xref: /openbmc/linux/include/rdma/ib_verbs.h (revision 0f9b4c3ca5fdf3e177266ef994071b1a03f07318)
1  /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2  /*
3   * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
4   * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
5   * Copyright (c) 2004, 2020 Intel Corporation.  All rights reserved.
6   * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
7   * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
8   * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9   * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
10   */
11  
12  #ifndef IB_VERBS_H
13  #define IB_VERBS_H
14  
15  #include <linux/ethtool.h>
16  #include <linux/types.h>
17  #include <linux/device.h>
18  #include <linux/dma-mapping.h>
19  #include <linux/kref.h>
20  #include <linux/list.h>
21  #include <linux/rwsem.h>
22  #include <linux/workqueue.h>
23  #include <linux/irq_poll.h>
24  #include <uapi/linux/if_ether.h>
25  #include <net/ipv6.h>
26  #include <net/ip.h>
27  #include <linux/string.h>
28  #include <linux/slab.h>
29  #include <linux/netdevice.h>
30  #include <linux/refcount.h>
31  #include <linux/if_link.h>
32  #include <linux/atomic.h>
33  #include <linux/mmu_notifier.h>
34  #include <linux/uaccess.h>
35  #include <linux/cgroup_rdma.h>
36  #include <linux/irqflags.h>
37  #include <linux/preempt.h>
38  #include <linux/dim.h>
39  #include <uapi/rdma/ib_user_verbs.h>
40  #include <rdma/rdma_counter.h>
41  #include <rdma/restrack.h>
42  #include <rdma/signature.h>
43  #include <uapi/rdma/rdma_user_ioctl.h>
44  #include <uapi/rdma/ib_user_ioctl_verbs.h>
45  
46  #define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
47  
48  struct ib_umem_odp;
49  struct ib_uqp_object;
50  struct ib_usrq_object;
51  struct ib_uwq_object;
52  struct rdma_cm_id;
53  struct ib_port;
54  struct hw_stats_device_data;
55  
56  extern struct workqueue_struct *ib_wq;
57  extern struct workqueue_struct *ib_comp_wq;
58  extern struct workqueue_struct *ib_comp_unbound_wq;
59  
60  struct ib_ucq_object;
61  
62  __printf(3, 4) __cold
63  void ibdev_printk(const char *level, const struct ib_device *ibdev,
64  		  const char *format, ...);
65  __printf(2, 3) __cold
66  void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
67  __printf(2, 3) __cold
68  void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
69  __printf(2, 3) __cold
70  void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
71  __printf(2, 3) __cold
72  void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
73  __printf(2, 3) __cold
74  void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
75  __printf(2, 3) __cold
76  void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
77  __printf(2, 3) __cold
78  void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
79  
80  #if defined(CONFIG_DYNAMIC_DEBUG) || \
81  	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
82  #define ibdev_dbg(__dev, format, args...)                       \
83  	dynamic_ibdev_dbg(__dev, format, ##args)
84  #else
85  __printf(2, 3) __cold
86  static inline
ibdev_dbg(const struct ib_device * ibdev,const char * format,...)87  void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
88  #endif
89  
90  #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
91  do {                                                                    \
92  	static DEFINE_RATELIMIT_STATE(_rs,                              \
93  				      DEFAULT_RATELIMIT_INTERVAL,       \
94  				      DEFAULT_RATELIMIT_BURST);         \
95  	if (__ratelimit(&_rs))                                          \
96  		ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
97  } while (0)
98  
99  #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
100  	ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
101  #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
102  	ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
103  #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
104  	ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
105  #define ibdev_err_ratelimited(ibdev, fmt, ...) \
106  	ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
107  #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
108  	ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
109  #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
110  	ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
111  #define ibdev_info_ratelimited(ibdev, fmt, ...) \
112  	ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
113  
114  #if defined(CONFIG_DYNAMIC_DEBUG) || \
115  	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
116  /* descriptor check is first to prevent flooding with "callbacks suppressed" */
117  #define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
118  do {                                                                    \
119  	static DEFINE_RATELIMIT_STATE(_rs,                              \
120  				      DEFAULT_RATELIMIT_INTERVAL,       \
121  				      DEFAULT_RATELIMIT_BURST);         \
122  	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
123  	if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
124  		__dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
125  				    ##__VA_ARGS__);                     \
126  } while (0)
127  #else
128  __printf(2, 3) __cold
129  static inline
ibdev_dbg_ratelimited(const struct ib_device * ibdev,const char * format,...)130  void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
131  #endif
132  
133  union ib_gid {
134  	u8	raw[16];
135  	struct {
136  		__be64	subnet_prefix;
137  		__be64	interface_id;
138  	} global;
139  };
140  
141  extern union ib_gid zgid;
142  
143  enum ib_gid_type {
144  	IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
145  	IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
146  	IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
147  	IB_GID_TYPE_SIZE
148  };
149  
150  #define ROCE_V2_UDP_DPORT      4791
151  struct ib_gid_attr {
152  	struct net_device __rcu	*ndev;
153  	struct ib_device	*device;
154  	union ib_gid		gid;
155  	enum ib_gid_type	gid_type;
156  	u16			index;
157  	u32			port_num;
158  };
159  
160  enum {
161  	/* set the local administered indication */
162  	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
163  };
164  
165  enum rdma_transport_type {
166  	RDMA_TRANSPORT_IB,
167  	RDMA_TRANSPORT_IWARP,
168  	RDMA_TRANSPORT_USNIC,
169  	RDMA_TRANSPORT_USNIC_UDP,
170  	RDMA_TRANSPORT_UNSPECIFIED,
171  };
172  
173  enum rdma_protocol_type {
174  	RDMA_PROTOCOL_IB,
175  	RDMA_PROTOCOL_IBOE,
176  	RDMA_PROTOCOL_IWARP,
177  	RDMA_PROTOCOL_USNIC_UDP
178  };
179  
180  __attribute_const__ enum rdma_transport_type
181  rdma_node_get_transport(unsigned int node_type);
182  
183  enum rdma_network_type {
184  	RDMA_NETWORK_IB,
185  	RDMA_NETWORK_ROCE_V1,
186  	RDMA_NETWORK_IPV4,
187  	RDMA_NETWORK_IPV6
188  };
189  
ib_network_to_gid_type(enum rdma_network_type network_type)190  static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
191  {
192  	if (network_type == RDMA_NETWORK_IPV4 ||
193  	    network_type == RDMA_NETWORK_IPV6)
194  		return IB_GID_TYPE_ROCE_UDP_ENCAP;
195  	else if (network_type == RDMA_NETWORK_ROCE_V1)
196  		return IB_GID_TYPE_ROCE;
197  	else
198  		return IB_GID_TYPE_IB;
199  }
200  
201  static inline enum rdma_network_type
rdma_gid_attr_network_type(const struct ib_gid_attr * attr)202  rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
203  {
204  	if (attr->gid_type == IB_GID_TYPE_IB)
205  		return RDMA_NETWORK_IB;
206  
207  	if (attr->gid_type == IB_GID_TYPE_ROCE)
208  		return RDMA_NETWORK_ROCE_V1;
209  
210  	if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
211  		return RDMA_NETWORK_IPV4;
212  	else
213  		return RDMA_NETWORK_IPV6;
214  }
215  
216  enum rdma_link_layer {
217  	IB_LINK_LAYER_UNSPECIFIED,
218  	IB_LINK_LAYER_INFINIBAND,
219  	IB_LINK_LAYER_ETHERNET,
220  };
221  
222  enum ib_device_cap_flags {
223  	IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
224  	IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
225  	IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
226  	IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
227  	IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
228  	IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
229  	IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
230  	IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
231  	IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
232  	/* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
233  	IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
234  	IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
235  	IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
236  	IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
237  	IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,
238  
239  	/* Reserved, old SEND_W_INV = 1 << 16,*/
240  	IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
241  	/*
242  	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
243  	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
244  	 * messages and can verify the validity of checksum for
245  	 * incoming messages.  Setting this flag implies that the
246  	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
247  	 */
248  	IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
249  	IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,
250  
251  	/*
252  	 * This device supports the IB "base memory management extension",
253  	 * which includes support for fast registrations (IB_WR_REG_MR,
254  	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
255  	 * also be set by any iWarp device which must support FRs to comply
256  	 * to the iWarp verbs spec.  iWarp devices also support the
257  	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
258  	 * stag.
259  	 */
260  	IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
261  	IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
262  	IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
263  	IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
264  	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
265  	IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
266  	IB_DEVICE_MANAGED_FLOW_STEERING =
267  		IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
268  	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
269  	IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
270  	/* The device supports padding incoming writes to cacheline. */
271  	IB_DEVICE_PCI_WRITE_END_PADDING =
272  		IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
273  	/* Placement type attributes */
274  	IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL,
275  	IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT,
276  	IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE,
277  };
278  
279  enum ib_kernel_cap_flags {
280  	/*
281  	 * This device supports a per-device lkey or stag that can be
282  	 * used without performing a memory registration for the local
283  	 * memory.  Note that ULPs should never check this flag, but
284  	 * instead of use the local_dma_lkey flag in the ib_pd structure,
285  	 * which will always contain a usable lkey.
286  	 */
287  	IBK_LOCAL_DMA_LKEY = 1 << 0,
288  	/* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
289  	IBK_INTEGRITY_HANDOVER = 1 << 1,
290  	/* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
291  	IBK_ON_DEMAND_PAGING = 1 << 2,
292  	/* IB_MR_TYPE_SG_GAPS is supported */
293  	IBK_SG_GAPS_REG = 1 << 3,
294  	/* Driver supports RDMA_NLDEV_CMD_DELLINK */
295  	IBK_ALLOW_USER_UNREG = 1 << 4,
296  
297  	/* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
298  	IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
299  	/* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
300  	IBK_UD_TSO = 1 << 6,
301  	/* iopib will use the device ops:
302  	 *   get_vf_config
303  	 *   get_vf_guid
304  	 *   get_vf_stats
305  	 *   set_vf_guid
306  	 *   set_vf_link_state
307  	 */
308  	IBK_VIRTUAL_FUNCTION = 1 << 7,
309  	/* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
310  	IBK_RDMA_NETDEV_OPA = 1 << 8,
311  };
312  
313  enum ib_atomic_cap {
314  	IB_ATOMIC_NONE,
315  	IB_ATOMIC_HCA,
316  	IB_ATOMIC_GLOB
317  };
318  
319  enum ib_odp_general_cap_bits {
320  	IB_ODP_SUPPORT		= 1 << 0,
321  	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
322  };
323  
324  enum ib_odp_transport_cap_bits {
325  	IB_ODP_SUPPORT_SEND	= 1 << 0,
326  	IB_ODP_SUPPORT_RECV	= 1 << 1,
327  	IB_ODP_SUPPORT_WRITE	= 1 << 2,
328  	IB_ODP_SUPPORT_READ	= 1 << 3,
329  	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
330  	IB_ODP_SUPPORT_SRQ_RECV	= 1 << 5,
331  };
332  
333  struct ib_odp_caps {
334  	uint64_t general_caps;
335  	struct {
336  		uint32_t  rc_odp_caps;
337  		uint32_t  uc_odp_caps;
338  		uint32_t  ud_odp_caps;
339  		uint32_t  xrc_odp_caps;
340  	} per_transport_caps;
341  };
342  
343  struct ib_rss_caps {
344  	/* Corresponding bit will be set if qp type from
345  	 * 'enum ib_qp_type' is supported, e.g.
346  	 * supported_qpts |= 1 << IB_QPT_UD
347  	 */
348  	u32 supported_qpts;
349  	u32 max_rwq_indirection_tables;
350  	u32 max_rwq_indirection_table_size;
351  };
352  
353  enum ib_tm_cap_flags {
354  	/*  Support tag matching with rendezvous offload for RC transport */
355  	IB_TM_CAP_RNDV_RC = 1 << 0,
356  };
357  
358  struct ib_tm_caps {
359  	/* Max size of RNDV header */
360  	u32 max_rndv_hdr_size;
361  	/* Max number of entries in tag matching list */
362  	u32 max_num_tags;
363  	/* From enum ib_tm_cap_flags */
364  	u32 flags;
365  	/* Max number of outstanding list operations */
366  	u32 max_ops;
367  	/* Max number of SGE in tag matching entry */
368  	u32 max_sge;
369  };
370  
371  struct ib_cq_init_attr {
372  	unsigned int	cqe;
373  	u32		comp_vector;
374  	u32		flags;
375  };
376  
377  enum ib_cq_attr_mask {
378  	IB_CQ_MODERATE = 1 << 0,
379  };
380  
381  struct ib_cq_caps {
382  	u16     max_cq_moderation_count;
383  	u16     max_cq_moderation_period;
384  };
385  
386  struct ib_dm_mr_attr {
387  	u64		length;
388  	u64		offset;
389  	u32		access_flags;
390  };
391  
392  struct ib_dm_alloc_attr {
393  	u64	length;
394  	u32	alignment;
395  	u32	flags;
396  };
397  
398  struct ib_device_attr {
399  	u64			fw_ver;
400  	__be64			sys_image_guid;
401  	u64			max_mr_size;
402  	u64			page_size_cap;
403  	u32			vendor_id;
404  	u32			vendor_part_id;
405  	u32			hw_ver;
406  	int			max_qp;
407  	int			max_qp_wr;
408  	u64			device_cap_flags;
409  	u64			kernel_cap_flags;
410  	int			max_send_sge;
411  	int			max_recv_sge;
412  	int			max_sge_rd;
413  	int			max_cq;
414  	int			max_cqe;
415  	int			max_mr;
416  	int			max_pd;
417  	int			max_qp_rd_atom;
418  	int			max_ee_rd_atom;
419  	int			max_res_rd_atom;
420  	int			max_qp_init_rd_atom;
421  	int			max_ee_init_rd_atom;
422  	enum ib_atomic_cap	atomic_cap;
423  	enum ib_atomic_cap	masked_atomic_cap;
424  	int			max_ee;
425  	int			max_rdd;
426  	int			max_mw;
427  	int			max_raw_ipv6_qp;
428  	int			max_raw_ethy_qp;
429  	int			max_mcast_grp;
430  	int			max_mcast_qp_attach;
431  	int			max_total_mcast_qp_attach;
432  	int			max_ah;
433  	int			max_srq;
434  	int			max_srq_wr;
435  	int			max_srq_sge;
436  	unsigned int		max_fast_reg_page_list_len;
437  	unsigned int		max_pi_fast_reg_page_list_len;
438  	u16			max_pkeys;
439  	u8			local_ca_ack_delay;
440  	int			sig_prot_cap;
441  	int			sig_guard_cap;
442  	struct ib_odp_caps	odp_caps;
443  	uint64_t		timestamp_mask;
444  	uint64_t		hca_core_clock; /* in KHZ */
445  	struct ib_rss_caps	rss_caps;
446  	u32			max_wq_type_rq;
447  	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
448  	struct ib_tm_caps	tm_caps;
449  	struct ib_cq_caps       cq_caps;
450  	u64			max_dm_size;
451  	/* Max entries for sgl for optimized performance per READ */
452  	u32			max_sgl_rd;
453  };
454  
455  enum ib_mtu {
456  	IB_MTU_256  = 1,
457  	IB_MTU_512  = 2,
458  	IB_MTU_1024 = 3,
459  	IB_MTU_2048 = 4,
460  	IB_MTU_4096 = 5
461  };
462  
463  enum opa_mtu {
464  	OPA_MTU_8192 = 6,
465  	OPA_MTU_10240 = 7
466  };
467  
ib_mtu_enum_to_int(enum ib_mtu mtu)468  static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
469  {
470  	switch (mtu) {
471  	case IB_MTU_256:  return  256;
472  	case IB_MTU_512:  return  512;
473  	case IB_MTU_1024: return 1024;
474  	case IB_MTU_2048: return 2048;
475  	case IB_MTU_4096: return 4096;
476  	default: 	  return -1;
477  	}
478  }
479  
ib_mtu_int_to_enum(int mtu)480  static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
481  {
482  	if (mtu >= 4096)
483  		return IB_MTU_4096;
484  	else if (mtu >= 2048)
485  		return IB_MTU_2048;
486  	else if (mtu >= 1024)
487  		return IB_MTU_1024;
488  	else if (mtu >= 512)
489  		return IB_MTU_512;
490  	else
491  		return IB_MTU_256;
492  }
493  
opa_mtu_enum_to_int(enum opa_mtu mtu)494  static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
495  {
496  	switch (mtu) {
497  	case OPA_MTU_8192:
498  		return 8192;
499  	case OPA_MTU_10240:
500  		return 10240;
501  	default:
502  		return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
503  	}
504  }
505  
opa_mtu_int_to_enum(int mtu)506  static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
507  {
508  	if (mtu >= 10240)
509  		return OPA_MTU_10240;
510  	else if (mtu >= 8192)
511  		return OPA_MTU_8192;
512  	else
513  		return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
514  }
515  
516  enum ib_port_state {
517  	IB_PORT_NOP		= 0,
518  	IB_PORT_DOWN		= 1,
519  	IB_PORT_INIT		= 2,
520  	IB_PORT_ARMED		= 3,
521  	IB_PORT_ACTIVE		= 4,
522  	IB_PORT_ACTIVE_DEFER	= 5
523  };
524  
525  enum ib_port_phys_state {
526  	IB_PORT_PHYS_STATE_SLEEP = 1,
527  	IB_PORT_PHYS_STATE_POLLING = 2,
528  	IB_PORT_PHYS_STATE_DISABLED = 3,
529  	IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
530  	IB_PORT_PHYS_STATE_LINK_UP = 5,
531  	IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
532  	IB_PORT_PHYS_STATE_PHY_TEST = 7,
533  };
534  
535  enum ib_port_width {
536  	IB_WIDTH_1X	= 1,
537  	IB_WIDTH_2X	= 16,
538  	IB_WIDTH_4X	= 2,
539  	IB_WIDTH_8X	= 4,
540  	IB_WIDTH_12X	= 8
541  };
542  
ib_width_enum_to_int(enum ib_port_width width)543  static inline int ib_width_enum_to_int(enum ib_port_width width)
544  {
545  	switch (width) {
546  	case IB_WIDTH_1X:  return  1;
547  	case IB_WIDTH_2X:  return  2;
548  	case IB_WIDTH_4X:  return  4;
549  	case IB_WIDTH_8X:  return  8;
550  	case IB_WIDTH_12X: return 12;
551  	default: 	  return -1;
552  	}
553  }
554  
555  enum ib_port_speed {
556  	IB_SPEED_SDR	= 1,
557  	IB_SPEED_DDR	= 2,
558  	IB_SPEED_QDR	= 4,
559  	IB_SPEED_FDR10	= 8,
560  	IB_SPEED_FDR	= 16,
561  	IB_SPEED_EDR	= 32,
562  	IB_SPEED_HDR	= 64,
563  	IB_SPEED_NDR	= 128,
564  	IB_SPEED_XDR	= 256,
565  };
566  
567  enum ib_stat_flag {
568  	IB_STAT_FLAG_OPTIONAL = 1 << 0,
569  };
570  
571  /**
572   * struct rdma_stat_desc
573   * @name - The name of the counter
574   * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
575   * @priv - Driver private information; Core code should not use
576   */
577  struct rdma_stat_desc {
578  	const char *name;
579  	unsigned int flags;
580  	const void *priv;
581  };
582  
583  /**
584   * struct rdma_hw_stats
585   * @lock - Mutex to protect parallel write access to lifespan and values
586   *    of counters, which are 64bits and not guaranteed to be written
587   *    atomicaly on 32bits systems.
588   * @timestamp - Used by the core code to track when the last update was
589   * @lifespan - Used by the core code to determine how old the counters
590   *   should be before being updated again.  Stored in jiffies, defaults
591   *   to 10 milliseconds, drivers can override the default be specifying
592   *   their own value during their allocation routine.
593   * @descs - Array of pointers to static descriptors used for the counters
594   *   in directory.
595   * @is_disabled - A bitmap to indicate each counter is currently disabled
596   *   or not.
597   * @num_counters - How many hardware counters there are.  If name is
598   *   shorter than this number, a kernel oops will result.  Driver authors
599   *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
600   *   in their code to prevent this.
601   * @value - Array of u64 counters that are accessed by the sysfs code and
602   *   filled in by the drivers get_stats routine
603   */
604  struct rdma_hw_stats {
605  	struct mutex	lock; /* Protect lifespan and values[] */
606  	unsigned long	timestamp;
607  	unsigned long	lifespan;
608  	const struct rdma_stat_desc *descs;
609  	unsigned long	*is_disabled;
610  	int		num_counters;
611  	u64		value[];
612  };
613  
614  #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
615  
616  struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
617  	const struct rdma_stat_desc *descs, int num_counters,
618  	unsigned long lifespan);
619  
620  void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
621  
622  /* Define bits for the various functionality this port needs to be supported by
623   * the core.
624   */
625  /* Management                           0x00000FFF */
626  #define RDMA_CORE_CAP_IB_MAD            0x00000001
627  #define RDMA_CORE_CAP_IB_SMI            0x00000002
628  #define RDMA_CORE_CAP_IB_CM             0x00000004
629  #define RDMA_CORE_CAP_IW_CM             0x00000008
630  #define RDMA_CORE_CAP_IB_SA             0x00000010
631  #define RDMA_CORE_CAP_OPA_MAD           0x00000020
632  
633  /* Address format                       0x000FF000 */
634  #define RDMA_CORE_CAP_AF_IB             0x00001000
635  #define RDMA_CORE_CAP_ETH_AH            0x00002000
636  #define RDMA_CORE_CAP_OPA_AH            0x00004000
637  #define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
638  
639  /* Protocol                             0xFFF00000 */
640  #define RDMA_CORE_CAP_PROT_IB           0x00100000
641  #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
642  #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
643  #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
644  #define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
645  #define RDMA_CORE_CAP_PROT_USNIC        0x02000000
646  
647  #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
648  					| RDMA_CORE_CAP_PROT_ROCE     \
649  					| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
650  
651  #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
652  					| RDMA_CORE_CAP_IB_MAD \
653  					| RDMA_CORE_CAP_IB_SMI \
654  					| RDMA_CORE_CAP_IB_CM  \
655  					| RDMA_CORE_CAP_IB_SA  \
656  					| RDMA_CORE_CAP_AF_IB)
657  #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
658  					| RDMA_CORE_CAP_IB_MAD  \
659  					| RDMA_CORE_CAP_IB_CM   \
660  					| RDMA_CORE_CAP_AF_IB   \
661  					| RDMA_CORE_CAP_ETH_AH)
662  #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
663  					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
664  					| RDMA_CORE_CAP_IB_MAD  \
665  					| RDMA_CORE_CAP_IB_CM   \
666  					| RDMA_CORE_CAP_AF_IB   \
667  					| RDMA_CORE_CAP_ETH_AH)
668  #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
669  					| RDMA_CORE_CAP_IW_CM)
670  #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
671  					| RDMA_CORE_CAP_OPA_MAD)
672  
673  #define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
674  
675  #define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
676  
677  struct ib_port_attr {
678  	u64			subnet_prefix;
679  	enum ib_port_state	state;
680  	enum ib_mtu		max_mtu;
681  	enum ib_mtu		active_mtu;
682  	u32                     phys_mtu;
683  	int			gid_tbl_len;
684  	unsigned int		ip_gids:1;
685  	/* This is the value from PortInfo CapabilityMask, defined by IBA */
686  	u32			port_cap_flags;
687  	u32			max_msg_sz;
688  	u32			bad_pkey_cntr;
689  	u32			qkey_viol_cntr;
690  	u16			pkey_tbl_len;
691  	u32			sm_lid;
692  	u32			lid;
693  	u8			lmc;
694  	u8			max_vl_num;
695  	u8			sm_sl;
696  	u8			subnet_timeout;
697  	u8			init_type_reply;
698  	u8			active_width;
699  	u16			active_speed;
700  	u8                      phys_state;
701  	u16			port_cap_flags2;
702  };
703  
704  enum ib_device_modify_flags {
705  	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
706  	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
707  };
708  
709  #define IB_DEVICE_NODE_DESC_MAX 64
710  
711  struct ib_device_modify {
712  	u64	sys_image_guid;
713  	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
714  };
715  
716  enum ib_port_modify_flags {
717  	IB_PORT_SHUTDOWN		= 1,
718  	IB_PORT_INIT_TYPE		= (1<<2),
719  	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
720  	IB_PORT_OPA_MASK_CHG		= (1<<4)
721  };
722  
723  struct ib_port_modify {
724  	u32	set_port_cap_mask;
725  	u32	clr_port_cap_mask;
726  	u8	init_type;
727  };
728  
729  enum ib_event_type {
730  	IB_EVENT_CQ_ERR,
731  	IB_EVENT_QP_FATAL,
732  	IB_EVENT_QP_REQ_ERR,
733  	IB_EVENT_QP_ACCESS_ERR,
734  	IB_EVENT_COMM_EST,
735  	IB_EVENT_SQ_DRAINED,
736  	IB_EVENT_PATH_MIG,
737  	IB_EVENT_PATH_MIG_ERR,
738  	IB_EVENT_DEVICE_FATAL,
739  	IB_EVENT_PORT_ACTIVE,
740  	IB_EVENT_PORT_ERR,
741  	IB_EVENT_LID_CHANGE,
742  	IB_EVENT_PKEY_CHANGE,
743  	IB_EVENT_SM_CHANGE,
744  	IB_EVENT_SRQ_ERR,
745  	IB_EVENT_SRQ_LIMIT_REACHED,
746  	IB_EVENT_QP_LAST_WQE_REACHED,
747  	IB_EVENT_CLIENT_REREGISTER,
748  	IB_EVENT_GID_CHANGE,
749  	IB_EVENT_WQ_FATAL,
750  };
751  
752  const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
753  
754  struct ib_event {
755  	struct ib_device	*device;
756  	union {
757  		struct ib_cq	*cq;
758  		struct ib_qp	*qp;
759  		struct ib_srq	*srq;
760  		struct ib_wq	*wq;
761  		u32		port_num;
762  	} element;
763  	enum ib_event_type	event;
764  };
765  
766  struct ib_event_handler {
767  	struct ib_device *device;
768  	void            (*handler)(struct ib_event_handler *, struct ib_event *);
769  	struct list_head  list;
770  };
771  
772  #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
773  	do {							\
774  		(_ptr)->device  = _device;			\
775  		(_ptr)->handler = _handler;			\
776  		INIT_LIST_HEAD(&(_ptr)->list);			\
777  	} while (0)
778  
779  struct ib_global_route {
780  	const struct ib_gid_attr *sgid_attr;
781  	union ib_gid	dgid;
782  	u32		flow_label;
783  	u8		sgid_index;
784  	u8		hop_limit;
785  	u8		traffic_class;
786  };
787  
788  struct ib_grh {
789  	__be32		version_tclass_flow;
790  	__be16		paylen;
791  	u8		next_hdr;
792  	u8		hop_limit;
793  	union ib_gid	sgid;
794  	union ib_gid	dgid;
795  };
796  
797  union rdma_network_hdr {
798  	struct ib_grh ibgrh;
799  	struct {
800  		/* The IB spec states that if it's IPv4, the header
801  		 * is located in the last 20 bytes of the header.
802  		 */
803  		u8		reserved[20];
804  		struct iphdr	roce4grh;
805  	};
806  };
807  
808  #define IB_QPN_MASK		0xFFFFFF
809  
810  enum {
811  	IB_MULTICAST_QPN = 0xffffff
812  };
813  
814  #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
815  #define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
816  
817  enum ib_ah_flags {
818  	IB_AH_GRH	= 1
819  };
820  
821  enum ib_rate {
822  	IB_RATE_PORT_CURRENT = 0,
823  	IB_RATE_2_5_GBPS = 2,
824  	IB_RATE_5_GBPS   = 5,
825  	IB_RATE_10_GBPS  = 3,
826  	IB_RATE_20_GBPS  = 6,
827  	IB_RATE_30_GBPS  = 4,
828  	IB_RATE_40_GBPS  = 7,
829  	IB_RATE_60_GBPS  = 8,
830  	IB_RATE_80_GBPS  = 9,
831  	IB_RATE_120_GBPS = 10,
832  	IB_RATE_14_GBPS  = 11,
833  	IB_RATE_56_GBPS  = 12,
834  	IB_RATE_112_GBPS = 13,
835  	IB_RATE_168_GBPS = 14,
836  	IB_RATE_25_GBPS  = 15,
837  	IB_RATE_100_GBPS = 16,
838  	IB_RATE_200_GBPS = 17,
839  	IB_RATE_300_GBPS = 18,
840  	IB_RATE_28_GBPS  = 19,
841  	IB_RATE_50_GBPS  = 20,
842  	IB_RATE_400_GBPS = 21,
843  	IB_RATE_600_GBPS = 22,
844  	IB_RATE_800_GBPS = 23,
845  };
846  
847  /**
848   * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
849   * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
850   * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
851   * @rate: rate to convert.
852   */
853  __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
854  
855  /**
856   * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
857   * For example, IB_RATE_2_5_GBPS will be converted to 2500.
858   * @rate: rate to convert.
859   */
860  __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
861  
862  
863  /**
864   * enum ib_mr_type - memory region type
865   * @IB_MR_TYPE_MEM_REG:       memory region that is used for
866   *                            normal registration
867   * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
868   *                            register any arbitrary sg lists (without
869   *                            the normal mr constraints - see
870   *                            ib_map_mr_sg)
871   * @IB_MR_TYPE_DM:            memory region that is used for device
872   *                            memory registration
873   * @IB_MR_TYPE_USER:          memory region that is used for the user-space
874   *                            application
875   * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
876   *                            without address translations (VA=PA)
877   * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
878   *                            data integrity operations
879   */
880  enum ib_mr_type {
881  	IB_MR_TYPE_MEM_REG,
882  	IB_MR_TYPE_SG_GAPS,
883  	IB_MR_TYPE_DM,
884  	IB_MR_TYPE_USER,
885  	IB_MR_TYPE_DMA,
886  	IB_MR_TYPE_INTEGRITY,
887  };
888  
889  enum ib_mr_status_check {
890  	IB_MR_CHECK_SIG_STATUS = 1,
891  };
892  
893  /**
894   * struct ib_mr_status - Memory region status container
895   *
896   * @fail_status: Bitmask of MR checks status. For each
897   *     failed check a corresponding status bit is set.
898   * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
899   *     failure.
900   */
901  struct ib_mr_status {
902  	u32		    fail_status;
903  	struct ib_sig_err   sig_err;
904  };
905  
906  /**
907   * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
908   * enum.
909   * @mult: multiple to convert.
910   */
911  __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
912  
913  struct rdma_ah_init_attr {
914  	struct rdma_ah_attr *ah_attr;
915  	u32 flags;
916  	struct net_device *xmit_slave;
917  };
918  
919  enum rdma_ah_attr_type {
920  	RDMA_AH_ATTR_TYPE_UNDEFINED,
921  	RDMA_AH_ATTR_TYPE_IB,
922  	RDMA_AH_ATTR_TYPE_ROCE,
923  	RDMA_AH_ATTR_TYPE_OPA,
924  };
925  
926  struct ib_ah_attr {
927  	u16			dlid;
928  	u8			src_path_bits;
929  };
930  
931  struct roce_ah_attr {
932  	u8			dmac[ETH_ALEN];
933  };
934  
935  struct opa_ah_attr {
936  	u32			dlid;
937  	u8			src_path_bits;
938  	bool			make_grd;
939  };
940  
941  struct rdma_ah_attr {
942  	struct ib_global_route	grh;
943  	u8			sl;
944  	u8			static_rate;
945  	u32			port_num;
946  	u8			ah_flags;
947  	enum rdma_ah_attr_type type;
948  	union {
949  		struct ib_ah_attr ib;
950  		struct roce_ah_attr roce;
951  		struct opa_ah_attr opa;
952  	};
953  };
954  
955  enum ib_wc_status {
956  	IB_WC_SUCCESS,
957  	IB_WC_LOC_LEN_ERR,
958  	IB_WC_LOC_QP_OP_ERR,
959  	IB_WC_LOC_EEC_OP_ERR,
960  	IB_WC_LOC_PROT_ERR,
961  	IB_WC_WR_FLUSH_ERR,
962  	IB_WC_MW_BIND_ERR,
963  	IB_WC_BAD_RESP_ERR,
964  	IB_WC_LOC_ACCESS_ERR,
965  	IB_WC_REM_INV_REQ_ERR,
966  	IB_WC_REM_ACCESS_ERR,
967  	IB_WC_REM_OP_ERR,
968  	IB_WC_RETRY_EXC_ERR,
969  	IB_WC_RNR_RETRY_EXC_ERR,
970  	IB_WC_LOC_RDD_VIOL_ERR,
971  	IB_WC_REM_INV_RD_REQ_ERR,
972  	IB_WC_REM_ABORT_ERR,
973  	IB_WC_INV_EECN_ERR,
974  	IB_WC_INV_EEC_STATE_ERR,
975  	IB_WC_FATAL_ERR,
976  	IB_WC_RESP_TIMEOUT_ERR,
977  	IB_WC_GENERAL_ERR
978  };
979  
980  const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
981  
982  enum ib_wc_opcode {
983  	IB_WC_SEND = IB_UVERBS_WC_SEND,
984  	IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
985  	IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
986  	IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
987  	IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
988  	IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
989  	IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
990  	IB_WC_LSO = IB_UVERBS_WC_TSO,
991  	IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE,
992  	IB_WC_REG_MR,
993  	IB_WC_MASKED_COMP_SWAP,
994  	IB_WC_MASKED_FETCH_ADD,
995  	IB_WC_FLUSH = IB_UVERBS_WC_FLUSH,
996  /*
997   * Set value of IB_WC_RECV so consumers can test if a completion is a
998   * receive by testing (opcode & IB_WC_RECV).
999   */
1000  	IB_WC_RECV			= 1 << 7,
1001  	IB_WC_RECV_RDMA_WITH_IMM
1002  };
1003  
1004  enum ib_wc_flags {
1005  	IB_WC_GRH		= 1,
1006  	IB_WC_WITH_IMM		= (1<<1),
1007  	IB_WC_WITH_INVALIDATE	= (1<<2),
1008  	IB_WC_IP_CSUM_OK	= (1<<3),
1009  	IB_WC_WITH_SMAC		= (1<<4),
1010  	IB_WC_WITH_VLAN		= (1<<5),
1011  	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
1012  };
1013  
1014  struct ib_wc {
1015  	union {
1016  		u64		wr_id;
1017  		struct ib_cqe	*wr_cqe;
1018  	};
1019  	enum ib_wc_status	status;
1020  	enum ib_wc_opcode	opcode;
1021  	u32			vendor_err;
1022  	u32			byte_len;
1023  	struct ib_qp	       *qp;
1024  	union {
1025  		__be32		imm_data;
1026  		u32		invalidate_rkey;
1027  	} ex;
1028  	u32			src_qp;
1029  	u32			slid;
1030  	int			wc_flags;
1031  	u16			pkey_index;
1032  	u8			sl;
1033  	u8			dlid_path_bits;
1034  	u32 port_num; /* valid only for DR SMPs on switches */
1035  	u8			smac[ETH_ALEN];
1036  	u16			vlan_id;
1037  	u8			network_hdr_type;
1038  };
1039  
1040  enum ib_cq_notify_flags {
1041  	IB_CQ_SOLICITED			= 1 << 0,
1042  	IB_CQ_NEXT_COMP			= 1 << 1,
1043  	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1044  	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1045  };
1046  
1047  enum ib_srq_type {
1048  	IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1049  	IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1050  	IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1051  };
1052  
ib_srq_has_cq(enum ib_srq_type srq_type)1053  static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1054  {
1055  	return srq_type == IB_SRQT_XRC ||
1056  	       srq_type == IB_SRQT_TM;
1057  }
1058  
1059  enum ib_srq_attr_mask {
1060  	IB_SRQ_MAX_WR	= 1 << 0,
1061  	IB_SRQ_LIMIT	= 1 << 1,
1062  };
1063  
1064  struct ib_srq_attr {
1065  	u32	max_wr;
1066  	u32	max_sge;
1067  	u32	srq_limit;
1068  };
1069  
1070  struct ib_srq_init_attr {
1071  	void		      (*event_handler)(struct ib_event *, void *);
1072  	void		       *srq_context;
1073  	struct ib_srq_attr	attr;
1074  	enum ib_srq_type	srq_type;
1075  
1076  	struct {
1077  		struct ib_cq   *cq;
1078  		union {
1079  			struct {
1080  				struct ib_xrcd *xrcd;
1081  			} xrc;
1082  
1083  			struct {
1084  				u32		max_num_tags;
1085  			} tag_matching;
1086  		};
1087  	} ext;
1088  };
1089  
1090  struct ib_qp_cap {
1091  	u32	max_send_wr;
1092  	u32	max_recv_wr;
1093  	u32	max_send_sge;
1094  	u32	max_recv_sge;
1095  	u32	max_inline_data;
1096  
1097  	/*
1098  	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1099  	 * ib_create_qp() will calculate the right amount of neededed WRs
1100  	 * and MRs based on this.
1101  	 */
1102  	u32	max_rdma_ctxs;
1103  };
1104  
1105  enum ib_sig_type {
1106  	IB_SIGNAL_ALL_WR,
1107  	IB_SIGNAL_REQ_WR
1108  };
1109  
1110  enum ib_qp_type {
1111  	/*
1112  	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1113  	 * here (and in that order) since the MAD layer uses them as
1114  	 * indices into a 2-entry table.
1115  	 */
1116  	IB_QPT_SMI,
1117  	IB_QPT_GSI,
1118  
1119  	IB_QPT_RC = IB_UVERBS_QPT_RC,
1120  	IB_QPT_UC = IB_UVERBS_QPT_UC,
1121  	IB_QPT_UD = IB_UVERBS_QPT_UD,
1122  	IB_QPT_RAW_IPV6,
1123  	IB_QPT_RAW_ETHERTYPE,
1124  	IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1125  	IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1126  	IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1127  	IB_QPT_MAX,
1128  	IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1129  	/* Reserve a range for qp types internal to the low level driver.
1130  	 * These qp types will not be visible at the IB core layer, so the
1131  	 * IB_QPT_MAX usages should not be affected in the core layer
1132  	 */
1133  	IB_QPT_RESERVED1 = 0x1000,
1134  	IB_QPT_RESERVED2,
1135  	IB_QPT_RESERVED3,
1136  	IB_QPT_RESERVED4,
1137  	IB_QPT_RESERVED5,
1138  	IB_QPT_RESERVED6,
1139  	IB_QPT_RESERVED7,
1140  	IB_QPT_RESERVED8,
1141  	IB_QPT_RESERVED9,
1142  	IB_QPT_RESERVED10,
1143  };
1144  
1145  enum ib_qp_create_flags {
1146  	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1147  	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	=
1148  		IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1149  	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1150  	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1151  	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1152  	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1153  	IB_QP_CREATE_INTEGRITY_EN		= 1 << 6,
1154  	IB_QP_CREATE_NETDEV_USE			= 1 << 7,
1155  	IB_QP_CREATE_SCATTER_FCS		=
1156  		IB_UVERBS_QP_CREATE_SCATTER_FCS,
1157  	IB_QP_CREATE_CVLAN_STRIPPING		=
1158  		IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1159  	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1160  	IB_QP_CREATE_PCI_WRITE_END_PADDING	=
1161  		IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1162  	/* reserve bits 26-31 for low level drivers' internal use */
1163  	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1164  	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1165  };
1166  
1167  /*
1168   * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1169   * callback to destroy the passed in QP.
1170   */
1171  
1172  struct ib_qp_init_attr {
1173  	/* This callback occurs in workqueue context */
1174  	void                  (*event_handler)(struct ib_event *, void *);
1175  
1176  	void		       *qp_context;
1177  	struct ib_cq	       *send_cq;
1178  	struct ib_cq	       *recv_cq;
1179  	struct ib_srq	       *srq;
1180  	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1181  	struct ib_qp_cap	cap;
1182  	enum ib_sig_type	sq_sig_type;
1183  	enum ib_qp_type		qp_type;
1184  	u32			create_flags;
1185  
1186  	/*
1187  	 * Only needed for special QP types, or when using the RW API.
1188  	 */
1189  	u32			port_num;
1190  	struct ib_rwq_ind_table *rwq_ind_tbl;
1191  	u32			source_qpn;
1192  };
1193  
1194  struct ib_qp_open_attr {
1195  	void                  (*event_handler)(struct ib_event *, void *);
1196  	void		       *qp_context;
1197  	u32			qp_num;
1198  	enum ib_qp_type		qp_type;
1199  };
1200  
1201  enum ib_rnr_timeout {
1202  	IB_RNR_TIMER_655_36 =  0,
1203  	IB_RNR_TIMER_000_01 =  1,
1204  	IB_RNR_TIMER_000_02 =  2,
1205  	IB_RNR_TIMER_000_03 =  3,
1206  	IB_RNR_TIMER_000_04 =  4,
1207  	IB_RNR_TIMER_000_06 =  5,
1208  	IB_RNR_TIMER_000_08 =  6,
1209  	IB_RNR_TIMER_000_12 =  7,
1210  	IB_RNR_TIMER_000_16 =  8,
1211  	IB_RNR_TIMER_000_24 =  9,
1212  	IB_RNR_TIMER_000_32 = 10,
1213  	IB_RNR_TIMER_000_48 = 11,
1214  	IB_RNR_TIMER_000_64 = 12,
1215  	IB_RNR_TIMER_000_96 = 13,
1216  	IB_RNR_TIMER_001_28 = 14,
1217  	IB_RNR_TIMER_001_92 = 15,
1218  	IB_RNR_TIMER_002_56 = 16,
1219  	IB_RNR_TIMER_003_84 = 17,
1220  	IB_RNR_TIMER_005_12 = 18,
1221  	IB_RNR_TIMER_007_68 = 19,
1222  	IB_RNR_TIMER_010_24 = 20,
1223  	IB_RNR_TIMER_015_36 = 21,
1224  	IB_RNR_TIMER_020_48 = 22,
1225  	IB_RNR_TIMER_030_72 = 23,
1226  	IB_RNR_TIMER_040_96 = 24,
1227  	IB_RNR_TIMER_061_44 = 25,
1228  	IB_RNR_TIMER_081_92 = 26,
1229  	IB_RNR_TIMER_122_88 = 27,
1230  	IB_RNR_TIMER_163_84 = 28,
1231  	IB_RNR_TIMER_245_76 = 29,
1232  	IB_RNR_TIMER_327_68 = 30,
1233  	IB_RNR_TIMER_491_52 = 31
1234  };
1235  
1236  enum ib_qp_attr_mask {
1237  	IB_QP_STATE			= 1,
1238  	IB_QP_CUR_STATE			= (1<<1),
1239  	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1240  	IB_QP_ACCESS_FLAGS		= (1<<3),
1241  	IB_QP_PKEY_INDEX		= (1<<4),
1242  	IB_QP_PORT			= (1<<5),
1243  	IB_QP_QKEY			= (1<<6),
1244  	IB_QP_AV			= (1<<7),
1245  	IB_QP_PATH_MTU			= (1<<8),
1246  	IB_QP_TIMEOUT			= (1<<9),
1247  	IB_QP_RETRY_CNT			= (1<<10),
1248  	IB_QP_RNR_RETRY			= (1<<11),
1249  	IB_QP_RQ_PSN			= (1<<12),
1250  	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1251  	IB_QP_ALT_PATH			= (1<<14),
1252  	IB_QP_MIN_RNR_TIMER		= (1<<15),
1253  	IB_QP_SQ_PSN			= (1<<16),
1254  	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1255  	IB_QP_PATH_MIG_STATE		= (1<<18),
1256  	IB_QP_CAP			= (1<<19),
1257  	IB_QP_DEST_QPN			= (1<<20),
1258  	IB_QP_RESERVED1			= (1<<21),
1259  	IB_QP_RESERVED2			= (1<<22),
1260  	IB_QP_RESERVED3			= (1<<23),
1261  	IB_QP_RESERVED4			= (1<<24),
1262  	IB_QP_RATE_LIMIT		= (1<<25),
1263  
1264  	IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1265  };
1266  
1267  enum ib_qp_state {
1268  	IB_QPS_RESET,
1269  	IB_QPS_INIT,
1270  	IB_QPS_RTR,
1271  	IB_QPS_RTS,
1272  	IB_QPS_SQD,
1273  	IB_QPS_SQE,
1274  	IB_QPS_ERR
1275  };
1276  
1277  enum ib_mig_state {
1278  	IB_MIG_MIGRATED,
1279  	IB_MIG_REARM,
1280  	IB_MIG_ARMED
1281  };
1282  
1283  enum ib_mw_type {
1284  	IB_MW_TYPE_1 = 1,
1285  	IB_MW_TYPE_2 = 2
1286  };
1287  
1288  struct ib_qp_attr {
1289  	enum ib_qp_state	qp_state;
1290  	enum ib_qp_state	cur_qp_state;
1291  	enum ib_mtu		path_mtu;
1292  	enum ib_mig_state	path_mig_state;
1293  	u32			qkey;
1294  	u32			rq_psn;
1295  	u32			sq_psn;
1296  	u32			dest_qp_num;
1297  	int			qp_access_flags;
1298  	struct ib_qp_cap	cap;
1299  	struct rdma_ah_attr	ah_attr;
1300  	struct rdma_ah_attr	alt_ah_attr;
1301  	u16			pkey_index;
1302  	u16			alt_pkey_index;
1303  	u8			en_sqd_async_notify;
1304  	u8			sq_draining;
1305  	u8			max_rd_atomic;
1306  	u8			max_dest_rd_atomic;
1307  	u8			min_rnr_timer;
1308  	u32			port_num;
1309  	u8			timeout;
1310  	u8			retry_cnt;
1311  	u8			rnr_retry;
1312  	u32			alt_port_num;
1313  	u8			alt_timeout;
1314  	u32			rate_limit;
1315  	struct net_device	*xmit_slave;
1316  };
1317  
1318  enum ib_wr_opcode {
1319  	/* These are shared with userspace */
1320  	IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1321  	IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1322  	IB_WR_SEND = IB_UVERBS_WR_SEND,
1323  	IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1324  	IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1325  	IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1326  	IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1327  	IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1328  	IB_WR_LSO = IB_UVERBS_WR_TSO,
1329  	IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1330  	IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1331  	IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1332  	IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1333  		IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1334  	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1335  		IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1336  	IB_WR_FLUSH = IB_UVERBS_WR_FLUSH,
1337  	IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE,
1338  
1339  	/* These are kernel only and can not be issued by userspace */
1340  	IB_WR_REG_MR = 0x20,
1341  	IB_WR_REG_MR_INTEGRITY,
1342  
1343  	/* reserve values for low level drivers' internal use.
1344  	 * These values will not be used at all in the ib core layer.
1345  	 */
1346  	IB_WR_RESERVED1 = 0xf0,
1347  	IB_WR_RESERVED2,
1348  	IB_WR_RESERVED3,
1349  	IB_WR_RESERVED4,
1350  	IB_WR_RESERVED5,
1351  	IB_WR_RESERVED6,
1352  	IB_WR_RESERVED7,
1353  	IB_WR_RESERVED8,
1354  	IB_WR_RESERVED9,
1355  	IB_WR_RESERVED10,
1356  };
1357  
1358  enum ib_send_flags {
1359  	IB_SEND_FENCE		= 1,
1360  	IB_SEND_SIGNALED	= (1<<1),
1361  	IB_SEND_SOLICITED	= (1<<2),
1362  	IB_SEND_INLINE		= (1<<3),
1363  	IB_SEND_IP_CSUM		= (1<<4),
1364  
1365  	/* reserve bits 26-31 for low level drivers' internal use */
1366  	IB_SEND_RESERVED_START	= (1 << 26),
1367  	IB_SEND_RESERVED_END	= (1 << 31),
1368  };
1369  
1370  struct ib_sge {
1371  	u64	addr;
1372  	u32	length;
1373  	u32	lkey;
1374  };
1375  
1376  struct ib_cqe {
1377  	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1378  };
1379  
1380  struct ib_send_wr {
1381  	struct ib_send_wr      *next;
1382  	union {
1383  		u64		wr_id;
1384  		struct ib_cqe	*wr_cqe;
1385  	};
1386  	struct ib_sge	       *sg_list;
1387  	int			num_sge;
1388  	enum ib_wr_opcode	opcode;
1389  	int			send_flags;
1390  	union {
1391  		__be32		imm_data;
1392  		u32		invalidate_rkey;
1393  	} ex;
1394  };
1395  
1396  struct ib_rdma_wr {
1397  	struct ib_send_wr	wr;
1398  	u64			remote_addr;
1399  	u32			rkey;
1400  };
1401  
rdma_wr(const struct ib_send_wr * wr)1402  static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1403  {
1404  	return container_of(wr, struct ib_rdma_wr, wr);
1405  }
1406  
1407  struct ib_atomic_wr {
1408  	struct ib_send_wr	wr;
1409  	u64			remote_addr;
1410  	u64			compare_add;
1411  	u64			swap;
1412  	u64			compare_add_mask;
1413  	u64			swap_mask;
1414  	u32			rkey;
1415  };
1416  
atomic_wr(const struct ib_send_wr * wr)1417  static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1418  {
1419  	return container_of(wr, struct ib_atomic_wr, wr);
1420  }
1421  
1422  struct ib_ud_wr {
1423  	struct ib_send_wr	wr;
1424  	struct ib_ah		*ah;
1425  	void			*header;
1426  	int			hlen;
1427  	int			mss;
1428  	u32			remote_qpn;
1429  	u32			remote_qkey;
1430  	u16			pkey_index; /* valid for GSI only */
1431  	u32			port_num; /* valid for DR SMPs on switch only */
1432  };
1433  
ud_wr(const struct ib_send_wr * wr)1434  static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1435  {
1436  	return container_of(wr, struct ib_ud_wr, wr);
1437  }
1438  
1439  struct ib_reg_wr {
1440  	struct ib_send_wr	wr;
1441  	struct ib_mr		*mr;
1442  	u32			key;
1443  	int			access;
1444  };
1445  
reg_wr(const struct ib_send_wr * wr)1446  static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1447  {
1448  	return container_of(wr, struct ib_reg_wr, wr);
1449  }
1450  
1451  struct ib_recv_wr {
1452  	struct ib_recv_wr      *next;
1453  	union {
1454  		u64		wr_id;
1455  		struct ib_cqe	*wr_cqe;
1456  	};
1457  	struct ib_sge	       *sg_list;
1458  	int			num_sge;
1459  };
1460  
1461  enum ib_access_flags {
1462  	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1463  	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1464  	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1465  	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1466  	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1467  	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1468  	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1469  	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1470  	IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1471  	IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL,
1472  	IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT,
1473  
1474  	IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1475  	IB_ACCESS_SUPPORTED =
1476  		((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL,
1477  };
1478  
1479  /*
1480   * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1481   * are hidden here instead of a uapi header!
1482   */
1483  enum ib_mr_rereg_flags {
1484  	IB_MR_REREG_TRANS	= 1,
1485  	IB_MR_REREG_PD		= (1<<1),
1486  	IB_MR_REREG_ACCESS	= (1<<2),
1487  	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1488  };
1489  
1490  struct ib_umem;
1491  
1492  enum rdma_remove_reason {
1493  	/*
1494  	 * Userspace requested uobject deletion or initial try
1495  	 * to remove uobject via cleanup. Call could fail
1496  	 */
1497  	RDMA_REMOVE_DESTROY,
1498  	/* Context deletion. This call should delete the actual object itself */
1499  	RDMA_REMOVE_CLOSE,
1500  	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1501  	RDMA_REMOVE_DRIVER_REMOVE,
1502  	/* uobj is being cleaned-up before being committed */
1503  	RDMA_REMOVE_ABORT,
1504  	/* The driver failed to destroy the uobject and is being disconnected */
1505  	RDMA_REMOVE_DRIVER_FAILURE,
1506  };
1507  
1508  struct ib_rdmacg_object {
1509  #ifdef CONFIG_CGROUP_RDMA
1510  	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1511  #endif
1512  };
1513  
1514  struct ib_ucontext {
1515  	struct ib_device       *device;
1516  	struct ib_uverbs_file  *ufile;
1517  
1518  	struct ib_rdmacg_object	cg_obj;
1519  	/*
1520  	 * Implementation details of the RDMA core, don't use in drivers:
1521  	 */
1522  	struct rdma_restrack_entry res;
1523  	struct xarray mmap_xa;
1524  };
1525  
1526  struct ib_uobject {
1527  	u64			user_handle;	/* handle given to us by userspace */
1528  	/* ufile & ucontext owning this object */
1529  	struct ib_uverbs_file  *ufile;
1530  	/* FIXME, save memory: ufile->context == context */
1531  	struct ib_ucontext     *context;	/* associated user context */
1532  	void		       *object;		/* containing object */
1533  	struct list_head	list;		/* link to context's list */
1534  	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1535  	int			id;		/* index into kernel idr */
1536  	struct kref		ref;
1537  	atomic_t		usecnt;		/* protects exclusive access */
1538  	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1539  
1540  	const struct uverbs_api_object *uapi_object;
1541  };
1542  
1543  struct ib_udata {
1544  	const void __user *inbuf;
1545  	void __user *outbuf;
1546  	size_t       inlen;
1547  	size_t       outlen;
1548  };
1549  
1550  struct ib_pd {
1551  	u32			local_dma_lkey;
1552  	u32			flags;
1553  	struct ib_device       *device;
1554  	struct ib_uobject      *uobject;
1555  	atomic_t          	usecnt; /* count all resources */
1556  
1557  	u32			unsafe_global_rkey;
1558  
1559  	/*
1560  	 * Implementation details of the RDMA core, don't use in drivers:
1561  	 */
1562  	struct ib_mr	       *__internal_mr;
1563  	struct rdma_restrack_entry res;
1564  };
1565  
1566  struct ib_xrcd {
1567  	struct ib_device       *device;
1568  	atomic_t		usecnt; /* count all exposed resources */
1569  	struct inode	       *inode;
1570  	struct rw_semaphore	tgt_qps_rwsem;
1571  	struct xarray		tgt_qps;
1572  };
1573  
1574  struct ib_ah {
1575  	struct ib_device	*device;
1576  	struct ib_pd		*pd;
1577  	struct ib_uobject	*uobject;
1578  	const struct ib_gid_attr *sgid_attr;
1579  	enum rdma_ah_attr_type	type;
1580  };
1581  
1582  typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1583  
1584  enum ib_poll_context {
1585  	IB_POLL_SOFTIRQ,	   /* poll from softirq context */
1586  	IB_POLL_WORKQUEUE,	   /* poll from workqueue */
1587  	IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1588  	IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1589  
1590  	IB_POLL_DIRECT,		   /* caller context, no hw completions */
1591  };
1592  
1593  struct ib_cq {
1594  	struct ib_device       *device;
1595  	struct ib_ucq_object   *uobject;
1596  	ib_comp_handler   	comp_handler;
1597  	void                  (*event_handler)(struct ib_event *, void *);
1598  	void                   *cq_context;
1599  	int               	cqe;
1600  	unsigned int		cqe_used;
1601  	atomic_t          	usecnt; /* count number of work queues */
1602  	enum ib_poll_context	poll_ctx;
1603  	struct ib_wc		*wc;
1604  	struct list_head        pool_entry;
1605  	union {
1606  		struct irq_poll		iop;
1607  		struct work_struct	work;
1608  	};
1609  	struct workqueue_struct *comp_wq;
1610  	struct dim *dim;
1611  
1612  	/* updated only by trace points */
1613  	ktime_t timestamp;
1614  	u8 interrupt:1;
1615  	u8 shared:1;
1616  	unsigned int comp_vector;
1617  
1618  	/*
1619  	 * Implementation details of the RDMA core, don't use in drivers:
1620  	 */
1621  	struct rdma_restrack_entry res;
1622  };
1623  
1624  struct ib_srq {
1625  	struct ib_device       *device;
1626  	struct ib_pd	       *pd;
1627  	struct ib_usrq_object  *uobject;
1628  	void		      (*event_handler)(struct ib_event *, void *);
1629  	void		       *srq_context;
1630  	enum ib_srq_type	srq_type;
1631  	atomic_t		usecnt;
1632  
1633  	struct {
1634  		struct ib_cq   *cq;
1635  		union {
1636  			struct {
1637  				struct ib_xrcd *xrcd;
1638  				u32		srq_num;
1639  			} xrc;
1640  		};
1641  	} ext;
1642  
1643  	/*
1644  	 * Implementation details of the RDMA core, don't use in drivers:
1645  	 */
1646  	struct rdma_restrack_entry res;
1647  };
1648  
1649  enum ib_raw_packet_caps {
1650  	/*
1651  	 * Strip cvlan from incoming packet and report it in the matching work
1652  	 * completion is supported.
1653  	 */
1654  	IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
1655  		IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
1656  	/*
1657  	 * Scatter FCS field of an incoming packet to host memory is supported.
1658  	 */
1659  	IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
1660  	/* Checksum offloads are supported (for both send and receive). */
1661  	IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
1662  	/*
1663  	 * When a packet is received for an RQ with no receive WQEs, the
1664  	 * packet processing is delayed.
1665  	 */
1666  	IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
1667  };
1668  
1669  enum ib_wq_type {
1670  	IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1671  };
1672  
1673  enum ib_wq_state {
1674  	IB_WQS_RESET,
1675  	IB_WQS_RDY,
1676  	IB_WQS_ERR
1677  };
1678  
1679  struct ib_wq {
1680  	struct ib_device       *device;
1681  	struct ib_uwq_object   *uobject;
1682  	void		    *wq_context;
1683  	void		    (*event_handler)(struct ib_event *, void *);
1684  	struct ib_pd	       *pd;
1685  	struct ib_cq	       *cq;
1686  	u32		wq_num;
1687  	enum ib_wq_state       state;
1688  	enum ib_wq_type	wq_type;
1689  	atomic_t		usecnt;
1690  };
1691  
1692  enum ib_wq_flags {
1693  	IB_WQ_FLAGS_CVLAN_STRIPPING	= IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1694  	IB_WQ_FLAGS_SCATTER_FCS		= IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1695  	IB_WQ_FLAGS_DELAY_DROP		= IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1696  	IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1697  				IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1698  };
1699  
1700  struct ib_wq_init_attr {
1701  	void		       *wq_context;
1702  	enum ib_wq_type	wq_type;
1703  	u32		max_wr;
1704  	u32		max_sge;
1705  	struct	ib_cq	       *cq;
1706  	void		    (*event_handler)(struct ib_event *, void *);
1707  	u32		create_flags; /* Use enum ib_wq_flags */
1708  };
1709  
1710  enum ib_wq_attr_mask {
1711  	IB_WQ_STATE		= 1 << 0,
1712  	IB_WQ_CUR_STATE		= 1 << 1,
1713  	IB_WQ_FLAGS		= 1 << 2,
1714  };
1715  
1716  struct ib_wq_attr {
1717  	enum	ib_wq_state	wq_state;
1718  	enum	ib_wq_state	curr_wq_state;
1719  	u32			flags; /* Use enum ib_wq_flags */
1720  	u32			flags_mask; /* Use enum ib_wq_flags */
1721  };
1722  
1723  struct ib_rwq_ind_table {
1724  	struct ib_device	*device;
1725  	struct ib_uobject      *uobject;
1726  	atomic_t		usecnt;
1727  	u32		ind_tbl_num;
1728  	u32		log_ind_tbl_size;
1729  	struct ib_wq	**ind_tbl;
1730  };
1731  
1732  struct ib_rwq_ind_table_init_attr {
1733  	u32		log_ind_tbl_size;
1734  	/* Each entry is a pointer to Receive Work Queue */
1735  	struct ib_wq	**ind_tbl;
1736  };
1737  
1738  enum port_pkey_state {
1739  	IB_PORT_PKEY_NOT_VALID = 0,
1740  	IB_PORT_PKEY_VALID = 1,
1741  	IB_PORT_PKEY_LISTED = 2,
1742  };
1743  
1744  struct ib_qp_security;
1745  
1746  struct ib_port_pkey {
1747  	enum port_pkey_state	state;
1748  	u16			pkey_index;
1749  	u32			port_num;
1750  	struct list_head	qp_list;
1751  	struct list_head	to_error_list;
1752  	struct ib_qp_security  *sec;
1753  };
1754  
1755  struct ib_ports_pkeys {
1756  	struct ib_port_pkey	main;
1757  	struct ib_port_pkey	alt;
1758  };
1759  
1760  struct ib_qp_security {
1761  	struct ib_qp	       *qp;
1762  	struct ib_device       *dev;
1763  	/* Hold this mutex when changing port and pkey settings. */
1764  	struct mutex		mutex;
1765  	struct ib_ports_pkeys  *ports_pkeys;
1766  	/* A list of all open shared QP handles.  Required to enforce security
1767  	 * properly for all users of a shared QP.
1768  	 */
1769  	struct list_head        shared_qp_list;
1770  	void                   *security;
1771  	bool			destroying;
1772  	atomic_t		error_list_count;
1773  	struct completion	error_complete;
1774  	int			error_comps_pending;
1775  };
1776  
1777  /*
1778   * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1779   * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1780   */
1781  struct ib_qp {
1782  	struct ib_device       *device;
1783  	struct ib_pd	       *pd;
1784  	struct ib_cq	       *send_cq;
1785  	struct ib_cq	       *recv_cq;
1786  	spinlock_t		mr_lock;
1787  	int			mrs_used;
1788  	struct list_head	rdma_mrs;
1789  	struct list_head	sig_mrs;
1790  	struct ib_srq	       *srq;
1791  	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1792  	struct list_head	xrcd_list;
1793  
1794  	/* count times opened, mcast attaches, flow attaches */
1795  	atomic_t		usecnt;
1796  	struct list_head	open_list;
1797  	struct ib_qp           *real_qp;
1798  	struct ib_uqp_object   *uobject;
1799  	void                  (*event_handler)(struct ib_event *, void *);
1800  	void		       *qp_context;
1801  	/* sgid_attrs associated with the AV's */
1802  	const struct ib_gid_attr *av_sgid_attr;
1803  	const struct ib_gid_attr *alt_path_sgid_attr;
1804  	u32			qp_num;
1805  	u32			max_write_sge;
1806  	u32			max_read_sge;
1807  	enum ib_qp_type		qp_type;
1808  	struct ib_rwq_ind_table *rwq_ind_tbl;
1809  	struct ib_qp_security  *qp_sec;
1810  	u32			port;
1811  
1812  	bool			integrity_en;
1813  	/*
1814  	 * Implementation details of the RDMA core, don't use in drivers:
1815  	 */
1816  	struct rdma_restrack_entry     res;
1817  
1818  	/* The counter the qp is bind to */
1819  	struct rdma_counter    *counter;
1820  };
1821  
1822  struct ib_dm {
1823  	struct ib_device  *device;
1824  	u32		   length;
1825  	u32		   flags;
1826  	struct ib_uobject *uobject;
1827  	atomic_t	   usecnt;
1828  };
1829  
1830  struct ib_mr {
1831  	struct ib_device  *device;
1832  	struct ib_pd	  *pd;
1833  	u32		   lkey;
1834  	u32		   rkey;
1835  	u64		   iova;
1836  	u64		   length;
1837  	unsigned int	   page_size;
1838  	enum ib_mr_type	   type;
1839  	bool		   need_inval;
1840  	union {
1841  		struct ib_uobject	*uobject;	/* user */
1842  		struct list_head	qp_entry;	/* FR */
1843  	};
1844  
1845  	struct ib_dm      *dm;
1846  	struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1847  	/*
1848  	 * Implementation details of the RDMA core, don't use in drivers:
1849  	 */
1850  	struct rdma_restrack_entry res;
1851  };
1852  
1853  struct ib_mw {
1854  	struct ib_device	*device;
1855  	struct ib_pd		*pd;
1856  	struct ib_uobject	*uobject;
1857  	u32			rkey;
1858  	enum ib_mw_type         type;
1859  };
1860  
1861  /* Supported steering options */
1862  enum ib_flow_attr_type {
1863  	/* steering according to rule specifications */
1864  	IB_FLOW_ATTR_NORMAL		= 0x0,
1865  	/* default unicast and multicast rule -
1866  	 * receive all Eth traffic which isn't steered to any QP
1867  	 */
1868  	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1869  	/* default multicast rule -
1870  	 * receive all Eth multicast traffic which isn't steered to any QP
1871  	 */
1872  	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1873  	/* sniffer rule - receive all port traffic */
1874  	IB_FLOW_ATTR_SNIFFER		= 0x3
1875  };
1876  
1877  /* Supported steering header types */
1878  enum ib_flow_spec_type {
1879  	/* L2 headers*/
1880  	IB_FLOW_SPEC_ETH		= 0x20,
1881  	IB_FLOW_SPEC_IB			= 0x22,
1882  	/* L3 header*/
1883  	IB_FLOW_SPEC_IPV4		= 0x30,
1884  	IB_FLOW_SPEC_IPV6		= 0x31,
1885  	IB_FLOW_SPEC_ESP                = 0x34,
1886  	/* L4 headers*/
1887  	IB_FLOW_SPEC_TCP		= 0x40,
1888  	IB_FLOW_SPEC_UDP		= 0x41,
1889  	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1890  	IB_FLOW_SPEC_GRE		= 0x51,
1891  	IB_FLOW_SPEC_MPLS		= 0x60,
1892  	IB_FLOW_SPEC_INNER		= 0x100,
1893  	/* Actions */
1894  	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1895  	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1896  	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1897  	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1898  };
1899  #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1900  #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1901  
1902  enum ib_flow_flags {
1903  	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1904  	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1905  	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1906  };
1907  
1908  struct ib_flow_eth_filter {
1909  	u8	dst_mac[6];
1910  	u8	src_mac[6];
1911  	__be16	ether_type;
1912  	__be16	vlan_tag;
1913  	/* Must be last */
1914  	u8	real_sz[];
1915  };
1916  
1917  struct ib_flow_spec_eth {
1918  	u32			  type;
1919  	u16			  size;
1920  	struct ib_flow_eth_filter val;
1921  	struct ib_flow_eth_filter mask;
1922  };
1923  
1924  struct ib_flow_ib_filter {
1925  	__be16 dlid;
1926  	__u8   sl;
1927  	/* Must be last */
1928  	u8	real_sz[];
1929  };
1930  
1931  struct ib_flow_spec_ib {
1932  	u32			 type;
1933  	u16			 size;
1934  	struct ib_flow_ib_filter val;
1935  	struct ib_flow_ib_filter mask;
1936  };
1937  
1938  /* IPv4 header flags */
1939  enum ib_ipv4_flags {
1940  	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1941  	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1942  				    last have this flag set */
1943  };
1944  
1945  struct ib_flow_ipv4_filter {
1946  	__be32	src_ip;
1947  	__be32	dst_ip;
1948  	u8	proto;
1949  	u8	tos;
1950  	u8	ttl;
1951  	u8	flags;
1952  	/* Must be last */
1953  	u8	real_sz[];
1954  };
1955  
1956  struct ib_flow_spec_ipv4 {
1957  	u32			   type;
1958  	u16			   size;
1959  	struct ib_flow_ipv4_filter val;
1960  	struct ib_flow_ipv4_filter mask;
1961  };
1962  
1963  struct ib_flow_ipv6_filter {
1964  	u8	src_ip[16];
1965  	u8	dst_ip[16];
1966  	__be32	flow_label;
1967  	u8	next_hdr;
1968  	u8	traffic_class;
1969  	u8	hop_limit;
1970  	/* Must be last */
1971  	u8	real_sz[];
1972  };
1973  
1974  struct ib_flow_spec_ipv6 {
1975  	u32			   type;
1976  	u16			   size;
1977  	struct ib_flow_ipv6_filter val;
1978  	struct ib_flow_ipv6_filter mask;
1979  };
1980  
1981  struct ib_flow_tcp_udp_filter {
1982  	__be16	dst_port;
1983  	__be16	src_port;
1984  	/* Must be last */
1985  	u8	real_sz[];
1986  };
1987  
1988  struct ib_flow_spec_tcp_udp {
1989  	u32			      type;
1990  	u16			      size;
1991  	struct ib_flow_tcp_udp_filter val;
1992  	struct ib_flow_tcp_udp_filter mask;
1993  };
1994  
1995  struct ib_flow_tunnel_filter {
1996  	__be32	tunnel_id;
1997  	u8	real_sz[];
1998  };
1999  
2000  /* ib_flow_spec_tunnel describes the Vxlan tunnel
2001   * the tunnel_id from val has the vni value
2002   */
2003  struct ib_flow_spec_tunnel {
2004  	u32			      type;
2005  	u16			      size;
2006  	struct ib_flow_tunnel_filter  val;
2007  	struct ib_flow_tunnel_filter  mask;
2008  };
2009  
2010  struct ib_flow_esp_filter {
2011  	__be32	spi;
2012  	__be32  seq;
2013  	/* Must be last */
2014  	u8	real_sz[];
2015  };
2016  
2017  struct ib_flow_spec_esp {
2018  	u32                           type;
2019  	u16			      size;
2020  	struct ib_flow_esp_filter     val;
2021  	struct ib_flow_esp_filter     mask;
2022  };
2023  
2024  struct ib_flow_gre_filter {
2025  	__be16 c_ks_res0_ver;
2026  	__be16 protocol;
2027  	__be32 key;
2028  	/* Must be last */
2029  	u8	real_sz[];
2030  };
2031  
2032  struct ib_flow_spec_gre {
2033  	u32                           type;
2034  	u16			      size;
2035  	struct ib_flow_gre_filter     val;
2036  	struct ib_flow_gre_filter     mask;
2037  };
2038  
2039  struct ib_flow_mpls_filter {
2040  	__be32 tag;
2041  	/* Must be last */
2042  	u8	real_sz[];
2043  };
2044  
2045  struct ib_flow_spec_mpls {
2046  	u32                           type;
2047  	u16			      size;
2048  	struct ib_flow_mpls_filter     val;
2049  	struct ib_flow_mpls_filter     mask;
2050  };
2051  
2052  struct ib_flow_spec_action_tag {
2053  	enum ib_flow_spec_type	      type;
2054  	u16			      size;
2055  	u32                           tag_id;
2056  };
2057  
2058  struct ib_flow_spec_action_drop {
2059  	enum ib_flow_spec_type	      type;
2060  	u16			      size;
2061  };
2062  
2063  struct ib_flow_spec_action_handle {
2064  	enum ib_flow_spec_type	      type;
2065  	u16			      size;
2066  	struct ib_flow_action	     *act;
2067  };
2068  
2069  enum ib_counters_description {
2070  	IB_COUNTER_PACKETS,
2071  	IB_COUNTER_BYTES,
2072  };
2073  
2074  struct ib_flow_spec_action_count {
2075  	enum ib_flow_spec_type type;
2076  	u16 size;
2077  	struct ib_counters *counters;
2078  };
2079  
2080  union ib_flow_spec {
2081  	struct {
2082  		u32			type;
2083  		u16			size;
2084  	};
2085  	struct ib_flow_spec_eth		eth;
2086  	struct ib_flow_spec_ib		ib;
2087  	struct ib_flow_spec_ipv4        ipv4;
2088  	struct ib_flow_spec_tcp_udp	tcp_udp;
2089  	struct ib_flow_spec_ipv6        ipv6;
2090  	struct ib_flow_spec_tunnel      tunnel;
2091  	struct ib_flow_spec_esp		esp;
2092  	struct ib_flow_spec_gre		gre;
2093  	struct ib_flow_spec_mpls	mpls;
2094  	struct ib_flow_spec_action_tag  flow_tag;
2095  	struct ib_flow_spec_action_drop drop;
2096  	struct ib_flow_spec_action_handle action;
2097  	struct ib_flow_spec_action_count flow_count;
2098  };
2099  
2100  struct ib_flow_attr {
2101  	enum ib_flow_attr_type type;
2102  	u16	     size;
2103  	u16	     priority;
2104  	u32	     flags;
2105  	u8	     num_of_specs;
2106  	u32	     port;
2107  	union ib_flow_spec flows[];
2108  };
2109  
2110  struct ib_flow {
2111  	struct ib_qp		*qp;
2112  	struct ib_device	*device;
2113  	struct ib_uobject	*uobject;
2114  };
2115  
2116  enum ib_flow_action_type {
2117  	IB_FLOW_ACTION_UNSPECIFIED,
2118  	IB_FLOW_ACTION_ESP = 1,
2119  };
2120  
2121  struct ib_flow_action_attrs_esp_keymats {
2122  	enum ib_uverbs_flow_action_esp_keymat			protocol;
2123  	union {
2124  		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2125  	} keymat;
2126  };
2127  
2128  struct ib_flow_action_attrs_esp_replays {
2129  	enum ib_uverbs_flow_action_esp_replay			protocol;
2130  	union {
2131  		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2132  	} replay;
2133  };
2134  
2135  enum ib_flow_action_attrs_esp_flags {
2136  	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2137  	 * This is done in order to share the same flags between user-space and
2138  	 * kernel and spare an unnecessary translation.
2139  	 */
2140  
2141  	/* Kernel flags */
2142  	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2143  	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2144  };
2145  
2146  struct ib_flow_spec_list {
2147  	struct ib_flow_spec_list	*next;
2148  	union ib_flow_spec		spec;
2149  };
2150  
2151  struct ib_flow_action_attrs_esp {
2152  	struct ib_flow_action_attrs_esp_keymats		*keymat;
2153  	struct ib_flow_action_attrs_esp_replays		*replay;
2154  	struct ib_flow_spec_list			*encap;
2155  	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2156  	 * Value of 0 is a valid value.
2157  	 */
2158  	u32						esn;
2159  	u32						spi;
2160  	u32						seq;
2161  	u32						tfc_pad;
2162  	/* Use enum ib_flow_action_attrs_esp_flags */
2163  	u64						flags;
2164  	u64						hard_limit_pkts;
2165  };
2166  
2167  struct ib_flow_action {
2168  	struct ib_device		*device;
2169  	struct ib_uobject		*uobject;
2170  	enum ib_flow_action_type	type;
2171  	atomic_t			usecnt;
2172  };
2173  
2174  struct ib_mad;
2175  
2176  enum ib_process_mad_flags {
2177  	IB_MAD_IGNORE_MKEY	= 1,
2178  	IB_MAD_IGNORE_BKEY	= 2,
2179  	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2180  };
2181  
2182  enum ib_mad_result {
2183  	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2184  	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2185  	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2186  	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2187  };
2188  
2189  struct ib_port_cache {
2190  	u64		      subnet_prefix;
2191  	struct ib_pkey_cache  *pkey;
2192  	struct ib_gid_table   *gid;
2193  	u8                     lmc;
2194  	enum ib_port_state     port_state;
2195  };
2196  
2197  struct ib_port_immutable {
2198  	int                           pkey_tbl_len;
2199  	int                           gid_tbl_len;
2200  	u32                           core_cap_flags;
2201  	u32                           max_mad_size;
2202  };
2203  
2204  struct ib_port_data {
2205  	struct ib_device *ib_dev;
2206  
2207  	struct ib_port_immutable immutable;
2208  
2209  	spinlock_t pkey_list_lock;
2210  
2211  	spinlock_t netdev_lock;
2212  
2213  	struct list_head pkey_list;
2214  
2215  	struct ib_port_cache cache;
2216  
2217  	struct net_device __rcu *netdev;
2218  	netdevice_tracker netdev_tracker;
2219  	struct hlist_node ndev_hash_link;
2220  	struct rdma_port_counter port_counter;
2221  	struct ib_port *sysfs;
2222  };
2223  
2224  /* rdma netdev type - specifies protocol type */
2225  enum rdma_netdev_t {
2226  	RDMA_NETDEV_OPA_VNIC,
2227  	RDMA_NETDEV_IPOIB,
2228  };
2229  
2230  /**
2231   * struct rdma_netdev - rdma netdev
2232   * For cases where netstack interfacing is required.
2233   */
2234  struct rdma_netdev {
2235  	void              *clnt_priv;
2236  	struct ib_device  *hca;
2237  	u32		   port_num;
2238  	int                mtu;
2239  
2240  	/*
2241  	 * cleanup function must be specified.
2242  	 * FIXME: This is only used for OPA_VNIC and that usage should be
2243  	 * removed too.
2244  	 */
2245  	void (*free_rdma_netdev)(struct net_device *netdev);
2246  
2247  	/* control functions */
2248  	void (*set_id)(struct net_device *netdev, int id);
2249  	/* send packet */
2250  	int (*send)(struct net_device *dev, struct sk_buff *skb,
2251  		    struct ib_ah *address, u32 dqpn);
2252  	/* multicast */
2253  	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2254  			    union ib_gid *gid, u16 mlid,
2255  			    int set_qkey, u32 qkey);
2256  	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2257  			    union ib_gid *gid, u16 mlid);
2258  	/* timeout */
2259  	void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2260  };
2261  
2262  struct rdma_netdev_alloc_params {
2263  	size_t sizeof_priv;
2264  	unsigned int txqs;
2265  	unsigned int rxqs;
2266  	void *param;
2267  
2268  	int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2269  				      struct net_device *netdev, void *param);
2270  };
2271  
2272  struct ib_odp_counters {
2273  	atomic64_t faults;
2274  	atomic64_t invalidations;
2275  	atomic64_t prefetch;
2276  };
2277  
2278  struct ib_counters {
2279  	struct ib_device	*device;
2280  	struct ib_uobject	*uobject;
2281  	/* num of objects attached */
2282  	atomic_t	usecnt;
2283  };
2284  
2285  struct ib_counters_read_attr {
2286  	u64	*counters_buff;
2287  	u32	ncounters;
2288  	u32	flags; /* use enum ib_read_counters_flags */
2289  };
2290  
2291  struct uverbs_attr_bundle;
2292  struct iw_cm_id;
2293  struct iw_cm_conn_param;
2294  
2295  #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2296  	.size_##ib_struct =                                                    \
2297  		(sizeof(struct drv_struct) +                                   \
2298  		 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2299  		 BUILD_BUG_ON_ZERO(                                            \
2300  			 !__same_type(((struct drv_struct *)NULL)->member,     \
2301  				      struct ib_struct)))
2302  
2303  #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                          \
2304  	((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2305  					   gfp, false))
2306  
2307  #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type)                              \
2308  	((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2309  					   GFP_KERNEL, true))
2310  
2311  #define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2312  	rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2313  
2314  #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2315  
2316  struct rdma_user_mmap_entry {
2317  	struct kref ref;
2318  	struct ib_ucontext *ucontext;
2319  	unsigned long start_pgoff;
2320  	size_t npages;
2321  	bool driver_removed;
2322  };
2323  
2324  /* Return the offset (in bytes) the user should pass to libc's mmap() */
2325  static inline u64
rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry * entry)2326  rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2327  {
2328  	return (u64)entry->start_pgoff << PAGE_SHIFT;
2329  }
2330  
2331  /**
2332   * struct ib_device_ops - InfiniBand device operations
2333   * This structure defines all the InfiniBand device operations, providers will
2334   * need to define the supported operations, otherwise they will be set to null.
2335   */
2336  struct ib_device_ops {
2337  	struct module *owner;
2338  	enum rdma_driver_id driver_id;
2339  	u32 uverbs_abi_ver;
2340  	unsigned int uverbs_no_driver_id_binding:1;
2341  
2342  	/*
2343  	 * NOTE: New drivers should not make use of device_group; instead new
2344  	 * device parameter should be exposed via netlink command. This
2345  	 * mechanism exists only for existing drivers.
2346  	 */
2347  	const struct attribute_group *device_group;
2348  	const struct attribute_group **port_groups;
2349  
2350  	int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2351  			 const struct ib_send_wr **bad_send_wr);
2352  	int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2353  			 const struct ib_recv_wr **bad_recv_wr);
2354  	void (*drain_rq)(struct ib_qp *qp);
2355  	void (*drain_sq)(struct ib_qp *qp);
2356  	int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2357  	int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2358  	int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2359  	int (*post_srq_recv)(struct ib_srq *srq,
2360  			     const struct ib_recv_wr *recv_wr,
2361  			     const struct ib_recv_wr **bad_recv_wr);
2362  	int (*process_mad)(struct ib_device *device, int process_mad_flags,
2363  			   u32 port_num, const struct ib_wc *in_wc,
2364  			   const struct ib_grh *in_grh,
2365  			   const struct ib_mad *in_mad, struct ib_mad *out_mad,
2366  			   size_t *out_mad_size, u16 *out_mad_pkey_index);
2367  	int (*query_device)(struct ib_device *device,
2368  			    struct ib_device_attr *device_attr,
2369  			    struct ib_udata *udata);
2370  	int (*modify_device)(struct ib_device *device, int device_modify_mask,
2371  			     struct ib_device_modify *device_modify);
2372  	void (*get_dev_fw_str)(struct ib_device *device, char *str);
2373  	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2374  						     int comp_vector);
2375  	int (*query_port)(struct ib_device *device, u32 port_num,
2376  			  struct ib_port_attr *port_attr);
2377  	int (*modify_port)(struct ib_device *device, u32 port_num,
2378  			   int port_modify_mask,
2379  			   struct ib_port_modify *port_modify);
2380  	/**
2381  	 * The following mandatory functions are used only at device
2382  	 * registration.  Keep functions such as these at the end of this
2383  	 * structure to avoid cache line misses when accessing struct ib_device
2384  	 * in fast paths.
2385  	 */
2386  	int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2387  				  struct ib_port_immutable *immutable);
2388  	enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2389  					       u32 port_num);
2390  	/**
2391  	 * When calling get_netdev, the HW vendor's driver should return the
2392  	 * net device of device @device at port @port_num or NULL if such
2393  	 * a net device doesn't exist. The vendor driver should call dev_hold
2394  	 * on this net device. The HW vendor's device driver must guarantee
2395  	 * that this function returns NULL before the net device has finished
2396  	 * NETDEV_UNREGISTER state.
2397  	 */
2398  	struct net_device *(*get_netdev)(struct ib_device *device,
2399  					 u32 port_num);
2400  	/**
2401  	 * rdma netdev operation
2402  	 *
2403  	 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2404  	 * must return -EOPNOTSUPP if it doesn't support the specified type.
2405  	 */
2406  	struct net_device *(*alloc_rdma_netdev)(
2407  		struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2408  		const char *name, unsigned char name_assign_type,
2409  		void (*setup)(struct net_device *));
2410  
2411  	int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2412  				      enum rdma_netdev_t type,
2413  				      struct rdma_netdev_alloc_params *params);
2414  	/**
2415  	 * query_gid should be return GID value for @device, when @port_num
2416  	 * link layer is either IB or iWarp. It is no-op if @port_num port
2417  	 * is RoCE link layer.
2418  	 */
2419  	int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2420  			 union ib_gid *gid);
2421  	/**
2422  	 * When calling add_gid, the HW vendor's driver should add the gid
2423  	 * of device of port at gid index available at @attr. Meta-info of
2424  	 * that gid (for example, the network device related to this gid) is
2425  	 * available at @attr. @context allows the HW vendor driver to store
2426  	 * extra information together with a GID entry. The HW vendor driver may
2427  	 * allocate memory to contain this information and store it in @context
2428  	 * when a new GID entry is written to. Params are consistent until the
2429  	 * next call of add_gid or delete_gid. The function should return 0 on
2430  	 * success or error otherwise. The function could be called
2431  	 * concurrently for different ports. This function is only called when
2432  	 * roce_gid_table is used.
2433  	 */
2434  	int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2435  	/**
2436  	 * When calling del_gid, the HW vendor's driver should delete the
2437  	 * gid of device @device at gid index gid_index of port port_num
2438  	 * available in @attr.
2439  	 * Upon the deletion of a GID entry, the HW vendor must free any
2440  	 * allocated memory. The caller will clear @context afterwards.
2441  	 * This function is only called when roce_gid_table is used.
2442  	 */
2443  	int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2444  	int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2445  			  u16 *pkey);
2446  	int (*alloc_ucontext)(struct ib_ucontext *context,
2447  			      struct ib_udata *udata);
2448  	void (*dealloc_ucontext)(struct ib_ucontext *context);
2449  	int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2450  	/**
2451  	 * This will be called once refcount of an entry in mmap_xa reaches
2452  	 * zero. The type of the memory that was mapped may differ between
2453  	 * entries and is opaque to the rdma_user_mmap interface.
2454  	 * Therefore needs to be implemented by the driver in mmap_free.
2455  	 */
2456  	void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2457  	void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2458  	int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2459  	int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2460  	int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2461  			 struct ib_udata *udata);
2462  	int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2463  			      struct ib_udata *udata);
2464  	int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2465  	int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2466  	int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2467  	int (*create_srq)(struct ib_srq *srq,
2468  			  struct ib_srq_init_attr *srq_init_attr,
2469  			  struct ib_udata *udata);
2470  	int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2471  			  enum ib_srq_attr_mask srq_attr_mask,
2472  			  struct ib_udata *udata);
2473  	int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2474  	int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2475  	int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2476  			 struct ib_udata *udata);
2477  	int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2478  			 int qp_attr_mask, struct ib_udata *udata);
2479  	int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2480  			int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2481  	int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2482  	int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2483  			 struct ib_udata *udata);
2484  	int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2485  	int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2486  	int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2487  	struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2488  	struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2489  				     u64 virt_addr, int mr_access_flags,
2490  				     struct ib_udata *udata);
2491  	struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2492  					    u64 length, u64 virt_addr, int fd,
2493  					    int mr_access_flags,
2494  					    struct ib_udata *udata);
2495  	struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2496  				       u64 length, u64 virt_addr,
2497  				       int mr_access_flags, struct ib_pd *pd,
2498  				       struct ib_udata *udata);
2499  	int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2500  	struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2501  				  u32 max_num_sg);
2502  	struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2503  					    u32 max_num_data_sg,
2504  					    u32 max_num_meta_sg);
2505  	int (*advise_mr)(struct ib_pd *pd,
2506  			 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2507  			 struct ib_sge *sg_list, u32 num_sge,
2508  			 struct uverbs_attr_bundle *attrs);
2509  
2510  	/*
2511  	 * Kernel users should universally support relaxed ordering (RO), as
2512  	 * they are designed to read data only after observing the CQE and use
2513  	 * the DMA API correctly.
2514  	 *
2515  	 * Some drivers implicitly enable RO if platform supports it.
2516  	 */
2517  	int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2518  			 unsigned int *sg_offset);
2519  	int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2520  			       struct ib_mr_status *mr_status);
2521  	int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2522  	int (*dealloc_mw)(struct ib_mw *mw);
2523  	int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2524  	int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2525  	int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2526  	int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2527  	struct ib_flow *(*create_flow)(struct ib_qp *qp,
2528  				       struct ib_flow_attr *flow_attr,
2529  				       struct ib_udata *udata);
2530  	int (*destroy_flow)(struct ib_flow *flow_id);
2531  	int (*destroy_flow_action)(struct ib_flow_action *action);
2532  	int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2533  				 int state);
2534  	int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2535  			     struct ifla_vf_info *ivf);
2536  	int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2537  			    struct ifla_vf_stats *stats);
2538  	int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2539  			    struct ifla_vf_guid *node_guid,
2540  			    struct ifla_vf_guid *port_guid);
2541  	int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2542  			   int type);
2543  	struct ib_wq *(*create_wq)(struct ib_pd *pd,
2544  				   struct ib_wq_init_attr *init_attr,
2545  				   struct ib_udata *udata);
2546  	int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2547  	int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2548  			 u32 wq_attr_mask, struct ib_udata *udata);
2549  	int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2550  				    struct ib_rwq_ind_table_init_attr *init_attr,
2551  				    struct ib_udata *udata);
2552  	int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2553  	struct ib_dm *(*alloc_dm)(struct ib_device *device,
2554  				  struct ib_ucontext *context,
2555  				  struct ib_dm_alloc_attr *attr,
2556  				  struct uverbs_attr_bundle *attrs);
2557  	int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2558  	struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2559  				   struct ib_dm_mr_attr *attr,
2560  				   struct uverbs_attr_bundle *attrs);
2561  	int (*create_counters)(struct ib_counters *counters,
2562  			       struct uverbs_attr_bundle *attrs);
2563  	int (*destroy_counters)(struct ib_counters *counters);
2564  	int (*read_counters)(struct ib_counters *counters,
2565  			     struct ib_counters_read_attr *counters_read_attr,
2566  			     struct uverbs_attr_bundle *attrs);
2567  	int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2568  			    int data_sg_nents, unsigned int *data_sg_offset,
2569  			    struct scatterlist *meta_sg, int meta_sg_nents,
2570  			    unsigned int *meta_sg_offset);
2571  
2572  	/**
2573  	 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2574  	 *   fill in the driver initialized data.  The struct is kfree()'ed by
2575  	 *   the sysfs core when the device is removed.  A lifespan of -1 in the
2576  	 *   return struct tells the core to set a default lifespan.
2577  	 */
2578  	struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2579  	struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2580  						     u32 port_num);
2581  	/**
2582  	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2583  	 * @index - The index in the value array we wish to have updated, or
2584  	 *   num_counters if we want all stats updated
2585  	 * Return codes -
2586  	 *   < 0 - Error, no counters updated
2587  	 *   index - Updated the single counter pointed to by index
2588  	 *   num_counters - Updated all counters (will reset the timestamp
2589  	 *     and prevent further calls for lifespan milliseconds)
2590  	 * Drivers are allowed to update all counters in leiu of just the
2591  	 *   one given in index at their option
2592  	 */
2593  	int (*get_hw_stats)(struct ib_device *device,
2594  			    struct rdma_hw_stats *stats, u32 port, int index);
2595  
2596  	/**
2597  	 * modify_hw_stat - Modify the counter configuration
2598  	 * @enable: true/false when enable/disable a counter
2599  	 * Return codes - 0 on success or error code otherwise.
2600  	 */
2601  	int (*modify_hw_stat)(struct ib_device *device, u32 port,
2602  			      unsigned int counter_index, bool enable);
2603  	/**
2604  	 * Allows rdma drivers to add their own restrack attributes.
2605  	 */
2606  	int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2607  	int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2608  	int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2609  	int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2610  	int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2611  	int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2612  	int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2613  
2614  	/* Device lifecycle callbacks */
2615  	/*
2616  	 * Called after the device becomes registered, before clients are
2617  	 * attached
2618  	 */
2619  	int (*enable_driver)(struct ib_device *dev);
2620  	/*
2621  	 * This is called as part of ib_dealloc_device().
2622  	 */
2623  	void (*dealloc_driver)(struct ib_device *dev);
2624  
2625  	/* iWarp CM callbacks */
2626  	void (*iw_add_ref)(struct ib_qp *qp);
2627  	void (*iw_rem_ref)(struct ib_qp *qp);
2628  	struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2629  	int (*iw_connect)(struct iw_cm_id *cm_id,
2630  			  struct iw_cm_conn_param *conn_param);
2631  	int (*iw_accept)(struct iw_cm_id *cm_id,
2632  			 struct iw_cm_conn_param *conn_param);
2633  	int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2634  			 u8 pdata_len);
2635  	int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2636  	int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2637  	/**
2638  	 * counter_bind_qp - Bind a QP to a counter.
2639  	 * @counter - The counter to be bound. If counter->id is zero then
2640  	 *   the driver needs to allocate a new counter and set counter->id
2641  	 */
2642  	int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2643  	/**
2644  	 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2645  	 *   counter and bind it onto the default one
2646  	 */
2647  	int (*counter_unbind_qp)(struct ib_qp *qp);
2648  	/**
2649  	 * counter_dealloc -De-allocate the hw counter
2650  	 */
2651  	int (*counter_dealloc)(struct rdma_counter *counter);
2652  	/**
2653  	 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2654  	 * the driver initialized data.
2655  	 */
2656  	struct rdma_hw_stats *(*counter_alloc_stats)(
2657  		struct rdma_counter *counter);
2658  	/**
2659  	 * counter_update_stats - Query the stats value of this counter
2660  	 */
2661  	int (*counter_update_stats)(struct rdma_counter *counter);
2662  
2663  	/**
2664  	 * Allows rdma drivers to add their own restrack attributes
2665  	 * dumped via 'rdma stat' iproute2 command.
2666  	 */
2667  	int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2668  
2669  	/* query driver for its ucontext properties */
2670  	int (*query_ucontext)(struct ib_ucontext *context,
2671  			      struct uverbs_attr_bundle *attrs);
2672  
2673  	/*
2674  	 * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2675  	 * Everyone else relies on Linux memory management model.
2676  	 */
2677  	int (*get_numa_node)(struct ib_device *dev);
2678  
2679  	DECLARE_RDMA_OBJ_SIZE(ib_ah);
2680  	DECLARE_RDMA_OBJ_SIZE(ib_counters);
2681  	DECLARE_RDMA_OBJ_SIZE(ib_cq);
2682  	DECLARE_RDMA_OBJ_SIZE(ib_mw);
2683  	DECLARE_RDMA_OBJ_SIZE(ib_pd);
2684  	DECLARE_RDMA_OBJ_SIZE(ib_qp);
2685  	DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2686  	DECLARE_RDMA_OBJ_SIZE(ib_srq);
2687  	DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2688  	DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2689  };
2690  
2691  struct ib_core_device {
2692  	/* device must be the first element in structure until,
2693  	 * union of ib_core_device and device exists in ib_device.
2694  	 */
2695  	struct device dev;
2696  	possible_net_t rdma_net;
2697  	struct kobject *ports_kobj;
2698  	struct list_head port_list;
2699  	struct ib_device *owner; /* reach back to owner ib_device */
2700  };
2701  
2702  struct rdma_restrack_root;
2703  struct ib_device {
2704  	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2705  	struct device                *dma_device;
2706  	struct ib_device_ops	     ops;
2707  	char                          name[IB_DEVICE_NAME_MAX];
2708  	struct rcu_head rcu_head;
2709  
2710  	struct list_head              event_handler_list;
2711  	/* Protects event_handler_list */
2712  	struct rw_semaphore event_handler_rwsem;
2713  
2714  	/* Protects QP's event_handler calls and open_qp list */
2715  	spinlock_t qp_open_list_lock;
2716  
2717  	struct rw_semaphore	      client_data_rwsem;
2718  	struct xarray                 client_data;
2719  	struct mutex                  unregistration_lock;
2720  
2721  	/* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2722  	rwlock_t cache_lock;
2723  	/**
2724  	 * port_data is indexed by port number
2725  	 */
2726  	struct ib_port_data *port_data;
2727  
2728  	int			      num_comp_vectors;
2729  
2730  	union {
2731  		struct device		dev;
2732  		struct ib_core_device	coredev;
2733  	};
2734  
2735  	/* First group is for device attributes,
2736  	 * Second group is for driver provided attributes (optional).
2737  	 * Third group is for the hw_stats
2738  	 * It is a NULL terminated array.
2739  	 */
2740  	const struct attribute_group	*groups[4];
2741  
2742  	u64			     uverbs_cmd_mask;
2743  
2744  	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2745  	__be64			     node_guid;
2746  	u32			     local_dma_lkey;
2747  	u16                          is_switch:1;
2748  	/* Indicates kernel verbs support, should not be used in drivers */
2749  	u16                          kverbs_provider:1;
2750  	/* CQ adaptive moderation (RDMA DIM) */
2751  	u16                          use_cq_dim:1;
2752  	u8                           node_type;
2753  	u32			     phys_port_cnt;
2754  	struct ib_device_attr        attrs;
2755  	struct hw_stats_device_data *hw_stats_data;
2756  
2757  #ifdef CONFIG_CGROUP_RDMA
2758  	struct rdmacg_device         cg_device;
2759  #endif
2760  
2761  	u32                          index;
2762  
2763  	spinlock_t                   cq_pools_lock;
2764  	struct list_head             cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2765  
2766  	struct rdma_restrack_root *res;
2767  
2768  	const struct uapi_definition   *driver_def;
2769  
2770  	/*
2771  	 * Positive refcount indicates that the device is currently
2772  	 * registered and cannot be unregistered.
2773  	 */
2774  	refcount_t refcount;
2775  	struct completion unreg_completion;
2776  	struct work_struct unregistration_work;
2777  
2778  	const struct rdma_link_ops *link_ops;
2779  
2780  	/* Protects compat_devs xarray modifications */
2781  	struct mutex compat_devs_mutex;
2782  	/* Maintains compat devices for each net namespace */
2783  	struct xarray compat_devs;
2784  
2785  	/* Used by iWarp CM */
2786  	char iw_ifname[IFNAMSIZ];
2787  	u32 iw_driver_flags;
2788  	u32 lag_flags;
2789  };
2790  
rdma_zalloc_obj(struct ib_device * dev,size_t size,gfp_t gfp,bool is_numa_aware)2791  static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2792  				    gfp_t gfp, bool is_numa_aware)
2793  {
2794  	if (is_numa_aware && dev->ops.get_numa_node)
2795  		return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2796  
2797  	return kzalloc(size, gfp);
2798  }
2799  
2800  struct ib_client_nl_info;
2801  struct ib_client {
2802  	const char *name;
2803  	int (*add)(struct ib_device *ibdev);
2804  	void (*remove)(struct ib_device *, void *client_data);
2805  	void (*rename)(struct ib_device *dev, void *client_data);
2806  	int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2807  			   struct ib_client_nl_info *res);
2808  	int (*get_global_nl_info)(struct ib_client_nl_info *res);
2809  
2810  	/* Returns the net_dev belonging to this ib_client and matching the
2811  	 * given parameters.
2812  	 * @dev:	 An RDMA device that the net_dev use for communication.
2813  	 * @port:	 A physical port number on the RDMA device.
2814  	 * @pkey:	 P_Key that the net_dev uses if applicable.
2815  	 * @gid:	 A GID that the net_dev uses to communicate.
2816  	 * @addr:	 An IP address the net_dev is configured with.
2817  	 * @client_data: The device's client data set by ib_set_client_data().
2818  	 *
2819  	 * An ib_client that implements a net_dev on top of RDMA devices
2820  	 * (such as IP over IB) should implement this callback, allowing the
2821  	 * rdma_cm module to find the right net_dev for a given request.
2822  	 *
2823  	 * The caller is responsible for calling dev_put on the returned
2824  	 * netdev. */
2825  	struct net_device *(*get_net_dev_by_params)(
2826  			struct ib_device *dev,
2827  			u32 port,
2828  			u16 pkey,
2829  			const union ib_gid *gid,
2830  			const struct sockaddr *addr,
2831  			void *client_data);
2832  
2833  	refcount_t uses;
2834  	struct completion uses_zero;
2835  	u32 client_id;
2836  
2837  	/* kverbs are not required by the client */
2838  	u8 no_kverbs_req:1;
2839  };
2840  
2841  /*
2842   * IB block DMA iterator
2843   *
2844   * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2845   * to a HW supported page size.
2846   */
2847  struct ib_block_iter {
2848  	/* internal states */
2849  	struct scatterlist *__sg;	/* sg holding the current aligned block */
2850  	dma_addr_t __dma_addr;		/* unaligned DMA address of this block */
2851  	size_t __sg_numblocks;		/* ib_umem_num_dma_blocks() */
2852  	unsigned int __sg_nents;	/* number of SG entries */
2853  	unsigned int __sg_advance;	/* number of bytes to advance in sg in next step */
2854  	unsigned int __pg_bit;		/* alignment of current block */
2855  };
2856  
2857  struct ib_device *_ib_alloc_device(size_t size);
2858  #define ib_alloc_device(drv_struct, member)                                    \
2859  	container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2860  				      BUILD_BUG_ON_ZERO(offsetof(              \
2861  					      struct drv_struct, member))),    \
2862  		     struct drv_struct, member)
2863  
2864  void ib_dealloc_device(struct ib_device *device);
2865  
2866  void ib_get_device_fw_str(struct ib_device *device, char *str);
2867  
2868  int ib_register_device(struct ib_device *device, const char *name,
2869  		       struct device *dma_device);
2870  void ib_unregister_device(struct ib_device *device);
2871  void ib_unregister_driver(enum rdma_driver_id driver_id);
2872  void ib_unregister_device_and_put(struct ib_device *device);
2873  void ib_unregister_device_queued(struct ib_device *ib_dev);
2874  
2875  int ib_register_client   (struct ib_client *client);
2876  void ib_unregister_client(struct ib_client *client);
2877  
2878  void __rdma_block_iter_start(struct ib_block_iter *biter,
2879  			     struct scatterlist *sglist,
2880  			     unsigned int nents,
2881  			     unsigned long pgsz);
2882  bool __rdma_block_iter_next(struct ib_block_iter *biter);
2883  
2884  /**
2885   * rdma_block_iter_dma_address - get the aligned dma address of the current
2886   * block held by the block iterator.
2887   * @biter: block iterator holding the memory block
2888   */
2889  static inline dma_addr_t
rdma_block_iter_dma_address(struct ib_block_iter * biter)2890  rdma_block_iter_dma_address(struct ib_block_iter *biter)
2891  {
2892  	return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2893  }
2894  
2895  /**
2896   * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2897   * @sglist: sglist to iterate over
2898   * @biter: block iterator holding the memory block
2899   * @nents: maximum number of sg entries to iterate over
2900   * @pgsz: best HW supported page size to use
2901   *
2902   * Callers may use rdma_block_iter_dma_address() to get each
2903   * blocks aligned DMA address.
2904   */
2905  #define rdma_for_each_block(sglist, biter, nents, pgsz)		\
2906  	for (__rdma_block_iter_start(biter, sglist, nents,	\
2907  				     pgsz);			\
2908  	     __rdma_block_iter_next(biter);)
2909  
2910  /**
2911   * ib_get_client_data - Get IB client context
2912   * @device:Device to get context for
2913   * @client:Client to get context for
2914   *
2915   * ib_get_client_data() returns the client context data set with
2916   * ib_set_client_data(). This can only be called while the client is
2917   * registered to the device, once the ib_client remove() callback returns this
2918   * cannot be called.
2919   */
ib_get_client_data(struct ib_device * device,struct ib_client * client)2920  static inline void *ib_get_client_data(struct ib_device *device,
2921  				       struct ib_client *client)
2922  {
2923  	return xa_load(&device->client_data, client->client_id);
2924  }
2925  void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2926  			 void *data);
2927  void ib_set_device_ops(struct ib_device *device,
2928  		       const struct ib_device_ops *ops);
2929  
2930  int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2931  		      unsigned long pfn, unsigned long size, pgprot_t prot,
2932  		      struct rdma_user_mmap_entry *entry);
2933  int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2934  				struct rdma_user_mmap_entry *entry,
2935  				size_t length);
2936  int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2937  				      struct rdma_user_mmap_entry *entry,
2938  				      size_t length, u32 min_pgoff,
2939  				      u32 max_pgoff);
2940  
2941  static inline int
rdma_user_mmap_entry_insert_exact(struct ib_ucontext * ucontext,struct rdma_user_mmap_entry * entry,size_t length,u32 pgoff)2942  rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
2943  				  struct rdma_user_mmap_entry *entry,
2944  				  size_t length, u32 pgoff)
2945  {
2946  	return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
2947  						 pgoff);
2948  }
2949  
2950  struct rdma_user_mmap_entry *
2951  rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2952  			       unsigned long pgoff);
2953  struct rdma_user_mmap_entry *
2954  rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2955  			 struct vm_area_struct *vma);
2956  void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2957  
2958  void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2959  
ib_copy_from_udata(void * dest,struct ib_udata * udata,size_t len)2960  static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2961  {
2962  	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2963  }
2964  
ib_copy_to_udata(struct ib_udata * udata,void * src,size_t len)2965  static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2966  {
2967  	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2968  }
2969  
ib_is_buffer_cleared(const void __user * p,size_t len)2970  static inline bool ib_is_buffer_cleared(const void __user *p,
2971  					size_t len)
2972  {
2973  	bool ret;
2974  	u8 *buf;
2975  
2976  	if (len > USHRT_MAX)
2977  		return false;
2978  
2979  	buf = memdup_user(p, len);
2980  	if (IS_ERR(buf))
2981  		return false;
2982  
2983  	ret = !memchr_inv(buf, 0, len);
2984  	kfree(buf);
2985  	return ret;
2986  }
2987  
ib_is_udata_cleared(struct ib_udata * udata,size_t offset,size_t len)2988  static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2989  				       size_t offset,
2990  				       size_t len)
2991  {
2992  	return ib_is_buffer_cleared(udata->inbuf + offset, len);
2993  }
2994  
2995  /**
2996   * ib_modify_qp_is_ok - Check that the supplied attribute mask
2997   * contains all required attributes and no attributes not allowed for
2998   * the given QP state transition.
2999   * @cur_state: Current QP state
3000   * @next_state: Next QP state
3001   * @type: QP type
3002   * @mask: Mask of supplied QP attributes
3003   *
3004   * This function is a helper function that a low-level driver's
3005   * modify_qp method can use to validate the consumer's input.  It
3006   * checks that cur_state and next_state are valid QP states, that a
3007   * transition from cur_state to next_state is allowed by the IB spec,
3008   * and that the attribute mask supplied is allowed for the transition.
3009   */
3010  bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
3011  			enum ib_qp_type type, enum ib_qp_attr_mask mask);
3012  
3013  void ib_register_event_handler(struct ib_event_handler *event_handler);
3014  void ib_unregister_event_handler(struct ib_event_handler *event_handler);
3015  void ib_dispatch_event(const struct ib_event *event);
3016  
3017  int ib_query_port(struct ib_device *device,
3018  		  u32 port_num, struct ib_port_attr *port_attr);
3019  
3020  enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3021  					       u32 port_num);
3022  
3023  /**
3024   * rdma_cap_ib_switch - Check if the device is IB switch
3025   * @device: Device to check
3026   *
3027   * Device driver is responsible for setting is_switch bit on
3028   * in ib_device structure at init time.
3029   *
3030   * Return: true if the device is IB switch.
3031   */
rdma_cap_ib_switch(const struct ib_device * device)3032  static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3033  {
3034  	return device->is_switch;
3035  }
3036  
3037  /**
3038   * rdma_start_port - Return the first valid port number for the device
3039   * specified
3040   *
3041   * @device: Device to be checked
3042   *
3043   * Return start port number
3044   */
rdma_start_port(const struct ib_device * device)3045  static inline u32 rdma_start_port(const struct ib_device *device)
3046  {
3047  	return rdma_cap_ib_switch(device) ? 0 : 1;
3048  }
3049  
3050  /**
3051   * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3052   * @device - The struct ib_device * to iterate over
3053   * @iter - The unsigned int to store the port number
3054   */
3055  #define rdma_for_each_port(device, iter)                                       \
3056  	for (iter = rdma_start_port(device +				       \
3057  				    BUILD_BUG_ON_ZERO(!__same_type(u32,	       \
3058  								   iter)));    \
3059  	     iter <= rdma_end_port(device); iter++)
3060  
3061  /**
3062   * rdma_end_port - Return the last valid port number for the device
3063   * specified
3064   *
3065   * @device: Device to be checked
3066   *
3067   * Return last port number
3068   */
rdma_end_port(const struct ib_device * device)3069  static inline u32 rdma_end_port(const struct ib_device *device)
3070  {
3071  	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3072  }
3073  
rdma_is_port_valid(const struct ib_device * device,unsigned int port)3074  static inline int rdma_is_port_valid(const struct ib_device *device,
3075  				     unsigned int port)
3076  {
3077  	return (port >= rdma_start_port(device) &&
3078  		port <= rdma_end_port(device));
3079  }
3080  
rdma_is_grh_required(const struct ib_device * device,u32 port_num)3081  static inline bool rdma_is_grh_required(const struct ib_device *device,
3082  					u32 port_num)
3083  {
3084  	return device->port_data[port_num].immutable.core_cap_flags &
3085  	       RDMA_CORE_PORT_IB_GRH_REQUIRED;
3086  }
3087  
rdma_protocol_ib(const struct ib_device * device,u32 port_num)3088  static inline bool rdma_protocol_ib(const struct ib_device *device,
3089  				    u32 port_num)
3090  {
3091  	return device->port_data[port_num].immutable.core_cap_flags &
3092  	       RDMA_CORE_CAP_PROT_IB;
3093  }
3094  
rdma_protocol_roce(const struct ib_device * device,u32 port_num)3095  static inline bool rdma_protocol_roce(const struct ib_device *device,
3096  				      u32 port_num)
3097  {
3098  	return device->port_data[port_num].immutable.core_cap_flags &
3099  	       (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3100  }
3101  
rdma_protocol_roce_udp_encap(const struct ib_device * device,u32 port_num)3102  static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3103  						u32 port_num)
3104  {
3105  	return device->port_data[port_num].immutable.core_cap_flags &
3106  	       RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3107  }
3108  
rdma_protocol_roce_eth_encap(const struct ib_device * device,u32 port_num)3109  static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3110  						u32 port_num)
3111  {
3112  	return device->port_data[port_num].immutable.core_cap_flags &
3113  	       RDMA_CORE_CAP_PROT_ROCE;
3114  }
3115  
rdma_protocol_iwarp(const struct ib_device * device,u32 port_num)3116  static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3117  				       u32 port_num)
3118  {
3119  	return device->port_data[port_num].immutable.core_cap_flags &
3120  	       RDMA_CORE_CAP_PROT_IWARP;
3121  }
3122  
rdma_ib_or_roce(const struct ib_device * device,u32 port_num)3123  static inline bool rdma_ib_or_roce(const struct ib_device *device,
3124  				   u32 port_num)
3125  {
3126  	return rdma_protocol_ib(device, port_num) ||
3127  		rdma_protocol_roce(device, port_num);
3128  }
3129  
rdma_protocol_raw_packet(const struct ib_device * device,u32 port_num)3130  static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3131  					    u32 port_num)
3132  {
3133  	return device->port_data[port_num].immutable.core_cap_flags &
3134  	       RDMA_CORE_CAP_PROT_RAW_PACKET;
3135  }
3136  
rdma_protocol_usnic(const struct ib_device * device,u32 port_num)3137  static inline bool rdma_protocol_usnic(const struct ib_device *device,
3138  				       u32 port_num)
3139  {
3140  	return device->port_data[port_num].immutable.core_cap_flags &
3141  	       RDMA_CORE_CAP_PROT_USNIC;
3142  }
3143  
3144  /**
3145   * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3146   * Management Datagrams.
3147   * @device: Device to check
3148   * @port_num: Port number to check
3149   *
3150   * Management Datagrams (MAD) are a required part of the InfiniBand
3151   * specification and are supported on all InfiniBand devices.  A slightly
3152   * extended version are also supported on OPA interfaces.
3153   *
3154   * Return: true if the port supports sending/receiving of MAD packets.
3155   */
rdma_cap_ib_mad(const struct ib_device * device,u32 port_num)3156  static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3157  {
3158  	return device->port_data[port_num].immutable.core_cap_flags &
3159  	       RDMA_CORE_CAP_IB_MAD;
3160  }
3161  
3162  /**
3163   * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3164   * Management Datagrams.
3165   * @device: Device to check
3166   * @port_num: Port number to check
3167   *
3168   * Intel OmniPath devices extend and/or replace the InfiniBand Management
3169   * datagrams with their own versions.  These OPA MADs share many but not all of
3170   * the characteristics of InfiniBand MADs.
3171   *
3172   * OPA MADs differ in the following ways:
3173   *
3174   *    1) MADs are variable size up to 2K
3175   *       IBTA defined MADs remain fixed at 256 bytes
3176   *    2) OPA SMPs must carry valid PKeys
3177   *    3) OPA SMP packets are a different format
3178   *
3179   * Return: true if the port supports OPA MAD packet formats.
3180   */
rdma_cap_opa_mad(struct ib_device * device,u32 port_num)3181  static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3182  {
3183  	return device->port_data[port_num].immutable.core_cap_flags &
3184  		RDMA_CORE_CAP_OPA_MAD;
3185  }
3186  
3187  /**
3188   * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3189   * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3190   * @device: Device to check
3191   * @port_num: Port number to check
3192   *
3193   * Each InfiniBand node is required to provide a Subnet Management Agent
3194   * that the subnet manager can access.  Prior to the fabric being fully
3195   * configured by the subnet manager, the SMA is accessed via a well known
3196   * interface called the Subnet Management Interface (SMI).  This interface
3197   * uses directed route packets to communicate with the SM to get around the
3198   * chicken and egg problem of the SM needing to know what's on the fabric
3199   * in order to configure the fabric, and needing to configure the fabric in
3200   * order to send packets to the devices on the fabric.  These directed
3201   * route packets do not need the fabric fully configured in order to reach
3202   * their destination.  The SMI is the only method allowed to send
3203   * directed route packets on an InfiniBand fabric.
3204   *
3205   * Return: true if the port provides an SMI.
3206   */
rdma_cap_ib_smi(const struct ib_device * device,u32 port_num)3207  static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3208  {
3209  	return device->port_data[port_num].immutable.core_cap_flags &
3210  	       RDMA_CORE_CAP_IB_SMI;
3211  }
3212  
3213  /**
3214   * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3215   * Communication Manager.
3216   * @device: Device to check
3217   * @port_num: Port number to check
3218   *
3219   * The InfiniBand Communication Manager is one of many pre-defined General
3220   * Service Agents (GSA) that are accessed via the General Service
3221   * Interface (GSI).  It's role is to facilitate establishment of connections
3222   * between nodes as well as other management related tasks for established
3223   * connections.
3224   *
3225   * Return: true if the port supports an IB CM (this does not guarantee that
3226   * a CM is actually running however).
3227   */
rdma_cap_ib_cm(const struct ib_device * device,u32 port_num)3228  static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3229  {
3230  	return device->port_data[port_num].immutable.core_cap_flags &
3231  	       RDMA_CORE_CAP_IB_CM;
3232  }
3233  
3234  /**
3235   * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3236   * Communication Manager.
3237   * @device: Device to check
3238   * @port_num: Port number to check
3239   *
3240   * Similar to above, but specific to iWARP connections which have a different
3241   * managment protocol than InfiniBand.
3242   *
3243   * Return: true if the port supports an iWARP CM (this does not guarantee that
3244   * a CM is actually running however).
3245   */
rdma_cap_iw_cm(const struct ib_device * device,u32 port_num)3246  static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3247  {
3248  	return device->port_data[port_num].immutable.core_cap_flags &
3249  	       RDMA_CORE_CAP_IW_CM;
3250  }
3251  
3252  /**
3253   * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3254   * Subnet Administration.
3255   * @device: Device to check
3256   * @port_num: Port number to check
3257   *
3258   * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3259   * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3260   * fabrics, devices should resolve routes to other hosts by contacting the
3261   * SA to query the proper route.
3262   *
3263   * Return: true if the port should act as a client to the fabric Subnet
3264   * Administration interface.  This does not imply that the SA service is
3265   * running locally.
3266   */
rdma_cap_ib_sa(const struct ib_device * device,u32 port_num)3267  static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3268  {
3269  	return device->port_data[port_num].immutable.core_cap_flags &
3270  	       RDMA_CORE_CAP_IB_SA;
3271  }
3272  
3273  /**
3274   * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3275   * Multicast.
3276   * @device: Device to check
3277   * @port_num: Port number to check
3278   *
3279   * InfiniBand multicast registration is more complex than normal IPv4 or
3280   * IPv6 multicast registration.  Each Host Channel Adapter must register
3281   * with the Subnet Manager when it wishes to join a multicast group.  It
3282   * should do so only once regardless of how many queue pairs it subscribes
3283   * to this group.  And it should leave the group only after all queue pairs
3284   * attached to the group have been detached.
3285   *
3286   * Return: true if the port must undertake the additional adminstrative
3287   * overhead of registering/unregistering with the SM and tracking of the
3288   * total number of queue pairs attached to the multicast group.
3289   */
rdma_cap_ib_mcast(const struct ib_device * device,u32 port_num)3290  static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3291  				     u32 port_num)
3292  {
3293  	return rdma_cap_ib_sa(device, port_num);
3294  }
3295  
3296  /**
3297   * rdma_cap_af_ib - Check if the port of device has the capability
3298   * Native Infiniband Address.
3299   * @device: Device to check
3300   * @port_num: Port number to check
3301   *
3302   * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3303   * GID.  RoCE uses a different mechanism, but still generates a GID via
3304   * a prescribed mechanism and port specific data.
3305   *
3306   * Return: true if the port uses a GID address to identify devices on the
3307   * network.
3308   */
rdma_cap_af_ib(const struct ib_device * device,u32 port_num)3309  static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3310  {
3311  	return device->port_data[port_num].immutable.core_cap_flags &
3312  	       RDMA_CORE_CAP_AF_IB;
3313  }
3314  
3315  /**
3316   * rdma_cap_eth_ah - Check if the port of device has the capability
3317   * Ethernet Address Handle.
3318   * @device: Device to check
3319   * @port_num: Port number to check
3320   *
3321   * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3322   * to fabricate GIDs over Ethernet/IP specific addresses native to the
3323   * port.  Normally, packet headers are generated by the sending host
3324   * adapter, but when sending connectionless datagrams, we must manually
3325   * inject the proper headers for the fabric we are communicating over.
3326   *
3327   * Return: true if we are running as a RoCE port and must force the
3328   * addition of a Global Route Header built from our Ethernet Address
3329   * Handle into our header list for connectionless packets.
3330   */
rdma_cap_eth_ah(const struct ib_device * device,u32 port_num)3331  static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3332  {
3333  	return device->port_data[port_num].immutable.core_cap_flags &
3334  	       RDMA_CORE_CAP_ETH_AH;
3335  }
3336  
3337  /**
3338   * rdma_cap_opa_ah - Check if the port of device supports
3339   * OPA Address handles
3340   * @device: Device to check
3341   * @port_num: Port number to check
3342   *
3343   * Return: true if we are running on an OPA device which supports
3344   * the extended OPA addressing.
3345   */
rdma_cap_opa_ah(struct ib_device * device,u32 port_num)3346  static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3347  {
3348  	return (device->port_data[port_num].immutable.core_cap_flags &
3349  		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3350  }
3351  
3352  /**
3353   * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3354   *
3355   * @device: Device
3356   * @port_num: Port number
3357   *
3358   * This MAD size includes the MAD headers and MAD payload.  No other headers
3359   * are included.
3360   *
3361   * Return the max MAD size required by the Port.  Will return 0 if the port
3362   * does not support MADs
3363   */
rdma_max_mad_size(const struct ib_device * device,u32 port_num)3364  static inline size_t rdma_max_mad_size(const struct ib_device *device,
3365  				       u32 port_num)
3366  {
3367  	return device->port_data[port_num].immutable.max_mad_size;
3368  }
3369  
3370  /**
3371   * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3372   * @device: Device to check
3373   * @port_num: Port number to check
3374   *
3375   * RoCE GID table mechanism manages the various GIDs for a device.
3376   *
3377   * NOTE: if allocating the port's GID table has failed, this call will still
3378   * return true, but any RoCE GID table API will fail.
3379   *
3380   * Return: true if the port uses RoCE GID table mechanism in order to manage
3381   * its GIDs.
3382   */
rdma_cap_roce_gid_table(const struct ib_device * device,u32 port_num)3383  static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3384  					   u32 port_num)
3385  {
3386  	return rdma_protocol_roce(device, port_num) &&
3387  		device->ops.add_gid && device->ops.del_gid;
3388  }
3389  
3390  /*
3391   * Check if the device supports READ W/ INVALIDATE.
3392   */
rdma_cap_read_inv(struct ib_device * dev,u32 port_num)3393  static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3394  {
3395  	/*
3396  	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3397  	 * has support for it yet.
3398  	 */
3399  	return rdma_protocol_iwarp(dev, port_num);
3400  }
3401  
3402  /**
3403   * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3404   * @device: Device
3405   * @port_num: 1 based Port number
3406   *
3407   * Return true if port is an Intel OPA port , false if not
3408   */
rdma_core_cap_opa_port(struct ib_device * device,u32 port_num)3409  static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3410  					  u32 port_num)
3411  {
3412  	return (device->port_data[port_num].immutable.core_cap_flags &
3413  		RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3414  }
3415  
3416  /**
3417   * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3418   * @device: Device
3419   * @port_num: Port number
3420   * @mtu: enum value of MTU
3421   *
3422   * Return the MTU size supported by the port as an integer value. Will return
3423   * -1 if enum value of mtu is not supported.
3424   */
rdma_mtu_enum_to_int(struct ib_device * device,u32 port,int mtu)3425  static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3426  				       int mtu)
3427  {
3428  	if (rdma_core_cap_opa_port(device, port))
3429  		return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3430  	else
3431  		return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3432  }
3433  
3434  /**
3435   * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3436   * @device: Device
3437   * @port_num: Port number
3438   * @attr: port attribute
3439   *
3440   * Return the MTU size supported by the port as an integer value.
3441   */
rdma_mtu_from_attr(struct ib_device * device,u32 port,struct ib_port_attr * attr)3442  static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3443  				     struct ib_port_attr *attr)
3444  {
3445  	if (rdma_core_cap_opa_port(device, port))
3446  		return attr->phys_mtu;
3447  	else
3448  		return ib_mtu_enum_to_int(attr->max_mtu);
3449  }
3450  
3451  int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3452  			 int state);
3453  int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3454  		     struct ifla_vf_info *info);
3455  int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3456  		    struct ifla_vf_stats *stats);
3457  int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3458  		    struct ifla_vf_guid *node_guid,
3459  		    struct ifla_vf_guid *port_guid);
3460  int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3461  		   int type);
3462  
3463  int ib_query_pkey(struct ib_device *device,
3464  		  u32 port_num, u16 index, u16 *pkey);
3465  
3466  int ib_modify_device(struct ib_device *device,
3467  		     int device_modify_mask,
3468  		     struct ib_device_modify *device_modify);
3469  
3470  int ib_modify_port(struct ib_device *device,
3471  		   u32 port_num, int port_modify_mask,
3472  		   struct ib_port_modify *port_modify);
3473  
3474  int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3475  		u32 *port_num, u16 *index);
3476  
3477  int ib_find_pkey(struct ib_device *device,
3478  		 u32 port_num, u16 pkey, u16 *index);
3479  
3480  enum ib_pd_flags {
3481  	/*
3482  	 * Create a memory registration for all memory in the system and place
3483  	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3484  	 * ULPs to avoid the overhead of dynamic MRs.
3485  	 *
3486  	 * This flag is generally considered unsafe and must only be used in
3487  	 * extremly trusted environments.  Every use of it will log a warning
3488  	 * in the kernel log.
3489  	 */
3490  	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3491  };
3492  
3493  struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3494  		const char *caller);
3495  
3496  /**
3497   * ib_alloc_pd - Allocates an unused protection domain.
3498   * @device: The device on which to allocate the protection domain.
3499   * @flags: protection domain flags
3500   *
3501   * A protection domain object provides an association between QPs, shared
3502   * receive queues, address handles, memory regions, and memory windows.
3503   *
3504   * Every PD has a local_dma_lkey which can be used as the lkey value for local
3505   * memory operations.
3506   */
3507  #define ib_alloc_pd(device, flags) \
3508  	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3509  
3510  int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3511  
3512  /**
3513   * ib_dealloc_pd - Deallocate kernel PD
3514   * @pd: The protection domain
3515   *
3516   * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3517   */
ib_dealloc_pd(struct ib_pd * pd)3518  static inline void ib_dealloc_pd(struct ib_pd *pd)
3519  {
3520  	int ret = ib_dealloc_pd_user(pd, NULL);
3521  
3522  	WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3523  }
3524  
3525  enum rdma_create_ah_flags {
3526  	/* In a sleepable context */
3527  	RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3528  };
3529  
3530  /**
3531   * rdma_create_ah - Creates an address handle for the given address vector.
3532   * @pd: The protection domain associated with the address handle.
3533   * @ah_attr: The attributes of the address vector.
3534   * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3535   *
3536   * The address handle is used to reference a local or global destination
3537   * in all UD QP post sends.
3538   */
3539  struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3540  			     u32 flags);
3541  
3542  /**
3543   * rdma_create_user_ah - Creates an address handle for the given address vector.
3544   * It resolves destination mac address for ah attribute of RoCE type.
3545   * @pd: The protection domain associated with the address handle.
3546   * @ah_attr: The attributes of the address vector.
3547   * @udata: pointer to user's input output buffer information need by
3548   *         provider driver.
3549   *
3550   * It returns 0 on success and returns appropriate error code on error.
3551   * The address handle is used to reference a local or global destination
3552   * in all UD QP post sends.
3553   */
3554  struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3555  				  struct rdma_ah_attr *ah_attr,
3556  				  struct ib_udata *udata);
3557  /**
3558   * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3559   *   work completion.
3560   * @hdr: the L3 header to parse
3561   * @net_type: type of header to parse
3562   * @sgid: place to store source gid
3563   * @dgid: place to store destination gid
3564   */
3565  int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3566  			      enum rdma_network_type net_type,
3567  			      union ib_gid *sgid, union ib_gid *dgid);
3568  
3569  /**
3570   * ib_get_rdma_header_version - Get the header version
3571   * @hdr: the L3 header to parse
3572   */
3573  int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3574  
3575  /**
3576   * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3577   *   work completion.
3578   * @device: Device on which the received message arrived.
3579   * @port_num: Port on which the received message arrived.
3580   * @wc: Work completion associated with the received message.
3581   * @grh: References the received global route header.  This parameter is
3582   *   ignored unless the work completion indicates that the GRH is valid.
3583   * @ah_attr: Returned attributes that can be used when creating an address
3584   *   handle for replying to the message.
3585   * When ib_init_ah_attr_from_wc() returns success,
3586   * (a) for IB link layer it optionally contains a reference to SGID attribute
3587   * when GRH is present for IB link layer.
3588   * (b) for RoCE link layer it contains a reference to SGID attribute.
3589   * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3590   * attributes which are initialized using ib_init_ah_attr_from_wc().
3591   *
3592   */
3593  int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3594  			    const struct ib_wc *wc, const struct ib_grh *grh,
3595  			    struct rdma_ah_attr *ah_attr);
3596  
3597  /**
3598   * ib_create_ah_from_wc - Creates an address handle associated with the
3599   *   sender of the specified work completion.
3600   * @pd: The protection domain associated with the address handle.
3601   * @wc: Work completion information associated with a received message.
3602   * @grh: References the received global route header.  This parameter is
3603   *   ignored unless the work completion indicates that the GRH is valid.
3604   * @port_num: The outbound port number to associate with the address.
3605   *
3606   * The address handle is used to reference a local or global destination
3607   * in all UD QP post sends.
3608   */
3609  struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3610  				   const struct ib_grh *grh, u32 port_num);
3611  
3612  /**
3613   * rdma_modify_ah - Modifies the address vector associated with an address
3614   *   handle.
3615   * @ah: The address handle to modify.
3616   * @ah_attr: The new address vector attributes to associate with the
3617   *   address handle.
3618   */
3619  int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3620  
3621  /**
3622   * rdma_query_ah - Queries the address vector associated with an address
3623   *   handle.
3624   * @ah: The address handle to query.
3625   * @ah_attr: The address vector attributes associated with the address
3626   *   handle.
3627   */
3628  int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3629  
3630  enum rdma_destroy_ah_flags {
3631  	/* In a sleepable context */
3632  	RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3633  };
3634  
3635  /**
3636   * rdma_destroy_ah_user - Destroys an address handle.
3637   * @ah: The address handle to destroy.
3638   * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3639   * @udata: Valid user data or NULL for kernel objects
3640   */
3641  int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3642  
3643  /**
3644   * rdma_destroy_ah - Destroys an kernel address handle.
3645   * @ah: The address handle to destroy.
3646   * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3647   *
3648   * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3649   */
rdma_destroy_ah(struct ib_ah * ah,u32 flags)3650  static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3651  {
3652  	int ret = rdma_destroy_ah_user(ah, flags, NULL);
3653  
3654  	WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3655  }
3656  
3657  struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3658  				  struct ib_srq_init_attr *srq_init_attr,
3659  				  struct ib_usrq_object *uobject,
3660  				  struct ib_udata *udata);
3661  static inline struct ib_srq *
ib_create_srq(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr)3662  ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3663  {
3664  	if (!pd->device->ops.create_srq)
3665  		return ERR_PTR(-EOPNOTSUPP);
3666  
3667  	return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3668  }
3669  
3670  /**
3671   * ib_modify_srq - Modifies the attributes for the specified SRQ.
3672   * @srq: The SRQ to modify.
3673   * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3674   *   the current values of selected SRQ attributes are returned.
3675   * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3676   *   are being modified.
3677   *
3678   * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3679   * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3680   * the number of receives queued drops below the limit.
3681   */
3682  int ib_modify_srq(struct ib_srq *srq,
3683  		  struct ib_srq_attr *srq_attr,
3684  		  enum ib_srq_attr_mask srq_attr_mask);
3685  
3686  /**
3687   * ib_query_srq - Returns the attribute list and current values for the
3688   *   specified SRQ.
3689   * @srq: The SRQ to query.
3690   * @srq_attr: The attributes of the specified SRQ.
3691   */
3692  int ib_query_srq(struct ib_srq *srq,
3693  		 struct ib_srq_attr *srq_attr);
3694  
3695  /**
3696   * ib_destroy_srq_user - Destroys the specified SRQ.
3697   * @srq: The SRQ to destroy.
3698   * @udata: Valid user data or NULL for kernel objects
3699   */
3700  int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3701  
3702  /**
3703   * ib_destroy_srq - Destroys the specified kernel SRQ.
3704   * @srq: The SRQ to destroy.
3705   *
3706   * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3707   */
ib_destroy_srq(struct ib_srq * srq)3708  static inline void ib_destroy_srq(struct ib_srq *srq)
3709  {
3710  	int ret = ib_destroy_srq_user(srq, NULL);
3711  
3712  	WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3713  }
3714  
3715  /**
3716   * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3717   * @srq: The SRQ to post the work request on.
3718   * @recv_wr: A list of work requests to post on the receive queue.
3719   * @bad_recv_wr: On an immediate failure, this parameter will reference
3720   *   the work request that failed to be posted on the QP.
3721   */
ib_post_srq_recv(struct ib_srq * srq,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3722  static inline int ib_post_srq_recv(struct ib_srq *srq,
3723  				   const struct ib_recv_wr *recv_wr,
3724  				   const struct ib_recv_wr **bad_recv_wr)
3725  {
3726  	const struct ib_recv_wr *dummy;
3727  
3728  	return srq->device->ops.post_srq_recv(srq, recv_wr,
3729  					      bad_recv_wr ? : &dummy);
3730  }
3731  
3732  struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3733  				  struct ib_qp_init_attr *qp_init_attr,
3734  				  const char *caller);
3735  /**
3736   * ib_create_qp - Creates a kernel QP associated with the specific protection
3737   * domain.
3738   * @pd: The protection domain associated with the QP.
3739   * @init_attr: A list of initial attributes required to create the
3740   *   QP.  If QP creation succeeds, then the attributes are updated to
3741   *   the actual capabilities of the created QP.
3742   */
ib_create_qp(struct ib_pd * pd,struct ib_qp_init_attr * init_attr)3743  static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3744  					 struct ib_qp_init_attr *init_attr)
3745  {
3746  	return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3747  }
3748  
3749  /**
3750   * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3751   * @qp: The QP to modify.
3752   * @attr: On input, specifies the QP attributes to modify.  On output,
3753   *   the current values of selected QP attributes are returned.
3754   * @attr_mask: A bit-mask used to specify which attributes of the QP
3755   *   are being modified.
3756   * @udata: pointer to user's input output buffer information
3757   *   are being modified.
3758   * It returns 0 on success and returns appropriate error code on error.
3759   */
3760  int ib_modify_qp_with_udata(struct ib_qp *qp,
3761  			    struct ib_qp_attr *attr,
3762  			    int attr_mask,
3763  			    struct ib_udata *udata);
3764  
3765  /**
3766   * ib_modify_qp - Modifies the attributes for the specified QP and then
3767   *   transitions the QP to the given state.
3768   * @qp: The QP to modify.
3769   * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3770   *   the current values of selected QP attributes are returned.
3771   * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3772   *   are being modified.
3773   */
3774  int ib_modify_qp(struct ib_qp *qp,
3775  		 struct ib_qp_attr *qp_attr,
3776  		 int qp_attr_mask);
3777  
3778  /**
3779   * ib_query_qp - Returns the attribute list and current values for the
3780   *   specified QP.
3781   * @qp: The QP to query.
3782   * @qp_attr: The attributes of the specified QP.
3783   * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3784   * @qp_init_attr: Additional attributes of the selected QP.
3785   *
3786   * The qp_attr_mask may be used to limit the query to gathering only the
3787   * selected attributes.
3788   */
3789  int ib_query_qp(struct ib_qp *qp,
3790  		struct ib_qp_attr *qp_attr,
3791  		int qp_attr_mask,
3792  		struct ib_qp_init_attr *qp_init_attr);
3793  
3794  /**
3795   * ib_destroy_qp - Destroys the specified QP.
3796   * @qp: The QP to destroy.
3797   * @udata: Valid udata or NULL for kernel objects
3798   */
3799  int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3800  
3801  /**
3802   * ib_destroy_qp - Destroys the specified kernel QP.
3803   * @qp: The QP to destroy.
3804   *
3805   * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3806   */
ib_destroy_qp(struct ib_qp * qp)3807  static inline int ib_destroy_qp(struct ib_qp *qp)
3808  {
3809  	return ib_destroy_qp_user(qp, NULL);
3810  }
3811  
3812  /**
3813   * ib_open_qp - Obtain a reference to an existing sharable QP.
3814   * @xrcd - XRC domain
3815   * @qp_open_attr: Attributes identifying the QP to open.
3816   *
3817   * Returns a reference to a sharable QP.
3818   */
3819  struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3820  			 struct ib_qp_open_attr *qp_open_attr);
3821  
3822  /**
3823   * ib_close_qp - Release an external reference to a QP.
3824   * @qp: The QP handle to release
3825   *
3826   * The opened QP handle is released by the caller.  The underlying
3827   * shared QP is not destroyed until all internal references are released.
3828   */
3829  int ib_close_qp(struct ib_qp *qp);
3830  
3831  /**
3832   * ib_post_send - Posts a list of work requests to the send queue of
3833   *   the specified QP.
3834   * @qp: The QP to post the work request on.
3835   * @send_wr: A list of work requests to post on the send queue.
3836   * @bad_send_wr: On an immediate failure, this parameter will reference
3837   *   the work request that failed to be posted on the QP.
3838   *
3839   * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3840   * error is returned, the QP state shall not be affected,
3841   * ib_post_send() will return an immediate error after queueing any
3842   * earlier work requests in the list.
3843   */
ib_post_send(struct ib_qp * qp,const struct ib_send_wr * send_wr,const struct ib_send_wr ** bad_send_wr)3844  static inline int ib_post_send(struct ib_qp *qp,
3845  			       const struct ib_send_wr *send_wr,
3846  			       const struct ib_send_wr **bad_send_wr)
3847  {
3848  	const struct ib_send_wr *dummy;
3849  
3850  	return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3851  }
3852  
3853  /**
3854   * ib_post_recv - Posts a list of work requests to the receive queue of
3855   *   the specified QP.
3856   * @qp: The QP to post the work request on.
3857   * @recv_wr: A list of work requests to post on the receive queue.
3858   * @bad_recv_wr: On an immediate failure, this parameter will reference
3859   *   the work request that failed to be posted on the QP.
3860   */
ib_post_recv(struct ib_qp * qp,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3861  static inline int ib_post_recv(struct ib_qp *qp,
3862  			       const struct ib_recv_wr *recv_wr,
3863  			       const struct ib_recv_wr **bad_recv_wr)
3864  {
3865  	const struct ib_recv_wr *dummy;
3866  
3867  	return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3868  }
3869  
3870  struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3871  			    int comp_vector, enum ib_poll_context poll_ctx,
3872  			    const char *caller);
ib_alloc_cq(struct ib_device * dev,void * private,int nr_cqe,int comp_vector,enum ib_poll_context poll_ctx)3873  static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3874  					int nr_cqe, int comp_vector,
3875  					enum ib_poll_context poll_ctx)
3876  {
3877  	return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3878  			     KBUILD_MODNAME);
3879  }
3880  
3881  struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3882  				int nr_cqe, enum ib_poll_context poll_ctx,
3883  				const char *caller);
3884  
3885  /**
3886   * ib_alloc_cq_any: Allocate kernel CQ
3887   * @dev: The IB device
3888   * @private: Private data attached to the CQE
3889   * @nr_cqe: Number of CQEs in the CQ
3890   * @poll_ctx: Context used for polling the CQ
3891   */
ib_alloc_cq_any(struct ib_device * dev,void * private,int nr_cqe,enum ib_poll_context poll_ctx)3892  static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3893  					    void *private, int nr_cqe,
3894  					    enum ib_poll_context poll_ctx)
3895  {
3896  	return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3897  				 KBUILD_MODNAME);
3898  }
3899  
3900  void ib_free_cq(struct ib_cq *cq);
3901  int ib_process_cq_direct(struct ib_cq *cq, int budget);
3902  
3903  /**
3904   * ib_create_cq - Creates a CQ on the specified device.
3905   * @device: The device on which to create the CQ.
3906   * @comp_handler: A user-specified callback that is invoked when a
3907   *   completion event occurs on the CQ.
3908   * @event_handler: A user-specified callback that is invoked when an
3909   *   asynchronous event not associated with a completion occurs on the CQ.
3910   * @cq_context: Context associated with the CQ returned to the user via
3911   *   the associated completion and event handlers.
3912   * @cq_attr: The attributes the CQ should be created upon.
3913   *
3914   * Users can examine the cq structure to determine the actual CQ size.
3915   */
3916  struct ib_cq *__ib_create_cq(struct ib_device *device,
3917  			     ib_comp_handler comp_handler,
3918  			     void (*event_handler)(struct ib_event *, void *),
3919  			     void *cq_context,
3920  			     const struct ib_cq_init_attr *cq_attr,
3921  			     const char *caller);
3922  #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3923  	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3924  
3925  /**
3926   * ib_resize_cq - Modifies the capacity of the CQ.
3927   * @cq: The CQ to resize.
3928   * @cqe: The minimum size of the CQ.
3929   *
3930   * Users can examine the cq structure to determine the actual CQ size.
3931   */
3932  int ib_resize_cq(struct ib_cq *cq, int cqe);
3933  
3934  /**
3935   * rdma_set_cq_moderation - Modifies moderation params of the CQ
3936   * @cq: The CQ to modify.
3937   * @cq_count: number of CQEs that will trigger an event
3938   * @cq_period: max period of time in usec before triggering an event
3939   *
3940   */
3941  int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3942  
3943  /**
3944   * ib_destroy_cq_user - Destroys the specified CQ.
3945   * @cq: The CQ to destroy.
3946   * @udata: Valid user data or NULL for kernel objects
3947   */
3948  int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3949  
3950  /**
3951   * ib_destroy_cq - Destroys the specified kernel CQ.
3952   * @cq: The CQ to destroy.
3953   *
3954   * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3955   */
ib_destroy_cq(struct ib_cq * cq)3956  static inline void ib_destroy_cq(struct ib_cq *cq)
3957  {
3958  	int ret = ib_destroy_cq_user(cq, NULL);
3959  
3960  	WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3961  }
3962  
3963  /**
3964   * ib_poll_cq - poll a CQ for completion(s)
3965   * @cq:the CQ being polled
3966   * @num_entries:maximum number of completions to return
3967   * @wc:array of at least @num_entries &struct ib_wc where completions
3968   *   will be returned
3969   *
3970   * Poll a CQ for (possibly multiple) completions.  If the return value
3971   * is < 0, an error occurred.  If the return value is >= 0, it is the
3972   * number of completions returned.  If the return value is
3973   * non-negative and < num_entries, then the CQ was emptied.
3974   */
ib_poll_cq(struct ib_cq * cq,int num_entries,struct ib_wc * wc)3975  static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3976  			     struct ib_wc *wc)
3977  {
3978  	return cq->device->ops.poll_cq(cq, num_entries, wc);
3979  }
3980  
3981  /**
3982   * ib_req_notify_cq - Request completion notification on a CQ.
3983   * @cq: The CQ to generate an event for.
3984   * @flags:
3985   *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3986   *   to request an event on the next solicited event or next work
3987   *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3988   *   may also be |ed in to request a hint about missed events, as
3989   *   described below.
3990   *
3991   * Return Value:
3992   *    < 0 means an error occurred while requesting notification
3993   *   == 0 means notification was requested successfully, and if
3994   *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3995   *        were missed and it is safe to wait for another event.  In
3996   *        this case is it guaranteed that any work completions added
3997   *        to the CQ since the last CQ poll will trigger a completion
3998   *        notification event.
3999   *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
4000   *        in.  It means that the consumer must poll the CQ again to
4001   *        make sure it is empty to avoid missing an event because of a
4002   *        race between requesting notification and an entry being
4003   *        added to the CQ.  This return value means it is possible
4004   *        (but not guaranteed) that a work completion has been added
4005   *        to the CQ since the last poll without triggering a
4006   *        completion notification event.
4007   */
ib_req_notify_cq(struct ib_cq * cq,enum ib_cq_notify_flags flags)4008  static inline int ib_req_notify_cq(struct ib_cq *cq,
4009  				   enum ib_cq_notify_flags flags)
4010  {
4011  	return cq->device->ops.req_notify_cq(cq, flags);
4012  }
4013  
4014  struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4015  			     int comp_vector_hint,
4016  			     enum ib_poll_context poll_ctx);
4017  
4018  void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4019  
4020  /*
4021   * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
4022   * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
4023   * address into the dma address.
4024   */
ib_uses_virt_dma(struct ib_device * dev)4025  static inline bool ib_uses_virt_dma(struct ib_device *dev)
4026  {
4027  	return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
4028  }
4029  
4030  /*
4031   * Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
4032   */
ib_dma_pci_p2p_dma_supported(struct ib_device * dev)4033  static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
4034  {
4035  	if (ib_uses_virt_dma(dev))
4036  		return false;
4037  
4038  	return dma_pci_p2pdma_supported(dev->dma_device);
4039  }
4040  
4041  /**
4042   * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer
4043   * @dma_addr: The DMA address
4044   *
4045   * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after
4046   * going through the dma_addr marshalling.
4047   */
ib_virt_dma_to_ptr(u64 dma_addr)4048  static inline void *ib_virt_dma_to_ptr(u64 dma_addr)
4049  {
4050  	/* virt_dma mode maps the kvs's directly into the dma addr */
4051  	return (void *)(uintptr_t)dma_addr;
4052  }
4053  
4054  /**
4055   * ib_virt_dma_to_page - Convert a dma_addr to a struct page
4056   * @dma_addr: The DMA address
4057   *
4058   * Used by ib_uses_virt_dma() device to get back to the struct page after going
4059   * through the dma_addr marshalling.
4060   */
ib_virt_dma_to_page(u64 dma_addr)4061  static inline struct page *ib_virt_dma_to_page(u64 dma_addr)
4062  {
4063  	return virt_to_page(ib_virt_dma_to_ptr(dma_addr));
4064  }
4065  
4066  /**
4067   * ib_dma_mapping_error - check a DMA addr for error
4068   * @dev: The device for which the dma_addr was created
4069   * @dma_addr: The DMA address to check
4070   */
ib_dma_mapping_error(struct ib_device * dev,u64 dma_addr)4071  static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4072  {
4073  	if (ib_uses_virt_dma(dev))
4074  		return 0;
4075  	return dma_mapping_error(dev->dma_device, dma_addr);
4076  }
4077  
4078  /**
4079   * ib_dma_map_single - Map a kernel virtual address to DMA address
4080   * @dev: The device for which the dma_addr is to be created
4081   * @cpu_addr: The kernel virtual address
4082   * @size: The size of the region in bytes
4083   * @direction: The direction of the DMA
4084   */
ib_dma_map_single(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction)4085  static inline u64 ib_dma_map_single(struct ib_device *dev,
4086  				    void *cpu_addr, size_t size,
4087  				    enum dma_data_direction direction)
4088  {
4089  	if (ib_uses_virt_dma(dev))
4090  		return (uintptr_t)cpu_addr;
4091  	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4092  }
4093  
4094  /**
4095   * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4096   * @dev: The device for which the DMA address was created
4097   * @addr: The DMA address
4098   * @size: The size of the region in bytes
4099   * @direction: The direction of the DMA
4100   */
ib_dma_unmap_single(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)4101  static inline void ib_dma_unmap_single(struct ib_device *dev,
4102  				       u64 addr, size_t size,
4103  				       enum dma_data_direction direction)
4104  {
4105  	if (!ib_uses_virt_dma(dev))
4106  		dma_unmap_single(dev->dma_device, addr, size, direction);
4107  }
4108  
4109  /**
4110   * ib_dma_map_page - Map a physical page to DMA address
4111   * @dev: The device for which the dma_addr is to be created
4112   * @page: The page to be mapped
4113   * @offset: The offset within the page
4114   * @size: The size of the region in bytes
4115   * @direction: The direction of the DMA
4116   */
ib_dma_map_page(struct ib_device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)4117  static inline u64 ib_dma_map_page(struct ib_device *dev,
4118  				  struct page *page,
4119  				  unsigned long offset,
4120  				  size_t size,
4121  					 enum dma_data_direction direction)
4122  {
4123  	if (ib_uses_virt_dma(dev))
4124  		return (uintptr_t)(page_address(page) + offset);
4125  	return dma_map_page(dev->dma_device, page, offset, size, direction);
4126  }
4127  
4128  /**
4129   * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4130   * @dev: The device for which the DMA address was created
4131   * @addr: The DMA address
4132   * @size: The size of the region in bytes
4133   * @direction: The direction of the DMA
4134   */
ib_dma_unmap_page(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)4135  static inline void ib_dma_unmap_page(struct ib_device *dev,
4136  				     u64 addr, size_t size,
4137  				     enum dma_data_direction direction)
4138  {
4139  	if (!ib_uses_virt_dma(dev))
4140  		dma_unmap_page(dev->dma_device, addr, size, direction);
4141  }
4142  
4143  int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
ib_dma_map_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4144  static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4145  				      struct scatterlist *sg, int nents,
4146  				      enum dma_data_direction direction,
4147  				      unsigned long dma_attrs)
4148  {
4149  	if (ib_uses_virt_dma(dev))
4150  		return ib_dma_virt_map_sg(dev, sg, nents);
4151  	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4152  				dma_attrs);
4153  }
4154  
ib_dma_unmap_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4155  static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4156  					 struct scatterlist *sg, int nents,
4157  					 enum dma_data_direction direction,
4158  					 unsigned long dma_attrs)
4159  {
4160  	if (!ib_uses_virt_dma(dev))
4161  		dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4162  				   dma_attrs);
4163  }
4164  
4165  /**
4166   * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4167   * @dev: The device for which the DMA addresses are to be created
4168   * @sg: The sg_table object describing the buffer
4169   * @direction: The direction of the DMA
4170   * @attrs: Optional DMA attributes for the map operation
4171   */
ib_dma_map_sgtable_attrs(struct ib_device * dev,struct sg_table * sgt,enum dma_data_direction direction,unsigned long dma_attrs)4172  static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4173  					   struct sg_table *sgt,
4174  					   enum dma_data_direction direction,
4175  					   unsigned long dma_attrs)
4176  {
4177  	int nents;
4178  
4179  	if (ib_uses_virt_dma(dev)) {
4180  		nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4181  		if (!nents)
4182  			return -EIO;
4183  		sgt->nents = nents;
4184  		return 0;
4185  	}
4186  	return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4187  }
4188  
ib_dma_unmap_sgtable_attrs(struct ib_device * dev,struct sg_table * sgt,enum dma_data_direction direction,unsigned long dma_attrs)4189  static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4190  					      struct sg_table *sgt,
4191  					      enum dma_data_direction direction,
4192  					      unsigned long dma_attrs)
4193  {
4194  	if (!ib_uses_virt_dma(dev))
4195  		dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4196  }
4197  
4198  /**
4199   * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4200   * @dev: The device for which the DMA addresses are to be created
4201   * @sg: The array of scatter/gather entries
4202   * @nents: The number of scatter/gather entries
4203   * @direction: The direction of the DMA
4204   */
ib_dma_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4205  static inline int ib_dma_map_sg(struct ib_device *dev,
4206  				struct scatterlist *sg, int nents,
4207  				enum dma_data_direction direction)
4208  {
4209  	return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4210  }
4211  
4212  /**
4213   * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4214   * @dev: The device for which the DMA addresses were created
4215   * @sg: The array of scatter/gather entries
4216   * @nents: The number of scatter/gather entries
4217   * @direction: The direction of the DMA
4218   */
ib_dma_unmap_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4219  static inline void ib_dma_unmap_sg(struct ib_device *dev,
4220  				   struct scatterlist *sg, int nents,
4221  				   enum dma_data_direction direction)
4222  {
4223  	ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4224  }
4225  
4226  /**
4227   * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4228   * @dev: The device to query
4229   *
4230   * The returned value represents a size in bytes.
4231   */
ib_dma_max_seg_size(struct ib_device * dev)4232  static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4233  {
4234  	if (ib_uses_virt_dma(dev))
4235  		return UINT_MAX;
4236  	return dma_get_max_seg_size(dev->dma_device);
4237  }
4238  
4239  /**
4240   * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4241   * @dev: The device for which the DMA address was created
4242   * @addr: The DMA address
4243   * @size: The size of the region in bytes
4244   * @dir: The direction of the DMA
4245   */
ib_dma_sync_single_for_cpu(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4246  static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4247  					      u64 addr,
4248  					      size_t size,
4249  					      enum dma_data_direction dir)
4250  {
4251  	if (!ib_uses_virt_dma(dev))
4252  		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4253  }
4254  
4255  /**
4256   * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4257   * @dev: The device for which the DMA address was created
4258   * @addr: The DMA address
4259   * @size: The size of the region in bytes
4260   * @dir: The direction of the DMA
4261   */
ib_dma_sync_single_for_device(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4262  static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4263  						 u64 addr,
4264  						 size_t size,
4265  						 enum dma_data_direction dir)
4266  {
4267  	if (!ib_uses_virt_dma(dev))
4268  		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4269  }
4270  
4271  /* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4272   * space. This function should be called when 'current' is the owning MM.
4273   */
4274  struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4275  			     u64 virt_addr, int mr_access_flags);
4276  
4277  /* ib_advise_mr -  give an advice about an address range in a memory region */
4278  int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4279  		 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4280  /**
4281   * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4282   *   HCA translation table.
4283   * @mr: The memory region to deregister.
4284   * @udata: Valid user data or NULL for kernel object
4285   *
4286   * This function can fail, if the memory region has memory windows bound to it.
4287   */
4288  int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4289  
4290  /**
4291   * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4292   *   HCA translation table.
4293   * @mr: The memory region to deregister.
4294   *
4295   * This function can fail, if the memory region has memory windows bound to it.
4296   *
4297   * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4298   */
ib_dereg_mr(struct ib_mr * mr)4299  static inline int ib_dereg_mr(struct ib_mr *mr)
4300  {
4301  	return ib_dereg_mr_user(mr, NULL);
4302  }
4303  
4304  struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4305  			  u32 max_num_sg);
4306  
4307  struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4308  				    u32 max_num_data_sg,
4309  				    u32 max_num_meta_sg);
4310  
4311  /**
4312   * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4313   *   R_Key and L_Key.
4314   * @mr - struct ib_mr pointer to be updated.
4315   * @newkey - new key to be used.
4316   */
ib_update_fast_reg_key(struct ib_mr * mr,u8 newkey)4317  static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4318  {
4319  	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4320  	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4321  }
4322  
4323  /**
4324   * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4325   * for calculating a new rkey for type 2 memory windows.
4326   * @rkey - the rkey to increment.
4327   */
ib_inc_rkey(u32 rkey)4328  static inline u32 ib_inc_rkey(u32 rkey)
4329  {
4330  	const u32 mask = 0x000000ff;
4331  	return ((rkey + 1) & mask) | (rkey & ~mask);
4332  }
4333  
4334  /**
4335   * ib_attach_mcast - Attaches the specified QP to a multicast group.
4336   * @qp: QP to attach to the multicast group.  The QP must be type
4337   *   IB_QPT_UD.
4338   * @gid: Multicast group GID.
4339   * @lid: Multicast group LID in host byte order.
4340   *
4341   * In order to send and receive multicast packets, subnet
4342   * administration must have created the multicast group and configured
4343   * the fabric appropriately.  The port associated with the specified
4344   * QP must also be a member of the multicast group.
4345   */
4346  int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4347  
4348  /**
4349   * ib_detach_mcast - Detaches the specified QP from a multicast group.
4350   * @qp: QP to detach from the multicast group.
4351   * @gid: Multicast group GID.
4352   * @lid: Multicast group LID in host byte order.
4353   */
4354  int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4355  
4356  struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4357  				   struct inode *inode, struct ib_udata *udata);
4358  int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4359  
ib_check_mr_access(struct ib_device * ib_dev,unsigned int flags)4360  static inline int ib_check_mr_access(struct ib_device *ib_dev,
4361  				     unsigned int flags)
4362  {
4363  	u64 device_cap = ib_dev->attrs.device_cap_flags;
4364  
4365  	/*
4366  	 * Local write permission is required if remote write or
4367  	 * remote atomic permission is also requested.
4368  	 */
4369  	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4370  	    !(flags & IB_ACCESS_LOCAL_WRITE))
4371  		return -EINVAL;
4372  
4373  	if (flags & ~IB_ACCESS_SUPPORTED)
4374  		return -EINVAL;
4375  
4376  	if (flags & IB_ACCESS_ON_DEMAND &&
4377  	    !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
4378  		return -EOPNOTSUPP;
4379  
4380  	if ((flags & IB_ACCESS_FLUSH_GLOBAL &&
4381  	    !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) ||
4382  	    (flags & IB_ACCESS_FLUSH_PERSISTENT &&
4383  	    !(device_cap & IB_DEVICE_FLUSH_PERSISTENT)))
4384  		return -EOPNOTSUPP;
4385  
4386  	return 0;
4387  }
4388  
ib_access_writable(int access_flags)4389  static inline bool ib_access_writable(int access_flags)
4390  {
4391  	/*
4392  	 * We have writable memory backing the MR if any of the following
4393  	 * access flags are set.  "Local write" and "remote write" obviously
4394  	 * require write access.  "Remote atomic" can do things like fetch and
4395  	 * add, which will modify memory, and "MW bind" can change permissions
4396  	 * by binding a window.
4397  	 */
4398  	return access_flags &
4399  		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4400  		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4401  }
4402  
4403  /**
4404   * ib_check_mr_status: lightweight check of MR status.
4405   *     This routine may provide status checks on a selected
4406   *     ib_mr. first use is for signature status check.
4407   *
4408   * @mr: A memory region.
4409   * @check_mask: Bitmask of which checks to perform from
4410   *     ib_mr_status_check enumeration.
4411   * @mr_status: The container of relevant status checks.
4412   *     failed checks will be indicated in the status bitmask
4413   *     and the relevant info shall be in the error item.
4414   */
4415  int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4416  		       struct ib_mr_status *mr_status);
4417  
4418  /**
4419   * ib_device_try_get: Hold a registration lock
4420   * device: The device to lock
4421   *
4422   * A device under an active registration lock cannot become unregistered. It
4423   * is only possible to obtain a registration lock on a device that is fully
4424   * registered, otherwise this function returns false.
4425   *
4426   * The registration lock is only necessary for actions which require the
4427   * device to still be registered. Uses that only require the device pointer to
4428   * be valid should use get_device(&ibdev->dev) to hold the memory.
4429   *
4430   */
ib_device_try_get(struct ib_device * dev)4431  static inline bool ib_device_try_get(struct ib_device *dev)
4432  {
4433  	return refcount_inc_not_zero(&dev->refcount);
4434  }
4435  
4436  void ib_device_put(struct ib_device *device);
4437  struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4438  					  enum rdma_driver_id driver_id);
4439  struct ib_device *ib_device_get_by_name(const char *name,
4440  					enum rdma_driver_id driver_id);
4441  struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4442  					    u16 pkey, const union ib_gid *gid,
4443  					    const struct sockaddr *addr);
4444  int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4445  			 unsigned int port);
4446  struct ib_wq *ib_create_wq(struct ib_pd *pd,
4447  			   struct ib_wq_init_attr *init_attr);
4448  int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4449  
4450  int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4451  		 unsigned int *sg_offset, unsigned int page_size);
4452  int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4453  		    int data_sg_nents, unsigned int *data_sg_offset,
4454  		    struct scatterlist *meta_sg, int meta_sg_nents,
4455  		    unsigned int *meta_sg_offset, unsigned int page_size);
4456  
4457  static inline int
ib_map_mr_sg_zbva(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)4458  ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4459  		  unsigned int *sg_offset, unsigned int page_size)
4460  {
4461  	int n;
4462  
4463  	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4464  	mr->iova = 0;
4465  
4466  	return n;
4467  }
4468  
4469  int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4470  		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4471  
4472  void ib_drain_rq(struct ib_qp *qp);
4473  void ib_drain_sq(struct ib_qp *qp);
4474  void ib_drain_qp(struct ib_qp *qp);
4475  
4476  int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4477  		     u8 *width);
4478  
rdma_ah_retrieve_dmac(struct rdma_ah_attr * attr)4479  static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4480  {
4481  	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4482  		return attr->roce.dmac;
4483  	return NULL;
4484  }
4485  
rdma_ah_set_dlid(struct rdma_ah_attr * attr,u32 dlid)4486  static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4487  {
4488  	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4489  		attr->ib.dlid = (u16)dlid;
4490  	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4491  		attr->opa.dlid = dlid;
4492  }
4493  
rdma_ah_get_dlid(const struct rdma_ah_attr * attr)4494  static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4495  {
4496  	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4497  		return attr->ib.dlid;
4498  	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4499  		return attr->opa.dlid;
4500  	return 0;
4501  }
4502  
rdma_ah_set_sl(struct rdma_ah_attr * attr,u8 sl)4503  static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4504  {
4505  	attr->sl = sl;
4506  }
4507  
rdma_ah_get_sl(const struct rdma_ah_attr * attr)4508  static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4509  {
4510  	return attr->sl;
4511  }
4512  
rdma_ah_set_path_bits(struct rdma_ah_attr * attr,u8 src_path_bits)4513  static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4514  					 u8 src_path_bits)
4515  {
4516  	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4517  		attr->ib.src_path_bits = src_path_bits;
4518  	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4519  		attr->opa.src_path_bits = src_path_bits;
4520  }
4521  
rdma_ah_get_path_bits(const struct rdma_ah_attr * attr)4522  static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4523  {
4524  	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4525  		return attr->ib.src_path_bits;
4526  	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4527  		return attr->opa.src_path_bits;
4528  	return 0;
4529  }
4530  
rdma_ah_set_make_grd(struct rdma_ah_attr * attr,bool make_grd)4531  static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4532  					bool make_grd)
4533  {
4534  	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4535  		attr->opa.make_grd = make_grd;
4536  }
4537  
rdma_ah_get_make_grd(const struct rdma_ah_attr * attr)4538  static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4539  {
4540  	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4541  		return attr->opa.make_grd;
4542  	return false;
4543  }
4544  
rdma_ah_set_port_num(struct rdma_ah_attr * attr,u32 port_num)4545  static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4546  {
4547  	attr->port_num = port_num;
4548  }
4549  
rdma_ah_get_port_num(const struct rdma_ah_attr * attr)4550  static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4551  {
4552  	return attr->port_num;
4553  }
4554  
rdma_ah_set_static_rate(struct rdma_ah_attr * attr,u8 static_rate)4555  static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4556  					   u8 static_rate)
4557  {
4558  	attr->static_rate = static_rate;
4559  }
4560  
rdma_ah_get_static_rate(const struct rdma_ah_attr * attr)4561  static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4562  {
4563  	return attr->static_rate;
4564  }
4565  
rdma_ah_set_ah_flags(struct rdma_ah_attr * attr,enum ib_ah_flags flag)4566  static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4567  					enum ib_ah_flags flag)
4568  {
4569  	attr->ah_flags = flag;
4570  }
4571  
4572  static inline enum ib_ah_flags
rdma_ah_get_ah_flags(const struct rdma_ah_attr * attr)4573  		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4574  {
4575  	return attr->ah_flags;
4576  }
4577  
4578  static inline const struct ib_global_route
rdma_ah_read_grh(const struct rdma_ah_attr * attr)4579  		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4580  {
4581  	return &attr->grh;
4582  }
4583  
4584  /*To retrieve and modify the grh */
4585  static inline struct ib_global_route
rdma_ah_retrieve_grh(struct rdma_ah_attr * attr)4586  		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4587  {
4588  	return &attr->grh;
4589  }
4590  
rdma_ah_set_dgid_raw(struct rdma_ah_attr * attr,void * dgid)4591  static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4592  {
4593  	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4594  
4595  	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4596  }
4597  
rdma_ah_set_subnet_prefix(struct rdma_ah_attr * attr,__be64 prefix)4598  static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4599  					     __be64 prefix)
4600  {
4601  	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4602  
4603  	grh->dgid.global.subnet_prefix = prefix;
4604  }
4605  
rdma_ah_set_interface_id(struct rdma_ah_attr * attr,__be64 if_id)4606  static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4607  					    __be64 if_id)
4608  {
4609  	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4610  
4611  	grh->dgid.global.interface_id = if_id;
4612  }
4613  
rdma_ah_set_grh(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 sgid_index,u8 hop_limit,u8 traffic_class)4614  static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4615  				   union ib_gid *dgid, u32 flow_label,
4616  				   u8 sgid_index, u8 hop_limit,
4617  				   u8 traffic_class)
4618  {
4619  	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4620  
4621  	attr->ah_flags = IB_AH_GRH;
4622  	if (dgid)
4623  		grh->dgid = *dgid;
4624  	grh->flow_label = flow_label;
4625  	grh->sgid_index = sgid_index;
4626  	grh->hop_limit = hop_limit;
4627  	grh->traffic_class = traffic_class;
4628  	grh->sgid_attr = NULL;
4629  }
4630  
4631  void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4632  void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4633  			     u32 flow_label, u8 hop_limit, u8 traffic_class,
4634  			     const struct ib_gid_attr *sgid_attr);
4635  void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4636  		       const struct rdma_ah_attr *src);
4637  void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4638  			  const struct rdma_ah_attr *new);
4639  void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4640  
4641  /**
4642   * rdma_ah_find_type - Return address handle type.
4643   *
4644   * @dev: Device to be checked
4645   * @port_num: Port number
4646   */
rdma_ah_find_type(struct ib_device * dev,u32 port_num)4647  static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4648  						       u32 port_num)
4649  {
4650  	if (rdma_protocol_roce(dev, port_num))
4651  		return RDMA_AH_ATTR_TYPE_ROCE;
4652  	if (rdma_protocol_ib(dev, port_num)) {
4653  		if (rdma_cap_opa_ah(dev, port_num))
4654  			return RDMA_AH_ATTR_TYPE_OPA;
4655  		return RDMA_AH_ATTR_TYPE_IB;
4656  	}
4657  
4658  	return RDMA_AH_ATTR_TYPE_UNDEFINED;
4659  }
4660  
4661  /**
4662   * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4663   *     In the current implementation the only way to
4664   *     get the 32bit lid is from other sources for OPA.
4665   *     For IB, lids will always be 16bits so cast the
4666   *     value accordingly.
4667   *
4668   * @lid: A 32bit LID
4669   */
ib_lid_cpu16(u32 lid)4670  static inline u16 ib_lid_cpu16(u32 lid)
4671  {
4672  	WARN_ON_ONCE(lid & 0xFFFF0000);
4673  	return (u16)lid;
4674  }
4675  
4676  /**
4677   * ib_lid_be16 - Return lid in 16bit BE encoding.
4678   *
4679   * @lid: A 32bit LID
4680   */
ib_lid_be16(u32 lid)4681  static inline __be16 ib_lid_be16(u32 lid)
4682  {
4683  	WARN_ON_ONCE(lid & 0xFFFF0000);
4684  	return cpu_to_be16((u16)lid);
4685  }
4686  
4687  /**
4688   * ib_get_vector_affinity - Get the affinity mappings of a given completion
4689   *   vector
4690   * @device:         the rdma device
4691   * @comp_vector:    index of completion vector
4692   *
4693   * Returns NULL on failure, otherwise a corresponding cpu map of the
4694   * completion vector (returns all-cpus map if the device driver doesn't
4695   * implement get_vector_affinity).
4696   */
4697  static inline const struct cpumask *
ib_get_vector_affinity(struct ib_device * device,int comp_vector)4698  ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4699  {
4700  	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4701  	    !device->ops.get_vector_affinity)
4702  		return NULL;
4703  
4704  	return device->ops.get_vector_affinity(device, comp_vector);
4705  
4706  }
4707  
4708  /**
4709   * rdma_roce_rescan_device - Rescan all of the network devices in the system
4710   * and add their gids, as needed, to the relevant RoCE devices.
4711   *
4712   * @device:         the rdma device
4713   */
4714  void rdma_roce_rescan_device(struct ib_device *ibdev);
4715  
4716  struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4717  
4718  int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4719  
4720  struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4721  				     enum rdma_netdev_t type, const char *name,
4722  				     unsigned char name_assign_type,
4723  				     void (*setup)(struct net_device *));
4724  
4725  int rdma_init_netdev(struct ib_device *device, u32 port_num,
4726  		     enum rdma_netdev_t type, const char *name,
4727  		     unsigned char name_assign_type,
4728  		     void (*setup)(struct net_device *),
4729  		     struct net_device *netdev);
4730  
4731  /**
4732   * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4733   *
4734   * @device:	device pointer for which ib_device pointer to retrieve
4735   *
4736   * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4737   *
4738   */
rdma_device_to_ibdev(struct device * device)4739  static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4740  {
4741  	struct ib_core_device *coredev =
4742  		container_of(device, struct ib_core_device, dev);
4743  
4744  	return coredev->owner;
4745  }
4746  
4747  /**
4748   * ibdev_to_node - return the NUMA node for a given ib_device
4749   * @dev:	device to get the NUMA node for.
4750   */
ibdev_to_node(struct ib_device * ibdev)4751  static inline int ibdev_to_node(struct ib_device *ibdev)
4752  {
4753  	struct device *parent = ibdev->dev.parent;
4754  
4755  	if (!parent)
4756  		return NUMA_NO_NODE;
4757  	return dev_to_node(parent);
4758  }
4759  
4760  /**
4761   * rdma_device_to_drv_device - Helper macro to reach back to driver's
4762   *			       ib_device holder structure from device pointer.
4763   *
4764   * NOTE: New drivers should not make use of this API; This API is only for
4765   * existing drivers who have exposed sysfs entries using
4766   * ops->device_group.
4767   */
4768  #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4769  	container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4770  
4771  bool rdma_dev_access_netns(const struct ib_device *device,
4772  			   const struct net *net);
4773  
4774  #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4775  #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4776  #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4777  
4778  /**
4779   * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4780   *                               on the flow_label
4781   *
4782   * This function will convert the 20 bit flow_label input to a valid RoCE v2
4783   * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4784   * convention.
4785   */
rdma_flow_label_to_udp_sport(u32 fl)4786  static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4787  {
4788  	u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4789  
4790  	fl_low ^= fl_high >> 14;
4791  	return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4792  }
4793  
4794  /**
4795   * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4796   *                        local and remote qpn values
4797   *
4798   * This function folded the multiplication results of two qpns, 24 bit each,
4799   * fields, and converts it to a 20 bit results.
4800   *
4801   * This function will create symmetric flow_label value based on the local
4802   * and remote qpn values. this will allow both the requester and responder
4803   * to calculate the same flow_label for a given connection.
4804   *
4805   * This helper function should be used by driver in case the upper layer
4806   * provide a zero flow_label value. This is to improve entropy of RDMA
4807   * traffic in the network.
4808   */
rdma_calc_flow_label(u32 lqpn,u32 rqpn)4809  static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4810  {
4811  	u64 v = (u64)lqpn * rqpn;
4812  
4813  	v ^= v >> 20;
4814  	v ^= v >> 40;
4815  
4816  	return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4817  }
4818  
4819  /**
4820   * rdma_get_udp_sport - Calculate and set UDP source port based on the flow
4821   *                      label. If flow label is not defined in GRH then
4822   *                      calculate it based on lqpn/rqpn.
4823   *
4824   * @fl:                 flow label from GRH
4825   * @lqpn:               local qp number
4826   * @rqpn:               remote qp number
4827   */
rdma_get_udp_sport(u32 fl,u32 lqpn,u32 rqpn)4828  static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
4829  {
4830  	if (!fl)
4831  		fl = rdma_calc_flow_label(lqpn, rqpn);
4832  
4833  	return rdma_flow_label_to_udp_sport(fl);
4834  }
4835  
4836  const struct ib_port_immutable*
4837  ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4838  #endif /* IB_VERBS_H */
4839