1 /* SPDX-License-Identifier: GPL-2.0
2 *
3 * Copyright 2016-2022 HabanaLabs, Ltd.
4 * All Rights Reserved.
5 *
6 */
7
8 #ifndef HABANALABSP_H_
9 #define HABANALABSP_H_
10
11 #include "../include/common/cpucp_if.h"
12 #include "../include/common/qman_if.h"
13 #include "../include/hw_ip/mmu/mmu_general.h"
14 #include <uapi/drm/habanalabs_accel.h>
15
16 #include <linux/cdev.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqreturn.h>
19 #include <linux/dma-direction.h>
20 #include <linux/scatterlist.h>
21 #include <linux/hashtable.h>
22 #include <linux/debugfs.h>
23 #include <linux/rwsem.h>
24 #include <linux/eventfd.h>
25 #include <linux/bitfield.h>
26 #include <linux/genalloc.h>
27 #include <linux/sched/signal.h>
28 #include <linux/io-64-nonatomic-lo-hi.h>
29 #include <linux/coresight.h>
30 #include <linux/dma-buf.h>
31
32 #include "security.h"
33
34 #define HL_NAME "habanalabs"
35
36 struct hl_device;
37 struct hl_fpriv;
38
39 #define PCI_VENDOR_ID_HABANALABS 0x1da3
40
41 /* Use upper bits of mmap offset to store habana driver specific information.
42 * bits[63:59] - Encode mmap type
43 * bits[45:0] - mmap offset value
44 *
45 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
46 * defines are w.r.t to PAGE_SIZE
47 */
48 #define HL_MMAP_TYPE_SHIFT (59 - PAGE_SHIFT)
49 #define HL_MMAP_TYPE_MASK (0x1full << HL_MMAP_TYPE_SHIFT)
50 #define HL_MMAP_TYPE_TS_BUFF (0x10ull << HL_MMAP_TYPE_SHIFT)
51 #define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT)
52 #define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT)
53
54 #define HL_MMAP_OFFSET_VALUE_MASK (0x1FFFFFFFFFFFull >> PAGE_SHIFT)
55 #define HL_MMAP_OFFSET_VALUE_GET(off) (off & HL_MMAP_OFFSET_VALUE_MASK)
56
57 #define HL_PENDING_RESET_PER_SEC 10
58 #define HL_PENDING_RESET_MAX_TRIALS 60 /* 10 minutes */
59 #define HL_PENDING_RESET_LONG_SEC 60
60 /*
61 * In device fini, wait 10 minutes for user processes to be terminated after we kill them.
62 * This is needed to prevent situation of clearing resources while user processes are still alive.
63 */
64 #define HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI 600
65
66 #define HL_HARD_RESET_MAX_TIMEOUT 120
67 #define HL_PLDM_HARD_RESET_MAX_TIMEOUT (HL_HARD_RESET_MAX_TIMEOUT * 3)
68
69 #define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */
70
71 #define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */
72
73 #define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */
74
75 #define HL_CPUCP_INFO_TIMEOUT_USEC 10000000 /* 10s */
76 #define HL_CPUCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */
77 #define HL_CPUCP_MON_DUMP_TIMEOUT_USEC 10000000 /* 10s */
78 #define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */
79
80 #define HL_FW_STATUS_POLL_INTERVAL_USEC 10000 /* 10ms */
81 #define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC 1000000 /* 1s */
82
83 #define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */
84
85 #define HL_SIM_MAX_TIMEOUT_US 100000000 /* 100s */
86
87 #define HL_INVALID_QUEUE UINT_MAX
88
89 #define HL_COMMON_USER_CQ_INTERRUPT_ID 0xFFF
90 #define HL_COMMON_DEC_INTERRUPT_ID 0xFFE
91
92 #define HL_STATE_DUMP_HIST_LEN 5
93
94 /* Default value for device reset trigger , an invalid value */
95 #define HL_RESET_TRIGGER_DEFAULT 0xFF
96
97 #define OBJ_NAMES_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
98 #define SYNC_TO_ENGINE_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
99
100 /* Memory */
101 #define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
102
103 /* MMU */
104 #define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
105
106 /**
107 * enum hl_mmu_page_table_location - mmu page table location
108 * @MMU_DR_PGT: page-table is located on device DRAM.
109 * @MMU_HR_PGT: page-table is located on host memory.
110 * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported.
111 */
112 enum hl_mmu_page_table_location {
113 MMU_DR_PGT = 0, /* device-dram-resident MMU PGT */
114 MMU_HR_PGT, /* host resident MMU PGT */
115 MMU_NUM_PGT_LOCATIONS /* num of PGT locations */
116 };
117
118 /*
119 * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
120 * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
121 */
122 #define HL_RSVD_SOBS 2
123 #define HL_RSVD_MONS 1
124
125 /*
126 * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream
127 */
128 #define HL_COLLECTIVE_RSVD_MSTR_MONS 2
129
130 #define HL_MAX_SOB_VAL (1 << 15)
131
132 #define IS_POWER_OF_2(n) (n != 0 && ((n & (n - 1)) == 0))
133 #define IS_MAX_PENDING_CS_VALID(n) (IS_POWER_OF_2(n) && (n > 1))
134
135 #define HL_PCI_NUM_BARS 6
136
137 /* Completion queue entry relates to completed job */
138 #define HL_COMPLETION_MODE_JOB 0
139 /* Completion queue entry relates to completed command submission */
140 #define HL_COMPLETION_MODE_CS 1
141
142 #define HL_MAX_DCORES 8
143
144 /* DMA alloc/free wrappers */
145 #define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \
146 hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__)
147
148 #define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \
149 hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__)
150
151 #define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \
152 hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__)
153
154 #define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \
155 hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__)
156
157 /*
158 * Reset Flags
159 *
160 * - HL_DRV_RESET_HARD
161 * If set do hard reset to all engines. If not set reset just
162 * compute/DMA engines.
163 *
164 * - HL_DRV_RESET_FROM_RESET_THR
165 * Set if the caller is the hard-reset thread
166 *
167 * - HL_DRV_RESET_HEARTBEAT
168 * Set if reset is due to heartbeat
169 *
170 * - HL_DRV_RESET_TDR
171 * Set if reset is due to TDR
172 *
173 * - HL_DRV_RESET_DEV_RELEASE
174 * Set if reset is due to device release
175 *
176 * - HL_DRV_RESET_BYPASS_REQ_TO_FW
177 * F/W will perform the reset. No need to ask it to reset the device. This is relevant
178 * only when running with secured f/w
179 *
180 * - HL_DRV_RESET_FW_FATAL_ERR
181 * Set if reset is due to a fatal error from FW
182 *
183 * - HL_DRV_RESET_DELAY
184 * Set if a delay should be added before the reset
185 *
186 * - HL_DRV_RESET_FROM_WD_THR
187 * Set if the caller is the device release watchdog thread
188 */
189
190 #define HL_DRV_RESET_HARD (1 << 0)
191 #define HL_DRV_RESET_FROM_RESET_THR (1 << 1)
192 #define HL_DRV_RESET_HEARTBEAT (1 << 2)
193 #define HL_DRV_RESET_TDR (1 << 3)
194 #define HL_DRV_RESET_DEV_RELEASE (1 << 4)
195 #define HL_DRV_RESET_BYPASS_REQ_TO_FW (1 << 5)
196 #define HL_DRV_RESET_FW_FATAL_ERR (1 << 6)
197 #define HL_DRV_RESET_DELAY (1 << 7)
198 #define HL_DRV_RESET_FROM_WD_THR (1 << 8)
199
200 /*
201 * Security
202 */
203
204 #define HL_PB_SHARED 1
205 #define HL_PB_NA 0
206 #define HL_PB_SINGLE_INSTANCE 1
207 #define HL_BLOCK_SIZE 0x1000
208 #define HL_BLOCK_GLBL_ERR_MASK 0xF40
209 #define HL_BLOCK_GLBL_ERR_ADDR 0xF44
210 #define HL_BLOCK_GLBL_ERR_CAUSE 0xF48
211 #define HL_BLOCK_GLBL_SEC_OFFS 0xF80
212 #define HL_BLOCK_GLBL_SEC_SIZE (HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS)
213 #define HL_BLOCK_GLBL_SEC_LEN (HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32))
214 #define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32)))
215
216 enum hl_protection_levels {
217 SECURED_LVL,
218 PRIVILEGED_LVL,
219 NON_SECURED_LVL
220 };
221
222 /**
223 * struct iterate_module_ctx - HW module iterator
224 * @fn: function to apply to each HW module instance
225 * @data: optional internal data to the function iterator
226 * @rc: return code for optional use of iterator/iterator-caller
227 */
228 struct iterate_module_ctx {
229 /*
230 * callback for the HW module iterator
231 * @hdev: pointer to the habanalabs device structure
232 * @block: block (ASIC specific definition can be dcore/hdcore)
233 * @inst: HW module instance within the block
234 * @offset: current HW module instance offset from the 1-st HW module instance
235 * in the 1-st block
236 * @ctx: the iterator context.
237 */
238 void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset,
239 struct iterate_module_ctx *ctx);
240 void *data;
241 int rc;
242 };
243
244 struct hl_block_glbl_sec {
245 u32 sec_array[HL_BLOCK_GLBL_SEC_LEN];
246 };
247
248 #define HL_MAX_SOBS_PER_MONITOR 8
249
250 /**
251 * struct hl_gen_wait_properties - properties for generating a wait CB
252 * @data: command buffer
253 * @q_idx: queue id is used to extract fence register address
254 * @size: offset in command buffer
255 * @sob_base: SOB base to use in this wait CB
256 * @sob_val: SOB value to wait for
257 * @mon_id: monitor to use in this wait CB
258 * @sob_mask: each bit represents a SOB offset from sob_base to be used
259 */
260 struct hl_gen_wait_properties {
261 void *data;
262 u32 q_idx;
263 u32 size;
264 u16 sob_base;
265 u16 sob_val;
266 u16 mon_id;
267 u8 sob_mask;
268 };
269
270 /**
271 * struct pgt_info - MMU hop page info.
272 * @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and
273 * actual pgts for host resident MMU).
274 * @phys_addr: physical address of the pgt.
275 * @virt_addr: host virtual address of the pgt (see above device/host resident).
276 * @shadow_addr: shadow hop in the host for device resident MMU.
277 * @ctx: pointer to the owner ctx.
278 * @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically
279 * allocated HOPs (all HOPs but HOP0)
280 *
281 * The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow
282 * pgts will be stored on host memory) or on host memory (in which case no shadow is required).
283 *
284 * When a new level (hop) is needed during mapping this structure will be used to describe
285 * the newly allocated hop as well as to track number of PTEs in it.
286 * During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is
287 * freed with its pgt_info structure.
288 */
289 struct pgt_info {
290 struct hlist_node node;
291 u64 phys_addr;
292 u64 virt_addr;
293 u64 shadow_addr;
294 struct hl_ctx *ctx;
295 int num_of_ptes;
296 };
297
298 /**
299 * enum hl_pci_match_mode - pci match mode per region
300 * @PCI_ADDRESS_MATCH_MODE: address match mode
301 * @PCI_BAR_MATCH_MODE: bar match mode
302 */
303 enum hl_pci_match_mode {
304 PCI_ADDRESS_MATCH_MODE,
305 PCI_BAR_MATCH_MODE
306 };
307
308 /**
309 * enum hl_fw_component - F/W components to read version through registers.
310 * @FW_COMP_BOOT_FIT: boot fit.
311 * @FW_COMP_PREBOOT: preboot.
312 * @FW_COMP_LINUX: linux.
313 */
314 enum hl_fw_component {
315 FW_COMP_BOOT_FIT,
316 FW_COMP_PREBOOT,
317 FW_COMP_LINUX,
318 };
319
320 /**
321 * enum hl_fw_types - F/W types present in the system
322 * @FW_TYPE_NONE: no FW component indication
323 * @FW_TYPE_LINUX: Linux image for device CPU
324 * @FW_TYPE_BOOT_CPU: Boot image for device CPU
325 * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system
326 * (preboot, ppboot etc...)
327 * @FW_TYPE_ALL_TYPES: Mask for all types
328 */
329 enum hl_fw_types {
330 FW_TYPE_NONE = 0x0,
331 FW_TYPE_LINUX = 0x1,
332 FW_TYPE_BOOT_CPU = 0x2,
333 FW_TYPE_PREBOOT_CPU = 0x4,
334 FW_TYPE_ALL_TYPES =
335 (FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU)
336 };
337
338 /**
339 * enum hl_queue_type - Supported QUEUE types.
340 * @QUEUE_TYPE_NA: queue is not available.
341 * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
342 * host.
343 * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
344 * memories and/or operates the compute engines.
345 * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
346 * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
347 * notifications are sent by H/W.
348 */
349 enum hl_queue_type {
350 QUEUE_TYPE_NA,
351 QUEUE_TYPE_EXT,
352 QUEUE_TYPE_INT,
353 QUEUE_TYPE_CPU,
354 QUEUE_TYPE_HW
355 };
356
357 enum hl_cs_type {
358 CS_TYPE_DEFAULT,
359 CS_TYPE_SIGNAL,
360 CS_TYPE_WAIT,
361 CS_TYPE_COLLECTIVE_WAIT,
362 CS_RESERVE_SIGNALS,
363 CS_UNRESERVE_SIGNALS,
364 CS_TYPE_ENGINE_CORE,
365 CS_TYPE_ENGINES,
366 CS_TYPE_FLUSH_PCI_HBW_WRITES,
367 };
368
369 /*
370 * struct hl_inbound_pci_region - inbound region descriptor
371 * @mode: pci match mode for this region
372 * @addr: region target address
373 * @size: region size in bytes
374 * @offset_in_bar: offset within bar (address match mode)
375 * @bar: bar id
376 */
377 struct hl_inbound_pci_region {
378 enum hl_pci_match_mode mode;
379 u64 addr;
380 u64 size;
381 u64 offset_in_bar;
382 u8 bar;
383 };
384
385 /*
386 * struct hl_outbound_pci_region - outbound region descriptor
387 * @addr: region target address
388 * @size: region size in bytes
389 */
390 struct hl_outbound_pci_region {
391 u64 addr;
392 u64 size;
393 };
394
395 /*
396 * enum queue_cb_alloc_flags - Indicates queue support for CBs that
397 * allocated by Kernel or by User
398 * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel
399 * @CB_ALLOC_USER: support only CBs that allocated by User
400 */
401 enum queue_cb_alloc_flags {
402 CB_ALLOC_KERNEL = 0x1,
403 CB_ALLOC_USER = 0x2
404 };
405
406 /*
407 * struct hl_hw_sob - H/W SOB info.
408 * @hdev: habanalabs device structure.
409 * @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
410 * @sob_id: id of this SOB.
411 * @sob_addr: the sob offset from the base address.
412 * @q_idx: the H/W queue that uses this SOB.
413 * @need_reset: reset indication set when switching to the other sob.
414 */
415 struct hl_hw_sob {
416 struct hl_device *hdev;
417 struct kref kref;
418 u32 sob_id;
419 u32 sob_addr;
420 u32 q_idx;
421 bool need_reset;
422 };
423
424 enum hl_collective_mode {
425 HL_COLLECTIVE_NOT_SUPPORTED = 0x0,
426 HL_COLLECTIVE_MASTER = 0x1,
427 HL_COLLECTIVE_SLAVE = 0x2
428 };
429
430 /**
431 * struct hw_queue_properties - queue information.
432 * @type: queue type.
433 * @cb_alloc_flags: bitmap which indicates if the hw queue supports CB
434 * that allocated by the Kernel driver and therefore,
435 * a CB handle can be provided for jobs on this queue.
436 * Otherwise, a CB address must be provided.
437 * @collective_mode: collective mode of current queue
438 * @driver_only: true if only the driver is allowed to send a job to this queue,
439 * false otherwise.
440 * @binned: True if the queue is binned out and should not be used
441 * @supports_sync_stream: True if queue supports sync stream
442 */
443 struct hw_queue_properties {
444 enum hl_queue_type type;
445 enum queue_cb_alloc_flags cb_alloc_flags;
446 enum hl_collective_mode collective_mode;
447 u8 driver_only;
448 u8 binned;
449 u8 supports_sync_stream;
450 };
451
452 /**
453 * enum vm_type - virtual memory mapping request information.
454 * @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
455 * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
456 */
457 enum vm_type {
458 VM_TYPE_USERPTR = 0x1,
459 VM_TYPE_PHYS_PACK = 0x2
460 };
461
462 /**
463 * enum mmu_op_flags - mmu operation relevant information.
464 * @MMU_OP_USERPTR: operation on user memory (host resident).
465 * @MMU_OP_PHYS_PACK: operation on DRAM (device resident).
466 * @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache.
467 * @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation.
468 */
469 enum mmu_op_flags {
470 MMU_OP_USERPTR = 0x1,
471 MMU_OP_PHYS_PACK = 0x2,
472 MMU_OP_CLEAR_MEMCACHE = 0x4,
473 MMU_OP_SKIP_LOW_CACHE_INV = 0x8,
474 };
475
476
477 /**
478 * enum hl_device_hw_state - H/W device state. use this to understand whether
479 * to do reset before hw_init or not
480 * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
481 * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
482 * hw_init
483 */
484 enum hl_device_hw_state {
485 HL_DEVICE_HW_STATE_CLEAN = 0,
486 HL_DEVICE_HW_STATE_DIRTY
487 };
488
489 #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0
490
491 /**
492 * struct hl_mmu_properties - ASIC specific MMU address translation properties.
493 * @start_addr: virtual start address of the memory region.
494 * @end_addr: virtual end address of the memory region.
495 * @hop_shifts: array holds HOPs shifts.
496 * @hop_masks: array holds HOPs masks.
497 * @last_mask: mask to get the bit indicating this is the last hop.
498 * @pgt_size: size for page tables.
499 * @supported_pages_mask: bitmask for supported page size (relevant only for MMUs
500 * supporting multiple page size).
501 * @page_size: default page size used to allocate memory.
502 * @num_hops: The amount of hops supported by the translation table.
503 * @hop_table_size: HOP table size.
504 * @hop0_tables_total_size: total size for all HOP0 tables.
505 * @host_resident: Should the MMU page table reside in host memory or in the
506 * device DRAM.
507 */
508 struct hl_mmu_properties {
509 u64 start_addr;
510 u64 end_addr;
511 u64 hop_shifts[MMU_HOP_MAX];
512 u64 hop_masks[MMU_HOP_MAX];
513 u64 last_mask;
514 u64 pgt_size;
515 u64 supported_pages_mask;
516 u32 page_size;
517 u32 num_hops;
518 u32 hop_table_size;
519 u32 hop0_tables_total_size;
520 u8 host_resident;
521 };
522
523 /**
524 * struct hl_hints_range - hint addresses reserved va range.
525 * @start_addr: start address of the va range.
526 * @end_addr: end address of the va range.
527 */
528 struct hl_hints_range {
529 u64 start_addr;
530 u64 end_addr;
531 };
532
533 /**
534 * struct asic_fixed_properties - ASIC specific immutable properties.
535 * @hw_queues_props: H/W queues properties.
536 * @special_blocks: points to an array containing special blocks info.
537 * @skip_special_blocks_cfg: special blocks skip configs.
538 * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g.
539 * available sensors.
540 * @uboot_ver: F/W U-boot version.
541 * @preboot_ver: F/W Preboot version.
542 * @dmmu: DRAM MMU address translation properties.
543 * @pmmu: PCI (host) MMU address translation properties.
544 * @pmmu_huge: PCI (host) MMU address translation properties for memory
545 * allocated with huge pages.
546 * @hints_dram_reserved_va_range: dram hint addresses reserved range.
547 * @hints_host_reserved_va_range: host hint addresses reserved range.
548 * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved
549 * range.
550 * @sram_base_address: SRAM physical start address.
551 * @sram_end_address: SRAM physical end address.
552 * @sram_user_base_address - SRAM physical start address for user access.
553 * @dram_base_address: DRAM physical start address.
554 * @dram_end_address: DRAM physical end address.
555 * @dram_user_base_address: DRAM physical start address for user access.
556 * @dram_size: DRAM total size.
557 * @dram_pci_bar_size: size of PCI bar towards DRAM.
558 * @max_power_default: max power of the device after reset.
559 * @dc_power_default: power consumed by the device in mode idle.
560 * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
561 * fault.
562 * @pcie_dbi_base_address: Base address of the PCIE_DBI block.
563 * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
564 * @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
565 * @mmu_dram_default_page_addr: DRAM default page physical address.
566 * @tpc_enabled_mask: which TPCs are enabled.
567 * @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned.
568 * @dram_enabled_mask: which DRAMs are enabled.
569 * @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned.
570 * @dram_hints_align_mask: dram va hint addresses alignment mask which is used
571 * for hints validity check.
572 * @cfg_base_address: config space base address.
573 * @mmu_cache_mng_addr: address of the MMU cache.
574 * @mmu_cache_mng_size: size of the MMU cache.
575 * @device_dma_offset_for_host_access: the offset to add to host DMA addresses
576 * to enable the device to access them.
577 * @host_base_address: host physical start address for host DMA from device
578 * @host_end_address: host physical end address for host DMA from device
579 * @max_freq_value: current max clk frequency.
580 * @engine_core_interrupt_reg_addr: interrupt register address for engine core to use
581 * in order to raise events toward FW.
582 * @clk_pll_index: clock PLL index that specify which PLL determines the clock
583 * we display to the user
584 * @mmu_pgt_size: MMU page tables total size.
585 * @mmu_pte_size: PTE size in MMU page tables.
586 * @mmu_hop_table_size: MMU hop table size.
587 * @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
588 * @dram_page_size: page size for MMU DRAM allocation.
589 * @cfg_size: configuration space size on SRAM.
590 * @sram_size: total size of SRAM.
591 * @max_asid: maximum number of open contexts (ASIDs).
592 * @num_of_events: number of possible internal H/W IRQs.
593 * @psoc_pci_pll_nr: PCI PLL NR value.
594 * @psoc_pci_pll_nf: PCI PLL NF value.
595 * @psoc_pci_pll_od: PCI PLL OD value.
596 * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
597 * @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
598 * @high_pll: high PLL frequency used by the device.
599 * @cb_pool_cb_cnt: number of CBs in the CB pool.
600 * @cb_pool_cb_size: size of each CB in the CB pool.
601 * @decoder_enabled_mask: which decoders are enabled.
602 * @decoder_binning_mask: which decoders are binned, 0 means usable and 1 means binned.
603 * @rotator_enabled_mask: which rotators are enabled.
604 * @edma_enabled_mask: which EDMAs are enabled.
605 * @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means
606 * binned (at most one binned DMA).
607 * @max_pending_cs: maximum of concurrent pending command submissions
608 * @max_queues: maximum amount of queues in the system
609 * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu
610 * capabilities reported by FW, bit description
611 * can be found in CPU_BOOT_DEV_STS0
612 * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu
613 * capabilities reported by FW, bit description
614 * can be found in CPU_BOOT_DEV_STS1
615 * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security
616 * status reported by FW, bit description can be
617 * found in CPU_BOOT_DEV_STS0
618 * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security
619 * status reported by FW, bit description can be
620 * found in CPU_BOOT_DEV_STS1
621 * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security
622 * status reported by FW, bit description can be
623 * found in CPU_BOOT_DEV_STS0
624 * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security
625 * status reported by FW, bit description can be
626 * found in CPU_BOOT_DEV_STS1
627 * @max_dec: maximum number of decoders
628 * @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled)
629 * 1- enabled, 0- isolated.
630 * @faulty_dram_cluster_map: mask of faulty DRAM cluster.
631 * 1- faulty cluster, 0- good cluster.
632 * @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled)
633 * 1- enabled, 0- isolated.
634 * @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for
635 * which the property supports_user_set_page_size is true
636 * (i.e. the DRAM supports multiple page sizes), otherwise
637 * it will shall be equal to dram_page_size.
638 * @num_engine_cores: number of engine cpu cores.
639 * @max_num_of_engines: maximum number of all engines in the ASIC.
640 * @num_of_special_blocks: special_blocks array size.
641 * @glbl_err_cause_num: global err cause number.
642 * @hbw_flush_reg: register to read to generate HBW flush. value of 0 means HBW flush is
643 * not supported.
644 * @collective_first_sob: first sync object available for collective use
645 * @collective_first_mon: first monitor available for collective use
646 * @sync_stream_first_sob: first sync object available for sync stream use
647 * @sync_stream_first_mon: first monitor available for sync stream use
648 * @first_available_user_sob: first sob available for the user
649 * @first_available_user_mon: first monitor available for the user
650 * @first_available_user_interrupt: first available interrupt reserved for the user
651 * @first_available_cq: first available CQ for the user.
652 * @user_interrupt_count: number of user interrupts.
653 * @user_dec_intr_count: number of decoder interrupts exposed to user.
654 * @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host.
655 * @eq_interrupt_id: interrupt id for EQ, uses to synchronize EQ interrupts in hard-reset.
656 * @cache_line_size: device cache line size.
657 * @server_type: Server type that the ASIC is currently installed in.
658 * The value is according to enum hl_server_type in uapi file.
659 * @completion_queues_count: number of completion queues.
660 * @completion_mode: 0 - job based completion, 1 - cs based completion
661 * @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works
662 * in Master/Slave mode
663 * @fw_security_enabled: true if security measures are enabled in firmware,
664 * false otherwise
665 * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from
666 * BOOT_DEV_STS0
667 * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from
668 * BOOT_DEV_STS1
669 * @dram_supports_virtual_memory: is there an MMU towards the DRAM
670 * @hard_reset_done_by_fw: true if firmware is handling hard reset flow
671 * @num_functional_hbms: number of functional HBMs in each DCORE.
672 * @hints_range_reservation: device support hint addresses range reservation.
673 * @iatu_done_by_fw: true if iATU configuration is being done by FW.
674 * @dynamic_fw_load: is dynamic FW load is supported.
675 * @gic_interrupts_enable: true if FW is not blocking GIC controller,
676 * false otherwise.
677 * @use_get_power_for_reset_history: To support backward compatibility for Goya
678 * and Gaudi
679 * @supports_compute_reset: is a reset which is not a hard-reset supported by this asic.
680 * @allow_inference_soft_reset: true if the ASIC supports soft reset that is
681 * initiated by user or TDR. This is only true
682 * in inference ASICs, as there is no real-world
683 * use-case of doing soft-reset in training (due
684 * to the fact that training runs on multiple
685 * devices)
686 * @configurable_stop_on_err: is stop-on-error option configurable via debugfs.
687 * @set_max_power_on_device_init: true if need to set max power in F/W on device init.
688 * @supports_user_set_page_size: true if user can set the allocation page size.
689 * @dma_mask: the dma mask to be set for this device
690 * @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported.
691 * @supports_engine_modes: true if changing engines/engine_cores modes is supported.
692 */
693 struct asic_fixed_properties {
694 struct hw_queue_properties *hw_queues_props;
695 struct hl_special_block_info *special_blocks;
696 struct hl_skip_blocks_cfg skip_special_blocks_cfg;
697 struct cpucp_info cpucp_info;
698 char uboot_ver[VERSION_MAX_LEN];
699 char preboot_ver[VERSION_MAX_LEN];
700 struct hl_mmu_properties dmmu;
701 struct hl_mmu_properties pmmu;
702 struct hl_mmu_properties pmmu_huge;
703 struct hl_hints_range hints_dram_reserved_va_range;
704 struct hl_hints_range hints_host_reserved_va_range;
705 struct hl_hints_range hints_host_hpage_reserved_va_range;
706 u64 sram_base_address;
707 u64 sram_end_address;
708 u64 sram_user_base_address;
709 u64 dram_base_address;
710 u64 dram_end_address;
711 u64 dram_user_base_address;
712 u64 dram_size;
713 u64 dram_pci_bar_size;
714 u64 max_power_default;
715 u64 dc_power_default;
716 u64 dram_size_for_default_page_mapping;
717 u64 pcie_dbi_base_address;
718 u64 pcie_aux_dbi_reg_addr;
719 u64 mmu_pgt_addr;
720 u64 mmu_dram_default_page_addr;
721 u64 tpc_enabled_mask;
722 u64 tpc_binning_mask;
723 u64 dram_enabled_mask;
724 u64 dram_binning_mask;
725 u64 dram_hints_align_mask;
726 u64 cfg_base_address;
727 u64 mmu_cache_mng_addr;
728 u64 mmu_cache_mng_size;
729 u64 device_dma_offset_for_host_access;
730 u64 host_base_address;
731 u64 host_end_address;
732 u64 max_freq_value;
733 u64 engine_core_interrupt_reg_addr;
734 u32 clk_pll_index;
735 u32 mmu_pgt_size;
736 u32 mmu_pte_size;
737 u32 mmu_hop_table_size;
738 u32 mmu_hop0_tables_total_size;
739 u32 dram_page_size;
740 u32 cfg_size;
741 u32 sram_size;
742 u32 max_asid;
743 u32 num_of_events;
744 u32 psoc_pci_pll_nr;
745 u32 psoc_pci_pll_nf;
746 u32 psoc_pci_pll_od;
747 u32 psoc_pci_pll_div_factor;
748 u32 psoc_timestamp_frequency;
749 u32 high_pll;
750 u32 cb_pool_cb_cnt;
751 u32 cb_pool_cb_size;
752 u32 decoder_enabled_mask;
753 u32 decoder_binning_mask;
754 u32 rotator_enabled_mask;
755 u32 edma_enabled_mask;
756 u32 edma_binning_mask;
757 u32 max_pending_cs;
758 u32 max_queues;
759 u32 fw_preboot_cpu_boot_dev_sts0;
760 u32 fw_preboot_cpu_boot_dev_sts1;
761 u32 fw_bootfit_cpu_boot_dev_sts0;
762 u32 fw_bootfit_cpu_boot_dev_sts1;
763 u32 fw_app_cpu_boot_dev_sts0;
764 u32 fw_app_cpu_boot_dev_sts1;
765 u32 max_dec;
766 u32 hmmu_hif_enabled_mask;
767 u32 faulty_dram_cluster_map;
768 u32 xbar_edge_enabled_mask;
769 u32 device_mem_alloc_default_page_size;
770 u32 num_engine_cores;
771 u32 max_num_of_engines;
772 u32 num_of_special_blocks;
773 u32 glbl_err_cause_num;
774 u32 hbw_flush_reg;
775 u16 collective_first_sob;
776 u16 collective_first_mon;
777 u16 sync_stream_first_sob;
778 u16 sync_stream_first_mon;
779 u16 first_available_user_sob[HL_MAX_DCORES];
780 u16 first_available_user_mon[HL_MAX_DCORES];
781 u16 first_available_user_interrupt;
782 u16 first_available_cq[HL_MAX_DCORES];
783 u16 user_interrupt_count;
784 u16 user_dec_intr_count;
785 u16 tpc_interrupt_id;
786 u16 eq_interrupt_id;
787 u16 cache_line_size;
788 u16 server_type;
789 u8 completion_queues_count;
790 u8 completion_mode;
791 u8 mme_master_slave_mode;
792 u8 fw_security_enabled;
793 u8 fw_cpu_boot_dev_sts0_valid;
794 u8 fw_cpu_boot_dev_sts1_valid;
795 u8 dram_supports_virtual_memory;
796 u8 hard_reset_done_by_fw;
797 u8 num_functional_hbms;
798 u8 hints_range_reservation;
799 u8 iatu_done_by_fw;
800 u8 dynamic_fw_load;
801 u8 gic_interrupts_enable;
802 u8 use_get_power_for_reset_history;
803 u8 supports_compute_reset;
804 u8 allow_inference_soft_reset;
805 u8 configurable_stop_on_err;
806 u8 set_max_power_on_device_init;
807 u8 supports_user_set_page_size;
808 u8 dma_mask;
809 u8 supports_advanced_cpucp_rc;
810 u8 supports_engine_modes;
811 };
812
813 /**
814 * struct hl_fence - software synchronization primitive
815 * @completion: fence is implemented using completion
816 * @refcount: refcount for this fence
817 * @cs_sequence: sequence of the corresponding command submission
818 * @stream_master_qid_map: streams masters QID bitmap to represent all streams
819 * masters QIDs that multi cs is waiting on
820 * @error: mark this fence with error
821 * @timestamp: timestamp upon completion
822 * @mcs_handling_done: indicates that corresponding command submission has
823 * finished msc handling, this does not mean it was part
824 * of the mcs
825 */
826 struct hl_fence {
827 struct completion completion;
828 struct kref refcount;
829 u64 cs_sequence;
830 u32 stream_master_qid_map;
831 int error;
832 ktime_t timestamp;
833 u8 mcs_handling_done;
834 };
835
836 /**
837 * struct hl_cs_compl - command submission completion object.
838 * @base_fence: hl fence object.
839 * @lock: spinlock to protect fence.
840 * @hdev: habanalabs device structure.
841 * @hw_sob: the H/W SOB used in this signal/wait CS.
842 * @encaps_sig_hdl: encaps signals handler.
843 * @cs_seq: command submission sequence number.
844 * @type: type of the CS - signal/wait.
845 * @sob_val: the SOB value that is used in this signal/wait CS.
846 * @sob_group: the SOB group that is used in this collective wait CS.
847 * @encaps_signals: indication whether it's a completion object of cs with
848 * encaps signals or not.
849 */
850 struct hl_cs_compl {
851 struct hl_fence base_fence;
852 spinlock_t lock;
853 struct hl_device *hdev;
854 struct hl_hw_sob *hw_sob;
855 struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
856 u64 cs_seq;
857 enum hl_cs_type type;
858 u16 sob_val;
859 u16 sob_group;
860 bool encaps_signals;
861 };
862
863 /*
864 * Command Buffers
865 */
866
867 /**
868 * struct hl_ts_buff - describes a timestamp buffer.
869 * @kernel_buff_address: Holds the internal buffer's kernel virtual address.
870 * @user_buff_address: Holds the user buffer's kernel virtual address.
871 * @kernel_buff_size: Holds the internal kernel buffer size.
872 */
873 struct hl_ts_buff {
874 void *kernel_buff_address;
875 void *user_buff_address;
876 u32 kernel_buff_size;
877 };
878
879 struct hl_mmap_mem_buf;
880
881 /**
882 * struct hl_mem_mgr - describes unified memory manager for mappable memory chunks.
883 * @dev: back pointer to the owning device
884 * @lock: protects handles
885 * @handles: an idr holding all active handles to the memory buffers in the system.
886 */
887 struct hl_mem_mgr {
888 struct device *dev;
889 spinlock_t lock;
890 struct idr handles;
891 };
892
893 /**
894 * struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior
895 * @topic: string identifier used for logging
896 * @mem_id: memory type identifier, embedded in the handle and used to identify
897 * the memory type by handle.
898 * @alloc: callback executed on buffer allocation, shall allocate the memory,
899 * set it under buffer private, and set mappable size.
900 * @mmap: callback executed on mmap, must map the buffer to vma
901 * @release: callback executed on release, must free the resources used by the buffer
902 */
903 struct hl_mmap_mem_buf_behavior {
904 const char *topic;
905 u64 mem_id;
906
907 int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args);
908 int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args);
909 void (*release)(struct hl_mmap_mem_buf *buf);
910 };
911
912 /**
913 * struct hl_mmap_mem_buf - describes a single unified memory buffer
914 * @behavior: buffer behavior
915 * @mmg: back pointer to the unified memory manager
916 * @refcount: reference counter for buffer users
917 * @private: pointer to buffer behavior private data
918 * @mmap: atomic boolean indicating whether or not the buffer is mapped right now
919 * @real_mapped_size: the actual size of buffer mapped, after part of it may be released,
920 * may change at runtime.
921 * @mappable_size: the original mappable size of the buffer, does not change after
922 * the allocation.
923 * @handle: the buffer id in mmg handles store
924 */
925 struct hl_mmap_mem_buf {
926 struct hl_mmap_mem_buf_behavior *behavior;
927 struct hl_mem_mgr *mmg;
928 struct kref refcount;
929 void *private;
930 atomic_t mmap;
931 u64 real_mapped_size;
932 u64 mappable_size;
933 u64 handle;
934 };
935
936 /**
937 * struct hl_cb - describes a Command Buffer.
938 * @hdev: pointer to device this CB belongs to.
939 * @ctx: pointer to the CB owner's context.
940 * @buf: back pointer to the parent mappable memory buffer
941 * @debugfs_list: node in debugfs list of command buffers.
942 * @pool_list: node in pool list of command buffers.
943 * @kernel_address: Holds the CB's kernel virtual address.
944 * @virtual_addr: Holds the CB's virtual address.
945 * @bus_address: Holds the CB's DMA address.
946 * @size: holds the CB's size.
947 * @roundup_size: holds the cb size after roundup to page size.
948 * @cs_cnt: holds number of CS that this CB participates in.
949 * @is_handle_destroyed: atomic boolean indicating whether or not the CB handle was destroyed.
950 * @is_pool: true if CB was acquired from the pool, false otherwise.
951 * @is_internal: internally allocated
952 * @is_mmu_mapped: true if the CB is mapped to the device's MMU.
953 */
954 struct hl_cb {
955 struct hl_device *hdev;
956 struct hl_ctx *ctx;
957 struct hl_mmap_mem_buf *buf;
958 struct list_head debugfs_list;
959 struct list_head pool_list;
960 void *kernel_address;
961 u64 virtual_addr;
962 dma_addr_t bus_address;
963 u32 size;
964 u32 roundup_size;
965 atomic_t cs_cnt;
966 atomic_t is_handle_destroyed;
967 u8 is_pool;
968 u8 is_internal;
969 u8 is_mmu_mapped;
970 };
971
972
973 /*
974 * QUEUES
975 */
976
977 struct hl_cs_job;
978
979 /* Queue length of external and HW queues */
980 #define HL_QUEUE_LENGTH 4096
981 #define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE)
982
983 #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
984 #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
985 #endif
986
987 /* HL_CQ_LENGTH is in units of struct hl_cq_entry */
988 #define HL_CQ_LENGTH HL_QUEUE_LENGTH
989 #define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
990
991 /* Must be power of 2 */
992 #define HL_EQ_LENGTH 64
993 #define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
994
995 /* Host <-> CPU-CP shared memory size */
996 #define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M
997
998 /**
999 * struct hl_sync_stream_properties -
1000 * describes a H/W queue sync stream properties
1001 * @hw_sob: array of the used H/W SOBs by this H/W queue.
1002 * @next_sob_val: the next value to use for the currently used SOB.
1003 * @base_sob_id: the base SOB id of the SOBs used by this queue.
1004 * @base_mon_id: the base MON id of the MONs used by this queue.
1005 * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue
1006 * in order to sync with all slave queues.
1007 * @collective_slave_mon_id: the MON id used by this slave queue in order to
1008 * sync with its master queue.
1009 * @collective_sob_id: current SOB id used by this collective slave queue
1010 * to signal its collective master queue upon completion.
1011 * @curr_sob_offset: the id offset to the currently used SOB from the
1012 * HL_RSVD_SOBS that are being used by this queue.
1013 */
1014 struct hl_sync_stream_properties {
1015 struct hl_hw_sob hw_sob[HL_RSVD_SOBS];
1016 u16 next_sob_val;
1017 u16 base_sob_id;
1018 u16 base_mon_id;
1019 u16 collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS];
1020 u16 collective_slave_mon_id;
1021 u16 collective_sob_id;
1022 u8 curr_sob_offset;
1023 };
1024
1025 /**
1026 * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals
1027 * handlers manager
1028 * @lock: protects handles.
1029 * @handles: an idr to hold all encapsulated signals handles.
1030 */
1031 struct hl_encaps_signals_mgr {
1032 spinlock_t lock;
1033 struct idr handles;
1034 };
1035
1036 /**
1037 * struct hl_hw_queue - describes a H/W transport queue.
1038 * @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
1039 * @sync_stream_prop: sync stream queue properties
1040 * @queue_type: type of queue.
1041 * @collective_mode: collective mode of current queue
1042 * @kernel_address: holds the queue's kernel virtual address.
1043 * @bus_address: holds the queue's DMA address.
1044 * @pi: holds the queue's pi value.
1045 * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
1046 * @hw_queue_id: the id of the H/W queue.
1047 * @cq_id: the id for the corresponding CQ for this H/W queue.
1048 * @msi_vec: the IRQ number of the H/W queue.
1049 * @int_queue_len: length of internal queue (number of entries).
1050 * @valid: is the queue valid (we have array of 32 queues, not all of them
1051 * exist).
1052 * @supports_sync_stream: True if queue supports sync stream
1053 */
1054 struct hl_hw_queue {
1055 struct hl_cs_job **shadow_queue;
1056 struct hl_sync_stream_properties sync_stream_prop;
1057 enum hl_queue_type queue_type;
1058 enum hl_collective_mode collective_mode;
1059 void *kernel_address;
1060 dma_addr_t bus_address;
1061 u32 pi;
1062 atomic_t ci;
1063 u32 hw_queue_id;
1064 u32 cq_id;
1065 u32 msi_vec;
1066 u16 int_queue_len;
1067 u8 valid;
1068 u8 supports_sync_stream;
1069 };
1070
1071 /**
1072 * struct hl_cq - describes a completion queue
1073 * @hdev: pointer to the device structure
1074 * @kernel_address: holds the queue's kernel virtual address
1075 * @bus_address: holds the queue's DMA address
1076 * @cq_idx: completion queue index in array
1077 * @hw_queue_id: the id of the matching H/W queue
1078 * @ci: ci inside the queue
1079 * @pi: pi inside the queue
1080 * @free_slots_cnt: counter of free slots in queue
1081 */
1082 struct hl_cq {
1083 struct hl_device *hdev;
1084 void *kernel_address;
1085 dma_addr_t bus_address;
1086 u32 cq_idx;
1087 u32 hw_queue_id;
1088 u32 ci;
1089 u32 pi;
1090 atomic_t free_slots_cnt;
1091 };
1092
1093 enum hl_user_interrupt_type {
1094 HL_USR_INTERRUPT_CQ = 0,
1095 HL_USR_INTERRUPT_DECODER,
1096 HL_USR_INTERRUPT_TPC,
1097 HL_USR_INTERRUPT_UNEXPECTED
1098 };
1099
1100 /**
1101 * struct hl_user_interrupt - holds user interrupt information
1102 * @hdev: pointer to the device structure
1103 * @type: user interrupt type
1104 * @wait_list_head: head to the list of user threads pending on this interrupt
1105 * @wait_list_lock: protects wait_list_head
1106 * @timestamp: last timestamp taken upon interrupt
1107 * @interrupt_id: msix interrupt id
1108 */
1109 struct hl_user_interrupt {
1110 struct hl_device *hdev;
1111 enum hl_user_interrupt_type type;
1112 struct list_head wait_list_head;
1113 spinlock_t wait_list_lock;
1114 ktime_t timestamp;
1115 u32 interrupt_id;
1116 };
1117
1118 /**
1119 * struct timestamp_reg_free_node - holds the timestamp registration free objects node
1120 * @free_objects_node: node in the list free_obj_jobs
1121 * @cq_cb: pointer to cq command buffer to be freed
1122 * @buf: pointer to timestamp buffer to be freed
1123 */
1124 struct timestamp_reg_free_node {
1125 struct list_head free_objects_node;
1126 struct hl_cb *cq_cb;
1127 struct hl_mmap_mem_buf *buf;
1128 };
1129
1130 /* struct timestamp_reg_work_obj - holds the timestamp registration free objects job
1131 * the job will be to pass over the free_obj_jobs list and put refcount to objects
1132 * in each node of the list
1133 * @free_obj: workqueue object to free timestamp registration node objects
1134 * @hdev: pointer to the device structure
1135 * @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node)
1136 */
1137 struct timestamp_reg_work_obj {
1138 struct work_struct free_obj;
1139 struct hl_device *hdev;
1140 struct list_head *free_obj_head;
1141 };
1142
1143 /* struct timestamp_reg_info - holds the timestamp registration related data.
1144 * @buf: pointer to the timestamp buffer which include both user/kernel buffers.
1145 * relevant only when doing timestamps records registration.
1146 * @cq_cb: pointer to CQ counter CB.
1147 * @timestamp_kernel_addr: timestamp handle address, where to set timestamp
1148 * relevant only when doing timestamps records
1149 * registration.
1150 * @in_use: indicates if the node already in use. relevant only when doing
1151 * timestamps records registration, since in this case the driver
1152 * will have it's own buffer which serve as a records pool instead of
1153 * allocating records dynamically.
1154 */
1155 struct timestamp_reg_info {
1156 struct hl_mmap_mem_buf *buf;
1157 struct hl_cb *cq_cb;
1158 u64 *timestamp_kernel_addr;
1159 u8 in_use;
1160 };
1161
1162 /**
1163 * struct hl_user_pending_interrupt - holds a context to a user thread
1164 * pending on an interrupt
1165 * @ts_reg_info: holds the timestamps registration nodes info
1166 * @wait_list_node: node in the list of user threads pending on an interrupt
1167 * @fence: hl fence object for interrupt completion
1168 * @cq_target_value: CQ target value
1169 * @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt
1170 * handler for target value comparison
1171 */
1172 struct hl_user_pending_interrupt {
1173 struct timestamp_reg_info ts_reg_info;
1174 struct list_head wait_list_node;
1175 struct hl_fence fence;
1176 u64 cq_target_value;
1177 u64 *cq_kernel_addr;
1178 };
1179
1180 /**
1181 * struct hl_eq - describes the event queue (single one per device)
1182 * @hdev: pointer to the device structure
1183 * @kernel_address: holds the queue's kernel virtual address
1184 * @bus_address: holds the queue's DMA address
1185 * @ci: ci inside the queue
1186 * @prev_eqe_index: the index of the previous event queue entry. The index of
1187 * the current entry's index must be +1 of the previous one.
1188 * @check_eqe_index: do we need to check the index of the current entry vs. the
1189 * previous one. This is for backward compatibility with older
1190 * firmwares
1191 */
1192 struct hl_eq {
1193 struct hl_device *hdev;
1194 void *kernel_address;
1195 dma_addr_t bus_address;
1196 u32 ci;
1197 u32 prev_eqe_index;
1198 bool check_eqe_index;
1199 };
1200
1201 /**
1202 * struct hl_dec - describes a decoder sw instance.
1203 * @hdev: pointer to the device structure.
1204 * @abnrm_intr_work: workqueue work item to run when decoder generates an error interrupt.
1205 * @core_id: ID of the decoder.
1206 * @base_addr: base address of the decoder.
1207 */
1208 struct hl_dec {
1209 struct hl_device *hdev;
1210 struct work_struct abnrm_intr_work;
1211 u32 core_id;
1212 u32 base_addr;
1213 };
1214
1215 /**
1216 * enum hl_asic_type - supported ASIC types.
1217 * @ASIC_INVALID: Invalid ASIC type.
1218 * @ASIC_GOYA: Goya device (HL-1000).
1219 * @ASIC_GAUDI: Gaudi device (HL-2000).
1220 * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000).
1221 * @ASIC_GAUDI2: Gaudi2 device.
1222 * @ASIC_GAUDI2B: Gaudi2B device.
1223 * @ASIC_GAUDI2C: Gaudi2C device.
1224 */
1225 enum hl_asic_type {
1226 ASIC_INVALID,
1227 ASIC_GOYA,
1228 ASIC_GAUDI,
1229 ASIC_GAUDI_SEC,
1230 ASIC_GAUDI2,
1231 ASIC_GAUDI2B,
1232 ASIC_GAUDI2C,
1233 };
1234
1235 struct hl_cs_parser;
1236
1237 /**
1238 * enum hl_pm_mng_profile - power management profile.
1239 * @PM_AUTO: internal clock is set by the Linux driver.
1240 * @PM_MANUAL: internal clock is set by the user.
1241 * @PM_LAST: last power management type.
1242 */
1243 enum hl_pm_mng_profile {
1244 PM_AUTO = 1,
1245 PM_MANUAL,
1246 PM_LAST
1247 };
1248
1249 /**
1250 * enum hl_pll_frequency - PLL frequency.
1251 * @PLL_HIGH: high frequency.
1252 * @PLL_LOW: low frequency.
1253 * @PLL_LAST: last frequency values that were configured by the user.
1254 */
1255 enum hl_pll_frequency {
1256 PLL_HIGH = 1,
1257 PLL_LOW,
1258 PLL_LAST
1259 };
1260
1261 #define PLL_REF_CLK 50
1262
1263 enum div_select_defs {
1264 DIV_SEL_REF_CLK = 0,
1265 DIV_SEL_PLL_CLK = 1,
1266 DIV_SEL_DIVIDED_REF = 2,
1267 DIV_SEL_DIVIDED_PLL = 3,
1268 };
1269
1270 enum debugfs_access_type {
1271 DEBUGFS_READ8,
1272 DEBUGFS_WRITE8,
1273 DEBUGFS_READ32,
1274 DEBUGFS_WRITE32,
1275 DEBUGFS_READ64,
1276 DEBUGFS_WRITE64,
1277 };
1278
1279 enum pci_region {
1280 PCI_REGION_CFG,
1281 PCI_REGION_SRAM,
1282 PCI_REGION_DRAM,
1283 PCI_REGION_SP_SRAM,
1284 PCI_REGION_NUMBER,
1285 };
1286
1287 /**
1288 * struct pci_mem_region - describe memory region in a PCI bar
1289 * @region_base: region base address
1290 * @region_size: region size
1291 * @bar_size: size of the BAR
1292 * @offset_in_bar: region offset into the bar
1293 * @bar_id: bar ID of the region
1294 * @used: if used 1, otherwise 0
1295 */
1296 struct pci_mem_region {
1297 u64 region_base;
1298 u64 region_size;
1299 u64 bar_size;
1300 u64 offset_in_bar;
1301 u8 bar_id;
1302 u8 used;
1303 };
1304
1305 /**
1306 * struct static_fw_load_mgr - static FW load manager
1307 * @preboot_version_max_off: max offset to preboot version
1308 * @boot_fit_version_max_off: max offset to boot fit version
1309 * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages
1310 * @cpu_cmd_status_to_host_reg: register address for CPU command status response
1311 * @cpu_boot_status_reg: boot status register
1312 * @cpu_boot_dev_status0_reg: boot device status register 0
1313 * @cpu_boot_dev_status1_reg: boot device status register 1
1314 * @boot_err0_reg: boot error register 0
1315 * @boot_err1_reg: boot error register 1
1316 * @preboot_version_offset_reg: SRAM offset to preboot version register
1317 * @boot_fit_version_offset_reg: SRAM offset to boot fit version register
1318 * @sram_offset_mask: mask for getting offset into the SRAM
1319 * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg
1320 */
1321 struct static_fw_load_mgr {
1322 u64 preboot_version_max_off;
1323 u64 boot_fit_version_max_off;
1324 u32 kmd_msg_to_cpu_reg;
1325 u32 cpu_cmd_status_to_host_reg;
1326 u32 cpu_boot_status_reg;
1327 u32 cpu_boot_dev_status0_reg;
1328 u32 cpu_boot_dev_status1_reg;
1329 u32 boot_err0_reg;
1330 u32 boot_err1_reg;
1331 u32 preboot_version_offset_reg;
1332 u32 boot_fit_version_offset_reg;
1333 u32 sram_offset_mask;
1334 u32 cpu_reset_wait_msec;
1335 };
1336
1337 /**
1338 * struct fw_response - FW response to LKD command
1339 * @ram_offset: descriptor offset into the RAM
1340 * @ram_type: RAM type containing the descriptor (SRAM/DRAM)
1341 * @status: command status
1342 */
1343 struct fw_response {
1344 u32 ram_offset;
1345 u8 ram_type;
1346 u8 status;
1347 };
1348
1349 /**
1350 * struct dynamic_fw_load_mgr - dynamic FW load manager
1351 * @response: FW to LKD response
1352 * @comm_desc: the communication descriptor with FW
1353 * @image_region: region to copy the FW image to
1354 * @fw_image_size: size of FW image to load
1355 * @wait_for_bl_timeout: timeout for waiting for boot loader to respond
1356 * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used
1357 */
1358 struct dynamic_fw_load_mgr {
1359 struct fw_response response;
1360 struct lkd_fw_comms_desc comm_desc;
1361 struct pci_mem_region *image_region;
1362 size_t fw_image_size;
1363 u32 wait_for_bl_timeout;
1364 bool fw_desc_valid;
1365 };
1366
1367 /**
1368 * struct pre_fw_load_props - needed properties for pre-FW load
1369 * @cpu_boot_status_reg: cpu_boot_status register address
1370 * @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address
1371 * @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address
1372 * @boot_err0_reg: boot_err0 register address
1373 * @boot_err1_reg: boot_err1 register address
1374 * @wait_for_preboot_timeout: timeout to poll for preboot ready
1375 */
1376 struct pre_fw_load_props {
1377 u32 cpu_boot_status_reg;
1378 u32 sts_boot_dev_sts0_reg;
1379 u32 sts_boot_dev_sts1_reg;
1380 u32 boot_err0_reg;
1381 u32 boot_err1_reg;
1382 u32 wait_for_preboot_timeout;
1383 };
1384
1385 /**
1386 * struct fw_image_props - properties of FW image
1387 * @image_name: name of the image
1388 * @src_off: offset in src FW to copy from
1389 * @copy_size: amount of bytes to copy (0 to copy the whole binary)
1390 */
1391 struct fw_image_props {
1392 char *image_name;
1393 u32 src_off;
1394 u32 copy_size;
1395 };
1396
1397 /**
1398 * struct fw_load_mgr - manager FW loading process
1399 * @dynamic_loader: specific structure for dynamic load
1400 * @static_loader: specific structure for static load
1401 * @pre_fw_load_props: parameter for pre FW load
1402 * @boot_fit_img: boot fit image properties
1403 * @linux_img: linux image properties
1404 * @cpu_timeout: CPU response timeout in usec
1405 * @boot_fit_timeout: Boot fit load timeout in usec
1406 * @skip_bmc: should BMC be skipped
1407 * @sram_bar_id: SRAM bar ID
1408 * @dram_bar_id: DRAM bar ID
1409 * @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded
1410 * component. values are set according to enum hl_fw_types.
1411 */
1412 struct fw_load_mgr {
1413 union {
1414 struct dynamic_fw_load_mgr dynamic_loader;
1415 struct static_fw_load_mgr static_loader;
1416 };
1417 struct pre_fw_load_props pre_fw_load;
1418 struct fw_image_props boot_fit_img;
1419 struct fw_image_props linux_img;
1420 u32 cpu_timeout;
1421 u32 boot_fit_timeout;
1422 u8 skip_bmc;
1423 u8 sram_bar_id;
1424 u8 dram_bar_id;
1425 u8 fw_comp_loaded;
1426 };
1427
1428 struct hl_cs;
1429
1430 /**
1431 * struct engines_data - asic engines data
1432 * @buf: buffer for engines data in ascii
1433 * @actual_size: actual size of data that was written by the driver to the allocated buffer
1434 * @allocated_buf_size: total size of allocated buffer
1435 */
1436 struct engines_data {
1437 char *buf;
1438 int actual_size;
1439 u32 allocated_buf_size;
1440 };
1441
1442 /**
1443 * struct hl_asic_funcs - ASIC specific functions that are can be called from
1444 * common code.
1445 * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
1446 * @early_fini: tears down what was done in early_init.
1447 * @late_init: sets up late driver/hw state (post hw_init) - Optional.
1448 * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
1449 * @sw_init: sets up driver state, does not configure H/W.
1450 * @sw_fini: tears down driver state, does not configure H/W.
1451 * @hw_init: sets up the H/W state.
1452 * @hw_fini: tears down the H/W state.
1453 * @halt_engines: halt engines, needed for reset sequence. This also disables
1454 * interrupts from the device. Should be called before
1455 * hw_fini and before CS rollback.
1456 * @suspend: handles IP specific H/W or SW changes for suspend.
1457 * @resume: handles IP specific H/W or SW changes for resume.
1458 * @mmap: maps a memory.
1459 * @ring_doorbell: increment PI on a given QMAN.
1460 * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
1461 * function because the PQs are located in different memory areas
1462 * per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
1463 * writing the PQE must match the destination memory area
1464 * properties.
1465 * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
1466 * dma_alloc_coherent(). This is ASIC function because
1467 * its implementation is not trivial when the driver
1468 * is loaded in simulation mode (not upstreamed).
1469 * @asic_dma_free_coherent: Free coherent DMA memory by calling
1470 * dma_free_coherent(). This is ASIC function because
1471 * its implementation is not trivial when the driver
1472 * is loaded in simulation mode (not upstreamed).
1473 * @scrub_device_mem: Scrub the entire SRAM and DRAM.
1474 * @scrub_device_dram: Scrub the dram memory of the device.
1475 * @get_int_queue_base: get the internal queue base address.
1476 * @test_queues: run simple test on all queues for sanity check.
1477 * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
1478 * size of allocation is HL_DMA_POOL_BLK_SIZE.
1479 * @asic_dma_pool_free: free small DMA allocation from pool.
1480 * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
1481 * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
1482 * @asic_dma_unmap_single: unmap a single DMA buffer
1483 * @asic_dma_map_single: map a single buffer to a DMA
1484 * @hl_dma_unmap_sgtable: DMA unmap scatter-gather table.
1485 * @cs_parser: parse Command Submission.
1486 * @asic_dma_map_sgtable: DMA map scatter-gather table.
1487 * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
1488 * @update_eq_ci: update event queue CI.
1489 * @context_switch: called upon ASID context switch.
1490 * @restore_phase_topology: clear all SOBs amd MONs.
1491 * @debugfs_read_dma: debug interface for reading up to 2MB from the device's
1492 * internal memory via DMA engine.
1493 * @add_device_attr: add ASIC specific device attributes.
1494 * @handle_eqe: handle event queue entry (IRQ) from CPU-CP.
1495 * @get_events_stat: retrieve event queue entries histogram.
1496 * @read_pte: read MMU page table entry from DRAM.
1497 * @write_pte: write MMU page table entry to DRAM.
1498 * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
1499 * (L1 only) or hard (L0 & L1) flush.
1500 * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask.
1501 * @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask.
1502 * @send_heartbeat: send is-alive packet to CPU-CP and verify response.
1503 * @debug_coresight: perform certain actions on Coresight for debugging.
1504 * @is_device_idle: return true if device is idle, false otherwise.
1505 * @compute_reset_late_init: perform certain actions needed after a compute reset
1506 * @hw_queues_lock: acquire H/W queues lock.
1507 * @hw_queues_unlock: release H/W queues lock.
1508 * @get_pci_id: retrieve PCI ID.
1509 * @get_eeprom_data: retrieve EEPROM data from F/W.
1510 * @get_monitor_dump: retrieve monitor registers dump from F/W.
1511 * @send_cpu_message: send message to F/W. If the message is timedout, the
1512 * driver will eventually reset the device. The timeout can
1513 * be determined by the calling function or it can be 0 and
1514 * then the timeout is the default timeout for the specific
1515 * ASIC
1516 * @get_hw_state: retrieve the H/W state
1517 * @pci_bars_map: Map PCI BARs.
1518 * @init_iatu: Initialize the iATU unit inside the PCI controller.
1519 * @rreg: Read a register. Needed for simulator support.
1520 * @wreg: Write a register. Needed for simulator support.
1521 * @halt_coresight: stop the ETF and ETR traces.
1522 * @ctx_init: context dependent initialization.
1523 * @ctx_fini: context dependent cleanup.
1524 * @pre_schedule_cs: Perform pre-CS-scheduling operations.
1525 * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
1526 * @load_firmware_to_device: load the firmware to the device's memory
1527 * @load_boot_fit_to_device: load boot fit to device's memory
1528 * @get_signal_cb_size: Get signal CB size.
1529 * @get_wait_cb_size: Get wait CB size.
1530 * @gen_signal_cb: Generate a signal CB.
1531 * @gen_wait_cb: Generate a wait CB.
1532 * @reset_sob: Reset a SOB.
1533 * @reset_sob_group: Reset SOB group
1534 * @get_device_time: Get the device time.
1535 * @pb_print_security_errors: print security errors according block and cause
1536 * @collective_wait_init_cs: Generate collective master/slave packets
1537 * and place them in the relevant cs jobs
1538 * @collective_wait_create_jobs: allocate collective wait cs jobs
1539 * @get_dec_base_addr: get the base address of a given decoder.
1540 * @scramble_addr: Routine to scramble the address prior of mapping it
1541 * in the MMU.
1542 * @descramble_addr: Routine to de-scramble the address prior of
1543 * showing it to users.
1544 * @ack_protection_bits_errors: ack and dump all security violations
1545 * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it.
1546 * also returns the size of the block if caller supplies
1547 * a valid pointer for it
1548 * @hw_block_mmap: mmap a HW block with a given id.
1549 * @enable_events_from_fw: send interrupt to firmware to notify them the
1550 * driver is ready to receive asynchronous events. This
1551 * function should be called during the first init and
1552 * after every hard-reset of the device
1553 * @ack_mmu_errors: check and ack mmu errors, page fault, access violation.
1554 * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event
1555 * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to
1556 * generic f/w compatible PLL Indexes
1557 * @init_firmware_preload_params: initialize pre FW-load parameters.
1558 * @init_firmware_loader: initialize data for FW loader.
1559 * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling
1560 * @state_dump_init: initialize constants required for state dump
1561 * @get_sob_addr: get SOB base address offset.
1562 * @set_pci_memory_regions: setting properties of PCI memory regions
1563 * @get_stream_master_qid_arr: get pointer to stream masters QID array
1564 * @check_if_razwi_happened: check if there was a razwi due to RR violation.
1565 * @access_dev_mem: access device memory
1566 * @set_dram_bar_base: set the base of the DRAM BAR
1567 * @set_engine_cores: set a config command to engine cores
1568 * @set_engines: set a config command to user engines
1569 * @send_device_activity: indication to FW about device availability
1570 * @set_dram_properties: set DRAM related properties.
1571 * @set_binning_masks: set binning/enable masks for all relevant components.
1572 */
1573 struct hl_asic_funcs {
1574 int (*early_init)(struct hl_device *hdev);
1575 int (*early_fini)(struct hl_device *hdev);
1576 int (*late_init)(struct hl_device *hdev);
1577 void (*late_fini)(struct hl_device *hdev);
1578 int (*sw_init)(struct hl_device *hdev);
1579 int (*sw_fini)(struct hl_device *hdev);
1580 int (*hw_init)(struct hl_device *hdev);
1581 int (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1582 void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1583 int (*suspend)(struct hl_device *hdev);
1584 int (*resume)(struct hl_device *hdev);
1585 int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1586 void *cpu_addr, dma_addr_t dma_addr, size_t size);
1587 void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
1588 void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
1589 struct hl_bd *bd);
1590 void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
1591 dma_addr_t *dma_handle, gfp_t flag);
1592 void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
1593 void *cpu_addr, dma_addr_t dma_handle);
1594 int (*scrub_device_mem)(struct hl_device *hdev);
1595 int (*scrub_device_dram)(struct hl_device *hdev, u64 val);
1596 void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
1597 dma_addr_t *dma_handle, u16 *queue_len);
1598 int (*test_queues)(struct hl_device *hdev);
1599 void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
1600 gfp_t mem_flags, dma_addr_t *dma_handle);
1601 void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
1602 dma_addr_t dma_addr);
1603 void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
1604 size_t size, dma_addr_t *dma_handle);
1605 void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
1606 size_t size, void *vaddr);
1607 void (*asic_dma_unmap_single)(struct hl_device *hdev,
1608 dma_addr_t dma_addr, int len,
1609 enum dma_data_direction dir);
1610 dma_addr_t (*asic_dma_map_single)(struct hl_device *hdev,
1611 void *addr, int len,
1612 enum dma_data_direction dir);
1613 void (*hl_dma_unmap_sgtable)(struct hl_device *hdev,
1614 struct sg_table *sgt,
1615 enum dma_data_direction dir);
1616 int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
1617 int (*asic_dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt,
1618 enum dma_data_direction dir);
1619 void (*add_end_of_cb_packets)(struct hl_device *hdev,
1620 void *kernel_address, u32 len,
1621 u32 original_len,
1622 u64 cq_addr, u32 cq_val, u32 msix_num,
1623 bool eb);
1624 void (*update_eq_ci)(struct hl_device *hdev, u32 val);
1625 int (*context_switch)(struct hl_device *hdev, u32 asid);
1626 void (*restore_phase_topology)(struct hl_device *hdev);
1627 int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size,
1628 void *blob_addr);
1629 void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp,
1630 struct attribute_group *dev_vrm_attr_grp);
1631 void (*handle_eqe)(struct hl_device *hdev,
1632 struct hl_eq_entry *eq_entry);
1633 void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
1634 u32 *size);
1635 u64 (*read_pte)(struct hl_device *hdev, u64 addr);
1636 void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
1637 int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
1638 u32 flags);
1639 int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
1640 u32 flags, u32 asid, u64 va, u64 size);
1641 int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
1642 int (*send_heartbeat)(struct hl_device *hdev);
1643 int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data);
1644 bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len,
1645 struct engines_data *e);
1646 int (*compute_reset_late_init)(struct hl_device *hdev);
1647 void (*hw_queues_lock)(struct hl_device *hdev);
1648 void (*hw_queues_unlock)(struct hl_device *hdev);
1649 u32 (*get_pci_id)(struct hl_device *hdev);
1650 int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size);
1651 int (*get_monitor_dump)(struct hl_device *hdev, void *data);
1652 int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
1653 u16 len, u32 timeout, u64 *result);
1654 int (*pci_bars_map)(struct hl_device *hdev);
1655 int (*init_iatu)(struct hl_device *hdev);
1656 u32 (*rreg)(struct hl_device *hdev, u32 reg);
1657 void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
1658 void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx);
1659 int (*ctx_init)(struct hl_ctx *ctx);
1660 void (*ctx_fini)(struct hl_ctx *ctx);
1661 int (*pre_schedule_cs)(struct hl_cs *cs);
1662 u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
1663 int (*load_firmware_to_device)(struct hl_device *hdev);
1664 int (*load_boot_fit_to_device)(struct hl_device *hdev);
1665 u32 (*get_signal_cb_size)(struct hl_device *hdev);
1666 u32 (*get_wait_cb_size)(struct hl_device *hdev);
1667 u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id,
1668 u32 size, bool eb);
1669 u32 (*gen_wait_cb)(struct hl_device *hdev,
1670 struct hl_gen_wait_properties *prop);
1671 void (*reset_sob)(struct hl_device *hdev, void *data);
1672 void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group);
1673 u64 (*get_device_time)(struct hl_device *hdev);
1674 void (*pb_print_security_errors)(struct hl_device *hdev,
1675 u32 block_addr, u32 cause, u32 offended_addr);
1676 int (*collective_wait_init_cs)(struct hl_cs *cs);
1677 int (*collective_wait_create_jobs)(struct hl_device *hdev,
1678 struct hl_ctx *ctx, struct hl_cs *cs,
1679 u32 wait_queue_id, u32 collective_engine_id,
1680 u32 encaps_signal_offset);
1681 u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id);
1682 u64 (*scramble_addr)(struct hl_device *hdev, u64 addr);
1683 u64 (*descramble_addr)(struct hl_device *hdev, u64 addr);
1684 void (*ack_protection_bits_errors)(struct hl_device *hdev);
1685 int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr,
1686 u32 *block_size, u32 *block_id);
1687 int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1688 u32 block_id, u32 block_size);
1689 void (*enable_events_from_fw)(struct hl_device *hdev);
1690 int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask);
1691 void (*get_msi_info)(__le32 *table);
1692 int (*map_pll_idx_to_fw_idx)(u32 pll_idx);
1693 void (*init_firmware_preload_params)(struct hl_device *hdev);
1694 void (*init_firmware_loader)(struct hl_device *hdev);
1695 void (*init_cpu_scrambler_dram)(struct hl_device *hdev);
1696 void (*state_dump_init)(struct hl_device *hdev);
1697 u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id);
1698 void (*set_pci_memory_regions)(struct hl_device *hdev);
1699 u32* (*get_stream_master_qid_arr)(void);
1700 void (*check_if_razwi_happened)(struct hl_device *hdev);
1701 int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
1702 u32 page_size, u32 *real_page_size, bool is_dram_addr);
1703 int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type,
1704 u64 addr, u64 *val, enum debugfs_access_type acc_type);
1705 u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr);
1706 int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids,
1707 u32 num_cores, u32 core_command);
1708 int (*set_engines)(struct hl_device *hdev, u32 *engine_ids,
1709 u32 num_engines, u32 engine_command);
1710 int (*send_device_activity)(struct hl_device *hdev, bool open);
1711 int (*set_dram_properties)(struct hl_device *hdev);
1712 int (*set_binning_masks)(struct hl_device *hdev);
1713 };
1714
1715
1716 /*
1717 * CONTEXTS
1718 */
1719
1720 #define HL_KERNEL_ASID_ID 0
1721
1722 /**
1723 * enum hl_va_range_type - virtual address range type.
1724 * @HL_VA_RANGE_TYPE_HOST: range type of host pages
1725 * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages
1726 * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages
1727 */
1728 enum hl_va_range_type {
1729 HL_VA_RANGE_TYPE_HOST,
1730 HL_VA_RANGE_TYPE_HOST_HUGE,
1731 HL_VA_RANGE_TYPE_DRAM,
1732 HL_VA_RANGE_TYPE_MAX
1733 };
1734
1735 /**
1736 * struct hl_va_range - virtual addresses range.
1737 * @lock: protects the virtual addresses list.
1738 * @list: list of virtual addresses blocks available for mappings.
1739 * @start_addr: range start address.
1740 * @end_addr: range end address.
1741 * @page_size: page size of this va range.
1742 */
1743 struct hl_va_range {
1744 struct mutex lock;
1745 struct list_head list;
1746 u64 start_addr;
1747 u64 end_addr;
1748 u32 page_size;
1749 };
1750
1751 /**
1752 * struct hl_cs_counters_atomic - command submission counters
1753 * @out_of_mem_drop_cnt: dropped due to memory allocation issue
1754 * @parsing_drop_cnt: dropped due to error in packet parsing
1755 * @queue_full_drop_cnt: dropped due to queue full
1756 * @device_in_reset_drop_cnt: dropped due to device in reset
1757 * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight
1758 * @validation_drop_cnt: dropped due to error in validation
1759 */
1760 struct hl_cs_counters_atomic {
1761 atomic64_t out_of_mem_drop_cnt;
1762 atomic64_t parsing_drop_cnt;
1763 atomic64_t queue_full_drop_cnt;
1764 atomic64_t device_in_reset_drop_cnt;
1765 atomic64_t max_cs_in_flight_drop_cnt;
1766 atomic64_t validation_drop_cnt;
1767 };
1768
1769 /**
1770 * struct hl_dmabuf_priv - a dma-buf private object.
1771 * @dmabuf: pointer to dma-buf object.
1772 * @ctx: pointer to the dma-buf owner's context.
1773 * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported
1774 * where virtual memory is supported.
1775 * @memhash_hnode: pointer to the memhash node. this object holds the export count.
1776 * @device_address: physical address of the device's memory. Relevant only
1777 * if phys_pg_pack is NULL (dma-buf was exported from address).
1778 * The total size can be taken from the dmabuf object.
1779 */
1780 struct hl_dmabuf_priv {
1781 struct dma_buf *dmabuf;
1782 struct hl_ctx *ctx;
1783 struct hl_vm_phys_pg_pack *phys_pg_pack;
1784 struct hl_vm_hash_node *memhash_hnode;
1785 uint64_t device_address;
1786 };
1787
1788 #define HL_CS_OUTCOME_HISTORY_LEN 256
1789
1790 /**
1791 * struct hl_cs_outcome - represents a single completed CS outcome
1792 * @list_link: link to either container's used list or free list
1793 * @map_link: list to the container hash map
1794 * @ts: completion ts
1795 * @seq: the original cs sequence
1796 * @error: error code cs completed with, if any
1797 */
1798 struct hl_cs_outcome {
1799 struct list_head list_link;
1800 struct hlist_node map_link;
1801 ktime_t ts;
1802 u64 seq;
1803 int error;
1804 };
1805
1806 /**
1807 * struct hl_cs_outcome_store - represents a limited store of completed CS outcomes
1808 * @outcome_map: index of completed CS searchable by sequence number
1809 * @used_list: list of outcome objects currently in use
1810 * @free_list: list of outcome objects currently not in use
1811 * @nodes_pool: a static pool of pre-allocated outcome objects
1812 * @db_lock: any operation on the store must take this lock
1813 */
1814 struct hl_cs_outcome_store {
1815 DECLARE_HASHTABLE(outcome_map, 8);
1816 struct list_head used_list;
1817 struct list_head free_list;
1818 struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN];
1819 spinlock_t db_lock;
1820 };
1821
1822 /**
1823 * struct hl_ctx - user/kernel context.
1824 * @mem_hash: holds mapping from virtual address to virtual memory area
1825 * descriptor (hl_vm_phys_pg_list or hl_userptr).
1826 * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
1827 * @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from
1828 * MMU-hop-page physical address to its host-resident
1829 * pgt_info structure.
1830 * @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
1831 * @hdev: pointer to the device structure.
1832 * @refcount: reference counter for the context. Context is released only when
1833 * this hits 0. It is incremented on CS and CS_WAIT.
1834 * @cs_pending: array of hl fence objects representing pending CS.
1835 * @outcome_store: storage data structure used to remember outcomes of completed
1836 * command submissions for a long time after CS id wraparound.
1837 * @va_range: holds available virtual addresses for host and dram mappings.
1838 * @mem_hash_lock: protects the mem_hash.
1839 * @hw_block_list_lock: protects the HW block memory list.
1840 * @debugfs_list: node in debugfs list of contexts.
1841 * @hw_block_mem_list: list of HW block virtual mapped addresses.
1842 * @cs_counters: context command submission counters.
1843 * @cb_va_pool: device VA pool for command buffers which are mapped to the
1844 * device's MMU.
1845 * @sig_mgr: encaps signals handle manager.
1846 * @cb_va_pool_base: the base address for the device VA pool
1847 * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
1848 * to user so user could inquire about CS. It is used as
1849 * index to cs_pending array.
1850 * @dram_default_hops: array that holds all hops addresses needed for default
1851 * DRAM mapping.
1852 * @cs_lock: spinlock to protect cs_sequence.
1853 * @dram_phys_mem: amount of used physical DRAM memory by this context.
1854 * @thread_ctx_switch_token: token to prevent multiple threads of the same
1855 * context from running the context switch phase.
1856 * Only a single thread should run it.
1857 * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
1858 * the context switch phase from moving to their
1859 * execution phase before the context switch phase
1860 * has finished.
1861 * @asid: context's unique address space ID in the device's MMU.
1862 * @handle: context's opaque handle for user
1863 */
1864 struct hl_ctx {
1865 DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
1866 DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
1867 DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS);
1868 struct hl_fpriv *hpriv;
1869 struct hl_device *hdev;
1870 struct kref refcount;
1871 struct hl_fence **cs_pending;
1872 struct hl_cs_outcome_store outcome_store;
1873 struct hl_va_range *va_range[HL_VA_RANGE_TYPE_MAX];
1874 struct mutex mem_hash_lock;
1875 struct mutex hw_block_list_lock;
1876 struct list_head debugfs_list;
1877 struct list_head hw_block_mem_list;
1878 struct hl_cs_counters_atomic cs_counters;
1879 struct gen_pool *cb_va_pool;
1880 struct hl_encaps_signals_mgr sig_mgr;
1881 u64 cb_va_pool_base;
1882 u64 cs_sequence;
1883 u64 *dram_default_hops;
1884 spinlock_t cs_lock;
1885 atomic64_t dram_phys_mem;
1886 atomic_t thread_ctx_switch_token;
1887 u32 thread_ctx_switch_wait_token;
1888 u32 asid;
1889 u32 handle;
1890 };
1891
1892 /**
1893 * struct hl_ctx_mgr - for handling multiple contexts.
1894 * @lock: protects ctx_handles.
1895 * @handles: idr to hold all ctx handles.
1896 */
1897 struct hl_ctx_mgr {
1898 struct mutex lock;
1899 struct idr handles;
1900 };
1901
1902
1903 /*
1904 * COMMAND SUBMISSIONS
1905 */
1906
1907 /**
1908 * struct hl_userptr - memory mapping chunk information
1909 * @vm_type: type of the VM.
1910 * @job_node: linked-list node for hanging the object on the Job's list.
1911 * @pages: pointer to struct page array
1912 * @npages: size of @pages array
1913 * @sgt: pointer to the scatter-gather table that holds the pages.
1914 * @dir: for DMA unmapping, the direction must be supplied, so save it.
1915 * @debugfs_list: node in debugfs list of command submissions.
1916 * @pid: the pid of the user process owning the memory
1917 * @addr: user-space virtual address of the start of the memory area.
1918 * @size: size of the memory area to pin & map.
1919 * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
1920 */
1921 struct hl_userptr {
1922 enum vm_type vm_type; /* must be first */
1923 struct list_head job_node;
1924 struct page **pages;
1925 unsigned int npages;
1926 struct sg_table *sgt;
1927 enum dma_data_direction dir;
1928 struct list_head debugfs_list;
1929 pid_t pid;
1930 u64 addr;
1931 u64 size;
1932 u8 dma_mapped;
1933 };
1934
1935 /**
1936 * struct hl_cs - command submission.
1937 * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
1938 * @ctx: the context this CS belongs to.
1939 * @job_list: list of the CS's jobs in the various queues.
1940 * @job_lock: spinlock for the CS's jobs list. Needed for free_job.
1941 * @refcount: reference counter for usage of the CS.
1942 * @fence: pointer to the fence object of this CS.
1943 * @signal_fence: pointer to the fence object of the signal CS (used by wait
1944 * CS only).
1945 * @finish_work: workqueue object to run when CS is completed by H/W.
1946 * @work_tdr: delayed work node for TDR.
1947 * @mirror_node : node in device mirror list of command submissions.
1948 * @staged_cs_node: node in the staged cs list.
1949 * @debugfs_list: node in debugfs list of command submissions.
1950 * @encaps_sig_hdl: holds the encaps signals handle.
1951 * @sequence: the sequence number of this CS.
1952 * @staged_sequence: the sequence of the staged submission this CS is part of,
1953 * relevant only if staged_cs is set.
1954 * @timeout_jiffies: cs timeout in jiffies.
1955 * @submission_time_jiffies: submission time of the cs
1956 * @type: CS_TYPE_*.
1957 * @jobs_cnt: counter of submitted jobs on all queues.
1958 * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs.
1959 * @completion_timestamp: timestamp of the last completed cs job.
1960 * @sob_addr_offset: sob offset from the configuration base address.
1961 * @initial_sob_count: count of completed signals in SOB before current submission of signal or
1962 * cs with encaps signals.
1963 * @submitted: true if CS was submitted to H/W.
1964 * @completed: true if CS was completed by device.
1965 * @timedout : true if CS was timedout.
1966 * @tdr_active: true if TDR was activated for this CS (to prevent
1967 * double TDR activation).
1968 * @aborted: true if CS was aborted due to some device error.
1969 * @timestamp: true if a timestamp must be captured upon completion.
1970 * @staged_last: true if this is the last staged CS and needs completion.
1971 * @staged_first: true if this is the first staged CS and we need to receive
1972 * timeout for this CS.
1973 * @staged_cs: true if this CS is part of a staged submission.
1974 * @skip_reset_on_timeout: true if we shall not reset the device in case
1975 * timeout occurs (debug scenario).
1976 * @encaps_signals: true if this CS has encaps reserved signals.
1977 */
1978 struct hl_cs {
1979 u16 *jobs_in_queue_cnt;
1980 struct hl_ctx *ctx;
1981 struct list_head job_list;
1982 spinlock_t job_lock;
1983 struct kref refcount;
1984 struct hl_fence *fence;
1985 struct hl_fence *signal_fence;
1986 struct work_struct finish_work;
1987 struct delayed_work work_tdr;
1988 struct list_head mirror_node;
1989 struct list_head staged_cs_node;
1990 struct list_head debugfs_list;
1991 struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
1992 ktime_t completion_timestamp;
1993 u64 sequence;
1994 u64 staged_sequence;
1995 u64 timeout_jiffies;
1996 u64 submission_time_jiffies;
1997 enum hl_cs_type type;
1998 u32 jobs_cnt;
1999 u32 encaps_sig_hdl_id;
2000 u32 sob_addr_offset;
2001 u16 initial_sob_count;
2002 u8 submitted;
2003 u8 completed;
2004 u8 timedout;
2005 u8 tdr_active;
2006 u8 aborted;
2007 u8 timestamp;
2008 u8 staged_last;
2009 u8 staged_first;
2010 u8 staged_cs;
2011 u8 skip_reset_on_timeout;
2012 u8 encaps_signals;
2013 };
2014
2015 /**
2016 * struct hl_cs_job - command submission job.
2017 * @cs_node: the node to hang on the CS jobs list.
2018 * @cs: the CS this job belongs to.
2019 * @user_cb: the CB we got from the user.
2020 * @patched_cb: in case of patching, this is internal CB which is submitted on
2021 * the queue instead of the CB we got from the IOCTL.
2022 * @finish_work: workqueue object to run when job is completed.
2023 * @userptr_list: linked-list of userptr mappings that belong to this job and
2024 * wait for completion.
2025 * @debugfs_list: node in debugfs list of command submission jobs.
2026 * @refcount: reference counter for usage of the CS job.
2027 * @queue_type: the type of the H/W queue this job is submitted to.
2028 * @timestamp: timestamp upon job completion
2029 * @id: the id of this job inside a CS.
2030 * @hw_queue_id: the id of the H/W queue this job is submitted to.
2031 * @user_cb_size: the actual size of the CB we got from the user.
2032 * @job_cb_size: the actual size of the CB that we put on the queue.
2033 * @encaps_sig_wait_offset: encapsulated signals offset, which allow user
2034 * to wait on part of the reserved signals.
2035 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
2036 * handle to a kernel-allocated CB object, false
2037 * otherwise (SRAM/DRAM/host address).
2038 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
2039 * info is needed later, when adding the 2xMSG_PROT at the
2040 * end of the JOB, to know which barriers to put in the
2041 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
2042 * have streams so the engine can't be busy by another
2043 * stream.
2044 */
2045 struct hl_cs_job {
2046 struct list_head cs_node;
2047 struct hl_cs *cs;
2048 struct hl_cb *user_cb;
2049 struct hl_cb *patched_cb;
2050 struct work_struct finish_work;
2051 struct list_head userptr_list;
2052 struct list_head debugfs_list;
2053 struct kref refcount;
2054 enum hl_queue_type queue_type;
2055 ktime_t timestamp;
2056 u32 id;
2057 u32 hw_queue_id;
2058 u32 user_cb_size;
2059 u32 job_cb_size;
2060 u32 encaps_sig_wait_offset;
2061 u8 is_kernel_allocated_cb;
2062 u8 contains_dma_pkt;
2063 };
2064
2065 /**
2066 * struct hl_cs_parser - command submission parser properties.
2067 * @user_cb: the CB we got from the user.
2068 * @patched_cb: in case of patching, this is internal CB which is submitted on
2069 * the queue instead of the CB we got from the IOCTL.
2070 * @job_userptr_list: linked-list of userptr mappings that belong to the related
2071 * job and wait for completion.
2072 * @cs_sequence: the sequence number of the related CS.
2073 * @queue_type: the type of the H/W queue this job is submitted to.
2074 * @ctx_id: the ID of the context the related CS belongs to.
2075 * @hw_queue_id: the id of the H/W queue this job is submitted to.
2076 * @user_cb_size: the actual size of the CB we got from the user.
2077 * @patched_cb_size: the size of the CB after parsing.
2078 * @job_id: the id of the related job inside the related CS.
2079 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
2080 * handle to a kernel-allocated CB object, false
2081 * otherwise (SRAM/DRAM/host address).
2082 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
2083 * info is needed later, when adding the 2xMSG_PROT at the
2084 * end of the JOB, to know which barriers to put in the
2085 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
2086 * have streams so the engine can't be busy by another
2087 * stream.
2088 * @completion: true if we need completion for this CS.
2089 */
2090 struct hl_cs_parser {
2091 struct hl_cb *user_cb;
2092 struct hl_cb *patched_cb;
2093 struct list_head *job_userptr_list;
2094 u64 cs_sequence;
2095 enum hl_queue_type queue_type;
2096 u32 ctx_id;
2097 u32 hw_queue_id;
2098 u32 user_cb_size;
2099 u32 patched_cb_size;
2100 u8 job_id;
2101 u8 is_kernel_allocated_cb;
2102 u8 contains_dma_pkt;
2103 u8 completion;
2104 };
2105
2106 /*
2107 * MEMORY STRUCTURE
2108 */
2109
2110 /**
2111 * struct hl_vm_hash_node - hash element from virtual address to virtual
2112 * memory area descriptor (hl_vm_phys_pg_list or
2113 * hl_userptr).
2114 * @node: node to hang on the hash table in context object.
2115 * @vaddr: key virtual address.
2116 * @handle: memory handle for device memory allocation.
2117 * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
2118 * @export_cnt: number of exports from within the VA block.
2119 */
2120 struct hl_vm_hash_node {
2121 struct hlist_node node;
2122 u64 vaddr;
2123 u64 handle;
2124 void *ptr;
2125 int export_cnt;
2126 };
2127
2128 /**
2129 * struct hl_vm_hw_block_list_node - list element from user virtual address to
2130 * HW block id.
2131 * @node: node to hang on the list in context object.
2132 * @ctx: the context this node belongs to.
2133 * @vaddr: virtual address of the HW block.
2134 * @block_size: size of the block.
2135 * @mapped_size: size of the block which is mapped. May change if partial un-mappings are done.
2136 * @id: HW block id (handle).
2137 */
2138 struct hl_vm_hw_block_list_node {
2139 struct list_head node;
2140 struct hl_ctx *ctx;
2141 unsigned long vaddr;
2142 u32 block_size;
2143 u32 mapped_size;
2144 u32 id;
2145 };
2146
2147 /**
2148 * struct hl_vm_phys_pg_pack - physical page pack.
2149 * @vm_type: describes the type of the virtual area descriptor.
2150 * @pages: the physical page array.
2151 * @npages: num physical pages in the pack.
2152 * @total_size: total size of all the pages in this list.
2153 * @exported_size: buffer exported size.
2154 * @node: used to attach to deletion list that is used when all the allocations are cleared
2155 * at the teardown of the context.
2156 * @mapping_cnt: number of shared mappings.
2157 * @asid: the context related to this list.
2158 * @page_size: size of each page in the pack.
2159 * @flags: HL_MEM_* flags related to this list.
2160 * @handle: the provided handle related to this list.
2161 * @offset: offset from the first page.
2162 * @contiguous: is contiguous physical memory.
2163 * @created_from_userptr: is product of host virtual address.
2164 */
2165 struct hl_vm_phys_pg_pack {
2166 enum vm_type vm_type; /* must be first */
2167 u64 *pages;
2168 u64 npages;
2169 u64 total_size;
2170 u64 exported_size;
2171 struct list_head node;
2172 atomic_t mapping_cnt;
2173 u32 asid;
2174 u32 page_size;
2175 u32 flags;
2176 u32 handle;
2177 u32 offset;
2178 u8 contiguous;
2179 u8 created_from_userptr;
2180 };
2181
2182 /**
2183 * struct hl_vm_va_block - virtual range block information.
2184 * @node: node to hang on the virtual range list in context object.
2185 * @start: virtual range start address.
2186 * @end: virtual range end address.
2187 * @size: virtual range size.
2188 */
2189 struct hl_vm_va_block {
2190 struct list_head node;
2191 u64 start;
2192 u64 end;
2193 u64 size;
2194 };
2195
2196 /**
2197 * struct hl_vm - virtual memory manager for MMU.
2198 * @dram_pg_pool: pool for DRAM physical pages of 2MB.
2199 * @dram_pg_pool_refcount: reference counter for the pool usage.
2200 * @idr_lock: protects the phys_pg_list_handles.
2201 * @phys_pg_pack_handles: idr to hold all device allocations handles.
2202 * @init_done: whether initialization was done. We need this because VM
2203 * initialization might be skipped during device initialization.
2204 */
2205 struct hl_vm {
2206 struct gen_pool *dram_pg_pool;
2207 struct kref dram_pg_pool_refcount;
2208 spinlock_t idr_lock;
2209 struct idr phys_pg_pack_handles;
2210 u8 init_done;
2211 };
2212
2213
2214 /*
2215 * DEBUG, PROFILING STRUCTURE
2216 */
2217
2218 /**
2219 * struct hl_debug_params - Coresight debug parameters.
2220 * @input: pointer to component specific input parameters.
2221 * @output: pointer to component specific output parameters.
2222 * @output_size: size of output buffer.
2223 * @reg_idx: relevant register ID.
2224 * @op: component operation to execute.
2225 * @enable: true if to enable component debugging, false otherwise.
2226 */
2227 struct hl_debug_params {
2228 void *input;
2229 void *output;
2230 u32 output_size;
2231 u32 reg_idx;
2232 u32 op;
2233 bool enable;
2234 };
2235
2236 /**
2237 * struct hl_notifier_event - holds the notifier data structure
2238 * @eventfd: the event file descriptor to raise the notifications
2239 * @lock: mutex lock to protect the notifier data flows
2240 * @events_mask: indicates the bitmap events
2241 */
2242 struct hl_notifier_event {
2243 struct eventfd_ctx *eventfd;
2244 struct mutex lock;
2245 u64 events_mask;
2246 };
2247
2248 /*
2249 * FILE PRIVATE STRUCTURE
2250 */
2251
2252 /**
2253 * struct hl_fpriv - process information stored in FD private data.
2254 * @hdev: habanalabs device structure.
2255 * @filp: pointer to the given file structure.
2256 * @taskpid: current process ID.
2257 * @ctx: current executing context. TODO: remove for multiple ctx per process
2258 * @ctx_mgr: context manager to handle multiple context for this FD.
2259 * @mem_mgr: manager descriptor for memory exportable via mmap
2260 * @notifier_event: notifier eventfd towards user process
2261 * @debugfs_list: list of relevant ASIC debugfs.
2262 * @dev_node: node in the device list of file private data
2263 * @refcount: number of related contexts.
2264 * @restore_phase_mutex: lock for context switch and restore phase.
2265 * @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple
2266 * ctx per process.
2267 */
2268 struct hl_fpriv {
2269 struct hl_device *hdev;
2270 struct file *filp;
2271 struct pid *taskpid;
2272 struct hl_ctx *ctx;
2273 struct hl_ctx_mgr ctx_mgr;
2274 struct hl_mem_mgr mem_mgr;
2275 struct hl_notifier_event notifier_event;
2276 struct list_head debugfs_list;
2277 struct list_head dev_node;
2278 struct kref refcount;
2279 struct mutex restore_phase_mutex;
2280 struct mutex ctx_lock;
2281 };
2282
2283
2284 /*
2285 * DebugFS
2286 */
2287
2288 /**
2289 * struct hl_info_list - debugfs file ops.
2290 * @name: file name.
2291 * @show: function to output information.
2292 * @write: function to write to the file.
2293 */
2294 struct hl_info_list {
2295 const char *name;
2296 int (*show)(struct seq_file *s, void *data);
2297 ssize_t (*write)(struct file *file, const char __user *buf,
2298 size_t count, loff_t *f_pos);
2299 };
2300
2301 /**
2302 * struct hl_debugfs_entry - debugfs dentry wrapper.
2303 * @info_ent: dentry related ops.
2304 * @dev_entry: ASIC specific debugfs manager.
2305 */
2306 struct hl_debugfs_entry {
2307 const struct hl_info_list *info_ent;
2308 struct hl_dbg_device_entry *dev_entry;
2309 };
2310
2311 /**
2312 * struct hl_dbg_device_entry - ASIC specific debugfs manager.
2313 * @root: root dentry.
2314 * @hdev: habanalabs device structure.
2315 * @entry_arr: array of available hl_debugfs_entry.
2316 * @file_list: list of available debugfs files.
2317 * @file_mutex: protects file_list.
2318 * @cb_list: list of available CBs.
2319 * @cb_spinlock: protects cb_list.
2320 * @cs_list: list of available CSs.
2321 * @cs_spinlock: protects cs_list.
2322 * @cs_job_list: list of available CB jobs.
2323 * @cs_job_spinlock: protects cs_job_list.
2324 * @userptr_list: list of available userptrs (virtual memory chunk descriptor).
2325 * @userptr_spinlock: protects userptr_list.
2326 * @ctx_mem_hash_list: list of available contexts with MMU mappings.
2327 * @ctx_mem_hash_mutex: protects list of available contexts with MMU mappings.
2328 * @data_dma_blob_desc: data DMA descriptor of blob.
2329 * @mon_dump_blob_desc: monitor dump descriptor of blob.
2330 * @state_dump: data of the system states in case of a bad cs.
2331 * @state_dump_sem: protects state_dump.
2332 * @addr: next address to read/write from/to in read/write32.
2333 * @mmu_addr: next virtual address to translate to physical address in mmu_show.
2334 * @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error.
2335 * @userptr_lookup: the target user ptr to look up for on demand.
2336 * @mmu_asid: ASID to use while translating in mmu_show.
2337 * @state_dump_head: index of the latest state dump
2338 * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
2339 * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read.
2340 * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read.
2341 * @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read.
2342 */
2343 struct hl_dbg_device_entry {
2344 struct dentry *root;
2345 struct hl_device *hdev;
2346 struct hl_debugfs_entry *entry_arr;
2347 struct list_head file_list;
2348 struct mutex file_mutex;
2349 struct list_head cb_list;
2350 spinlock_t cb_spinlock;
2351 struct list_head cs_list;
2352 spinlock_t cs_spinlock;
2353 struct list_head cs_job_list;
2354 spinlock_t cs_job_spinlock;
2355 struct list_head userptr_list;
2356 spinlock_t userptr_spinlock;
2357 struct list_head ctx_mem_hash_list;
2358 struct mutex ctx_mem_hash_mutex;
2359 struct debugfs_blob_wrapper data_dma_blob_desc;
2360 struct debugfs_blob_wrapper mon_dump_blob_desc;
2361 char *state_dump[HL_STATE_DUMP_HIST_LEN];
2362 struct rw_semaphore state_dump_sem;
2363 u64 addr;
2364 u64 mmu_addr;
2365 u64 mmu_cap_mask;
2366 u64 userptr_lookup;
2367 u32 mmu_asid;
2368 u32 state_dump_head;
2369 u8 i2c_bus;
2370 u8 i2c_addr;
2371 u8 i2c_reg;
2372 u8 i2c_len;
2373 };
2374
2375 /**
2376 * struct hl_hw_obj_name_entry - single hw object name, member of
2377 * hl_state_dump_specs
2378 * @node: link to the containing hash table
2379 * @name: hw object name
2380 * @id: object identifier
2381 */
2382 struct hl_hw_obj_name_entry {
2383 struct hlist_node node;
2384 const char *name;
2385 u32 id;
2386 };
2387
2388 enum hl_state_dump_specs_props {
2389 SP_SYNC_OBJ_BASE_ADDR,
2390 SP_NEXT_SYNC_OBJ_ADDR,
2391 SP_SYNC_OBJ_AMOUNT,
2392 SP_MON_OBJ_WR_ADDR_LOW,
2393 SP_MON_OBJ_WR_ADDR_HIGH,
2394 SP_MON_OBJ_WR_DATA,
2395 SP_MON_OBJ_ARM_DATA,
2396 SP_MON_OBJ_STATUS,
2397 SP_MONITORS_AMOUNT,
2398 SP_TPC0_CMDQ,
2399 SP_TPC0_CFG_SO,
2400 SP_NEXT_TPC,
2401 SP_MME_CMDQ,
2402 SP_MME_CFG_SO,
2403 SP_NEXT_MME,
2404 SP_DMA_CMDQ,
2405 SP_DMA_CFG_SO,
2406 SP_DMA_QUEUES_OFFSET,
2407 SP_NUM_OF_MME_ENGINES,
2408 SP_SUB_MME_ENG_NUM,
2409 SP_NUM_OF_DMA_ENGINES,
2410 SP_NUM_OF_TPC_ENGINES,
2411 SP_ENGINE_NUM_OF_QUEUES,
2412 SP_ENGINE_NUM_OF_STREAMS,
2413 SP_ENGINE_NUM_OF_FENCES,
2414 SP_FENCE0_CNT_OFFSET,
2415 SP_FENCE0_RDATA_OFFSET,
2416 SP_CP_STS_OFFSET,
2417 SP_NUM_CORES,
2418
2419 SP_MAX
2420 };
2421
2422 enum hl_sync_engine_type {
2423 ENGINE_TPC,
2424 ENGINE_DMA,
2425 ENGINE_MME,
2426 };
2427
2428 /**
2429 * struct hl_mon_state_dump - represents a state dump of a single monitor
2430 * @id: monitor id
2431 * @wr_addr_low: address monitor will write to, low bits
2432 * @wr_addr_high: address monitor will write to, high bits
2433 * @wr_data: data monitor will write
2434 * @arm_data: register value containing monitor configuration
2435 * @status: monitor status
2436 */
2437 struct hl_mon_state_dump {
2438 u32 id;
2439 u32 wr_addr_low;
2440 u32 wr_addr_high;
2441 u32 wr_data;
2442 u32 arm_data;
2443 u32 status;
2444 };
2445
2446 /**
2447 * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry
2448 * @engine_type: type of the engine
2449 * @engine_id: id of the engine
2450 * @sync_id: id of the sync object
2451 */
2452 struct hl_sync_to_engine_map_entry {
2453 struct hlist_node node;
2454 enum hl_sync_engine_type engine_type;
2455 u32 engine_id;
2456 u32 sync_id;
2457 };
2458
2459 /**
2460 * struct hl_sync_to_engine_map - maps sync object id to associated engine id
2461 * @tb: hash table containing the mapping, each element is of type
2462 * struct hl_sync_to_engine_map_entry
2463 */
2464 struct hl_sync_to_engine_map {
2465 DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS);
2466 };
2467
2468 /**
2469 * struct hl_state_dump_specs_funcs - virtual functions used by the state dump
2470 * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine
2471 * @print_single_monitor: format monitor data as string
2472 * @monitor_valid: return true if given monitor dump is valid
2473 * @print_fences_single_engine: format fences data as string
2474 */
2475 struct hl_state_dump_specs_funcs {
2476 int (*gen_sync_to_engine_map)(struct hl_device *hdev,
2477 struct hl_sync_to_engine_map *map);
2478 int (*print_single_monitor)(char **buf, size_t *size, size_t *offset,
2479 struct hl_device *hdev,
2480 struct hl_mon_state_dump *mon);
2481 int (*monitor_valid)(struct hl_mon_state_dump *mon);
2482 int (*print_fences_single_engine)(struct hl_device *hdev,
2483 u64 base_offset,
2484 u64 status_base_offset,
2485 enum hl_sync_engine_type engine_type,
2486 u32 engine_id, char **buf,
2487 size_t *size, size_t *offset);
2488 };
2489
2490 /**
2491 * struct hl_state_dump_specs - defines ASIC known hw objects names
2492 * @so_id_to_str_tb: sync objects names index table
2493 * @monitor_id_to_str_tb: monitors names index table
2494 * @funcs: virtual functions used for state dump
2495 * @sync_namager_names: readable names for sync manager if available (ex: N_E)
2496 * @props: pointer to a per asic const props array required for state dump
2497 */
2498 struct hl_state_dump_specs {
2499 DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2500 DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2501 struct hl_state_dump_specs_funcs funcs;
2502 const char * const *sync_namager_names;
2503 s64 *props;
2504 };
2505
2506
2507 /*
2508 * DEVICES
2509 */
2510
2511 #define HL_STR_MAX 64
2512
2513 #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1)
2514
2515 /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
2516 * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
2517 */
2518 #define HL_MAX_MINORS 256
2519
2520 /*
2521 * Registers read & write functions.
2522 */
2523
2524 u32 hl_rreg(struct hl_device *hdev, u32 reg);
2525 void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
2526
2527 #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
2528 #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
2529 #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \
2530 hdev->asic_funcs->rreg(hdev, (reg)))
2531
2532 #define WREG32_P(reg, val, mask) \
2533 do { \
2534 u32 tmp_ = RREG32(reg); \
2535 tmp_ &= (mask); \
2536 tmp_ |= ((val) & ~(mask)); \
2537 WREG32(reg, tmp_); \
2538 } while (0)
2539 #define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
2540 #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
2541
2542 #define RMWREG32_SHIFTED(reg, val, mask) WREG32_P(reg, val, ~(mask))
2543
2544 #define RMWREG32(reg, val, mask) RMWREG32_SHIFTED(reg, (val) << __ffs(mask), mask)
2545
2546 #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))
2547
2548 #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
2549 #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
2550 #define WREG32_FIELD(reg, offset, field, val) \
2551 WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
2552 ~REG_FIELD_MASK(reg, field)) | \
2553 (val) << REG_FIELD_SHIFT(reg, field))
2554
2555 /* Timeout should be longer when working with simulator but cap the
2556 * increased timeout to some maximum
2557 */
2558 #define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \
2559 ({ \
2560 ktime_t __timeout; \
2561 u32 __elbi_read; \
2562 int __rc = 0; \
2563 __timeout = ktime_add_us(ktime_get(), timeout_us); \
2564 might_sleep_if(sleep_us); \
2565 for (;;) { \
2566 if (elbi) { \
2567 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
2568 if (__rc) \
2569 break; \
2570 (val) = __elbi_read; \
2571 } else {\
2572 (val) = RREG32(lower_32_bits(addr)); \
2573 } \
2574 if (cond) \
2575 break; \
2576 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2577 if (elbi) { \
2578 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
2579 if (__rc) \
2580 break; \
2581 (val) = __elbi_read; \
2582 } else {\
2583 (val) = RREG32(lower_32_bits(addr)); \
2584 } \
2585 break; \
2586 } \
2587 if (sleep_us) \
2588 usleep_range((sleep_us >> 2) + 1, sleep_us); \
2589 } \
2590 __rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \
2591 })
2592
2593 #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
2594 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false)
2595
2596 #define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \
2597 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true)
2598
2599 /*
2600 * poll array of register addresses.
2601 * condition is satisfied if all registers values match the expected value.
2602 * once some register in the array satisfies the condition it will not be polled again,
2603 * this is done both for efficiency and due to some registers are "clear on read".
2604 * TODO: use read from PCI bar in other places in the code (SW-91406)
2605 */
2606 #define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2607 timeout_us, elbi) \
2608 ({ \
2609 ktime_t __timeout; \
2610 u64 __elem_bitmask; \
2611 u32 __read_val; \
2612 u8 __arr_idx; \
2613 int __rc = 0; \
2614 \
2615 __timeout = ktime_add_us(ktime_get(), timeout_us); \
2616 might_sleep_if(sleep_us); \
2617 if (arr_size >= 64) \
2618 __rc = -EINVAL; \
2619 else \
2620 __elem_bitmask = BIT_ULL(arr_size) - 1; \
2621 for (;;) { \
2622 if (__rc) \
2623 break; \
2624 for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) { \
2625 if (!(__elem_bitmask & BIT_ULL(__arr_idx))) \
2626 continue; \
2627 if (elbi) { \
2628 __rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \
2629 if (__rc) \
2630 break; \
2631 } else { \
2632 __read_val = RREG32(lower_32_bits(addr_arr[__arr_idx])); \
2633 } \
2634 if (__read_val == (expected_val)) \
2635 __elem_bitmask &= ~BIT_ULL(__arr_idx); \
2636 } \
2637 if (__rc || (__elem_bitmask == 0)) \
2638 break; \
2639 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \
2640 break; \
2641 if (sleep_us) \
2642 usleep_range((sleep_us >> 2) + 1, sleep_us); \
2643 } \
2644 __rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \
2645 })
2646
2647 #define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2648 timeout_us) \
2649 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2650 timeout_us, false)
2651
2652 #define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2653 timeout_us) \
2654 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2655 timeout_us, true)
2656
2657 /*
2658 * address in this macro points always to a memory location in the
2659 * host's (server's) memory. That location is updated asynchronously
2660 * either by the direct access of the device or by another core.
2661 *
2662 * To work both in LE and BE architectures, we need to distinguish between the
2663 * two states (device or another core updates the memory location). Therefore,
2664 * if mem_written_by_device is true, the host memory being polled will be
2665 * updated directly by the device. If false, the host memory being polled will
2666 * be updated by host CPU. Required so host knows whether or not the memory
2667 * might need to be byte-swapped before returning value to caller.
2668 */
2669 #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
2670 mem_written_by_device) \
2671 ({ \
2672 ktime_t __timeout; \
2673 \
2674 __timeout = ktime_add_us(ktime_get(), timeout_us); \
2675 might_sleep_if(sleep_us); \
2676 for (;;) { \
2677 /* Verify we read updates done by other cores or by device */ \
2678 mb(); \
2679 (val) = *((u32 *)(addr)); \
2680 if (mem_written_by_device) \
2681 (val) = le32_to_cpu(*(__le32 *) &(val)); \
2682 if (cond) \
2683 break; \
2684 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2685 (val) = *((u32 *)(addr)); \
2686 if (mem_written_by_device) \
2687 (val) = le32_to_cpu(*(__le32 *) &(val)); \
2688 break; \
2689 } \
2690 if (sleep_us) \
2691 usleep_range((sleep_us >> 2) + 1, sleep_us); \
2692 } \
2693 (cond) ? 0 : -ETIMEDOUT; \
2694 })
2695
2696 #define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \
2697 ({ \
2698 struct user_mapped_block *p = blk; \
2699 \
2700 p->address = base; \
2701 p->size = sz; \
2702 })
2703
2704 #define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, intr_type) \
2705 ({ \
2706 usr_intr.hdev = hdev; \
2707 usr_intr.interrupt_id = intr_id; \
2708 usr_intr.type = intr_type; \
2709 INIT_LIST_HEAD(&usr_intr.wait_list_head); \
2710 spin_lock_init(&usr_intr.wait_list_lock); \
2711 })
2712
2713 struct hwmon_chip_info;
2714
2715 /**
2716 * struct hl_device_reset_work - reset work wrapper.
2717 * @reset_work: reset work to be done.
2718 * @hdev: habanalabs device structure.
2719 * @flags: reset flags.
2720 */
2721 struct hl_device_reset_work {
2722 struct delayed_work reset_work;
2723 struct hl_device *hdev;
2724 u32 flags;
2725 };
2726
2727 /**
2728 * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident
2729 * page-table internal information.
2730 * @mmu_pgt_pool: pool of page tables used by a host-resident MMU for
2731 * allocating hops.
2732 * @mmu_asid_hop0: per-ASID array of host-resident hop0 tables.
2733 */
2734 struct hl_mmu_hr_priv {
2735 struct gen_pool *mmu_pgt_pool;
2736 struct pgt_info *mmu_asid_hop0;
2737 };
2738
2739 /**
2740 * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident
2741 * page-table internal information.
2742 * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
2743 * @mmu_shadow_hop0: shadow array of hop0 tables.
2744 */
2745 struct hl_mmu_dr_priv {
2746 struct gen_pool *mmu_pgt_pool;
2747 void *mmu_shadow_hop0;
2748 };
2749
2750 /**
2751 * struct hl_mmu_priv - used for holding per-device mmu internal information.
2752 * @dr: information on the device-resident MMU, when exists.
2753 * @hr: information on the host-resident MMU, when exists.
2754 */
2755 struct hl_mmu_priv {
2756 struct hl_mmu_dr_priv dr;
2757 struct hl_mmu_hr_priv hr;
2758 };
2759
2760 /**
2761 * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry
2762 * that was created in order to translate a virtual address to a
2763 * physical one.
2764 * @hop_addr: The address of the hop.
2765 * @hop_pte_addr: The address of the hop entry.
2766 * @hop_pte_val: The value in the hop entry.
2767 */
2768 struct hl_mmu_per_hop_info {
2769 u64 hop_addr;
2770 u64 hop_pte_addr;
2771 u64 hop_pte_val;
2772 };
2773
2774 /**
2775 * struct hl_mmu_hop_info - A structure describing the TLB hops and their
2776 * hop-entries that were created in order to translate a virtual address to a
2777 * physical one.
2778 * @scrambled_vaddr: The value of the virtual address after scrambling. This
2779 * address replaces the original virtual-address when mapped
2780 * in the MMU tables.
2781 * @unscrambled_paddr: The un-scrambled physical address.
2782 * @hop_info: Array holding the per-hop information used for the translation.
2783 * @used_hops: The number of hops used for the translation.
2784 * @range_type: virtual address range type.
2785 */
2786 struct hl_mmu_hop_info {
2787 u64 scrambled_vaddr;
2788 u64 unscrambled_paddr;
2789 struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS];
2790 u32 used_hops;
2791 enum hl_va_range_type range_type;
2792 };
2793
2794 /**
2795 * struct hl_hr_mmu_funcs - Device related host resident MMU functions.
2796 * @get_hop0_pgt_info: get page table info structure for HOP0.
2797 * @get_pgt_info: get page table info structure for HOP other than HOP0.
2798 * @add_pgt_info: add page table info structure to hash.
2799 * @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping.
2800 */
2801 struct hl_hr_mmu_funcs {
2802 struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx);
2803 struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr);
2804 void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr);
2805 int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop,
2806 struct hl_mmu_hop_info *hops,
2807 u64 virt_addr, bool *is_huge);
2808 };
2809
2810 /**
2811 * struct hl_mmu_funcs - Device related MMU functions.
2812 * @init: initialize the MMU module.
2813 * @fini: release the MMU module.
2814 * @ctx_init: Initialize a context for using the MMU module.
2815 * @ctx_fini: disable a ctx from using the mmu module.
2816 * @map: maps a virtual address to physical address for a context.
2817 * @unmap: unmap a virtual address of a context.
2818 * @flush: flush all writes from all cores to reach device MMU.
2819 * @swap_out: marks all mapping of the given context as swapped out.
2820 * @swap_in: marks all mapping of the given context as swapped in.
2821 * @get_tlb_info: returns the list of hops and hop-entries used that were
2822 * created in order to translate the giver virtual address to a
2823 * physical one.
2824 * @hr_funcs: functions specific to host resident MMU.
2825 */
2826 struct hl_mmu_funcs {
2827 int (*init)(struct hl_device *hdev);
2828 void (*fini)(struct hl_device *hdev);
2829 int (*ctx_init)(struct hl_ctx *ctx);
2830 void (*ctx_fini)(struct hl_ctx *ctx);
2831 int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
2832 bool is_dram_addr);
2833 int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr);
2834 void (*flush)(struct hl_ctx *ctx);
2835 void (*swap_out)(struct hl_ctx *ctx);
2836 void (*swap_in)(struct hl_ctx *ctx);
2837 int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops);
2838 struct hl_hr_mmu_funcs hr_funcs;
2839 };
2840
2841 /**
2842 * struct hl_prefetch_work - prefetch work structure handler
2843 * @prefetch_work: actual work struct.
2844 * @ctx: compute context.
2845 * @va: virtual address to pre-fetch.
2846 * @size: pre-fetch size.
2847 * @flags: operation flags.
2848 * @asid: ASID for maintenance operation.
2849 */
2850 struct hl_prefetch_work {
2851 struct work_struct prefetch_work;
2852 struct hl_ctx *ctx;
2853 u64 va;
2854 u64 size;
2855 u32 flags;
2856 u32 asid;
2857 };
2858
2859 /*
2860 * number of user contexts allowed to call wait_for_multi_cs ioctl in
2861 * parallel
2862 */
2863 #define MULTI_CS_MAX_USER_CTX 2
2864
2865 /**
2866 * struct multi_cs_completion - multi CS wait completion.
2867 * @completion: completion of any of the CS in the list
2868 * @lock: spinlock for the completion structure
2869 * @timestamp: timestamp for the multi-CS completion
2870 * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS
2871 * is waiting
2872 * @used: 1 if in use, otherwise 0
2873 */
2874 struct multi_cs_completion {
2875 struct completion completion;
2876 spinlock_t lock;
2877 s64 timestamp;
2878 u32 stream_master_qid_map;
2879 u8 used;
2880 };
2881
2882 /**
2883 * struct multi_cs_data - internal data for multi CS call
2884 * @ctx: pointer to the context structure
2885 * @fence_arr: array of fences of all CSs
2886 * @seq_arr: array of CS sequence numbers
2887 * @timeout_jiffies: timeout in jiffies for waiting for CS to complete
2888 * @timestamp: timestamp of first completed CS
2889 * @wait_status: wait for CS status
2890 * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0)
2891 * @arr_len: fence_arr and seq_arr array length
2892 * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0)
2893 * @update_ts: update timestamp. 1- update the timestamp, otherwise 0.
2894 */
2895 struct multi_cs_data {
2896 struct hl_ctx *ctx;
2897 struct hl_fence **fence_arr;
2898 u64 *seq_arr;
2899 s64 timeout_jiffies;
2900 s64 timestamp;
2901 long wait_status;
2902 u32 completion_bitmap;
2903 u8 arr_len;
2904 u8 gone_cs;
2905 u8 update_ts;
2906 };
2907
2908 /**
2909 * struct hl_clk_throttle_timestamp - current/last clock throttling timestamp
2910 * @start: timestamp taken when 'start' event is received in driver
2911 * @end: timestamp taken when 'end' event is received in driver
2912 */
2913 struct hl_clk_throttle_timestamp {
2914 ktime_t start;
2915 ktime_t end;
2916 };
2917
2918 /**
2919 * struct hl_clk_throttle - keeps current/last clock throttling timestamps
2920 * @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER
2921 * index 1 refers to THERMAL
2922 * @lock: protects this structure as it can be accessed from both event queue
2923 * context and info_ioctl context
2924 * @current_reason: bitmask represents the current clk throttling reasons
2925 * @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load
2926 */
2927 struct hl_clk_throttle {
2928 struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX];
2929 struct mutex lock;
2930 u32 current_reason;
2931 u32 aggregated_reason;
2932 };
2933
2934 /**
2935 * struct user_mapped_block - describes a hw block allowed to be mmapped by user
2936 * @address: physical HW block address
2937 * @size: allowed size for mmap
2938 */
2939 struct user_mapped_block {
2940 u32 address;
2941 u32 size;
2942 };
2943
2944 /**
2945 * struct cs_timeout_info - info of last CS timeout occurred.
2946 * @timestamp: CS timeout timestamp.
2947 * @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled,
2948 * so the first (root cause) CS timeout will not be overwritten.
2949 * @seq: CS timeout sequence number.
2950 */
2951 struct cs_timeout_info {
2952 ktime_t timestamp;
2953 atomic_t write_enable;
2954 u64 seq;
2955 };
2956
2957 #define MAX_QMAN_STREAMS_INFO 4
2958 #define OPCODE_INFO_MAX_ADDR_SIZE 8
2959 /**
2960 * struct undefined_opcode_info - info about last undefined opcode error
2961 * @timestamp: timestamp of the undefined opcode error
2962 * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
2963 * entries. In case all streams array entries are
2964 * filled with values, it means the execution was in Lower-CP.
2965 * @cq_addr: the address of the current handled command buffer
2966 * @cq_size: the size of the current handled command buffer
2967 * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
2968 * should be equal to 1 in case of undefined opcode
2969 * in Upper-CP (specific stream) and equal to 4 in case
2970 * of undefined opcode in Lower-CP.
2971 * @engine_id: engine-id that the error occurred on
2972 * @stream_id: the stream id the error occurred on. In case the stream equals to
2973 * MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
2974 * @write_enable: if set, writing to undefined opcode parameters in the structure
2975 * is enable so the first (root cause) undefined opcode will not be
2976 * overwritten.
2977 */
2978 struct undefined_opcode_info {
2979 ktime_t timestamp;
2980 u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
2981 u64 cq_addr;
2982 u32 cq_size;
2983 u32 cb_addr_streams_len;
2984 u32 engine_id;
2985 u32 stream_id;
2986 bool write_enable;
2987 };
2988
2989 /**
2990 * struct page_fault_info - page fault information.
2991 * @page_fault: holds information collected during a page fault.
2992 * @user_mappings: buffer containing user mappings.
2993 * @num_of_user_mappings: number of user mappings.
2994 * @page_fault_detected: if set as 1, then a page-fault was discovered for the
2995 * first time after the driver has finished booting-up.
2996 * Since we're looking for the page-fault's root cause,
2997 * we don't care of the others that might follow it-
2998 * so once changed to 1, it will remain that way.
2999 * @page_fault_info_available: indicates that a page fault info is now available.
3000 */
3001 struct page_fault_info {
3002 struct hl_page_fault_info page_fault;
3003 struct hl_user_mapping *user_mappings;
3004 u64 num_of_user_mappings;
3005 atomic_t page_fault_detected;
3006 bool page_fault_info_available;
3007 };
3008
3009 /**
3010 * struct razwi_info - RAZWI information.
3011 * @razwi: holds information collected during a RAZWI
3012 * @razwi_detected: if set as 1, then a RAZWI was discovered for the
3013 * first time after the driver has finished booting-up.
3014 * Since we're looking for the RAZWI's root cause,
3015 * we don't care of the others that might follow it-
3016 * so once changed to 1, it will remain that way.
3017 * @razwi_info_available: indicates that a RAZWI info is now available.
3018 */
3019 struct razwi_info {
3020 struct hl_info_razwi_event razwi;
3021 atomic_t razwi_detected;
3022 bool razwi_info_available;
3023 };
3024
3025 /**
3026 * struct hw_err_info - HW error information.
3027 * @event: holds information on the event.
3028 * @event_detected: if set as 1, then a HW event was discovered for the
3029 * first time after the driver has finished booting-up.
3030 * currently we assume that only fatal events (that require hard-reset) are
3031 * reported so we don't care of the others that might follow it.
3032 * so once changed to 1, it will remain that way.
3033 * TODO: support multiple events.
3034 * @event_info_available: indicates that a HW event info is now available.
3035 */
3036 struct hw_err_info {
3037 struct hl_info_hw_err_event event;
3038 atomic_t event_detected;
3039 bool event_info_available;
3040 };
3041
3042 /**
3043 * struct fw_err_info - FW error information.
3044 * @event: holds information on the event.
3045 * @event_detected: if set as 1, then a FW event was discovered for the
3046 * first time after the driver has finished booting-up.
3047 * currently we assume that only fatal events (that require hard-reset) are
3048 * reported so we don't care of the others that might follow it.
3049 * so once changed to 1, it will remain that way.
3050 * TODO: support multiple events.
3051 * @event_info_available: indicates that a HW event info is now available.
3052 */
3053 struct fw_err_info {
3054 struct hl_info_fw_err_event event;
3055 atomic_t event_detected;
3056 bool event_info_available;
3057 };
3058
3059 /**
3060 * struct hl_error_info - holds information collected during an error.
3061 * @cs_timeout: CS timeout error information.
3062 * @razwi_info: RAZWI information.
3063 * @undef_opcode: undefined opcode information.
3064 * @page_fault_info: page fault information.
3065 * @hw_err: (fatal) hardware error information.
3066 * @fw_err: firmware error information.
3067 */
3068 struct hl_error_info {
3069 struct cs_timeout_info cs_timeout;
3070 struct razwi_info razwi_info;
3071 struct undefined_opcode_info undef_opcode;
3072 struct page_fault_info page_fault_info;
3073 struct hw_err_info hw_err;
3074 struct fw_err_info fw_err;
3075 };
3076
3077 /**
3078 * struct hl_reset_info - holds current device reset information.
3079 * @lock: lock to protect critical reset flows.
3080 * @compute_reset_cnt: number of compute resets since the driver was loaded.
3081 * @hard_reset_cnt: number of hard resets since the driver was loaded.
3082 * @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset,
3083 * here we hold the hard reset flags.
3084 * @in_reset: is device in reset flow.
3085 * @in_compute_reset: Device is currently in reset but not in hard-reset.
3086 * @needs_reset: true if reset_on_lockup is false and device should be reset
3087 * due to lockup.
3088 * @hard_reset_pending: is there a hard reset work pending.
3089 * @curr_reset_cause: saves an enumerated reset cause when a hard reset is
3090 * triggered, and cleared after it is shared with preboot.
3091 * @prev_reset_trigger: saves the previous trigger which caused a reset, overridden
3092 * with a new value on next reset
3093 * @reset_trigger_repeated: set if device reset is triggered more than once with
3094 * same cause.
3095 * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to
3096 * complete instead.
3097 * @watchdog_active: true if a device release watchdog work is scheduled.
3098 */
3099 struct hl_reset_info {
3100 spinlock_t lock;
3101 u32 compute_reset_cnt;
3102 u32 hard_reset_cnt;
3103 u32 hard_reset_schedule_flags;
3104 u8 in_reset;
3105 u8 in_compute_reset;
3106 u8 needs_reset;
3107 u8 hard_reset_pending;
3108 u8 curr_reset_cause;
3109 u8 prev_reset_trigger;
3110 u8 reset_trigger_repeated;
3111 u8 skip_reset_on_timeout;
3112 u8 watchdog_active;
3113 };
3114
3115 /**
3116 * struct hl_device - habanalabs device structure.
3117 * @pdev: pointer to PCI device, can be NULL in case of simulator device.
3118 * @pcie_bar_phys: array of available PCIe bars physical addresses.
3119 * (required only for PCI address match mode)
3120 * @pcie_bar: array of available PCIe bars virtual addresses.
3121 * @rmmio: configuration area address on SRAM.
3122 * @hclass: pointer to the habanalabs class.
3123 * @cdev: related char device.
3124 * @cdev_ctrl: char device for control operations only (INFO IOCTL)
3125 * @dev: related kernel basic device structure.
3126 * @dev_ctrl: related kernel device structure for the control device
3127 * @work_heartbeat: delayed work for CPU-CP is-alive check.
3128 * @device_reset_work: delayed work which performs hard reset
3129 * @device_release_watchdog_work: watchdog work that performs hard reset if user doesn't release
3130 * device upon certain error cases.
3131 * @asic_name: ASIC specific name.
3132 * @asic_type: ASIC specific type.
3133 * @completion_queue: array of hl_cq.
3134 * @user_interrupt: array of hl_user_interrupt. upon the corresponding user
3135 * interrupt, driver will monitor the list of fences
3136 * registered to this interrupt.
3137 * @tpc_interrupt: single TPC interrupt for all TPCs.
3138 * @unexpected_error_interrupt: single interrupt for unexpected user error indication.
3139 * @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts.
3140 * upon any user CQ interrupt, driver will monitor the
3141 * list of fences registered to this common structure.
3142 * @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts.
3143 * @shadow_cs_queue: pointer to a shadow queue that holds pointers to
3144 * outstanding command submissions.
3145 * @cq_wq: work queues of completion queues for executing work in process
3146 * context.
3147 * @eq_wq: work queue of event queue for executing work in process context.
3148 * @cs_cmplt_wq: work queue of CS completions for executing work in process
3149 * context.
3150 * @ts_free_obj_wq: work queue for timestamp registration objects release.
3151 * @prefetch_wq: work queue for MMU pre-fetch operations.
3152 * @reset_wq: work queue for device reset procedure.
3153 * @kernel_ctx: Kernel driver context structure.
3154 * @kernel_queues: array of hl_hw_queue.
3155 * @cs_mirror_list: CS mirror list for TDR.
3156 * @cs_mirror_lock: protects cs_mirror_list.
3157 * @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver.
3158 * @event_queue: event queue for IRQ from CPU-CP.
3159 * @dma_pool: DMA pool for small allocations.
3160 * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address.
3161 * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address.
3162 * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool.
3163 * @asid_bitmap: holds used/available ASIDs.
3164 * @asid_mutex: protects asid_bitmap.
3165 * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue.
3166 * @debug_lock: protects critical section of setting debug mode for device
3167 * @mmu_lock: protects the MMU page tables and invalidation h/w. Although the
3168 * page tables are per context, the invalidation h/w is per MMU.
3169 * Therefore, we can't allow multiple contexts (we only have two,
3170 * user and kernel) to access the invalidation h/w at the same time.
3171 * In addition, any change to the PGT, modifying the MMU hash or
3172 * walking the PGT requires talking this lock.
3173 * @asic_prop: ASIC specific immutable properties.
3174 * @asic_funcs: ASIC specific functions.
3175 * @asic_specific: ASIC specific information to use only from ASIC files.
3176 * @vm: virtual memory manager for MMU.
3177 * @hwmon_dev: H/W monitor device.
3178 * @hl_chip_info: ASIC's sensors information.
3179 * @device_status_description: device status description.
3180 * @hl_debugfs: device's debugfs manager.
3181 * @cb_pool: list of pre allocated CBs.
3182 * @cb_pool_lock: protects the CB pool.
3183 * @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
3184 * @internal_cb_pool_dma_addr: internal command buffer pool dma address.
3185 * @internal_cb_pool: internal command buffer memory pool.
3186 * @internal_cb_va_base: internal cb pool mmu virtual address base
3187 * @fpriv_list: list of file private data structures. Each structure is created
3188 * when a user opens the device
3189 * @fpriv_ctrl_list: list of file private data structures. Each structure is created
3190 * when a user opens the control device
3191 * @fpriv_list_lock: protects the fpriv_list
3192 * @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list
3193 * @aggregated_cs_counters: aggregated cs counters among all contexts
3194 * @mmu_priv: device-specific MMU data.
3195 * @mmu_func: device-related MMU functions.
3196 * @dec: list of decoder sw instance
3197 * @fw_loader: FW loader manager.
3198 * @pci_mem_region: array of memory regions in the PCI
3199 * @state_dump_specs: constants and dictionaries needed to dump system state.
3200 * @multi_cs_completion: array of multi-CS completion.
3201 * @clk_throttling: holds information about current/previous clock throttling events
3202 * @captured_err_info: holds information about errors.
3203 * @reset_info: holds current device reset information.
3204 * @stream_master_qid_arr: pointer to array with QIDs of master streams.
3205 * @fw_inner_major_ver: the major of current loaded preboot inner version.
3206 * @fw_inner_minor_ver: the minor of current loaded preboot inner version.
3207 * @fw_sw_major_ver: the major of current loaded preboot SW version.
3208 * @fw_sw_minor_ver: the minor of current loaded preboot SW version.
3209 * @fw_sw_sub_minor_ver: the sub-minor of current loaded preboot SW version.
3210 * @dram_used_mem: current DRAM memory consumption.
3211 * @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram
3212 * @timeout_jiffies: device CS timeout value.
3213 * @max_power: the max power of the device, as configured by the sysadmin. This
3214 * value is saved so in case of hard-reset, the driver will restore
3215 * this value and update the F/W after the re-initialization
3216 * @boot_error_status_mask: contains a mask of the device boot error status.
3217 * Each bit represents a different error, according to
3218 * the defines in hl_boot_if.h. If the bit is cleared,
3219 * the error will be ignored by the driver during
3220 * device initialization. Mainly used to debug and
3221 * workaround firmware bugs
3222 * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM.
3223 * @last_successful_open_ktime: timestamp (ktime) of the last successful device open.
3224 * @last_successful_open_jif: timestamp (jiffies) of the last successful
3225 * device open.
3226 * @last_open_session_duration_jif: duration (jiffies) of the last device open
3227 * session.
3228 * @open_counter: number of successful device open operations.
3229 * @fw_poll_interval_usec: FW status poll interval in usec.
3230 * used for CPU boot status
3231 * @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec.
3232 * used for COMMs protocols cmds(COMMS_STS_*)
3233 * @dram_binning: contains mask of drams that is received from the f/w which indicates which
3234 * drams are binned-out
3235 * @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which
3236 * tpc engines are binned-out
3237 * @dmabuf_export_cnt: number of dma-buf exporting.
3238 * @card_type: Various ASICs have several card types. This indicates the card
3239 * type of the current device.
3240 * @major: habanalabs kernel driver major.
3241 * @high_pll: high PLL profile frequency.
3242 * @decoder_binning: contains mask of decoder engines that is received from the f/w which
3243 * indicates which decoder engines are binned-out
3244 * @edma_binning: contains mask of edma engines that is received from the f/w which
3245 * indicates which edma engines are binned-out
3246 * @device_release_watchdog_timeout_sec: device release watchdog timeout value in seconds.
3247 * @rotator_binning: contains mask of rotators engines that is received from the f/w
3248 * which indicates which rotator engines are binned-out(Gaudi3 and above).
3249 * @id: device minor.
3250 * @id_control: minor of the control device.
3251 * @cdev_idx: char device index. Used for setting its name.
3252 * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
3253 * addresses.
3254 * @is_in_dram_scrub: true if dram scrub operation is on going.
3255 * @disabled: is device disabled.
3256 * @late_init_done: is late init stage was done during initialization.
3257 * @hwmon_initialized: is H/W monitor sensors was initialized.
3258 * @reset_on_lockup: true if a reset should be done in case of stuck CS, false
3259 * otherwise.
3260 * @dram_default_page_mapping: is DRAM default page mapping enabled.
3261 * @memory_scrub: true to perform device memory scrub in various locations,
3262 * such as context-switch, context close, page free, etc.
3263 * @pmmu_huge_range: is a different virtual addresses range used for PMMU with
3264 * huge pages.
3265 * @init_done: is the initialization of the device done.
3266 * @device_cpu_disabled: is the device CPU disabled (due to timeouts)
3267 * @in_debug: whether the device is in a state where the profiling/tracing infrastructure
3268 * can be used. This indication is needed because in some ASICs we need to do
3269 * specific operations to enable that infrastructure.
3270 * @cdev_sysfs_debugfs_created: were char devices and sysfs/debugfs files created.
3271 * @stop_on_err: true if engines should stop on error.
3272 * @supports_sync_stream: is sync stream supported.
3273 * @sync_stream_queue_idx: helper index for sync stream queues initialization.
3274 * @collective_mon_idx: helper index for collective initialization
3275 * @supports_coresight: is CoreSight supported.
3276 * @supports_cb_mapping: is mapping a CB to the device's MMU supported.
3277 * @process_kill_trial_cnt: number of trials reset thread tried killing
3278 * user processes
3279 * @device_fini_pending: true if device_fini was called and might be
3280 * waiting for the reset thread to finish
3281 * @supports_staged_submission: true if staged submissions are supported
3282 * @device_cpu_is_halted: Flag to indicate whether the device CPU was already
3283 * halted. We can't halt it again because the COMMS
3284 * protocol will throw an error. Relevant only for
3285 * cases where Linux was not loaded to device CPU
3286 * @supports_wait_for_multi_cs: true if wait for multi CS is supported
3287 * @is_compute_ctx_active: Whether there is an active compute context executing.
3288 * @compute_ctx_in_release: true if the current compute context is being released.
3289 * @supports_mmu_prefetch: true if prefetch is supported, otherwise false.
3290 * @reset_upon_device_release: reset the device when the user closes the file descriptor of the
3291 * device.
3292 * @supports_ctx_switch: true if a ctx switch is required upon first submission.
3293 * @support_preboot_binning: true if we support read binning info from preboot.
3294 * @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing.
3295 * @fw_components: Controls which f/w components to load to the device. There are multiple f/w
3296 * stages and sometimes we want to stop at a certain stage. Used only for testing.
3297 * @mmu_disable: Disable the device MMU(s). Used only for testing.
3298 * @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing.
3299 * @pldm: Whether we are running in Palladium environment. Used only for testing.
3300 * @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from
3301 * the f/w. Used only for testing.
3302 * @bmc_enable: Whether we are running in a box with BMC. Used only for testing.
3303 * @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load.
3304 * Used only for testing.
3305 * @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies
3306 * that the f/w is always alive. Used only for testing.
3307 */
3308 struct hl_device {
3309 struct pci_dev *pdev;
3310 u64 pcie_bar_phys[HL_PCI_NUM_BARS];
3311 void __iomem *pcie_bar[HL_PCI_NUM_BARS];
3312 void __iomem *rmmio;
3313 struct class *hclass;
3314 struct cdev cdev;
3315 struct cdev cdev_ctrl;
3316 struct device *dev;
3317 struct device *dev_ctrl;
3318 struct delayed_work work_heartbeat;
3319 struct hl_device_reset_work device_reset_work;
3320 struct hl_device_reset_work device_release_watchdog_work;
3321 char asic_name[HL_STR_MAX];
3322 char status[HL_DEV_STS_MAX][HL_STR_MAX];
3323 enum hl_asic_type asic_type;
3324 struct hl_cq *completion_queue;
3325 struct hl_user_interrupt *user_interrupt;
3326 struct hl_user_interrupt tpc_interrupt;
3327 struct hl_user_interrupt unexpected_error_interrupt;
3328 struct hl_user_interrupt common_user_cq_interrupt;
3329 struct hl_user_interrupt common_decoder_interrupt;
3330 struct hl_cs **shadow_cs_queue;
3331 struct workqueue_struct **cq_wq;
3332 struct workqueue_struct *eq_wq;
3333 struct workqueue_struct *cs_cmplt_wq;
3334 struct workqueue_struct *ts_free_obj_wq;
3335 struct workqueue_struct *prefetch_wq;
3336 struct workqueue_struct *reset_wq;
3337 struct hl_ctx *kernel_ctx;
3338 struct hl_hw_queue *kernel_queues;
3339 struct list_head cs_mirror_list;
3340 spinlock_t cs_mirror_lock;
3341 struct hl_mem_mgr kernel_mem_mgr;
3342 struct hl_eq event_queue;
3343 struct dma_pool *dma_pool;
3344 void *cpu_accessible_dma_mem;
3345 dma_addr_t cpu_accessible_dma_address;
3346 struct gen_pool *cpu_accessible_dma_pool;
3347 unsigned long *asid_bitmap;
3348 struct mutex asid_mutex;
3349 struct mutex send_cpu_message_lock;
3350 struct mutex debug_lock;
3351 struct mutex mmu_lock;
3352 struct asic_fixed_properties asic_prop;
3353 const struct hl_asic_funcs *asic_funcs;
3354 void *asic_specific;
3355 struct hl_vm vm;
3356 struct device *hwmon_dev;
3357 struct hwmon_chip_info *hl_chip_info;
3358
3359 struct hl_dbg_device_entry hl_debugfs;
3360
3361 struct list_head cb_pool;
3362 spinlock_t cb_pool_lock;
3363
3364 void *internal_cb_pool_virt_addr;
3365 dma_addr_t internal_cb_pool_dma_addr;
3366 struct gen_pool *internal_cb_pool;
3367 u64 internal_cb_va_base;
3368
3369 struct list_head fpriv_list;
3370 struct list_head fpriv_ctrl_list;
3371 struct mutex fpriv_list_lock;
3372 struct mutex fpriv_ctrl_list_lock;
3373
3374 struct hl_cs_counters_atomic aggregated_cs_counters;
3375
3376 struct hl_mmu_priv mmu_priv;
3377 struct hl_mmu_funcs mmu_func[MMU_NUM_PGT_LOCATIONS];
3378
3379 struct hl_dec *dec;
3380
3381 struct fw_load_mgr fw_loader;
3382
3383 struct pci_mem_region pci_mem_region[PCI_REGION_NUMBER];
3384
3385 struct hl_state_dump_specs state_dump_specs;
3386
3387 struct multi_cs_completion multi_cs_completion[
3388 MULTI_CS_MAX_USER_CTX];
3389 struct hl_clk_throttle clk_throttling;
3390 struct hl_error_info captured_err_info;
3391
3392 struct hl_reset_info reset_info;
3393
3394 u32 *stream_master_qid_arr;
3395 u32 fw_inner_major_ver;
3396 u32 fw_inner_minor_ver;
3397 u32 fw_sw_major_ver;
3398 u32 fw_sw_minor_ver;
3399 u32 fw_sw_sub_minor_ver;
3400 atomic64_t dram_used_mem;
3401 u64 memory_scrub_val;
3402 u64 timeout_jiffies;
3403 u64 max_power;
3404 u64 boot_error_status_mask;
3405 u64 dram_pci_bar_start;
3406 u64 last_successful_open_jif;
3407 u64 last_open_session_duration_jif;
3408 u64 open_counter;
3409 u64 fw_poll_interval_usec;
3410 ktime_t last_successful_open_ktime;
3411 u64 fw_comms_poll_interval_usec;
3412 u64 dram_binning;
3413 u64 tpc_binning;
3414 atomic_t dmabuf_export_cnt;
3415 enum cpucp_card_types card_type;
3416 u32 major;
3417 u32 high_pll;
3418 u32 decoder_binning;
3419 u32 edma_binning;
3420 u32 device_release_watchdog_timeout_sec;
3421 u32 rotator_binning;
3422 u16 id;
3423 u16 id_control;
3424 u16 cdev_idx;
3425 u16 cpu_pci_msb_addr;
3426 u8 is_in_dram_scrub;
3427 u8 disabled;
3428 u8 late_init_done;
3429 u8 hwmon_initialized;
3430 u8 reset_on_lockup;
3431 u8 dram_default_page_mapping;
3432 u8 memory_scrub;
3433 u8 pmmu_huge_range;
3434 u8 init_done;
3435 u8 device_cpu_disabled;
3436 u8 in_debug;
3437 u8 cdev_sysfs_debugfs_created;
3438 u8 stop_on_err;
3439 u8 supports_sync_stream;
3440 u8 sync_stream_queue_idx;
3441 u8 collective_mon_idx;
3442 u8 supports_coresight;
3443 u8 supports_cb_mapping;
3444 u8 process_kill_trial_cnt;
3445 u8 device_fini_pending;
3446 u8 supports_staged_submission;
3447 u8 device_cpu_is_halted;
3448 u8 supports_wait_for_multi_cs;
3449 u8 stream_master_qid_arr_size;
3450 u8 is_compute_ctx_active;
3451 u8 compute_ctx_in_release;
3452 u8 supports_mmu_prefetch;
3453 u8 reset_upon_device_release;
3454 u8 supports_ctx_switch;
3455 u8 support_preboot_binning;
3456
3457 /* Parameters for bring-up to be upstreamed */
3458 u64 nic_ports_mask;
3459 u64 fw_components;
3460 u8 mmu_disable;
3461 u8 cpu_queues_enable;
3462 u8 pldm;
3463 u8 hard_reset_on_fw_events;
3464 u8 bmc_enable;
3465 u8 reset_on_preboot_fail;
3466 u8 heartbeat;
3467 };
3468
3469
3470 /**
3471 * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure
3472 * @refcount: refcount used to protect removing this id when several
3473 * wait cs are used to wait of the reserved encaps signals.
3474 * @hdev: pointer to habanalabs device structure.
3475 * @hw_sob: pointer to H/W SOB used in the reservation.
3476 * @ctx: pointer to the user's context data structure
3477 * @cs_seq: staged cs sequence which contains encapsulated signals
3478 * @id: idr handler id to be used to fetch the handler info
3479 * @q_idx: stream queue index
3480 * @pre_sob_val: current SOB value before reservation
3481 * @count: signals number
3482 */
3483 struct hl_cs_encaps_sig_handle {
3484 struct kref refcount;
3485 struct hl_device *hdev;
3486 struct hl_hw_sob *hw_sob;
3487 struct hl_ctx *ctx;
3488 u64 cs_seq;
3489 u32 id;
3490 u32 q_idx;
3491 u32 pre_sob_val;
3492 u32 count;
3493 };
3494
3495 /**
3496 * struct hl_info_fw_err_info - firmware error information structure
3497 * @err_type: The type of error detected (or reported).
3498 * @event_mask: Pointer to the event mask to be modified with the detected error flag
3499 * (can be NULL)
3500 * @event_id: The id of the event that reported the error
3501 * (applicable when err_type is HL_INFO_FW_REPORTED_ERR).
3502 */
3503 struct hl_info_fw_err_info {
3504 enum hl_info_fw_err_type err_type;
3505 u64 *event_mask;
3506 u16 event_id;
3507 };
3508
3509 /*
3510 * IOCTLs
3511 */
3512
3513 /**
3514 * typedef hl_ioctl_t - typedef for ioctl function in the driver
3515 * @hpriv: pointer to the FD's private data, which contains state of
3516 * user process
3517 * @data: pointer to the input/output arguments structure of the IOCTL
3518 *
3519 * Return: 0 for success, negative value for error
3520 */
3521 typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
3522
3523 /**
3524 * struct hl_ioctl_desc - describes an IOCTL entry of the driver.
3525 * @cmd: the IOCTL code as created by the kernel macros.
3526 * @func: pointer to the driver's function that should be called for this IOCTL.
3527 */
3528 struct hl_ioctl_desc {
3529 unsigned int cmd;
3530 hl_ioctl_t *func;
3531 };
3532
hl_is_fw_sw_ver_below(struct hl_device * hdev,u32 fw_sw_major,u32 fw_sw_minor)3533 static inline bool hl_is_fw_sw_ver_below(struct hl_device *hdev, u32 fw_sw_major, u32 fw_sw_minor)
3534 {
3535 if (hdev->fw_sw_major_ver < fw_sw_major)
3536 return true;
3537 if (hdev->fw_sw_major_ver > fw_sw_major)
3538 return false;
3539 if (hdev->fw_sw_minor_ver < fw_sw_minor)
3540 return true;
3541 return false;
3542 }
3543
3544 /*
3545 * Kernel module functions that can be accessed by entire module
3546 */
3547
3548 /**
3549 * hl_get_sg_info() - get number of pages and the DMA address from SG list.
3550 * @sg: the SG list.
3551 * @dma_addr: pointer to DMA address to return.
3552 *
3553 * Calculate the number of consecutive pages described by the SG list. Take the
3554 * offset of the address in the first page, add to it the length and round it up
3555 * to the number of needed pages.
3556 */
hl_get_sg_info(struct scatterlist * sg,dma_addr_t * dma_addr)3557 static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
3558 {
3559 *dma_addr = sg_dma_address(sg);
3560
3561 return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
3562 (PAGE_SIZE - 1)) >> PAGE_SHIFT;
3563 }
3564
3565 /**
3566 * hl_mem_area_inside_range() - Checks whether address+size are inside a range.
3567 * @address: The start address of the area we want to validate.
3568 * @size: The size in bytes of the area we want to validate.
3569 * @range_start_address: The start address of the valid range.
3570 * @range_end_address: The end address of the valid range.
3571 *
3572 * Return: true if the area is inside the valid range, false otherwise.
3573 */
hl_mem_area_inside_range(u64 address,u64 size,u64 range_start_address,u64 range_end_address)3574 static inline bool hl_mem_area_inside_range(u64 address, u64 size,
3575 u64 range_start_address, u64 range_end_address)
3576 {
3577 u64 end_address = address + size;
3578
3579 if ((address >= range_start_address) &&
3580 (end_address <= range_end_address) &&
3581 (end_address > address))
3582 return true;
3583
3584 return false;
3585 }
3586
3587 /**
3588 * hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
3589 * @address: The start address of the area we want to validate.
3590 * @size: The size in bytes of the area we want to validate.
3591 * @range_start_address: The start address of the valid range.
3592 * @range_end_address: The end address of the valid range.
3593 *
3594 * Return: true if the area overlaps part or all of the valid range,
3595 * false otherwise.
3596 */
hl_mem_area_crosses_range(u64 address,u32 size,u64 range_start_address,u64 range_end_address)3597 static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
3598 u64 range_start_address, u64 range_end_address)
3599 {
3600 u64 end_address = address + size - 1;
3601
3602 return ((address <= range_end_address) && (range_start_address <= end_address));
3603 }
3604
3605 uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr);
3606 void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle);
3607 void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr);
3608 void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
3609 gfp_t flag, const char *caller);
3610 void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
3611 dma_addr_t dma_handle, const char *caller);
3612 void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
3613 dma_addr_t *dma_handle, const char *caller);
3614 void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
3615 const char *caller);
3616 int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir);
3617 void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt,
3618 enum dma_data_direction dir);
3619 int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val,
3620 enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar);
3621 int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
3622 enum debugfs_access_type acc_type);
3623 int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
3624 u64 addr, u64 *val, enum debugfs_access_type acc_type);
3625 int hl_device_open(struct inode *inode, struct file *filp);
3626 int hl_device_open_ctrl(struct inode *inode, struct file *filp);
3627 bool hl_device_operational(struct hl_device *hdev,
3628 enum hl_device_status *status);
3629 bool hl_ctrl_device_operational(struct hl_device *hdev,
3630 enum hl_device_status *status);
3631 enum hl_device_status hl_device_status(struct hl_device *hdev);
3632 int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable);
3633 int hl_hw_queues_create(struct hl_device *hdev);
3634 void hl_hw_queues_destroy(struct hl_device *hdev);
3635 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
3636 u32 cb_size, u64 cb_ptr);
3637 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
3638 u32 ctl, u32 len, u64 ptr);
3639 int hl_hw_queue_schedule_cs(struct hl_cs *cs);
3640 u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
3641 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
3642 void hl_hw_queue_update_ci(struct hl_cs *cs);
3643 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
3644
3645 #define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1)
3646 #define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1))
3647
3648 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
3649 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
3650 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
3651 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
3652 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
3653 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
3654 irqreturn_t hl_irq_handler_cq(int irq, void *arg);
3655 irqreturn_t hl_irq_handler_eq(int irq, void *arg);
3656 irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg);
3657 irqreturn_t hl_irq_handler_user_interrupt(int irq, void *arg);
3658 irqreturn_t hl_irq_user_interrupt_thread_handler(int irq, void *arg);
3659 u32 hl_cq_inc_ptr(u32 ptr);
3660
3661 int hl_asid_init(struct hl_device *hdev);
3662 void hl_asid_fini(struct hl_device *hdev);
3663 unsigned long hl_asid_alloc(struct hl_device *hdev);
3664 void hl_asid_free(struct hl_device *hdev, unsigned long asid);
3665
3666 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
3667 void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
3668 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
3669 void hl_ctx_do_release(struct kref *ref);
3670 void hl_ctx_get(struct hl_ctx *ctx);
3671 int hl_ctx_put(struct hl_ctx *ctx);
3672 struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev);
3673 struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
3674 int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr,
3675 struct hl_fence **fence, u32 arr_len);
3676 void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
3677 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
3678
3679 int hl_device_init(struct hl_device *hdev);
3680 void hl_device_fini(struct hl_device *hdev);
3681 int hl_device_suspend(struct hl_device *hdev);
3682 int hl_device_resume(struct hl_device *hdev);
3683 int hl_device_reset(struct hl_device *hdev, u32 flags);
3684 int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask);
3685 void hl_hpriv_get(struct hl_fpriv *hpriv);
3686 int hl_hpriv_put(struct hl_fpriv *hpriv);
3687 int hl_device_utilization(struct hl_device *hdev, u32 *utilization);
3688
3689 int hl_build_hwmon_channel_info(struct hl_device *hdev,
3690 struct cpucp_sensor *sensors_arr);
3691
3692 void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask);
3693
3694 int hl_sysfs_init(struct hl_device *hdev);
3695 void hl_sysfs_fini(struct hl_device *hdev);
3696
3697 int hl_hwmon_init(struct hl_device *hdev);
3698 void hl_hwmon_fini(struct hl_device *hdev);
3699 void hl_hwmon_release_resources(struct hl_device *hdev);
3700
3701 int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg,
3702 struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
3703 bool map_cb, u64 *handle);
3704 int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle);
3705 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
3706 struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle);
3707 void hl_cb_put(struct hl_cb *cb);
3708 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
3709 bool internal_cb);
3710 int hl_cb_pool_init(struct hl_device *hdev);
3711 int hl_cb_pool_fini(struct hl_device *hdev);
3712 int hl_cb_va_pool_init(struct hl_ctx *ctx);
3713 void hl_cb_va_pool_fini(struct hl_ctx *ctx);
3714
3715 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush);
3716 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
3717 enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
3718 void hl_sob_reset_error(struct kref *ref);
3719 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask);
3720 void hl_fence_put(struct hl_fence *fence);
3721 void hl_fences_put(struct hl_fence **fence, int len);
3722 void hl_fence_get(struct hl_fence *fence);
3723 void cs_get(struct hl_cs *cs);
3724 bool cs_needs_completion(struct hl_cs *cs);
3725 bool cs_needs_timeout(struct hl_cs *cs);
3726 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs);
3727 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq);
3728 void hl_multi_cs_completion_init(struct hl_device *hdev);
3729 u32 hl_get_active_cs_num(struct hl_device *hdev);
3730
3731 void goya_set_asic_funcs(struct hl_device *hdev);
3732 void gaudi_set_asic_funcs(struct hl_device *hdev);
3733 void gaudi2_set_asic_funcs(struct hl_device *hdev);
3734
3735 int hl_vm_ctx_init(struct hl_ctx *ctx);
3736 void hl_vm_ctx_fini(struct hl_ctx *ctx);
3737
3738 int hl_vm_init(struct hl_device *hdev);
3739 void hl_vm_fini(struct hl_device *hdev);
3740
3741 void hl_hw_block_mem_init(struct hl_ctx *ctx);
3742 void hl_hw_block_mem_fini(struct hl_ctx *ctx);
3743
3744 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3745 enum hl_va_range_type type, u64 size, u32 alignment);
3746 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3747 u64 start_addr, u64 size);
3748 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
3749 struct hl_userptr *userptr);
3750 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
3751 void hl_userptr_delete_list(struct hl_device *hdev,
3752 struct list_head *userptr_list);
3753 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
3754 struct list_head *userptr_list,
3755 struct hl_userptr **userptr);
3756
3757 int hl_mmu_init(struct hl_device *hdev);
3758 void hl_mmu_fini(struct hl_device *hdev);
3759 int hl_mmu_ctx_init(struct hl_ctx *ctx);
3760 void hl_mmu_ctx_fini(struct hl_ctx *ctx);
3761 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
3762 u32 page_size, bool flush_pte);
3763 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
3764 u32 page_size, u32 *real_page_size, bool is_dram_addr);
3765 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
3766 bool flush_pte);
3767 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
3768 u64 phys_addr, u32 size);
3769 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size);
3770 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags);
3771 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
3772 u32 flags, u32 asid, u64 va, u64 size);
3773 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
3774 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte);
3775 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
3776 u8 hop_idx, u64 hop_addr, u64 virt_addr);
3777 void hl_mmu_hr_flush(struct hl_ctx *ctx);
3778 int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
3779 u64 pgt_size);
3780 void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size);
3781 void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
3782 u32 hop_table_size);
3783 u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr,
3784 u32 hop_table_size);
3785 void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
3786 u64 val, u32 hop_table_size);
3787 void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
3788 u32 hop_table_size);
3789 int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
3790 u32 hop_table_size);
3791 void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr);
3792 struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
3793 struct hl_hr_mmu_funcs *hr_func,
3794 u64 curr_pte);
3795 struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
3796 struct hl_hr_mmu_funcs *hr_func,
3797 struct hl_mmu_properties *mmu_prop);
3798 struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
3799 struct hl_mmu_hr_priv *hr_priv,
3800 struct hl_hr_mmu_funcs *hr_func,
3801 struct hl_mmu_properties *mmu_prop,
3802 u64 curr_pte, bool *is_new_hop);
3803 int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
3804 struct hl_hr_mmu_funcs *hr_func);
3805 int hl_mmu_if_set_funcs(struct hl_device *hdev);
3806 void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3807 void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3808 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr);
3809 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
3810 struct hl_mmu_hop_info *hops);
3811 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr);
3812 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr);
3813 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr);
3814
3815 int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
3816 void __iomem *dst, u32 src_offset, u32 size);
3817 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value);
3818 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
3819 u16 len, u32 timeout, u64 *result);
3820 int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
3821 int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
3822 size_t irq_arr_size);
3823 int hl_fw_test_cpu_queue(struct hl_device *hdev);
3824 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
3825 dma_addr_t *dma_handle);
3826 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
3827 void *vaddr);
3828 int hl_fw_send_heartbeat(struct hl_device *hdev);
3829 int hl_fw_cpucp_info_get(struct hl_device *hdev,
3830 u32 sts_boot_dev_sts0_reg,
3831 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
3832 u32 boot_err1_reg);
3833 int hl_fw_cpucp_handshake(struct hl_device *hdev,
3834 u32 sts_boot_dev_sts0_reg,
3835 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
3836 u32 boot_err1_reg);
3837 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
3838 int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data);
3839 int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
3840 struct hl_info_pci_counters *counters);
3841 int hl_fw_cpucp_total_energy_get(struct hl_device *hdev,
3842 u64 *total_energy);
3843 int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
3844 enum pll_index *pll_index);
3845 int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
3846 u16 *pll_freq_arr);
3847 int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power);
3848 void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev);
3849 void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev);
3850 int hl_fw_init_cpu(struct hl_device *hdev);
3851 int hl_fw_wait_preboot_ready(struct hl_device *hdev);
3852 int hl_fw_read_preboot_status(struct hl_device *hdev);
3853 int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
3854 struct fw_load_mgr *fw_loader,
3855 enum comms_cmd cmd, unsigned int size,
3856 bool wait_ok, u32 timeout);
3857 int hl_fw_dram_replaced_row_get(struct hl_device *hdev,
3858 struct cpucp_hbm_row_info *info);
3859 int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num);
3860 int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid);
3861 int hl_fw_send_device_activity(struct hl_device *hdev, bool open);
3862 int hl_fw_send_soft_reset(struct hl_device *hdev);
3863 int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
3864 bool is_wc[3]);
3865 int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data);
3866 int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
3867 int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
3868 struct hl_inbound_pci_region *pci_region);
3869 int hl_pci_set_outbound_region(struct hl_device *hdev,
3870 struct hl_outbound_pci_region *pci_region);
3871 enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr);
3872 int hl_pci_init(struct hl_device *hdev);
3873 void hl_pci_fini(struct hl_device *hdev);
3874
3875 long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
3876 void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
3877 int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3878 int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3879 int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3880 int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3881 int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3882 int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3883 void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3884 long hl_fw_get_max_power(struct hl_device *hdev);
3885 void hl_fw_set_max_power(struct hl_device *hdev);
3886 int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info,
3887 u32 nonce);
3888 int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3889 int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3890 int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3891 int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3892 int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
3893 void hl_fw_set_pll_profile(struct hl_device *hdev);
3894 void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp);
3895 void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp);
3896 int hl_fw_send_generic_request(struct hl_device *hdev, enum hl_passthrough_type sub_opcode,
3897 dma_addr_t buff, u32 *size);
3898
3899 void hw_sob_get(struct hl_hw_sob *hw_sob);
3900 void hw_sob_put(struct hl_hw_sob *hw_sob);
3901 void hl_encaps_release_handle_and_put_ctx(struct kref *ref);
3902 void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref);
3903 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
3904 struct hl_cs *cs, struct hl_cs_job *job,
3905 struct hl_cs_compl *cs_cmpl);
3906
3907 int hl_dec_init(struct hl_device *hdev);
3908 void hl_dec_fini(struct hl_device *hdev);
3909 void hl_dec_ctx_fini(struct hl_ctx *ctx);
3910
3911 void hl_release_pending_user_interrupts(struct hl_device *hdev);
3912 void hl_abort_waiting_for_cs_completions(struct hl_device *hdev);
3913 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
3914 struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig);
3915
3916 int hl_state_dump(struct hl_device *hdev);
3917 const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id);
3918 const char *hl_state_dump_get_monitor_name(struct hl_device *hdev,
3919 struct hl_mon_state_dump *mon);
3920 void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map);
3921 __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset,
3922 const char *format, ...);
3923 char *hl_format_as_binary(char *buf, size_t buf_len, u32 n);
3924 const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type);
3925
3926 void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg);
3927 void hl_mem_mgr_fini(struct hl_mem_mgr *mmg);
3928 void hl_mem_mgr_idr_destroy(struct hl_mem_mgr *mmg);
3929 int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma,
3930 void *args);
3931 struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg,
3932 u64 handle);
3933 int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle);
3934 int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf);
3935 struct hl_mmap_mem_buf *
3936 hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg,
3937 struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp,
3938 void *args);
3939 __printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...);
3940 void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
3941 u8 flags);
3942 void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
3943 u8 flags, u64 *event_mask);
3944 void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu);
3945 void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu,
3946 u64 *event_mask);
3947 void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask);
3948 void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info);
3949 void hl_enable_err_info_capture(struct hl_error_info *captured_err_info);
3950
3951 #ifdef CONFIG_DEBUG_FS
3952
3953 void hl_debugfs_init(void);
3954 void hl_debugfs_fini(void);
3955 int hl_debugfs_device_init(struct hl_device *hdev);
3956 void hl_debugfs_device_fini(struct hl_device *hdev);
3957 void hl_debugfs_add_device(struct hl_device *hdev);
3958 void hl_debugfs_remove_device(struct hl_device *hdev);
3959 void hl_debugfs_add_file(struct hl_fpriv *hpriv);
3960 void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
3961 void hl_debugfs_add_cb(struct hl_cb *cb);
3962 void hl_debugfs_remove_cb(struct hl_cb *cb);
3963 void hl_debugfs_add_cs(struct hl_cs *cs);
3964 void hl_debugfs_remove_cs(struct hl_cs *cs);
3965 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
3966 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
3967 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
3968 void hl_debugfs_remove_userptr(struct hl_device *hdev,
3969 struct hl_userptr *userptr);
3970 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
3971 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
3972 void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data,
3973 unsigned long length);
3974
3975 #else
3976
hl_debugfs_init(void)3977 static inline void __init hl_debugfs_init(void)
3978 {
3979 }
3980
hl_debugfs_fini(void)3981 static inline void hl_debugfs_fini(void)
3982 {
3983 }
3984
hl_debugfs_device_init(struct hl_device * hdev)3985 static inline int hl_debugfs_device_init(struct hl_device *hdev)
3986 {
3987 return 0;
3988 }
3989
hl_debugfs_device_fini(struct hl_device * hdev)3990 static inline void hl_debugfs_device_fini(struct hl_device *hdev)
3991 {
3992 }
3993
hl_debugfs_add_device(struct hl_device * hdev)3994 static inline void hl_debugfs_add_device(struct hl_device *hdev)
3995 {
3996 }
3997
hl_debugfs_remove_device(struct hl_device * hdev)3998 static inline void hl_debugfs_remove_device(struct hl_device *hdev)
3999 {
4000 }
4001
hl_debugfs_add_file(struct hl_fpriv * hpriv)4002 static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
4003 {
4004 }
4005
hl_debugfs_remove_file(struct hl_fpriv * hpriv)4006 static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
4007 {
4008 }
4009
hl_debugfs_add_cb(struct hl_cb * cb)4010 static inline void hl_debugfs_add_cb(struct hl_cb *cb)
4011 {
4012 }
4013
hl_debugfs_remove_cb(struct hl_cb * cb)4014 static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
4015 {
4016 }
4017
hl_debugfs_add_cs(struct hl_cs * cs)4018 static inline void hl_debugfs_add_cs(struct hl_cs *cs)
4019 {
4020 }
4021
hl_debugfs_remove_cs(struct hl_cs * cs)4022 static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
4023 {
4024 }
4025
hl_debugfs_add_job(struct hl_device * hdev,struct hl_cs_job * job)4026 static inline void hl_debugfs_add_job(struct hl_device *hdev,
4027 struct hl_cs_job *job)
4028 {
4029 }
4030
hl_debugfs_remove_job(struct hl_device * hdev,struct hl_cs_job * job)4031 static inline void hl_debugfs_remove_job(struct hl_device *hdev,
4032 struct hl_cs_job *job)
4033 {
4034 }
4035
hl_debugfs_add_userptr(struct hl_device * hdev,struct hl_userptr * userptr)4036 static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
4037 struct hl_userptr *userptr)
4038 {
4039 }
4040
hl_debugfs_remove_userptr(struct hl_device * hdev,struct hl_userptr * userptr)4041 static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
4042 struct hl_userptr *userptr)
4043 {
4044 }
4045
hl_debugfs_add_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)4046 static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
4047 struct hl_ctx *ctx)
4048 {
4049 }
4050
hl_debugfs_remove_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)4051 static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
4052 struct hl_ctx *ctx)
4053 {
4054 }
4055
hl_debugfs_set_state_dump(struct hl_device * hdev,char * data,unsigned long length)4056 static inline void hl_debugfs_set_state_dump(struct hl_device *hdev,
4057 char *data, unsigned long length)
4058 {
4059 }
4060
4061 #endif
4062
4063 /* Security */
4064 int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset,
4065 const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[],
4066 int array_size);
4067 int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[],
4068 int mm_array_size, int offset, const u32 pb_blocks[],
4069 struct hl_block_glbl_sec sgs_array[], int blocks_array_size);
4070 void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[],
4071 struct hl_block_glbl_sec sgs_array[], u32 block_offset,
4072 int array_size);
4073 void hl_secure_block(struct hl_device *hdev,
4074 struct hl_block_glbl_sec sgs_array[], int array_size);
4075 int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
4076 u32 dcore_offset, u32 num_instances, u32 instance_offset,
4077 const u32 pb_blocks[], u32 blocks_array_size,
4078 const u32 *regs_array, u32 regs_array_size, u64 mask);
4079 int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
4080 u32 num_instances, u32 instance_offset,
4081 const u32 pb_blocks[], u32 blocks_array_size,
4082 const u32 *regs_array, u32 regs_array_size);
4083 int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores,
4084 u32 dcore_offset, u32 num_instances, u32 instance_offset,
4085 const u32 pb_blocks[], u32 blocks_array_size,
4086 const struct range *regs_range_array, u32 regs_range_array_size,
4087 u64 mask);
4088 int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores,
4089 u32 dcore_offset, u32 num_instances, u32 instance_offset,
4090 const u32 pb_blocks[], u32 blocks_array_size,
4091 const struct range *regs_range_array,
4092 u32 regs_range_array_size);
4093 int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4094 u32 num_instances, u32 instance_offset,
4095 const u32 pb_blocks[], u32 blocks_array_size,
4096 const u32 *regs_array, u32 regs_array_size);
4097 int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4098 u32 num_instances, u32 instance_offset,
4099 const u32 pb_blocks[], u32 blocks_array_size,
4100 const struct range *regs_range_array,
4101 u32 regs_range_array_size);
4102 void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
4103 u32 num_instances, u32 instance_offset,
4104 const u32 pb_blocks[], u32 blocks_array_size);
4105 void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
4106 u32 dcore_offset, u32 num_instances, u32 instance_offset,
4107 const u32 pb_blocks[], u32 blocks_array_size, u64 mask);
4108 void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4109 u32 num_instances, u32 instance_offset,
4110 const u32 pb_blocks[], u32 blocks_array_size);
4111
4112 /* IOCTLs */
4113 long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
4114 long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
4115 int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
4116 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
4117 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data);
4118 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);
4119
4120 #endif /* HABANALABSP_H_ */
4121