xref: /openbmc/linux/drivers/infiniband/hw/hfi1/init.c (revision 1ac731c529cd4d6adbce134754b51ff7d822b145)
1  // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2  /*
3   * Copyright(c) 2015 - 2020 Intel Corporation.
4   * Copyright(c) 2021 Cornelis Networks.
5   */
6  
7  #include <linux/pci.h>
8  #include <linux/netdevice.h>
9  #include <linux/vmalloc.h>
10  #include <linux/delay.h>
11  #include <linux/xarray.h>
12  #include <linux/module.h>
13  #include <linux/printk.h>
14  #include <linux/hrtimer.h>
15  #include <linux/bitmap.h>
16  #include <linux/numa.h>
17  #include <rdma/rdma_vt.h>
18  
19  #include "hfi.h"
20  #include "device.h"
21  #include "common.h"
22  #include "trace.h"
23  #include "mad.h"
24  #include "sdma.h"
25  #include "debugfs.h"
26  #include "verbs.h"
27  #include "aspm.h"
28  #include "affinity.h"
29  #include "vnic.h"
30  #include "exp_rcv.h"
31  #include "netdev.h"
32  
33  #undef pr_fmt
34  #define pr_fmt(fmt) DRIVER_NAME ": " fmt
35  
36  /*
37   * min buffers we want to have per context, after driver
38   */
39  #define HFI1_MIN_USER_CTXT_BUFCNT 7
40  
41  #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
42  #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
43  
44  #define NUM_IB_PORTS 1
45  
46  /*
47   * Number of user receive contexts we are configured to use (to allow for more
48   * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
49   */
50  int num_user_contexts = -1;
51  module_param_named(num_user_contexts, num_user_contexts, int, 0444);
52  MODULE_PARM_DESC(
53  	num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
54  
55  uint krcvqs[RXE_NUM_DATA_VL];
56  int krcvqsset;
57  module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
58  MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
59  
60  /* computed based on above array */
61  unsigned long n_krcvqs;
62  
63  static unsigned hfi1_rcvarr_split = 25;
64  module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
65  MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
66  
67  static uint eager_buffer_size = (8 << 20); /* 8MB */
68  module_param(eager_buffer_size, uint, S_IRUGO);
69  MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
70  
71  static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
72  module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
73  MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
74  
75  static uint hfi1_hdrq_entsize = 32;
76  module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
77  MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
78  
79  unsigned int user_credit_return_threshold = 33;	/* default is 33% */
80  module_param(user_credit_return_threshold, uint, S_IRUGO);
81  MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
82  
83  DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ);
84  
hfi1_create_kctxt(struct hfi1_devdata * dd,struct hfi1_pportdata * ppd)85  static int hfi1_create_kctxt(struct hfi1_devdata *dd,
86  			     struct hfi1_pportdata *ppd)
87  {
88  	struct hfi1_ctxtdata *rcd;
89  	int ret;
90  
91  	/* Control context has to be always 0 */
92  	BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
93  
94  	ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
95  	if (ret < 0) {
96  		dd_dev_err(dd, "Kernel receive context allocation failed\n");
97  		return ret;
98  	}
99  
100  	/*
101  	 * Set up the kernel context flags here and now because they use
102  	 * default values for all receive side memories.  User contexts will
103  	 * be handled as they are created.
104  	 */
105  	rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
106  		HFI1_CAP_KGET(NODROP_RHQ_FULL) |
107  		HFI1_CAP_KGET(NODROP_EGR_FULL) |
108  		HFI1_CAP_KGET(DMA_RTAIL);
109  
110  	/* Control context must use DMA_RTAIL */
111  	if (rcd->ctxt == HFI1_CTRL_CTXT)
112  		rcd->flags |= HFI1_CAP_DMA_RTAIL;
113  	rcd->fast_handler = get_dma_rtail_setting(rcd) ?
114  				handle_receive_interrupt_dma_rtail :
115  				handle_receive_interrupt_nodma_rtail;
116  
117  	hfi1_set_seq_cnt(rcd, 1);
118  
119  	rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
120  	if (!rcd->sc) {
121  		dd_dev_err(dd, "Kernel send context allocation failed\n");
122  		return -ENOMEM;
123  	}
124  	hfi1_init_ctxt(rcd->sc);
125  
126  	return 0;
127  }
128  
129  /*
130   * Create the receive context array and one or more kernel contexts
131   */
hfi1_create_kctxts(struct hfi1_devdata * dd)132  int hfi1_create_kctxts(struct hfi1_devdata *dd)
133  {
134  	u16 i;
135  	int ret;
136  
137  	dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
138  			       GFP_KERNEL, dd->node);
139  	if (!dd->rcd)
140  		return -ENOMEM;
141  
142  	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
143  		ret = hfi1_create_kctxt(dd, dd->pport);
144  		if (ret)
145  			goto bail;
146  	}
147  
148  	return 0;
149  bail:
150  	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
151  		hfi1_free_ctxt(dd->rcd[i]);
152  
153  	/* All the contexts should be freed, free the array */
154  	kfree(dd->rcd);
155  	dd->rcd = NULL;
156  	return ret;
157  }
158  
159  /*
160   * Helper routines for the receive context reference count (rcd and uctxt).
161   */
hfi1_rcd_init(struct hfi1_ctxtdata * rcd)162  static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
163  {
164  	kref_init(&rcd->kref);
165  }
166  
167  /**
168   * hfi1_rcd_free - When reference is zero clean up.
169   * @kref: pointer to an initialized rcd data structure
170   *
171   */
hfi1_rcd_free(struct kref * kref)172  static void hfi1_rcd_free(struct kref *kref)
173  {
174  	unsigned long flags;
175  	struct hfi1_ctxtdata *rcd =
176  		container_of(kref, struct hfi1_ctxtdata, kref);
177  
178  	spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
179  	rcd->dd->rcd[rcd->ctxt] = NULL;
180  	spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
181  
182  	hfi1_free_ctxtdata(rcd->dd, rcd);
183  
184  	kfree(rcd);
185  }
186  
187  /**
188   * hfi1_rcd_put - decrement reference for rcd
189   * @rcd: pointer to an initialized rcd data structure
190   *
191   * Use this to put a reference after the init.
192   */
hfi1_rcd_put(struct hfi1_ctxtdata * rcd)193  int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
194  {
195  	if (rcd)
196  		return kref_put(&rcd->kref, hfi1_rcd_free);
197  
198  	return 0;
199  }
200  
201  /**
202   * hfi1_rcd_get - increment reference for rcd
203   * @rcd: pointer to an initialized rcd data structure
204   *
205   * Use this to get a reference after the init.
206   *
207   * Return : reflect kref_get_unless_zero(), which returns non-zero on
208   * increment, otherwise 0.
209   */
hfi1_rcd_get(struct hfi1_ctxtdata * rcd)210  int hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
211  {
212  	return kref_get_unless_zero(&rcd->kref);
213  }
214  
215  /**
216   * allocate_rcd_index - allocate an rcd index from the rcd array
217   * @dd: pointer to a valid devdata structure
218   * @rcd: rcd data structure to assign
219   * @index: pointer to index that is allocated
220   *
221   * Find an empty index in the rcd array, and assign the given rcd to it.
222   * If the array is full, we are EBUSY.
223   *
224   */
allocate_rcd_index(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd,u16 * index)225  static int allocate_rcd_index(struct hfi1_devdata *dd,
226  			      struct hfi1_ctxtdata *rcd, u16 *index)
227  {
228  	unsigned long flags;
229  	u16 ctxt;
230  
231  	spin_lock_irqsave(&dd->uctxt_lock, flags);
232  	for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
233  		if (!dd->rcd[ctxt])
234  			break;
235  
236  	if (ctxt < dd->num_rcv_contexts) {
237  		rcd->ctxt = ctxt;
238  		dd->rcd[ctxt] = rcd;
239  		hfi1_rcd_init(rcd);
240  	}
241  	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
242  
243  	if (ctxt >= dd->num_rcv_contexts)
244  		return -EBUSY;
245  
246  	*index = ctxt;
247  
248  	return 0;
249  }
250  
251  /**
252   * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
253   * array
254   * @dd: pointer to a valid devdata structure
255   * @ctxt: the index of an possilbe rcd
256   *
257   * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
258   * ctxt index is valid.
259   *
260   * The caller is responsible for making the _put().
261   *
262   */
hfi1_rcd_get_by_index_safe(struct hfi1_devdata * dd,u16 ctxt)263  struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
264  						 u16 ctxt)
265  {
266  	if (ctxt < dd->num_rcv_contexts)
267  		return hfi1_rcd_get_by_index(dd, ctxt);
268  
269  	return NULL;
270  }
271  
272  /**
273   * hfi1_rcd_get_by_index - get by index
274   * @dd: pointer to a valid devdata structure
275   * @ctxt: the index of an possilbe rcd
276   *
277   * We need to protect access to the rcd array.  If access is needed to
278   * one or more index, get the protecting spinlock and then increment the
279   * kref.
280   *
281   * The caller is responsible for making the _put().
282   *
283   */
hfi1_rcd_get_by_index(struct hfi1_devdata * dd,u16 ctxt)284  struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
285  {
286  	unsigned long flags;
287  	struct hfi1_ctxtdata *rcd = NULL;
288  
289  	spin_lock_irqsave(&dd->uctxt_lock, flags);
290  	if (dd->rcd[ctxt]) {
291  		rcd = dd->rcd[ctxt];
292  		if (!hfi1_rcd_get(rcd))
293  			rcd = NULL;
294  	}
295  	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
296  
297  	return rcd;
298  }
299  
300  /*
301   * Common code for user and kernel context create and setup.
302   * NOTE: the initial kref is done here (hf1_rcd_init()).
303   */
hfi1_create_ctxtdata(struct hfi1_pportdata * ppd,int numa,struct hfi1_ctxtdata ** context)304  int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
305  			 struct hfi1_ctxtdata **context)
306  {
307  	struct hfi1_devdata *dd = ppd->dd;
308  	struct hfi1_ctxtdata *rcd;
309  	unsigned kctxt_ngroups = 0;
310  	u32 base;
311  
312  	if (dd->rcv_entries.nctxt_extra >
313  	    dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
314  		kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
315  			 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
316  	rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
317  	if (rcd) {
318  		u32 rcvtids, max_entries;
319  		u16 ctxt;
320  		int ret;
321  
322  		ret = allocate_rcd_index(dd, rcd, &ctxt);
323  		if (ret) {
324  			*context = NULL;
325  			kfree(rcd);
326  			return ret;
327  		}
328  
329  		INIT_LIST_HEAD(&rcd->qp_wait_list);
330  		hfi1_exp_tid_group_init(rcd);
331  		rcd->ppd = ppd;
332  		rcd->dd = dd;
333  		rcd->numa_id = numa;
334  		rcd->rcv_array_groups = dd->rcv_entries.ngroups;
335  		rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
336  		rcd->slow_handler = handle_receive_interrupt;
337  		rcd->do_interrupt = rcd->slow_handler;
338  		rcd->msix_intr = CCE_NUM_MSIX_VECTORS;
339  
340  		mutex_init(&rcd->exp_mutex);
341  		spin_lock_init(&rcd->exp_lock);
342  		INIT_LIST_HEAD(&rcd->flow_queue.queue_head);
343  		INIT_LIST_HEAD(&rcd->rarr_queue.queue_head);
344  
345  		hfi1_cdbg(PROC, "setting up context %u", rcd->ctxt);
346  
347  		/*
348  		 * Calculate the context's RcvArray entry starting point.
349  		 * We do this here because we have to take into account all
350  		 * the RcvArray entries that previous context would have
351  		 * taken and we have to account for any extra groups assigned
352  		 * to the static (kernel) or dynamic (vnic/user) contexts.
353  		 */
354  		if (ctxt < dd->first_dyn_alloc_ctxt) {
355  			if (ctxt < kctxt_ngroups) {
356  				base = ctxt * (dd->rcv_entries.ngroups + 1);
357  				rcd->rcv_array_groups++;
358  			} else {
359  				base = kctxt_ngroups +
360  					(ctxt * dd->rcv_entries.ngroups);
361  			}
362  		} else {
363  			u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
364  
365  			base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
366  				kctxt_ngroups);
367  			if (ct < dd->rcv_entries.nctxt_extra) {
368  				base += ct * (dd->rcv_entries.ngroups + 1);
369  				rcd->rcv_array_groups++;
370  			} else {
371  				base += dd->rcv_entries.nctxt_extra +
372  					(ct * dd->rcv_entries.ngroups);
373  			}
374  		}
375  		rcd->eager_base = base * dd->rcv_entries.group_size;
376  
377  		rcd->rcvhdrq_cnt = rcvhdrcnt;
378  		rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
379  		rcd->rhf_offset =
380  			rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
381  		/*
382  		 * Simple Eager buffer allocation: we have already pre-allocated
383  		 * the number of RcvArray entry groups. Each ctxtdata structure
384  		 * holds the number of groups for that context.
385  		 *
386  		 * To follow CSR requirements and maintain cacheline alignment,
387  		 * make sure all sizes and bases are multiples of group_size.
388  		 *
389  		 * The expected entry count is what is left after assigning
390  		 * eager.
391  		 */
392  		max_entries = rcd->rcv_array_groups *
393  			dd->rcv_entries.group_size;
394  		rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
395  		rcd->egrbufs.count = round_down(rcvtids,
396  						dd->rcv_entries.group_size);
397  		if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
398  			dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
399  				   rcd->ctxt);
400  			rcd->egrbufs.count = MAX_EAGER_ENTRIES;
401  		}
402  		hfi1_cdbg(PROC,
403  			  "ctxt%u: max Eager buffer RcvArray entries: %u",
404  			  rcd->ctxt, rcd->egrbufs.count);
405  
406  		/*
407  		 * Allocate array that will hold the eager buffer accounting
408  		 * data.
409  		 * This will allocate the maximum possible buffer count based
410  		 * on the value of the RcvArray split parameter.
411  		 * The resulting value will be rounded down to the closest
412  		 * multiple of dd->rcv_entries.group_size.
413  		 */
414  		rcd->egrbufs.buffers =
415  			kcalloc_node(rcd->egrbufs.count,
416  				     sizeof(*rcd->egrbufs.buffers),
417  				     GFP_KERNEL, numa);
418  		if (!rcd->egrbufs.buffers)
419  			goto bail;
420  		rcd->egrbufs.rcvtids =
421  			kcalloc_node(rcd->egrbufs.count,
422  				     sizeof(*rcd->egrbufs.rcvtids),
423  				     GFP_KERNEL, numa);
424  		if (!rcd->egrbufs.rcvtids)
425  			goto bail;
426  		rcd->egrbufs.size = eager_buffer_size;
427  		/*
428  		 * The size of the buffers programmed into the RcvArray
429  		 * entries needs to be big enough to handle the highest
430  		 * MTU supported.
431  		 */
432  		if (rcd->egrbufs.size < hfi1_max_mtu) {
433  			rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
434  			hfi1_cdbg(PROC,
435  				  "ctxt%u: eager bufs size too small. Adjusting to %u",
436  				    rcd->ctxt, rcd->egrbufs.size);
437  		}
438  		rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
439  
440  		/* Applicable only for statically created kernel contexts */
441  		if (ctxt < dd->first_dyn_alloc_ctxt) {
442  			rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
443  						    GFP_KERNEL, numa);
444  			if (!rcd->opstats)
445  				goto bail;
446  
447  			/* Initialize TID flow generations for the context */
448  			hfi1_kern_init_ctxt_generations(rcd);
449  		}
450  
451  		*context = rcd;
452  		return 0;
453  	}
454  
455  bail:
456  	*context = NULL;
457  	hfi1_free_ctxt(rcd);
458  	return -ENOMEM;
459  }
460  
461  /**
462   * hfi1_free_ctxt - free context
463   * @rcd: pointer to an initialized rcd data structure
464   *
465   * This wrapper is the free function that matches hfi1_create_ctxtdata().
466   * When a context is done being used (kernel or user), this function is called
467   * for the "final" put to match the kref init from hfi1_create_ctxtdata().
468   * Other users of the context do a get/put sequence to make sure that the
469   * structure isn't removed while in use.
470   */
hfi1_free_ctxt(struct hfi1_ctxtdata * rcd)471  void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
472  {
473  	hfi1_rcd_put(rcd);
474  }
475  
476  /*
477   * Select the largest ccti value over all SLs to determine the intra-
478   * packet gap for the link.
479   *
480   * called with cca_timer_lock held (to protect access to cca_timer
481   * array), and rcu_read_lock() (to protect access to cc_state).
482   */
set_link_ipg(struct hfi1_pportdata * ppd)483  void set_link_ipg(struct hfi1_pportdata *ppd)
484  {
485  	struct hfi1_devdata *dd = ppd->dd;
486  	struct cc_state *cc_state;
487  	int i;
488  	u16 cce, ccti_limit, max_ccti = 0;
489  	u16 shift, mult;
490  	u64 src;
491  	u32 current_egress_rate; /* Mbits /sec */
492  	u64 max_pkt_time;
493  	/*
494  	 * max_pkt_time is the maximum packet egress time in units
495  	 * of the fabric clock period 1/(805 MHz).
496  	 */
497  
498  	cc_state = get_cc_state(ppd);
499  
500  	if (!cc_state)
501  		/*
502  		 * This should _never_ happen - rcu_read_lock() is held,
503  		 * and set_link_ipg() should not be called if cc_state
504  		 * is NULL.
505  		 */
506  		return;
507  
508  	for (i = 0; i < OPA_MAX_SLS; i++) {
509  		u16 ccti = ppd->cca_timer[i].ccti;
510  
511  		if (ccti > max_ccti)
512  			max_ccti = ccti;
513  	}
514  
515  	ccti_limit = cc_state->cct.ccti_limit;
516  	if (max_ccti > ccti_limit)
517  		max_ccti = ccti_limit;
518  
519  	cce = cc_state->cct.entries[max_ccti].entry;
520  	shift = (cce & 0xc000) >> 14;
521  	mult = (cce & 0x3fff);
522  
523  	current_egress_rate = active_egress_rate(ppd);
524  
525  	max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
526  
527  	src = (max_pkt_time >> shift) * mult;
528  
529  	src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
530  	src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
531  
532  	write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
533  }
534  
cca_timer_fn(struct hrtimer * t)535  static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
536  {
537  	struct cca_timer *cca_timer;
538  	struct hfi1_pportdata *ppd;
539  	int sl;
540  	u16 ccti_timer, ccti_min;
541  	struct cc_state *cc_state;
542  	unsigned long flags;
543  	enum hrtimer_restart ret = HRTIMER_NORESTART;
544  
545  	cca_timer = container_of(t, struct cca_timer, hrtimer);
546  	ppd = cca_timer->ppd;
547  	sl = cca_timer->sl;
548  
549  	rcu_read_lock();
550  
551  	cc_state = get_cc_state(ppd);
552  
553  	if (!cc_state) {
554  		rcu_read_unlock();
555  		return HRTIMER_NORESTART;
556  	}
557  
558  	/*
559  	 * 1) decrement ccti for SL
560  	 * 2) calculate IPG for link (set_link_ipg())
561  	 * 3) restart timer, unless ccti is at min value
562  	 */
563  
564  	ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
565  	ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
566  
567  	spin_lock_irqsave(&ppd->cca_timer_lock, flags);
568  
569  	if (cca_timer->ccti > ccti_min) {
570  		cca_timer->ccti--;
571  		set_link_ipg(ppd);
572  	}
573  
574  	if (cca_timer->ccti > ccti_min) {
575  		unsigned long nsec = 1024 * ccti_timer;
576  		/* ccti_timer is in units of 1.024 usec */
577  		hrtimer_forward_now(t, ns_to_ktime(nsec));
578  		ret = HRTIMER_RESTART;
579  	}
580  
581  	spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
582  	rcu_read_unlock();
583  	return ret;
584  }
585  
586  /*
587   * Common code for initializing the physical port structure.
588   */
hfi1_init_pportdata(struct pci_dev * pdev,struct hfi1_pportdata * ppd,struct hfi1_devdata * dd,u8 hw_pidx,u32 port)589  void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
590  			 struct hfi1_devdata *dd, u8 hw_pidx, u32 port)
591  {
592  	int i;
593  	uint default_pkey_idx;
594  	struct cc_state *cc_state;
595  
596  	ppd->dd = dd;
597  	ppd->hw_pidx = hw_pidx;
598  	ppd->port = port; /* IB port number, not index */
599  	ppd->prev_link_width = LINK_WIDTH_DEFAULT;
600  	/*
601  	 * There are C_VL_COUNT number of PortVLXmitWait counters.
602  	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
603  	 */
604  	for (i = 0; i < C_VL_COUNT + 1; i++) {
605  		ppd->port_vl_xmit_wait_last[i] = 0;
606  		ppd->vl_xmit_flit_cnt[i] = 0;
607  	}
608  
609  	default_pkey_idx = 1;
610  
611  	ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
612  	ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
613  	ppd->pkeys[0] = 0x8001;
614  
615  	INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
616  	INIT_WORK(&ppd->link_up_work, handle_link_up);
617  	INIT_WORK(&ppd->link_down_work, handle_link_down);
618  	INIT_WORK(&ppd->freeze_work, handle_freeze);
619  	INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
620  	INIT_WORK(&ppd->sma_message_work, handle_sma_message);
621  	INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
622  	INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
623  	INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
624  	INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
625  
626  	mutex_init(&ppd->hls_lock);
627  	spin_lock_init(&ppd->qsfp_info.qsfp_lock);
628  
629  	ppd->qsfp_info.ppd = ppd;
630  	ppd->sm_trap_qp = 0x0;
631  	ppd->sa_qp = 0x1;
632  
633  	ppd->hfi1_wq = NULL;
634  
635  	spin_lock_init(&ppd->cca_timer_lock);
636  
637  	for (i = 0; i < OPA_MAX_SLS; i++) {
638  		hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
639  			     HRTIMER_MODE_REL);
640  		ppd->cca_timer[i].ppd = ppd;
641  		ppd->cca_timer[i].sl = i;
642  		ppd->cca_timer[i].ccti = 0;
643  		ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
644  	}
645  
646  	ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
647  
648  	spin_lock_init(&ppd->cc_state_lock);
649  	spin_lock_init(&ppd->cc_log_lock);
650  	cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
651  	RCU_INIT_POINTER(ppd->cc_state, cc_state);
652  	if (!cc_state)
653  		goto bail;
654  	return;
655  
656  bail:
657  	dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port);
658  }
659  
660  /*
661   * Do initialization for device that is only needed on
662   * first detect, not on resets.
663   */
loadtime_init(struct hfi1_devdata * dd)664  static int loadtime_init(struct hfi1_devdata *dd)
665  {
666  	return 0;
667  }
668  
669  /**
670   * init_after_reset - re-initialize after a reset
671   * @dd: the hfi1_ib device
672   *
673   * sanity check at least some of the values after reset, and
674   * ensure no receive or transmit (explicitly, in case reset
675   * failed
676   */
init_after_reset(struct hfi1_devdata * dd)677  static int init_after_reset(struct hfi1_devdata *dd)
678  {
679  	int i;
680  	struct hfi1_ctxtdata *rcd;
681  	/*
682  	 * Ensure chip does no sends or receives, tail updates, or
683  	 * pioavail updates while we re-initialize.  This is mostly
684  	 * for the driver data structures, not chip registers.
685  	 */
686  	for (i = 0; i < dd->num_rcv_contexts; i++) {
687  		rcd = hfi1_rcd_get_by_index(dd, i);
688  		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
689  			     HFI1_RCVCTRL_INTRAVAIL_DIS |
690  			     HFI1_RCVCTRL_TAILUPD_DIS, rcd);
691  		hfi1_rcd_put(rcd);
692  	}
693  	pio_send_control(dd, PSC_GLOBAL_DISABLE);
694  	for (i = 0; i < dd->num_send_contexts; i++)
695  		sc_disable(dd->send_contexts[i].sc);
696  
697  	return 0;
698  }
699  
enable_chip(struct hfi1_devdata * dd)700  static void enable_chip(struct hfi1_devdata *dd)
701  {
702  	struct hfi1_ctxtdata *rcd;
703  	u32 rcvmask;
704  	u16 i;
705  
706  	/* enable PIO send */
707  	pio_send_control(dd, PSC_GLOBAL_ENABLE);
708  
709  	/*
710  	 * Enable kernel ctxts' receive and receive interrupt.
711  	 * Other ctxts done as user opens and initializes them.
712  	 */
713  	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
714  		rcd = hfi1_rcd_get_by_index(dd, i);
715  		if (!rcd)
716  			continue;
717  		rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
718  		rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
719  			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
720  		if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
721  			rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
722  		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
723  			rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
724  		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
725  			rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
726  		if (HFI1_CAP_IS_KSET(TID_RDMA))
727  			rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB;
728  		hfi1_rcvctrl(dd, rcvmask, rcd);
729  		sc_enable(rcd->sc);
730  		hfi1_rcd_put(rcd);
731  	}
732  }
733  
734  /**
735   * create_workqueues - create per port workqueues
736   * @dd: the hfi1_ib device
737   */
create_workqueues(struct hfi1_devdata * dd)738  static int create_workqueues(struct hfi1_devdata *dd)
739  {
740  	int pidx;
741  	struct hfi1_pportdata *ppd;
742  
743  	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
744  		ppd = dd->pport + pidx;
745  		if (!ppd->hfi1_wq) {
746  			ppd->hfi1_wq =
747  				alloc_workqueue(
748  				    "hfi%d_%d",
749  				    WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE |
750  				    WQ_MEM_RECLAIM,
751  				    HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
752  				    dd->unit, pidx);
753  			if (!ppd->hfi1_wq)
754  				goto wq_error;
755  		}
756  		if (!ppd->link_wq) {
757  			/*
758  			 * Make the link workqueue single-threaded to enforce
759  			 * serialization.
760  			 */
761  			ppd->link_wq =
762  				alloc_workqueue(
763  				    "hfi_link_%d_%d",
764  				    WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
765  				    1, /* max_active */
766  				    dd->unit, pidx);
767  			if (!ppd->link_wq)
768  				goto wq_error;
769  		}
770  	}
771  	return 0;
772  wq_error:
773  	pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
774  	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
775  		ppd = dd->pport + pidx;
776  		if (ppd->hfi1_wq) {
777  			destroy_workqueue(ppd->hfi1_wq);
778  			ppd->hfi1_wq = NULL;
779  		}
780  		if (ppd->link_wq) {
781  			destroy_workqueue(ppd->link_wq);
782  			ppd->link_wq = NULL;
783  		}
784  	}
785  	return -ENOMEM;
786  }
787  
788  /**
789   * destroy_workqueues - destroy per port workqueues
790   * @dd: the hfi1_ib device
791   */
destroy_workqueues(struct hfi1_devdata * dd)792  static void destroy_workqueues(struct hfi1_devdata *dd)
793  {
794  	int pidx;
795  	struct hfi1_pportdata *ppd;
796  
797  	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
798  		ppd = dd->pport + pidx;
799  
800  		if (ppd->hfi1_wq) {
801  			destroy_workqueue(ppd->hfi1_wq);
802  			ppd->hfi1_wq = NULL;
803  		}
804  		if (ppd->link_wq) {
805  			destroy_workqueue(ppd->link_wq);
806  			ppd->link_wq = NULL;
807  		}
808  	}
809  }
810  
811  /**
812   * enable_general_intr() - Enable the IRQs that will be handled by the
813   * general interrupt handler.
814   * @dd: valid devdata
815   *
816   */
enable_general_intr(struct hfi1_devdata * dd)817  static void enable_general_intr(struct hfi1_devdata *dd)
818  {
819  	set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true);
820  	set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true);
821  	set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true);
822  	set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true);
823  	set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true);
824  	set_intr_bits(dd, IS_DC_START, IS_DC_END, true);
825  	set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true);
826  }
827  
828  /**
829   * hfi1_init - do the actual initialization sequence on the chip
830   * @dd: the hfi1_ib device
831   * @reinit: re-initializing, so don't allocate new memory
832   *
833   * Do the actual initialization sequence on the chip.  This is done
834   * both from the init routine called from the PCI infrastructure, and
835   * when we reset the chip, or detect that it was reset internally,
836   * or it's administratively re-enabled.
837   *
838   * Memory allocation here and in called routines is only done in
839   * the first case (reinit == 0).  We have to be careful, because even
840   * without memory allocation, we need to re-write all the chip registers
841   * TIDs, etc. after the reset or enable has completed.
842   */
hfi1_init(struct hfi1_devdata * dd,int reinit)843  int hfi1_init(struct hfi1_devdata *dd, int reinit)
844  {
845  	int ret = 0, pidx, lastfail = 0;
846  	unsigned long len;
847  	u16 i;
848  	struct hfi1_ctxtdata *rcd;
849  	struct hfi1_pportdata *ppd;
850  
851  	/* Set up send low level handlers */
852  	dd->process_pio_send = hfi1_verbs_send_pio;
853  	dd->process_dma_send = hfi1_verbs_send_dma;
854  	dd->pio_inline_send = pio_copy;
855  	dd->process_vnic_dma_send = hfi1_vnic_send_dma;
856  
857  	if (is_ax(dd)) {
858  		atomic_set(&dd->drop_packet, DROP_PACKET_ON);
859  		dd->do_drop = true;
860  	} else {
861  		atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
862  		dd->do_drop = false;
863  	}
864  
865  	/* make sure the link is not "up" */
866  	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
867  		ppd = dd->pport + pidx;
868  		ppd->linkup = 0;
869  	}
870  
871  	if (reinit)
872  		ret = init_after_reset(dd);
873  	else
874  		ret = loadtime_init(dd);
875  	if (ret)
876  		goto done;
877  
878  	/* dd->rcd can be NULL if early initialization failed */
879  	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
880  		/*
881  		 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
882  		 * re-init, the simplest way to handle this is to free
883  		 * existing, and re-allocate.
884  		 * Need to re-create rest of ctxt 0 ctxtdata as well.
885  		 */
886  		rcd = hfi1_rcd_get_by_index(dd, i);
887  		if (!rcd)
888  			continue;
889  
890  		lastfail = hfi1_create_rcvhdrq(dd, rcd);
891  		if (!lastfail)
892  			lastfail = hfi1_setup_eagerbufs(rcd);
893  		if (!lastfail)
894  			lastfail = hfi1_kern_exp_rcv_init(rcd, reinit);
895  		if (lastfail) {
896  			dd_dev_err(dd,
897  				   "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
898  			ret = lastfail;
899  		}
900  		/* enable IRQ */
901  		hfi1_rcd_put(rcd);
902  	}
903  
904  	/* Allocate enough memory for user event notification. */
905  	len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
906  			 sizeof(*dd->events));
907  	dd->events = vmalloc_user(len);
908  	if (!dd->events)
909  		dd_dev_err(dd, "Failed to allocate user events page\n");
910  	/*
911  	 * Allocate a page for device and port status.
912  	 * Page will be shared amongst all user processes.
913  	 */
914  	dd->status = vmalloc_user(PAGE_SIZE);
915  	if (!dd->status)
916  		dd_dev_err(dd, "Failed to allocate dev status page\n");
917  	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
918  		ppd = dd->pport + pidx;
919  		if (dd->status)
920  			/* Currently, we only have one port */
921  			ppd->statusp = &dd->status->port;
922  
923  		set_mtu(ppd);
924  	}
925  
926  	/* enable chip even if we have an error, so we can debug cause */
927  	enable_chip(dd);
928  
929  done:
930  	/*
931  	 * Set status even if port serdes is not initialized
932  	 * so that diags will work.
933  	 */
934  	if (dd->status)
935  		dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
936  			HFI1_STATUS_INITTED;
937  	if (!ret) {
938  		/* enable all interrupts from the chip */
939  		enable_general_intr(dd);
940  		init_qsfp_int(dd);
941  
942  		/* chip is OK for user apps; mark it as initialized */
943  		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
944  			ppd = dd->pport + pidx;
945  
946  			/*
947  			 * start the serdes - must be after interrupts are
948  			 * enabled so we are notified when the link goes up
949  			 */
950  			lastfail = bringup_serdes(ppd);
951  			if (lastfail)
952  				dd_dev_info(dd,
953  					    "Failed to bring up port %u\n",
954  					    ppd->port);
955  
956  			/*
957  			 * Set status even if port serdes is not initialized
958  			 * so that diags will work.
959  			 */
960  			if (ppd->statusp)
961  				*ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
962  							HFI1_STATUS_INITTED;
963  			if (!ppd->link_speed_enabled)
964  				continue;
965  		}
966  	}
967  
968  	/* if ret is non-zero, we probably should do some cleanup here... */
969  	return ret;
970  }
971  
hfi1_lookup(int unit)972  struct hfi1_devdata *hfi1_lookup(int unit)
973  {
974  	return xa_load(&hfi1_dev_table, unit);
975  }
976  
977  /*
978   * Stop the timers during unit shutdown, or after an error late
979   * in initialization.
980   */
stop_timers(struct hfi1_devdata * dd)981  static void stop_timers(struct hfi1_devdata *dd)
982  {
983  	struct hfi1_pportdata *ppd;
984  	int pidx;
985  
986  	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
987  		ppd = dd->pport + pidx;
988  		if (ppd->led_override_timer.function) {
989  			del_timer_sync(&ppd->led_override_timer);
990  			atomic_set(&ppd->led_override_timer_active, 0);
991  		}
992  	}
993  }
994  
995  /**
996   * shutdown_device - shut down a device
997   * @dd: the hfi1_ib device
998   *
999   * This is called to make the device quiet when we are about to
1000   * unload the driver, and also when the device is administratively
1001   * disabled.   It does not free any data structures.
1002   * Everything it does has to be setup again by hfi1_init(dd, 1)
1003   */
shutdown_device(struct hfi1_devdata * dd)1004  static void shutdown_device(struct hfi1_devdata *dd)
1005  {
1006  	struct hfi1_pportdata *ppd;
1007  	struct hfi1_ctxtdata *rcd;
1008  	unsigned pidx;
1009  	int i;
1010  
1011  	if (dd->flags & HFI1_SHUTDOWN)
1012  		return;
1013  	dd->flags |= HFI1_SHUTDOWN;
1014  
1015  	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1016  		ppd = dd->pport + pidx;
1017  
1018  		ppd->linkup = 0;
1019  		if (ppd->statusp)
1020  			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1021  					   HFI1_STATUS_IB_READY);
1022  	}
1023  	dd->flags &= ~HFI1_INITTED;
1024  
1025  	/* mask and clean up interrupts */
1026  	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
1027  	msix_clean_up_interrupts(dd);
1028  
1029  	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1030  		ppd = dd->pport + pidx;
1031  		for (i = 0; i < dd->num_rcv_contexts; i++) {
1032  			rcd = hfi1_rcd_get_by_index(dd, i);
1033  			hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1034  				     HFI1_RCVCTRL_CTXT_DIS |
1035  				     HFI1_RCVCTRL_INTRAVAIL_DIS |
1036  				     HFI1_RCVCTRL_PKEY_DIS |
1037  				     HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1038  			hfi1_rcd_put(rcd);
1039  		}
1040  		/*
1041  		 * Gracefully stop all sends allowing any in progress to
1042  		 * trickle out first.
1043  		 */
1044  		for (i = 0; i < dd->num_send_contexts; i++)
1045  			sc_flush(dd->send_contexts[i].sc);
1046  	}
1047  
1048  	/*
1049  	 * Enough for anything that's going to trickle out to have actually
1050  	 * done so.
1051  	 */
1052  	udelay(20);
1053  
1054  	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1055  		ppd = dd->pport + pidx;
1056  
1057  		/* disable all contexts */
1058  		for (i = 0; i < dd->num_send_contexts; i++)
1059  			sc_disable(dd->send_contexts[i].sc);
1060  		/* disable the send device */
1061  		pio_send_control(dd, PSC_GLOBAL_DISABLE);
1062  
1063  		shutdown_led_override(ppd);
1064  
1065  		/*
1066  		 * Clear SerdesEnable.
1067  		 * We can't count on interrupts since we are stopping.
1068  		 */
1069  		hfi1_quiet_serdes(ppd);
1070  		if (ppd->hfi1_wq)
1071  			flush_workqueue(ppd->hfi1_wq);
1072  		if (ppd->link_wq)
1073  			flush_workqueue(ppd->link_wq);
1074  	}
1075  	sdma_exit(dd);
1076  }
1077  
1078  /**
1079   * hfi1_free_ctxtdata - free a context's allocated data
1080   * @dd: the hfi1_ib device
1081   * @rcd: the ctxtdata structure
1082   *
1083   * free up any allocated data for a context
1084   * It should never change any chip state, or global driver state.
1085   */
hfi1_free_ctxtdata(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd)1086  void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1087  {
1088  	u32 e;
1089  
1090  	if (!rcd)
1091  		return;
1092  
1093  	if (rcd->rcvhdrq) {
1094  		dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
1095  				  rcd->rcvhdrq, rcd->rcvhdrq_dma);
1096  		rcd->rcvhdrq = NULL;
1097  		if (hfi1_rcvhdrtail_kvaddr(rcd)) {
1098  			dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1099  					  (void *)hfi1_rcvhdrtail_kvaddr(rcd),
1100  					  rcd->rcvhdrqtailaddr_dma);
1101  			rcd->rcvhdrtail_kvaddr = NULL;
1102  		}
1103  	}
1104  
1105  	/* all the RcvArray entries should have been cleared by now */
1106  	kfree(rcd->egrbufs.rcvtids);
1107  	rcd->egrbufs.rcvtids = NULL;
1108  
1109  	for (e = 0; e < rcd->egrbufs.alloced; e++) {
1110  		if (rcd->egrbufs.buffers[e].addr)
1111  			dma_free_coherent(&dd->pcidev->dev,
1112  					  rcd->egrbufs.buffers[e].len,
1113  					  rcd->egrbufs.buffers[e].addr,
1114  					  rcd->egrbufs.buffers[e].dma);
1115  	}
1116  	kfree(rcd->egrbufs.buffers);
1117  	rcd->egrbufs.alloced = 0;
1118  	rcd->egrbufs.buffers = NULL;
1119  
1120  	sc_free(rcd->sc);
1121  	rcd->sc = NULL;
1122  
1123  	vfree(rcd->subctxt_uregbase);
1124  	vfree(rcd->subctxt_rcvegrbuf);
1125  	vfree(rcd->subctxt_rcvhdr_base);
1126  	kfree(rcd->opstats);
1127  
1128  	rcd->subctxt_uregbase = NULL;
1129  	rcd->subctxt_rcvegrbuf = NULL;
1130  	rcd->subctxt_rcvhdr_base = NULL;
1131  	rcd->opstats = NULL;
1132  }
1133  
1134  /*
1135   * Release our hold on the shared asic data.  If we are the last one,
1136   * return the structure to be finalized outside the lock.  Must be
1137   * holding hfi1_dev_table lock.
1138   */
release_asic_data(struct hfi1_devdata * dd)1139  static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1140  {
1141  	struct hfi1_asic_data *ad;
1142  	int other;
1143  
1144  	if (!dd->asic_data)
1145  		return NULL;
1146  	dd->asic_data->dds[dd->hfi1_id] = NULL;
1147  	other = dd->hfi1_id ? 0 : 1;
1148  	ad = dd->asic_data;
1149  	dd->asic_data = NULL;
1150  	/* return NULL if the other dd still has a link */
1151  	return ad->dds[other] ? NULL : ad;
1152  }
1153  
finalize_asic_data(struct hfi1_devdata * dd,struct hfi1_asic_data * ad)1154  static void finalize_asic_data(struct hfi1_devdata *dd,
1155  			       struct hfi1_asic_data *ad)
1156  {
1157  	clean_up_i2c(dd, ad);
1158  	kfree(ad);
1159  }
1160  
1161  /**
1162   * hfi1_free_devdata - cleans up and frees per-unit data structure
1163   * @dd: pointer to a valid devdata structure
1164   *
1165   * It cleans up and frees all data structures set up by
1166   * by hfi1_alloc_devdata().
1167   */
hfi1_free_devdata(struct hfi1_devdata * dd)1168  void hfi1_free_devdata(struct hfi1_devdata *dd)
1169  {
1170  	struct hfi1_asic_data *ad;
1171  	unsigned long flags;
1172  
1173  	xa_lock_irqsave(&hfi1_dev_table, flags);
1174  	__xa_erase(&hfi1_dev_table, dd->unit);
1175  	ad = release_asic_data(dd);
1176  	xa_unlock_irqrestore(&hfi1_dev_table, flags);
1177  
1178  	finalize_asic_data(dd, ad);
1179  	free_platform_config(dd);
1180  	rcu_barrier(); /* wait for rcu callbacks to complete */
1181  	free_percpu(dd->int_counter);
1182  	free_percpu(dd->rcv_limit);
1183  	free_percpu(dd->send_schedule);
1184  	free_percpu(dd->tx_opstats);
1185  	dd->int_counter   = NULL;
1186  	dd->rcv_limit     = NULL;
1187  	dd->send_schedule = NULL;
1188  	dd->tx_opstats    = NULL;
1189  	kfree(dd->comp_vect);
1190  	dd->comp_vect = NULL;
1191  	if (dd->rcvhdrtail_dummy_kvaddr)
1192  		dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1193  				  (void *)dd->rcvhdrtail_dummy_kvaddr,
1194  				  dd->rcvhdrtail_dummy_dma);
1195  	dd->rcvhdrtail_dummy_kvaddr = NULL;
1196  	sdma_clean(dd, dd->num_sdma);
1197  	rvt_dealloc_device(&dd->verbs_dev.rdi);
1198  }
1199  
1200  /**
1201   * hfi1_alloc_devdata - Allocate our primary per-unit data structure.
1202   * @pdev: Valid PCI device
1203   * @extra: How many bytes to alloc past the default
1204   *
1205   * Must be done via verbs allocator, because the verbs cleanup process
1206   * both does cleanup and free of the data structure.
1207   * "extra" is for chip-specific data.
1208   */
hfi1_alloc_devdata(struct pci_dev * pdev,size_t extra)1209  static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev,
1210  					       size_t extra)
1211  {
1212  	struct hfi1_devdata *dd;
1213  	int ret, nports;
1214  
1215  	/* extra is * number of ports */
1216  	nports = extra / sizeof(struct hfi1_pportdata);
1217  
1218  	dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1219  						     nports);
1220  	if (!dd)
1221  		return ERR_PTR(-ENOMEM);
1222  	dd->num_pports = nports;
1223  	dd->pport = (struct hfi1_pportdata *)(dd + 1);
1224  	dd->pcidev = pdev;
1225  	pci_set_drvdata(pdev, dd);
1226  
1227  	ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b,
1228  			GFP_KERNEL);
1229  	if (ret < 0) {
1230  		dev_err(&pdev->dev,
1231  			"Could not allocate unit ID: error %d\n", -ret);
1232  		goto bail;
1233  	}
1234  	rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1235  	/*
1236  	 * If the BIOS does not have the NUMA node information set, select
1237  	 * NUMA 0 so we get consistent performance.
1238  	 */
1239  	dd->node = pcibus_to_node(pdev->bus);
1240  	if (dd->node == NUMA_NO_NODE) {
1241  		dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n");
1242  		dd->node = 0;
1243  	}
1244  
1245  	/*
1246  	 * Initialize all locks for the device. This needs to be as early as
1247  	 * possible so locks are usable.
1248  	 */
1249  	spin_lock_init(&dd->sc_lock);
1250  	spin_lock_init(&dd->sendctrl_lock);
1251  	spin_lock_init(&dd->rcvctrl_lock);
1252  	spin_lock_init(&dd->uctxt_lock);
1253  	spin_lock_init(&dd->hfi1_diag_trans_lock);
1254  	spin_lock_init(&dd->sc_init_lock);
1255  	spin_lock_init(&dd->dc8051_memlock);
1256  	seqlock_init(&dd->sc2vl_lock);
1257  	spin_lock_init(&dd->sde_map_lock);
1258  	spin_lock_init(&dd->pio_map_lock);
1259  	mutex_init(&dd->dc8051_lock);
1260  	init_waitqueue_head(&dd->event_queue);
1261  	spin_lock_init(&dd->irq_src_lock);
1262  
1263  	dd->int_counter = alloc_percpu(u64);
1264  	if (!dd->int_counter) {
1265  		ret = -ENOMEM;
1266  		goto bail;
1267  	}
1268  
1269  	dd->rcv_limit = alloc_percpu(u64);
1270  	if (!dd->rcv_limit) {
1271  		ret = -ENOMEM;
1272  		goto bail;
1273  	}
1274  
1275  	dd->send_schedule = alloc_percpu(u64);
1276  	if (!dd->send_schedule) {
1277  		ret = -ENOMEM;
1278  		goto bail;
1279  	}
1280  
1281  	dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1282  	if (!dd->tx_opstats) {
1283  		ret = -ENOMEM;
1284  		goto bail;
1285  	}
1286  
1287  	dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1288  	if (!dd->comp_vect) {
1289  		ret = -ENOMEM;
1290  		goto bail;
1291  	}
1292  
1293  	/* allocate dummy tail memory for all receive contexts */
1294  	dd->rcvhdrtail_dummy_kvaddr =
1295  		dma_alloc_coherent(&dd->pcidev->dev, sizeof(u64),
1296  				   &dd->rcvhdrtail_dummy_dma, GFP_KERNEL);
1297  	if (!dd->rcvhdrtail_dummy_kvaddr) {
1298  		ret = -ENOMEM;
1299  		goto bail;
1300  	}
1301  
1302  	atomic_set(&dd->ipoib_rsm_usr_num, 0);
1303  	return dd;
1304  
1305  bail:
1306  	hfi1_free_devdata(dd);
1307  	return ERR_PTR(ret);
1308  }
1309  
1310  /*
1311   * Called from freeze mode handlers, and from PCI error
1312   * reporting code.  Should be paranoid about state of
1313   * system and data structures.
1314   */
hfi1_disable_after_error(struct hfi1_devdata * dd)1315  void hfi1_disable_after_error(struct hfi1_devdata *dd)
1316  {
1317  	if (dd->flags & HFI1_INITTED) {
1318  		u32 pidx;
1319  
1320  		dd->flags &= ~HFI1_INITTED;
1321  		if (dd->pport)
1322  			for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1323  				struct hfi1_pportdata *ppd;
1324  
1325  				ppd = dd->pport + pidx;
1326  				if (dd->flags & HFI1_PRESENT)
1327  					set_link_state(ppd, HLS_DN_DISABLE);
1328  
1329  				if (ppd->statusp)
1330  					*ppd->statusp &= ~HFI1_STATUS_IB_READY;
1331  			}
1332  	}
1333  
1334  	/*
1335  	 * Mark as having had an error for driver, and also
1336  	 * for /sys and status word mapped to user programs.
1337  	 * This marks unit as not usable, until reset.
1338  	 */
1339  	if (dd->status)
1340  		dd->status->dev |= HFI1_STATUS_HWERROR;
1341  }
1342  
1343  static void remove_one(struct pci_dev *);
1344  static int init_one(struct pci_dev *, const struct pci_device_id *);
1345  static void shutdown_one(struct pci_dev *);
1346  
1347  #define DRIVER_LOAD_MSG "Cornelis " DRIVER_NAME " loaded: "
1348  #define PFX DRIVER_NAME ": "
1349  
1350  const struct pci_device_id hfi1_pci_tbl[] = {
1351  	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1352  	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1353  	{ 0, }
1354  };
1355  
1356  MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1357  
1358  static struct pci_driver hfi1_pci_driver = {
1359  	.name = DRIVER_NAME,
1360  	.probe = init_one,
1361  	.remove = remove_one,
1362  	.shutdown = shutdown_one,
1363  	.id_table = hfi1_pci_tbl,
1364  	.err_handler = &hfi1_pci_err_handler,
1365  };
1366  
compute_krcvqs(void)1367  static void __init compute_krcvqs(void)
1368  {
1369  	int i;
1370  
1371  	for (i = 0; i < krcvqsset; i++)
1372  		n_krcvqs += krcvqs[i];
1373  }
1374  
1375  /*
1376   * Do all the generic driver unit- and chip-independent memory
1377   * allocation and initialization.
1378   */
hfi1_mod_init(void)1379  static int __init hfi1_mod_init(void)
1380  {
1381  	int ret;
1382  
1383  	ret = dev_init();
1384  	if (ret)
1385  		goto bail;
1386  
1387  	ret = node_affinity_init();
1388  	if (ret)
1389  		goto bail;
1390  
1391  	/* validate max MTU before any devices start */
1392  	if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1393  		pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1394  		       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1395  		hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1396  	}
1397  	/* valid CUs run from 1-128 in powers of 2 */
1398  	if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1399  		hfi1_cu = 1;
1400  	/* valid credit return threshold is 0-100, variable is unsigned */
1401  	if (user_credit_return_threshold > 100)
1402  		user_credit_return_threshold = 100;
1403  
1404  	compute_krcvqs();
1405  	/*
1406  	 * sanitize receive interrupt count, time must wait until after
1407  	 * the hardware type is known
1408  	 */
1409  	if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1410  		rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1411  	/* reject invalid combinations */
1412  	if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1413  		pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1414  		rcv_intr_count = 1;
1415  	}
1416  	if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1417  		/*
1418  		 * Avoid indefinite packet delivery by requiring a timeout
1419  		 * if count is > 1.
1420  		 */
1421  		pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1422  		rcv_intr_timeout = 1;
1423  	}
1424  	if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1425  		/*
1426  		 * The dynamic algorithm expects a non-zero timeout
1427  		 * and a count > 1.
1428  		 */
1429  		pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1430  		rcv_intr_dynamic = 0;
1431  	}
1432  
1433  	/* sanitize link CRC options */
1434  	link_crc_mask &= SUPPORTED_CRCS;
1435  
1436  	ret = opfn_init();
1437  	if (ret < 0) {
1438  		pr_err("Failed to allocate opfn_wq");
1439  		goto bail_dev;
1440  	}
1441  
1442  	/*
1443  	 * These must be called before the driver is registered with
1444  	 * the PCI subsystem.
1445  	 */
1446  	hfi1_dbg_init();
1447  	ret = pci_register_driver(&hfi1_pci_driver);
1448  	if (ret < 0) {
1449  		pr_err("Unable to register driver: error %d\n", -ret);
1450  		goto bail_dev;
1451  	}
1452  	goto bail; /* all OK */
1453  
1454  bail_dev:
1455  	hfi1_dbg_exit();
1456  	dev_cleanup();
1457  bail:
1458  	return ret;
1459  }
1460  
1461  module_init(hfi1_mod_init);
1462  
1463  /*
1464   * Do the non-unit driver cleanup, memory free, etc. at unload.
1465   */
hfi1_mod_cleanup(void)1466  static void __exit hfi1_mod_cleanup(void)
1467  {
1468  	pci_unregister_driver(&hfi1_pci_driver);
1469  	opfn_exit();
1470  	node_affinity_destroy_all();
1471  	hfi1_dbg_exit();
1472  
1473  	WARN_ON(!xa_empty(&hfi1_dev_table));
1474  	dispose_firmware();	/* asymmetric with obtain_firmware() */
1475  	dev_cleanup();
1476  }
1477  
1478  module_exit(hfi1_mod_cleanup);
1479  
1480  /* this can only be called after a successful initialization */
cleanup_device_data(struct hfi1_devdata * dd)1481  static void cleanup_device_data(struct hfi1_devdata *dd)
1482  {
1483  	int ctxt;
1484  	int pidx;
1485  
1486  	/* users can't do anything more with chip */
1487  	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1488  		struct hfi1_pportdata *ppd = &dd->pport[pidx];
1489  		struct cc_state *cc_state;
1490  		int i;
1491  
1492  		if (ppd->statusp)
1493  			*ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1494  
1495  		for (i = 0; i < OPA_MAX_SLS; i++)
1496  			hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1497  
1498  		spin_lock(&ppd->cc_state_lock);
1499  		cc_state = get_cc_state_protected(ppd);
1500  		RCU_INIT_POINTER(ppd->cc_state, NULL);
1501  		spin_unlock(&ppd->cc_state_lock);
1502  
1503  		if (cc_state)
1504  			kfree_rcu(cc_state, rcu);
1505  	}
1506  
1507  	free_credit_return(dd);
1508  
1509  	/*
1510  	 * Free any resources still in use (usually just kernel contexts)
1511  	 * at unload; we do for ctxtcnt, because that's what we allocate.
1512  	 */
1513  	for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1514  		struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1515  
1516  		if (rcd) {
1517  			hfi1_free_ctxt_rcv_groups(rcd);
1518  			hfi1_free_ctxt(rcd);
1519  		}
1520  	}
1521  
1522  	kfree(dd->rcd);
1523  	dd->rcd = NULL;
1524  
1525  	free_pio_map(dd);
1526  	/* must follow rcv context free - need to remove rcv's hooks */
1527  	for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1528  		sc_free(dd->send_contexts[ctxt].sc);
1529  	dd->num_send_contexts = 0;
1530  	kfree(dd->send_contexts);
1531  	dd->send_contexts = NULL;
1532  	kfree(dd->hw_to_sw);
1533  	dd->hw_to_sw = NULL;
1534  	kfree(dd->boardname);
1535  	vfree(dd->events);
1536  	vfree(dd->status);
1537  }
1538  
1539  /*
1540   * Clean up on unit shutdown, or error during unit load after
1541   * successful initialization.
1542   */
postinit_cleanup(struct hfi1_devdata * dd)1543  static void postinit_cleanup(struct hfi1_devdata *dd)
1544  {
1545  	hfi1_start_cleanup(dd);
1546  	hfi1_comp_vectors_clean_up(dd);
1547  	hfi1_dev_affinity_clean_up(dd);
1548  
1549  	hfi1_pcie_ddcleanup(dd);
1550  	hfi1_pcie_cleanup(dd->pcidev);
1551  
1552  	cleanup_device_data(dd);
1553  
1554  	hfi1_free_devdata(dd);
1555  }
1556  
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)1557  static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1558  {
1559  	int ret = 0, j, pidx, initfail;
1560  	struct hfi1_devdata *dd;
1561  	struct hfi1_pportdata *ppd;
1562  
1563  	/* First, lock the non-writable module parameters */
1564  	HFI1_CAP_LOCK();
1565  
1566  	/* Validate dev ids */
1567  	if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1568  	      ent->device == PCI_DEVICE_ID_INTEL1)) {
1569  		dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n",
1570  			ent->device);
1571  		ret = -ENODEV;
1572  		goto bail;
1573  	}
1574  
1575  	/* Allocate the dd so we can get to work */
1576  	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
1577  				sizeof(struct hfi1_pportdata));
1578  	if (IS_ERR(dd)) {
1579  		ret = PTR_ERR(dd);
1580  		goto bail;
1581  	}
1582  
1583  	/* Validate some global module parameters */
1584  	ret = hfi1_validate_rcvhdrcnt(dd, rcvhdrcnt);
1585  	if (ret)
1586  		goto bail;
1587  
1588  	/* use the encoding function as a sanitization check */
1589  	if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1590  		dd_dev_err(dd, "Invalid HdrQ Entry size %u\n",
1591  			   hfi1_hdrq_entsize);
1592  		ret = -EINVAL;
1593  		goto bail;
1594  	}
1595  
1596  	/* The receive eager buffer size must be set before the receive
1597  	 * contexts are created.
1598  	 *
1599  	 * Set the eager buffer size.  Validate that it falls in a range
1600  	 * allowed by the hardware - all powers of 2 between the min and
1601  	 * max.  The maximum valid MTU is within the eager buffer range
1602  	 * so we do not need to cap the max_mtu by an eager buffer size
1603  	 * setting.
1604  	 */
1605  	if (eager_buffer_size) {
1606  		if (!is_power_of_2(eager_buffer_size))
1607  			eager_buffer_size =
1608  				roundup_pow_of_two(eager_buffer_size);
1609  		eager_buffer_size =
1610  			clamp_val(eager_buffer_size,
1611  				  MIN_EAGER_BUFFER * 8,
1612  				  MAX_EAGER_BUFFER_TOTAL);
1613  		dd_dev_info(dd, "Eager buffer size %u\n",
1614  			    eager_buffer_size);
1615  	} else {
1616  		dd_dev_err(dd, "Invalid Eager buffer size of 0\n");
1617  		ret = -EINVAL;
1618  		goto bail;
1619  	}
1620  
1621  	/* restrict value of hfi1_rcvarr_split */
1622  	hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1623  
1624  	ret = hfi1_pcie_init(dd);
1625  	if (ret)
1626  		goto bail;
1627  
1628  	/*
1629  	 * Do device-specific initialization, function table setup, dd
1630  	 * allocation, etc.
1631  	 */
1632  	ret = hfi1_init_dd(dd);
1633  	if (ret)
1634  		goto clean_bail; /* error already printed */
1635  
1636  	ret = create_workqueues(dd);
1637  	if (ret)
1638  		goto clean_bail;
1639  
1640  	/* do the generic initialization */
1641  	initfail = hfi1_init(dd, 0);
1642  
1643  	ret = hfi1_register_ib_device(dd);
1644  
1645  	/*
1646  	 * Now ready for use.  this should be cleared whenever we
1647  	 * detect a reset, or initiate one.  If earlier failure,
1648  	 * we still create devices, so diags, etc. can be used
1649  	 * to determine cause of problem.
1650  	 */
1651  	if (!initfail && !ret) {
1652  		dd->flags |= HFI1_INITTED;
1653  		/* create debufs files after init and ib register */
1654  		hfi1_dbg_ibdev_init(&dd->verbs_dev);
1655  	}
1656  
1657  	j = hfi1_device_create(dd);
1658  	if (j)
1659  		dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1660  
1661  	if (initfail || ret) {
1662  		msix_clean_up_interrupts(dd);
1663  		stop_timers(dd);
1664  		flush_workqueue(ib_wq);
1665  		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1666  			hfi1_quiet_serdes(dd->pport + pidx);
1667  			ppd = dd->pport + pidx;
1668  			if (ppd->hfi1_wq) {
1669  				destroy_workqueue(ppd->hfi1_wq);
1670  				ppd->hfi1_wq = NULL;
1671  			}
1672  			if (ppd->link_wq) {
1673  				destroy_workqueue(ppd->link_wq);
1674  				ppd->link_wq = NULL;
1675  			}
1676  		}
1677  		if (!j)
1678  			hfi1_device_remove(dd);
1679  		if (!ret)
1680  			hfi1_unregister_ib_device(dd);
1681  		postinit_cleanup(dd);
1682  		if (initfail)
1683  			ret = initfail;
1684  		goto bail;	/* everything already cleaned */
1685  	}
1686  
1687  	sdma_start(dd);
1688  
1689  	return 0;
1690  
1691  clean_bail:
1692  	hfi1_pcie_cleanup(pdev);
1693  bail:
1694  	return ret;
1695  }
1696  
wait_for_clients(struct hfi1_devdata * dd)1697  static void wait_for_clients(struct hfi1_devdata *dd)
1698  {
1699  	/*
1700  	 * Remove the device init value and complete the device if there is
1701  	 * no clients or wait for active clients to finish.
1702  	 */
1703  	if (refcount_dec_and_test(&dd->user_refcount))
1704  		complete(&dd->user_comp);
1705  
1706  	wait_for_completion(&dd->user_comp);
1707  }
1708  
remove_one(struct pci_dev * pdev)1709  static void remove_one(struct pci_dev *pdev)
1710  {
1711  	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1712  
1713  	/* close debugfs files before ib unregister */
1714  	hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1715  
1716  	/* remove the /dev hfi1 interface */
1717  	hfi1_device_remove(dd);
1718  
1719  	/* wait for existing user space clients to finish */
1720  	wait_for_clients(dd);
1721  
1722  	/* unregister from IB core */
1723  	hfi1_unregister_ib_device(dd);
1724  
1725  	/* free netdev data */
1726  	hfi1_free_rx(dd);
1727  
1728  	/*
1729  	 * Disable the IB link, disable interrupts on the device,
1730  	 * clear dma engines, etc.
1731  	 */
1732  	shutdown_device(dd);
1733  	destroy_workqueues(dd);
1734  
1735  	stop_timers(dd);
1736  
1737  	/* wait until all of our (qsfp) queue_work() calls complete */
1738  	flush_workqueue(ib_wq);
1739  
1740  	postinit_cleanup(dd);
1741  }
1742  
shutdown_one(struct pci_dev * pdev)1743  static void shutdown_one(struct pci_dev *pdev)
1744  {
1745  	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1746  
1747  	shutdown_device(dd);
1748  }
1749  
1750  /**
1751   * hfi1_create_rcvhdrq - create a receive header queue
1752   * @dd: the hfi1_ib device
1753   * @rcd: the context data
1754   *
1755   * This must be contiguous memory (from an i/o perspective), and must be
1756   * DMA'able (which means for some systems, it will go through an IOMMU,
1757   * or be forced into a low address range).
1758   */
hfi1_create_rcvhdrq(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd)1759  int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1760  {
1761  	unsigned amt;
1762  
1763  	if (!rcd->rcvhdrq) {
1764  		amt = rcvhdrq_size(rcd);
1765  
1766  		rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt,
1767  						  &rcd->rcvhdrq_dma,
1768  						  GFP_KERNEL);
1769  
1770  		if (!rcd->rcvhdrq) {
1771  			dd_dev_err(dd,
1772  				   "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1773  				   amt, rcd->ctxt);
1774  			goto bail;
1775  		}
1776  
1777  		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1778  		    HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1779  			rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
1780  								    PAGE_SIZE,
1781  								    &rcd->rcvhdrqtailaddr_dma,
1782  								    GFP_KERNEL);
1783  			if (!rcd->rcvhdrtail_kvaddr)
1784  				goto bail_free;
1785  		}
1786  	}
1787  
1788  	set_hdrq_regs(rcd->dd, rcd->ctxt, rcd->rcvhdrqentsize,
1789  		      rcd->rcvhdrq_cnt);
1790  
1791  	return 0;
1792  
1793  bail_free:
1794  	dd_dev_err(dd,
1795  		   "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1796  		   rcd->ctxt);
1797  	dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1798  			  rcd->rcvhdrq_dma);
1799  	rcd->rcvhdrq = NULL;
1800  bail:
1801  	return -ENOMEM;
1802  }
1803  
1804  /**
1805   * hfi1_setup_eagerbufs - llocate eager buffers, both kernel and user
1806   * contexts.
1807   * @rcd: the context we are setting up.
1808   *
1809   * Allocate the eager TID buffers and program them into hip.
1810   * They are no longer completely contiguous, we do multiple allocation
1811   * calls.  Otherwise we get the OOM code involved, by asking for too
1812   * much per call, with disastrous results on some kernels.
1813   */
hfi1_setup_eagerbufs(struct hfi1_ctxtdata * rcd)1814  int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1815  {
1816  	struct hfi1_devdata *dd = rcd->dd;
1817  	u32 max_entries, egrtop, alloced_bytes = 0;
1818  	u16 order, idx = 0;
1819  	int ret = 0;
1820  	u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1821  
1822  	/*
1823  	 * The minimum size of the eager buffers is a groups of MTU-sized
1824  	 * buffers.
1825  	 * The global eager_buffer_size parameter is checked against the
1826  	 * theoretical lower limit of the value. Here, we check against the
1827  	 * MTU.
1828  	 */
1829  	if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1830  		rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1831  	/*
1832  	 * If using one-pkt-per-egr-buffer, lower the eager buffer
1833  	 * size to the max MTU (page-aligned).
1834  	 */
1835  	if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1836  		rcd->egrbufs.rcvtid_size = round_mtu;
1837  
1838  	/*
1839  	 * Eager buffers sizes of 1MB or less require smaller TID sizes
1840  	 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1841  	 */
1842  	if (rcd->egrbufs.size <= (1 << 20))
1843  		rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1844  			rounddown_pow_of_two(rcd->egrbufs.size / 8));
1845  
1846  	while (alloced_bytes < rcd->egrbufs.size &&
1847  	       rcd->egrbufs.alloced < rcd->egrbufs.count) {
1848  		rcd->egrbufs.buffers[idx].addr =
1849  			dma_alloc_coherent(&dd->pcidev->dev,
1850  					   rcd->egrbufs.rcvtid_size,
1851  					   &rcd->egrbufs.buffers[idx].dma,
1852  					   GFP_KERNEL);
1853  		if (rcd->egrbufs.buffers[idx].addr) {
1854  			rcd->egrbufs.buffers[idx].len =
1855  				rcd->egrbufs.rcvtid_size;
1856  			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1857  				rcd->egrbufs.buffers[idx].addr;
1858  			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1859  				rcd->egrbufs.buffers[idx].dma;
1860  			rcd->egrbufs.alloced++;
1861  			alloced_bytes += rcd->egrbufs.rcvtid_size;
1862  			idx++;
1863  		} else {
1864  			u32 new_size, i, j;
1865  			u64 offset = 0;
1866  
1867  			/*
1868  			 * Fail the eager buffer allocation if:
1869  			 *   - we are already using the lowest acceptable size
1870  			 *   - we are using one-pkt-per-egr-buffer (this implies
1871  			 *     that we are accepting only one size)
1872  			 */
1873  			if (rcd->egrbufs.rcvtid_size == round_mtu ||
1874  			    !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1875  				dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1876  					   rcd->ctxt);
1877  				ret = -ENOMEM;
1878  				goto bail_rcvegrbuf_phys;
1879  			}
1880  
1881  			new_size = rcd->egrbufs.rcvtid_size / 2;
1882  
1883  			/*
1884  			 * If the first attempt to allocate memory failed, don't
1885  			 * fail everything but continue with the next lower
1886  			 * size.
1887  			 */
1888  			if (idx == 0) {
1889  				rcd->egrbufs.rcvtid_size = new_size;
1890  				continue;
1891  			}
1892  
1893  			/*
1894  			 * Re-partition already allocated buffers to a smaller
1895  			 * size.
1896  			 */
1897  			rcd->egrbufs.alloced = 0;
1898  			for (i = 0, j = 0, offset = 0; j < idx; i++) {
1899  				if (i >= rcd->egrbufs.count)
1900  					break;
1901  				rcd->egrbufs.rcvtids[i].dma =
1902  					rcd->egrbufs.buffers[j].dma + offset;
1903  				rcd->egrbufs.rcvtids[i].addr =
1904  					rcd->egrbufs.buffers[j].addr + offset;
1905  				rcd->egrbufs.alloced++;
1906  				if ((rcd->egrbufs.buffers[j].dma + offset +
1907  				     new_size) ==
1908  				    (rcd->egrbufs.buffers[j].dma +
1909  				     rcd->egrbufs.buffers[j].len)) {
1910  					j++;
1911  					offset = 0;
1912  				} else {
1913  					offset += new_size;
1914  				}
1915  			}
1916  			rcd->egrbufs.rcvtid_size = new_size;
1917  		}
1918  	}
1919  	rcd->egrbufs.numbufs = idx;
1920  	rcd->egrbufs.size = alloced_bytes;
1921  
1922  	hfi1_cdbg(PROC,
1923  		  "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB",
1924  		  rcd->ctxt, rcd->egrbufs.alloced,
1925  		  rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
1926  
1927  	/*
1928  	 * Set the contexts rcv array head update threshold to the closest
1929  	 * power of 2 (so we can use a mask instead of modulo) below half
1930  	 * the allocated entries.
1931  	 */
1932  	rcd->egrbufs.threshold =
1933  		rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1934  	/*
1935  	 * Compute the expected RcvArray entry base. This is done after
1936  	 * allocating the eager buffers in order to maximize the
1937  	 * expected RcvArray entries for the context.
1938  	 */
1939  	max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1940  	egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1941  	rcd->expected_count = max_entries - egrtop;
1942  	if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1943  		rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1944  
1945  	rcd->expected_base = rcd->eager_base + egrtop;
1946  	hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u",
1947  		  rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1948  		  rcd->eager_base, rcd->expected_base);
1949  
1950  	if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1951  		hfi1_cdbg(PROC,
1952  			  "ctxt%u: current Eager buffer size is invalid %u",
1953  			  rcd->ctxt, rcd->egrbufs.rcvtid_size);
1954  		ret = -EINVAL;
1955  		goto bail_rcvegrbuf_phys;
1956  	}
1957  
1958  	for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1959  		hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1960  			     rcd->egrbufs.rcvtids[idx].dma, order);
1961  		cond_resched();
1962  	}
1963  
1964  	return 0;
1965  
1966  bail_rcvegrbuf_phys:
1967  	for (idx = 0; idx < rcd->egrbufs.alloced &&
1968  	     rcd->egrbufs.buffers[idx].addr;
1969  	     idx++) {
1970  		dma_free_coherent(&dd->pcidev->dev,
1971  				  rcd->egrbufs.buffers[idx].len,
1972  				  rcd->egrbufs.buffers[idx].addr,
1973  				  rcd->egrbufs.buffers[idx].dma);
1974  		rcd->egrbufs.buffers[idx].addr = NULL;
1975  		rcd->egrbufs.buffers[idx].dma = 0;
1976  		rcd->egrbufs.buffers[idx].len = 0;
1977  	}
1978  
1979  	return ret;
1980  }
1981