4564
4565 /* Generate RSS hash based on packet types, TCP/UDP
4566 * port numbers and/or IPv4/v6 src and dst addresses
4567 */
4568 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4569 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4570 E1000_MRQC_RSS_FIELD_IPV6 |
4571 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4572 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4573
4574 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4575 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4576 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4577 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4578
4579 /* If VMDq is enabled then we set the appropriate mode for that, else
4580 * we default to RSS so that an RSS hash is calculated per packet even
4581 * if we are only using one queue
4582 */
4583 if (adapter->vfs_allocated_count) {
4584 if (hw->mac.type > e1000_82575) {
4585 /* Set the default pool for the PF's first queue */
4586 u32 vtctl = rd32(E1000_VT_CTL);
4587
4588 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4589 E1000_VT_CTL_DISABLE_DEF_POOL);
4590 vtctl |= adapter->vfs_allocated_count <<
4591 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4592 wr32(E1000_VT_CTL, vtctl);
4593 }
4594 if (adapter->rss_queues > 1)
4595 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4596 else
4597 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4598 } else {
4599 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4600 }
4601 igb_vmm_control(adapter);
4602
4603 wr32(E1000_MRQC, mrqc);
4604 }
4605
4606 /**
4607 * igb_setup_rctl - configure the receive control registers
4608 * @adapter: Board private structure
4609 **/
igb_setup_rctl(struct igb_adapter * adapter)4610 void igb_setup_rctl(struct igb_adapter *adapter)
4611 {
4612 struct e1000_hw *hw = &adapter->hw;
4613 u32 rctl;
4614
4615 rctl = rd32(E1000_RCTL);
4616
4617 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4618 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4619
4620 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4621 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4622
4623 /* enable stripping of CRC. It's unlikely this will break BMC
4624 * redirection as it did with e1000. Newer features require
4625 * that the HW strips the CRC.
4626 */
4627 rctl |= E1000_RCTL_SECRC;
4628
4629 /* disable store bad packets and clear size bits. */
4630 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4631
4632 /* enable LPE to allow for reception of jumbo frames */
4633 rctl |= E1000_RCTL_LPE;
4634
4635 /* disable queue 0 to prevent tail write w/o re-config */
4636 wr32(E1000_RXDCTL(0), 0);
4637
4638 /* Attention!!! For SR-IOV PF driver operations you must enable
4639 * queue drop for all VF and PF queues to prevent head of line blocking
4640 * if an un-trusted VF does not provide descriptors to hardware.
4641 */
4642 if (adapter->vfs_allocated_count) {
4643 /* set all queue drop enable bits */
4644 wr32(E1000_QDE, ALL_QUEUES);
4645 }
4646
4647 /* This is useful for sniffing bad packets. */
4648 if (adapter->netdev->features & NETIF_F_RXALL) {
4649 /* UPE and MPE will be handled by normal PROMISC logic
4650 * in e1000e_set_rx_mode
4651 */
4652 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4653 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4654 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4655
4656 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4657 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4658 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4659 * and that breaks VLANs.
4660 */
4661 }
4662
4663 wr32(E1000_RCTL, rctl);
4664 }
4665
igb_set_vf_rlpml(struct igb_adapter * adapter,int size,int vfn)4666 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4667 int vfn)
4668 {
4669 struct e1000_hw *hw = &adapter->hw;
4670 u32 vmolr;
4671
4672 if (size > MAX_JUMBO_FRAME_SIZE)
4673 size = MAX_JUMBO_FRAME_SIZE;
4674
4675 vmolr = rd32(E1000_VMOLR(vfn));
4676 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4677 vmolr |= size | E1000_VMOLR_LPE;
4678 wr32(E1000_VMOLR(vfn), vmolr);
4679
4680 return 0;
4681 }
4682
igb_set_vf_vlan_strip(struct igb_adapter * adapter,int vfn,bool enable)4683 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4684 int vfn, bool enable)
4685 {
4686 struct e1000_hw *hw = &adapter->hw;
4687 u32 val, reg;
4688
4689 if (hw->mac.type < e1000_82576)
4690 return;
4691
4692 if (hw->mac.type == e1000_i350)
4693 reg = E1000_DVMOLR(vfn);
4694 else
4695 reg = E1000_VMOLR(vfn);
4696
4697 val = rd32(reg);
4698 if (enable)
4699 val |= E1000_VMOLR_STRVLAN;
4700 else
4701 val &= ~(E1000_VMOLR_STRVLAN);
4702 wr32(reg, val);
4703 }
4704
igb_set_vmolr(struct igb_adapter * adapter,int vfn,bool aupe)4705 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4706 int vfn, bool aupe)
4707 {
4708 struct e1000_hw *hw = &adapter->hw;
4709 u32 vmolr;
4710
4711 /* This register exists only on 82576 and newer so if we are older then
4712 * we should exit and do nothing
4713 */
4714 if (hw->mac.type < e1000_82576)
4715 return;
4716
4717 vmolr = rd32(E1000_VMOLR(vfn));
4718 if (aupe)
4719 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4720 else
4721 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4722
4723 /* clear all bits that might not be set */
4724 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4725
4726 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4727 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4728 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4729 * multicast packets
4730 */
4731 if (vfn <= adapter->vfs_allocated_count)
4732 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4733
4734 wr32(E1000_VMOLR(vfn), vmolr);
4735 }
4736
4737 /**
4738 * igb_setup_srrctl - configure the split and replication receive control
4739 * registers
4740 * @adapter: Board private structure
4741 * @ring: receive ring to be configured
4742 **/
igb_setup_srrctl(struct igb_adapter * adapter,struct igb_ring * ring)4743 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4744 {
4745 struct e1000_hw *hw = &adapter->hw;
4746 int reg_idx = ring->reg_idx;
4747 u32 srrctl = 0;
4748
4749 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4750 if (ring_uses_large_buffer(ring))
4751 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4752 else
4753 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4754 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4755 if (hw->mac.type >= e1000_82580)
4756 srrctl |= E1000_SRRCTL_TIMESTAMP;
4757 /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4758 * queues and rx flow control is disabled
4759 */
4760 if (adapter->vfs_allocated_count ||
4761 (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4762 adapter->num_rx_queues > 1))
4763 srrctl |= E1000_SRRCTL_DROP_EN;
4764
4765 wr32(E1000_SRRCTL(reg_idx), srrctl);
4766 }
4767
4768 /**
4769 * igb_configure_rx_ring - Configure a receive ring after Reset
4770 * @adapter: board private structure
4771 * @ring: receive ring to be configured
4772 *
4773 * Configure the Rx unit of the MAC after a reset.
4774 **/
igb_configure_rx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4775 void igb_configure_rx_ring(struct igb_adapter *adapter,
4776 struct igb_ring *ring)
4777 {
4778 struct e1000_hw *hw = &adapter->hw;
4779 union e1000_adv_rx_desc *rx_desc;
4780 u64 rdba = ring->dma;
4781 int reg_idx = ring->reg_idx;
4782 u32 rxdctl = 0;
4783
4784 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4785 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4786 MEM_TYPE_PAGE_SHARED, NULL));
4787
4788 /* disable the queue */
4789 wr32(E1000_RXDCTL(reg_idx), 0);
4790
4791 /* Set DMA base address registers */
4792 wr32(E1000_RDBAL(reg_idx),
4793 rdba & 0x00000000ffffffffULL);
4794 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4795 wr32(E1000_RDLEN(reg_idx),
4796 ring->count * sizeof(union e1000_adv_rx_desc));
4797
4798 /* initialize head and tail */
4799 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4800 wr32(E1000_RDH(reg_idx), 0);
4801 writel(0, ring->tail);
4802
4803 /* set descriptor configuration */
4804 igb_setup_srrctl(adapter, ring);
4805
4806 /* set filtering for VMDQ pools */
4807 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4808
4809 rxdctl |= IGB_RX_PTHRESH;
4810 rxdctl |= IGB_RX_HTHRESH << 8;
4811 rxdctl |= IGB_RX_WTHRESH << 16;
4812
4813 /* initialize rx_buffer_info */
4814 memset(ring->rx_buffer_info, 0,
4815 sizeof(struct igb_rx_buffer) * ring->count);
4816
4817 /* initialize Rx descriptor 0 */
4818 rx_desc = IGB_RX_DESC(ring, 0);
4819 rx_desc->wb.upper.length = 0;
4820
4821 /* enable receive descriptor fetching */
4822 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4823 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4824 }
4825
igb_set_rx_buffer_len(struct igb_adapter * adapter,struct igb_ring * rx_ring)4826 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4827 struct igb_ring *rx_ring)
4828 {
4829 #if (PAGE_SIZE < 8192)
4830 struct e1000_hw *hw = &adapter->hw;
4831 #endif
4832
4833 /* set build_skb and buffer size flags */
4834 clear_ring_build_skb_enabled(rx_ring);
4835 clear_ring_uses_large_buffer(rx_ring);
4836
4837 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4838 return;
4839
4840 set_ring_build_skb_enabled(rx_ring);
4841
4842 #if (PAGE_SIZE < 8192)
4843 if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
4844 IGB_2K_TOO_SMALL_WITH_PADDING ||
4845 rd32(E1000_RCTL) & E1000_RCTL_SBP)
4846 set_ring_uses_large_buffer(rx_ring);
4847 #endif
4848 }
4849
4850 /**
4851 * igb_configure_rx - Configure receive Unit after Reset
4852 * @adapter: board private structure
4853 *
4854 * Configure the Rx unit of the MAC after a reset.
4855 **/
igb_configure_rx(struct igb_adapter * adapter)4856 static void igb_configure_rx(struct igb_adapter *adapter)
4857 {
4858 int i;
4859
4860 /* set the correct pool for the PF default MAC address in entry 0 */
4861 igb_set_default_mac_filter(adapter);
4862
4863 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4864 * the Base and Length of the Rx Descriptor Ring
4865 */
4866 for (i = 0; i < adapter->num_rx_queues; i++) {
4867 struct igb_ring *rx_ring = adapter->rx_ring[i];
4868
4869 igb_set_rx_buffer_len(adapter, rx_ring);
4870 igb_configure_rx_ring(adapter, rx_ring);
4871 }
4872 }
4873
4874 /**
4875 * igb_free_tx_resources - Free Tx Resources per Queue
4876 * @tx_ring: Tx descriptor ring for a specific queue
4877 *
4878 * Free all transmit software resources
4879 **/
igb_free_tx_resources(struct igb_ring * tx_ring)4880 void igb_free_tx_resources(struct igb_ring *tx_ring)
4881 {
4882 igb_clean_tx_ring(tx_ring);
4883
4884 vfree(tx_ring->tx_buffer_info);
4885 tx_ring->tx_buffer_info = NULL;
4886
4887 /* if not set, then don't free */
4888 if (!tx_ring->desc)
4889 return;
4890
4891 dma_free_coherent(tx_ring->dev, tx_ring->size,
4892 tx_ring->desc, tx_ring->dma);
4893
4894 tx_ring->desc = NULL;
4895 }
4896
4897 /**
4898 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4899 * @adapter: board private structure
4900 *
4901 * Free all transmit software resources
4902 **/
igb_free_all_tx_resources(struct igb_adapter * adapter)4903 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4904 {
4905 int i;
4906
4907 for (i = 0; i < adapter->num_tx_queues; i++)
4908 if (adapter->tx_ring[i])
4909 igb_free_tx_resources(adapter->tx_ring[i]);
4910 }
4911
4912 /**
4913 * igb_clean_tx_ring - Free Tx Buffers
4914 * @tx_ring: ring to be cleaned
4915 **/
igb_clean_tx_ring(struct igb_ring * tx_ring)4916 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4917 {
4918 u16 i = tx_ring->next_to_clean;
4919 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4920
4921 while (i != tx_ring->next_to_use) {
4922 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4923
4924 /* Free all the Tx ring sk_buffs or xdp frames */
4925 if (tx_buffer->type == IGB_TYPE_SKB)
4926 dev_kfree_skb_any(tx_buffer->skb);
4927 else
4928 xdp_return_frame(tx_buffer->xdpf);
4929
4930 /* unmap skb header data */
4931 dma_unmap_single(tx_ring->dev,
4932 dma_unmap_addr(tx_buffer, dma),
4933 dma_unmap_len(tx_buffer, len),
4934 DMA_TO_DEVICE);
4935
4936 /* check for eop_desc to determine the end of the packet */
4937 eop_desc = tx_buffer->next_to_watch;
4938 tx_desc = IGB_TX_DESC(tx_ring, i);
4939
4940 /* unmap remaining buffers */
4941 while (tx_desc != eop_desc) {
4942 tx_buffer++;
4943 tx_desc++;
4944 i++;
4945 if (unlikely(i == tx_ring->count)) {
4946 i = 0;
4947 tx_buffer = tx_ring->tx_buffer_info;
4948 tx_desc = IGB_TX_DESC(tx_ring, 0);
4949 }
4950
4951 /* unmap any remaining paged data */
4952 if (dma_unmap_len(tx_buffer, len))
4953 dma_unmap_page(tx_ring->dev,
4954 dma_unmap_addr(tx_buffer, dma),
4955 dma_unmap_len(tx_buffer, len),
4956 DMA_TO_DEVICE);
4957 }
4958
4959 tx_buffer->next_to_watch = NULL;
4960
4961 /* move us one more past the eop_desc for start of next pkt */
4962 tx_buffer++;
4963 i++;
4964 if (unlikely(i == tx_ring->count)) {
4965 i = 0;
4966 tx_buffer = tx_ring->tx_buffer_info;
4967 }
4968 }
4969
4970 /* reset BQL for queue */
4971 netdev_tx_reset_queue(txring_txq(tx_ring));
4972
4973 /* reset next_to_use and next_to_clean */
4974 tx_ring->next_to_use = 0;
4975 tx_ring->next_to_clean = 0;
4976 }
4977
4978 /**
4979 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4980 * @adapter: board private structure
4981 **/
igb_clean_all_tx_rings(struct igb_adapter * adapter)4982 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4983 {
4984 int i;
4985
4986 for (i = 0; i < adapter->num_tx_queues; i++)
4987 if (adapter->tx_ring[i])
4988 igb_clean_tx_ring(adapter->tx_ring[i]);
4989 }
4990
4991 /**
4992 * igb_free_rx_resources - Free Rx Resources
4993 * @rx_ring: ring to clean the resources from
4994 *
4995 * Free all receive software resources
4996 **/
igb_free_rx_resources(struct igb_ring * rx_ring)4997 void igb_free_rx_resources(struct igb_ring *rx_ring)
4998 {
4999 igb_clean_rx_ring(rx_ring);
5000
5001 rx_ring->xdp_prog = NULL;
5002 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
5003 vfree(rx_ring->rx_buffer_info);
5004 rx_ring->rx_buffer_info = NULL;
5005
5006 /* if not set, then don't free */
5007 if (!rx_ring->desc)
5008 return;
5009
5010 dma_free_coherent(rx_ring->dev, rx_ring->size,
5011 rx_ring->desc, rx_ring->dma);
5012
5013 rx_ring->desc = NULL;
5014 }
5015
5016 /**
5017 * igb_free_all_rx_resources - Free Rx Resources for All Queues
5018 * @adapter: board private structure
5019 *
5020 * Free all receive software resources
5021 **/
igb_free_all_rx_resources(struct igb_adapter * adapter)5022 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
5023 {
5024 int i;
5025
5026 for (i = 0; i < adapter->num_rx_queues; i++)
5027 if (adapter->rx_ring[i])
5028 igb_free_rx_resources(adapter->rx_ring[i]);
5029 }
5030
5031 /**
5032 * igb_clean_rx_ring - Free Rx Buffers per Queue
5033 * @rx_ring: ring to free buffers from
5034 **/
igb_clean_rx_ring(struct igb_ring * rx_ring)5035 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
5036 {
5037 u16 i = rx_ring->next_to_clean;
5038
5039 dev_kfree_skb(rx_ring->skb);
5040 rx_ring->skb = NULL;
5041
5042 /* Free all the Rx ring sk_buffs */
5043 while (i != rx_ring->next_to_alloc) {
5044 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5045
5046 /* Invalidate cache lines that may have been written to by
5047 * device so that we avoid corrupting memory.
5048 */
5049 dma_sync_single_range_for_cpu(rx_ring->dev,
5050 buffer_info->dma,
5051 buffer_info->page_offset,
5052 igb_rx_bufsz(rx_ring),
5053 DMA_FROM_DEVICE);
5054
5055 /* free resources associated with mapping */
5056 dma_unmap_page_attrs(rx_ring->dev,
5057 buffer_info->dma,
5058 igb_rx_pg_size(rx_ring),
5059 DMA_FROM_DEVICE,
5060 IGB_RX_DMA_ATTR);
5061 __page_frag_cache_drain(buffer_info->page,
5062 buffer_info->pagecnt_bias);
5063
5064 i++;
5065 if (i == rx_ring->count)
5066 i = 0;
5067 }
5068
5069 rx_ring->next_to_alloc = 0;
5070 rx_ring->next_to_clean = 0;
5071 rx_ring->next_to_use = 0;
5072 }
5073
5074 /**
5075 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
5076 * @adapter: board private structure
5077 **/
igb_clean_all_rx_rings(struct igb_adapter * adapter)5078 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
5079 {
5080 int i;
5081
5082 for (i = 0; i < adapter->num_rx_queues; i++)
5083 if (adapter->rx_ring[i])
5084 igb_clean_rx_ring(adapter->rx_ring[i]);
5085 }
5086
5087 /**
5088 * igb_set_mac - Change the Ethernet Address of the NIC
5089 * @netdev: network interface device structure
5090 * @p: pointer to an address structure
5091 *
5092 * Returns 0 on success, negative on failure
5093 **/
igb_set_mac(struct net_device * netdev,void * p)5094 static int igb_set_mac(struct net_device *netdev, void *p)
5095 {
5096 struct igb_adapter *adapter = netdev_priv(netdev);
5097 struct e1000_hw *hw = &adapter->hw;
5098 struct sockaddr *addr = p;
5099
5100 if (!is_valid_ether_addr(addr->sa_data))
5101 return -EADDRNOTAVAIL;
5102
5103 eth_hw_addr_set(netdev, addr->sa_data);
5104 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5105
5106 /* set the correct pool for the new PF MAC address in entry 0 */
5107 igb_set_default_mac_filter(adapter);
5108
5109 return 0;
5110 }
5111
5112 /**
5113 * igb_write_mc_addr_list - write multicast addresses to MTA
5114 * @netdev: network interface device structure
5115 *
5116 * Writes multicast address list to the MTA hash table.
5117 * Returns: -ENOMEM on failure
5118 * 0 on no addresses written
5119 * X on writing X addresses to MTA
5120 **/
igb_write_mc_addr_list(struct net_device * netdev)5121 static int igb_write_mc_addr_list(struct net_device *netdev)
5122 {
5123 struct igb_adapter *adapter = netdev_priv(netdev);
5124 struct e1000_hw *hw = &adapter->hw;
5125 struct netdev_hw_addr *ha;
5126 u8 *mta_list;
5127 int i;
5128
5129 if (netdev_mc_empty(netdev)) {
5130 /* nothing to program, so clear mc list */
5131 igb_update_mc_addr_list(hw, NULL, 0);
5132 igb_restore_vf_multicasts(adapter);
5133 return 0;
5134 }
5135
5136 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5137 if (!mta_list)
5138 return -ENOMEM;
5139
5140 /* The shared function expects a packed array of only addresses. */
5141 i = 0;
5142 netdev_for_each_mc_addr(ha, netdev)
5143 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5144
5145 igb_update_mc_addr_list(hw, mta_list, i);
5146 kfree(mta_list);
5147
5148 return netdev_mc_count(netdev);
5149 }
5150
igb_vlan_promisc_enable(struct igb_adapter * adapter)5151 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5152 {
5153 struct e1000_hw *hw = &adapter->hw;
5154 u32 i, pf_id;
5155
5156 switch (hw->mac.type) {
5157 case e1000_i210:
5158 case e1000_i211:
5159 case e1000_i350:
5160 /* VLAN filtering needed for VLAN prio filter */
5161 if (adapter->netdev->features & NETIF_F_NTUPLE)
5162 break;
5163 fallthrough;
5164 case e1000_82576:
5165 case e1000_82580:
5166 case e1000_i354:
5167 /* VLAN filtering needed for pool filtering */
5168 if (adapter->vfs_allocated_count)
5169 break;
5170 fallthrough;
5171 default:
5172 return 1;
5173 }
5174
5175 /* We are already in VLAN promisc, nothing to do */
5176 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5177 return 0;
5178
5179 if (!adapter->vfs_allocated_count)
5180 goto set_vfta;
5181
5182 /* Add PF to all active pools */
5183 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5184
5185 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5186 u32 vlvf = rd32(E1000_VLVF(i));
5187
5188 vlvf |= BIT(pf_id);
5189 wr32(E1000_VLVF(i), vlvf);
5190 }
5191
5192 set_vfta:
5193 /* Set all bits in the VLAN filter table array */
5194 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5195 hw->mac.ops.write_vfta(hw, i, ~0U);
5196
5197 /* Set flag so we don't redo unnecessary work */
5198 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5199
5200 return 0;
5201 }
5202
5203 #define VFTA_BLOCK_SIZE 8
igb_scrub_vfta(struct igb_adapter * adapter,u32 vfta_offset)5204 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5205 {
5206 struct e1000_hw *hw = &adapter->hw;
5207 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5208 u32 vid_start = vfta_offset * 32;
5209 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5210 u32 i, vid, word, bits, pf_id;
5211
5212 /* guarantee that we don't scrub out management VLAN */
5213 vid = adapter->mng_vlan_id;
5214 if (vid >= vid_start && vid < vid_end)
5215 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5216
5217 if (!adapter->vfs_allocated_count)
5218 goto set_vfta;
5219
5220 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5221
5222 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5223 u32 vlvf = rd32(E1000_VLVF(i));
5224
5225 /* pull VLAN ID from VLVF */
5226 vid = vlvf & VLAN_VID_MASK;
5227
5228 /* only concern ourselves with a certain range */
5229 if (vid < vid_start || vid >= vid_end)
5230 continue;
5231
5232 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5233 /* record VLAN ID in VFTA */
5234 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5235
5236 /* if PF is part of this then continue */
5237 if (test_bit(vid, adapter->active_vlans))
5238 continue;
5239 }
5240
5241 /* remove PF from the pool */
5242 bits = ~BIT(pf_id);
5243 bits &= rd32(E1000_VLVF(i));
5244 wr32(E1000_VLVF(i), bits);
5245 }
5246
5247 set_vfta:
5248 /* extract values from active_vlans and write back to VFTA */
5249 for (i = VFTA_BLOCK_SIZE; i--;) {
5250 vid = (vfta_offset + i) * 32;
5251 word = vid / BITS_PER_LONG;
5252 bits = vid % BITS_PER_LONG;
5253
5254 vfta[i] |= adapter->active_vlans[word] >> bits;
5255
5256 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5257 }
5258 }
5259
igb_vlan_promisc_disable(struct igb_adapter * adapter)5260 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5261 {
5262 u32 i;
5263
5264 /* We are not in VLAN promisc, nothing to do */
5265 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5266 return;
5267
5268 /* Set flag so we don't redo unnecessary work */
5269 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5270
5271 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5272 igb_scrub_vfta(adapter, i);
5273 }
5274
5275 /**
5276 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5277 * @netdev: network interface device structure
5278 *
5279 * The set_rx_mode entry point is called whenever the unicast or multicast
5280 * address lists or the network interface flags are updated. This routine is
5281 * responsible for configuring the hardware for proper unicast, multicast,
5282 * promiscuous mode, and all-multi behavior.
5283 **/
igb_set_rx_mode(struct net_device * netdev)5284 static void igb_set_rx_mode(struct net_device *netdev)
5285 {
5286 struct igb_adapter *adapter = netdev_priv(netdev);
5287 struct e1000_hw *hw = &adapter->hw;
5288 unsigned int vfn = adapter->vfs_allocated_count;
5289 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5290 int count;
5291
5292 /* Check for Promiscuous and All Multicast modes */
5293 if (netdev->flags & IFF_PROMISC) {
5294 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5295 vmolr |= E1000_VMOLR_MPME;
5296
5297 /* enable use of UTA filter to force packets to default pool */
5298 if (hw->mac.type == e1000_82576)
5299 vmolr |= E1000_VMOLR_ROPE;
5300 } else {
5301 if (netdev->flags & IFF_ALLMULTI) {
5302 rctl |= E1000_RCTL_MPE;
5303 vmolr |= E1000_VMOLR_MPME;
5304 } else {
5305 /* Write addresses to the MTA, if the attempt fails
5306 * then we should just turn on promiscuous mode so
5307 * that we can at least receive multicast traffic
5308 */
5309 count = igb_write_mc_addr_list(netdev);
5310 if (count < 0) {
5311 rctl |= E1000_RCTL_MPE;
5312 vmolr |= E1000_VMOLR_MPME;
5313 } else if (count) {
5314 vmolr |= E1000_VMOLR_ROMPE;
5315 }
5316 }
5317 }
5318
5319 /* Write addresses to available RAR registers, if there is not
5320 * sufficient space to store all the addresses then enable
5321 * unicast promiscuous mode
5322 */
5323 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5324 rctl |= E1000_RCTL_UPE;
5325 vmolr |= E1000_VMOLR_ROPE;
5326 }
5327
5328 /* enable VLAN filtering by default */
5329 rctl |= E1000_RCTL_VFE;
5330
5331 /* disable VLAN filtering for modes that require it */
5332 if ((netdev->flags & IFF_PROMISC) ||
5333 (netdev->features & NETIF_F_RXALL)) {
5334 /* if we fail to set all rules then just clear VFE */
5335 if (igb_vlan_promisc_enable(adapter))
5336 rctl &= ~E1000_RCTL_VFE;
5337 } else {
5338 igb_vlan_promisc_disable(adapter);
5339 }
5340
5341 /* update state of unicast, multicast, and VLAN filtering modes */
5342 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5343 E1000_RCTL_VFE);
5344 wr32(E1000_RCTL, rctl);
5345
5346 #if (PAGE_SIZE < 8192)
5347 if (!adapter->vfs_allocated_count) {
5348 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5349 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5350 }
5351 #endif
5352 wr32(E1000_RLPML, rlpml);
5353
5354 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5355 * the VMOLR to enable the appropriate modes. Without this workaround
5356 * we will have issues with VLAN tag stripping not being done for frames
5357 * that are only arriving because we are the default pool
5358 */
5359 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5360 return;
5361
5362 /* set UTA to appropriate mode */
5363 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5364
5365 vmolr |= rd32(E1000_VMOLR(vfn)) &
5366 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5367
5368 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5369 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5370 #if (PAGE_SIZE < 8192)
5371 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5372 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5373 else
5374 #endif
5375 vmolr |= MAX_JUMBO_FRAME_SIZE;
5376 vmolr |= E1000_VMOLR_LPE;
5377
5378 wr32(E1000_VMOLR(vfn), vmolr);
5379
5380 igb_restore_vf_multicasts(adapter);
5381 }
5382
igb_check_wvbr(struct igb_adapter * adapter)5383 static void igb_check_wvbr(struct igb_adapter *adapter)
5384 {
5385 struct e1000_hw *hw = &adapter->hw;
5386 u32 wvbr = 0;
5387
5388 switch (hw->mac.type) {
5389 case e1000_82576:
5390 case e1000_i350:
5391 wvbr = rd32(E1000_WVBR);
5392 if (!wvbr)
5393 return;
5394 break;
5395 default:
5396 break;
5397 }
5398
5399 adapter->wvbr |= wvbr;
5400 }
5401
5402 #define IGB_STAGGERED_QUEUE_OFFSET 8
5403
igb_spoof_check(struct igb_adapter * adapter)5404 static void igb_spoof_check(struct igb_adapter *adapter)
5405 {
5406 int j;
5407
5408 if (!adapter->wvbr)
5409 return;
5410
5411 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5412 if (adapter->wvbr & BIT(j) ||
5413 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5414 dev_warn(&adapter->pdev->dev,
5415 "Spoof event(s) detected on VF %d\n", j);
5416 adapter->wvbr &=
5417 ~(BIT(j) |
5418 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5419 }
5420 }
5421 }
5422
5423 /* Need to wait a few seconds after link up to get diagnostic information from
5424 * the phy
5425 */
igb_update_phy_info(struct timer_list * t)5426 static void igb_update_phy_info(struct timer_list *t)
5427 {
5428 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5429 igb_get_phy_info(&adapter->hw);
5430 }
5431
5432 /**
5433 * igb_has_link - check shared code for link and determine up/down
5434 * @adapter: pointer to driver private info
5435 **/
igb_has_link(struct igb_adapter * adapter)5436 bool igb_has_link(struct igb_adapter *adapter)
5437 {
5438 struct e1000_hw *hw = &adapter->hw;
5439 bool link_active = false;
5440
5441 /* get_link_status is set on LSC (link status) interrupt or
5442 * rx sequence error interrupt. get_link_status will stay
5443 * false until the e1000_check_for_link establishes link
5444 * for copper adapters ONLY
5445 */
5446 switch (hw->phy.media_type) {
5447 case e1000_media_type_copper:
5448 if (!hw->mac.get_link_status)
5449 return true;
5450 fallthrough;
5451 case e1000_media_type_internal_serdes:
5452 hw->mac.ops.check_for_link(hw);
5453 link_active = !hw->mac.get_link_status;
5454 break;
5455 default:
5456 case e1000_media_type_unknown:
5457 break;
5458 }
5459
5460 if (((hw->mac.type == e1000_i210) ||
5461 (hw->mac.type == e1000_i211)) &&
5462 (hw->phy.id == I210_I_PHY_ID)) {
5463 if (!netif_carrier_ok(adapter->netdev)) {
5464 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5465 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5466 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5467 adapter->link_check_timeout = jiffies;
5468 }
5469 }
5470
5471 return link_active;
5472 }
5473
igb_thermal_sensor_event(struct e1000_hw * hw,u32 event)5474 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5475 {
5476 bool ret = false;
5477 u32 ctrl_ext, thstat;
5478
5479 /* check for thermal sensor event on i350 copper only */
5480 if (hw->mac.type == e1000_i350) {
5481 thstat = rd32(E1000_THSTAT);
5482 ctrl_ext = rd32(E1000_CTRL_EXT);
5483
5484 if ((hw->phy.media_type == e1000_media_type_copper) &&
5485 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5486 ret = !!(thstat & event);
5487 }
5488
5489 return ret;
5490 }
5491
5492 /**
5493 * igb_check_lvmmc - check for malformed packets received
5494 * and indicated in LVMMC register
5495 * @adapter: pointer to adapter
5496 **/
igb_check_lvmmc(struct igb_adapter * adapter)5497 static void igb_check_lvmmc(struct igb_adapter *adapter)
5498 {
5499 struct e1000_hw *hw = &adapter->hw;
5500 u32 lvmmc;
5501
5502 lvmmc = rd32(E1000_LVMMC);
5503 if (lvmmc) {
5504 if (unlikely(net_ratelimit())) {
5505 netdev_warn(adapter->netdev,
5506 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5507 lvmmc);
5508 }
5509 }
5510 }
5511
5512 /**
5513 * igb_watchdog - Timer Call-back
5514 * @t: pointer to timer_list containing our private info pointer
5515 **/
igb_watchdog(struct timer_list * t)5516 static void igb_watchdog(struct timer_list *t)
5517 {
5518 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5519 /* Do the rest outside of interrupt context */
5520 schedule_work(&adapter->watchdog_task);
5521 }
5522
igb_watchdog_task(struct work_struct * work)5523 static void igb_watchdog_task(struct work_struct *work)
5524 {
5525 struct igb_adapter *adapter = container_of(work,
5526 struct igb_adapter,
5527 watchdog_task);
5528 struct e1000_hw *hw = &adapter->hw;
5529 struct e1000_phy_info *phy = &hw->phy;
5530 struct net_device *netdev = adapter->netdev;
5531 u32 link;
5532 int i;
5533 u32 connsw;
5534 u16 phy_data, retry_count = 20;
5535
5536 link = igb_has_link(adapter);
5537
5538 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5539 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5540 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5541 else
5542 link = false;
5543 }
5544
5545 /* Force link down if we have fiber to swap to */
5546 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5547 if (hw->phy.media_type == e1000_media_type_copper) {
5548 connsw = rd32(E1000_CONNSW);
5549 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5550 link = 0;
5551 }
5552 }
5553 if (link) {
5554 /* Perform a reset if the media type changed. */
5555 if (hw->dev_spec._82575.media_changed) {
5556 hw->dev_spec._82575.media_changed = false;
5557 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5558 igb_reset(adapter);
5559 }
5560 /* Cancel scheduled suspend requests. */
5561 pm_runtime_resume(netdev->dev.parent);
5562
5563 if (!netif_carrier_ok(netdev)) {
5564 u32 ctrl;
5565
5566 hw->mac.ops.get_speed_and_duplex(hw,
5567 &adapter->link_speed,
5568 &adapter->link_duplex);
5569
5570 ctrl = rd32(E1000_CTRL);
5571 /* Links status message must follow this format */
5572 netdev_info(netdev,
5573 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5574 netdev->name,
5575 adapter->link_speed,
5576 adapter->link_duplex == FULL_DUPLEX ?
5577 "Full" : "Half",
5578 (ctrl & E1000_CTRL_TFCE) &&
5579 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5580 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5581 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5582
5583 /* disable EEE if enabled */
5584 if ((adapter->flags & IGB_FLAG_EEE) &&
5585 (adapter->link_duplex == HALF_DUPLEX)) {
5586 dev_info(&adapter->pdev->dev,
5587 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5588 adapter->hw.dev_spec._82575.eee_disable = true;
5589 adapter->flags &= ~IGB_FLAG_EEE;
5590 }
5591
5592 /* check if SmartSpeed worked */
5593 igb_check_downshift(hw);
5594 if (phy->speed_downgraded)
5595 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5596
5597 /* check for thermal sensor event */
5598 if (igb_thermal_sensor_event(hw,
5599 E1000_THSTAT_LINK_THROTTLE))
5600 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5601
5602 /* adjust timeout factor according to speed/duplex */
5603 adapter->tx_timeout_factor = 1;
5604 switch (adapter->link_speed) {
5605 case SPEED_10:
5606 adapter->tx_timeout_factor = 14;
5607 break;
5608 case SPEED_100:
5609 /* maybe add some timeout factor ? */
5610 break;
5611 }
5612
5613 if (adapter->link_speed != SPEED_1000 ||
5614 !hw->phy.ops.read_reg)
5615 goto no_wait;
5616
5617 /* wait for Remote receiver status OK */
5618 retry_read_status:
5619 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5620 &phy_data)) {
5621 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5622 retry_count) {
5623 msleep(100);
5624 retry_count--;
5625 goto retry_read_status;
5626 } else if (!retry_count) {
5627 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5628 }
5629 } else {
5630 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5631 }
5632 no_wait:
5633 netif_carrier_on(netdev);
5634
5635 igb_ping_all_vfs(adapter);
5636 igb_check_vf_rate_limit(adapter);
5637
5638 /* link state has changed, schedule phy info update */
5639 if (!test_bit(__IGB_DOWN, &adapter->state))
5640 mod_timer(&adapter->phy_info_timer,
5641 round_jiffies(jiffies + 2 * HZ));
5642 }
5643 } else {
5644 if (netif_carrier_ok(netdev)) {
5645 adapter->link_speed = 0;
5646 adapter->link_duplex = 0;
5647
5648 /* check for thermal sensor event */
5649 if (igb_thermal_sensor_event(hw,
5650 E1000_THSTAT_PWR_DOWN)) {
5651 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5652 }
5653
5654 /* Links status message must follow this format */
5655 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5656 netdev->name);
5657 netif_carrier_off(netdev);
5658
5659 igb_ping_all_vfs(adapter);
5660
5661 /* link state has changed, schedule phy info update */
5662 if (!test_bit(__IGB_DOWN, &adapter->state))
5663 mod_timer(&adapter->phy_info_timer,
5664 round_jiffies(jiffies + 2 * HZ));
5665
5666 /* link is down, time to check for alternate media */
5667 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5668 igb_check_swap_media(adapter);
5669 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5670 schedule_work(&adapter->reset_task);
5671 /* return immediately */
5672 return;
5673 }
5674 }
5675 pm_schedule_suspend(netdev->dev.parent,
5676 MSEC_PER_SEC * 5);
5677
5678 /* also check for alternate media here */
5679 } else if (!netif_carrier_ok(netdev) &&
5680 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5681 igb_check_swap_media(adapter);
5682 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5683 schedule_work(&adapter->reset_task);
5684 /* return immediately */
5685 return;
5686 }
5687 }
5688 }
5689
5690 spin_lock(&adapter->stats64_lock);
5691 igb_update_stats(adapter);
5692 spin_unlock(&adapter->stats64_lock);
5693
5694 for (i = 0; i < adapter->num_tx_queues; i++) {
5695 struct igb_ring *tx_ring = adapter->tx_ring[i];
5696 if (!netif_carrier_ok(netdev)) {
5697 /* We've lost link, so the controller stops DMA,
5698 * but we've got queued Tx work that's never going
5699 * to get done, so reset controller to flush Tx.
5700 * (Do the reset outside of interrupt context).
5701 */
5702 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5703 adapter->tx_timeout_count++;
5704 schedule_work(&adapter->reset_task);
5705 /* return immediately since reset is imminent */
5706 return;
5707 }
5708 }
5709
5710 /* Force detection of hung controller every watchdog period */
5711 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5712 }
5713
5714 /* Cause software interrupt to ensure Rx ring is cleaned */
5715 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5716 u32 eics = 0;
5717
5718 for (i = 0; i < adapter->num_q_vectors; i++)
5719 eics |= adapter->q_vector[i]->eims_value;
5720 wr32(E1000_EICS, eics);
5721 } else {
5722 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5723 }
5724
5725 igb_spoof_check(adapter);
5726 igb_ptp_rx_hang(adapter);
5727 igb_ptp_tx_hang(adapter);
5728
5729 /* Check LVMMC register on i350/i354 only */
5730 if ((adapter->hw.mac.type == e1000_i350) ||
5731 (adapter->hw.mac.type == e1000_i354))
5732 igb_check_lvmmc(adapter);
5733
5734 /* Reset the timer */
5735 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5736 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5737 mod_timer(&adapter->watchdog_timer,
5738 round_jiffies(jiffies + HZ));
5739 else
5740 mod_timer(&adapter->watchdog_timer,
5741 round_jiffies(jiffies + 2 * HZ));
5742 }
5743 }
5744
5745 enum latency_range {
5746 lowest_latency = 0,
5747 low_latency = 1,
5748 bulk_latency = 2,
5749 latency_invalid = 255
5750 };
5751
5752 /**
5753 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5754 * @q_vector: pointer to q_vector
5755 *
5756 * Stores a new ITR value based on strictly on packet size. This
5757 * algorithm is less sophisticated than that used in igb_update_itr,
5758 * due to the difficulty of synchronizing statistics across multiple
5759 * receive rings. The divisors and thresholds used by this function
5760 * were determined based on theoretical maximum wire speed and testing
5761 * data, in order to minimize response time while increasing bulk
5762 * throughput.
5763 * This functionality is controlled by ethtool's coalescing settings.
5764 * NOTE: This function is called only when operating in a multiqueue
5765 * receive environment.
5766 **/
igb_update_ring_itr(struct igb_q_vector * q_vector)5767 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5768 {
5769 int new_val = q_vector->itr_val;
5770 int avg_wire_size = 0;
5771 struct igb_adapter *adapter = q_vector->adapter;
5772 unsigned int packets;
5773
5774 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5775 * ints/sec - ITR timer value of 120 ticks.
5776 */
5777 if (adapter->link_speed != SPEED_1000) {
5778 new_val = IGB_4K_ITR;
5779 goto set_itr_val;
5780 }
5781
5782 packets = q_vector->rx.total_packets;
5783 if (packets)
5784 avg_wire_size = q_vector->rx.total_bytes / packets;
5785
5786 packets = q_vector->tx.total_packets;
5787 if (packets)
5788 avg_wire_size = max_t(u32, avg_wire_size,
5789 q_vector->tx.total_bytes / packets);
5790
5791 /* if avg_wire_size isn't set no work was done */
5792 if (!avg_wire_size)
5793 goto clear_counts;
5794
5795 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5796 avg_wire_size += 24;
5797
5798 /* Don't starve jumbo frames */
5799 avg_wire_size = min(avg_wire_size, 3000);
5800
5801 /* Give a little boost to mid-size frames */
5802 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5803 new_val = avg_wire_size / 3;
5804 else
5805 new_val = avg_wire_size / 2;
5806
5807 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5808 if (new_val < IGB_20K_ITR &&
5809 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5810 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5811 new_val = IGB_20K_ITR;
5812
5813 set_itr_val:
5814 if (new_val != q_vector->itr_val) {
5815 q_vector->itr_val = new_val;
5816 q_vector->set_itr = 1;
5817 }
5818 clear_counts:
5819 q_vector->rx.total_bytes = 0;
5820 q_vector->rx.total_packets = 0;
5821 q_vector->tx.total_bytes = 0;
5822 q_vector->tx.total_packets = 0;
5823 }
5824
5825 /**
5826 * igb_update_itr - update the dynamic ITR value based on statistics
5827 * @q_vector: pointer to q_vector
5828 * @ring_container: ring info to update the itr for
5829 *
5830 * Stores a new ITR value based on packets and byte
5831 * counts during the last interrupt. The advantage of per interrupt
5832 * computation is faster updates and more accurate ITR for the current
5833 * traffic pattern. Constants in this function were computed
5834 * based on theoretical maximum wire speed and thresholds were set based
5835 * on testing data as well as attempting to minimize response time
5836 * while increasing bulk throughput.
5837 * This functionality is controlled by ethtool's coalescing settings.
5838 * NOTE: These calculations are only valid when operating in a single-
5839 * queue environment.
5840 **/
igb_update_itr(struct igb_q_vector * q_vector,struct igb_ring_container * ring_container)5841 static void igb_update_itr(struct igb_q_vector *q_vector,
5842 struct igb_ring_container *ring_container)
5843 {
5844 unsigned int packets = ring_container->total_packets;
5845 unsigned int bytes = ring_container->total_bytes;
5846 u8 itrval = ring_container->itr;
5847
5848 /* no packets, exit with status unchanged */
5849 if (packets == 0)
5850 return;
5851
5852 switch (itrval) {
5853 case lowest_latency:
5854 /* handle TSO and jumbo frames */
5855 if (bytes/packets > 8000)
5856 itrval = bulk_latency;
5857 else if ((packets < 5) && (bytes > 512))
5858 itrval = low_latency;
5859 break;
5860 case low_latency: /* 50 usec aka 20000 ints/s */
5861 if (bytes > 10000) {
5862 /* this if handles the TSO accounting */
5863 if (bytes/packets > 8000)
5864 itrval = bulk_latency;
5865 else if ((packets < 10) || ((bytes/packets) > 1200))
5866 itrval = bulk_latency;
5867 else if ((packets > 35))
5868 itrval = lowest_latency;
5869 } else if (bytes/packets > 2000) {
5870 itrval = bulk_latency;
5871 } else if (packets <= 2 && bytes < 512) {
5872 itrval = lowest_latency;
5873 }
5874 break;
5875 case bulk_latency: /* 250 usec aka 4000 ints/s */
5876 if (bytes > 25000) {
5877 if (packets > 35)
5878 itrval = low_latency;
5879 } else if (bytes < 1500) {
5880 itrval = low_latency;
5881 }
5882 break;
5883 }
5884
5885 /* clear work counters since we have the values we need */
5886 ring_container->total_bytes = 0;
5887 ring_container->total_packets = 0;
5888
5889 /* write updated itr to ring container */
5890 ring_container->itr = itrval;
5891 }
5892
igb_set_itr(struct igb_q_vector * q_vector)5893 static void igb_set_itr(struct igb_q_vector *q_vector)
5894 {
5895 struct igb_adapter *adapter = q_vector->adapter;
5896 u32 new_itr = q_vector->itr_val;
5897 u8 current_itr = 0;
5898
5899 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5900 if (adapter->link_speed != SPEED_1000) {
5901 current_itr = 0;
5902 new_itr = IGB_4K_ITR;
5903 goto set_itr_now;
5904 }
5905
5906 igb_update_itr(q_vector, &q_vector->tx);
5907 igb_update_itr(q_vector, &q_vector->rx);
5908
5909 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5910
5911 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5912 if (current_itr == lowest_latency &&
5913 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5914 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5915 current_itr = low_latency;
5916
5917 switch (current_itr) {
5918 /* counts and packets in update_itr are dependent on these numbers */
5919 case lowest_latency:
5920 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5921 break;
5922 case low_latency:
5923 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5924 break;
5925 case bulk_latency:
5926 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5927 break;
5928 default:
5929 break;
5930 }
5931
5932 set_itr_now:
5933 if (new_itr != q_vector->itr_val) {
5934 /* this attempts to bias the interrupt rate towards Bulk
5935 * by adding intermediate steps when interrupt rate is
5936 * increasing
5937 */
5938 new_itr = new_itr > q_vector->itr_val ?
5939 max((new_itr * q_vector->itr_val) /
5940 (new_itr + (q_vector->itr_val >> 2)),
5941 new_itr) : new_itr;
5942 /* Don't write the value here; it resets the adapter's
5943 * internal timer, and causes us to delay far longer than
5944 * we should between interrupts. Instead, we write the ITR
5945 * value at the beginning of the next interrupt so the timing
5946 * ends up being correct.
5947 */
5948 q_vector->itr_val = new_itr;
5949 q_vector->set_itr = 1;
5950 }
5951 }
5952
igb_tx_ctxtdesc(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)5953 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5954 struct igb_tx_buffer *first,
5955 u32 vlan_macip_lens, u32 type_tucmd,
5956 u32 mss_l4len_idx)
5957 {
5958 struct e1000_adv_tx_context_desc *context_desc;
5959 u16 i = tx_ring->next_to_use;
5960 struct timespec64 ts;
5961
5962 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5963
5964 i++;
5965 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5966
5967 /* set bits to identify this as an advanced context descriptor */
5968 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5969
5970 /* For 82575, context index must be unique per ring. */
5971 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5972 mss_l4len_idx |= tx_ring->reg_idx << 4;
5973
5974 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5975 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5976 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5977
5978 /* We assume there is always a valid tx time available. Invalid times
5979 * should have been handled by the upper layers.
5980 */
5981 if (tx_ring->launchtime_enable) {
5982 ts = ktime_to_timespec64(first->skb->tstamp);
5983 skb_txtime_consumed(first->skb);
5984 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5985 } else {
5986 context_desc->seqnum_seed = 0;
5987 }
5988 }
5989
igb_tso(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u8 * hdr_len)5990 static int igb_tso(struct igb_ring *tx_ring,
5991 struct igb_tx_buffer *first,
5992 u8 *hdr_len)
5993 {
5994 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5995 struct sk_buff *skb = first->skb;
5996 union {
5997 struct iphdr *v4;
5998 struct ipv6hdr *v6;
5999 unsigned char *hdr;
6000 } ip;
6001 union {
6002 struct tcphdr *tcp;
6003 struct udphdr *udp;
6004 unsigned char *hdr;
6005 } l4;
6006 u32 paylen, l4_offset;
6007 int err;
6008
6009 if (skb->ip_summed != CHECKSUM_PARTIAL)
6010 return 0;
6011
6012 if (!skb_is_gso(skb))
6013 return 0;
6014
6015 err = skb_cow_head(skb, 0);
6016 if (err < 0)
6017 return err;
6018
6019 ip.hdr = skb_network_header(skb);
6020 l4.hdr = skb_checksum_start(skb);
6021
6022 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
6023 type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
6024 E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
6025
6026 /* initialize outer IP header fields */
6027 if (ip.v4->version == 4) {
6028 unsigned char *csum_start = skb_checksum_start(skb);
6029 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
6030
6031 /* IP header will have to cancel out any data that
6032 * is not a part of the outer IP header
6033 */
6034 ip.v4->check = csum_fold(csum_partial(trans_start,
6035 csum_start - trans_start,
6036 0));
6037 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
6038
6039 ip.v4->tot_len = 0;
6040 first->tx_flags |= IGB_TX_FLAGS_TSO |
6041 IGB_TX_FLAGS_CSUM |
6042 IGB_TX_FLAGS_IPV4;
6043 } else {
6044 ip.v6->payload_len = 0;
6045 first->tx_flags |= IGB_TX_FLAGS_TSO |
6046 IGB_TX_FLAGS_CSUM;
6047 }
6048
6049 /* determine offset of inner transport header */
6050 l4_offset = l4.hdr - skb->data;
6051
6052 /* remove payload length from inner checksum */
6053 paylen = skb->len - l4_offset;
6054 if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
6055 /* compute length of segmentation header */
6056 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
6057 csum_replace_by_diff(&l4.tcp->check,
6058 (__force __wsum)htonl(paylen));
6059 } else {
6060 /* compute length of segmentation header */
6061 *hdr_len = sizeof(*l4.udp) + l4_offset;
6062 csum_replace_by_diff(&l4.udp->check,
6063 (__force __wsum)htonl(paylen));
6064 }
6065
6066 /* update gso size and bytecount with header size */
6067 first->gso_segs = skb_shinfo(skb)->gso_segs;
6068 first->bytecount += (first->gso_segs - 1) * *hdr_len;
6069
6070 /* MSS L4LEN IDX */
6071 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
6072 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
6073
6074 /* VLAN MACLEN IPLEN */
6075 vlan_macip_lens = l4.hdr - ip.hdr;
6076 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
6077 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6078
6079 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
6080 type_tucmd, mss_l4len_idx);
6081
6082 return 1;
6083 }
6084
igb_tx_csum(struct igb_ring * tx_ring,struct igb_tx_buffer * first)6085 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6086 {
6087 struct sk_buff *skb = first->skb;
6088 u32 vlan_macip_lens = 0;
6089 u32 type_tucmd = 0;
6090
6091 if (skb->ip_summed != CHECKSUM_PARTIAL) {
6092 csum_failed:
6093 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6094 !tx_ring->launchtime_enable)
6095 return;
6096 goto no_csum;
6097 }
6098
6099 switch (skb->csum_offset) {
6100 case offsetof(struct tcphdr, check):
6101 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6102 fallthrough;
6103 case offsetof(struct udphdr, check):
6104 break;
6105 case offsetof(struct sctphdr, checksum):
6106 /* validate that this is actually an SCTP request */
6107 if (skb_csum_is_sctp(skb)) {
6108 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6109 break;
6110 }
6111 fallthrough;
6112 default:
6113 skb_checksum_help(skb);
6114 goto csum_failed;
6115 }
6116
6117 /* update TX checksum flag */
6118 first->tx_flags |= IGB_TX_FLAGS_CSUM;
6119 vlan_macip_lens = skb_checksum_start_offset(skb) -
6120 skb_network_offset(skb);
6121 no_csum:
6122 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6123 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6124
6125 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6126 }
6127
6128 #define IGB_SET_FLAG(_input, _flag, _result) \
6129 ((_flag <= _result) ? \
6130 ((u32)(_input & _flag) * (_result / _flag)) : \
6131 ((u32)(_input & _flag) / (_flag / _result)))
6132
igb_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)6133 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6134 {
6135 /* set type for advanced descriptor with frame checksum insertion */
6136 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6137 E1000_ADVTXD_DCMD_DEXT |
6138 E1000_ADVTXD_DCMD_IFCS;
6139
6140 /* set HW vlan bit if vlan is present */
6141 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6142 (E1000_ADVTXD_DCMD_VLE));
6143
6144 /* set segmentation bits for TSO */
6145 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6146 (E1000_ADVTXD_DCMD_TSE));
6147
6148 /* set timestamp bit if present */
6149 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6150 (E1000_ADVTXD_MAC_TSTAMP));
6151
6152 /* insert frame checksum */
6153 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6154
6155 return cmd_type;
6156 }
6157
igb_tx_olinfo_status(struct igb_ring * tx_ring,union e1000_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)6158 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6159 union e1000_adv_tx_desc *tx_desc,
6160 u32 tx_flags, unsigned int paylen)
6161 {
6162 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6163
6164 /* 82575 requires a unique index per ring */
6165 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6166 olinfo_status |= tx_ring->reg_idx << 4;
6167
6168 /* insert L4 checksum */
6169 olinfo_status |= IGB_SET_FLAG(tx_flags,
6170 IGB_TX_FLAGS_CSUM,
6171 (E1000_TXD_POPTS_TXSM << 8));
6172
6173 /* insert IPv4 checksum */
6174 olinfo_status |= IGB_SET_FLAG(tx_flags,
6175 IGB_TX_FLAGS_IPV4,
6176 (E1000_TXD_POPTS_IXSM << 8));
6177
6178 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6179 }
6180
__igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6181 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6182 {
6183 struct net_device *netdev = tx_ring->netdev;
6184
6185 netif_stop_subqueue(netdev, tx_ring->queue_index);
6186
6187 /* Herbert's original patch had:
6188 * smp_mb__after_netif_stop_queue();
6189 * but since that doesn't exist yet, just open code it.
6190 */
6191 smp_mb();
6192
6193 /* We need to check again in a case another CPU has just
6194 * made room available.
6195 */
6196 if (igb_desc_unused(tx_ring) < size)
6197 return -EBUSY;
6198
6199 /* A reprieve! */
6200 netif_wake_subqueue(netdev, tx_ring->queue_index);
6201
6202 u64_stats_update_begin(&tx_ring->tx_syncp2);
6203 tx_ring->tx_stats.restart_queue2++;
6204 u64_stats_update_end(&tx_ring->tx_syncp2);
6205
6206 return 0;
6207 }
6208
igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6209 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6210 {
6211 if (igb_desc_unused(tx_ring) >= size)
6212 return 0;
6213 return __igb_maybe_stop_tx(tx_ring, size);
6214 }
6215
igb_tx_map(struct igb_ring * tx_ring,struct igb_tx_buffer * first,const u8 hdr_len)6216 static int igb_tx_map(struct igb_ring *tx_ring,
6217 struct igb_tx_buffer *first,
6218 const u8 hdr_len)
6219 {
6220 struct sk_buff *skb = first->skb;
6221 struct igb_tx_buffer *tx_buffer;
6222 union e1000_adv_tx_desc *tx_desc;
6223 skb_frag_t *frag;
6224 dma_addr_t dma;
6225 unsigned int data_len, size;
6226 u32 tx_flags = first->tx_flags;
6227 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6228 u16 i = tx_ring->next_to_use;
6229
6230 tx_desc = IGB_TX_DESC(tx_ring, i);
6231
6232 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6233
6234 size = skb_headlen(skb);
6235 data_len = skb->data_len;
6236
6237 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6238
6239 tx_buffer = first;
6240
6241 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6242 if (dma_mapping_error(tx_ring->dev, dma))
6243 goto dma_error;
6244
6245 /* record length, and DMA address */
6246 dma_unmap_len_set(tx_buffer, len, size);
6247 dma_unmap_addr_set(tx_buffer, dma, dma);
6248
6249 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6250
6251 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6252 tx_desc->read.cmd_type_len =
6253 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6254
6255 i++;
6256 tx_desc++;
6257 if (i == tx_ring->count) {
6258 tx_desc = IGB_TX_DESC(tx_ring, 0);
6259 i = 0;
6260 }
6261 tx_desc->read.olinfo_status = 0;
6262
6263 dma += IGB_MAX_DATA_PER_TXD;
6264 size -= IGB_MAX_DATA_PER_TXD;
6265
6266 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6267 }
6268
6269 if (likely(!data_len))
6270 break;
6271
6272 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6273
6274 i++;
6275 tx_desc++;
6276 if (i == tx_ring->count) {
6277 tx_desc = IGB_TX_DESC(tx_ring, 0);
6278 i = 0;
6279 }
6280 tx_desc->read.olinfo_status = 0;
6281
6282 size = skb_frag_size(frag);
6283 data_len -= size;
6284
6285 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6286 size, DMA_TO_DEVICE);
6287
6288 tx_buffer = &tx_ring->tx_buffer_info[i];
6289 }
6290
6291 /* write last descriptor with RS and EOP bits */
6292 cmd_type |= size | IGB_TXD_DCMD;
6293 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6294
6295 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6296
6297 /* set the timestamp */
6298 first->time_stamp = jiffies;
6299
6300 skb_tx_timestamp(skb);
6301
6302 /* Force memory writes to complete before letting h/w know there
6303 * are new descriptors to fetch. (Only applicable for weak-ordered
6304 * memory model archs, such as IA-64).
6305 *
6306 * We also need this memory barrier to make certain all of the
6307 * status bits have been updated before next_to_watch is written.
6308 */
6309 dma_wmb();
6310
6311 /* set next_to_watch value indicating a packet is present */
6312 first->next_to_watch = tx_desc;
6313
6314 i++;
6315 if (i == tx_ring->count)
6316 i = 0;
6317
6318 tx_ring->next_to_use = i;
6319
6320 /* Make sure there is space in the ring for the next send. */
6321 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6322
6323 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6324 writel(i, tx_ring->tail);
6325 }
6326 return 0;
6327
6328 dma_error:
6329 dev_err(tx_ring->dev, "TX DMA map failed\n");
6330 tx_buffer = &tx_ring->tx_buffer_info[i];
6331
6332 /* clear dma mappings for failed tx_buffer_info map */
6333 while (tx_buffer != first) {
6334 if (dma_unmap_len(tx_buffer, len))
6335 dma_unmap_page(tx_ring->dev,
6336 dma_unmap_addr(tx_buffer, dma),
6337 dma_unmap_len(tx_buffer, len),
6338 DMA_TO_DEVICE);
6339 dma_unmap_len_set(tx_buffer, len, 0);
6340
6341 if (i-- == 0)
6342 i += tx_ring->count;
6343 tx_buffer = &tx_ring->tx_buffer_info[i];
6344 }
6345
6346 if (dma_unmap_len(tx_buffer, len))
6347 dma_unmap_single(tx_ring->dev,
6348 dma_unmap_addr(tx_buffer, dma),
6349 dma_unmap_len(tx_buffer, len),
6350 DMA_TO_DEVICE);
6351 dma_unmap_len_set(tx_buffer, len, 0);
6352
6353 dev_kfree_skb_any(tx_buffer->skb);
6354 tx_buffer->skb = NULL;
6355
6356 tx_ring->next_to_use = i;
6357
6358 return -1;
6359 }
6360
igb_xmit_xdp_ring(struct igb_adapter * adapter,struct igb_ring * tx_ring,struct xdp_frame * xdpf)6361 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6362 struct igb_ring *tx_ring,
6363 struct xdp_frame *xdpf)
6364 {
6365 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6366 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6367 u16 count, i, index = tx_ring->next_to_use;
6368 struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6369 struct igb_tx_buffer *tx_buffer = tx_head;
6370 union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6371 u32 len = xdpf->len, cmd_type, olinfo_status;
6372 void *data = xdpf->data;
6373
6374 count = TXD_USE_COUNT(len);
6375 for (i = 0; i < nr_frags; i++)
6376 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6377
6378 if (igb_maybe_stop_tx(tx_ring, count + 3))
6379 return IGB_XDP_CONSUMED;
6380
6381 i = 0;
6382 /* record the location of the first descriptor for this packet */
6383 tx_head->bytecount = xdp_get_frame_len(xdpf);
6384 tx_head->type = IGB_TYPE_XDP;
6385 tx_head->gso_segs = 1;
6386 tx_head->xdpf = xdpf;
6387
6388 olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6389 /* 82575 requires a unique index per ring */
6390 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6391 olinfo_status |= tx_ring->reg_idx << 4;
6392 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6393
6394 for (;;) {
6395 dma_addr_t dma;
6396
6397 dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6398 if (dma_mapping_error(tx_ring->dev, dma))
6399 goto unmap;
6400
6401 /* record length, and DMA address */
6402 dma_unmap_len_set(tx_buffer, len, len);
6403 dma_unmap_addr_set(tx_buffer, dma, dma);
6404
6405 /* put descriptor type bits */
6406 cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6407 E1000_ADVTXD_DCMD_IFCS | len;
6408
6409 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6410 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6411
6412 tx_buffer->protocol = 0;
6413
6414 if (++index == tx_ring->count)
6415 index = 0;
6416
6417 if (i == nr_frags)
6418 break;
6419
6420 tx_buffer = &tx_ring->tx_buffer_info[index];
6421 tx_desc = IGB_TX_DESC(tx_ring, index);
6422 tx_desc->read.olinfo_status = 0;
6423
6424 data = skb_frag_address(&sinfo->frags[i]);
6425 len = skb_frag_size(&sinfo->frags[i]);
6426 i++;
6427 }
6428 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6429
6430 netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6431 /* set the timestamp */
6432 tx_head->time_stamp = jiffies;
6433
6434 /* Avoid any potential race with xdp_xmit and cleanup */
6435 smp_wmb();
6436
6437 /* set next_to_watch value indicating a packet is present */
6438 tx_head->next_to_watch = tx_desc;
6439 tx_ring->next_to_use = index;
6440
6441 /* Make sure there is space in the ring for the next send. */
6442 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6443
6444 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6445 writel(index, tx_ring->tail);
6446
6447 return IGB_XDP_TX;
6448
6449 unmap:
6450 for (;;) {
6451 tx_buffer = &tx_ring->tx_buffer_info[index];
6452 if (dma_unmap_len(tx_buffer, len))
6453 dma_unmap_page(tx_ring->dev,
6454 dma_unmap_addr(tx_buffer, dma),
6455 dma_unmap_len(tx_buffer, len),
6456 DMA_TO_DEVICE);
6457 dma_unmap_len_set(tx_buffer, len, 0);
6458 if (tx_buffer == tx_head)
6459 break;
6460
6461 if (!index)
6462 index += tx_ring->count;
6463 index--;
6464 }
6465
6466 return IGB_XDP_CONSUMED;
6467 }
6468
igb_xmit_frame_ring(struct sk_buff * skb,struct igb_ring * tx_ring)6469 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6470 struct igb_ring *tx_ring)
6471 {
6472 struct igb_tx_buffer *first;
6473 int tso;
6474 u32 tx_flags = 0;
6475 unsigned short f;
6476 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6477 __be16 protocol = vlan_get_protocol(skb);
6478 u8 hdr_len = 0;
6479
6480 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6481 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6482 * + 2 desc gap to keep tail from touching head,
6483 * + 1 desc for context descriptor,
6484 * otherwise try next time
6485 */
6486 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6487 count += TXD_USE_COUNT(skb_frag_size(
6488 &skb_shinfo(skb)->frags[f]));
6489
6490 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6491 /* this is a hard error */
6492 return NETDEV_TX_BUSY;
6493 }
6494
6495 /* record the location of the first descriptor for this packet */
6496 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6497 first->type = IGB_TYPE_SKB;
6498 first->skb = skb;
6499 first->bytecount = skb->len;
6500 first->gso_segs = 1;
6501
6502 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6503 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6504
6505 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6506 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6507 &adapter->state)) {
6508 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6509 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6510
6511 adapter->ptp_tx_skb = skb_get(skb);
6512 adapter->ptp_tx_start = jiffies;
6513 if (adapter->hw.mac.type == e1000_82576)
6514 schedule_work(&adapter->ptp_tx_work);
6515 } else {
6516 adapter->tx_hwtstamp_skipped++;
6517 }
6518 }
6519
6520 if (skb_vlan_tag_present(skb)) {
6521 tx_flags |= IGB_TX_FLAGS_VLAN;
6522 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6523 }
6524
6525 /* record initial flags and protocol */
6526 first->tx_flags = tx_flags;
6527 first->protocol = protocol;
6528
6529 tso = igb_tso(tx_ring, first, &hdr_len);
6530 if (tso < 0)
6531 goto out_drop;
6532 else if (!tso)
6533 igb_tx_csum(tx_ring, first);
6534
6535 if (igb_tx_map(tx_ring, first, hdr_len))
6536 goto cleanup_tx_tstamp;
6537
6538 return NETDEV_TX_OK;
6539
6540 out_drop:
6541 dev_kfree_skb_any(first->skb);
6542 first->skb = NULL;
6543 cleanup_tx_tstamp:
6544 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6545 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6546
6547 dev_kfree_skb_any(adapter->ptp_tx_skb);
6548 adapter->ptp_tx_skb = NULL;
6549 if (adapter->hw.mac.type == e1000_82576)
6550 cancel_work_sync(&adapter->ptp_tx_work);
6551 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6552 }
6553
6554 return NETDEV_TX_OK;
6555 }
6556
igb_tx_queue_mapping(struct igb_adapter * adapter,struct sk_buff * skb)6557 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6558 struct sk_buff *skb)
6559 {
6560 unsigned int r_idx = skb->queue_mapping;
6561
6562 if (r_idx >= adapter->num_tx_queues)
6563 r_idx = r_idx % adapter->num_tx_queues;
6564
6565 return adapter->tx_ring[r_idx];
6566 }
6567
igb_xmit_frame(struct sk_buff * skb,struct net_device * netdev)6568 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6569 struct net_device *netdev)
6570 {
6571 struct igb_adapter *adapter = netdev_priv(netdev);
6572
6573 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6574 * in order to meet this minimum size requirement.
6575 */
6576 if (skb_put_padto(skb, 17))
6577 return NETDEV_TX_OK;
6578
6579 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6580 }
6581
6582 /**
6583 * igb_tx_timeout - Respond to a Tx Hang
6584 * @netdev: network interface device structure
6585 * @txqueue: number of the Tx queue that hung (unused)
6586 **/
igb_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)6587 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6588 {
6589 struct igb_adapter *adapter = netdev_priv(netdev);
6590 struct e1000_hw *hw = &adapter->hw;
6591
6592 /* Do the reset outside of interrupt context */
6593 adapter->tx_timeout_count++;
6594
6595 if (hw->mac.type >= e1000_82580)
6596 hw->dev_spec._82575.global_device_reset = true;
6597
6598 schedule_work(&adapter->reset_task);
6599 wr32(E1000_EICS,
6600 (adapter->eims_enable_mask & ~adapter->eims_other));
6601 }
6602
igb_reset_task(struct work_struct * work)6603 static void igb_reset_task(struct work_struct *work)
6604 {
6605 struct igb_adapter *adapter;
6606 adapter = container_of(work, struct igb_adapter, reset_task);
6607
6608 rtnl_lock();
6609 /* If we're already down or resetting, just bail */
6610 if (test_bit(__IGB_DOWN, &adapter->state) ||
6611 test_bit(__IGB_RESETTING, &adapter->state)) {
6612 rtnl_unlock();
6613 return;
6614 }
6615
6616 igb_dump(adapter);
6617 netdev_err(adapter->netdev, "Reset adapter\n");
6618 igb_reinit_locked(adapter);
6619 rtnl_unlock();
6620 }
6621
6622 /**
6623 * igb_get_stats64 - Get System Network Statistics
6624 * @netdev: network interface device structure
6625 * @stats: rtnl_link_stats64 pointer
6626 **/
igb_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6627 static void igb_get_stats64(struct net_device *netdev,
6628 struct rtnl_link_stats64 *stats)
6629 {
6630 struct igb_adapter *adapter = netdev_priv(netdev);
6631
6632 spin_lock(&adapter->stats64_lock);
6633 igb_update_stats(adapter);
6634 memcpy(stats, &adapter->stats64, sizeof(*stats));
6635 spin_unlock(&adapter->stats64_lock);
6636 }
6637
6638 /**
6639 * igb_change_mtu - Change the Maximum Transfer Unit
6640 * @netdev: network interface device structure
6641 * @new_mtu: new value for maximum frame size
6642 *
6643 * Returns 0 on success, negative on failure
6644 **/
igb_change_mtu(struct net_device * netdev,int new_mtu)6645 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6646 {
6647 struct igb_adapter *adapter = netdev_priv(netdev);
6648 int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6649
6650 if (adapter->xdp_prog) {
6651 int i;
6652
6653 for (i = 0; i < adapter->num_rx_queues; i++) {
6654 struct igb_ring *ring = adapter->rx_ring[i];
6655
6656 if (max_frame > igb_rx_bufsz(ring)) {
6657 netdev_warn(adapter->netdev,
6658 "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6659 max_frame);
6660 return -EINVAL;
6661 }
6662 }
6663 }
6664
6665 /* adjust max frame to be at least the size of a standard frame */
6666 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6667 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6668
6669 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6670 usleep_range(1000, 2000);
6671
6672 /* igb_down has a dependency on max_frame_size */
6673 adapter->max_frame_size = max_frame;
6674
6675 if (netif_running(netdev))
6676 igb_down(adapter);
6677
6678 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6679 netdev->mtu, new_mtu);
6680 netdev->mtu = new_mtu;
6681
6682 if (netif_running(netdev))
6683 igb_up(adapter);
6684 else
6685 igb_reset(adapter);
6686
6687 clear_bit(__IGB_RESETTING, &adapter->state);
6688
6689 return 0;
6690 }
6691
6692 /**
6693 * igb_update_stats - Update the board statistics counters
6694 * @adapter: board private structure
6695 **/
igb_update_stats(struct igb_adapter * adapter)6696 void igb_update_stats(struct igb_adapter *adapter)
6697 {
6698 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6699 struct e1000_hw *hw = &adapter->hw;
6700 struct pci_dev *pdev = adapter->pdev;
6701 u32 reg, mpc;
6702 int i;
6703 u64 bytes, packets;
6704 unsigned int start;
6705 u64 _bytes, _packets;
6706
6707 /* Prevent stats update while adapter is being reset, or if the pci
6708 * connection is down.
6709 */
6710 if (adapter->link_speed == 0)
6711 return;
6712 if (pci_channel_offline(pdev))
6713 return;
6714
6715 bytes = 0;
6716 packets = 0;
6717
6718 rcu_read_lock();
6719 for (i = 0; i < adapter->num_rx_queues; i++) {
6720 struct igb_ring *ring = adapter->rx_ring[i];
6721 u32 rqdpc = rd32(E1000_RQDPC(i));
6722 if (hw->mac.type >= e1000_i210)
6723 wr32(E1000_RQDPC(i), 0);
6724
6725 if (rqdpc) {
6726 ring->rx_stats.drops += rqdpc;
6727 net_stats->rx_fifo_errors += rqdpc;
6728 }
6729
6730 do {
6731 start = u64_stats_fetch_begin(&ring->rx_syncp);
6732 _bytes = ring->rx_stats.bytes;
6733 _packets = ring->rx_stats.packets;
6734 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6735 bytes += _bytes;
6736 packets += _packets;
6737 }
6738
6739 net_stats->rx_bytes = bytes;
6740 net_stats->rx_packets = packets;
6741
6742 bytes = 0;
6743 packets = 0;
6744 for (i = 0; i < adapter->num_tx_queues; i++) {
6745 struct igb_ring *ring = adapter->tx_ring[i];
6746 do {
6747 start = u64_stats_fetch_begin(&ring->tx_syncp);
6748 _bytes = ring->tx_stats.bytes;
6749 _packets = ring->tx_stats.packets;
6750 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6751 bytes += _bytes;
6752 packets += _packets;
6753 }
6754 net_stats->tx_bytes = bytes;
6755 net_stats->tx_packets = packets;
6756 rcu_read_unlock();
6757
6758 /* read stats registers */
6759 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6760 adapter->stats.gprc += rd32(E1000_GPRC);
6761 adapter->stats.gorc += rd32(E1000_GORCL);
6762 rd32(E1000_GORCH); /* clear GORCL */
6763 adapter->stats.bprc += rd32(E1000_BPRC);
6764 adapter->stats.mprc += rd32(E1000_MPRC);
6765 adapter->stats.roc += rd32(E1000_ROC);
6766
6767 adapter->stats.prc64 += rd32(E1000_PRC64);
6768 adapter->stats.prc127 += rd32(E1000_PRC127);
6769 adapter->stats.prc255 += rd32(E1000_PRC255);
6770 adapter->stats.prc511 += rd32(E1000_PRC511);
6771 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6772 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6773 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6774 adapter->stats.sec += rd32(E1000_SEC);
6775
6776 mpc = rd32(E1000_MPC);
6777 adapter->stats.mpc += mpc;
6778 net_stats->rx_fifo_errors += mpc;
6779 adapter->stats.scc += rd32(E1000_SCC);
6780 adapter->stats.ecol += rd32(E1000_ECOL);
6781 adapter->stats.mcc += rd32(E1000_MCC);
6782 adapter->stats.latecol += rd32(E1000_LATECOL);
6783 adapter->stats.dc += rd32(E1000_DC);
6784 adapter->stats.rlec += rd32(E1000_RLEC);
6785 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6786 adapter->stats.xontxc += rd32(E1000_XONTXC);
6787 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6788 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6789 adapter->stats.fcruc += rd32(E1000_FCRUC);
6790 adapter->stats.gptc += rd32(E1000_GPTC);
6791 adapter->stats.gotc += rd32(E1000_GOTCL);
6792 rd32(E1000_GOTCH); /* clear GOTCL */
6793 adapter->stats.rnbc += rd32(E1000_RNBC);
6794 adapter->stats.ruc += rd32(E1000_RUC);
6795 adapter->stats.rfc += rd32(E1000_RFC);
6796 adapter->stats.rjc += rd32(E1000_RJC);
6797 adapter->stats.tor += rd32(E1000_TORH);
6798 adapter->stats.tot += rd32(E1000_TOTH);
6799 adapter->stats.tpr += rd32(E1000_TPR);
6800
6801 adapter->stats.ptc64 += rd32(E1000_PTC64);
6802 adapter->stats.ptc127 += rd32(E1000_PTC127);
6803 adapter->stats.ptc255 += rd32(E1000_PTC255);
6804 adapter->stats.ptc511 += rd32(E1000_PTC511);
6805 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6806 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6807
6808 adapter->stats.mptc += rd32(E1000_MPTC);
6809 adapter->stats.bptc += rd32(E1000_BPTC);
6810
6811 adapter->stats.tpt += rd32(E1000_TPT);
6812 adapter->stats.colc += rd32(E1000_COLC);
6813
6814 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6815 /* read internal phy specific stats */
6816 reg = rd32(E1000_CTRL_EXT);
6817 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6818 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6819
6820 /* this stat has invalid values on i210/i211 */
6821 if ((hw->mac.type != e1000_i210) &&
6822 (hw->mac.type != e1000_i211))
6823 adapter->stats.tncrs += rd32(E1000_TNCRS);
6824 }
6825
6826 adapter->stats.tsctc += rd32(E1000_TSCTC);
6827 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6828
6829 adapter->stats.iac += rd32(E1000_IAC);
6830 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6831 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6832 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6833 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6834 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6835 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6836 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6837 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6838
6839 /* Fill out the OS statistics structure */
6840 net_stats->multicast = adapter->stats.mprc;
6841 net_stats->collisions = adapter->stats.colc;
6842
6843 /* Rx Errors */
6844
6845 /* RLEC on some newer hardware can be incorrect so build
6846 * our own version based on RUC and ROC
6847 */
6848 net_stats->rx_errors = adapter->stats.rxerrc +
6849 adapter->stats.crcerrs + adapter->stats.algnerrc +
6850 adapter->stats.ruc + adapter->stats.roc +
6851 adapter->stats.cexterr;
6852 net_stats->rx_length_errors = adapter->stats.ruc +
6853 adapter->stats.roc;
6854 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6855 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6856 net_stats->rx_missed_errors = adapter->stats.mpc;
6857
6858 /* Tx Errors */
6859 net_stats->tx_errors = adapter->stats.ecol +
6860 adapter->stats.latecol;
6861 net_stats->tx_aborted_errors = adapter->stats.ecol;
6862 net_stats->tx_window_errors = adapter->stats.latecol;
6863 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6864
6865 /* Tx Dropped needs to be maintained elsewhere */
6866
6867 /* Management Stats */
6868 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6869 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6870 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6871
6872 /* OS2BMC Stats */
6873 reg = rd32(E1000_MANC);
6874 if (reg & E1000_MANC_EN_BMC2OS) {
6875 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6876 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6877 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6878 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6879 }
6880 }
6881
igb_perout(struct igb_adapter * adapter,int tsintr_tt)6882 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6883 {
6884 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6885 struct e1000_hw *hw = &adapter->hw;
6886 struct timespec64 ts;
6887 u32 tsauxc;
6888
6889 if (pin < 0 || pin >= IGB_N_SDP)
6890 return;
6891
6892 spin_lock(&adapter->tmreg_lock);
6893
6894 if (hw->mac.type == e1000_82580 ||
6895 hw->mac.type == e1000_i354 ||
6896 hw->mac.type == e1000_i350) {
6897 s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
6898 u32 systiml, systimh, level_mask, level, rem;
6899 u64 systim, now;
6900
6901 /* read systim registers in sequence */
6902 rd32(E1000_SYSTIMR);
6903 systiml = rd32(E1000_SYSTIML);
6904 systimh = rd32(E1000_SYSTIMH);
6905 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6906 now = timecounter_cyc2time(&adapter->tc, systim);
6907
6908 if (pin < 2) {
6909 level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6910 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6911 } else {
6912 level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6913 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6914 }
6915
6916 div_u64_rem(now, ns, &rem);
6917 systim = systim + (ns - rem);
6918
6919 /* synchronize pin level with rising/falling edges */
6920 div_u64_rem(now, ns << 1, &rem);
6921 if (rem < ns) {
6922 /* first half of period */
6923 if (level == 0) {
6924 /* output is already low, skip this period */
6925 systim += ns;
6926 pr_notice("igb: periodic output on %s missed falling edge\n",
6927 adapter->sdp_config[pin].name);
6928 }
6929 } else {
6930 /* second half of period */
6931 if (level == 1) {
6932 /* output is already high, skip this period */
6933 systim += ns;
6934 pr_notice("igb: periodic output on %s missed rising edge\n",
6935 adapter->sdp_config[pin].name);
6936 }
6937 }
6938
6939 /* for this chip family tv_sec is the upper part of the binary value,
6940 * so not seconds
6941 */
6942 ts.tv_nsec = (u32)systim;
6943 ts.tv_sec = ((u32)(systim >> 32)) & 0xFF;
6944 } else {
6945 ts = timespec64_add(adapter->perout[tsintr_tt].start,
6946 adapter->perout[tsintr_tt].period);
6947 }
6948
6949 /* u32 conversion of tv_sec is safe until y2106 */
6950 wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6951 wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6952 tsauxc = rd32(E1000_TSAUXC);
6953 tsauxc |= TSAUXC_EN_TT0;
6954 wr32(E1000_TSAUXC, tsauxc);
6955 adapter->perout[tsintr_tt].start = ts;
6956
6957 spin_unlock(&adapter->tmreg_lock);
6958 }
6959
igb_extts(struct igb_adapter * adapter,int tsintr_tt)6960 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6961 {
6962 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6963 int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6964 int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6965 struct e1000_hw *hw = &adapter->hw;
6966 struct ptp_clock_event event;
6967 struct timespec64 ts;
6968 unsigned long flags;
6969
6970 if (pin < 0 || pin >= IGB_N_SDP)
6971 return;
6972
6973 if (hw->mac.type == e1000_82580 ||
6974 hw->mac.type == e1000_i354 ||
6975 hw->mac.type == e1000_i350) {
6976 u64 ns = rd32(auxstmpl);
6977
6978 ns += ((u64)(rd32(auxstmph) & 0xFF)) << 32;
6979 spin_lock_irqsave(&adapter->tmreg_lock, flags);
6980 ns = timecounter_cyc2time(&adapter->tc, ns);
6981 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
6982 ts = ns_to_timespec64(ns);
6983 } else {
6984 ts.tv_nsec = rd32(auxstmpl);
6985 ts.tv_sec = rd32(auxstmph);
6986 }
6987
6988 event.type = PTP_CLOCK_EXTTS;
6989 event.index = tsintr_tt;
6990 event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
6991 ptp_clock_event(adapter->ptp_clock, &event);
6992 }
6993
igb_tsync_interrupt(struct igb_adapter * adapter)6994 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6995 {
6996 const u32 mask = (TSINTR_SYS_WRAP | E1000_TSICR_TXTS |
6997 TSINTR_TT0 | TSINTR_TT1 |
6998 TSINTR_AUTT0 | TSINTR_AUTT1);
6999 struct e1000_hw *hw = &adapter->hw;
7000 u32 tsicr = rd32(E1000_TSICR);
7001 struct ptp_clock_event event;
7002
7003 if (hw->mac.type == e1000_82580) {
7004 /* 82580 has a hardware bug that requires an explicit
7005 * write to clear the TimeSync interrupt cause.
7006 */
7007 wr32(E1000_TSICR, tsicr & mask);
7008 }
7009
7010 if (tsicr & TSINTR_SYS_WRAP) {
7011 event.type = PTP_CLOCK_PPS;
7012 if (adapter->ptp_caps.pps)
7013 ptp_clock_event(adapter->ptp_clock, &event);
7014 }
7015
7016 if (tsicr & E1000_TSICR_TXTS) {
7017 /* retrieve hardware timestamp */
7018 schedule_work(&adapter->ptp_tx_work);
7019 }
7020
7021 if (tsicr & TSINTR_TT0)
7022 igb_perout(adapter, 0);
7023
7024 if (tsicr & TSINTR_TT1)
7025 igb_perout(adapter, 1);
7026
7027 if (tsicr & TSINTR_AUTT0)
7028 igb_extts(adapter, 0);
7029
7030 if (tsicr & TSINTR_AUTT1)
7031 igb_extts(adapter, 1);
7032 }
7033
igb_msix_other(int irq,void * data)7034 static irqreturn_t igb_msix_other(int irq, void *data)
7035 {
7036 struct igb_adapter *adapter = data;
7037 struct e1000_hw *hw = &adapter->hw;
7038 u32 icr = rd32(E1000_ICR);
7039 /* reading ICR causes bit 31 of EICR to be cleared */
7040
7041 if (icr & E1000_ICR_DRSTA)
7042 schedule_work(&adapter->reset_task);
7043
7044 if (icr & E1000_ICR_DOUTSYNC) {
7045 /* HW is reporting DMA is out of sync */
7046 adapter->stats.doosync++;
7047 /* The DMA Out of Sync is also indication of a spoof event
7048 * in IOV mode. Check the Wrong VM Behavior register to
7049 * see if it is really a spoof event.
7050 */
7051 igb_check_wvbr(adapter);
7052 }
7053
7054 /* Check for a mailbox event */
7055 if (icr & E1000_ICR_VMMB)
7056 igb_msg_task(adapter);
7057
7058 if (icr & E1000_ICR_LSC) {
7059 hw->mac.get_link_status = 1;
7060 /* guard against interrupt when we're going down */
7061 if (!test_bit(__IGB_DOWN, &adapter->state))
7062 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7063 }
7064
7065 if (icr & E1000_ICR_TS)
7066 igb_tsync_interrupt(adapter);
7067
7068 wr32(E1000_EIMS, adapter->eims_other);
7069
7070 return IRQ_HANDLED;
7071 }
7072
igb_write_itr(struct igb_q_vector * q_vector)7073 static void igb_write_itr(struct igb_q_vector *q_vector)
7074 {
7075 struct igb_adapter *adapter = q_vector->adapter;
7076 u32 itr_val = q_vector->itr_val & 0x7FFC;
7077
7078 if (!q_vector->set_itr)
7079 return;
7080
7081 if (!itr_val)
7082 itr_val = 0x4;
7083
7084 if (adapter->hw.mac.type == e1000_82575)
7085 itr_val |= itr_val << 16;
7086 else
7087 itr_val |= E1000_EITR_CNT_IGNR;
7088
7089 writel(itr_val, q_vector->itr_register);
7090 q_vector->set_itr = 0;
7091 }
7092
igb_msix_ring(int irq,void * data)7093 static irqreturn_t igb_msix_ring(int irq, void *data)
7094 {
7095 struct igb_q_vector *q_vector = data;
7096
7097 /* Write the ITR value calculated from the previous interrupt. */
7098 igb_write_itr(q_vector);
7099
7100 napi_schedule(&q_vector->napi);
7101
7102 return IRQ_HANDLED;
7103 }
7104
7105 #ifdef CONFIG_IGB_DCA
igb_update_tx_dca(struct igb_adapter * adapter,struct igb_ring * tx_ring,int cpu)7106 static void igb_update_tx_dca(struct igb_adapter *adapter,
7107 struct igb_ring *tx_ring,
7108 int cpu)
7109 {
7110 struct e1000_hw *hw = &adapter->hw;
7111 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7112
7113 if (hw->mac.type != e1000_82575)
7114 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7115
7116 /* We can enable relaxed ordering for reads, but not writes when
7117 * DCA is enabled. This is due to a known issue in some chipsets
7118 * which will cause the DCA tag to be cleared.
7119 */
7120 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7121 E1000_DCA_TXCTRL_DATA_RRO_EN |
7122 E1000_DCA_TXCTRL_DESC_DCA_EN;
7123
7124 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7125 }
7126
igb_update_rx_dca(struct igb_adapter * adapter,struct igb_ring * rx_ring,int cpu)7127 static void igb_update_rx_dca(struct igb_adapter *adapter,
7128 struct igb_ring *rx_ring,
7129 int cpu)
7130 {
7131 struct e1000_hw *hw = &adapter->hw;
7132 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7133
7134 if (hw->mac.type != e1000_82575)
7135 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7136
7137 /* We can enable relaxed ordering for reads, but not writes when
7138 * DCA is enabled. This is due to a known issue in some chipsets
7139 * which will cause the DCA tag to be cleared.
7140 */
7141 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7142 E1000_DCA_RXCTRL_DESC_DCA_EN;
7143
7144 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7145 }
7146
igb_update_dca(struct igb_q_vector * q_vector)7147 static void igb_update_dca(struct igb_q_vector *q_vector)
7148 {
7149 struct igb_adapter *adapter = q_vector->adapter;
7150 int cpu = get_cpu();
7151
7152 if (q_vector->cpu == cpu)
7153 goto out_no_update;
7154
7155 if (q_vector->tx.ring)
7156 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7157
7158 if (q_vector->rx.ring)
7159 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7160
7161 q_vector->cpu = cpu;
7162 out_no_update:
7163 put_cpu();
7164 }
7165
igb_setup_dca(struct igb_adapter * adapter)7166 static void igb_setup_dca(struct igb_adapter *adapter)
7167 {
7168 struct e1000_hw *hw = &adapter->hw;
7169 int i;
7170
7171 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7172 return;
7173
7174 /* Always use CB2 mode, difference is masked in the CB driver. */
7175 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7176
7177 for (i = 0; i < adapter->num_q_vectors; i++) {
7178 adapter->q_vector[i]->cpu = -1;
7179 igb_update_dca(adapter->q_vector[i]);
7180 }
7181 }
7182
__igb_notify_dca(struct device * dev,void * data)7183 static int __igb_notify_dca(struct device *dev, void *data)
7184 {
7185 struct net_device *netdev = dev_get_drvdata(dev);
7186 struct igb_adapter *adapter = netdev_priv(netdev);
7187 struct pci_dev *pdev = adapter->pdev;
7188 struct e1000_hw *hw = &adapter->hw;
7189 unsigned long event = *(unsigned long *)data;
7190
7191 switch (event) {
7192 case DCA_PROVIDER_ADD:
7193 /* if already enabled, don't do it again */
7194 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7195 break;
7196 if (dca_add_requester(dev) == 0) {
7197 adapter->flags |= IGB_FLAG_DCA_ENABLED;
7198 dev_info(&pdev->dev, "DCA enabled\n");
7199 igb_setup_dca(adapter);
7200 break;
7201 }
7202 fallthrough; /* since DCA is disabled. */
7203 case DCA_PROVIDER_REMOVE:
7204 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7205 /* without this a class_device is left
7206 * hanging around in the sysfs model
7207 */
7208 dca_remove_requester(dev);
7209 dev_info(&pdev->dev, "DCA disabled\n");
7210 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7211 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7212 }
7213 break;
7214 }
7215
7216 return 0;
7217 }
7218
igb_notify_dca(struct notifier_block * nb,unsigned long event,void * p)7219 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7220 void *p)
7221 {
7222 int ret_val;
7223
7224 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7225 __igb_notify_dca);
7226
7227 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7228 }
7229 #endif /* CONFIG_IGB_DCA */
7230
7231 #ifdef CONFIG_PCI_IOV
igb_vf_configure(struct igb_adapter * adapter,int vf)7232 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7233 {
7234 unsigned char mac_addr[ETH_ALEN];
7235
7236 eth_zero_addr(mac_addr);
7237 igb_set_vf_mac(adapter, vf, mac_addr);
7238
7239 /* By default spoof check is enabled for all VFs */
7240 adapter->vf_data[vf].spoofchk_enabled = true;
7241
7242 /* By default VFs are not trusted */
7243 adapter->vf_data[vf].trusted = false;
7244
7245 return 0;
7246 }
7247
7248 #endif
igb_ping_all_vfs(struct igb_adapter * adapter)7249 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7250 {
7251 struct e1000_hw *hw = &adapter->hw;
7252 u32 ping;
7253 int i;
7254
7255 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7256 ping = E1000_PF_CONTROL_MSG;
7257 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7258 ping |= E1000_VT_MSGTYPE_CTS;
7259 igb_write_mbx(hw, &ping, 1, i);
7260 }
7261 }
7262
igb_set_vf_promisc(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7263 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7264 {
7265 struct e1000_hw *hw = &adapter->hw;
7266 u32 vmolr = rd32(E1000_VMOLR(vf));
7267 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7268
7269 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7270 IGB_VF_FLAG_MULTI_PROMISC);
7271 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7272
7273 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7274 vmolr |= E1000_VMOLR_MPME;
7275 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7276 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7277 } else {
7278 /* if we have hashes and we are clearing a multicast promisc
7279 * flag we need to write the hashes to the MTA as this step
7280 * was previously skipped
7281 */
7282 if (vf_data->num_vf_mc_hashes > 30) {
7283 vmolr |= E1000_VMOLR_MPME;
7284 } else if (vf_data->num_vf_mc_hashes) {
7285 int j;
7286
7287 vmolr |= E1000_VMOLR_ROMPE;
7288 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7289 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7290 }
7291 }
7292
7293 wr32(E1000_VMOLR(vf), vmolr);
7294
7295 /* there are flags left unprocessed, likely not supported */
7296 if (*msgbuf & E1000_VT_MSGINFO_MASK)
7297 return -EINVAL;
7298
7299 return 0;
7300 }
7301
igb_set_vf_multicasts(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7302 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7303 u32 *msgbuf, u32 vf)
7304 {
7305 int n = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7306 u16 *hash_list = (u16 *)&msgbuf[1];
7307 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7308 int i;
7309
7310 /* salt away the number of multicast addresses assigned
7311 * to this VF for later use to restore when the PF multi cast
7312 * list changes
7313 */
7314 vf_data->num_vf_mc_hashes = n;
7315
7316 /* only up to 30 hash values supported */
7317 if (n > 30)
7318 n = 30;
7319
7320 /* store the hashes for later use */
7321 for (i = 0; i < n; i++)
7322 vf_data->vf_mc_hashes[i] = hash_list[i];
7323
7324 /* Flush and reset the mta with the new values */
7325 igb_set_rx_mode(adapter->netdev);
7326
7327 return 0;
7328 }
7329
igb_restore_vf_multicasts(struct igb_adapter * adapter)7330 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7331 {
7332 struct e1000_hw *hw = &adapter->hw;
7333 struct vf_data_storage *vf_data;
7334 int i, j;
7335
7336 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7337 u32 vmolr = rd32(E1000_VMOLR(i));
7338
7339 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7340
7341 vf_data = &adapter->vf_data[i];
7342
7343 if ((vf_data->num_vf_mc_hashes > 30) ||
7344 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7345 vmolr |= E1000_VMOLR_MPME;
7346 } else if (vf_data->num_vf_mc_hashes) {
7347 vmolr |= E1000_VMOLR_ROMPE;
7348 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7349 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7350 }
7351 wr32(E1000_VMOLR(i), vmolr);
7352 }
7353 }
7354
igb_clear_vf_vfta(struct igb_adapter * adapter,u32 vf)7355 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7356 {
7357 struct e1000_hw *hw = &adapter->hw;
7358 u32 pool_mask, vlvf_mask, i;
7359
7360 /* create mask for VF and other pools */
7361 pool_mask = E1000_VLVF_POOLSEL_MASK;
7362 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7363
7364 /* drop PF from pool bits */
7365 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7366 adapter->vfs_allocated_count);
7367
7368 /* Find the vlan filter for this id */
7369 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7370 u32 vlvf = rd32(E1000_VLVF(i));
7371 u32 vfta_mask, vid, vfta;
7372
7373 /* remove the vf from the pool */
7374 if (!(vlvf & vlvf_mask))
7375 continue;
7376
7377 /* clear out bit from VLVF */
7378 vlvf ^= vlvf_mask;
7379
7380 /* if other pools are present, just remove ourselves */
7381 if (vlvf & pool_mask)
7382 goto update_vlvfb;
7383
7384 /* if PF is present, leave VFTA */
7385 if (vlvf & E1000_VLVF_POOLSEL_MASK)
7386 goto update_vlvf;
7387
7388 vid = vlvf & E1000_VLVF_VLANID_MASK;
7389 vfta_mask = BIT(vid % 32);
7390
7391 /* clear bit from VFTA */
7392 vfta = adapter->shadow_vfta[vid / 32];
7393 if (vfta & vfta_mask)
7394 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7395 update_vlvf:
7396 /* clear pool selection enable */
7397 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7398 vlvf &= E1000_VLVF_POOLSEL_MASK;
7399 else
7400 vlvf = 0;
7401 update_vlvfb:
7402 /* clear pool bits */
7403 wr32(E1000_VLVF(i), vlvf);
7404 }
7405 }
7406
igb_find_vlvf_entry(struct e1000_hw * hw,u32 vlan)7407 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7408 {
7409 u32 vlvf;
7410 int idx;
7411
7412 /* short cut the special case */
7413 if (vlan == 0)
7414 return 0;
7415
7416 /* Search for the VLAN id in the VLVF entries */
7417 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7418 vlvf = rd32(E1000_VLVF(idx));
7419 if ((vlvf & VLAN_VID_MASK) == vlan)
7420 break;
7421 }
7422
7423 return idx;
7424 }
7425
igb_update_pf_vlvf(struct igb_adapter * adapter,u32 vid)7426 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7427 {
7428 struct e1000_hw *hw = &adapter->hw;
7429 u32 bits, pf_id;
7430 int idx;
7431
7432 idx = igb_find_vlvf_entry(hw, vid);
7433 if (!idx)
7434 return;
7435
7436 /* See if any other pools are set for this VLAN filter
7437 * entry other than the PF.
7438 */
7439 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7440 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7441 bits &= rd32(E1000_VLVF(idx));
7442
7443 /* Disable the filter so this falls into the default pool. */
7444 if (!bits) {
7445 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7446 wr32(E1000_VLVF(idx), BIT(pf_id));
7447 else
7448 wr32(E1000_VLVF(idx), 0);
7449 }
7450 }
7451
igb_set_vf_vlan(struct igb_adapter * adapter,u32 vid,bool add,u32 vf)7452 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7453 bool add, u32 vf)
7454 {
7455 int pf_id = adapter->vfs_allocated_count;
7456 struct e1000_hw *hw = &adapter->hw;
7457 int err;
7458
7459 /* If VLAN overlaps with one the PF is currently monitoring make
7460 * sure that we are able to allocate a VLVF entry. This may be
7461 * redundant but it guarantees PF will maintain visibility to
7462 * the VLAN.
7463 */
7464 if (add && test_bit(vid, adapter->active_vlans)) {
7465 err = igb_vfta_set(hw, vid, pf_id, true, false);
7466 if (err)
7467 return err;
7468 }
7469
7470 err = igb_vfta_set(hw, vid, vf, add, false);
7471
7472 if (add && !err)
7473 return err;
7474
7475 /* If we failed to add the VF VLAN or we are removing the VF VLAN
7476 * we may need to drop the PF pool bit in order to allow us to free
7477 * up the VLVF resources.
7478 */
7479 if (test_bit(vid, adapter->active_vlans) ||
7480 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7481 igb_update_pf_vlvf(adapter, vid);
7482
7483 return err;
7484 }
7485
igb_set_vmvir(struct igb_adapter * adapter,u32 vid,u32 vf)7486 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7487 {
7488 struct e1000_hw *hw = &adapter->hw;
7489
7490 if (vid)
7491 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7492 else
7493 wr32(E1000_VMVIR(vf), 0);
7494 }
7495
igb_enable_port_vlan(struct igb_adapter * adapter,int vf,u16 vlan,u8 qos)7496 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7497 u16 vlan, u8 qos)
7498 {
7499 int err;
7500
7501 err = igb_set_vf_vlan(adapter, vlan, true, vf);
7502 if (err)
7503 return err;
7504
7505 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7506 igb_set_vmolr(adapter, vf, !vlan);
7507
7508 /* revoke access to previous VLAN */
7509 if (vlan != adapter->vf_data[vf].pf_vlan)
7510 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7511 false, vf);
7512
7513 adapter->vf_data[vf].pf_vlan = vlan;
7514 adapter->vf_data[vf].pf_qos = qos;
7515 igb_set_vf_vlan_strip(adapter, vf, true);
7516 dev_info(&adapter->pdev->dev,
7517 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7518 if (test_bit(__IGB_DOWN, &adapter->state)) {
7519 dev_warn(&adapter->pdev->dev,
7520 "The VF VLAN has been set, but the PF device is not up.\n");
7521 dev_warn(&adapter->pdev->dev,
7522 "Bring the PF device up before attempting to use the VF device.\n");
7523 }
7524
7525 return err;
7526 }
7527
igb_disable_port_vlan(struct igb_adapter * adapter,int vf)7528 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7529 {
7530 /* Restore tagless access via VLAN 0 */
7531 igb_set_vf_vlan(adapter, 0, true, vf);
7532
7533 igb_set_vmvir(adapter, 0, vf);
7534 igb_set_vmolr(adapter, vf, true);
7535
7536 /* Remove any PF assigned VLAN */
7537 if (adapter->vf_data[vf].pf_vlan)
7538 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7539 false, vf);
7540
7541 adapter->vf_data[vf].pf_vlan = 0;
7542 adapter->vf_data[vf].pf_qos = 0;
7543 igb_set_vf_vlan_strip(adapter, vf, false);
7544
7545 return 0;
7546 }
7547
igb_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)7548 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7549 u16 vlan, u8 qos, __be16 vlan_proto)
7550 {
7551 struct igb_adapter *adapter = netdev_priv(netdev);
7552
7553 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7554 return -EINVAL;
7555
7556 if (vlan_proto != htons(ETH_P_8021Q))
7557 return -EPROTONOSUPPORT;
7558
7559 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7560 igb_disable_port_vlan(adapter, vf);
7561 }
7562
igb_set_vf_vlan_msg(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7563 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7564 {
7565 int add = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7566 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7567 int ret;
7568
7569 if (adapter->vf_data[vf].pf_vlan)
7570 return -1;
7571
7572 /* VLAN 0 is a special case, don't allow it to be removed */
7573 if (!vid && !add)
7574 return 0;
7575
7576 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7577 if (!ret)
7578 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7579 return ret;
7580 }
7581
igb_vf_reset(struct igb_adapter * adapter,u32 vf)7582 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7583 {
7584 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7585
7586 /* clear flags - except flag that indicates PF has set the MAC */
7587 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7588 vf_data->last_nack = jiffies;
7589
7590 /* reset vlans for device */
7591 igb_clear_vf_vfta(adapter, vf);
7592 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7593 igb_set_vmvir(adapter, vf_data->pf_vlan |
7594 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7595 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7596 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7597
7598 /* reset multicast table array for vf */
7599 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7600
7601 /* Flush and reset the mta with the new values */
7602 igb_set_rx_mode(adapter->netdev);
7603 }
7604
igb_vf_reset_event(struct igb_adapter * adapter,u32 vf)7605 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7606 {
7607 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7608
7609 /* clear mac address as we were hotplug removed/added */
7610 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7611 eth_zero_addr(vf_mac);
7612
7613 /* process remaining reset events */
7614 igb_vf_reset(adapter, vf);
7615 }
7616
igb_vf_reset_msg(struct igb_adapter * adapter,u32 vf)7617 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7618 {
7619 struct e1000_hw *hw = &adapter->hw;
7620 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7621 u32 reg, msgbuf[3] = {};
7622 u8 *addr = (u8 *)(&msgbuf[1]);
7623
7624 /* process all the same items cleared in a function level reset */
7625 igb_vf_reset(adapter, vf);
7626
7627 /* set vf mac address */
7628 igb_set_vf_mac(adapter, vf, vf_mac);
7629
7630 /* enable transmit and receive for vf */
7631 reg = rd32(E1000_VFTE);
7632 wr32(E1000_VFTE, reg | BIT(vf));
7633 reg = rd32(E1000_VFRE);
7634 wr32(E1000_VFRE, reg | BIT(vf));
7635
7636 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7637
7638 /* reply to reset with ack and vf mac address */
7639 if (!is_zero_ether_addr(vf_mac)) {
7640 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7641 memcpy(addr, vf_mac, ETH_ALEN);
7642 } else {
7643 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7644 }
7645 igb_write_mbx(hw, msgbuf, 3, vf);
7646 }
7647
igb_flush_mac_table(struct igb_adapter * adapter)7648 static void igb_flush_mac_table(struct igb_adapter *adapter)
7649 {
7650 struct e1000_hw *hw = &adapter->hw;
7651 int i;
7652
7653 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7654 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7655 eth_zero_addr(adapter->mac_table[i].addr);
7656 adapter->mac_table[i].queue = 0;
7657 igb_rar_set_index(adapter, i);
7658 }
7659 }
7660
igb_available_rars(struct igb_adapter * adapter,u8 queue)7661 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7662 {
7663 struct e1000_hw *hw = &adapter->hw;
7664 /* do not count rar entries reserved for VFs MAC addresses */
7665 int rar_entries = hw->mac.rar_entry_count -
7666 adapter->vfs_allocated_count;
7667 int i, count = 0;
7668
7669 for (i = 0; i < rar_entries; i++) {
7670 /* do not count default entries */
7671 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7672 continue;
7673
7674 /* do not count "in use" entries for different queues */
7675 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7676 (adapter->mac_table[i].queue != queue))
7677 continue;
7678
7679 count++;
7680 }
7681
7682 return count;
7683 }
7684
7685 /* Set default MAC address for the PF in the first RAR entry */
igb_set_default_mac_filter(struct igb_adapter * adapter)7686 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7687 {
7688 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7689
7690 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7691 mac_table->queue = adapter->vfs_allocated_count;
7692 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7693
7694 igb_rar_set_index(adapter, 0);
7695 }
7696
7697 /* If the filter to be added and an already existing filter express
7698 * the same address and address type, it should be possible to only
7699 * override the other configurations, for example the queue to steer
7700 * traffic.
7701 */
igb_mac_entry_can_be_used(const struct igb_mac_addr * entry,const u8 * addr,const u8 flags)7702 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7703 const u8 *addr, const u8 flags)
7704 {
7705 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7706 return true;
7707
7708 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7709 (flags & IGB_MAC_STATE_SRC_ADDR))
7710 return false;
7711
7712 if (!ether_addr_equal(addr, entry->addr))
7713 return false;
7714
7715 return true;
7716 }
7717
7718 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7719 * 'flags' is used to indicate what kind of match is made, match is by
7720 * default for the destination address, if matching by source address
7721 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7722 */
igb_add_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7723 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7724 const u8 *addr, const u8 queue,
7725 const u8 flags)
7726 {
7727 struct e1000_hw *hw = &adapter->hw;
7728 int rar_entries = hw->mac.rar_entry_count -
7729 adapter->vfs_allocated_count;
7730 int i;
7731
7732 if (is_zero_ether_addr(addr))
7733 return -EINVAL;
7734
7735 /* Search for the first empty entry in the MAC table.
7736 * Do not touch entries at the end of the table reserved for the VF MAC
7737 * addresses.
7738 */
7739 for (i = 0; i < rar_entries; i++) {
7740 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7741 addr, flags))
7742 continue;
7743
7744 ether_addr_copy(adapter->mac_table[i].addr, addr);
7745 adapter->mac_table[i].queue = queue;
7746 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7747
7748 igb_rar_set_index(adapter, i);
7749 return i;
7750 }
7751
7752 return -ENOSPC;
7753 }
7754
igb_add_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7755 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7756 const u8 queue)
7757 {
7758 return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7759 }
7760
7761 /* Remove a MAC filter for 'addr' directing matching traffic to
7762 * 'queue', 'flags' is used to indicate what kind of match need to be
7763 * removed, match is by default for the destination address, if
7764 * matching by source address is to be removed the flag
7765 * IGB_MAC_STATE_SRC_ADDR can be used.
7766 */
igb_del_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7767 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7768 const u8 *addr, const u8 queue,
7769 const u8 flags)
7770 {
7771 struct e1000_hw *hw = &adapter->hw;
7772 int rar_entries = hw->mac.rar_entry_count -
7773 adapter->vfs_allocated_count;
7774 int i;
7775
7776 if (is_zero_ether_addr(addr))
7777 return -EINVAL;
7778
7779 /* Search for matching entry in the MAC table based on given address
7780 * and queue. Do not touch entries at the end of the table reserved
7781 * for the VF MAC addresses.
7782 */
7783 for (i = 0; i < rar_entries; i++) {
7784 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7785 continue;
7786 if ((adapter->mac_table[i].state & flags) != flags)
7787 continue;
7788 if (adapter->mac_table[i].queue != queue)
7789 continue;
7790 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7791 continue;
7792
7793 /* When a filter for the default address is "deleted",
7794 * we return it to its initial configuration
7795 */
7796 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7797 adapter->mac_table[i].state =
7798 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7799 adapter->mac_table[i].queue =
7800 adapter->vfs_allocated_count;
7801 } else {
7802 adapter->mac_table[i].state = 0;
7803 adapter->mac_table[i].queue = 0;
7804 eth_zero_addr(adapter->mac_table[i].addr);
7805 }
7806
7807 igb_rar_set_index(adapter, i);
7808 return 0;
7809 }
7810
7811 return -ENOENT;
7812 }
7813
igb_del_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7814 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7815 const u8 queue)
7816 {
7817 return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7818 }
7819
igb_add_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7820 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7821 const u8 *addr, u8 queue, u8 flags)
7822 {
7823 struct e1000_hw *hw = &adapter->hw;
7824
7825 /* In theory, this should be supported on 82575 as well, but
7826 * that part wasn't easily accessible during development.
7827 */
7828 if (hw->mac.type != e1000_i210)
7829 return -EOPNOTSUPP;
7830
7831 return igb_add_mac_filter_flags(adapter, addr, queue,
7832 IGB_MAC_STATE_QUEUE_STEERING | flags);
7833 }
7834
igb_del_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7835 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7836 const u8 *addr, u8 queue, u8 flags)
7837 {
7838 return igb_del_mac_filter_flags(adapter, addr, queue,
7839 IGB_MAC_STATE_QUEUE_STEERING | flags);
7840 }
7841
igb_uc_sync(struct net_device * netdev,const unsigned char * addr)7842 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7843 {
7844 struct igb_adapter *adapter = netdev_priv(netdev);
7845 int ret;
7846
7847 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7848
7849 return min_t(int, ret, 0);
7850 }
7851
igb_uc_unsync(struct net_device * netdev,const unsigned char * addr)7852 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7853 {
7854 struct igb_adapter *adapter = netdev_priv(netdev);
7855
7856 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7857
7858 return 0;
7859 }
7860
igb_set_vf_mac_filter(struct igb_adapter * adapter,const int vf,const u32 info,const u8 * addr)7861 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7862 const u32 info, const u8 *addr)
7863 {
7864 struct pci_dev *pdev = adapter->pdev;
7865 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7866 struct list_head *pos;
7867 struct vf_mac_filter *entry = NULL;
7868 int ret = 0;
7869
7870 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7871 !vf_data->trusted) {
7872 dev_warn(&pdev->dev,
7873 "VF %d requested MAC filter but is administratively denied\n",
7874 vf);
7875 return -EINVAL;
7876 }
7877 if (!is_valid_ether_addr(addr)) {
7878 dev_warn(&pdev->dev,
7879 "VF %d attempted to set invalid MAC filter\n",
7880 vf);
7881 return -EINVAL;
7882 }
7883
7884 switch (info) {
7885 case E1000_VF_MAC_FILTER_CLR:
7886 /* remove all unicast MAC filters related to the current VF */
7887 list_for_each(pos, &adapter->vf_macs.l) {
7888 entry = list_entry(pos, struct vf_mac_filter, l);
7889 if (entry->vf == vf) {
7890 entry->vf = -1;
7891 entry->free = true;
7892 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7893 }
7894 }
7895 break;
7896 case E1000_VF_MAC_FILTER_ADD:
7897 /* try to find empty slot in the list */
7898 list_for_each(pos, &adapter->vf_macs.l) {
7899 entry = list_entry(pos, struct vf_mac_filter, l);
7900 if (entry->free)
7901 break;
7902 }
7903
7904 if (entry && entry->free) {
7905 entry->free = false;
7906 entry->vf = vf;
7907 ether_addr_copy(entry->vf_mac, addr);
7908
7909 ret = igb_add_mac_filter(adapter, addr, vf);
7910 ret = min_t(int, ret, 0);
7911 } else {
7912 ret = -ENOSPC;
7913 }
7914
7915 if (ret == -ENOSPC)
7916 dev_warn(&pdev->dev,
7917 "VF %d has requested MAC filter but there is no space for it\n",
7918 vf);
7919 break;
7920 default:
7921 ret = -EINVAL;
7922 break;
7923 }
7924
7925 return ret;
7926 }
7927
igb_set_vf_mac_addr(struct igb_adapter * adapter,u32 * msg,int vf)7928 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7929 {
7930 struct pci_dev *pdev = adapter->pdev;
7931 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7932 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7933
7934 /* The VF MAC Address is stored in a packed array of bytes
7935 * starting at the second 32 bit word of the msg array
7936 */
7937 unsigned char *addr = (unsigned char *)&msg[1];
7938 int ret = 0;
7939
7940 if (!info) {
7941 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7942 !vf_data->trusted) {
7943 dev_warn(&pdev->dev,
7944 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7945 vf);
7946 return -EINVAL;
7947 }
7948
7949 if (!is_valid_ether_addr(addr)) {
7950 dev_warn(&pdev->dev,
7951 "VF %d attempted to set invalid MAC\n",
7952 vf);
7953 return -EINVAL;
7954 }
7955
7956 ret = igb_set_vf_mac(adapter, vf, addr);
7957 } else {
7958 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7959 }
7960
7961 return ret;
7962 }
7963
igb_rcv_ack_from_vf(struct igb_adapter * adapter,u32 vf)7964 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7965 {
7966 struct e1000_hw *hw = &adapter->hw;
7967 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7968 u32 msg = E1000_VT_MSGTYPE_NACK;
7969
7970 /* if device isn't clear to send it shouldn't be reading either */
7971 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7972 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7973 igb_write_mbx(hw, &msg, 1, vf);
7974 vf_data->last_nack = jiffies;
7975 }
7976 }
7977
igb_rcv_msg_from_vf(struct igb_adapter * adapter,u32 vf)7978 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7979 {
7980 struct pci_dev *pdev = adapter->pdev;
7981 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7982 struct e1000_hw *hw = &adapter->hw;
7983 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7984 s32 retval;
7985
7986 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7987
7988 if (retval) {
7989 /* if receive failed revoke VF CTS stats and restart init */
7990 dev_err(&pdev->dev, "Error receiving message from VF\n");
7991 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7992 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7993 goto unlock;
7994 goto out;
7995 }
7996
7997 /* this is a message we already processed, do nothing */
7998 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7999 goto unlock;
8000
8001 /* until the vf completes a reset it should not be
8002 * allowed to start any configuration.
8003 */
8004 if (msgbuf[0] == E1000_VF_RESET) {
8005 /* unlocks mailbox */
8006 igb_vf_reset_msg(adapter, vf);
8007 return;
8008 }
8009
8010 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
8011 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
8012 goto unlock;
8013 retval = -1;
8014 goto out;
8015 }
8016
8017 switch ((msgbuf[0] & 0xFFFF)) {
8018 case E1000_VF_SET_MAC_ADDR:
8019 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
8020 break;
8021 case E1000_VF_SET_PROMISC:
8022 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
8023 break;
8024 case E1000_VF_SET_MULTICAST:
8025 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
8026 break;
8027 case E1000_VF_SET_LPE:
8028 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
8029 break;
8030 case E1000_VF_SET_VLAN:
8031 retval = -1;
8032 if (vf_data->pf_vlan)
8033 dev_warn(&pdev->dev,
8034 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
8035 vf);
8036 else
8037 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
8038 break;
8039 default:
8040 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
8041 retval = -1;
8042 break;
8043 }
8044
8045 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
8046 out:
8047 /* notify the VF of the results of what it sent us */
8048 if (retval)
8049 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
8050 else
8051 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
8052
8053 /* unlocks mailbox */
8054 igb_write_mbx(hw, msgbuf, 1, vf);
8055 return;
8056
8057 unlock:
8058 igb_unlock_mbx(hw, vf);
8059 }
8060
igb_msg_task(struct igb_adapter * adapter)8061 static void igb_msg_task(struct igb_adapter *adapter)
8062 {
8063 struct e1000_hw *hw = &adapter->hw;
8064 unsigned long flags;
8065 u32 vf;
8066
8067 spin_lock_irqsave(&adapter->vfs_lock, flags);
8068 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
8069 /* process any reset requests */
8070 if (!igb_check_for_rst(hw, vf))
8071 igb_vf_reset_event(adapter, vf);
8072
8073 /* process any messages pending */
8074 if (!igb_check_for_msg(hw, vf))
8075 igb_rcv_msg_from_vf(adapter, vf);
8076
8077 /* process any acks */
8078 if (!igb_check_for_ack(hw, vf))
8079 igb_rcv_ack_from_vf(adapter, vf);
8080 }
8081 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
8082 }
8083
8084 /**
8085 * igb_set_uta - Set unicast filter table address
8086 * @adapter: board private structure
8087 * @set: boolean indicating if we are setting or clearing bits
8088 *
8089 * The unicast table address is a register array of 32-bit registers.
8090 * The table is meant to be used in a way similar to how the MTA is used
8091 * however due to certain limitations in the hardware it is necessary to
8092 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8093 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
8094 **/
igb_set_uta(struct igb_adapter * adapter,bool set)8095 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8096 {
8097 struct e1000_hw *hw = &adapter->hw;
8098 u32 uta = set ? ~0 : 0;
8099 int i;
8100
8101 /* we only need to do this if VMDq is enabled */
8102 if (!adapter->vfs_allocated_count)
8103 return;
8104
8105 for (i = hw->mac.uta_reg_count; i--;)
8106 array_wr32(E1000_UTA, i, uta);
8107 }
8108
8109 /**
8110 * igb_intr_msi - Interrupt Handler
8111 * @irq: interrupt number
8112 * @data: pointer to a network interface device structure
8113 **/
igb_intr_msi(int irq,void * data)8114 static irqreturn_t igb_intr_msi(int irq, void *data)
8115 {
8116 struct igb_adapter *adapter = data;
8117 struct igb_q_vector *q_vector = adapter->q_vector[0];
8118 struct e1000_hw *hw = &adapter->hw;
8119 /* read ICR disables interrupts using IAM */
8120 u32 icr = rd32(E1000_ICR);
8121
8122 igb_write_itr(q_vector);
8123
8124 if (icr & E1000_ICR_DRSTA)
8125 schedule_work(&adapter->reset_task);
8126
8127 if (icr & E1000_ICR_DOUTSYNC) {
8128 /* HW is reporting DMA is out of sync */
8129 adapter->stats.doosync++;
8130 }
8131
8132 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8133 hw->mac.get_link_status = 1;
8134 if (!test_bit(__IGB_DOWN, &adapter->state))
8135 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8136 }
8137
8138 if (icr & E1000_ICR_TS)
8139 igb_tsync_interrupt(adapter);
8140
8141 napi_schedule(&q_vector->napi);
8142
8143 return IRQ_HANDLED;
8144 }
8145
8146 /**
8147 * igb_intr - Legacy Interrupt Handler
8148 * @irq: interrupt number
8149 * @data: pointer to a network interface device structure
8150 **/
igb_intr(int irq,void * data)8151 static irqreturn_t igb_intr(int irq, void *data)
8152 {
8153 struct igb_adapter *adapter = data;
8154 struct igb_q_vector *q_vector = adapter->q_vector[0];
8155 struct e1000_hw *hw = &adapter->hw;
8156 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
8157 * need for the IMC write
8158 */
8159 u32 icr = rd32(E1000_ICR);
8160
8161 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8162 * not set, then the adapter didn't send an interrupt
8163 */
8164 if (!(icr & E1000_ICR_INT_ASSERTED))
8165 return IRQ_NONE;
8166
8167 igb_write_itr(q_vector);
8168
8169 if (icr & E1000_ICR_DRSTA)
8170 schedule_work(&adapter->reset_task);
8171
8172 if (icr & E1000_ICR_DOUTSYNC) {
8173 /* HW is reporting DMA is out of sync */
8174 adapter->stats.doosync++;
8175 }
8176
8177 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8178 hw->mac.get_link_status = 1;
8179 /* guard against interrupt when we're going down */
8180 if (!test_bit(__IGB_DOWN, &adapter->state))
8181 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8182 }
8183
8184 if (icr & E1000_ICR_TS)
8185 igb_tsync_interrupt(adapter);
8186
8187 napi_schedule(&q_vector->napi);
8188
8189 return IRQ_HANDLED;
8190 }
8191
igb_ring_irq_enable(struct igb_q_vector * q_vector)8192 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8193 {
8194 struct igb_adapter *adapter = q_vector->adapter;
8195 struct e1000_hw *hw = &adapter->hw;
8196
8197 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8198 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8199 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8200 igb_set_itr(q_vector);
8201 else
8202 igb_update_ring_itr(q_vector);
8203 }
8204
8205 if (!test_bit(__IGB_DOWN, &adapter->state)) {
8206 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8207 wr32(E1000_EIMS, q_vector->eims_value);
8208 else
8209 igb_irq_enable(adapter);
8210 }
8211 }
8212
8213 /**
8214 * igb_poll - NAPI Rx polling callback
8215 * @napi: napi polling structure
8216 * @budget: count of how many packets we should handle
8217 **/
igb_poll(struct napi_struct * napi,int budget)8218 static int igb_poll(struct napi_struct *napi, int budget)
8219 {
8220 struct igb_q_vector *q_vector = container_of(napi,
8221 struct igb_q_vector,
8222 napi);
8223 bool clean_complete = true;
8224 int work_done = 0;
8225
8226 #ifdef CONFIG_IGB_DCA
8227 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8228 igb_update_dca(q_vector);
8229 #endif
8230 if (q_vector->tx.ring)
8231 clean_complete = igb_clean_tx_irq(q_vector, budget);
8232
8233 if (q_vector->rx.ring) {
8234 int cleaned = igb_clean_rx_irq(q_vector, budget);
8235
8236 work_done += cleaned;
8237 if (cleaned >= budget)
8238 clean_complete = false;
8239 }
8240
8241 /* If all work not completed, return budget and keep polling */
8242 if (!clean_complete)
8243 return budget;
8244
8245 /* Exit the polling mode, but don't re-enable interrupts if stack might
8246 * poll us due to busy-polling
8247 */
8248 if (likely(napi_complete_done(napi, work_done)))
8249 igb_ring_irq_enable(q_vector);
8250
8251 return work_done;
8252 }
8253
8254 /**
8255 * igb_clean_tx_irq - Reclaim resources after transmit completes
8256 * @q_vector: pointer to q_vector containing needed info
8257 * @napi_budget: Used to determine if we are in netpoll
8258 *
8259 * returns true if ring is completely cleaned
8260 **/
igb_clean_tx_irq(struct igb_q_vector * q_vector,int napi_budget)8261 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8262 {
8263 struct igb_adapter *adapter = q_vector->adapter;
8264 struct igb_ring *tx_ring = q_vector->tx.ring;
8265 struct igb_tx_buffer *tx_buffer;
8266 union e1000_adv_tx_desc *tx_desc;
8267 unsigned int total_bytes = 0, total_packets = 0;
8268 unsigned int budget = q_vector->tx.work_limit;
8269 unsigned int i = tx_ring->next_to_clean;
8270
8271 if (test_bit(__IGB_DOWN, &adapter->state))
8272 return true;
8273
8274 tx_buffer = &tx_ring->tx_buffer_info[i];
8275 tx_desc = IGB_TX_DESC(tx_ring, i);
8276 i -= tx_ring->count;
8277
8278 do {
8279 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8280
8281 /* if next_to_watch is not set then there is no work pending */
8282 if (!eop_desc)
8283 break;
8284
8285 /* prevent any other reads prior to eop_desc */
8286 smp_rmb();
8287
8288 /* if DD is not set pending work has not been completed */
8289 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8290 break;
8291
8292 /* clear next_to_watch to prevent false hangs */
8293 tx_buffer->next_to_watch = NULL;
8294
8295 /* update the statistics for this packet */
8296 total_bytes += tx_buffer->bytecount;
8297 total_packets += tx_buffer->gso_segs;
8298
8299 /* free the skb */
8300 if (tx_buffer->type == IGB_TYPE_SKB)
8301 napi_consume_skb(tx_buffer->skb, napi_budget);
8302 else
8303 xdp_return_frame(tx_buffer->xdpf);
8304
8305 /* unmap skb header data */
8306 dma_unmap_single(tx_ring->dev,
8307 dma_unmap_addr(tx_buffer, dma),
8308 dma_unmap_len(tx_buffer, len),
8309 DMA_TO_DEVICE);
8310
8311 /* clear tx_buffer data */
8312 dma_unmap_len_set(tx_buffer, len, 0);
8313
8314 /* clear last DMA location and unmap remaining buffers */
8315 while (tx_desc != eop_desc) {
8316 tx_buffer++;
8317 tx_desc++;
8318 i++;
8319 if (unlikely(!i)) {
8320 i -= tx_ring->count;
8321 tx_buffer = tx_ring->tx_buffer_info;
8322 tx_desc = IGB_TX_DESC(tx_ring, 0);
8323 }
8324
8325 /* unmap any remaining paged data */
8326 if (dma_unmap_len(tx_buffer, len)) {
8327 dma_unmap_page(tx_ring->dev,
8328 dma_unmap_addr(tx_buffer, dma),
8329 dma_unmap_len(tx_buffer, len),
8330 DMA_TO_DEVICE);
8331 dma_unmap_len_set(tx_buffer, len, 0);
8332 }
8333 }
8334
8335 /* move us one more past the eop_desc for start of next pkt */
8336 tx_buffer++;
8337 tx_desc++;
8338 i++;
8339 if (unlikely(!i)) {
8340 i -= tx_ring->count;
8341 tx_buffer = tx_ring->tx_buffer_info;
8342 tx_desc = IGB_TX_DESC(tx_ring, 0);
8343 }
8344
8345 /* issue prefetch for next Tx descriptor */
8346 prefetch(tx_desc);
8347
8348 /* update budget accounting */
8349 budget--;
8350 } while (likely(budget));
8351
8352 netdev_tx_completed_queue(txring_txq(tx_ring),
8353 total_packets, total_bytes);
8354 i += tx_ring->count;
8355 tx_ring->next_to_clean = i;
8356 u64_stats_update_begin(&tx_ring->tx_syncp);
8357 tx_ring->tx_stats.bytes += total_bytes;
8358 tx_ring->tx_stats.packets += total_packets;
8359 u64_stats_update_end(&tx_ring->tx_syncp);
8360 q_vector->tx.total_bytes += total_bytes;
8361 q_vector->tx.total_packets += total_packets;
8362
8363 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8364 struct e1000_hw *hw = &adapter->hw;
8365
8366 /* Detect a transmit hang in hardware, this serializes the
8367 * check with the clearing of time_stamp and movement of i
8368 */
8369 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8370 if (tx_buffer->next_to_watch &&
8371 time_after(jiffies, tx_buffer->time_stamp +
8372 (adapter->tx_timeout_factor * HZ)) &&
8373 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8374
8375 /* detected Tx unit hang */
8376 dev_err(tx_ring->dev,
8377 "Detected Tx Unit Hang\n"
8378 " Tx Queue <%d>\n"
8379 " TDH <%x>\n"
8380 " TDT <%x>\n"
8381 " next_to_use <%x>\n"
8382 " next_to_clean <%x>\n"
8383 "buffer_info[next_to_clean]\n"
8384 " time_stamp <%lx>\n"
8385 " next_to_watch <%p>\n"
8386 " jiffies <%lx>\n"
8387 " desc.status <%x>\n",
8388 tx_ring->queue_index,
8389 rd32(E1000_TDH(tx_ring->reg_idx)),
8390 readl(tx_ring->tail),
8391 tx_ring->next_to_use,
8392 tx_ring->next_to_clean,
8393 tx_buffer->time_stamp,
8394 tx_buffer->next_to_watch,
8395 jiffies,
8396 tx_buffer->next_to_watch->wb.status);
8397 netif_stop_subqueue(tx_ring->netdev,
8398 tx_ring->queue_index);
8399
8400 /* we are about to reset, no point in enabling stuff */
8401 return true;
8402 }
8403 }
8404
8405 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8406 if (unlikely(total_packets &&
8407 netif_carrier_ok(tx_ring->netdev) &&
8408 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8409 /* Make sure that anybody stopping the queue after this
8410 * sees the new next_to_clean.
8411 */
8412 smp_mb();
8413 if (__netif_subqueue_stopped(tx_ring->netdev,
8414 tx_ring->queue_index) &&
8415 !(test_bit(__IGB_DOWN, &adapter->state))) {
8416 netif_wake_subqueue(tx_ring->netdev,
8417 tx_ring->queue_index);
8418
8419 u64_stats_update_begin(&tx_ring->tx_syncp);
8420 tx_ring->tx_stats.restart_queue++;
8421 u64_stats_update_end(&tx_ring->tx_syncp);
8422 }
8423 }
8424
8425 return !!budget;
8426 }
8427
8428 /**
8429 * igb_reuse_rx_page - page flip buffer and store it back on the ring
8430 * @rx_ring: rx descriptor ring to store buffers on
8431 * @old_buff: donor buffer to have page reused
8432 *
8433 * Synchronizes page for reuse by the adapter
8434 **/
igb_reuse_rx_page(struct igb_ring * rx_ring,struct igb_rx_buffer * old_buff)8435 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8436 struct igb_rx_buffer *old_buff)
8437 {
8438 struct igb_rx_buffer *new_buff;
8439 u16 nta = rx_ring->next_to_alloc;
8440
8441 new_buff = &rx_ring->rx_buffer_info[nta];
8442
8443 /* update, and store next to alloc */
8444 nta++;
8445 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8446
8447 /* Transfer page from old buffer to new buffer.
8448 * Move each member individually to avoid possible store
8449 * forwarding stalls.
8450 */
8451 new_buff->dma = old_buff->dma;
8452 new_buff->page = old_buff->page;
8453 new_buff->page_offset = old_buff->page_offset;
8454 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
8455 }
8456
igb_can_reuse_rx_page(struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8457 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8458 int rx_buf_pgcnt)
8459 {
8460 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8461 struct page *page = rx_buffer->page;
8462
8463 /* avoid re-using remote and pfmemalloc pages */
8464 if (!dev_page_is_reusable(page))
8465 return false;
8466
8467 #if (PAGE_SIZE < 8192)
8468 /* if we are only owner of page we can reuse it */
8469 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8470 return false;
8471 #else
8472 #define IGB_LAST_OFFSET \
8473 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8474
8475 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8476 return false;
8477 #endif
8478
8479 /* If we have drained the page fragment pool we need to update
8480 * the pagecnt_bias and page count so that we fully restock the
8481 * number of references the driver holds.
8482 */
8483 if (unlikely(pagecnt_bias == 1)) {
8484 page_ref_add(page, USHRT_MAX - 1);
8485 rx_buffer->pagecnt_bias = USHRT_MAX;
8486 }
8487
8488 return true;
8489 }
8490
8491 /**
8492 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8493 * @rx_ring: rx descriptor ring to transact packets on
8494 * @rx_buffer: buffer containing page to add
8495 * @skb: sk_buff to place the data into
8496 * @size: size of buffer to be added
8497 *
8498 * This function will add the data contained in rx_buffer->page to the skb.
8499 **/
igb_add_rx_frag(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)8500 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8501 struct igb_rx_buffer *rx_buffer,
8502 struct sk_buff *skb,
8503 unsigned int size)
8504 {
8505 #if (PAGE_SIZE < 8192)
8506 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8507 #else
8508 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8509 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8510 SKB_DATA_ALIGN(size);
8511 #endif
8512 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8513 rx_buffer->page_offset, size, truesize);
8514 #if (PAGE_SIZE < 8192)
8515 rx_buffer->page_offset ^= truesize;
8516 #else
8517 rx_buffer->page_offset += truesize;
8518 #endif
8519 }
8520
igb_construct_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)8521 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8522 struct igb_rx_buffer *rx_buffer,
8523 struct xdp_buff *xdp,
8524 ktime_t timestamp)
8525 {
8526 #if (PAGE_SIZE < 8192)
8527 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8528 #else
8529 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8530 xdp->data_hard_start);
8531 #endif
8532 unsigned int size = xdp->data_end - xdp->data;
8533 unsigned int headlen;
8534 struct sk_buff *skb;
8535
8536 /* prefetch first cache line of first page */
8537 net_prefetch(xdp->data);
8538
8539 /* allocate a skb to store the frags */
8540 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8541 if (unlikely(!skb))
8542 return NULL;
8543
8544 if (timestamp)
8545 skb_hwtstamps(skb)->hwtstamp = timestamp;
8546
8547 /* Determine available headroom for copy */
8548 headlen = size;
8549 if (headlen > IGB_RX_HDR_LEN)
8550 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8551
8552 /* align pull length to size of long to optimize memcpy performance */
8553 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8554
8555 /* update all of the pointers */
8556 size -= headlen;
8557 if (size) {
8558 skb_add_rx_frag(skb, 0, rx_buffer->page,
8559 (xdp->data + headlen) - page_address(rx_buffer->page),
8560 size, truesize);
8561 #if (PAGE_SIZE < 8192)
8562 rx_buffer->page_offset ^= truesize;
8563 #else
8564 rx_buffer->page_offset += truesize;
8565 #endif
8566 } else {
8567 rx_buffer->pagecnt_bias++;
8568 }
8569
8570 return skb;
8571 }
8572
igb_build_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)8573 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8574 struct igb_rx_buffer *rx_buffer,
8575 struct xdp_buff *xdp,
8576 ktime_t timestamp)
8577 {
8578 #if (PAGE_SIZE < 8192)
8579 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8580 #else
8581 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8582 SKB_DATA_ALIGN(xdp->data_end -
8583 xdp->data_hard_start);
8584 #endif
8585 unsigned int metasize = xdp->data - xdp->data_meta;
8586 struct sk_buff *skb;
8587
8588 /* prefetch first cache line of first page */
8589 net_prefetch(xdp->data_meta);
8590
8591 /* build an skb around the page buffer */
8592 skb = napi_build_skb(xdp->data_hard_start, truesize);
8593 if (unlikely(!skb))
8594 return NULL;
8595
8596 /* update pointers within the skb to store the data */
8597 skb_reserve(skb, xdp->data - xdp->data_hard_start);
8598 __skb_put(skb, xdp->data_end - xdp->data);
8599
8600 if (metasize)
8601 skb_metadata_set(skb, metasize);
8602
8603 if (timestamp)
8604 skb_hwtstamps(skb)->hwtstamp = timestamp;
8605
8606 /* update buffer offset */
8607 #if (PAGE_SIZE < 8192)
8608 rx_buffer->page_offset ^= truesize;
8609 #else
8610 rx_buffer->page_offset += truesize;
8611 #endif
8612
8613 return skb;
8614 }
8615
igb_run_xdp(struct igb_adapter * adapter,struct igb_ring * rx_ring,struct xdp_buff * xdp)8616 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8617 struct igb_ring *rx_ring,
8618 struct xdp_buff *xdp)
8619 {
8620 int err, result = IGB_XDP_PASS;
8621 struct bpf_prog *xdp_prog;
8622 u32 act;
8623
8624 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8625
8626 if (!xdp_prog)
8627 goto xdp_out;
8628
8629 prefetchw(xdp->data_hard_start); /* xdp_frame write */
8630
8631 act = bpf_prog_run_xdp(xdp_prog, xdp);
8632 switch (act) {
8633 case XDP_PASS:
8634 break;
8635 case XDP_TX:
8636 result = igb_xdp_xmit_back(adapter, xdp);
8637 if (result == IGB_XDP_CONSUMED)
8638 goto out_failure;
8639 break;
8640 case XDP_REDIRECT:
8641 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8642 if (err)
8643 goto out_failure;
8644 result = IGB_XDP_REDIR;
8645 break;
8646 default:
8647 bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8648 fallthrough;
8649 case XDP_ABORTED:
8650 out_failure:
8651 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8652 fallthrough;
8653 case XDP_DROP:
8654 result = IGB_XDP_CONSUMED;
8655 break;
8656 }
8657 xdp_out:
8658 return ERR_PTR(-result);
8659 }
8660
igb_rx_frame_truesize(struct igb_ring * rx_ring,unsigned int size)8661 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8662 unsigned int size)
8663 {
8664 unsigned int truesize;
8665
8666 #if (PAGE_SIZE < 8192)
8667 truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8668 #else
8669 truesize = ring_uses_build_skb(rx_ring) ?
8670 SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8671 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8672 SKB_DATA_ALIGN(size);
8673 #endif
8674 return truesize;
8675 }
8676
igb_rx_buffer_flip(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,unsigned int size)8677 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8678 struct igb_rx_buffer *rx_buffer,
8679 unsigned int size)
8680 {
8681 unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8682 #if (PAGE_SIZE < 8192)
8683 rx_buffer->page_offset ^= truesize;
8684 #else
8685 rx_buffer->page_offset += truesize;
8686 #endif
8687 }
8688
igb_rx_checksum(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8689 static inline void igb_rx_checksum(struct igb_ring *ring,
8690 union e1000_adv_rx_desc *rx_desc,
8691 struct sk_buff *skb)
8692 {
8693 skb_checksum_none_assert(skb);
8694
8695 /* Ignore Checksum bit is set */
8696 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8697 return;
8698
8699 /* Rx checksum disabled via ethtool */
8700 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8701 return;
8702
8703 /* TCP/UDP checksum error bit is set */
8704 if (igb_test_staterr(rx_desc,
8705 E1000_RXDEXT_STATERR_TCPE |
8706 E1000_RXDEXT_STATERR_IPE)) {
8707 /* work around errata with sctp packets where the TCPE aka
8708 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8709 * packets, (aka let the stack check the crc32c)
8710 */
8711 if (!((skb->len == 60) &&
8712 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8713 u64_stats_update_begin(&ring->rx_syncp);
8714 ring->rx_stats.csum_err++;
8715 u64_stats_update_end(&ring->rx_syncp);
8716 }
8717 /* let the stack verify checksum errors */
8718 return;
8719 }
8720 /* It must be a TCP or UDP packet with a valid checksum */
8721 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8722 E1000_RXD_STAT_UDPCS))
8723 skb->ip_summed = CHECKSUM_UNNECESSARY;
8724
8725 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8726 le32_to_cpu(rx_desc->wb.upper.status_error));
8727 }
8728
igb_rx_hash(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8729 static inline void igb_rx_hash(struct igb_ring *ring,
8730 union e1000_adv_rx_desc *rx_desc,
8731 struct sk_buff *skb)
8732 {
8733 if (ring->netdev->features & NETIF_F_RXHASH)
8734 skb_set_hash(skb,
8735 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8736 PKT_HASH_TYPE_L3);
8737 }
8738
8739 /**
8740 * igb_is_non_eop - process handling of non-EOP buffers
8741 * @rx_ring: Rx ring being processed
8742 * @rx_desc: Rx descriptor for current buffer
8743 *
8744 * This function updates next to clean. If the buffer is an EOP buffer
8745 * this function exits returning false, otherwise it will place the
8746 * sk_buff in the next buffer to be chained and return true indicating
8747 * that this is in fact a non-EOP buffer.
8748 **/
igb_is_non_eop(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc)8749 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8750 union e1000_adv_rx_desc *rx_desc)
8751 {
8752 u32 ntc = rx_ring->next_to_clean + 1;
8753
8754 /* fetch, update, and store next to clean */
8755 ntc = (ntc < rx_ring->count) ? ntc : 0;
8756 rx_ring->next_to_clean = ntc;
8757
8758 prefetch(IGB_RX_DESC(rx_ring, ntc));
8759
8760 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8761 return false;
8762
8763 return true;
8764 }
8765
8766 /**
8767 * igb_cleanup_headers - Correct corrupted or empty headers
8768 * @rx_ring: rx descriptor ring packet is being transacted on
8769 * @rx_desc: pointer to the EOP Rx descriptor
8770 * @skb: pointer to current skb being fixed
8771 *
8772 * Address the case where we are pulling data in on pages only
8773 * and as such no data is present in the skb header.
8774 *
8775 * In addition if skb is not at least 60 bytes we need to pad it so that
8776 * it is large enough to qualify as a valid Ethernet frame.
8777 *
8778 * Returns true if an error was encountered and skb was freed.
8779 **/
igb_cleanup_headers(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8780 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8781 union e1000_adv_rx_desc *rx_desc,
8782 struct sk_buff *skb)
8783 {
8784 /* XDP packets use error pointer so abort at this point */
8785 if (IS_ERR(skb))
8786 return true;
8787
8788 if (unlikely((igb_test_staterr(rx_desc,
8789 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8790 struct net_device *netdev = rx_ring->netdev;
8791 if (!(netdev->features & NETIF_F_RXALL)) {
8792 dev_kfree_skb_any(skb);
8793 return true;
8794 }
8795 }
8796
8797 /* if eth_skb_pad returns an error the skb was freed */
8798 if (eth_skb_pad(skb))
8799 return true;
8800
8801 return false;
8802 }
8803
8804 /**
8805 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8806 * @rx_ring: rx descriptor ring packet is being transacted on
8807 * @rx_desc: pointer to the EOP Rx descriptor
8808 * @skb: pointer to current skb being populated
8809 *
8810 * This function checks the ring, descriptor, and packet information in
8811 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8812 * other fields within the skb.
8813 **/
igb_process_skb_fields(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8814 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8815 union e1000_adv_rx_desc *rx_desc,
8816 struct sk_buff *skb)
8817 {
8818 struct net_device *dev = rx_ring->netdev;
8819
8820 igb_rx_hash(rx_ring, rx_desc, skb);
8821
8822 igb_rx_checksum(rx_ring, rx_desc, skb);
8823
8824 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8825 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8826 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8827
8828 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8829 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8830 u16 vid;
8831
8832 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8833 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8834 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8835 else
8836 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8837
8838 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8839 }
8840
8841 skb_record_rx_queue(skb, rx_ring->queue_index);
8842
8843 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8844 }
8845
igb_rx_offset(struct igb_ring * rx_ring)8846 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8847 {
8848 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8849 }
8850
igb_get_rx_buffer(struct igb_ring * rx_ring,const unsigned int size,int * rx_buf_pgcnt)8851 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8852 const unsigned int size, int *rx_buf_pgcnt)
8853 {
8854 struct igb_rx_buffer *rx_buffer;
8855
8856 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8857 *rx_buf_pgcnt =
8858 #if (PAGE_SIZE < 8192)
8859 page_count(rx_buffer->page);
8860 #else
8861 0;
8862 #endif
8863 prefetchw(rx_buffer->page);
8864
8865 /* we are reusing so sync this buffer for CPU use */
8866 dma_sync_single_range_for_cpu(rx_ring->dev,
8867 rx_buffer->dma,
8868 rx_buffer->page_offset,
8869 size,
8870 DMA_FROM_DEVICE);
8871
8872 rx_buffer->pagecnt_bias--;
8873
8874 return rx_buffer;
8875 }
8876
igb_put_rx_buffer(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8877 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8878 struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8879 {
8880 if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8881 /* hand second half of page back to the ring */
8882 igb_reuse_rx_page(rx_ring, rx_buffer);
8883 } else {
8884 /* We are not reusing the buffer so unmap it and free
8885 * any references we are holding to it
8886 */
8887 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8888 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8889 IGB_RX_DMA_ATTR);
8890 __page_frag_cache_drain(rx_buffer->page,
8891 rx_buffer->pagecnt_bias);
8892 }
8893
8894 /* clear contents of rx_buffer */
8895 rx_buffer->page = NULL;
8896 }
8897
igb_clean_rx_irq(struct igb_q_vector * q_vector,const int budget)8898 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8899 {
8900 unsigned int total_bytes = 0, total_packets = 0;
8901 struct igb_adapter *adapter = q_vector->adapter;
8902 struct igb_ring *rx_ring = q_vector->rx.ring;
8903 u16 cleaned_count = igb_desc_unused(rx_ring);
8904 struct sk_buff *skb = rx_ring->skb;
8905 int cpu = smp_processor_id();
8906 unsigned int xdp_xmit = 0;
8907 struct netdev_queue *nq;
8908 struct xdp_buff xdp;
8909 u32 frame_sz = 0;
8910 int rx_buf_pgcnt;
8911
8912 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8913 #if (PAGE_SIZE < 8192)
8914 frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8915 #endif
8916 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8917
8918 while (likely(total_packets < budget)) {
8919 union e1000_adv_rx_desc *rx_desc;
8920 struct igb_rx_buffer *rx_buffer;
8921 ktime_t timestamp = 0;
8922 int pkt_offset = 0;
8923 unsigned int size;
8924 void *pktbuf;
8925
8926 /* return some buffers to hardware, one at a time is too slow */
8927 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8928 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8929 cleaned_count = 0;
8930 }
8931
8932 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8933 size = le16_to_cpu(rx_desc->wb.upper.length);
8934 if (!size)
8935 break;
8936
8937 /* This memory barrier is needed to keep us from reading
8938 * any other fields out of the rx_desc until we know the
8939 * descriptor has been written back
8940 */
8941 dma_rmb();
8942
8943 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8944 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8945
8946 /* pull rx packet timestamp if available and valid */
8947 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8948 int ts_hdr_len;
8949
8950 ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8951 pktbuf, ×tamp);
8952
8953 pkt_offset += ts_hdr_len;
8954 size -= ts_hdr_len;
8955 }
8956
8957 /* retrieve a buffer from the ring */
8958 if (!skb) {
8959 unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8960 unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8961
8962 xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8963 xdp_buff_clear_frags_flag(&xdp);
8964 #if (PAGE_SIZE > 4096)
8965 /* At larger PAGE_SIZE, frame_sz depend on len size */
8966 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8967 #endif
8968 skb = igb_run_xdp(adapter, rx_ring, &xdp);
8969 }
8970
8971 if (IS_ERR(skb)) {
8972 unsigned int xdp_res = -PTR_ERR(skb);
8973
8974 if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8975 xdp_xmit |= xdp_res;
8976 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8977 } else {
8978 rx_buffer->pagecnt_bias++;
8979 }
8980 total_packets++;
8981 total_bytes += size;
8982 } else if (skb)
8983 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8984 else if (ring_uses_build_skb(rx_ring))
8985 skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8986 timestamp);
8987 else
8988 skb = igb_construct_skb(rx_ring, rx_buffer,
8989 &xdp, timestamp);
8990
8991 /* exit if we failed to retrieve a buffer */
8992 if (!skb) {
8993 rx_ring->rx_stats.alloc_failed++;
8994 rx_buffer->pagecnt_bias++;
8995 break;
8996 }
8997
8998 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8999 cleaned_count++;
9000
9001 /* fetch next buffer in frame if non-eop */
9002 if (igb_is_non_eop(rx_ring, rx_desc))
9003 continue;
9004
9005 /* verify the packet layout is correct */
9006 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
9007 skb = NULL;
9008 continue;
9009 }
9010
9011 /* probably a little skewed due to removing CRC */
9012 total_bytes += skb->len;
9013
9014 /* populate checksum, timestamp, VLAN, and protocol */
9015 igb_process_skb_fields(rx_ring, rx_desc, skb);
9016
9017 napi_gro_receive(&q_vector->napi, skb);
9018
9019 /* reset skb pointer */
9020 skb = NULL;
9021
9022 /* update budget accounting */
9023 total_packets++;
9024 }
9025
9026 /* place incomplete frames back on ring for completion */
9027 rx_ring->skb = skb;
9028
9029 if (xdp_xmit & IGB_XDP_REDIR)
9030 xdp_do_flush();
9031
9032 if (xdp_xmit & IGB_XDP_TX) {
9033 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
9034
9035 nq = txring_txq(tx_ring);
9036 __netif_tx_lock(nq, cpu);
9037 igb_xdp_ring_update_tail(tx_ring);
9038 __netif_tx_unlock(nq);
9039 }
9040
9041 u64_stats_update_begin(&rx_ring->rx_syncp);
9042 rx_ring->rx_stats.packets += total_packets;
9043 rx_ring->rx_stats.bytes += total_bytes;
9044 u64_stats_update_end(&rx_ring->rx_syncp);
9045 q_vector->rx.total_packets += total_packets;
9046 q_vector->rx.total_bytes += total_bytes;
9047
9048 if (cleaned_count)
9049 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9050
9051 return total_packets;
9052 }
9053
igb_alloc_mapped_page(struct igb_ring * rx_ring,struct igb_rx_buffer * bi)9054 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
9055 struct igb_rx_buffer *bi)
9056 {
9057 struct page *page = bi->page;
9058 dma_addr_t dma;
9059
9060 /* since we are recycling buffers we should seldom need to alloc */
9061 if (likely(page))
9062 return true;
9063
9064 /* alloc new page for storage */
9065 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
9066 if (unlikely(!page)) {
9067 rx_ring->rx_stats.alloc_failed++;
9068 return false;
9069 }
9070
9071 /* map page for use */
9072 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
9073 igb_rx_pg_size(rx_ring),
9074 DMA_FROM_DEVICE,
9075 IGB_RX_DMA_ATTR);
9076
9077 /* if mapping failed free memory back to system since
9078 * there isn't much point in holding memory we can't use
9079 */
9080 if (dma_mapping_error(rx_ring->dev, dma)) {
9081 __free_pages(page, igb_rx_pg_order(rx_ring));
9082
9083 rx_ring->rx_stats.alloc_failed++;
9084 return false;
9085 }
9086
9087 bi->dma = dma;
9088 bi->page = page;
9089 bi->page_offset = igb_rx_offset(rx_ring);
9090 page_ref_add(page, USHRT_MAX - 1);
9091 bi->pagecnt_bias = USHRT_MAX;
9092
9093 return true;
9094 }
9095
9096 /**
9097 * igb_alloc_rx_buffers - Replace used receive buffers
9098 * @rx_ring: rx descriptor ring to allocate new receive buffers
9099 * @cleaned_count: count of buffers to allocate
9100 **/
igb_alloc_rx_buffers(struct igb_ring * rx_ring,u16 cleaned_count)9101 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9102 {
9103 union e1000_adv_rx_desc *rx_desc;
9104 struct igb_rx_buffer *bi;
9105 u16 i = rx_ring->next_to_use;
9106 u16 bufsz;
9107
9108 /* nothing to do */
9109 if (!cleaned_count)
9110 return;
9111
9112 rx_desc = IGB_RX_DESC(rx_ring, i);
9113 bi = &rx_ring->rx_buffer_info[i];
9114 i -= rx_ring->count;
9115
9116 bufsz = igb_rx_bufsz(rx_ring);
9117
9118 do {
9119 if (!igb_alloc_mapped_page(rx_ring, bi))
9120 break;
9121
9122 /* sync the buffer for use by the device */
9123 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9124 bi->page_offset, bufsz,
9125 DMA_FROM_DEVICE);
9126
9127 /* Refresh the desc even if buffer_addrs didn't change
9128 * because each write-back erases this info.
9129 */
9130 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9131
9132 rx_desc++;
9133 bi++;
9134 i++;
9135 if (unlikely(!i)) {
9136 rx_desc = IGB_RX_DESC(rx_ring, 0);
9137 bi = rx_ring->rx_buffer_info;
9138 i -= rx_ring->count;
9139 }
9140
9141 /* clear the length for the next_to_use descriptor */
9142 rx_desc->wb.upper.length = 0;
9143
9144 cleaned_count--;
9145 } while (cleaned_count);
9146
9147 i += rx_ring->count;
9148
9149 if (rx_ring->next_to_use != i) {
9150 /* record the next descriptor to use */
9151 rx_ring->next_to_use = i;
9152
9153 /* update next to alloc since we have filled the ring */
9154 rx_ring->next_to_alloc = i;
9155
9156 /* Force memory writes to complete before letting h/w
9157 * know there are new descriptors to fetch. (Only
9158 * applicable for weak-ordered memory model archs,
9159 * such as IA-64).
9160 */
9161 dma_wmb();
9162 writel(i, rx_ring->tail);
9163 }
9164 }
9165
9166 /**
9167 * igb_mii_ioctl -
9168 * @netdev: pointer to netdev struct
9169 * @ifr: interface structure
9170 * @cmd: ioctl command to execute
9171 **/
igb_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)9172 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9173 {
9174 struct igb_adapter *adapter = netdev_priv(netdev);
9175 struct mii_ioctl_data *data = if_mii(ifr);
9176
9177 if (adapter->hw.phy.media_type != e1000_media_type_copper)
9178 return -EOPNOTSUPP;
9179
9180 switch (cmd) {
9181 case SIOCGMIIPHY:
9182 data->phy_id = adapter->hw.phy.addr;
9183 break;
9184 case SIOCGMIIREG:
9185 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9186 &data->val_out))
9187 return -EIO;
9188 break;
9189 case SIOCSMIIREG:
9190 default:
9191 return -EOPNOTSUPP;
9192 }
9193 return 0;
9194 }
9195
9196 /**
9197 * igb_ioctl -
9198 * @netdev: pointer to netdev struct
9199 * @ifr: interface structure
9200 * @cmd: ioctl command to execute
9201 **/
igb_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)9202 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9203 {
9204 switch (cmd) {
9205 case SIOCGMIIPHY:
9206 case SIOCGMIIREG:
9207 case SIOCSMIIREG:
9208 return igb_mii_ioctl(netdev, ifr, cmd);
9209 case SIOCGHWTSTAMP:
9210 return igb_ptp_get_ts_config(netdev, ifr);
9211 case SIOCSHWTSTAMP:
9212 return igb_ptp_set_ts_config(netdev, ifr);
9213 default:
9214 return -EOPNOTSUPP;
9215 }
9216 }
9217
igb_read_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9218 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9219 {
9220 struct igb_adapter *adapter = hw->back;
9221
9222 pci_read_config_word(adapter->pdev, reg, value);
9223 }
9224
igb_write_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9225 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9226 {
9227 struct igb_adapter *adapter = hw->back;
9228
9229 pci_write_config_word(adapter->pdev, reg, *value);
9230 }
9231
igb_read_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9232 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9233 {
9234 struct igb_adapter *adapter = hw->back;
9235
9236 if (pcie_capability_read_word(adapter->pdev, reg, value))
9237 return -E1000_ERR_CONFIG;
9238
9239 return 0;
9240 }
9241
igb_write_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9242 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9243 {
9244 struct igb_adapter *adapter = hw->back;
9245
9246 if (pcie_capability_write_word(adapter->pdev, reg, *value))
9247 return -E1000_ERR_CONFIG;
9248
9249 return 0;
9250 }
9251
igb_vlan_mode(struct net_device * netdev,netdev_features_t features)9252 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9253 {
9254 struct igb_adapter *adapter = netdev_priv(netdev);
9255 struct e1000_hw *hw = &adapter->hw;
9256 u32 ctrl, rctl;
9257 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9258
9259 if (enable) {
9260 /* enable VLAN tag insert/strip */
9261 ctrl = rd32(E1000_CTRL);
9262 ctrl |= E1000_CTRL_VME;
9263 wr32(E1000_CTRL, ctrl);
9264
9265 /* Disable CFI check */
9266 rctl = rd32(E1000_RCTL);
9267 rctl &= ~E1000_RCTL_CFIEN;
9268 wr32(E1000_RCTL, rctl);
9269 } else {
9270 /* disable VLAN tag insert/strip */
9271 ctrl = rd32(E1000_CTRL);
9272 ctrl &= ~E1000_CTRL_VME;
9273 wr32(E1000_CTRL, ctrl);
9274 }
9275
9276 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9277 }
9278
igb_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)9279 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9280 __be16 proto, u16 vid)
9281 {
9282 struct igb_adapter *adapter = netdev_priv(netdev);
9283 struct e1000_hw *hw = &adapter->hw;
9284 int pf_id = adapter->vfs_allocated_count;
9285
9286 /* add the filter since PF can receive vlans w/o entry in vlvf */
9287 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9288 igb_vfta_set(hw, vid, pf_id, true, !!vid);
9289
9290 set_bit(vid, adapter->active_vlans);
9291
9292 return 0;
9293 }
9294
igb_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)9295 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9296 __be16 proto, u16 vid)
9297 {
9298 struct igb_adapter *adapter = netdev_priv(netdev);
9299 int pf_id = adapter->vfs_allocated_count;
9300 struct e1000_hw *hw = &adapter->hw;
9301
9302 /* remove VID from filter table */
9303 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9304 igb_vfta_set(hw, vid, pf_id, false, true);
9305
9306 clear_bit(vid, adapter->active_vlans);
9307
9308 return 0;
9309 }
9310
igb_restore_vlan(struct igb_adapter * adapter)9311 static void igb_restore_vlan(struct igb_adapter *adapter)
9312 {
9313 u16 vid = 1;
9314
9315 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9316 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9317
9318 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9319 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9320 }
9321
igb_set_spd_dplx(struct igb_adapter * adapter,u32 spd,u8 dplx)9322 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9323 {
9324 struct pci_dev *pdev = adapter->pdev;
9325 struct e1000_mac_info *mac = &adapter->hw.mac;
9326
9327 mac->autoneg = 0;
9328
9329 /* Make sure dplx is at most 1 bit and lsb of speed is not set
9330 * for the switch() below to work
9331 */
9332 if ((spd & 1) || (dplx & ~1))
9333 goto err_inval;
9334
9335 /* Fiber NIC's only allow 1000 gbps Full duplex
9336 * and 100Mbps Full duplex for 100baseFx sfp
9337 */
9338 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9339 switch (spd + dplx) {
9340 case SPEED_10 + DUPLEX_HALF:
9341 case SPEED_10 + DUPLEX_FULL:
9342 case SPEED_100 + DUPLEX_HALF:
9343 goto err_inval;
9344 default:
9345 break;
9346 }
9347 }
9348
9349 switch (spd + dplx) {
9350 case SPEED_10 + DUPLEX_HALF:
9351 mac->forced_speed_duplex = ADVERTISE_10_HALF;
9352 break;
9353 case SPEED_10 + DUPLEX_FULL:
9354 mac->forced_speed_duplex = ADVERTISE_10_FULL;
9355 break;
9356 case SPEED_100 + DUPLEX_HALF:
9357 mac->forced_speed_duplex = ADVERTISE_100_HALF;
9358 break;
9359 case SPEED_100 + DUPLEX_FULL:
9360 mac->forced_speed_duplex = ADVERTISE_100_FULL;
9361 break;
9362 case SPEED_1000 + DUPLEX_FULL:
9363 mac->autoneg = 1;
9364 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9365 break;
9366 case SPEED_1000 + DUPLEX_HALF: /* not supported */
9367 default:
9368 goto err_inval;
9369 }
9370
9371 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9372 adapter->hw.phy.mdix = AUTO_ALL_MODES;
9373
9374 return 0;
9375
9376 err_inval:
9377 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9378 return -EINVAL;
9379 }
9380
__igb_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)9381 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9382 bool runtime)
9383 {
9384 struct net_device *netdev = pci_get_drvdata(pdev);
9385 struct igb_adapter *adapter = netdev_priv(netdev);
9386 struct e1000_hw *hw = &adapter->hw;
9387 u32 ctrl, rctl, status;
9388 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9389 bool wake;
9390
9391 rtnl_lock();
9392 netif_device_detach(netdev);
9393
9394 if (netif_running(netdev))
9395 __igb_close(netdev, true);
9396
9397 igb_ptp_suspend(adapter);
9398
9399 igb_clear_interrupt_scheme(adapter);
9400 rtnl_unlock();
9401
9402 status = rd32(E1000_STATUS);
9403 if (status & E1000_STATUS_LU)
9404 wufc &= ~E1000_WUFC_LNKC;
9405
9406 if (wufc) {
9407 igb_setup_rctl(adapter);
9408 igb_set_rx_mode(netdev);
9409
9410 /* turn on all-multi mode if wake on multicast is enabled */
9411 if (wufc & E1000_WUFC_MC) {
9412 rctl = rd32(E1000_RCTL);
9413 rctl |= E1000_RCTL_MPE;
9414 wr32(E1000_RCTL, rctl);
9415 }
9416
9417 ctrl = rd32(E1000_CTRL);
9418 ctrl |= E1000_CTRL_ADVD3WUC;
9419 wr32(E1000_CTRL, ctrl);
9420
9421 /* Allow time for pending master requests to run */
9422 igb_disable_pcie_master(hw);
9423
9424 wr32(E1000_WUC, E1000_WUC_PME_EN);
9425 wr32(E1000_WUFC, wufc);
9426 } else {
9427 wr32(E1000_WUC, 0);
9428 wr32(E1000_WUFC, 0);
9429 }
9430
9431 wake = wufc || adapter->en_mng_pt;
9432 if (!wake)
9433 igb_power_down_link(adapter);
9434 else
9435 igb_power_up_link(adapter);
9436
9437 if (enable_wake)
9438 *enable_wake = wake;
9439
9440 /* Release control of h/w to f/w. If f/w is AMT enabled, this
9441 * would have already happened in close and is redundant.
9442 */
9443 igb_release_hw_control(adapter);
9444
9445 pci_disable_device(pdev);
9446
9447 return 0;
9448 }
9449
igb_deliver_wake_packet(struct net_device * netdev)9450 static void igb_deliver_wake_packet(struct net_device *netdev)
9451 {
9452 struct igb_adapter *adapter = netdev_priv(netdev);
9453 struct e1000_hw *hw = &adapter->hw;
9454 struct sk_buff *skb;
9455 u32 wupl;
9456
9457 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9458
9459 /* WUPM stores only the first 128 bytes of the wake packet.
9460 * Read the packet only if we have the whole thing.
9461 */
9462 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9463 return;
9464
9465 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9466 if (!skb)
9467 return;
9468
9469 skb_put(skb, wupl);
9470
9471 /* Ensure reads are 32-bit aligned */
9472 wupl = roundup(wupl, 4);
9473
9474 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9475
9476 skb->protocol = eth_type_trans(skb, netdev);
9477 netif_rx(skb);
9478 }
9479
igb_suspend(struct device * dev)9480 static int __maybe_unused igb_suspend(struct device *dev)
9481 {
9482 return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9483 }
9484
__igb_resume(struct device * dev,bool rpm)9485 static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
9486 {
9487 struct pci_dev *pdev = to_pci_dev(dev);
9488 struct net_device *netdev = pci_get_drvdata(pdev);
9489 struct igb_adapter *adapter = netdev_priv(netdev);
9490 struct e1000_hw *hw = &adapter->hw;
9491 u32 err, val;
9492
9493 pci_set_power_state(pdev, PCI_D0);
9494 pci_restore_state(pdev);
9495 pci_save_state(pdev);
9496
9497 if (!pci_device_is_present(pdev))
9498 return -ENODEV;
9499 err = pci_enable_device_mem(pdev);
9500 if (err) {
9501 dev_err(&pdev->dev,
9502 "igb: Cannot enable PCI device from suspend\n");
9503 return err;
9504 }
9505 pci_set_master(pdev);
9506
9507 pci_enable_wake(pdev, PCI_D3hot, 0);
9508 pci_enable_wake(pdev, PCI_D3cold, 0);
9509
9510 if (igb_init_interrupt_scheme(adapter, true)) {
9511 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9512 return -ENOMEM;
9513 }
9514
9515 igb_reset(adapter);
9516
9517 /* let the f/w know that the h/w is now under the control of the
9518 * driver.
9519 */
9520 igb_get_hw_control(adapter);
9521
9522 val = rd32(E1000_WUS);
9523 if (val & WAKE_PKT_WUS)
9524 igb_deliver_wake_packet(netdev);
9525
9526 wr32(E1000_WUS, ~0);
9527
9528 if (!rpm)
9529 rtnl_lock();
9530 if (!err && netif_running(netdev))
9531 err = __igb_open(netdev, true);
9532
9533 if (!err)
9534 netif_device_attach(netdev);
9535 if (!rpm)
9536 rtnl_unlock();
9537
9538 return err;
9539 }
9540
igb_resume(struct device * dev)9541 static int __maybe_unused igb_resume(struct device *dev)
9542 {
9543 return __igb_resume(dev, false);
9544 }
9545
igb_runtime_idle(struct device * dev)9546 static int __maybe_unused igb_runtime_idle(struct device *dev)
9547 {
9548 struct net_device *netdev = dev_get_drvdata(dev);
9549 struct igb_adapter *adapter = netdev_priv(netdev);
9550
9551 if (!igb_has_link(adapter))
9552 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9553
9554 return -EBUSY;
9555 }
9556
igb_runtime_suspend(struct device * dev)9557 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9558 {
9559 return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9560 }
9561
igb_runtime_resume(struct device * dev)9562 static int __maybe_unused igb_runtime_resume(struct device *dev)
9563 {
9564 return __igb_resume(dev, true);
9565 }
9566
igb_shutdown(struct pci_dev * pdev)9567 static void igb_shutdown(struct pci_dev *pdev)
9568 {
9569 bool wake;
9570
9571 __igb_shutdown(pdev, &wake, 0);
9572
9573 if (system_state == SYSTEM_POWER_OFF) {
9574 pci_wake_from_d3(pdev, wake);
9575 pci_set_power_state(pdev, PCI_D3hot);
9576 }
9577 }
9578
igb_pci_sriov_configure(struct pci_dev * dev,int num_vfs)9579 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9580 {
9581 #ifdef CONFIG_PCI_IOV
9582 int err;
9583
9584 if (num_vfs == 0) {
9585 return igb_disable_sriov(dev, true);
9586 } else {
9587 err = igb_enable_sriov(dev, num_vfs, true);
9588 return err ? err : num_vfs;
9589 }
9590 #endif
9591 return 0;
9592 }
9593
9594 /**
9595 * igb_io_error_detected - called when PCI error is detected
9596 * @pdev: Pointer to PCI device
9597 * @state: The current pci connection state
9598 *
9599 * This function is called after a PCI bus error affecting
9600 * this device has been detected.
9601 **/
igb_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)9602 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9603 pci_channel_state_t state)
9604 {
9605 struct net_device *netdev = pci_get_drvdata(pdev);
9606 struct igb_adapter *adapter = netdev_priv(netdev);
9607
9608 if (state == pci_channel_io_normal) {
9609 dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
9610 return PCI_ERS_RESULT_CAN_RECOVER;
9611 }
9612
9613 netif_device_detach(netdev);
9614
9615 if (state == pci_channel_io_perm_failure)
9616 return PCI_ERS_RESULT_DISCONNECT;
9617
9618 if (netif_running(netdev))
9619 igb_down(adapter);
9620 pci_disable_device(pdev);
9621
9622 /* Request a slot reset. */
9623 return PCI_ERS_RESULT_NEED_RESET;
9624 }
9625
9626 /**
9627 * igb_io_slot_reset - called after the pci bus has been reset.
9628 * @pdev: Pointer to PCI device
9629 *
9630 * Restart the card from scratch, as if from a cold-boot. Implementation
9631 * resembles the first-half of the __igb_resume routine.
9632 **/
igb_io_slot_reset(struct pci_dev * pdev)9633 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9634 {
9635 struct net_device *netdev = pci_get_drvdata(pdev);
9636 struct igb_adapter *adapter = netdev_priv(netdev);
9637 struct e1000_hw *hw = &adapter->hw;
9638 pci_ers_result_t result;
9639
9640 if (pci_enable_device_mem(pdev)) {
9641 dev_err(&pdev->dev,
9642 "Cannot re-enable PCI device after reset.\n");
9643 result = PCI_ERS_RESULT_DISCONNECT;
9644 } else {
9645 pci_set_master(pdev);
9646 pci_restore_state(pdev);
9647 pci_save_state(pdev);
9648
9649 pci_enable_wake(pdev, PCI_D3hot, 0);
9650 pci_enable_wake(pdev, PCI_D3cold, 0);
9651
9652 /* In case of PCI error, adapter lose its HW address
9653 * so we should re-assign it here.
9654 */
9655 hw->hw_addr = adapter->io_addr;
9656
9657 igb_reset(adapter);
9658 wr32(E1000_WUS, ~0);
9659 result = PCI_ERS_RESULT_RECOVERED;
9660 }
9661
9662 return result;
9663 }
9664
9665 /**
9666 * igb_io_resume - called when traffic can start flowing again.
9667 * @pdev: Pointer to PCI device
9668 *
9669 * This callback is called when the error recovery driver tells us that
9670 * its OK to resume normal operation. Implementation resembles the
9671 * second-half of the __igb_resume routine.
9672 */
igb_io_resume(struct pci_dev * pdev)9673 static void igb_io_resume(struct pci_dev *pdev)
9674 {
9675 struct net_device *netdev = pci_get_drvdata(pdev);
9676 struct igb_adapter *adapter = netdev_priv(netdev);
9677
9678 if (netif_running(netdev)) {
9679 if (!test_bit(__IGB_DOWN, &adapter->state)) {
9680 dev_dbg(&pdev->dev, "Resuming from non-fatal error, do nothing.\n");
9681 return;
9682 }
9683 if (igb_up(adapter)) {
9684 dev_err(&pdev->dev, "igb_up failed after reset\n");
9685 return;
9686 }
9687 }
9688
9689 netif_device_attach(netdev);
9690
9691 /* let the f/w know that the h/w is now under the control of the
9692 * driver.
9693 */
9694 igb_get_hw_control(adapter);
9695 }
9696
9697 /**
9698 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9699 * @adapter: Pointer to adapter structure
9700 * @index: Index of the RAR entry which need to be synced with MAC table
9701 **/
igb_rar_set_index(struct igb_adapter * adapter,u32 index)9702 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9703 {
9704 struct e1000_hw *hw = &adapter->hw;
9705 u32 rar_low, rar_high;
9706 u8 *addr = adapter->mac_table[index].addr;
9707
9708 /* HW expects these to be in network order when they are plugged
9709 * into the registers which are little endian. In order to guarantee
9710 * that ordering we need to do an leXX_to_cpup here in order to be
9711 * ready for the byteswap that occurs with writel
9712 */
9713 rar_low = le32_to_cpup((__le32 *)(addr));
9714 rar_high = le16_to_cpup((__le16 *)(addr + 4));
9715
9716 /* Indicate to hardware the Address is Valid. */
9717 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9718 if (is_valid_ether_addr(addr))
9719 rar_high |= E1000_RAH_AV;
9720
9721 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9722 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9723
9724 switch (hw->mac.type) {
9725 case e1000_82575:
9726 case e1000_i210:
9727 if (adapter->mac_table[index].state &
9728 IGB_MAC_STATE_QUEUE_STEERING)
9729 rar_high |= E1000_RAH_QSEL_ENABLE;
9730
9731 rar_high |= E1000_RAH_POOL_1 *
9732 adapter->mac_table[index].queue;
9733 break;
9734 default:
9735 rar_high |= E1000_RAH_POOL_1 <<
9736 adapter->mac_table[index].queue;
9737 break;
9738 }
9739 }
9740
9741 wr32(E1000_RAL(index), rar_low);
9742 wrfl();
9743 wr32(E1000_RAH(index), rar_high);
9744 wrfl();
9745 }
9746
igb_set_vf_mac(struct igb_adapter * adapter,int vf,unsigned char * mac_addr)9747 static int igb_set_vf_mac(struct igb_adapter *adapter,
9748 int vf, unsigned char *mac_addr)
9749 {
9750 struct e1000_hw *hw = &adapter->hw;
9751 /* VF MAC addresses start at end of receive addresses and moves
9752 * towards the first, as a result a collision should not be possible
9753 */
9754 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9755 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9756
9757 ether_addr_copy(vf_mac_addr, mac_addr);
9758 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9759 adapter->mac_table[rar_entry].queue = vf;
9760 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9761 igb_rar_set_index(adapter, rar_entry);
9762
9763 return 0;
9764 }
9765
igb_ndo_set_vf_mac(struct net_device * netdev,int vf,u8 * mac)9766 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9767 {
9768 struct igb_adapter *adapter = netdev_priv(netdev);
9769
9770 if (vf >= adapter->vfs_allocated_count)
9771 return -EINVAL;
9772
9773 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9774 * flag and allows to overwrite the MAC via VF netdev. This
9775 * is necessary to allow libvirt a way to restore the original
9776 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9777 * down a VM.
9778 */
9779 if (is_zero_ether_addr(mac)) {
9780 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9781 dev_info(&adapter->pdev->dev,
9782 "remove administratively set MAC on VF %d\n",
9783 vf);
9784 } else if (is_valid_ether_addr(mac)) {
9785 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9786 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9787 mac, vf);
9788 dev_info(&adapter->pdev->dev,
9789 "Reload the VF driver to make this change effective.");
9790 /* Generate additional warning if PF is down */
9791 if (test_bit(__IGB_DOWN, &adapter->state)) {
9792 dev_warn(&adapter->pdev->dev,
9793 "The VF MAC address has been set, but the PF device is not up.\n");
9794 dev_warn(&adapter->pdev->dev,
9795 "Bring the PF device up before attempting to use the VF device.\n");
9796 }
9797 } else {
9798 return -EINVAL;
9799 }
9800 return igb_set_vf_mac(adapter, vf, mac);
9801 }
9802
igb_link_mbps(int internal_link_speed)9803 static int igb_link_mbps(int internal_link_speed)
9804 {
9805 switch (internal_link_speed) {
9806 case SPEED_100:
9807 return 100;
9808 case SPEED_1000:
9809 return 1000;
9810 default:
9811 return 0;
9812 }
9813 }
9814
igb_set_vf_rate_limit(struct e1000_hw * hw,int vf,int tx_rate,int link_speed)9815 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9816 int link_speed)
9817 {
9818 int rf_dec, rf_int;
9819 u32 bcnrc_val;
9820
9821 if (tx_rate != 0) {
9822 /* Calculate the rate factor values to set */
9823 rf_int = link_speed / tx_rate;
9824 rf_dec = (link_speed - (rf_int * tx_rate));
9825 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9826 tx_rate;
9827
9828 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9829 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9830 E1000_RTTBCNRC_RF_INT_MASK);
9831 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9832 } else {
9833 bcnrc_val = 0;
9834 }
9835
9836 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9837 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9838 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9839 */
9840 wr32(E1000_RTTBCNRM, 0x14);
9841 wr32(E1000_RTTBCNRC, bcnrc_val);
9842 }
9843
igb_check_vf_rate_limit(struct igb_adapter * adapter)9844 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9845 {
9846 int actual_link_speed, i;
9847 bool reset_rate = false;
9848
9849 /* VF TX rate limit was not set or not supported */
9850 if ((adapter->vf_rate_link_speed == 0) ||
9851 (adapter->hw.mac.type != e1000_82576))
9852 return;
9853
9854 actual_link_speed = igb_link_mbps(adapter->link_speed);
9855 if (actual_link_speed != adapter->vf_rate_link_speed) {
9856 reset_rate = true;
9857 adapter->vf_rate_link_speed = 0;
9858 dev_info(&adapter->pdev->dev,
9859 "Link speed has been changed. VF Transmit rate is disabled\n");
9860 }
9861
9862 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9863 if (reset_rate)
9864 adapter->vf_data[i].tx_rate = 0;
9865
9866 igb_set_vf_rate_limit(&adapter->hw, i,
9867 adapter->vf_data[i].tx_rate,
9868 actual_link_speed);
9869 }
9870 }
9871
igb_ndo_set_vf_bw(struct net_device * netdev,int vf,int min_tx_rate,int max_tx_rate)9872 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9873 int min_tx_rate, int max_tx_rate)
9874 {
9875 struct igb_adapter *adapter = netdev_priv(netdev);
9876 struct e1000_hw *hw = &adapter->hw;
9877 int actual_link_speed;
9878
9879 if (hw->mac.type != e1000_82576)
9880 return -EOPNOTSUPP;
9881
9882 if (min_tx_rate)
9883 return -EINVAL;
9884
9885 actual_link_speed = igb_link_mbps(adapter->link_speed);
9886 if ((vf >= adapter->vfs_allocated_count) ||
9887 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9888 (max_tx_rate < 0) ||
9889 (max_tx_rate > actual_link_speed))
9890 return -EINVAL;
9891
9892 adapter->vf_rate_link_speed = actual_link_speed;
9893 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9894 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9895
9896 return 0;
9897 }
9898
igb_ndo_set_vf_spoofchk(struct net_device * netdev,int vf,bool setting)9899 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9900 bool setting)
9901 {
9902 struct igb_adapter *adapter = netdev_priv(netdev);
9903 struct e1000_hw *hw = &adapter->hw;
9904 u32 reg_val, reg_offset;
9905
9906 if (!adapter->vfs_allocated_count)
9907 return -EOPNOTSUPP;
9908
9909 if (vf >= adapter->vfs_allocated_count)
9910 return -EINVAL;
9911
9912 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9913 reg_val = rd32(reg_offset);
9914 if (setting)
9915 reg_val |= (BIT(vf) |
9916 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9917 else
9918 reg_val &= ~(BIT(vf) |
9919 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9920 wr32(reg_offset, reg_val);
9921
9922 adapter->vf_data[vf].spoofchk_enabled = setting;
9923 return 0;
9924 }
9925
igb_ndo_set_vf_trust(struct net_device * netdev,int vf,bool setting)9926 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9927 {
9928 struct igb_adapter *adapter = netdev_priv(netdev);
9929
9930 if (vf >= adapter->vfs_allocated_count)
9931 return -EINVAL;
9932 if (adapter->vf_data[vf].trusted == setting)
9933 return 0;
9934
9935 adapter->vf_data[vf].trusted = setting;
9936
9937 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9938 vf, setting ? "" : "not ");
9939 return 0;
9940 }
9941
igb_ndo_get_vf_config(struct net_device * netdev,int vf,struct ifla_vf_info * ivi)9942 static int igb_ndo_get_vf_config(struct net_device *netdev,
9943 int vf, struct ifla_vf_info *ivi)
9944 {
9945 struct igb_adapter *adapter = netdev_priv(netdev);
9946 if (vf >= adapter->vfs_allocated_count)
9947 return -EINVAL;
9948 ivi->vf = vf;
9949 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9950 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9951 ivi->min_tx_rate = 0;
9952 ivi->vlan = adapter->vf_data[vf].pf_vlan;
9953 ivi->qos = adapter->vf_data[vf].pf_qos;
9954 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9955 ivi->trusted = adapter->vf_data[vf].trusted;
9956 return 0;
9957 }
9958
igb_vmm_control(struct igb_adapter * adapter)9959 static void igb_vmm_control(struct igb_adapter *adapter)
9960 {
9961 struct e1000_hw *hw = &adapter->hw;
9962 u32 reg;
9963
9964 switch (hw->mac.type) {
9965 case e1000_82575:
9966 case e1000_i210:
9967 case e1000_i211:
9968 case e1000_i354:
9969 default:
9970 /* replication is not supported for 82575 */
9971 return;
9972 case e1000_82576:
9973 /* notify HW that the MAC is adding vlan tags */
9974 reg = rd32(E1000_DTXCTL);
9975 reg |= E1000_DTXCTL_VLAN_ADDED;
9976 wr32(E1000_DTXCTL, reg);
9977 fallthrough;
9978 case e1000_82580:
9979 /* enable replication vlan tag stripping */
9980 reg = rd32(E1000_RPLOLR);
9981 reg |= E1000_RPLOLR_STRVLAN;
9982 wr32(E1000_RPLOLR, reg);
9983 fallthrough;
9984 case e1000_i350:
9985 /* none of the above registers are supported by i350 */
9986 break;
9987 }
9988
9989 if (adapter->vfs_allocated_count) {
9990 igb_vmdq_set_loopback_pf(hw, true);
9991 igb_vmdq_set_replication_pf(hw, true);
9992 igb_vmdq_set_anti_spoofing_pf(hw, true,
9993 adapter->vfs_allocated_count);
9994 } else {
9995 igb_vmdq_set_loopback_pf(hw, false);
9996 igb_vmdq_set_replication_pf(hw, false);
9997 }
9998 }
9999
igb_init_dmac(struct igb_adapter * adapter,u32 pba)10000 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
10001 {
10002 struct e1000_hw *hw = &adapter->hw;
10003 u32 dmac_thr;
10004 u16 hwm;
10005 u32 reg;
10006
10007 if (hw->mac.type > e1000_82580) {
10008 if (adapter->flags & IGB_FLAG_DMAC) {
10009 /* force threshold to 0. */
10010 wr32(E1000_DMCTXTH, 0);
10011
10012 /* DMA Coalescing high water mark needs to be greater
10013 * than the Rx threshold. Set hwm to PBA - max frame
10014 * size in 16B units, capping it at PBA - 6KB.
10015 */
10016 hwm = 64 * (pba - 6);
10017 reg = rd32(E1000_FCRTC);
10018 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
10019 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
10020 & E1000_FCRTC_RTH_COAL_MASK);
10021 wr32(E1000_FCRTC, reg);
10022
10023 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
10024 * frame size, capping it at PBA - 10KB.
10025 */
10026 dmac_thr = pba - 10;
10027 reg = rd32(E1000_DMACR);
10028 reg &= ~E1000_DMACR_DMACTHR_MASK;
10029 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
10030 & E1000_DMACR_DMACTHR_MASK);
10031
10032 /* transition to L0x or L1 if available..*/
10033 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10034
10035 /* watchdog timer= +-1000 usec in 32usec intervals */
10036 reg |= (1000 >> 5);
10037
10038 /* Disable BMC-to-OS Watchdog Enable */
10039 if (hw->mac.type != e1000_i354)
10040 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
10041 wr32(E1000_DMACR, reg);
10042
10043 /* no lower threshold to disable
10044 * coalescing(smart fifb)-UTRESH=0
10045 */
10046 wr32(E1000_DMCRTRH, 0);
10047
10048 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10049
10050 wr32(E1000_DMCTLX, reg);
10051
10052 /* free space in tx packet buffer to wake from
10053 * DMA coal
10054 */
10055 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10056 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10057 }
10058
10059 if (hw->mac.type >= e1000_i210 ||
10060 (adapter->flags & IGB_FLAG_DMAC)) {
10061 reg = rd32(E1000_PCIEMISC);
10062 reg |= E1000_PCIEMISC_LX_DECISION;
10063 wr32(E1000_PCIEMISC, reg);
10064 } /* endif adapter->dmac is not disabled */
10065 } else if (hw->mac.type == e1000_82580) {
10066 u32 reg = rd32(E1000_PCIEMISC);
10067
10068 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10069 wr32(E1000_DMACR, 0);
10070 }
10071 }
10072
10073 /**
10074 * igb_read_i2c_byte - Reads 8 bit word over I2C
10075 * @hw: pointer to hardware structure
10076 * @byte_offset: byte offset to read
10077 * @dev_addr: device address
10078 * @data: value read
10079 *
10080 * Performs byte read operation over I2C interface at
10081 * a specified device address.
10082 **/
igb_read_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)10083 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10084 u8 dev_addr, u8 *data)
10085 {
10086 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10087 struct i2c_client *this_client = adapter->i2c_client;
10088 s32 status;
10089 u16 swfw_mask = 0;
10090
10091 if (!this_client)
10092 return E1000_ERR_I2C;
10093
10094 swfw_mask = E1000_SWFW_PHY0_SM;
10095
10096 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10097 return E1000_ERR_SWFW_SYNC;
10098
10099 status = i2c_smbus_read_byte_data(this_client, byte_offset);
10100 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10101
10102 if (status < 0)
10103 return E1000_ERR_I2C;
10104 else {
10105 *data = status;
10106 return 0;
10107 }
10108 }
10109
10110 /**
10111 * igb_write_i2c_byte - Writes 8 bit word over I2C
10112 * @hw: pointer to hardware structure
10113 * @byte_offset: byte offset to write
10114 * @dev_addr: device address
10115 * @data: value to write
10116 *
10117 * Performs byte write operation over I2C interface at
10118 * a specified device address.
10119 **/
igb_write_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)10120 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10121 u8 dev_addr, u8 data)
10122 {
10123 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10124 struct i2c_client *this_client = adapter->i2c_client;
10125 s32 status;
10126 u16 swfw_mask = E1000_SWFW_PHY0_SM;
10127
10128 if (!this_client)
10129 return E1000_ERR_I2C;
10130
10131 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10132 return E1000_ERR_SWFW_SYNC;
10133 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10134 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10135
10136 if (status)
10137 return E1000_ERR_I2C;
10138 else
10139 return 0;
10140
10141 }
10142
igb_reinit_queues(struct igb_adapter * adapter)10143 int igb_reinit_queues(struct igb_adapter *adapter)
10144 {
10145 struct net_device *netdev = adapter->netdev;
10146 struct pci_dev *pdev = adapter->pdev;
10147 int err = 0;
10148
10149 if (netif_running(netdev))
10150 igb_close(netdev);
10151
10152 igb_reset_interrupt_capability(adapter);
10153
10154 if (igb_init_interrupt_scheme(adapter, true)) {
10155 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10156 return -ENOMEM;
10157 }
10158
10159 if (netif_running(netdev))
10160 err = igb_open(netdev);
10161
10162 return err;
10163 }
10164
igb_nfc_filter_exit(struct igb_adapter * adapter)10165 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10166 {
10167 struct igb_nfc_filter *rule;
10168
10169 spin_lock(&adapter->nfc_lock);
10170
10171 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10172 igb_erase_filter(adapter, rule);
10173
10174 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10175 igb_erase_filter(adapter, rule);
10176
10177 spin_unlock(&adapter->nfc_lock);
10178 }
10179
igb_nfc_filter_restore(struct igb_adapter * adapter)10180 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10181 {
10182 struct igb_nfc_filter *rule;
10183
10184 spin_lock(&adapter->nfc_lock);
10185
10186 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10187 igb_add_filter(adapter, rule);
10188
10189 spin_unlock(&adapter->nfc_lock);
10190 }
10191 /* igb_main.c */
10192