xref: /openbmc/linux/drivers/edac/igen6_edac.c (revision ecc23d0a422a3118fcf6e4f0a46e17a6c2047b02)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Driver for Intel client SoC with integrated memory controller using IBECC
4   *
5   * Copyright (C) 2020 Intel Corporation
6   *
7   * The In-Band ECC (IBECC) IP provides ECC protection to all or specific
8   * regions of the physical memory space. It's used for memory controllers
9   * that don't support the out-of-band ECC which often needs an additional
10   * storage device to each channel for storing ECC data.
11   */
12  
13  #include <linux/module.h>
14  #include <linux/init.h>
15  #include <linux/pci.h>
16  #include <linux/slab.h>
17  #include <linux/irq_work.h>
18  #include <linux/llist.h>
19  #include <linux/genalloc.h>
20  #include <linux/edac.h>
21  #include <linux/bits.h>
22  #include <linux/io.h>
23  #include <asm/mach_traps.h>
24  #include <asm/nmi.h>
25  #include <asm/mce.h>
26  
27  #include "edac_mc.h"
28  #include "edac_module.h"
29  
30  #define IGEN6_REVISION	"v2.5.1"
31  
32  #define EDAC_MOD_STR	"igen6_edac"
33  #define IGEN6_NMI_NAME	"igen6_ibecc"
34  
35  /* Debug macros */
36  #define igen6_printk(level, fmt, arg...)		\
37  	edac_printk(level, "igen6", fmt, ##arg)
38  
39  #define igen6_mc_printk(mci, level, fmt, arg...)	\
40  	edac_mc_chipset_printk(mci, level, "igen6", fmt, ##arg)
41  
42  #define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
43  
44  #define NUM_IMC				2 /* Max memory controllers */
45  #define NUM_CHANNELS			2 /* Max channels */
46  #define NUM_DIMMS			2 /* Max DIMMs per channel */
47  
48  #define _4GB				BIT_ULL(32)
49  
50  /* Size of physical memory */
51  #define TOM_OFFSET			0xa0
52  /* Top of low usable DRAM */
53  #define TOLUD_OFFSET			0xbc
54  /* Capability register C */
55  #define CAPID_C_OFFSET			0xec
56  #define CAPID_C_IBECC			BIT(15)
57  
58  /* Capability register E */
59  #define CAPID_E_OFFSET			0xf0
60  #define CAPID_E_IBECC			BIT(12)
61  
62  /* Error Status */
63  #define ERRSTS_OFFSET			0xc8
64  #define ERRSTS_CE			BIT_ULL(6)
65  #define ERRSTS_UE			BIT_ULL(7)
66  
67  /* Error Command */
68  #define ERRCMD_OFFSET			0xca
69  #define ERRCMD_CE			BIT_ULL(6)
70  #define ERRCMD_UE			BIT_ULL(7)
71  
72  /* IBECC MMIO base address */
73  #define IBECC_BASE			(res_cfg->ibecc_base)
74  #define IBECC_ACTIVATE_OFFSET		IBECC_BASE
75  #define IBECC_ACTIVATE_EN		BIT(0)
76  
77  /* IBECC error log */
78  #define ECC_ERROR_LOG_OFFSET		(IBECC_BASE + res_cfg->ibecc_error_log_offset)
79  #define ECC_ERROR_LOG_CE		BIT_ULL(62)
80  #define ECC_ERROR_LOG_UE		BIT_ULL(63)
81  #define ECC_ERROR_LOG_ADDR_SHIFT	5
82  #define ECC_ERROR_LOG_ADDR(v)		GET_BITFIELD(v, 5, 38)
83  #define ECC_ERROR_LOG_SYND(v)		GET_BITFIELD(v, 46, 61)
84  
85  /* Host MMIO base address */
86  #define MCHBAR_OFFSET			0x48
87  #define MCHBAR_EN			BIT_ULL(0)
88  #define MCHBAR_BASE(v)			(GET_BITFIELD(v, 16, 38) << 16)
89  #define MCHBAR_SIZE			0x10000
90  
91  /* Parameters for the channel decode stage */
92  #define IMC_BASE			(res_cfg->imc_base)
93  #define MAD_INTER_CHANNEL_OFFSET	IMC_BASE
94  #define MAD_INTER_CHANNEL_DDR_TYPE(v)	GET_BITFIELD(v, 0, 2)
95  #define MAD_INTER_CHANNEL_ECHM(v)	GET_BITFIELD(v, 3, 3)
96  #define MAD_INTER_CHANNEL_CH_L_MAP(v)	GET_BITFIELD(v, 4, 4)
97  #define MAD_INTER_CHANNEL_CH_S_SIZE(v)	((u64)GET_BITFIELD(v, 12, 19) << 29)
98  
99  /* Parameters for DRAM decode stage */
100  #define MAD_INTRA_CH0_OFFSET		(IMC_BASE + 4)
101  #define MAD_INTRA_CH_DIMM_L_MAP(v)	GET_BITFIELD(v, 0, 0)
102  
103  /* DIMM characteristics */
104  #define MAD_DIMM_CH0_OFFSET		(IMC_BASE + 0xc)
105  #define MAD_DIMM_CH_DIMM_L_SIZE(v)	((u64)GET_BITFIELD(v, 0, 6) << 29)
106  #define MAD_DIMM_CH_DLW(v)		GET_BITFIELD(v, 7, 8)
107  #define MAD_DIMM_CH_DIMM_S_SIZE(v)	((u64)GET_BITFIELD(v, 16, 22) << 29)
108  #define MAD_DIMM_CH_DSW(v)		GET_BITFIELD(v, 24, 25)
109  
110  /* Hash for memory controller selection */
111  #define MAD_MC_HASH_OFFSET		(IMC_BASE + 0x1b8)
112  #define MAC_MC_HASH_LSB(v)		GET_BITFIELD(v, 1, 3)
113  
114  /* Hash for channel selection */
115  #define CHANNEL_HASH_OFFSET		(IMC_BASE + 0x24)
116  /* Hash for enhanced channel selection */
117  #define CHANNEL_EHASH_OFFSET		(IMC_BASE + 0x28)
118  #define CHANNEL_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
119  #define CHANNEL_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
120  #define CHANNEL_HASH_MODE(v)		GET_BITFIELD(v, 28, 28)
121  
122  /* Parameters for memory slice decode stage */
123  #define MEM_SLICE_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
124  #define MEM_SLICE_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
125  
126  static struct res_config {
127  	bool machine_check;
128  	int num_imc;
129  	u32 imc_base;
130  	u32 cmf_base;
131  	u32 cmf_size;
132  	u32 ms_hash_offset;
133  	u32 ibecc_base;
134  	u32 ibecc_error_log_offset;
135  	bool (*ibecc_available)(struct pci_dev *pdev);
136  	/* Convert error address logged in IBECC to system physical address */
137  	u64 (*err_addr_to_sys_addr)(u64 eaddr, int mc);
138  	/* Convert error address logged in IBECC to integrated memory controller address */
139  	u64 (*err_addr_to_imc_addr)(u64 eaddr, int mc);
140  } *res_cfg;
141  
142  struct igen6_imc {
143  	int mc;
144  	struct mem_ctl_info *mci;
145  	struct pci_dev *pdev;
146  	struct device dev;
147  	void __iomem *window;
148  	u64 size;
149  	u64 ch_s_size;
150  	int ch_l_map;
151  	u64 dimm_s_size[NUM_CHANNELS];
152  	u64 dimm_l_size[NUM_CHANNELS];
153  	int dimm_l_map[NUM_CHANNELS];
154  };
155  
156  static struct igen6_pvt {
157  	struct igen6_imc imc[NUM_IMC];
158  	u64 ms_hash;
159  	u64 ms_s_size;
160  	int ms_l_map;
161  } *igen6_pvt;
162  
163  /* The top of low usable DRAM */
164  static u32 igen6_tolud;
165  /* The size of physical memory */
166  static u64 igen6_tom;
167  
168  struct decoded_addr {
169  	int mc;
170  	u64 imc_addr;
171  	u64 sys_addr;
172  	int channel_idx;
173  	u64 channel_addr;
174  	int sub_channel_idx;
175  	u64 sub_channel_addr;
176  };
177  
178  struct ecclog_node {
179  	struct llist_node llnode;
180  	int mc;
181  	u64 ecclog;
182  };
183  
184  /*
185   * In the NMI handler, the driver uses the lock-less memory allocator
186   * to allocate memory to store the IBECC error logs and links the logs
187   * to the lock-less list. Delay printk() and the work of error reporting
188   * to EDAC core in a worker.
189   */
190  #define ECCLOG_POOL_SIZE	PAGE_SIZE
191  static LLIST_HEAD(ecclog_llist);
192  static struct gen_pool *ecclog_pool;
193  static char ecclog_buf[ECCLOG_POOL_SIZE];
194  static struct irq_work ecclog_irq_work;
195  static struct work_struct ecclog_work;
196  
197  /* Compute die IDs for Elkhart Lake with IBECC */
198  #define DID_EHL_SKU5	0x4514
199  #define DID_EHL_SKU6	0x4528
200  #define DID_EHL_SKU7	0x452a
201  #define DID_EHL_SKU8	0x4516
202  #define DID_EHL_SKU9	0x452c
203  #define DID_EHL_SKU10	0x452e
204  #define DID_EHL_SKU11	0x4532
205  #define DID_EHL_SKU12	0x4518
206  #define DID_EHL_SKU13	0x451a
207  #define DID_EHL_SKU14	0x4534
208  #define DID_EHL_SKU15	0x4536
209  
210  /* Compute die IDs for ICL-NNPI with IBECC */
211  #define DID_ICL_SKU8	0x4581
212  #define DID_ICL_SKU10	0x4585
213  #define DID_ICL_SKU11	0x4589
214  #define DID_ICL_SKU12	0x458d
215  
216  /* Compute die IDs for Tiger Lake with IBECC */
217  #define DID_TGL_SKU	0x9a14
218  
219  /* Compute die IDs for Alder Lake with IBECC */
220  #define DID_ADL_SKU1	0x4601
221  #define DID_ADL_SKU2	0x4602
222  #define DID_ADL_SKU3	0x4621
223  #define DID_ADL_SKU4	0x4641
224  
ehl_ibecc_available(struct pci_dev * pdev)225  static bool ehl_ibecc_available(struct pci_dev *pdev)
226  {
227  	u32 v;
228  
229  	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
230  		return false;
231  
232  	return !!(CAPID_C_IBECC & v);
233  }
234  
ehl_err_addr_to_sys_addr(u64 eaddr,int mc)235  static u64 ehl_err_addr_to_sys_addr(u64 eaddr, int mc)
236  {
237  	return eaddr;
238  }
239  
ehl_err_addr_to_imc_addr(u64 eaddr,int mc)240  static u64 ehl_err_addr_to_imc_addr(u64 eaddr, int mc)
241  {
242  	if (eaddr < igen6_tolud)
243  		return eaddr;
244  
245  	if (igen6_tom <= _4GB)
246  		return eaddr + igen6_tolud - _4GB;
247  
248  	if (eaddr >= igen6_tom)
249  		return eaddr + igen6_tolud - igen6_tom;
250  
251  	return eaddr;
252  }
253  
icl_ibecc_available(struct pci_dev * pdev)254  static bool icl_ibecc_available(struct pci_dev *pdev)
255  {
256  	u32 v;
257  
258  	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
259  		return false;
260  
261  	return !(CAPID_C_IBECC & v) &&
262  		(boot_cpu_data.x86_stepping >= 1);
263  }
264  
tgl_ibecc_available(struct pci_dev * pdev)265  static bool tgl_ibecc_available(struct pci_dev *pdev)
266  {
267  	u32 v;
268  
269  	if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
270  		return false;
271  
272  	return !(CAPID_E_IBECC & v);
273  }
274  
mem_addr_to_sys_addr(u64 maddr)275  static u64 mem_addr_to_sys_addr(u64 maddr)
276  {
277  	if (maddr < igen6_tolud)
278  		return maddr;
279  
280  	if (igen6_tom <= _4GB)
281  		return maddr - igen6_tolud + _4GB;
282  
283  	if (maddr < _4GB)
284  		return maddr - igen6_tolud + igen6_tom;
285  
286  	return maddr;
287  }
288  
mem_slice_hash(u64 addr,u64 mask,u64 hash_init,int intlv_bit)289  static u64 mem_slice_hash(u64 addr, u64 mask, u64 hash_init, int intlv_bit)
290  {
291  	u64 hash_addr = addr & mask, hash = hash_init;
292  	u64 intlv = (addr >> intlv_bit) & 1;
293  	int i;
294  
295  	for (i = 6; i < 20; i++)
296  		hash ^= (hash_addr >> i) & 1;
297  
298  	return hash ^ intlv;
299  }
300  
tgl_err_addr_to_mem_addr(u64 eaddr,int mc)301  static u64 tgl_err_addr_to_mem_addr(u64 eaddr, int mc)
302  {
303  	u64 maddr, hash, mask, ms_s_size;
304  	int intlv_bit;
305  	u32 ms_hash;
306  
307  	ms_s_size = igen6_pvt->ms_s_size;
308  	if (eaddr >= ms_s_size)
309  		return eaddr + ms_s_size;
310  
311  	ms_hash = igen6_pvt->ms_hash;
312  
313  	mask = MEM_SLICE_HASH_MASK(ms_hash);
314  	intlv_bit = MEM_SLICE_HASH_LSB_MASK_BIT(ms_hash) + 6;
315  
316  	maddr = GET_BITFIELD(eaddr, intlv_bit, 63) << (intlv_bit + 1) |
317  		GET_BITFIELD(eaddr, 0, intlv_bit - 1);
318  
319  	hash = mem_slice_hash(maddr, mask, mc, intlv_bit);
320  
321  	return maddr | (hash << intlv_bit);
322  }
323  
tgl_err_addr_to_sys_addr(u64 eaddr,int mc)324  static u64 tgl_err_addr_to_sys_addr(u64 eaddr, int mc)
325  {
326  	u64 maddr = tgl_err_addr_to_mem_addr(eaddr, mc);
327  
328  	return mem_addr_to_sys_addr(maddr);
329  }
330  
tgl_err_addr_to_imc_addr(u64 eaddr,int mc)331  static u64 tgl_err_addr_to_imc_addr(u64 eaddr, int mc)
332  {
333  	return eaddr;
334  }
335  
adl_err_addr_to_sys_addr(u64 eaddr,int mc)336  static u64 adl_err_addr_to_sys_addr(u64 eaddr, int mc)
337  {
338  	return mem_addr_to_sys_addr(eaddr);
339  }
340  
adl_err_addr_to_imc_addr(u64 eaddr,int mc)341  static u64 adl_err_addr_to_imc_addr(u64 eaddr, int mc)
342  {
343  	u64 imc_addr, ms_s_size = igen6_pvt->ms_s_size;
344  	struct igen6_imc *imc = &igen6_pvt->imc[mc];
345  	int intlv_bit;
346  	u32 mc_hash;
347  
348  	if (eaddr >= 2 * ms_s_size)
349  		return eaddr - ms_s_size;
350  
351  	mc_hash = readl(imc->window + MAD_MC_HASH_OFFSET);
352  
353  	intlv_bit = MAC_MC_HASH_LSB(mc_hash) + 6;
354  
355  	imc_addr = GET_BITFIELD(eaddr, intlv_bit + 1, 63) << intlv_bit |
356  		   GET_BITFIELD(eaddr, 0, intlv_bit - 1);
357  
358  	return imc_addr;
359  }
360  
361  static struct res_config ehl_cfg = {
362  	.num_imc		= 1,
363  	.imc_base		= 0x5000,
364  	.ibecc_base		= 0xdc00,
365  	.ibecc_available	= ehl_ibecc_available,
366  	.ibecc_error_log_offset	= 0x170,
367  	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
368  	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
369  };
370  
371  static struct res_config icl_cfg = {
372  	.num_imc		= 1,
373  	.imc_base		= 0x5000,
374  	.ibecc_base		= 0xd800,
375  	.ibecc_error_log_offset	= 0x170,
376  	.ibecc_available	= icl_ibecc_available,
377  	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
378  	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
379  };
380  
381  static struct res_config tgl_cfg = {
382  	.machine_check		= true,
383  	.num_imc		= 2,
384  	.imc_base		= 0x5000,
385  	.cmf_base		= 0x11000,
386  	.cmf_size		= 0x800,
387  	.ms_hash_offset		= 0xac,
388  	.ibecc_base		= 0xd400,
389  	.ibecc_error_log_offset	= 0x170,
390  	.ibecc_available	= tgl_ibecc_available,
391  	.err_addr_to_sys_addr	= tgl_err_addr_to_sys_addr,
392  	.err_addr_to_imc_addr	= tgl_err_addr_to_imc_addr,
393  };
394  
395  static struct res_config adl_cfg = {
396  	.machine_check		= true,
397  	.num_imc		= 2,
398  	.imc_base		= 0xd800,
399  	.ibecc_base		= 0xd400,
400  	.ibecc_error_log_offset	= 0x68,
401  	.ibecc_available	= tgl_ibecc_available,
402  	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
403  	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
404  };
405  
406  static const struct pci_device_id igen6_pci_tbl[] = {
407  	{ PCI_VDEVICE(INTEL, DID_EHL_SKU5), (kernel_ulong_t)&ehl_cfg },
408  	{ PCI_VDEVICE(INTEL, DID_EHL_SKU6), (kernel_ulong_t)&ehl_cfg },
409  	{ PCI_VDEVICE(INTEL, DID_EHL_SKU7), (kernel_ulong_t)&ehl_cfg },
410  	{ PCI_VDEVICE(INTEL, DID_EHL_SKU8), (kernel_ulong_t)&ehl_cfg },
411  	{ PCI_VDEVICE(INTEL, DID_EHL_SKU9), (kernel_ulong_t)&ehl_cfg },
412  	{ PCI_VDEVICE(INTEL, DID_EHL_SKU10), (kernel_ulong_t)&ehl_cfg },
413  	{ PCI_VDEVICE(INTEL, DID_EHL_SKU11), (kernel_ulong_t)&ehl_cfg },
414  	{ PCI_VDEVICE(INTEL, DID_EHL_SKU12), (kernel_ulong_t)&ehl_cfg },
415  	{ PCI_VDEVICE(INTEL, DID_EHL_SKU13), (kernel_ulong_t)&ehl_cfg },
416  	{ PCI_VDEVICE(INTEL, DID_EHL_SKU14), (kernel_ulong_t)&ehl_cfg },
417  	{ PCI_VDEVICE(INTEL, DID_EHL_SKU15), (kernel_ulong_t)&ehl_cfg },
418  	{ PCI_VDEVICE(INTEL, DID_ICL_SKU8), (kernel_ulong_t)&icl_cfg },
419  	{ PCI_VDEVICE(INTEL, DID_ICL_SKU10), (kernel_ulong_t)&icl_cfg },
420  	{ PCI_VDEVICE(INTEL, DID_ICL_SKU11), (kernel_ulong_t)&icl_cfg },
421  	{ PCI_VDEVICE(INTEL, DID_ICL_SKU12), (kernel_ulong_t)&icl_cfg },
422  	{ PCI_VDEVICE(INTEL, DID_TGL_SKU), (kernel_ulong_t)&tgl_cfg },
423  	{ PCI_VDEVICE(INTEL, DID_ADL_SKU1), (kernel_ulong_t)&adl_cfg },
424  	{ PCI_VDEVICE(INTEL, DID_ADL_SKU2), (kernel_ulong_t)&adl_cfg },
425  	{ PCI_VDEVICE(INTEL, DID_ADL_SKU3), (kernel_ulong_t)&adl_cfg },
426  	{ PCI_VDEVICE(INTEL, DID_ADL_SKU4), (kernel_ulong_t)&adl_cfg },
427  	{ },
428  };
429  MODULE_DEVICE_TABLE(pci, igen6_pci_tbl);
430  
get_width(int dimm_l,u32 mad_dimm)431  static enum dev_type get_width(int dimm_l, u32 mad_dimm)
432  {
433  	u32 w = dimm_l ? MAD_DIMM_CH_DLW(mad_dimm) :
434  			 MAD_DIMM_CH_DSW(mad_dimm);
435  
436  	switch (w) {
437  	case 0:
438  		return DEV_X8;
439  	case 1:
440  		return DEV_X16;
441  	case 2:
442  		return DEV_X32;
443  	default:
444  		return DEV_UNKNOWN;
445  	}
446  }
447  
get_memory_type(u32 mad_inter)448  static enum mem_type get_memory_type(u32 mad_inter)
449  {
450  	u32 t = MAD_INTER_CHANNEL_DDR_TYPE(mad_inter);
451  
452  	switch (t) {
453  	case 0:
454  		return MEM_DDR4;
455  	case 1:
456  		return MEM_DDR3;
457  	case 2:
458  		return MEM_LPDDR3;
459  	case 3:
460  		return MEM_LPDDR4;
461  	case 4:
462  		return MEM_WIO2;
463  	default:
464  		return MEM_UNKNOWN;
465  	}
466  }
467  
decode_chan_idx(u64 addr,u64 mask,int intlv_bit)468  static int decode_chan_idx(u64 addr, u64 mask, int intlv_bit)
469  {
470  	u64 hash_addr = addr & mask, hash = 0;
471  	u64 intlv = (addr >> intlv_bit) & 1;
472  	int i;
473  
474  	for (i = 6; i < 20; i++)
475  		hash ^= (hash_addr >> i) & 1;
476  
477  	return (int)hash ^ intlv;
478  }
479  
decode_channel_addr(u64 addr,int intlv_bit)480  static u64 decode_channel_addr(u64 addr, int intlv_bit)
481  {
482  	u64 channel_addr;
483  
484  	/* Remove the interleave bit and shift upper part down to fill gap */
485  	channel_addr  = GET_BITFIELD(addr, intlv_bit + 1, 63) << intlv_bit;
486  	channel_addr |= GET_BITFIELD(addr, 0, intlv_bit - 1);
487  
488  	return channel_addr;
489  }
490  
decode_addr(u64 addr,u32 hash,u64 s_size,int l_map,int * idx,u64 * sub_addr)491  static void decode_addr(u64 addr, u32 hash, u64 s_size, int l_map,
492  			int *idx, u64 *sub_addr)
493  {
494  	int intlv_bit = CHANNEL_HASH_LSB_MASK_BIT(hash) + 6;
495  
496  	if (addr > 2 * s_size) {
497  		*sub_addr = addr - s_size;
498  		*idx = l_map;
499  		return;
500  	}
501  
502  	if (CHANNEL_HASH_MODE(hash)) {
503  		*sub_addr = decode_channel_addr(addr, intlv_bit);
504  		*idx = decode_chan_idx(addr, CHANNEL_HASH_MASK(hash), intlv_bit);
505  	} else {
506  		*sub_addr = decode_channel_addr(addr, 6);
507  		*idx = GET_BITFIELD(addr, 6, 6);
508  	}
509  }
510  
igen6_decode(struct decoded_addr * res)511  static int igen6_decode(struct decoded_addr *res)
512  {
513  	struct igen6_imc *imc = &igen6_pvt->imc[res->mc];
514  	u64 addr = res->imc_addr, sub_addr, s_size;
515  	int idx, l_map;
516  	u32 hash;
517  
518  	if (addr >= igen6_tom) {
519  		edac_dbg(0, "Address 0x%llx out of range\n", addr);
520  		return -EINVAL;
521  	}
522  
523  	/* Decode channel */
524  	hash   = readl(imc->window + CHANNEL_HASH_OFFSET);
525  	s_size = imc->ch_s_size;
526  	l_map  = imc->ch_l_map;
527  	decode_addr(addr, hash, s_size, l_map, &idx, &sub_addr);
528  	res->channel_idx  = idx;
529  	res->channel_addr = sub_addr;
530  
531  	/* Decode sub-channel/DIMM */
532  	hash   = readl(imc->window + CHANNEL_EHASH_OFFSET);
533  	s_size = imc->dimm_s_size[idx];
534  	l_map  = imc->dimm_l_map[idx];
535  	decode_addr(res->channel_addr, hash, s_size, l_map, &idx, &sub_addr);
536  	res->sub_channel_idx  = idx;
537  	res->sub_channel_addr = sub_addr;
538  
539  	return 0;
540  }
541  
igen6_output_error(struct decoded_addr * res,struct mem_ctl_info * mci,u64 ecclog)542  static void igen6_output_error(struct decoded_addr *res,
543  			       struct mem_ctl_info *mci, u64 ecclog)
544  {
545  	enum hw_event_mc_err_type type = ecclog & ECC_ERROR_LOG_UE ?
546  					 HW_EVENT_ERR_UNCORRECTED :
547  					 HW_EVENT_ERR_CORRECTED;
548  
549  	edac_mc_handle_error(type, mci, 1,
550  			     res->sys_addr >> PAGE_SHIFT,
551  			     res->sys_addr & ~PAGE_MASK,
552  			     ECC_ERROR_LOG_SYND(ecclog),
553  			     res->channel_idx, res->sub_channel_idx,
554  			     -1, "", "");
555  }
556  
ecclog_gen_pool_create(void)557  static struct gen_pool *ecclog_gen_pool_create(void)
558  {
559  	struct gen_pool *pool;
560  
561  	pool = gen_pool_create(ilog2(sizeof(struct ecclog_node)), -1);
562  	if (!pool)
563  		return NULL;
564  
565  	if (gen_pool_add(pool, (unsigned long)ecclog_buf, ECCLOG_POOL_SIZE, -1)) {
566  		gen_pool_destroy(pool);
567  		return NULL;
568  	}
569  
570  	return pool;
571  }
572  
ecclog_gen_pool_add(int mc,u64 ecclog)573  static int ecclog_gen_pool_add(int mc, u64 ecclog)
574  {
575  	struct ecclog_node *node;
576  
577  	node = (void *)gen_pool_alloc(ecclog_pool, sizeof(*node));
578  	if (!node)
579  		return -ENOMEM;
580  
581  	node->mc = mc;
582  	node->ecclog = ecclog;
583  	llist_add(&node->llnode, &ecclog_llist);
584  
585  	return 0;
586  }
587  
588  /*
589   * Either the memory-mapped I/O status register ECC_ERROR_LOG or the PCI
590   * configuration space status register ERRSTS can indicate whether a
591   * correctable error or an uncorrectable error occurred. We only use the
592   * ECC_ERROR_LOG register to check error type, but need to clear both
593   * registers to enable future error events.
594   */
ecclog_read_and_clear(struct igen6_imc * imc)595  static u64 ecclog_read_and_clear(struct igen6_imc *imc)
596  {
597  	u64 ecclog = readq(imc->window + ECC_ERROR_LOG_OFFSET);
598  
599  	if (ecclog & (ECC_ERROR_LOG_CE | ECC_ERROR_LOG_UE)) {
600  		/* Clear CE/UE bits by writing 1s */
601  		writeq(ecclog, imc->window + ECC_ERROR_LOG_OFFSET);
602  		return ecclog;
603  	}
604  
605  	return 0;
606  }
607  
errsts_clear(struct igen6_imc * imc)608  static void errsts_clear(struct igen6_imc *imc)
609  {
610  	u16 errsts;
611  
612  	if (pci_read_config_word(imc->pdev, ERRSTS_OFFSET, &errsts)) {
613  		igen6_printk(KERN_ERR, "Failed to read ERRSTS\n");
614  		return;
615  	}
616  
617  	/* Clear CE/UE bits by writing 1s */
618  	if (errsts & (ERRSTS_CE | ERRSTS_UE))
619  		pci_write_config_word(imc->pdev, ERRSTS_OFFSET, errsts);
620  }
621  
errcmd_enable_error_reporting(bool enable)622  static int errcmd_enable_error_reporting(bool enable)
623  {
624  	struct igen6_imc *imc = &igen6_pvt->imc[0];
625  	u16 errcmd;
626  	int rc;
627  
628  	rc = pci_read_config_word(imc->pdev, ERRCMD_OFFSET, &errcmd);
629  	if (rc)
630  		return pcibios_err_to_errno(rc);
631  
632  	if (enable)
633  		errcmd |= ERRCMD_CE | ERRSTS_UE;
634  	else
635  		errcmd &= ~(ERRCMD_CE | ERRSTS_UE);
636  
637  	rc = pci_write_config_word(imc->pdev, ERRCMD_OFFSET, errcmd);
638  	if (rc)
639  		return pcibios_err_to_errno(rc);
640  
641  	return 0;
642  }
643  
ecclog_handler(void)644  static int ecclog_handler(void)
645  {
646  	struct igen6_imc *imc;
647  	int i, n = 0;
648  	u64 ecclog;
649  
650  	for (i = 0; i < res_cfg->num_imc; i++) {
651  		imc = &igen6_pvt->imc[i];
652  
653  		/* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
654  
655  		ecclog = ecclog_read_and_clear(imc);
656  		if (!ecclog)
657  			continue;
658  
659  		if (!ecclog_gen_pool_add(i, ecclog))
660  			irq_work_queue(&ecclog_irq_work);
661  
662  		n++;
663  	}
664  
665  	return n;
666  }
667  
ecclog_work_cb(struct work_struct * work)668  static void ecclog_work_cb(struct work_struct *work)
669  {
670  	struct ecclog_node *node, *tmp;
671  	struct mem_ctl_info *mci;
672  	struct llist_node *head;
673  	struct decoded_addr res;
674  	u64 eaddr;
675  
676  	head = llist_del_all(&ecclog_llist);
677  	if (!head)
678  		return;
679  
680  	llist_for_each_entry_safe(node, tmp, head, llnode) {
681  		memset(&res, 0, sizeof(res));
682  		eaddr = ECC_ERROR_LOG_ADDR(node->ecclog) <<
683  			ECC_ERROR_LOG_ADDR_SHIFT;
684  		res.mc	     = node->mc;
685  		res.sys_addr = res_cfg->err_addr_to_sys_addr(eaddr, res.mc);
686  		res.imc_addr = res_cfg->err_addr_to_imc_addr(eaddr, res.mc);
687  
688  		mci = igen6_pvt->imc[res.mc].mci;
689  
690  		edac_dbg(2, "MC %d, ecclog = 0x%llx\n", node->mc, node->ecclog);
691  		igen6_mc_printk(mci, KERN_DEBUG, "HANDLING IBECC MEMORY ERROR\n");
692  		igen6_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", res.sys_addr);
693  
694  		if (!igen6_decode(&res))
695  			igen6_output_error(&res, mci, node->ecclog);
696  
697  		gen_pool_free(ecclog_pool, (unsigned long)node, sizeof(*node));
698  	}
699  }
700  
ecclog_irq_work_cb(struct irq_work * irq_work)701  static void ecclog_irq_work_cb(struct irq_work *irq_work)
702  {
703  	int i;
704  
705  	for (i = 0; i < res_cfg->num_imc; i++)
706  		errsts_clear(&igen6_pvt->imc[i]);
707  
708  	if (!llist_empty(&ecclog_llist))
709  		schedule_work(&ecclog_work);
710  }
711  
ecclog_nmi_handler(unsigned int cmd,struct pt_regs * regs)712  static int ecclog_nmi_handler(unsigned int cmd, struct pt_regs *regs)
713  {
714  	unsigned char reason;
715  
716  	if (!ecclog_handler())
717  		return NMI_DONE;
718  
719  	/*
720  	 * Both In-Band ECC correctable error and uncorrectable error are
721  	 * reported by SERR# NMI. The NMI generic code (see pci_serr_error())
722  	 * doesn't clear the bit NMI_REASON_CLEAR_SERR (in port 0x61) to
723  	 * re-enable the SERR# NMI after NMI handling. So clear this bit here
724  	 * to re-enable SERR# NMI for receiving future In-Band ECC errors.
725  	 */
726  	reason  = x86_platform.get_nmi_reason() & NMI_REASON_CLEAR_MASK;
727  	reason |= NMI_REASON_CLEAR_SERR;
728  	outb(reason, NMI_REASON_PORT);
729  	reason &= ~NMI_REASON_CLEAR_SERR;
730  	outb(reason, NMI_REASON_PORT);
731  
732  	return NMI_HANDLED;
733  }
734  
ecclog_mce_handler(struct notifier_block * nb,unsigned long val,void * data)735  static int ecclog_mce_handler(struct notifier_block *nb, unsigned long val,
736  			      void *data)
737  {
738  	struct mce *mce = (struct mce *)data;
739  	char *type;
740  
741  	if (mce->kflags & MCE_HANDLED_CEC)
742  		return NOTIFY_DONE;
743  
744  	/*
745  	 * Ignore unless this is a memory related error.
746  	 * We don't check the bit MCI_STATUS_ADDRV of MCi_STATUS here,
747  	 * since this bit isn't set on some CPU (e.g., Tiger Lake UP3).
748  	 */
749  	if ((mce->status & 0xefff) >> 7 != 1)
750  		return NOTIFY_DONE;
751  
752  	if (mce->mcgstatus & MCG_STATUS_MCIP)
753  		type = "Exception";
754  	else
755  		type = "Event";
756  
757  	edac_dbg(0, "CPU %d: Machine Check %s: 0x%llx Bank %d: 0x%llx\n",
758  		 mce->extcpu, type, mce->mcgstatus,
759  		 mce->bank, mce->status);
760  	edac_dbg(0, "TSC 0x%llx\n", mce->tsc);
761  	edac_dbg(0, "ADDR 0x%llx\n", mce->addr);
762  	edac_dbg(0, "MISC 0x%llx\n", mce->misc);
763  	edac_dbg(0, "PROCESSOR %u:0x%x TIME %llu SOCKET %u APIC 0x%x\n",
764  		 mce->cpuvendor, mce->cpuid, mce->time,
765  		 mce->socketid, mce->apicid);
766  	/*
767  	 * We just use the Machine Check for the memory error notification.
768  	 * Each memory controller is associated with an IBECC instance.
769  	 * Directly read and clear the error information(error address and
770  	 * error type) on all the IBECC instances so that we know on which
771  	 * memory controller the memory error(s) occurred.
772  	 */
773  	if (!ecclog_handler())
774  		return NOTIFY_DONE;
775  
776  	mce->kflags |= MCE_HANDLED_EDAC;
777  
778  	return NOTIFY_DONE;
779  }
780  
781  static struct notifier_block ecclog_mce_dec = {
782  	.notifier_call	= ecclog_mce_handler,
783  	.priority	= MCE_PRIO_EDAC,
784  };
785  
igen6_check_ecc(struct igen6_imc * imc)786  static bool igen6_check_ecc(struct igen6_imc *imc)
787  {
788  	u32 activate = readl(imc->window + IBECC_ACTIVATE_OFFSET);
789  
790  	return !!(activate & IBECC_ACTIVATE_EN);
791  }
792  
igen6_get_dimm_config(struct mem_ctl_info * mci)793  static int igen6_get_dimm_config(struct mem_ctl_info *mci)
794  {
795  	struct igen6_imc *imc = mci->pvt_info;
796  	u32 mad_inter, mad_intra, mad_dimm;
797  	int i, j, ndimms, mc = imc->mc;
798  	struct dimm_info *dimm;
799  	enum mem_type mtype;
800  	enum dev_type dtype;
801  	u64 dsize;
802  	bool ecc;
803  
804  	edac_dbg(2, "\n");
805  
806  	mad_inter = readl(imc->window + MAD_INTER_CHANNEL_OFFSET);
807  	mtype = get_memory_type(mad_inter);
808  	ecc = igen6_check_ecc(imc);
809  	imc->ch_s_size = MAD_INTER_CHANNEL_CH_S_SIZE(mad_inter);
810  	imc->ch_l_map  = MAD_INTER_CHANNEL_CH_L_MAP(mad_inter);
811  
812  	for (i = 0; i < NUM_CHANNELS; i++) {
813  		mad_intra = readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4);
814  		mad_dimm  = readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4);
815  
816  		imc->dimm_l_size[i] = MAD_DIMM_CH_DIMM_L_SIZE(mad_dimm);
817  		imc->dimm_s_size[i] = MAD_DIMM_CH_DIMM_S_SIZE(mad_dimm);
818  		imc->dimm_l_map[i]  = MAD_INTRA_CH_DIMM_L_MAP(mad_intra);
819  		imc->size += imc->dimm_s_size[i];
820  		imc->size += imc->dimm_l_size[i];
821  		ndimms = 0;
822  
823  		for (j = 0; j < NUM_DIMMS; j++) {
824  			dimm = edac_get_dimm(mci, i, j, 0);
825  
826  			if (j ^ imc->dimm_l_map[i]) {
827  				dtype = get_width(0, mad_dimm);
828  				dsize = imc->dimm_s_size[i];
829  			} else {
830  				dtype = get_width(1, mad_dimm);
831  				dsize = imc->dimm_l_size[i];
832  			}
833  
834  			if (!dsize)
835  				continue;
836  
837  			dimm->grain = 64;
838  			dimm->mtype = mtype;
839  			dimm->dtype = dtype;
840  			dimm->nr_pages  = MiB_TO_PAGES(dsize >> 20);
841  			dimm->edac_mode = EDAC_SECDED;
842  			snprintf(dimm->label, sizeof(dimm->label),
843  				 "MC#%d_Chan#%d_DIMM#%d", mc, i, j);
844  			edac_dbg(0, "MC %d, Channel %d, DIMM %d, Size %llu MiB (%u pages)\n",
845  				 mc, i, j, dsize >> 20, dimm->nr_pages);
846  
847  			ndimms++;
848  		}
849  
850  		if (ndimms && !ecc) {
851  			igen6_printk(KERN_ERR, "MC%d In-Band ECC is disabled\n", mc);
852  			return -ENODEV;
853  		}
854  	}
855  
856  	edac_dbg(0, "MC %d, total size %llu MiB\n", mc, imc->size >> 20);
857  
858  	return 0;
859  }
860  
861  #ifdef CONFIG_EDAC_DEBUG
862  /* Top of upper usable DRAM */
863  static u64 igen6_touud;
864  #define TOUUD_OFFSET	0xa8
865  
igen6_reg_dump(struct igen6_imc * imc)866  static void igen6_reg_dump(struct igen6_imc *imc)
867  {
868  	int i;
869  
870  	edac_dbg(2, "CHANNEL_HASH     : 0x%x\n",
871  		 readl(imc->window + CHANNEL_HASH_OFFSET));
872  	edac_dbg(2, "CHANNEL_EHASH    : 0x%x\n",
873  		 readl(imc->window + CHANNEL_EHASH_OFFSET));
874  	edac_dbg(2, "MAD_INTER_CHANNEL: 0x%x\n",
875  		 readl(imc->window + MAD_INTER_CHANNEL_OFFSET));
876  	edac_dbg(2, "ECC_ERROR_LOG    : 0x%llx\n",
877  		 readq(imc->window + ECC_ERROR_LOG_OFFSET));
878  
879  	for (i = 0; i < NUM_CHANNELS; i++) {
880  		edac_dbg(2, "MAD_INTRA_CH%d    : 0x%x\n", i,
881  			 readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4));
882  		edac_dbg(2, "MAD_DIMM_CH%d     : 0x%x\n", i,
883  			 readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4));
884  	}
885  	edac_dbg(2, "TOLUD            : 0x%x", igen6_tolud);
886  	edac_dbg(2, "TOUUD            : 0x%llx", igen6_touud);
887  	edac_dbg(2, "TOM              : 0x%llx", igen6_tom);
888  }
889  
890  static struct dentry *igen6_test;
891  
debugfs_u64_set(void * data,u64 val)892  static int debugfs_u64_set(void *data, u64 val)
893  {
894  	u64 ecclog;
895  
896  	if ((val >= igen6_tolud && val < _4GB) || val >= igen6_touud) {
897  		edac_dbg(0, "Address 0x%llx out of range\n", val);
898  		return 0;
899  	}
900  
901  	pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
902  
903  	val  >>= ECC_ERROR_LOG_ADDR_SHIFT;
904  	ecclog = (val << ECC_ERROR_LOG_ADDR_SHIFT) | ECC_ERROR_LOG_CE;
905  
906  	if (!ecclog_gen_pool_add(0, ecclog))
907  		irq_work_queue(&ecclog_irq_work);
908  
909  	return 0;
910  }
911  DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
912  
igen6_debug_setup(void)913  static void igen6_debug_setup(void)
914  {
915  	igen6_test = edac_debugfs_create_dir("igen6_test");
916  	if (!igen6_test)
917  		return;
918  
919  	if (!edac_debugfs_create_file("addr", 0200, igen6_test,
920  				      NULL, &fops_u64_wo)) {
921  		debugfs_remove(igen6_test);
922  		igen6_test = NULL;
923  	}
924  }
925  
igen6_debug_teardown(void)926  static void igen6_debug_teardown(void)
927  {
928  	debugfs_remove_recursive(igen6_test);
929  }
930  #else
igen6_reg_dump(struct igen6_imc * imc)931  static void igen6_reg_dump(struct igen6_imc *imc) {}
igen6_debug_setup(void)932  static void igen6_debug_setup(void) {}
igen6_debug_teardown(void)933  static void igen6_debug_teardown(void) {}
934  #endif
935  
igen6_pci_setup(struct pci_dev * pdev,u64 * mchbar)936  static int igen6_pci_setup(struct pci_dev *pdev, u64 *mchbar)
937  {
938  	union  {
939  		u64 v;
940  		struct {
941  			u32 v_lo;
942  			u32 v_hi;
943  		};
944  	} u;
945  
946  	edac_dbg(2, "\n");
947  
948  	if (!res_cfg->ibecc_available(pdev)) {
949  		edac_dbg(2, "No In-Band ECC IP\n");
950  		goto fail;
951  	}
952  
953  	if (pci_read_config_dword(pdev, TOLUD_OFFSET, &igen6_tolud)) {
954  		igen6_printk(KERN_ERR, "Failed to read TOLUD\n");
955  		goto fail;
956  	}
957  
958  	igen6_tolud &= GENMASK(31, 20);
959  
960  	if (pci_read_config_dword(pdev, TOM_OFFSET, &u.v_lo)) {
961  		igen6_printk(KERN_ERR, "Failed to read lower TOM\n");
962  		goto fail;
963  	}
964  
965  	if (pci_read_config_dword(pdev, TOM_OFFSET + 4, &u.v_hi)) {
966  		igen6_printk(KERN_ERR, "Failed to read upper TOM\n");
967  		goto fail;
968  	}
969  
970  	igen6_tom = u.v & GENMASK_ULL(38, 20);
971  
972  	if (pci_read_config_dword(pdev, MCHBAR_OFFSET, &u.v_lo)) {
973  		igen6_printk(KERN_ERR, "Failed to read lower MCHBAR\n");
974  		goto fail;
975  	}
976  
977  	if (pci_read_config_dword(pdev, MCHBAR_OFFSET + 4, &u.v_hi)) {
978  		igen6_printk(KERN_ERR, "Failed to read upper MCHBAR\n");
979  		goto fail;
980  	}
981  
982  	if (!(u.v & MCHBAR_EN)) {
983  		igen6_printk(KERN_ERR, "MCHBAR is disabled\n");
984  		goto fail;
985  	}
986  
987  	*mchbar = MCHBAR_BASE(u.v);
988  
989  #ifdef CONFIG_EDAC_DEBUG
990  	if (pci_read_config_dword(pdev, TOUUD_OFFSET, &u.v_lo))
991  		edac_dbg(2, "Failed to read lower TOUUD\n");
992  	else if (pci_read_config_dword(pdev, TOUUD_OFFSET + 4, &u.v_hi))
993  		edac_dbg(2, "Failed to read upper TOUUD\n");
994  	else
995  		igen6_touud = u.v & GENMASK_ULL(38, 20);
996  #endif
997  
998  	return 0;
999  fail:
1000  	return -ENODEV;
1001  }
1002  
igen6_register_mci(int mc,u64 mchbar,struct pci_dev * pdev)1003  static int igen6_register_mci(int mc, u64 mchbar, struct pci_dev *pdev)
1004  {
1005  	struct edac_mc_layer layers[2];
1006  	struct mem_ctl_info *mci;
1007  	struct igen6_imc *imc;
1008  	void __iomem *window;
1009  	int rc;
1010  
1011  	edac_dbg(2, "\n");
1012  
1013  	mchbar += mc * MCHBAR_SIZE;
1014  	window = ioremap(mchbar, MCHBAR_SIZE);
1015  	if (!window) {
1016  		igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
1017  		return -ENODEV;
1018  	}
1019  
1020  	layers[0].type = EDAC_MC_LAYER_CHANNEL;
1021  	layers[0].size = NUM_CHANNELS;
1022  	layers[0].is_virt_csrow = false;
1023  	layers[1].type = EDAC_MC_LAYER_SLOT;
1024  	layers[1].size = NUM_DIMMS;
1025  	layers[1].is_virt_csrow = true;
1026  
1027  	mci = edac_mc_alloc(mc, ARRAY_SIZE(layers), layers, 0);
1028  	if (!mci) {
1029  		rc = -ENOMEM;
1030  		goto fail;
1031  	}
1032  
1033  	mci->ctl_name = kasprintf(GFP_KERNEL, "Intel_client_SoC MC#%d", mc);
1034  	if (!mci->ctl_name) {
1035  		rc = -ENOMEM;
1036  		goto fail2;
1037  	}
1038  
1039  	mci->mtype_cap = MEM_FLAG_LPDDR4 | MEM_FLAG_DDR4;
1040  	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
1041  	mci->edac_cap = EDAC_FLAG_SECDED;
1042  	mci->mod_name = EDAC_MOD_STR;
1043  	mci->dev_name = pci_name(pdev);
1044  	mci->pvt_info = &igen6_pvt->imc[mc];
1045  
1046  	imc = mci->pvt_info;
1047  	device_initialize(&imc->dev);
1048  	/*
1049  	 * EDAC core uses mci->pdev(pointer of structure device) as
1050  	 * memory controller ID. The client SoCs attach one or more
1051  	 * memory controllers to single pci_dev (single pci_dev->dev
1052  	 * can be for multiple memory controllers).
1053  	 *
1054  	 * To make mci->pdev unique, assign pci_dev->dev to mci->pdev
1055  	 * for the first memory controller and assign a unique imc->dev
1056  	 * to mci->pdev for each non-first memory controller.
1057  	 */
1058  	mci->pdev = mc ? &imc->dev : &pdev->dev;
1059  	imc->mc	= mc;
1060  	imc->pdev = pdev;
1061  	imc->window = window;
1062  
1063  	igen6_reg_dump(imc);
1064  
1065  	rc = igen6_get_dimm_config(mci);
1066  	if (rc)
1067  		goto fail3;
1068  
1069  	rc = edac_mc_add_mc(mci);
1070  	if (rc) {
1071  		igen6_printk(KERN_ERR, "Failed to register mci#%d\n", mc);
1072  		goto fail3;
1073  	}
1074  
1075  	imc->mci = mci;
1076  	return 0;
1077  fail3:
1078  	mci->pvt_info = NULL;
1079  	kfree(mci->ctl_name);
1080  fail2:
1081  	edac_mc_free(mci);
1082  fail:
1083  	iounmap(window);
1084  	return rc;
1085  }
1086  
igen6_unregister_mcis(void)1087  static void igen6_unregister_mcis(void)
1088  {
1089  	struct mem_ctl_info *mci;
1090  	struct igen6_imc *imc;
1091  	int i;
1092  
1093  	edac_dbg(2, "\n");
1094  
1095  	for (i = 0; i < res_cfg->num_imc; i++) {
1096  		imc = &igen6_pvt->imc[i];
1097  		mci = imc->mci;
1098  		if (!mci)
1099  			continue;
1100  
1101  		edac_mc_del_mc(mci->pdev);
1102  		kfree(mci->ctl_name);
1103  		mci->pvt_info = NULL;
1104  		edac_mc_free(mci);
1105  		iounmap(imc->window);
1106  	}
1107  }
1108  
igen6_mem_slice_setup(u64 mchbar)1109  static int igen6_mem_slice_setup(u64 mchbar)
1110  {
1111  	struct igen6_imc *imc = &igen6_pvt->imc[0];
1112  	u64 base = mchbar + res_cfg->cmf_base;
1113  	u32 offset = res_cfg->ms_hash_offset;
1114  	u32 size = res_cfg->cmf_size;
1115  	u64 ms_s_size, ms_hash;
1116  	void __iomem *cmf;
1117  	int ms_l_map;
1118  
1119  	edac_dbg(2, "\n");
1120  
1121  	if (imc[0].size < imc[1].size) {
1122  		ms_s_size = imc[0].size;
1123  		ms_l_map  = 1;
1124  	} else {
1125  		ms_s_size = imc[1].size;
1126  		ms_l_map  = 0;
1127  	}
1128  
1129  	igen6_pvt->ms_s_size = ms_s_size;
1130  	igen6_pvt->ms_l_map  = ms_l_map;
1131  
1132  	edac_dbg(0, "ms_s_size: %llu MiB, ms_l_map %d\n",
1133  		 ms_s_size >> 20, ms_l_map);
1134  
1135  	if (!size)
1136  		return 0;
1137  
1138  	cmf = ioremap(base, size);
1139  	if (!cmf) {
1140  		igen6_printk(KERN_ERR, "Failed to ioremap cmf 0x%llx\n", base);
1141  		return -ENODEV;
1142  	}
1143  
1144  	ms_hash = readq(cmf + offset);
1145  	igen6_pvt->ms_hash = ms_hash;
1146  
1147  	edac_dbg(0, "MEM_SLICE_HASH: 0x%llx\n", ms_hash);
1148  
1149  	iounmap(cmf);
1150  
1151  	return 0;
1152  }
1153  
register_err_handler(void)1154  static int register_err_handler(void)
1155  {
1156  	int rc;
1157  
1158  	if (res_cfg->machine_check) {
1159  		mce_register_decode_chain(&ecclog_mce_dec);
1160  		return 0;
1161  	}
1162  
1163  	rc = register_nmi_handler(NMI_SERR, ecclog_nmi_handler,
1164  				  0, IGEN6_NMI_NAME);
1165  	if (rc) {
1166  		igen6_printk(KERN_ERR, "Failed to register NMI handler\n");
1167  		return rc;
1168  	}
1169  
1170  	return 0;
1171  }
1172  
unregister_err_handler(void)1173  static void unregister_err_handler(void)
1174  {
1175  	if (res_cfg->machine_check) {
1176  		mce_unregister_decode_chain(&ecclog_mce_dec);
1177  		return;
1178  	}
1179  
1180  	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1181  }
1182  
igen6_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1183  static int igen6_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1184  {
1185  	u64 mchbar;
1186  	int i, rc;
1187  
1188  	edac_dbg(2, "\n");
1189  
1190  	igen6_pvt = kzalloc(sizeof(*igen6_pvt), GFP_KERNEL);
1191  	if (!igen6_pvt)
1192  		return -ENOMEM;
1193  
1194  	res_cfg = (struct res_config *)ent->driver_data;
1195  
1196  	rc = igen6_pci_setup(pdev, &mchbar);
1197  	if (rc)
1198  		goto fail;
1199  
1200  	for (i = 0; i < res_cfg->num_imc; i++) {
1201  		rc = igen6_register_mci(i, mchbar, pdev);
1202  		if (rc)
1203  			goto fail2;
1204  	}
1205  
1206  	if (res_cfg->num_imc > 1) {
1207  		rc = igen6_mem_slice_setup(mchbar);
1208  		if (rc)
1209  			goto fail2;
1210  	}
1211  
1212  	ecclog_pool = ecclog_gen_pool_create();
1213  	if (!ecclog_pool) {
1214  		rc = -ENOMEM;
1215  		goto fail2;
1216  	}
1217  
1218  	INIT_WORK(&ecclog_work, ecclog_work_cb);
1219  	init_irq_work(&ecclog_irq_work, ecclog_irq_work_cb);
1220  
1221  	rc = register_err_handler();
1222  	if (rc)
1223  		goto fail3;
1224  
1225  	/* Enable error reporting */
1226  	rc = errcmd_enable_error_reporting(true);
1227  	if (rc) {
1228  		igen6_printk(KERN_ERR, "Failed to enable error reporting\n");
1229  		goto fail4;
1230  	}
1231  
1232  	/* Check if any pending errors before/during the registration of the error handler */
1233  	ecclog_handler();
1234  
1235  	igen6_debug_setup();
1236  	return 0;
1237  fail4:
1238  	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1239  fail3:
1240  	gen_pool_destroy(ecclog_pool);
1241  fail2:
1242  	igen6_unregister_mcis();
1243  fail:
1244  	kfree(igen6_pvt);
1245  	return rc;
1246  }
1247  
igen6_remove(struct pci_dev * pdev)1248  static void igen6_remove(struct pci_dev *pdev)
1249  {
1250  	edac_dbg(2, "\n");
1251  
1252  	igen6_debug_teardown();
1253  	errcmd_enable_error_reporting(false);
1254  	unregister_err_handler();
1255  	irq_work_sync(&ecclog_irq_work);
1256  	flush_work(&ecclog_work);
1257  	gen_pool_destroy(ecclog_pool);
1258  	igen6_unregister_mcis();
1259  	kfree(igen6_pvt);
1260  }
1261  
1262  static struct pci_driver igen6_driver = {
1263  	.name     = EDAC_MOD_STR,
1264  	.probe    = igen6_probe,
1265  	.remove   = igen6_remove,
1266  	.id_table = igen6_pci_tbl,
1267  };
1268  
igen6_init(void)1269  static int __init igen6_init(void)
1270  {
1271  	const char *owner;
1272  	int rc;
1273  
1274  	edac_dbg(2, "\n");
1275  
1276  	if (ghes_get_devices())
1277  		return -EBUSY;
1278  
1279  	owner = edac_get_owner();
1280  	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
1281  		return -EBUSY;
1282  
1283  	edac_op_state = EDAC_OPSTATE_NMI;
1284  
1285  	rc = pci_register_driver(&igen6_driver);
1286  	if (rc)
1287  		return rc;
1288  
1289  	igen6_printk(KERN_INFO, "%s\n", IGEN6_REVISION);
1290  
1291  	return 0;
1292  }
1293  
igen6_exit(void)1294  static void __exit igen6_exit(void)
1295  {
1296  	edac_dbg(2, "\n");
1297  
1298  	pci_unregister_driver(&igen6_driver);
1299  }
1300  
1301  module_init(igen6_init);
1302  module_exit(igen6_exit);
1303  
1304  MODULE_LICENSE("GPL v2");
1305  MODULE_AUTHOR("Qiuxu Zhuo");
1306  MODULE_DESCRIPTION("MC Driver for Intel client SoC using In-Band ECC");
1307