xref: /openbmc/linux/drivers/crypto/atmel-aes.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Cryptographic API.
4   *
5   * Support for ATMEL AES HW acceleration.
6   *
7   * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8   * Author: Nicolas Royer <nicolas@eukrea.com>
9   *
10   * Some ideas are from omap-aes.c driver.
11   */
12  
13  
14  #include <linux/kernel.h>
15  #include <linux/module.h>
16  #include <linux/slab.h>
17  #include <linux/err.h>
18  #include <linux/clk.h>
19  #include <linux/io.h>
20  #include <linux/hw_random.h>
21  #include <linux/platform_device.h>
22  
23  #include <linux/device.h>
24  #include <linux/dmaengine.h>
25  #include <linux/init.h>
26  #include <linux/errno.h>
27  #include <linux/interrupt.h>
28  #include <linux/irq.h>
29  #include <linux/scatterlist.h>
30  #include <linux/dma-mapping.h>
31  #include <linux/mod_devicetable.h>
32  #include <linux/delay.h>
33  #include <linux/crypto.h>
34  #include <crypto/scatterwalk.h>
35  #include <crypto/algapi.h>
36  #include <crypto/aes.h>
37  #include <crypto/gcm.h>
38  #include <crypto/xts.h>
39  #include <crypto/internal/aead.h>
40  #include <crypto/internal/skcipher.h>
41  #include "atmel-aes-regs.h"
42  #include "atmel-authenc.h"
43  
44  #define ATMEL_AES_PRIORITY	300
45  
46  #define ATMEL_AES_BUFFER_ORDER	2
47  #define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
48  
49  #define CFB8_BLOCK_SIZE		1
50  #define CFB16_BLOCK_SIZE	2
51  #define CFB32_BLOCK_SIZE	4
52  #define CFB64_BLOCK_SIZE	8
53  
54  #define SIZE_IN_WORDS(x)	((x) >> 2)
55  
56  /* AES flags */
57  /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
58  #define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
59  #define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
60  #define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
61  #define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
62  #define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
63  #define AES_FLAGS_OFB		AES_MR_OPMOD_OFB
64  #define AES_FLAGS_CFB128	(AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
65  #define AES_FLAGS_CFB64		(AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
66  #define AES_FLAGS_CFB32		(AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
67  #define AES_FLAGS_CFB16		(AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
68  #define AES_FLAGS_CFB8		(AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
69  #define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
70  #define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
71  #define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
72  
73  #define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
74  				 AES_FLAGS_ENCRYPT |		\
75  				 AES_FLAGS_GTAGEN)
76  
77  #define AES_FLAGS_BUSY		BIT(3)
78  #define AES_FLAGS_DUMP_REG	BIT(4)
79  #define AES_FLAGS_OWN_SHA	BIT(5)
80  
81  #define AES_FLAGS_PERSISTENT	AES_FLAGS_BUSY
82  
83  #define ATMEL_AES_QUEUE_LENGTH	50
84  
85  #define ATMEL_AES_DMA_THRESHOLD		256
86  
87  
88  struct atmel_aes_caps {
89  	bool			has_dualbuff;
90  	bool			has_cfb64;
91  	bool			has_gcm;
92  	bool			has_xts;
93  	bool			has_authenc;
94  	u32			max_burst_size;
95  };
96  
97  struct atmel_aes_dev;
98  
99  
100  typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
101  
102  
103  struct atmel_aes_base_ctx {
104  	struct atmel_aes_dev	*dd;
105  	atmel_aes_fn_t		start;
106  	int			keylen;
107  	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
108  	u16			block_size;
109  	bool			is_aead;
110  };
111  
112  struct atmel_aes_ctx {
113  	struct atmel_aes_base_ctx	base;
114  };
115  
116  struct atmel_aes_ctr_ctx {
117  	struct atmel_aes_base_ctx	base;
118  
119  	__be32			iv[AES_BLOCK_SIZE / sizeof(u32)];
120  	size_t			offset;
121  	struct scatterlist	src[2];
122  	struct scatterlist	dst[2];
123  	u32			blocks;
124  };
125  
126  struct atmel_aes_gcm_ctx {
127  	struct atmel_aes_base_ctx	base;
128  
129  	struct scatterlist	src[2];
130  	struct scatterlist	dst[2];
131  
132  	__be32			j0[AES_BLOCK_SIZE / sizeof(u32)];
133  	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
134  	__be32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
135  	size_t			textlen;
136  
137  	const __be32		*ghash_in;
138  	__be32			*ghash_out;
139  	atmel_aes_fn_t		ghash_resume;
140  };
141  
142  struct atmel_aes_xts_ctx {
143  	struct atmel_aes_base_ctx	base;
144  
145  	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
146  	struct crypto_skcipher *fallback_tfm;
147  };
148  
149  #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
150  struct atmel_aes_authenc_ctx {
151  	struct atmel_aes_base_ctx	base;
152  	struct atmel_sha_authenc_ctx	*auth;
153  };
154  #endif
155  
156  struct atmel_aes_reqctx {
157  	unsigned long		mode;
158  	u8			lastc[AES_BLOCK_SIZE];
159  	struct skcipher_request fallback_req;
160  };
161  
162  #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
163  struct atmel_aes_authenc_reqctx {
164  	struct atmel_aes_reqctx	base;
165  
166  	struct scatterlist	src[2];
167  	struct scatterlist	dst[2];
168  	size_t			textlen;
169  	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];
170  
171  	/* auth_req MUST be place last. */
172  	struct ahash_request	auth_req;
173  };
174  #endif
175  
176  struct atmel_aes_dma {
177  	struct dma_chan		*chan;
178  	struct scatterlist	*sg;
179  	int			nents;
180  	unsigned int		remainder;
181  	unsigned int		sg_len;
182  };
183  
184  struct atmel_aes_dev {
185  	struct list_head	list;
186  	unsigned long		phys_base;
187  	void __iomem		*io_base;
188  
189  	struct crypto_async_request	*areq;
190  	struct atmel_aes_base_ctx	*ctx;
191  
192  	bool			is_async;
193  	atmel_aes_fn_t		resume;
194  	atmel_aes_fn_t		cpu_transfer_complete;
195  
196  	struct device		*dev;
197  	struct clk		*iclk;
198  	int			irq;
199  
200  	unsigned long		flags;
201  
202  	spinlock_t		lock;
203  	struct crypto_queue	queue;
204  
205  	struct tasklet_struct	done_task;
206  	struct tasklet_struct	queue_task;
207  
208  	size_t			total;
209  	size_t			datalen;
210  	u32			*data;
211  
212  	struct atmel_aes_dma	src;
213  	struct atmel_aes_dma	dst;
214  
215  	size_t			buflen;
216  	void			*buf;
217  	struct scatterlist	aligned_sg;
218  	struct scatterlist	*real_dst;
219  
220  	struct atmel_aes_caps	caps;
221  
222  	u32			hw_version;
223  };
224  
225  struct atmel_aes_drv {
226  	struct list_head	dev_list;
227  	spinlock_t		lock;
228  };
229  
230  static struct atmel_aes_drv atmel_aes = {
231  	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
232  	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
233  };
234  
235  #ifdef VERBOSE_DEBUG
atmel_aes_reg_name(u32 offset,char * tmp,size_t sz)236  static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
237  {
238  	switch (offset) {
239  	case AES_CR:
240  		return "CR";
241  
242  	case AES_MR:
243  		return "MR";
244  
245  	case AES_ISR:
246  		return "ISR";
247  
248  	case AES_IMR:
249  		return "IMR";
250  
251  	case AES_IER:
252  		return "IER";
253  
254  	case AES_IDR:
255  		return "IDR";
256  
257  	case AES_KEYWR(0):
258  	case AES_KEYWR(1):
259  	case AES_KEYWR(2):
260  	case AES_KEYWR(3):
261  	case AES_KEYWR(4):
262  	case AES_KEYWR(5):
263  	case AES_KEYWR(6):
264  	case AES_KEYWR(7):
265  		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
266  		break;
267  
268  	case AES_IDATAR(0):
269  	case AES_IDATAR(1):
270  	case AES_IDATAR(2):
271  	case AES_IDATAR(3):
272  		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
273  		break;
274  
275  	case AES_ODATAR(0):
276  	case AES_ODATAR(1):
277  	case AES_ODATAR(2):
278  	case AES_ODATAR(3):
279  		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
280  		break;
281  
282  	case AES_IVR(0):
283  	case AES_IVR(1):
284  	case AES_IVR(2):
285  	case AES_IVR(3):
286  		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
287  		break;
288  
289  	case AES_AADLENR:
290  		return "AADLENR";
291  
292  	case AES_CLENR:
293  		return "CLENR";
294  
295  	case AES_GHASHR(0):
296  	case AES_GHASHR(1):
297  	case AES_GHASHR(2):
298  	case AES_GHASHR(3):
299  		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
300  		break;
301  
302  	case AES_TAGR(0):
303  	case AES_TAGR(1):
304  	case AES_TAGR(2):
305  	case AES_TAGR(3):
306  		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
307  		break;
308  
309  	case AES_CTRR:
310  		return "CTRR";
311  
312  	case AES_GCMHR(0):
313  	case AES_GCMHR(1):
314  	case AES_GCMHR(2):
315  	case AES_GCMHR(3):
316  		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
317  		break;
318  
319  	case AES_EMR:
320  		return "EMR";
321  
322  	case AES_TWR(0):
323  	case AES_TWR(1):
324  	case AES_TWR(2):
325  	case AES_TWR(3):
326  		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
327  		break;
328  
329  	case AES_ALPHAR(0):
330  	case AES_ALPHAR(1):
331  	case AES_ALPHAR(2):
332  	case AES_ALPHAR(3):
333  		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
334  		break;
335  
336  	default:
337  		snprintf(tmp, sz, "0x%02x", offset);
338  		break;
339  	}
340  
341  	return tmp;
342  }
343  #endif /* VERBOSE_DEBUG */
344  
345  /* Shared functions */
346  
atmel_aes_read(struct atmel_aes_dev * dd,u32 offset)347  static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
348  {
349  	u32 value = readl_relaxed(dd->io_base + offset);
350  
351  #ifdef VERBOSE_DEBUG
352  	if (dd->flags & AES_FLAGS_DUMP_REG) {
353  		char tmp[16];
354  
355  		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
356  			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
357  	}
358  #endif /* VERBOSE_DEBUG */
359  
360  	return value;
361  }
362  
atmel_aes_write(struct atmel_aes_dev * dd,u32 offset,u32 value)363  static inline void atmel_aes_write(struct atmel_aes_dev *dd,
364  					u32 offset, u32 value)
365  {
366  #ifdef VERBOSE_DEBUG
367  	if (dd->flags & AES_FLAGS_DUMP_REG) {
368  		char tmp[16];
369  
370  		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
371  			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
372  	}
373  #endif /* VERBOSE_DEBUG */
374  
375  	writel_relaxed(value, dd->io_base + offset);
376  }
377  
atmel_aes_read_n(struct atmel_aes_dev * dd,u32 offset,u32 * value,int count)378  static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
379  					u32 *value, int count)
380  {
381  	for (; count--; value++, offset += 4)
382  		*value = atmel_aes_read(dd, offset);
383  }
384  
atmel_aes_write_n(struct atmel_aes_dev * dd,u32 offset,const u32 * value,int count)385  static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
386  			      const u32 *value, int count)
387  {
388  	for (; count--; value++, offset += 4)
389  		atmel_aes_write(dd, offset, *value);
390  }
391  
atmel_aes_read_block(struct atmel_aes_dev * dd,u32 offset,void * value)392  static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
393  					void *value)
394  {
395  	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
396  }
397  
atmel_aes_write_block(struct atmel_aes_dev * dd,u32 offset,const void * value)398  static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
399  					 const void *value)
400  {
401  	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
402  }
403  
atmel_aes_wait_for_data_ready(struct atmel_aes_dev * dd,atmel_aes_fn_t resume)404  static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
405  						atmel_aes_fn_t resume)
406  {
407  	u32 isr = atmel_aes_read(dd, AES_ISR);
408  
409  	if (unlikely(isr & AES_INT_DATARDY))
410  		return resume(dd);
411  
412  	dd->resume = resume;
413  	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
414  	return -EINPROGRESS;
415  }
416  
atmel_aes_padlen(size_t len,size_t block_size)417  static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
418  {
419  	len &= block_size - 1;
420  	return len ? block_size - len : 0;
421  }
422  
atmel_aes_dev_alloc(struct atmel_aes_base_ctx * ctx)423  static struct atmel_aes_dev *atmel_aes_dev_alloc(struct atmel_aes_base_ctx *ctx)
424  {
425  	struct atmel_aes_dev *aes_dd;
426  
427  	spin_lock_bh(&atmel_aes.lock);
428  	/* One AES IP per SoC. */
429  	aes_dd = list_first_entry_or_null(&atmel_aes.dev_list,
430  					  struct atmel_aes_dev, list);
431  	spin_unlock_bh(&atmel_aes.lock);
432  	return aes_dd;
433  }
434  
atmel_aes_hw_init(struct atmel_aes_dev * dd)435  static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
436  {
437  	int err;
438  
439  	err = clk_enable(dd->iclk);
440  	if (err)
441  		return err;
442  
443  	atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
444  	atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
445  
446  	return 0;
447  }
448  
atmel_aes_get_version(struct atmel_aes_dev * dd)449  static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
450  {
451  	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
452  }
453  
atmel_aes_hw_version_init(struct atmel_aes_dev * dd)454  static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
455  {
456  	int err;
457  
458  	err = atmel_aes_hw_init(dd);
459  	if (err)
460  		return err;
461  
462  	dd->hw_version = atmel_aes_get_version(dd);
463  
464  	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
465  
466  	clk_disable(dd->iclk);
467  	return 0;
468  }
469  
atmel_aes_set_mode(struct atmel_aes_dev * dd,const struct atmel_aes_reqctx * rctx)470  static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
471  				      const struct atmel_aes_reqctx *rctx)
472  {
473  	/* Clear all but persistent flags and set request flags. */
474  	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
475  }
476  
atmel_aes_is_encrypt(const struct atmel_aes_dev * dd)477  static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
478  {
479  	return (dd->flags & AES_FLAGS_ENCRYPT);
480  }
481  
482  #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
483  static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
484  #endif
485  
atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev * dd)486  static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
487  {
488  	struct skcipher_request *req = skcipher_request_cast(dd->areq);
489  	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
490  	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
491  	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
492  
493  	if (req->cryptlen < ivsize)
494  		return;
495  
496  	if (rctx->mode & AES_FLAGS_ENCRYPT)
497  		scatterwalk_map_and_copy(req->iv, req->dst,
498  					 req->cryptlen - ivsize, ivsize, 0);
499  	else
500  		memcpy(req->iv, rctx->lastc, ivsize);
501  }
502  
503  static inline struct atmel_aes_ctr_ctx *
atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx * ctx)504  atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
505  {
506  	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
507  }
508  
atmel_aes_ctr_update_req_iv(struct atmel_aes_dev * dd)509  static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
510  {
511  	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
512  	struct skcipher_request *req = skcipher_request_cast(dd->areq);
513  	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
514  	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
515  	int i;
516  
517  	/*
518  	 * The CTR transfer works in fragments of data of maximum 1 MByte
519  	 * because of the 16 bit CTR counter embedded in the IP. When reaching
520  	 * here, ctx->blocks contains the number of blocks of the last fragment
521  	 * processed, there is no need to explicit cast it to u16.
522  	 */
523  	for (i = 0; i < ctx->blocks; i++)
524  		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
525  
526  	memcpy(req->iv, ctx->iv, ivsize);
527  }
528  
atmel_aes_complete(struct atmel_aes_dev * dd,int err)529  static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
530  {
531  	struct skcipher_request *req = skcipher_request_cast(dd->areq);
532  	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
533  
534  #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
535  	if (dd->ctx->is_aead)
536  		atmel_aes_authenc_complete(dd, err);
537  #endif
538  
539  	clk_disable(dd->iclk);
540  	dd->flags &= ~AES_FLAGS_BUSY;
541  
542  	if (!err && !dd->ctx->is_aead &&
543  	    (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
544  		if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
545  			atmel_aes_set_iv_as_last_ciphertext_block(dd);
546  		else
547  			atmel_aes_ctr_update_req_iv(dd);
548  	}
549  
550  	if (dd->is_async)
551  		crypto_request_complete(dd->areq, err);
552  
553  	tasklet_schedule(&dd->queue_task);
554  
555  	return err;
556  }
557  
atmel_aes_write_ctrl_key(struct atmel_aes_dev * dd,bool use_dma,const __be32 * iv,const u32 * key,int keylen)558  static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
559  				     const __be32 *iv, const u32 *key, int keylen)
560  {
561  	u32 valmr = 0;
562  
563  	/* MR register must be set before IV registers */
564  	if (keylen == AES_KEYSIZE_128)
565  		valmr |= AES_MR_KEYSIZE_128;
566  	else if (keylen == AES_KEYSIZE_192)
567  		valmr |= AES_MR_KEYSIZE_192;
568  	else
569  		valmr |= AES_MR_KEYSIZE_256;
570  
571  	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
572  
573  	if (use_dma) {
574  		valmr |= AES_MR_SMOD_IDATAR0;
575  		if (dd->caps.has_dualbuff)
576  			valmr |= AES_MR_DUALBUFF;
577  	} else {
578  		valmr |= AES_MR_SMOD_AUTO;
579  	}
580  
581  	atmel_aes_write(dd, AES_MR, valmr);
582  
583  	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
584  
585  	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
586  		atmel_aes_write_block(dd, AES_IVR(0), iv);
587  }
588  
atmel_aes_write_ctrl(struct atmel_aes_dev * dd,bool use_dma,const __be32 * iv)589  static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
590  					const __be32 *iv)
591  
592  {
593  	atmel_aes_write_ctrl_key(dd, use_dma, iv,
594  				 dd->ctx->key, dd->ctx->keylen);
595  }
596  
597  /* CPU transfer */
598  
atmel_aes_cpu_transfer(struct atmel_aes_dev * dd)599  static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
600  {
601  	int err = 0;
602  	u32 isr;
603  
604  	for (;;) {
605  		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
606  		dd->data += 4;
607  		dd->datalen -= AES_BLOCK_SIZE;
608  
609  		if (dd->datalen < AES_BLOCK_SIZE)
610  			break;
611  
612  		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
613  
614  		isr = atmel_aes_read(dd, AES_ISR);
615  		if (!(isr & AES_INT_DATARDY)) {
616  			dd->resume = atmel_aes_cpu_transfer;
617  			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
618  			return -EINPROGRESS;
619  		}
620  	}
621  
622  	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
623  				 dd->buf, dd->total))
624  		err = -EINVAL;
625  
626  	if (err)
627  		return atmel_aes_complete(dd, err);
628  
629  	return dd->cpu_transfer_complete(dd);
630  }
631  
atmel_aes_cpu_start(struct atmel_aes_dev * dd,struct scatterlist * src,struct scatterlist * dst,size_t len,atmel_aes_fn_t resume)632  static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
633  			       struct scatterlist *src,
634  			       struct scatterlist *dst,
635  			       size_t len,
636  			       atmel_aes_fn_t resume)
637  {
638  	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
639  
640  	if (unlikely(len == 0))
641  		return -EINVAL;
642  
643  	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
644  
645  	dd->total = len;
646  	dd->real_dst = dst;
647  	dd->cpu_transfer_complete = resume;
648  	dd->datalen = len + padlen;
649  	dd->data = (u32 *)dd->buf;
650  	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
651  	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
652  }
653  
654  
655  /* DMA transfer */
656  
657  static void atmel_aes_dma_callback(void *data);
658  
atmel_aes_check_aligned(struct atmel_aes_dev * dd,struct scatterlist * sg,size_t len,struct atmel_aes_dma * dma)659  static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
660  				    struct scatterlist *sg,
661  				    size_t len,
662  				    struct atmel_aes_dma *dma)
663  {
664  	int nents;
665  
666  	if (!IS_ALIGNED(len, dd->ctx->block_size))
667  		return false;
668  
669  	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
670  		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
671  			return false;
672  
673  		if (len <= sg->length) {
674  			if (!IS_ALIGNED(len, dd->ctx->block_size))
675  				return false;
676  
677  			dma->nents = nents+1;
678  			dma->remainder = sg->length - len;
679  			sg->length = len;
680  			return true;
681  		}
682  
683  		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
684  			return false;
685  
686  		len -= sg->length;
687  	}
688  
689  	return false;
690  }
691  
atmel_aes_restore_sg(const struct atmel_aes_dma * dma)692  static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
693  {
694  	struct scatterlist *sg = dma->sg;
695  	int nents = dma->nents;
696  
697  	if (!dma->remainder)
698  		return;
699  
700  	while (--nents > 0 && sg)
701  		sg = sg_next(sg);
702  
703  	if (!sg)
704  		return;
705  
706  	sg->length += dma->remainder;
707  }
708  
atmel_aes_map(struct atmel_aes_dev * dd,struct scatterlist * src,struct scatterlist * dst,size_t len)709  static int atmel_aes_map(struct atmel_aes_dev *dd,
710  			 struct scatterlist *src,
711  			 struct scatterlist *dst,
712  			 size_t len)
713  {
714  	bool src_aligned, dst_aligned;
715  	size_t padlen;
716  
717  	dd->total = len;
718  	dd->src.sg = src;
719  	dd->dst.sg = dst;
720  	dd->real_dst = dst;
721  
722  	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
723  	if (src == dst)
724  		dst_aligned = src_aligned;
725  	else
726  		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
727  	if (!src_aligned || !dst_aligned) {
728  		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
729  
730  		if (dd->buflen < len + padlen)
731  			return -ENOMEM;
732  
733  		if (!src_aligned) {
734  			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
735  			dd->src.sg = &dd->aligned_sg;
736  			dd->src.nents = 1;
737  			dd->src.remainder = 0;
738  		}
739  
740  		if (!dst_aligned) {
741  			dd->dst.sg = &dd->aligned_sg;
742  			dd->dst.nents = 1;
743  			dd->dst.remainder = 0;
744  		}
745  
746  		sg_init_table(&dd->aligned_sg, 1);
747  		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
748  	}
749  
750  	if (dd->src.sg == dd->dst.sg) {
751  		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
752  					    DMA_BIDIRECTIONAL);
753  		dd->dst.sg_len = dd->src.sg_len;
754  		if (!dd->src.sg_len)
755  			return -EFAULT;
756  	} else {
757  		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
758  					    DMA_TO_DEVICE);
759  		if (!dd->src.sg_len)
760  			return -EFAULT;
761  
762  		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
763  					    DMA_FROM_DEVICE);
764  		if (!dd->dst.sg_len) {
765  			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
766  				     DMA_TO_DEVICE);
767  			return -EFAULT;
768  		}
769  	}
770  
771  	return 0;
772  }
773  
atmel_aes_unmap(struct atmel_aes_dev * dd)774  static void atmel_aes_unmap(struct atmel_aes_dev *dd)
775  {
776  	if (dd->src.sg == dd->dst.sg) {
777  		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
778  			     DMA_BIDIRECTIONAL);
779  
780  		if (dd->src.sg != &dd->aligned_sg)
781  			atmel_aes_restore_sg(&dd->src);
782  	} else {
783  		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
784  			     DMA_FROM_DEVICE);
785  
786  		if (dd->dst.sg != &dd->aligned_sg)
787  			atmel_aes_restore_sg(&dd->dst);
788  
789  		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
790  			     DMA_TO_DEVICE);
791  
792  		if (dd->src.sg != &dd->aligned_sg)
793  			atmel_aes_restore_sg(&dd->src);
794  	}
795  
796  	if (dd->dst.sg == &dd->aligned_sg)
797  		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
798  				    dd->buf, dd->total);
799  }
800  
atmel_aes_dma_transfer_start(struct atmel_aes_dev * dd,enum dma_slave_buswidth addr_width,enum dma_transfer_direction dir,u32 maxburst)801  static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
802  					enum dma_slave_buswidth addr_width,
803  					enum dma_transfer_direction dir,
804  					u32 maxburst)
805  {
806  	struct dma_async_tx_descriptor *desc;
807  	struct dma_slave_config config;
808  	dma_async_tx_callback callback;
809  	struct atmel_aes_dma *dma;
810  	int err;
811  
812  	memset(&config, 0, sizeof(config));
813  	config.src_addr_width = addr_width;
814  	config.dst_addr_width = addr_width;
815  	config.src_maxburst = maxburst;
816  	config.dst_maxburst = maxburst;
817  
818  	switch (dir) {
819  	case DMA_MEM_TO_DEV:
820  		dma = &dd->src;
821  		callback = NULL;
822  		config.dst_addr = dd->phys_base + AES_IDATAR(0);
823  		break;
824  
825  	case DMA_DEV_TO_MEM:
826  		dma = &dd->dst;
827  		callback = atmel_aes_dma_callback;
828  		config.src_addr = dd->phys_base + AES_ODATAR(0);
829  		break;
830  
831  	default:
832  		return -EINVAL;
833  	}
834  
835  	err = dmaengine_slave_config(dma->chan, &config);
836  	if (err)
837  		return err;
838  
839  	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
840  				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
841  	if (!desc)
842  		return -ENOMEM;
843  
844  	desc->callback = callback;
845  	desc->callback_param = dd;
846  	dmaengine_submit(desc);
847  	dma_async_issue_pending(dma->chan);
848  
849  	return 0;
850  }
851  
atmel_aes_dma_start(struct atmel_aes_dev * dd,struct scatterlist * src,struct scatterlist * dst,size_t len,atmel_aes_fn_t resume)852  static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
853  			       struct scatterlist *src,
854  			       struct scatterlist *dst,
855  			       size_t len,
856  			       atmel_aes_fn_t resume)
857  {
858  	enum dma_slave_buswidth addr_width;
859  	u32 maxburst;
860  	int err;
861  
862  	switch (dd->ctx->block_size) {
863  	case CFB8_BLOCK_SIZE:
864  		addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
865  		maxburst = 1;
866  		break;
867  
868  	case CFB16_BLOCK_SIZE:
869  		addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
870  		maxburst = 1;
871  		break;
872  
873  	case CFB32_BLOCK_SIZE:
874  	case CFB64_BLOCK_SIZE:
875  		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
876  		maxburst = 1;
877  		break;
878  
879  	case AES_BLOCK_SIZE:
880  		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
881  		maxburst = dd->caps.max_burst_size;
882  		break;
883  
884  	default:
885  		err = -EINVAL;
886  		goto exit;
887  	}
888  
889  	err = atmel_aes_map(dd, src, dst, len);
890  	if (err)
891  		goto exit;
892  
893  	dd->resume = resume;
894  
895  	/* Set output DMA transfer first */
896  	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
897  					   maxburst);
898  	if (err)
899  		goto unmap;
900  
901  	/* Then set input DMA transfer */
902  	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
903  					   maxburst);
904  	if (err)
905  		goto output_transfer_stop;
906  
907  	return -EINPROGRESS;
908  
909  output_transfer_stop:
910  	dmaengine_terminate_sync(dd->dst.chan);
911  unmap:
912  	atmel_aes_unmap(dd);
913  exit:
914  	return atmel_aes_complete(dd, err);
915  }
916  
atmel_aes_dma_callback(void * data)917  static void atmel_aes_dma_callback(void *data)
918  {
919  	struct atmel_aes_dev *dd = data;
920  
921  	atmel_aes_unmap(dd);
922  	dd->is_async = true;
923  	(void)dd->resume(dd);
924  }
925  
atmel_aes_handle_queue(struct atmel_aes_dev * dd,struct crypto_async_request * new_areq)926  static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
927  				  struct crypto_async_request *new_areq)
928  {
929  	struct crypto_async_request *areq, *backlog;
930  	struct atmel_aes_base_ctx *ctx;
931  	unsigned long flags;
932  	bool start_async;
933  	int err, ret = 0;
934  
935  	spin_lock_irqsave(&dd->lock, flags);
936  	if (new_areq)
937  		ret = crypto_enqueue_request(&dd->queue, new_areq);
938  	if (dd->flags & AES_FLAGS_BUSY) {
939  		spin_unlock_irqrestore(&dd->lock, flags);
940  		return ret;
941  	}
942  	backlog = crypto_get_backlog(&dd->queue);
943  	areq = crypto_dequeue_request(&dd->queue);
944  	if (areq)
945  		dd->flags |= AES_FLAGS_BUSY;
946  	spin_unlock_irqrestore(&dd->lock, flags);
947  
948  	if (!areq)
949  		return ret;
950  
951  	if (backlog)
952  		crypto_request_complete(backlog, -EINPROGRESS);
953  
954  	ctx = crypto_tfm_ctx(areq->tfm);
955  
956  	dd->areq = areq;
957  	dd->ctx = ctx;
958  	start_async = (areq != new_areq);
959  	dd->is_async = start_async;
960  
961  	/* WARNING: ctx->start() MAY change dd->is_async. */
962  	err = ctx->start(dd);
963  	return (start_async) ? ret : err;
964  }
965  
966  
967  /* AES async block ciphers */
968  
atmel_aes_transfer_complete(struct atmel_aes_dev * dd)969  static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
970  {
971  	return atmel_aes_complete(dd, 0);
972  }
973  
atmel_aes_start(struct atmel_aes_dev * dd)974  static int atmel_aes_start(struct atmel_aes_dev *dd)
975  {
976  	struct skcipher_request *req = skcipher_request_cast(dd->areq);
977  	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
978  	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
979  			dd->ctx->block_size != AES_BLOCK_SIZE);
980  	int err;
981  
982  	atmel_aes_set_mode(dd, rctx);
983  
984  	err = atmel_aes_hw_init(dd);
985  	if (err)
986  		return atmel_aes_complete(dd, err);
987  
988  	atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
989  	if (use_dma)
990  		return atmel_aes_dma_start(dd, req->src, req->dst,
991  					   req->cryptlen,
992  					   atmel_aes_transfer_complete);
993  
994  	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
995  				   atmel_aes_transfer_complete);
996  }
997  
atmel_aes_ctr_transfer(struct atmel_aes_dev * dd)998  static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
999  {
1000  	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1001  	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1002  	struct scatterlist *src, *dst;
1003  	size_t datalen;
1004  	u32 ctr;
1005  	u16 start, end;
1006  	bool use_dma, fragmented = false;
1007  
1008  	/* Check for transfer completion. */
1009  	ctx->offset += dd->total;
1010  	if (ctx->offset >= req->cryptlen)
1011  		return atmel_aes_transfer_complete(dd);
1012  
1013  	/* Compute data length. */
1014  	datalen = req->cryptlen - ctx->offset;
1015  	ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1016  	ctr = be32_to_cpu(ctx->iv[3]);
1017  
1018  	/* Check 16bit counter overflow. */
1019  	start = ctr & 0xffff;
1020  	end = start + ctx->blocks - 1;
1021  
1022  	if (ctx->blocks >> 16 || end < start) {
1023  		ctr |= 0xffff;
1024  		datalen = AES_BLOCK_SIZE * (0x10000 - start);
1025  		fragmented = true;
1026  	}
1027  
1028  	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1029  
1030  	/* Jump to offset. */
1031  	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1032  	dst = ((req->src == req->dst) ? src :
1033  	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1034  
1035  	/* Configure hardware. */
1036  	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1037  	if (unlikely(fragmented)) {
1038  		/*
1039  		 * Increment the counter manually to cope with the hardware
1040  		 * counter overflow.
1041  		 */
1042  		ctx->iv[3] = cpu_to_be32(ctr);
1043  		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1044  	}
1045  
1046  	if (use_dma)
1047  		return atmel_aes_dma_start(dd, src, dst, datalen,
1048  					   atmel_aes_ctr_transfer);
1049  
1050  	return atmel_aes_cpu_start(dd, src, dst, datalen,
1051  				   atmel_aes_ctr_transfer);
1052  }
1053  
atmel_aes_ctr_start(struct atmel_aes_dev * dd)1054  static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1055  {
1056  	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1057  	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1058  	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1059  	int err;
1060  
1061  	atmel_aes_set_mode(dd, rctx);
1062  
1063  	err = atmel_aes_hw_init(dd);
1064  	if (err)
1065  		return atmel_aes_complete(dd, err);
1066  
1067  	memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1068  	ctx->offset = 0;
1069  	dd->total = 0;
1070  	return atmel_aes_ctr_transfer(dd);
1071  }
1072  
atmel_aes_xts_fallback(struct skcipher_request * req,bool enc)1073  static int atmel_aes_xts_fallback(struct skcipher_request *req, bool enc)
1074  {
1075  	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1076  	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(
1077  			crypto_skcipher_reqtfm(req));
1078  
1079  	skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
1080  	skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
1081  				      req->base.complete, req->base.data);
1082  	skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
1083  				   req->cryptlen, req->iv);
1084  
1085  	return enc ? crypto_skcipher_encrypt(&rctx->fallback_req) :
1086  		     crypto_skcipher_decrypt(&rctx->fallback_req);
1087  }
1088  
atmel_aes_crypt(struct skcipher_request * req,unsigned long mode)1089  static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1090  {
1091  	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1092  	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1093  	struct atmel_aes_reqctx *rctx;
1094  	u32 opmode = mode & AES_FLAGS_OPMODE_MASK;
1095  
1096  	if (opmode == AES_FLAGS_XTS) {
1097  		if (req->cryptlen < XTS_BLOCK_SIZE)
1098  			return -EINVAL;
1099  
1100  		if (!IS_ALIGNED(req->cryptlen, XTS_BLOCK_SIZE))
1101  			return atmel_aes_xts_fallback(req,
1102  						      mode & AES_FLAGS_ENCRYPT);
1103  	}
1104  
1105  	/*
1106  	 * ECB, CBC, CFB, OFB or CTR mode require the plaintext and ciphertext
1107  	 * to have a positve integer length.
1108  	 */
1109  	if (!req->cryptlen && opmode != AES_FLAGS_XTS)
1110  		return 0;
1111  
1112  	if ((opmode == AES_FLAGS_ECB || opmode == AES_FLAGS_CBC) &&
1113  	    !IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(skcipher)))
1114  		return -EINVAL;
1115  
1116  	switch (mode & AES_FLAGS_OPMODE_MASK) {
1117  	case AES_FLAGS_CFB8:
1118  		ctx->block_size = CFB8_BLOCK_SIZE;
1119  		break;
1120  
1121  	case AES_FLAGS_CFB16:
1122  		ctx->block_size = CFB16_BLOCK_SIZE;
1123  		break;
1124  
1125  	case AES_FLAGS_CFB32:
1126  		ctx->block_size = CFB32_BLOCK_SIZE;
1127  		break;
1128  
1129  	case AES_FLAGS_CFB64:
1130  		ctx->block_size = CFB64_BLOCK_SIZE;
1131  		break;
1132  
1133  	default:
1134  		ctx->block_size = AES_BLOCK_SIZE;
1135  		break;
1136  	}
1137  	ctx->is_aead = false;
1138  
1139  	rctx = skcipher_request_ctx(req);
1140  	rctx->mode = mode;
1141  
1142  	if (opmode != AES_FLAGS_ECB &&
1143  	    !(mode & AES_FLAGS_ENCRYPT)) {
1144  		unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1145  
1146  		if (req->cryptlen >= ivsize)
1147  			scatterwalk_map_and_copy(rctx->lastc, req->src,
1148  						 req->cryptlen - ivsize,
1149  						 ivsize, 0);
1150  	}
1151  
1152  	return atmel_aes_handle_queue(ctx->dd, &req->base);
1153  }
1154  
atmel_aes_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int keylen)1155  static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1156  			   unsigned int keylen)
1157  {
1158  	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1159  
1160  	if (keylen != AES_KEYSIZE_128 &&
1161  	    keylen != AES_KEYSIZE_192 &&
1162  	    keylen != AES_KEYSIZE_256)
1163  		return -EINVAL;
1164  
1165  	memcpy(ctx->key, key, keylen);
1166  	ctx->keylen = keylen;
1167  
1168  	return 0;
1169  }
1170  
atmel_aes_ecb_encrypt(struct skcipher_request * req)1171  static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1172  {
1173  	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1174  }
1175  
atmel_aes_ecb_decrypt(struct skcipher_request * req)1176  static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1177  {
1178  	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1179  }
1180  
atmel_aes_cbc_encrypt(struct skcipher_request * req)1181  static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1182  {
1183  	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1184  }
1185  
atmel_aes_cbc_decrypt(struct skcipher_request * req)1186  static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1187  {
1188  	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1189  }
1190  
atmel_aes_ofb_encrypt(struct skcipher_request * req)1191  static int atmel_aes_ofb_encrypt(struct skcipher_request *req)
1192  {
1193  	return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1194  }
1195  
atmel_aes_ofb_decrypt(struct skcipher_request * req)1196  static int atmel_aes_ofb_decrypt(struct skcipher_request *req)
1197  {
1198  	return atmel_aes_crypt(req, AES_FLAGS_OFB);
1199  }
1200  
atmel_aes_cfb_encrypt(struct skcipher_request * req)1201  static int atmel_aes_cfb_encrypt(struct skcipher_request *req)
1202  {
1203  	return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1204  }
1205  
atmel_aes_cfb_decrypt(struct skcipher_request * req)1206  static int atmel_aes_cfb_decrypt(struct skcipher_request *req)
1207  {
1208  	return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1209  }
1210  
atmel_aes_cfb64_encrypt(struct skcipher_request * req)1211  static int atmel_aes_cfb64_encrypt(struct skcipher_request *req)
1212  {
1213  	return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1214  }
1215  
atmel_aes_cfb64_decrypt(struct skcipher_request * req)1216  static int atmel_aes_cfb64_decrypt(struct skcipher_request *req)
1217  {
1218  	return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1219  }
1220  
atmel_aes_cfb32_encrypt(struct skcipher_request * req)1221  static int atmel_aes_cfb32_encrypt(struct skcipher_request *req)
1222  {
1223  	return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1224  }
1225  
atmel_aes_cfb32_decrypt(struct skcipher_request * req)1226  static int atmel_aes_cfb32_decrypt(struct skcipher_request *req)
1227  {
1228  	return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1229  }
1230  
atmel_aes_cfb16_encrypt(struct skcipher_request * req)1231  static int atmel_aes_cfb16_encrypt(struct skcipher_request *req)
1232  {
1233  	return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1234  }
1235  
atmel_aes_cfb16_decrypt(struct skcipher_request * req)1236  static int atmel_aes_cfb16_decrypt(struct skcipher_request *req)
1237  {
1238  	return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1239  }
1240  
atmel_aes_cfb8_encrypt(struct skcipher_request * req)1241  static int atmel_aes_cfb8_encrypt(struct skcipher_request *req)
1242  {
1243  	return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1244  }
1245  
atmel_aes_cfb8_decrypt(struct skcipher_request * req)1246  static int atmel_aes_cfb8_decrypt(struct skcipher_request *req)
1247  {
1248  	return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1249  }
1250  
atmel_aes_ctr_encrypt(struct skcipher_request * req)1251  static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1252  {
1253  	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1254  }
1255  
atmel_aes_ctr_decrypt(struct skcipher_request * req)1256  static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1257  {
1258  	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1259  }
1260  
atmel_aes_init_tfm(struct crypto_skcipher * tfm)1261  static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1262  {
1263  	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1264  	struct atmel_aes_dev *dd;
1265  
1266  	dd = atmel_aes_dev_alloc(&ctx->base);
1267  	if (!dd)
1268  		return -ENODEV;
1269  
1270  	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1271  	ctx->base.dd = dd;
1272  	ctx->base.start = atmel_aes_start;
1273  
1274  	return 0;
1275  }
1276  
atmel_aes_ctr_init_tfm(struct crypto_skcipher * tfm)1277  static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1278  {
1279  	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1280  	struct atmel_aes_dev *dd;
1281  
1282  	dd = atmel_aes_dev_alloc(&ctx->base);
1283  	if (!dd)
1284  		return -ENODEV;
1285  
1286  	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1287  	ctx->base.dd = dd;
1288  	ctx->base.start = atmel_aes_ctr_start;
1289  
1290  	return 0;
1291  }
1292  
1293  static struct skcipher_alg aes_algs[] = {
1294  {
1295  	.base.cra_name		= "ecb(aes)",
1296  	.base.cra_driver_name	= "atmel-ecb-aes",
1297  	.base.cra_blocksize	= AES_BLOCK_SIZE,
1298  	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1299  
1300  	.init			= atmel_aes_init_tfm,
1301  	.min_keysize		= AES_MIN_KEY_SIZE,
1302  	.max_keysize		= AES_MAX_KEY_SIZE,
1303  	.setkey			= atmel_aes_setkey,
1304  	.encrypt		= atmel_aes_ecb_encrypt,
1305  	.decrypt		= atmel_aes_ecb_decrypt,
1306  },
1307  {
1308  	.base.cra_name		= "cbc(aes)",
1309  	.base.cra_driver_name	= "atmel-cbc-aes",
1310  	.base.cra_blocksize	= AES_BLOCK_SIZE,
1311  	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1312  
1313  	.init			= atmel_aes_init_tfm,
1314  	.min_keysize		= AES_MIN_KEY_SIZE,
1315  	.max_keysize		= AES_MAX_KEY_SIZE,
1316  	.setkey			= atmel_aes_setkey,
1317  	.encrypt		= atmel_aes_cbc_encrypt,
1318  	.decrypt		= atmel_aes_cbc_decrypt,
1319  	.ivsize			= AES_BLOCK_SIZE,
1320  },
1321  {
1322  	.base.cra_name		= "ofb(aes)",
1323  	.base.cra_driver_name	= "atmel-ofb-aes",
1324  	.base.cra_blocksize	= 1,
1325  	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1326  
1327  	.init			= atmel_aes_init_tfm,
1328  	.min_keysize		= AES_MIN_KEY_SIZE,
1329  	.max_keysize		= AES_MAX_KEY_SIZE,
1330  	.setkey			= atmel_aes_setkey,
1331  	.encrypt		= atmel_aes_ofb_encrypt,
1332  	.decrypt		= atmel_aes_ofb_decrypt,
1333  	.ivsize			= AES_BLOCK_SIZE,
1334  },
1335  {
1336  	.base.cra_name		= "cfb(aes)",
1337  	.base.cra_driver_name	= "atmel-cfb-aes",
1338  	.base.cra_blocksize	= 1,
1339  	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1340  
1341  	.init			= atmel_aes_init_tfm,
1342  	.min_keysize		= AES_MIN_KEY_SIZE,
1343  	.max_keysize		= AES_MAX_KEY_SIZE,
1344  	.setkey			= atmel_aes_setkey,
1345  	.encrypt		= atmel_aes_cfb_encrypt,
1346  	.decrypt		= atmel_aes_cfb_decrypt,
1347  	.ivsize			= AES_BLOCK_SIZE,
1348  },
1349  {
1350  	.base.cra_name		= "cfb32(aes)",
1351  	.base.cra_driver_name	= "atmel-cfb32-aes",
1352  	.base.cra_blocksize	= CFB32_BLOCK_SIZE,
1353  	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1354  
1355  	.init			= atmel_aes_init_tfm,
1356  	.min_keysize		= AES_MIN_KEY_SIZE,
1357  	.max_keysize		= AES_MAX_KEY_SIZE,
1358  	.setkey			= atmel_aes_setkey,
1359  	.encrypt		= atmel_aes_cfb32_encrypt,
1360  	.decrypt		= atmel_aes_cfb32_decrypt,
1361  	.ivsize			= AES_BLOCK_SIZE,
1362  },
1363  {
1364  	.base.cra_name		= "cfb16(aes)",
1365  	.base.cra_driver_name	= "atmel-cfb16-aes",
1366  	.base.cra_blocksize	= CFB16_BLOCK_SIZE,
1367  	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1368  
1369  	.init			= atmel_aes_init_tfm,
1370  	.min_keysize		= AES_MIN_KEY_SIZE,
1371  	.max_keysize		= AES_MAX_KEY_SIZE,
1372  	.setkey			= atmel_aes_setkey,
1373  	.encrypt		= atmel_aes_cfb16_encrypt,
1374  	.decrypt		= atmel_aes_cfb16_decrypt,
1375  	.ivsize			= AES_BLOCK_SIZE,
1376  },
1377  {
1378  	.base.cra_name		= "cfb8(aes)",
1379  	.base.cra_driver_name	= "atmel-cfb8-aes",
1380  	.base.cra_blocksize	= CFB8_BLOCK_SIZE,
1381  	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1382  
1383  	.init			= atmel_aes_init_tfm,
1384  	.min_keysize		= AES_MIN_KEY_SIZE,
1385  	.max_keysize		= AES_MAX_KEY_SIZE,
1386  	.setkey			= atmel_aes_setkey,
1387  	.encrypt		= atmel_aes_cfb8_encrypt,
1388  	.decrypt		= atmel_aes_cfb8_decrypt,
1389  	.ivsize			= AES_BLOCK_SIZE,
1390  },
1391  {
1392  	.base.cra_name		= "ctr(aes)",
1393  	.base.cra_driver_name	= "atmel-ctr-aes",
1394  	.base.cra_blocksize	= 1,
1395  	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctr_ctx),
1396  
1397  	.init			= atmel_aes_ctr_init_tfm,
1398  	.min_keysize		= AES_MIN_KEY_SIZE,
1399  	.max_keysize		= AES_MAX_KEY_SIZE,
1400  	.setkey			= atmel_aes_setkey,
1401  	.encrypt		= atmel_aes_ctr_encrypt,
1402  	.decrypt		= atmel_aes_ctr_decrypt,
1403  	.ivsize			= AES_BLOCK_SIZE,
1404  },
1405  };
1406  
1407  static struct skcipher_alg aes_cfb64_alg = {
1408  	.base.cra_name		= "cfb64(aes)",
1409  	.base.cra_driver_name	= "atmel-cfb64-aes",
1410  	.base.cra_blocksize	= CFB64_BLOCK_SIZE,
1411  	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1412  
1413  	.init			= atmel_aes_init_tfm,
1414  	.min_keysize		= AES_MIN_KEY_SIZE,
1415  	.max_keysize		= AES_MAX_KEY_SIZE,
1416  	.setkey			= atmel_aes_setkey,
1417  	.encrypt		= atmel_aes_cfb64_encrypt,
1418  	.decrypt		= atmel_aes_cfb64_decrypt,
1419  	.ivsize			= AES_BLOCK_SIZE,
1420  };
1421  
1422  
1423  /* gcm aead functions */
1424  
1425  static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1426  			       const u32 *data, size_t datalen,
1427  			       const __be32 *ghash_in, __be32 *ghash_out,
1428  			       atmel_aes_fn_t resume);
1429  static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1430  static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1431  
1432  static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1433  static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1434  static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1435  static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1436  static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1437  static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1438  static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1439  
1440  static inline struct atmel_aes_gcm_ctx *
atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx * ctx)1441  atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1442  {
1443  	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1444  }
1445  
atmel_aes_gcm_ghash(struct atmel_aes_dev * dd,const u32 * data,size_t datalen,const __be32 * ghash_in,__be32 * ghash_out,atmel_aes_fn_t resume)1446  static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1447  			       const u32 *data, size_t datalen,
1448  			       const __be32 *ghash_in, __be32 *ghash_out,
1449  			       atmel_aes_fn_t resume)
1450  {
1451  	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1452  
1453  	dd->data = (u32 *)data;
1454  	dd->datalen = datalen;
1455  	ctx->ghash_in = ghash_in;
1456  	ctx->ghash_out = ghash_out;
1457  	ctx->ghash_resume = resume;
1458  
1459  	atmel_aes_write_ctrl(dd, false, NULL);
1460  	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1461  }
1462  
atmel_aes_gcm_ghash_init(struct atmel_aes_dev * dd)1463  static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1464  {
1465  	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1466  
1467  	/* Set the data length. */
1468  	atmel_aes_write(dd, AES_AADLENR, dd->total);
1469  	atmel_aes_write(dd, AES_CLENR, 0);
1470  
1471  	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1472  	if (ctx->ghash_in)
1473  		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1474  
1475  	return atmel_aes_gcm_ghash_finalize(dd);
1476  }
1477  
atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev * dd)1478  static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1479  {
1480  	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1481  	u32 isr;
1482  
1483  	/* Write data into the Input Data Registers. */
1484  	while (dd->datalen > 0) {
1485  		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1486  		dd->data += 4;
1487  		dd->datalen -= AES_BLOCK_SIZE;
1488  
1489  		isr = atmel_aes_read(dd, AES_ISR);
1490  		if (!(isr & AES_INT_DATARDY)) {
1491  			dd->resume = atmel_aes_gcm_ghash_finalize;
1492  			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1493  			return -EINPROGRESS;
1494  		}
1495  	}
1496  
1497  	/* Read the computed hash from GHASHRx. */
1498  	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1499  
1500  	return ctx->ghash_resume(dd);
1501  }
1502  
1503  
atmel_aes_gcm_start(struct atmel_aes_dev * dd)1504  static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1505  {
1506  	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1507  	struct aead_request *req = aead_request_cast(dd->areq);
1508  	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1509  	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1510  	size_t ivsize = crypto_aead_ivsize(tfm);
1511  	size_t datalen, padlen;
1512  	const void *iv = req->iv;
1513  	u8 *data = dd->buf;
1514  	int err;
1515  
1516  	atmel_aes_set_mode(dd, rctx);
1517  
1518  	err = atmel_aes_hw_init(dd);
1519  	if (err)
1520  		return atmel_aes_complete(dd, err);
1521  
1522  	if (likely(ivsize == GCM_AES_IV_SIZE)) {
1523  		memcpy(ctx->j0, iv, ivsize);
1524  		ctx->j0[3] = cpu_to_be32(1);
1525  		return atmel_aes_gcm_process(dd);
1526  	}
1527  
1528  	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1529  	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1530  	if (datalen > dd->buflen)
1531  		return atmel_aes_complete(dd, -EINVAL);
1532  
1533  	memcpy(data, iv, ivsize);
1534  	memset(data + ivsize, 0, padlen + sizeof(u64));
1535  	((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1536  
1537  	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1538  				   NULL, ctx->j0, atmel_aes_gcm_process);
1539  }
1540  
atmel_aes_gcm_process(struct atmel_aes_dev * dd)1541  static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1542  {
1543  	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1544  	struct aead_request *req = aead_request_cast(dd->areq);
1545  	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1546  	bool enc = atmel_aes_is_encrypt(dd);
1547  	u32 authsize;
1548  
1549  	/* Compute text length. */
1550  	authsize = crypto_aead_authsize(tfm);
1551  	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1552  
1553  	/*
1554  	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1555  	 * fails when both the message and its associated data are empty.
1556  	 */
1557  	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1558  		dd->flags |= AES_FLAGS_GTAGEN;
1559  
1560  	atmel_aes_write_ctrl(dd, false, NULL);
1561  	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1562  }
1563  
atmel_aes_gcm_length(struct atmel_aes_dev * dd)1564  static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1565  {
1566  	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1567  	struct aead_request *req = aead_request_cast(dd->areq);
1568  	__be32 j0_lsw, *j0 = ctx->j0;
1569  	size_t padlen;
1570  
1571  	/* Write incr32(J0) into IV. */
1572  	j0_lsw = j0[3];
1573  	be32_add_cpu(&j0[3], 1);
1574  	atmel_aes_write_block(dd, AES_IVR(0), j0);
1575  	j0[3] = j0_lsw;
1576  
1577  	/* Set aad and text lengths. */
1578  	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1579  	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1580  
1581  	/* Check whether AAD are present. */
1582  	if (unlikely(req->assoclen == 0)) {
1583  		dd->datalen = 0;
1584  		return atmel_aes_gcm_data(dd);
1585  	}
1586  
1587  	/* Copy assoc data and add padding. */
1588  	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1589  	if (unlikely(req->assoclen + padlen > dd->buflen))
1590  		return atmel_aes_complete(dd, -EINVAL);
1591  	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1592  
1593  	/* Write assoc data into the Input Data register. */
1594  	dd->data = (u32 *)dd->buf;
1595  	dd->datalen = req->assoclen + padlen;
1596  	return atmel_aes_gcm_data(dd);
1597  }
1598  
atmel_aes_gcm_data(struct atmel_aes_dev * dd)1599  static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1600  {
1601  	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1602  	struct aead_request *req = aead_request_cast(dd->areq);
1603  	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1604  	struct scatterlist *src, *dst;
1605  	u32 isr, mr;
1606  
1607  	/* Write AAD first. */
1608  	while (dd->datalen > 0) {
1609  		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1610  		dd->data += 4;
1611  		dd->datalen -= AES_BLOCK_SIZE;
1612  
1613  		isr = atmel_aes_read(dd, AES_ISR);
1614  		if (!(isr & AES_INT_DATARDY)) {
1615  			dd->resume = atmel_aes_gcm_data;
1616  			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1617  			return -EINPROGRESS;
1618  		}
1619  	}
1620  
1621  	/* GMAC only. */
1622  	if (unlikely(ctx->textlen == 0))
1623  		return atmel_aes_gcm_tag_init(dd);
1624  
1625  	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1626  	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1627  	dst = ((req->src == req->dst) ? src :
1628  	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1629  
1630  	if (use_dma) {
1631  		/* Update the Mode Register for DMA transfers. */
1632  		mr = atmel_aes_read(dd, AES_MR);
1633  		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1634  		mr |= AES_MR_SMOD_IDATAR0;
1635  		if (dd->caps.has_dualbuff)
1636  			mr |= AES_MR_DUALBUFF;
1637  		atmel_aes_write(dd, AES_MR, mr);
1638  
1639  		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1640  					   atmel_aes_gcm_tag_init);
1641  	}
1642  
1643  	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1644  				   atmel_aes_gcm_tag_init);
1645  }
1646  
atmel_aes_gcm_tag_init(struct atmel_aes_dev * dd)1647  static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1648  {
1649  	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1650  	struct aead_request *req = aead_request_cast(dd->areq);
1651  	__be64 *data = dd->buf;
1652  
1653  	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1654  		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1655  			dd->resume = atmel_aes_gcm_tag_init;
1656  			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1657  			return -EINPROGRESS;
1658  		}
1659  
1660  		return atmel_aes_gcm_finalize(dd);
1661  	}
1662  
1663  	/* Read the GCM Intermediate Hash Word Registers. */
1664  	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1665  
1666  	data[0] = cpu_to_be64(req->assoclen * 8);
1667  	data[1] = cpu_to_be64(ctx->textlen * 8);
1668  
1669  	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1670  				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1671  }
1672  
atmel_aes_gcm_tag(struct atmel_aes_dev * dd)1673  static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1674  {
1675  	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1676  	unsigned long flags;
1677  
1678  	/*
1679  	 * Change mode to CTR to complete the tag generation.
1680  	 * Use J0 as Initialization Vector.
1681  	 */
1682  	flags = dd->flags;
1683  	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1684  	dd->flags |= AES_FLAGS_CTR;
1685  	atmel_aes_write_ctrl(dd, false, ctx->j0);
1686  	dd->flags = flags;
1687  
1688  	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1689  	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1690  }
1691  
atmel_aes_gcm_finalize(struct atmel_aes_dev * dd)1692  static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1693  {
1694  	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1695  	struct aead_request *req = aead_request_cast(dd->areq);
1696  	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1697  	bool enc = atmel_aes_is_encrypt(dd);
1698  	u32 offset, authsize, itag[4], *otag = ctx->tag;
1699  	int err;
1700  
1701  	/* Read the computed tag. */
1702  	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1703  		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1704  	else
1705  		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1706  
1707  	offset = req->assoclen + ctx->textlen;
1708  	authsize = crypto_aead_authsize(tfm);
1709  	if (enc) {
1710  		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1711  		err = 0;
1712  	} else {
1713  		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1714  		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1715  	}
1716  
1717  	return atmel_aes_complete(dd, err);
1718  }
1719  
atmel_aes_gcm_crypt(struct aead_request * req,unsigned long mode)1720  static int atmel_aes_gcm_crypt(struct aead_request *req,
1721  			       unsigned long mode)
1722  {
1723  	struct atmel_aes_base_ctx *ctx;
1724  	struct atmel_aes_reqctx *rctx;
1725  
1726  	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1727  	ctx->block_size = AES_BLOCK_SIZE;
1728  	ctx->is_aead = true;
1729  
1730  	rctx = aead_request_ctx(req);
1731  	rctx->mode = AES_FLAGS_GCM | mode;
1732  
1733  	return atmel_aes_handle_queue(ctx->dd, &req->base);
1734  }
1735  
atmel_aes_gcm_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1736  static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1737  				unsigned int keylen)
1738  {
1739  	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1740  
1741  	if (keylen != AES_KEYSIZE_256 &&
1742  	    keylen != AES_KEYSIZE_192 &&
1743  	    keylen != AES_KEYSIZE_128)
1744  		return -EINVAL;
1745  
1746  	memcpy(ctx->key, key, keylen);
1747  	ctx->keylen = keylen;
1748  
1749  	return 0;
1750  }
1751  
atmel_aes_gcm_setauthsize(struct crypto_aead * tfm,unsigned int authsize)1752  static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1753  				     unsigned int authsize)
1754  {
1755  	return crypto_gcm_check_authsize(authsize);
1756  }
1757  
atmel_aes_gcm_encrypt(struct aead_request * req)1758  static int atmel_aes_gcm_encrypt(struct aead_request *req)
1759  {
1760  	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1761  }
1762  
atmel_aes_gcm_decrypt(struct aead_request * req)1763  static int atmel_aes_gcm_decrypt(struct aead_request *req)
1764  {
1765  	return atmel_aes_gcm_crypt(req, 0);
1766  }
1767  
atmel_aes_gcm_init(struct crypto_aead * tfm)1768  static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1769  {
1770  	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1771  	struct atmel_aes_dev *dd;
1772  
1773  	dd = atmel_aes_dev_alloc(&ctx->base);
1774  	if (!dd)
1775  		return -ENODEV;
1776  
1777  	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1778  	ctx->base.dd = dd;
1779  	ctx->base.start = atmel_aes_gcm_start;
1780  
1781  	return 0;
1782  }
1783  
1784  static struct aead_alg aes_gcm_alg = {
1785  	.setkey		= atmel_aes_gcm_setkey,
1786  	.setauthsize	= atmel_aes_gcm_setauthsize,
1787  	.encrypt	= atmel_aes_gcm_encrypt,
1788  	.decrypt	= atmel_aes_gcm_decrypt,
1789  	.init		= atmel_aes_gcm_init,
1790  	.ivsize		= GCM_AES_IV_SIZE,
1791  	.maxauthsize	= AES_BLOCK_SIZE,
1792  
1793  	.base = {
1794  		.cra_name		= "gcm(aes)",
1795  		.cra_driver_name	= "atmel-gcm-aes",
1796  		.cra_blocksize		= 1,
1797  		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
1798  	},
1799  };
1800  
1801  
1802  /* xts functions */
1803  
1804  static inline struct atmel_aes_xts_ctx *
atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx * ctx)1805  atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1806  {
1807  	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1808  }
1809  
1810  static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1811  
atmel_aes_xts_start(struct atmel_aes_dev * dd)1812  static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1813  {
1814  	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1815  	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1816  	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1817  	unsigned long flags;
1818  	int err;
1819  
1820  	atmel_aes_set_mode(dd, rctx);
1821  
1822  	err = atmel_aes_hw_init(dd);
1823  	if (err)
1824  		return atmel_aes_complete(dd, err);
1825  
1826  	/* Compute the tweak value from req->iv with ecb(aes). */
1827  	flags = dd->flags;
1828  	dd->flags &= ~AES_FLAGS_MODE_MASK;
1829  	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1830  	atmel_aes_write_ctrl_key(dd, false, NULL,
1831  				 ctx->key2, ctx->base.keylen);
1832  	dd->flags = flags;
1833  
1834  	atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1835  	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1836  }
1837  
atmel_aes_xts_process_data(struct atmel_aes_dev * dd)1838  static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1839  {
1840  	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1841  	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1842  	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1843  	static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1844  	u8 *tweak_bytes = (u8 *)tweak;
1845  	int i;
1846  
1847  	/* Read the computed ciphered tweak value. */
1848  	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1849  	/*
1850  	 * Hardware quirk:
1851  	 * the order of the ciphered tweak bytes need to be reversed before
1852  	 * writing them into the ODATARx registers.
1853  	 */
1854  	for (i = 0; i < AES_BLOCK_SIZE/2; ++i)
1855  		swap(tweak_bytes[i], tweak_bytes[AES_BLOCK_SIZE - 1 - i]);
1856  
1857  	/* Process the data. */
1858  	atmel_aes_write_ctrl(dd, use_dma, NULL);
1859  	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1860  	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1861  	if (use_dma)
1862  		return atmel_aes_dma_start(dd, req->src, req->dst,
1863  					   req->cryptlen,
1864  					   atmel_aes_transfer_complete);
1865  
1866  	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1867  				   atmel_aes_transfer_complete);
1868  }
1869  
atmel_aes_xts_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int keylen)1870  static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1871  				unsigned int keylen)
1872  {
1873  	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1874  	int err;
1875  
1876  	err = xts_verify_key(tfm, key, keylen);
1877  	if (err)
1878  		return err;
1879  
1880  	crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
1881  	crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags &
1882  				  CRYPTO_TFM_REQ_MASK);
1883  	err = crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
1884  	if (err)
1885  		return err;
1886  
1887  	memcpy(ctx->base.key, key, keylen/2);
1888  	memcpy(ctx->key2, key + keylen/2, keylen/2);
1889  	ctx->base.keylen = keylen/2;
1890  
1891  	return 0;
1892  }
1893  
atmel_aes_xts_encrypt(struct skcipher_request * req)1894  static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1895  {
1896  	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1897  }
1898  
atmel_aes_xts_decrypt(struct skcipher_request * req)1899  static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1900  {
1901  	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1902  }
1903  
atmel_aes_xts_init_tfm(struct crypto_skcipher * tfm)1904  static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1905  {
1906  	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1907  	struct atmel_aes_dev *dd;
1908  	const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
1909  
1910  	dd = atmel_aes_dev_alloc(&ctx->base);
1911  	if (!dd)
1912  		return -ENODEV;
1913  
1914  	ctx->fallback_tfm = crypto_alloc_skcipher(tfm_name, 0,
1915  						  CRYPTO_ALG_NEED_FALLBACK);
1916  	if (IS_ERR(ctx->fallback_tfm))
1917  		return PTR_ERR(ctx->fallback_tfm);
1918  
1919  	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx) +
1920  				    crypto_skcipher_reqsize(ctx->fallback_tfm));
1921  	ctx->base.dd = dd;
1922  	ctx->base.start = atmel_aes_xts_start;
1923  
1924  	return 0;
1925  }
1926  
atmel_aes_xts_exit_tfm(struct crypto_skcipher * tfm)1927  static void atmel_aes_xts_exit_tfm(struct crypto_skcipher *tfm)
1928  {
1929  	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1930  
1931  	crypto_free_skcipher(ctx->fallback_tfm);
1932  }
1933  
1934  static struct skcipher_alg aes_xts_alg = {
1935  	.base.cra_name		= "xts(aes)",
1936  	.base.cra_driver_name	= "atmel-xts-aes",
1937  	.base.cra_blocksize	= AES_BLOCK_SIZE,
1938  	.base.cra_ctxsize	= sizeof(struct atmel_aes_xts_ctx),
1939  	.base.cra_flags		= CRYPTO_ALG_NEED_FALLBACK,
1940  
1941  	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
1942  	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
1943  	.ivsize			= AES_BLOCK_SIZE,
1944  	.setkey			= atmel_aes_xts_setkey,
1945  	.encrypt		= atmel_aes_xts_encrypt,
1946  	.decrypt		= atmel_aes_xts_decrypt,
1947  	.init			= atmel_aes_xts_init_tfm,
1948  	.exit			= atmel_aes_xts_exit_tfm,
1949  };
1950  
1951  #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1952  /* authenc aead functions */
1953  
1954  static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1955  static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1956  				  bool is_async);
1957  static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1958  				      bool is_async);
1959  static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1960  static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1961  				   bool is_async);
1962  
atmel_aes_authenc_complete(struct atmel_aes_dev * dd,int err)1963  static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1964  {
1965  	struct aead_request *req = aead_request_cast(dd->areq);
1966  	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1967  
1968  	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1969  		atmel_sha_authenc_abort(&rctx->auth_req);
1970  	dd->flags &= ~AES_FLAGS_OWN_SHA;
1971  }
1972  
atmel_aes_authenc_start(struct atmel_aes_dev * dd)1973  static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1974  {
1975  	struct aead_request *req = aead_request_cast(dd->areq);
1976  	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1977  	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1978  	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1979  	int err;
1980  
1981  	atmel_aes_set_mode(dd, &rctx->base);
1982  
1983  	err = atmel_aes_hw_init(dd);
1984  	if (err)
1985  		return atmel_aes_complete(dd, err);
1986  
1987  	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1988  					  atmel_aes_authenc_init, dd);
1989  }
1990  
atmel_aes_authenc_init(struct atmel_aes_dev * dd,int err,bool is_async)1991  static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1992  				  bool is_async)
1993  {
1994  	struct aead_request *req = aead_request_cast(dd->areq);
1995  	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1996  
1997  	if (is_async)
1998  		dd->is_async = true;
1999  	if (err)
2000  		return atmel_aes_complete(dd, err);
2001  
2002  	/* If here, we've got the ownership of the SHA device. */
2003  	dd->flags |= AES_FLAGS_OWN_SHA;
2004  
2005  	/* Configure the SHA device. */
2006  	return atmel_sha_authenc_init(&rctx->auth_req,
2007  				      req->src, req->assoclen,
2008  				      rctx->textlen,
2009  				      atmel_aes_authenc_transfer, dd);
2010  }
2011  
atmel_aes_authenc_transfer(struct atmel_aes_dev * dd,int err,bool is_async)2012  static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2013  				      bool is_async)
2014  {
2015  	struct aead_request *req = aead_request_cast(dd->areq);
2016  	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2017  	bool enc = atmel_aes_is_encrypt(dd);
2018  	struct scatterlist *src, *dst;
2019  	__be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2020  	u32 emr;
2021  
2022  	if (is_async)
2023  		dd->is_async = true;
2024  	if (err)
2025  		return atmel_aes_complete(dd, err);
2026  
2027  	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2028  	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2029  	dst = src;
2030  
2031  	if (req->src != req->dst)
2032  		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2033  
2034  	/* Configure the AES device. */
2035  	memcpy(iv, req->iv, sizeof(iv));
2036  
2037  	/*
2038  	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2039  	 * 'true' even if the data transfer is actually performed by the CPU (so
2040  	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2041  	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2042  	 * must be set to *_MR_SMOD_IDATAR0.
2043  	 */
2044  	atmel_aes_write_ctrl(dd, true, iv);
2045  	emr = AES_EMR_PLIPEN;
2046  	if (!enc)
2047  		emr |= AES_EMR_PLIPD;
2048  	atmel_aes_write(dd, AES_EMR, emr);
2049  
2050  	/* Transfer data. */
2051  	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2052  				   atmel_aes_authenc_digest);
2053  }
2054  
atmel_aes_authenc_digest(struct atmel_aes_dev * dd)2055  static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2056  {
2057  	struct aead_request *req = aead_request_cast(dd->areq);
2058  	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2059  
2060  	/* atmel_sha_authenc_final() releases the SHA device. */
2061  	dd->flags &= ~AES_FLAGS_OWN_SHA;
2062  	return atmel_sha_authenc_final(&rctx->auth_req,
2063  				       rctx->digest, sizeof(rctx->digest),
2064  				       atmel_aes_authenc_final, dd);
2065  }
2066  
atmel_aes_authenc_final(struct atmel_aes_dev * dd,int err,bool is_async)2067  static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2068  				   bool is_async)
2069  {
2070  	struct aead_request *req = aead_request_cast(dd->areq);
2071  	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2072  	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2073  	bool enc = atmel_aes_is_encrypt(dd);
2074  	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2075  	u32 offs, authsize;
2076  
2077  	if (is_async)
2078  		dd->is_async = true;
2079  	if (err)
2080  		goto complete;
2081  
2082  	offs = req->assoclen + rctx->textlen;
2083  	authsize = crypto_aead_authsize(tfm);
2084  	if (enc) {
2085  		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2086  	} else {
2087  		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2088  		if (crypto_memneq(idigest, odigest, authsize))
2089  			err = -EBADMSG;
2090  	}
2091  
2092  complete:
2093  	return atmel_aes_complete(dd, err);
2094  }
2095  
atmel_aes_authenc_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)2096  static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2097  				    unsigned int keylen)
2098  {
2099  	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2100  	struct crypto_authenc_keys keys;
2101  	int err;
2102  
2103  	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2104  		goto badkey;
2105  
2106  	if (keys.enckeylen > sizeof(ctx->base.key))
2107  		goto badkey;
2108  
2109  	/* Save auth key. */
2110  	err = atmel_sha_authenc_setkey(ctx->auth,
2111  				       keys.authkey, keys.authkeylen,
2112  				       crypto_aead_get_flags(tfm));
2113  	if (err) {
2114  		memzero_explicit(&keys, sizeof(keys));
2115  		return err;
2116  	}
2117  
2118  	/* Save enc key. */
2119  	ctx->base.keylen = keys.enckeylen;
2120  	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2121  
2122  	memzero_explicit(&keys, sizeof(keys));
2123  	return 0;
2124  
2125  badkey:
2126  	memzero_explicit(&keys, sizeof(keys));
2127  	return -EINVAL;
2128  }
2129  
atmel_aes_authenc_init_tfm(struct crypto_aead * tfm,unsigned long auth_mode)2130  static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2131  				      unsigned long auth_mode)
2132  {
2133  	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2134  	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2135  	struct atmel_aes_dev *dd;
2136  
2137  	dd = atmel_aes_dev_alloc(&ctx->base);
2138  	if (!dd)
2139  		return -ENODEV;
2140  
2141  	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2142  	if (IS_ERR(ctx->auth))
2143  		return PTR_ERR(ctx->auth);
2144  
2145  	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2146  				      auth_reqsize));
2147  	ctx->base.dd = dd;
2148  	ctx->base.start = atmel_aes_authenc_start;
2149  
2150  	return 0;
2151  }
2152  
atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead * tfm)2153  static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2154  {
2155  	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2156  }
2157  
atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead * tfm)2158  static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2159  {
2160  	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2161  }
2162  
atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead * tfm)2163  static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2164  {
2165  	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2166  }
2167  
atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead * tfm)2168  static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2169  {
2170  	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2171  }
2172  
atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead * tfm)2173  static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2174  {
2175  	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2176  }
2177  
atmel_aes_authenc_exit_tfm(struct crypto_aead * tfm)2178  static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2179  {
2180  	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2181  
2182  	atmel_sha_authenc_free(ctx->auth);
2183  }
2184  
atmel_aes_authenc_crypt(struct aead_request * req,unsigned long mode)2185  static int atmel_aes_authenc_crypt(struct aead_request *req,
2186  				   unsigned long mode)
2187  {
2188  	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2189  	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2190  	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2191  	u32 authsize = crypto_aead_authsize(tfm);
2192  	bool enc = (mode & AES_FLAGS_ENCRYPT);
2193  
2194  	/* Compute text length. */
2195  	if (!enc && req->cryptlen < authsize)
2196  		return -EINVAL;
2197  	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2198  
2199  	/*
2200  	 * Currently, empty messages are not supported yet:
2201  	 * the SHA auto-padding can be used only on non-empty messages.
2202  	 * Hence a special case needs to be implemented for empty message.
2203  	 */
2204  	if (!rctx->textlen && !req->assoclen)
2205  		return -EINVAL;
2206  
2207  	rctx->base.mode = mode;
2208  	ctx->block_size = AES_BLOCK_SIZE;
2209  	ctx->is_aead = true;
2210  
2211  	return atmel_aes_handle_queue(ctx->dd, &req->base);
2212  }
2213  
atmel_aes_authenc_cbc_aes_encrypt(struct aead_request * req)2214  static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2215  {
2216  	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2217  }
2218  
atmel_aes_authenc_cbc_aes_decrypt(struct aead_request * req)2219  static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2220  {
2221  	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2222  }
2223  
2224  static struct aead_alg aes_authenc_algs[] = {
2225  {
2226  	.setkey		= atmel_aes_authenc_setkey,
2227  	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2228  	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2229  	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
2230  	.exit		= atmel_aes_authenc_exit_tfm,
2231  	.ivsize		= AES_BLOCK_SIZE,
2232  	.maxauthsize	= SHA1_DIGEST_SIZE,
2233  
2234  	.base = {
2235  		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
2236  		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
2237  		.cra_blocksize		= AES_BLOCK_SIZE,
2238  		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2239  	},
2240  },
2241  {
2242  	.setkey		= atmel_aes_authenc_setkey,
2243  	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2244  	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2245  	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
2246  	.exit		= atmel_aes_authenc_exit_tfm,
2247  	.ivsize		= AES_BLOCK_SIZE,
2248  	.maxauthsize	= SHA224_DIGEST_SIZE,
2249  
2250  	.base = {
2251  		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
2252  		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
2253  		.cra_blocksize		= AES_BLOCK_SIZE,
2254  		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2255  	},
2256  },
2257  {
2258  	.setkey		= atmel_aes_authenc_setkey,
2259  	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2260  	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2261  	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
2262  	.exit		= atmel_aes_authenc_exit_tfm,
2263  	.ivsize		= AES_BLOCK_SIZE,
2264  	.maxauthsize	= SHA256_DIGEST_SIZE,
2265  
2266  	.base = {
2267  		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
2268  		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
2269  		.cra_blocksize		= AES_BLOCK_SIZE,
2270  		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2271  	},
2272  },
2273  {
2274  	.setkey		= atmel_aes_authenc_setkey,
2275  	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2276  	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2277  	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
2278  	.exit		= atmel_aes_authenc_exit_tfm,
2279  	.ivsize		= AES_BLOCK_SIZE,
2280  	.maxauthsize	= SHA384_DIGEST_SIZE,
2281  
2282  	.base = {
2283  		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
2284  		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
2285  		.cra_blocksize		= AES_BLOCK_SIZE,
2286  		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2287  	},
2288  },
2289  {
2290  	.setkey		= atmel_aes_authenc_setkey,
2291  	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2292  	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2293  	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
2294  	.exit		= atmel_aes_authenc_exit_tfm,
2295  	.ivsize		= AES_BLOCK_SIZE,
2296  	.maxauthsize	= SHA512_DIGEST_SIZE,
2297  
2298  	.base = {
2299  		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
2300  		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
2301  		.cra_blocksize		= AES_BLOCK_SIZE,
2302  		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2303  	},
2304  },
2305  };
2306  #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2307  
2308  /* Probe functions */
2309  
atmel_aes_buff_init(struct atmel_aes_dev * dd)2310  static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2311  {
2312  	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2313  	dd->buflen = ATMEL_AES_BUFFER_SIZE;
2314  	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2315  
2316  	if (!dd->buf) {
2317  		dev_err(dd->dev, "unable to alloc pages.\n");
2318  		return -ENOMEM;
2319  	}
2320  
2321  	return 0;
2322  }
2323  
atmel_aes_buff_cleanup(struct atmel_aes_dev * dd)2324  static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2325  {
2326  	free_page((unsigned long)dd->buf);
2327  }
2328  
atmel_aes_dma_init(struct atmel_aes_dev * dd)2329  static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
2330  {
2331  	int ret;
2332  
2333  	/* Try to grab 2 DMA channels */
2334  	dd->src.chan = dma_request_chan(dd->dev, "tx");
2335  	if (IS_ERR(dd->src.chan)) {
2336  		ret = PTR_ERR(dd->src.chan);
2337  		goto err_dma_in;
2338  	}
2339  
2340  	dd->dst.chan = dma_request_chan(dd->dev, "rx");
2341  	if (IS_ERR(dd->dst.chan)) {
2342  		ret = PTR_ERR(dd->dst.chan);
2343  		goto err_dma_out;
2344  	}
2345  
2346  	return 0;
2347  
2348  err_dma_out:
2349  	dma_release_channel(dd->src.chan);
2350  err_dma_in:
2351  	dev_err(dd->dev, "no DMA channel available\n");
2352  	return ret;
2353  }
2354  
atmel_aes_dma_cleanup(struct atmel_aes_dev * dd)2355  static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2356  {
2357  	dma_release_channel(dd->dst.chan);
2358  	dma_release_channel(dd->src.chan);
2359  }
2360  
atmel_aes_queue_task(unsigned long data)2361  static void atmel_aes_queue_task(unsigned long data)
2362  {
2363  	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2364  
2365  	atmel_aes_handle_queue(dd, NULL);
2366  }
2367  
atmel_aes_done_task(unsigned long data)2368  static void atmel_aes_done_task(unsigned long data)
2369  {
2370  	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2371  
2372  	dd->is_async = true;
2373  	(void)dd->resume(dd);
2374  }
2375  
atmel_aes_irq(int irq,void * dev_id)2376  static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2377  {
2378  	struct atmel_aes_dev *aes_dd = dev_id;
2379  	u32 reg;
2380  
2381  	reg = atmel_aes_read(aes_dd, AES_ISR);
2382  	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2383  		atmel_aes_write(aes_dd, AES_IDR, reg);
2384  		if (AES_FLAGS_BUSY & aes_dd->flags)
2385  			tasklet_schedule(&aes_dd->done_task);
2386  		else
2387  			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2388  		return IRQ_HANDLED;
2389  	}
2390  
2391  	return IRQ_NONE;
2392  }
2393  
atmel_aes_unregister_algs(struct atmel_aes_dev * dd)2394  static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2395  {
2396  	int i;
2397  
2398  #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2399  	if (dd->caps.has_authenc)
2400  		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2401  			crypto_unregister_aead(&aes_authenc_algs[i]);
2402  #endif
2403  
2404  	if (dd->caps.has_xts)
2405  		crypto_unregister_skcipher(&aes_xts_alg);
2406  
2407  	if (dd->caps.has_gcm)
2408  		crypto_unregister_aead(&aes_gcm_alg);
2409  
2410  	if (dd->caps.has_cfb64)
2411  		crypto_unregister_skcipher(&aes_cfb64_alg);
2412  
2413  	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2414  		crypto_unregister_skcipher(&aes_algs[i]);
2415  }
2416  
atmel_aes_crypto_alg_init(struct crypto_alg * alg)2417  static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2418  {
2419  	alg->cra_flags |= CRYPTO_ALG_ASYNC;
2420  	alg->cra_alignmask = 0xf;
2421  	alg->cra_priority = ATMEL_AES_PRIORITY;
2422  	alg->cra_module = THIS_MODULE;
2423  }
2424  
atmel_aes_register_algs(struct atmel_aes_dev * dd)2425  static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2426  {
2427  	int err, i, j;
2428  
2429  	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2430  		atmel_aes_crypto_alg_init(&aes_algs[i].base);
2431  
2432  		err = crypto_register_skcipher(&aes_algs[i]);
2433  		if (err)
2434  			goto err_aes_algs;
2435  	}
2436  
2437  	if (dd->caps.has_cfb64) {
2438  		atmel_aes_crypto_alg_init(&aes_cfb64_alg.base);
2439  
2440  		err = crypto_register_skcipher(&aes_cfb64_alg);
2441  		if (err)
2442  			goto err_aes_cfb64_alg;
2443  	}
2444  
2445  	if (dd->caps.has_gcm) {
2446  		atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
2447  
2448  		err = crypto_register_aead(&aes_gcm_alg);
2449  		if (err)
2450  			goto err_aes_gcm_alg;
2451  	}
2452  
2453  	if (dd->caps.has_xts) {
2454  		atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2455  
2456  		err = crypto_register_skcipher(&aes_xts_alg);
2457  		if (err)
2458  			goto err_aes_xts_alg;
2459  	}
2460  
2461  #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2462  	if (dd->caps.has_authenc) {
2463  		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2464  			atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2465  
2466  			err = crypto_register_aead(&aes_authenc_algs[i]);
2467  			if (err)
2468  				goto err_aes_authenc_alg;
2469  		}
2470  	}
2471  #endif
2472  
2473  	return 0;
2474  
2475  #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2476  	/* i = ARRAY_SIZE(aes_authenc_algs); */
2477  err_aes_authenc_alg:
2478  	for (j = 0; j < i; j++)
2479  		crypto_unregister_aead(&aes_authenc_algs[j]);
2480  	crypto_unregister_skcipher(&aes_xts_alg);
2481  #endif
2482  err_aes_xts_alg:
2483  	crypto_unregister_aead(&aes_gcm_alg);
2484  err_aes_gcm_alg:
2485  	crypto_unregister_skcipher(&aes_cfb64_alg);
2486  err_aes_cfb64_alg:
2487  	i = ARRAY_SIZE(aes_algs);
2488  err_aes_algs:
2489  	for (j = 0; j < i; j++)
2490  		crypto_unregister_skcipher(&aes_algs[j]);
2491  
2492  	return err;
2493  }
2494  
atmel_aes_get_cap(struct atmel_aes_dev * dd)2495  static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2496  {
2497  	dd->caps.has_dualbuff = 0;
2498  	dd->caps.has_cfb64 = 0;
2499  	dd->caps.has_gcm = 0;
2500  	dd->caps.has_xts = 0;
2501  	dd->caps.has_authenc = 0;
2502  	dd->caps.max_burst_size = 1;
2503  
2504  	/* keep only major version number */
2505  	switch (dd->hw_version & 0xff0) {
2506  	case 0x700:
2507  	case 0x600:
2508  	case 0x500:
2509  		dd->caps.has_dualbuff = 1;
2510  		dd->caps.has_cfb64 = 1;
2511  		dd->caps.has_gcm = 1;
2512  		dd->caps.has_xts = 1;
2513  		dd->caps.has_authenc = 1;
2514  		dd->caps.max_burst_size = 4;
2515  		break;
2516  	case 0x200:
2517  		dd->caps.has_dualbuff = 1;
2518  		dd->caps.has_cfb64 = 1;
2519  		dd->caps.has_gcm = 1;
2520  		dd->caps.max_burst_size = 4;
2521  		break;
2522  	case 0x130:
2523  		dd->caps.has_dualbuff = 1;
2524  		dd->caps.has_cfb64 = 1;
2525  		dd->caps.max_burst_size = 4;
2526  		break;
2527  	case 0x120:
2528  		break;
2529  	default:
2530  		dev_warn(dd->dev,
2531  				"Unmanaged aes version, set minimum capabilities\n");
2532  		break;
2533  	}
2534  }
2535  
2536  static const struct of_device_id atmel_aes_dt_ids[] = {
2537  	{ .compatible = "atmel,at91sam9g46-aes" },
2538  	{ /* sentinel */ }
2539  };
2540  MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2541  
atmel_aes_probe(struct platform_device * pdev)2542  static int atmel_aes_probe(struct platform_device *pdev)
2543  {
2544  	struct atmel_aes_dev *aes_dd;
2545  	struct device *dev = &pdev->dev;
2546  	struct resource *aes_res;
2547  	int err;
2548  
2549  	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2550  	if (!aes_dd)
2551  		return -ENOMEM;
2552  
2553  	aes_dd->dev = dev;
2554  
2555  	platform_set_drvdata(pdev, aes_dd);
2556  
2557  	INIT_LIST_HEAD(&aes_dd->list);
2558  	spin_lock_init(&aes_dd->lock);
2559  
2560  	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2561  					(unsigned long)aes_dd);
2562  	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2563  					(unsigned long)aes_dd);
2564  
2565  	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2566  
2567  	aes_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &aes_res);
2568  	if (IS_ERR(aes_dd->io_base)) {
2569  		err = PTR_ERR(aes_dd->io_base);
2570  		goto err_tasklet_kill;
2571  	}
2572  	aes_dd->phys_base = aes_res->start;
2573  
2574  	/* Get the IRQ */
2575  	aes_dd->irq = platform_get_irq(pdev,  0);
2576  	if (aes_dd->irq < 0) {
2577  		err = aes_dd->irq;
2578  		goto err_tasklet_kill;
2579  	}
2580  
2581  	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2582  			       IRQF_SHARED, "atmel-aes", aes_dd);
2583  	if (err) {
2584  		dev_err(dev, "unable to request aes irq.\n");
2585  		goto err_tasklet_kill;
2586  	}
2587  
2588  	/* Initializing the clock */
2589  	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2590  	if (IS_ERR(aes_dd->iclk)) {
2591  		dev_err(dev, "clock initialization failed.\n");
2592  		err = PTR_ERR(aes_dd->iclk);
2593  		goto err_tasklet_kill;
2594  	}
2595  
2596  	err = clk_prepare(aes_dd->iclk);
2597  	if (err)
2598  		goto err_tasklet_kill;
2599  
2600  	err = atmel_aes_hw_version_init(aes_dd);
2601  	if (err)
2602  		goto err_iclk_unprepare;
2603  
2604  	atmel_aes_get_cap(aes_dd);
2605  
2606  #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2607  	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2608  		err = -EPROBE_DEFER;
2609  		goto err_iclk_unprepare;
2610  	}
2611  #endif
2612  
2613  	err = atmel_aes_buff_init(aes_dd);
2614  	if (err)
2615  		goto err_iclk_unprepare;
2616  
2617  	err = atmel_aes_dma_init(aes_dd);
2618  	if (err)
2619  		goto err_buff_cleanup;
2620  
2621  	spin_lock(&atmel_aes.lock);
2622  	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2623  	spin_unlock(&atmel_aes.lock);
2624  
2625  	err = atmel_aes_register_algs(aes_dd);
2626  	if (err)
2627  		goto err_algs;
2628  
2629  	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2630  			dma_chan_name(aes_dd->src.chan),
2631  			dma_chan_name(aes_dd->dst.chan));
2632  
2633  	return 0;
2634  
2635  err_algs:
2636  	spin_lock(&atmel_aes.lock);
2637  	list_del(&aes_dd->list);
2638  	spin_unlock(&atmel_aes.lock);
2639  	atmel_aes_dma_cleanup(aes_dd);
2640  err_buff_cleanup:
2641  	atmel_aes_buff_cleanup(aes_dd);
2642  err_iclk_unprepare:
2643  	clk_unprepare(aes_dd->iclk);
2644  err_tasklet_kill:
2645  	tasklet_kill(&aes_dd->done_task);
2646  	tasklet_kill(&aes_dd->queue_task);
2647  
2648  	return err;
2649  }
2650  
atmel_aes_remove(struct platform_device * pdev)2651  static int atmel_aes_remove(struct platform_device *pdev)
2652  {
2653  	struct atmel_aes_dev *aes_dd;
2654  
2655  	aes_dd = platform_get_drvdata(pdev);
2656  
2657  	spin_lock(&atmel_aes.lock);
2658  	list_del(&aes_dd->list);
2659  	spin_unlock(&atmel_aes.lock);
2660  
2661  	atmel_aes_unregister_algs(aes_dd);
2662  
2663  	tasklet_kill(&aes_dd->done_task);
2664  	tasklet_kill(&aes_dd->queue_task);
2665  
2666  	atmel_aes_dma_cleanup(aes_dd);
2667  	atmel_aes_buff_cleanup(aes_dd);
2668  
2669  	clk_unprepare(aes_dd->iclk);
2670  
2671  	return 0;
2672  }
2673  
2674  static struct platform_driver atmel_aes_driver = {
2675  	.probe		= atmel_aes_probe,
2676  	.remove		= atmel_aes_remove,
2677  	.driver		= {
2678  		.name	= "atmel_aes",
2679  		.of_match_table = atmel_aes_dt_ids,
2680  	},
2681  };
2682  
2683  module_platform_driver(atmel_aes_driver);
2684  
2685  MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2686  MODULE_LICENSE("GPL v2");
2687  MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2688