1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h> /* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29
30 #include <asm/local.h>
31
32 /*
33 * The "absolute" timestamp in the buffer is only 59 bits.
34 * If a clock has the 5 MSBs set, it needs to be saved and
35 * reinserted.
36 */
37 #define TS_MSB (0xf8ULL << 56)
38 #define ABS_TS_MASK (~TS_MSB)
39
40 static void update_pages_handler(struct work_struct *work);
41
42 /*
43 * The ring buffer header is special. We must manually up keep it.
44 */
ring_buffer_print_entry_header(struct trace_seq * s)45 int ring_buffer_print_entry_header(struct trace_seq *s)
46 {
47 trace_seq_puts(s, "# compressed entry header\n");
48 trace_seq_puts(s, "\ttype_len : 5 bits\n");
49 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
50 trace_seq_puts(s, "\tarray : 32 bits\n");
51 trace_seq_putc(s, '\n');
52 trace_seq_printf(s, "\tpadding : type == %d\n",
53 RINGBUF_TYPE_PADDING);
54 trace_seq_printf(s, "\ttime_extend : type == %d\n",
55 RINGBUF_TYPE_TIME_EXTEND);
56 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57 RINGBUF_TYPE_TIME_STAMP);
58 trace_seq_printf(s, "\tdata max type_len == %d\n",
59 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
60
61 return !trace_seq_has_overflowed(s);
62 }
63
64 /*
65 * The ring buffer is made up of a list of pages. A separate list of pages is
66 * allocated for each CPU. A writer may only write to a buffer that is
67 * associated with the CPU it is currently executing on. A reader may read
68 * from any per cpu buffer.
69 *
70 * The reader is special. For each per cpu buffer, the reader has its own
71 * reader page. When a reader has read the entire reader page, this reader
72 * page is swapped with another page in the ring buffer.
73 *
74 * Now, as long as the writer is off the reader page, the reader can do what
75 * ever it wants with that page. The writer will never write to that page
76 * again (as long as it is out of the ring buffer).
77 *
78 * Here's some silly ASCII art.
79 *
80 * +------+
81 * |reader| RING BUFFER
82 * |page |
83 * +------+ +---+ +---+ +---+
84 * | |-->| |-->| |
85 * +---+ +---+ +---+
86 * ^ |
87 * | |
88 * +---------------+
89 *
90 *
91 * +------+
92 * |reader| RING BUFFER
93 * |page |------------------v
94 * +------+ +---+ +---+ +---+
95 * | |-->| |-->| |
96 * +---+ +---+ +---+
97 * ^ |
98 * | |
99 * +---------------+
100 *
101 *
102 * +------+
103 * |reader| RING BUFFER
104 * |page |------------------v
105 * +------+ +---+ +---+ +---+
106 * ^ | |-->| |-->| |
107 * | +---+ +---+ +---+
108 * | |
109 * | |
110 * +------------------------------+
111 *
112 *
113 * +------+
114 * |buffer| RING BUFFER
115 * |page |------------------v
116 * +------+ +---+ +---+ +---+
117 * ^ | | | |-->| |
118 * | New +---+ +---+ +---+
119 * | Reader------^ |
120 * | page |
121 * +------------------------------+
122 *
123 *
124 * After we make this swap, the reader can hand this page off to the splice
125 * code and be done with it. It can even allocate a new page if it needs to
126 * and swap that into the ring buffer.
127 *
128 * We will be using cmpxchg soon to make all this lockless.
129 *
130 */
131
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF (1 << 20)
134
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
136
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT 4U
139 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
141
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT 0
144 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
145 #else
146 # define RB_FORCE_8BYTE_ALIGNMENT 1
147 # define RB_ARCH_ALIGNMENT 8U
148 #endif
149
150 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
151
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
154
155 enum {
156 RB_LEN_TIME_EXTEND = 8,
157 RB_LEN_TIME_STAMP = 8,
158 };
159
160 #define skip_time_extend(event) \
161 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
162
163 #define extended_time(event) \
164 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
165
rb_null_event(struct ring_buffer_event * event)166 static inline bool rb_null_event(struct ring_buffer_event *event)
167 {
168 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
169 }
170
rb_event_set_padding(struct ring_buffer_event * event)171 static void rb_event_set_padding(struct ring_buffer_event *event)
172 {
173 /* padding has a NULL time_delta */
174 event->type_len = RINGBUF_TYPE_PADDING;
175 event->time_delta = 0;
176 }
177
178 static unsigned
rb_event_data_length(struct ring_buffer_event * event)179 rb_event_data_length(struct ring_buffer_event *event)
180 {
181 unsigned length;
182
183 if (event->type_len)
184 length = event->type_len * RB_ALIGNMENT;
185 else
186 length = event->array[0];
187 return length + RB_EVNT_HDR_SIZE;
188 }
189
190 /*
191 * Return the length of the given event. Will return
192 * the length of the time extend if the event is a
193 * time extend.
194 */
195 static inline unsigned
rb_event_length(struct ring_buffer_event * event)196 rb_event_length(struct ring_buffer_event *event)
197 {
198 switch (event->type_len) {
199 case RINGBUF_TYPE_PADDING:
200 if (rb_null_event(event))
201 /* undefined */
202 return -1;
203 return event->array[0] + RB_EVNT_HDR_SIZE;
204
205 case RINGBUF_TYPE_TIME_EXTEND:
206 return RB_LEN_TIME_EXTEND;
207
208 case RINGBUF_TYPE_TIME_STAMP:
209 return RB_LEN_TIME_STAMP;
210
211 case RINGBUF_TYPE_DATA:
212 return rb_event_data_length(event);
213 default:
214 WARN_ON_ONCE(1);
215 }
216 /* not hit */
217 return 0;
218 }
219
220 /*
221 * Return total length of time extend and data,
222 * or just the event length for all other events.
223 */
224 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)225 rb_event_ts_length(struct ring_buffer_event *event)
226 {
227 unsigned len = 0;
228
229 if (extended_time(event)) {
230 /* time extends include the data event after it */
231 len = RB_LEN_TIME_EXTEND;
232 event = skip_time_extend(event);
233 }
234 return len + rb_event_length(event);
235 }
236
237 /**
238 * ring_buffer_event_length - return the length of the event
239 * @event: the event to get the length of
240 *
241 * Returns the size of the data load of a data event.
242 * If the event is something other than a data event, it
243 * returns the size of the event itself. With the exception
244 * of a TIME EXTEND, where it still returns the size of the
245 * data load of the data event after it.
246 */
ring_buffer_event_length(struct ring_buffer_event * event)247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
248 {
249 unsigned length;
250
251 if (extended_time(event))
252 event = skip_time_extend(event);
253
254 length = rb_event_length(event);
255 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
256 return length;
257 length -= RB_EVNT_HDR_SIZE;
258 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259 length -= sizeof(event->array[0]);
260 return length;
261 }
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
263
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
rb_event_data(struct ring_buffer_event * event)266 rb_event_data(struct ring_buffer_event *event)
267 {
268 if (extended_time(event))
269 event = skip_time_extend(event);
270 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271 /* If length is in len field, then array[0] has the data */
272 if (event->type_len)
273 return (void *)&event->array[0];
274 /* Otherwise length is in array[0] and array[1] has the data */
275 return (void *)&event->array[1];
276 }
277
278 /**
279 * ring_buffer_event_data - return the data of the event
280 * @event: the event to get the data from
281 */
ring_buffer_event_data(struct ring_buffer_event * event)282 void *ring_buffer_event_data(struct ring_buffer_event *event)
283 {
284 return rb_event_data(event);
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
287
288 #define for_each_buffer_cpu(buffer, cpu) \
289 for_each_cpu(cpu, buffer->cpumask)
290
291 #define for_each_online_buffer_cpu(buffer, cpu) \
292 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
293
294 #define TS_SHIFT 27
295 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST (~TS_MASK)
297
rb_event_time_stamp(struct ring_buffer_event * event)298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
299 {
300 u64 ts;
301
302 ts = event->array[0];
303 ts <<= TS_SHIFT;
304 ts += event->time_delta;
305
306 return ts;
307 }
308
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS (1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED (1 << 30)
313
314 struct buffer_data_page {
315 u64 time_stamp; /* page time stamp */
316 local_t commit; /* write committed index */
317 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
318 };
319
320 /*
321 * Note, the buffer_page list must be first. The buffer pages
322 * are allocated in cache lines, which means that each buffer
323 * page will be at the beginning of a cache line, and thus
324 * the least significant bits will be zero. We use this to
325 * add flags in the list struct pointers, to make the ring buffer
326 * lockless.
327 */
328 struct buffer_page {
329 struct list_head list; /* list of buffer pages */
330 local_t write; /* index for next write */
331 unsigned read; /* index for next read */
332 local_t entries; /* entries on this page */
333 unsigned long real_end; /* real end of data */
334 struct buffer_data_page *page; /* Actual data page */
335 };
336
337 /*
338 * The buffer page counters, write and entries, must be reset
339 * atomically when crossing page boundaries. To synchronize this
340 * update, two counters are inserted into the number. One is
341 * the actual counter for the write position or count on the page.
342 *
343 * The other is a counter of updaters. Before an update happens
344 * the update partition of the counter is incremented. This will
345 * allow the updater to update the counter atomically.
346 *
347 * The counter is 20 bits, and the state data is 12.
348 */
349 #define RB_WRITE_MASK 0xfffff
350 #define RB_WRITE_INTCNT (1 << 20)
351
rb_init_page(struct buffer_data_page * bpage)352 static void rb_init_page(struct buffer_data_page *bpage)
353 {
354 local_set(&bpage->commit, 0);
355 }
356
rb_page_commit(struct buffer_page * bpage)357 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
358 {
359 return local_read(&bpage->page->commit);
360 }
361
free_buffer_page(struct buffer_page * bpage)362 static void free_buffer_page(struct buffer_page *bpage)
363 {
364 free_page((unsigned long)bpage->page);
365 kfree(bpage);
366 }
367
368 /*
369 * We need to fit the time_stamp delta into 27 bits.
370 */
test_time_stamp(u64 delta)371 static inline bool test_time_stamp(u64 delta)
372 {
373 return !!(delta & TS_DELTA_TEST);
374 }
375
376 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
377
378 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
379 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
380
ring_buffer_print_page_header(struct trace_seq * s)381 int ring_buffer_print_page_header(struct trace_seq *s)
382 {
383 struct buffer_data_page field;
384
385 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
386 "offset:0;\tsize:%u;\tsigned:%u;\n",
387 (unsigned int)sizeof(field.time_stamp),
388 (unsigned int)is_signed_type(u64));
389
390 trace_seq_printf(s, "\tfield: local_t commit;\t"
391 "offset:%u;\tsize:%u;\tsigned:%u;\n",
392 (unsigned int)offsetof(typeof(field), commit),
393 (unsigned int)sizeof(field.commit),
394 (unsigned int)is_signed_type(long));
395
396 trace_seq_printf(s, "\tfield: int overwrite;\t"
397 "offset:%u;\tsize:%u;\tsigned:%u;\n",
398 (unsigned int)offsetof(typeof(field), commit),
399 1,
400 (unsigned int)is_signed_type(long));
401
402 trace_seq_printf(s, "\tfield: char data;\t"
403 "offset:%u;\tsize:%u;\tsigned:%u;\n",
404 (unsigned int)offsetof(typeof(field), data),
405 (unsigned int)BUF_PAGE_SIZE,
406 (unsigned int)is_signed_type(char));
407
408 return !trace_seq_has_overflowed(s);
409 }
410
411 struct rb_irq_work {
412 struct irq_work work;
413 wait_queue_head_t waiters;
414 wait_queue_head_t full_waiters;
415 bool waiters_pending;
416 bool full_waiters_pending;
417 bool wakeup_full;
418 };
419
420 /*
421 * Structure to hold event state and handle nested events.
422 */
423 struct rb_event_info {
424 u64 ts;
425 u64 delta;
426 u64 before;
427 u64 after;
428 unsigned long length;
429 struct buffer_page *tail_page;
430 int add_timestamp;
431 };
432
433 /*
434 * Used for the add_timestamp
435 * NONE
436 * EXTEND - wants a time extend
437 * ABSOLUTE - the buffer requests all events to have absolute time stamps
438 * FORCE - force a full time stamp.
439 */
440 enum {
441 RB_ADD_STAMP_NONE = 0,
442 RB_ADD_STAMP_EXTEND = BIT(1),
443 RB_ADD_STAMP_ABSOLUTE = BIT(2),
444 RB_ADD_STAMP_FORCE = BIT(3)
445 };
446 /*
447 * Used for which event context the event is in.
448 * TRANSITION = 0
449 * NMI = 1
450 * IRQ = 2
451 * SOFTIRQ = 3
452 * NORMAL = 4
453 *
454 * See trace_recursive_lock() comment below for more details.
455 */
456 enum {
457 RB_CTX_TRANSITION,
458 RB_CTX_NMI,
459 RB_CTX_IRQ,
460 RB_CTX_SOFTIRQ,
461 RB_CTX_NORMAL,
462 RB_CTX_MAX
463 };
464
465 #if BITS_PER_LONG == 32
466 #define RB_TIME_32
467 #endif
468
469 /* To test on 64 bit machines */
470 //#define RB_TIME_32
471
472 #ifdef RB_TIME_32
473
474 struct rb_time_struct {
475 local_t cnt;
476 local_t top;
477 local_t bottom;
478 local_t msb;
479 };
480 #else
481 #include <asm/local64.h>
482 struct rb_time_struct {
483 local64_t time;
484 };
485 #endif
486 typedef struct rb_time_struct rb_time_t;
487
488 #define MAX_NEST 5
489
490 /*
491 * head_page == tail_page && head == tail then buffer is empty.
492 */
493 struct ring_buffer_per_cpu {
494 int cpu;
495 atomic_t record_disabled;
496 atomic_t resize_disabled;
497 struct trace_buffer *buffer;
498 raw_spinlock_t reader_lock; /* serialize readers */
499 arch_spinlock_t lock;
500 struct lock_class_key lock_key;
501 struct buffer_data_page *free_page;
502 unsigned long nr_pages;
503 unsigned int current_context;
504 struct list_head *pages;
505 struct buffer_page *head_page; /* read from head */
506 struct buffer_page *tail_page; /* write to tail */
507 struct buffer_page *commit_page; /* committed pages */
508 struct buffer_page *reader_page;
509 unsigned long lost_events;
510 unsigned long last_overrun;
511 unsigned long nest;
512 local_t entries_bytes;
513 local_t entries;
514 local_t overrun;
515 local_t commit_overrun;
516 local_t dropped_events;
517 local_t committing;
518 local_t commits;
519 local_t pages_touched;
520 local_t pages_lost;
521 local_t pages_read;
522 long last_pages_touch;
523 size_t shortest_full;
524 unsigned long read;
525 unsigned long read_bytes;
526 rb_time_t write_stamp;
527 rb_time_t before_stamp;
528 u64 event_stamp[MAX_NEST];
529 u64 read_stamp;
530 /* pages removed since last reset */
531 unsigned long pages_removed;
532 /* ring buffer pages to update, > 0 to add, < 0 to remove */
533 long nr_pages_to_update;
534 struct list_head new_pages; /* new pages to add */
535 struct work_struct update_pages_work;
536 struct completion update_done;
537
538 struct rb_irq_work irq_work;
539 };
540
541 struct trace_buffer {
542 unsigned flags;
543 int cpus;
544 atomic_t record_disabled;
545 atomic_t resizing;
546 cpumask_var_t cpumask;
547
548 struct lock_class_key *reader_lock_key;
549
550 struct mutex mutex;
551
552 struct ring_buffer_per_cpu **buffers;
553
554 struct hlist_node node;
555 u64 (*clock)(void);
556
557 struct rb_irq_work irq_work;
558 bool time_stamp_abs;
559 };
560
561 struct ring_buffer_iter {
562 struct ring_buffer_per_cpu *cpu_buffer;
563 unsigned long head;
564 unsigned long next_event;
565 struct buffer_page *head_page;
566 struct buffer_page *cache_reader_page;
567 unsigned long cache_read;
568 unsigned long cache_pages_removed;
569 u64 read_stamp;
570 u64 page_stamp;
571 struct ring_buffer_event *event;
572 int missed_events;
573 };
574
575 #ifdef RB_TIME_32
576
577 /*
578 * On 32 bit machines, local64_t is very expensive. As the ring
579 * buffer doesn't need all the features of a true 64 bit atomic,
580 * on 32 bit, it uses these functions (64 still uses local64_t).
581 *
582 * For the ring buffer, 64 bit required operations for the time is
583 * the following:
584 *
585 * - Reads may fail if it interrupted a modification of the time stamp.
586 * It will succeed if it did not interrupt another write even if
587 * the read itself is interrupted by a write.
588 * It returns whether it was successful or not.
589 *
590 * - Writes always succeed and will overwrite other writes and writes
591 * that were done by events interrupting the current write.
592 *
593 * - A write followed by a read of the same time stamp will always succeed,
594 * but may not contain the same value.
595 *
596 * - A cmpxchg will fail if it interrupted another write or cmpxchg.
597 * Other than that, it acts like a normal cmpxchg.
598 *
599 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
600 * (bottom being the least significant 30 bits of the 60 bit time stamp).
601 *
602 * The two most significant bits of each half holds a 2 bit counter (0-3).
603 * Each update will increment this counter by one.
604 * When reading the top and bottom, if the two counter bits match then the
605 * top and bottom together make a valid 60 bit number.
606 */
607 #define RB_TIME_SHIFT 30
608 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
609 #define RB_TIME_MSB_SHIFT 60
610
rb_time_cnt(unsigned long val)611 static inline int rb_time_cnt(unsigned long val)
612 {
613 return (val >> RB_TIME_SHIFT) & 3;
614 }
615
rb_time_val(unsigned long top,unsigned long bottom)616 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
617 {
618 u64 val;
619
620 val = top & RB_TIME_VAL_MASK;
621 val <<= RB_TIME_SHIFT;
622 val |= bottom & RB_TIME_VAL_MASK;
623
624 return val;
625 }
626
__rb_time_read(rb_time_t * t,u64 * ret,unsigned long * cnt)627 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
628 {
629 unsigned long top, bottom, msb;
630 unsigned long c;
631
632 /*
633 * If the read is interrupted by a write, then the cnt will
634 * be different. Loop until both top and bottom have been read
635 * without interruption.
636 */
637 do {
638 c = local_read(&t->cnt);
639 top = local_read(&t->top);
640 bottom = local_read(&t->bottom);
641 msb = local_read(&t->msb);
642 } while (c != local_read(&t->cnt));
643
644 *cnt = rb_time_cnt(top);
645
646 /* If top, msb or bottom counts don't match, this interrupted a write */
647 if (*cnt != rb_time_cnt(msb) || *cnt != rb_time_cnt(bottom))
648 return false;
649
650 /* The shift to msb will lose its cnt bits */
651 *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
652 return true;
653 }
654
rb_time_read(rb_time_t * t,u64 * ret)655 static bool rb_time_read(rb_time_t *t, u64 *ret)
656 {
657 unsigned long cnt;
658
659 return __rb_time_read(t, ret, &cnt);
660 }
661
rb_time_val_cnt(unsigned long val,unsigned long cnt)662 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
663 {
664 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
665 }
666
rb_time_split(u64 val,unsigned long * top,unsigned long * bottom,unsigned long * msb)667 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
668 unsigned long *msb)
669 {
670 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
671 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
672 *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
673 }
674
rb_time_val_set(local_t * t,unsigned long val,unsigned long cnt)675 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
676 {
677 val = rb_time_val_cnt(val, cnt);
678 local_set(t, val);
679 }
680
rb_time_set(rb_time_t * t,u64 val)681 static void rb_time_set(rb_time_t *t, u64 val)
682 {
683 unsigned long cnt, top, bottom, msb;
684
685 rb_time_split(val, &top, &bottom, &msb);
686
687 /* Writes always succeed with a valid number even if it gets interrupted. */
688 do {
689 cnt = local_inc_return(&t->cnt);
690 rb_time_val_set(&t->top, top, cnt);
691 rb_time_val_set(&t->bottom, bottom, cnt);
692 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
693 } while (cnt != local_read(&t->cnt));
694 }
695
696 static inline bool
rb_time_read_cmpxchg(local_t * l,unsigned long expect,unsigned long set)697 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
698 {
699 return local_try_cmpxchg(l, &expect, set);
700 }
701
702 #else /* 64 bits */
703
704 /* local64_t always succeeds */
705
rb_time_read(rb_time_t * t,u64 * ret)706 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
707 {
708 *ret = local64_read(&t->time);
709 return true;
710 }
rb_time_set(rb_time_t * t,u64 val)711 static void rb_time_set(rb_time_t *t, u64 val)
712 {
713 local64_set(&t->time, val);
714 }
715 #endif
716
717 /*
718 * Enable this to make sure that the event passed to
719 * ring_buffer_event_time_stamp() is not committed and also
720 * is on the buffer that it passed in.
721 */
722 //#define RB_VERIFY_EVENT
723 #ifdef RB_VERIFY_EVENT
724 static struct list_head *rb_list_head(struct list_head *list);
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)725 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
726 void *event)
727 {
728 struct buffer_page *page = cpu_buffer->commit_page;
729 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
730 struct list_head *next;
731 long commit, write;
732 unsigned long addr = (unsigned long)event;
733 bool done = false;
734 int stop = 0;
735
736 /* Make sure the event exists and is not committed yet */
737 do {
738 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
739 done = true;
740 commit = local_read(&page->page->commit);
741 write = local_read(&page->write);
742 if (addr >= (unsigned long)&page->page->data[commit] &&
743 addr < (unsigned long)&page->page->data[write])
744 return;
745
746 next = rb_list_head(page->list.next);
747 page = list_entry(next, struct buffer_page, list);
748 } while (!done);
749 WARN_ON_ONCE(1);
750 }
751 #else
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)752 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
753 void *event)
754 {
755 }
756 #endif
757
758 /*
759 * The absolute time stamp drops the 5 MSBs and some clocks may
760 * require them. The rb_fix_abs_ts() will take a previous full
761 * time stamp, and add the 5 MSB of that time stamp on to the
762 * saved absolute time stamp. Then they are compared in case of
763 * the unlikely event that the latest time stamp incremented
764 * the 5 MSB.
765 */
rb_fix_abs_ts(u64 abs,u64 save_ts)766 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
767 {
768 if (save_ts & TS_MSB) {
769 abs |= save_ts & TS_MSB;
770 /* Check for overflow */
771 if (unlikely(abs < save_ts))
772 abs += 1ULL << 59;
773 }
774 return abs;
775 }
776
777 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
778
779 /**
780 * ring_buffer_event_time_stamp - return the event's current time stamp
781 * @buffer: The buffer that the event is on
782 * @event: the event to get the time stamp of
783 *
784 * Note, this must be called after @event is reserved, and before it is
785 * committed to the ring buffer. And must be called from the same
786 * context where the event was reserved (normal, softirq, irq, etc).
787 *
788 * Returns the time stamp associated with the current event.
789 * If the event has an extended time stamp, then that is used as
790 * the time stamp to return.
791 * In the highly unlikely case that the event was nested more than
792 * the max nesting, then the write_stamp of the buffer is returned,
793 * otherwise current time is returned, but that really neither of
794 * the last two cases should ever happen.
795 */
ring_buffer_event_time_stamp(struct trace_buffer * buffer,struct ring_buffer_event * event)796 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
797 struct ring_buffer_event *event)
798 {
799 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
800 unsigned int nest;
801 u64 ts;
802
803 /* If the event includes an absolute time, then just use that */
804 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
805 ts = rb_event_time_stamp(event);
806 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
807 }
808
809 nest = local_read(&cpu_buffer->committing);
810 verify_event(cpu_buffer, event);
811 if (WARN_ON_ONCE(!nest))
812 goto fail;
813
814 /* Read the current saved nesting level time stamp */
815 if (likely(--nest < MAX_NEST))
816 return cpu_buffer->event_stamp[nest];
817
818 /* Shouldn't happen, warn if it does */
819 WARN_ONCE(1, "nest (%d) greater than max", nest);
820
821 fail:
822 /* Can only fail on 32 bit */
823 if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
824 /* Screw it, just read the current time */
825 ts = rb_time_stamp(cpu_buffer->buffer);
826
827 return ts;
828 }
829
830 /**
831 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
832 * @buffer: The ring_buffer to get the number of pages from
833 * @cpu: The cpu of the ring_buffer to get the number of pages from
834 *
835 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
836 */
ring_buffer_nr_pages(struct trace_buffer * buffer,int cpu)837 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
838 {
839 return buffer->buffers[cpu]->nr_pages;
840 }
841
842 /**
843 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
844 * @buffer: The ring_buffer to get the number of pages from
845 * @cpu: The cpu of the ring_buffer to get the number of pages from
846 *
847 * Returns the number of pages that have content in the ring buffer.
848 */
ring_buffer_nr_dirty_pages(struct trace_buffer * buffer,int cpu)849 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
850 {
851 size_t read;
852 size_t lost;
853 size_t cnt;
854
855 read = local_read(&buffer->buffers[cpu]->pages_read);
856 lost = local_read(&buffer->buffers[cpu]->pages_lost);
857 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
858
859 if (WARN_ON_ONCE(cnt < lost))
860 return 0;
861
862 cnt -= lost;
863
864 /* The reader can read an empty page, but not more than that */
865 if (cnt < read) {
866 WARN_ON_ONCE(read > cnt + 1);
867 return 0;
868 }
869
870 return cnt - read;
871 }
872
full_hit(struct trace_buffer * buffer,int cpu,int full)873 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
874 {
875 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
876 size_t nr_pages;
877 size_t dirty;
878
879 nr_pages = cpu_buffer->nr_pages;
880 if (!nr_pages || !full)
881 return true;
882
883 /*
884 * Add one as dirty will never equal nr_pages, as the sub-buffer
885 * that the writer is on is not counted as dirty.
886 * This is needed if "buffer_percent" is set to 100.
887 */
888 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
889
890 return (dirty * 100) >= (full * nr_pages);
891 }
892
893 /*
894 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
895 *
896 * Schedules a delayed work to wake up any task that is blocked on the
897 * ring buffer waiters queue.
898 */
rb_wake_up_waiters(struct irq_work * work)899 static void rb_wake_up_waiters(struct irq_work *work)
900 {
901 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
902
903 wake_up_all(&rbwork->waiters);
904 if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
905 /* Only cpu_buffer sets the above flags */
906 struct ring_buffer_per_cpu *cpu_buffer =
907 container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
908
909 /* Called from interrupt context */
910 raw_spin_lock(&cpu_buffer->reader_lock);
911 rbwork->wakeup_full = false;
912 rbwork->full_waiters_pending = false;
913
914 /* Waking up all waiters, they will reset the shortest full */
915 cpu_buffer->shortest_full = 0;
916 raw_spin_unlock(&cpu_buffer->reader_lock);
917
918 wake_up_all(&rbwork->full_waiters);
919 }
920 }
921
922 /**
923 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
924 * @buffer: The ring buffer to wake waiters on
925 * @cpu: The CPU buffer to wake waiters on
926 *
927 * In the case of a file that represents a ring buffer is closing,
928 * it is prudent to wake up any waiters that are on this.
929 */
ring_buffer_wake_waiters(struct trace_buffer * buffer,int cpu)930 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
931 {
932 struct ring_buffer_per_cpu *cpu_buffer;
933 struct rb_irq_work *rbwork;
934
935 if (!buffer)
936 return;
937
938 if (cpu == RING_BUFFER_ALL_CPUS) {
939
940 /* Wake up individual ones too. One level recursion */
941 for_each_buffer_cpu(buffer, cpu)
942 ring_buffer_wake_waiters(buffer, cpu);
943
944 rbwork = &buffer->irq_work;
945 } else {
946 if (WARN_ON_ONCE(!buffer->buffers))
947 return;
948 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
949 return;
950
951 cpu_buffer = buffer->buffers[cpu];
952 /* The CPU buffer may not have been initialized yet */
953 if (!cpu_buffer)
954 return;
955 rbwork = &cpu_buffer->irq_work;
956 }
957
958 /* This can be called in any context */
959 irq_work_queue(&rbwork->work);
960 }
961
rb_watermark_hit(struct trace_buffer * buffer,int cpu,int full)962 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
963 {
964 struct ring_buffer_per_cpu *cpu_buffer;
965 bool ret = false;
966
967 /* Reads of all CPUs always waits for any data */
968 if (cpu == RING_BUFFER_ALL_CPUS)
969 return !ring_buffer_empty(buffer);
970
971 cpu_buffer = buffer->buffers[cpu];
972
973 if (!ring_buffer_empty_cpu(buffer, cpu)) {
974 unsigned long flags;
975 bool pagebusy;
976
977 if (!full)
978 return true;
979
980 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
981 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
982 ret = !pagebusy && full_hit(buffer, cpu, full);
983
984 if (!ret && (!cpu_buffer->shortest_full ||
985 cpu_buffer->shortest_full > full)) {
986 cpu_buffer->shortest_full = full;
987 }
988 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
989 }
990 return ret;
991 }
992
993 static inline bool
rb_wait_cond(struct rb_irq_work * rbwork,struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)994 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
995 int cpu, int full, ring_buffer_cond_fn cond, void *data)
996 {
997 if (rb_watermark_hit(buffer, cpu, full))
998 return true;
999
1000 if (cond(data))
1001 return true;
1002
1003 /*
1004 * The events can happen in critical sections where
1005 * checking a work queue can cause deadlocks.
1006 * After adding a task to the queue, this flag is set
1007 * only to notify events to try to wake up the queue
1008 * using irq_work.
1009 *
1010 * We don't clear it even if the buffer is no longer
1011 * empty. The flag only causes the next event to run
1012 * irq_work to do the work queue wake up. The worse
1013 * that can happen if we race with !trace_empty() is that
1014 * an event will cause an irq_work to try to wake up
1015 * an empty queue.
1016 *
1017 * There's no reason to protect this flag either, as
1018 * the work queue and irq_work logic will do the necessary
1019 * synchronization for the wake ups. The only thing
1020 * that is necessary is that the wake up happens after
1021 * a task has been queued. It's OK for spurious wake ups.
1022 */
1023 if (full)
1024 rbwork->full_waiters_pending = true;
1025 else
1026 rbwork->waiters_pending = true;
1027
1028 return false;
1029 }
1030
1031 /*
1032 * The default wait condition for ring_buffer_wait() is to just to exit the
1033 * wait loop the first time it is woken up.
1034 */
rb_wait_once(void * data)1035 static bool rb_wait_once(void *data)
1036 {
1037 long *once = data;
1038
1039 /* wait_event() actually calls this twice before scheduling*/
1040 if (*once > 1)
1041 return true;
1042
1043 (*once)++;
1044 return false;
1045 }
1046
1047 /**
1048 * ring_buffer_wait - wait for input to the ring buffer
1049 * @buffer: buffer to wait on
1050 * @cpu: the cpu buffer to wait on
1051 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1052 *
1053 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1054 * as data is added to any of the @buffer's cpu buffers. Otherwise
1055 * it will wait for data to be added to a specific cpu buffer.
1056 */
ring_buffer_wait(struct trace_buffer * buffer,int cpu,int full)1057 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
1058 {
1059 struct ring_buffer_per_cpu *cpu_buffer;
1060 struct wait_queue_head *waitq;
1061 ring_buffer_cond_fn cond;
1062 struct rb_irq_work *rbwork;
1063 void *data;
1064 long once = 0;
1065 int ret = 0;
1066
1067 cond = rb_wait_once;
1068 data = &once;
1069
1070 /*
1071 * Depending on what the caller is waiting for, either any
1072 * data in any cpu buffer, or a specific buffer, put the
1073 * caller on the appropriate wait queue.
1074 */
1075 if (cpu == RING_BUFFER_ALL_CPUS) {
1076 rbwork = &buffer->irq_work;
1077 /* Full only makes sense on per cpu reads */
1078 full = 0;
1079 } else {
1080 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1081 return -ENODEV;
1082 cpu_buffer = buffer->buffers[cpu];
1083 rbwork = &cpu_buffer->irq_work;
1084 }
1085
1086 if (full)
1087 waitq = &rbwork->full_waiters;
1088 else
1089 waitq = &rbwork->waiters;
1090
1091 ret = wait_event_interruptible((*waitq),
1092 rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
1093
1094 return ret;
1095 }
1096
1097 /**
1098 * ring_buffer_poll_wait - poll on buffer input
1099 * @buffer: buffer to wait on
1100 * @cpu: the cpu buffer to wait on
1101 * @filp: the file descriptor
1102 * @poll_table: The poll descriptor
1103 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1104 *
1105 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1106 * as data is added to any of the @buffer's cpu buffers. Otherwise
1107 * it will wait for data to be added to a specific cpu buffer.
1108 *
1109 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1110 * zero otherwise.
1111 */
ring_buffer_poll_wait(struct trace_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table,int full)1112 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1113 struct file *filp, poll_table *poll_table, int full)
1114 {
1115 struct ring_buffer_per_cpu *cpu_buffer;
1116 struct rb_irq_work *rbwork;
1117
1118 if (cpu == RING_BUFFER_ALL_CPUS) {
1119 rbwork = &buffer->irq_work;
1120 full = 0;
1121 } else {
1122 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1123 return EPOLLERR;
1124
1125 cpu_buffer = buffer->buffers[cpu];
1126 rbwork = &cpu_buffer->irq_work;
1127 }
1128
1129 if (full) {
1130 unsigned long flags;
1131
1132 poll_wait(filp, &rbwork->full_waiters, poll_table);
1133
1134 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1135 if (!cpu_buffer->shortest_full ||
1136 cpu_buffer->shortest_full > full)
1137 cpu_buffer->shortest_full = full;
1138 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1139 if (full_hit(buffer, cpu, full))
1140 return EPOLLIN | EPOLLRDNORM;
1141 /*
1142 * Only allow full_waiters_pending update to be seen after
1143 * the shortest_full is set. If the writer sees the
1144 * full_waiters_pending flag set, it will compare the
1145 * amount in the ring buffer to shortest_full. If the amount
1146 * in the ring buffer is greater than the shortest_full
1147 * percent, it will call the irq_work handler to wake up
1148 * this list. The irq_handler will reset shortest_full
1149 * back to zero. That's done under the reader_lock, but
1150 * the below smp_mb() makes sure that the update to
1151 * full_waiters_pending doesn't leak up into the above.
1152 */
1153 smp_mb();
1154 rbwork->full_waiters_pending = true;
1155 return 0;
1156 }
1157
1158 poll_wait(filp, &rbwork->waiters, poll_table);
1159 rbwork->waiters_pending = true;
1160
1161 /*
1162 * There's a tight race between setting the waiters_pending and
1163 * checking if the ring buffer is empty. Once the waiters_pending bit
1164 * is set, the next event will wake the task up, but we can get stuck
1165 * if there's only a single event in.
1166 *
1167 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1168 * but adding a memory barrier to all events will cause too much of a
1169 * performance hit in the fast path. We only need a memory barrier when
1170 * the buffer goes from empty to having content. But as this race is
1171 * extremely small, and it's not a problem if another event comes in, we
1172 * will fix it later.
1173 */
1174 smp_mb();
1175
1176 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1177 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1178 return EPOLLIN | EPOLLRDNORM;
1179 return 0;
1180 }
1181
1182 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1183 #define RB_WARN_ON(b, cond) \
1184 ({ \
1185 int _____ret = unlikely(cond); \
1186 if (_____ret) { \
1187 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1188 struct ring_buffer_per_cpu *__b = \
1189 (void *)b; \
1190 atomic_inc(&__b->buffer->record_disabled); \
1191 } else \
1192 atomic_inc(&b->record_disabled); \
1193 WARN_ON(1); \
1194 } \
1195 _____ret; \
1196 })
1197
1198 /* Up this if you want to test the TIME_EXTENTS and normalization */
1199 #define DEBUG_SHIFT 0
1200
rb_time_stamp(struct trace_buffer * buffer)1201 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1202 {
1203 u64 ts;
1204
1205 /* Skip retpolines :-( */
1206 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1207 ts = trace_clock_local();
1208 else
1209 ts = buffer->clock();
1210
1211 /* shift to debug/test normalization and TIME_EXTENTS */
1212 return ts << DEBUG_SHIFT;
1213 }
1214
ring_buffer_time_stamp(struct trace_buffer * buffer)1215 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1216 {
1217 u64 time;
1218
1219 preempt_disable_notrace();
1220 time = rb_time_stamp(buffer);
1221 preempt_enable_notrace();
1222
1223 return time;
1224 }
1225 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1226
ring_buffer_normalize_time_stamp(struct trace_buffer * buffer,int cpu,u64 * ts)1227 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1228 int cpu, u64 *ts)
1229 {
1230 /* Just stupid testing the normalize function and deltas */
1231 *ts >>= DEBUG_SHIFT;
1232 }
1233 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1234
1235 /*
1236 * Making the ring buffer lockless makes things tricky.
1237 * Although writes only happen on the CPU that they are on,
1238 * and they only need to worry about interrupts. Reads can
1239 * happen on any CPU.
1240 *
1241 * The reader page is always off the ring buffer, but when the
1242 * reader finishes with a page, it needs to swap its page with
1243 * a new one from the buffer. The reader needs to take from
1244 * the head (writes go to the tail). But if a writer is in overwrite
1245 * mode and wraps, it must push the head page forward.
1246 *
1247 * Here lies the problem.
1248 *
1249 * The reader must be careful to replace only the head page, and
1250 * not another one. As described at the top of the file in the
1251 * ASCII art, the reader sets its old page to point to the next
1252 * page after head. It then sets the page after head to point to
1253 * the old reader page. But if the writer moves the head page
1254 * during this operation, the reader could end up with the tail.
1255 *
1256 * We use cmpxchg to help prevent this race. We also do something
1257 * special with the page before head. We set the LSB to 1.
1258 *
1259 * When the writer must push the page forward, it will clear the
1260 * bit that points to the head page, move the head, and then set
1261 * the bit that points to the new head page.
1262 *
1263 * We also don't want an interrupt coming in and moving the head
1264 * page on another writer. Thus we use the second LSB to catch
1265 * that too. Thus:
1266 *
1267 * head->list->prev->next bit 1 bit 0
1268 * ------- -------
1269 * Normal page 0 0
1270 * Points to head page 0 1
1271 * New head page 1 0
1272 *
1273 * Note we can not trust the prev pointer of the head page, because:
1274 *
1275 * +----+ +-----+ +-----+
1276 * | |------>| T |---X--->| N |
1277 * | |<------| | | |
1278 * +----+ +-----+ +-----+
1279 * ^ ^ |
1280 * | +-----+ | |
1281 * +----------| R |----------+ |
1282 * | |<-----------+
1283 * +-----+
1284 *
1285 * Key: ---X--> HEAD flag set in pointer
1286 * T Tail page
1287 * R Reader page
1288 * N Next page
1289 *
1290 * (see __rb_reserve_next() to see where this happens)
1291 *
1292 * What the above shows is that the reader just swapped out
1293 * the reader page with a page in the buffer, but before it
1294 * could make the new header point back to the new page added
1295 * it was preempted by a writer. The writer moved forward onto
1296 * the new page added by the reader and is about to move forward
1297 * again.
1298 *
1299 * You can see, it is legitimate for the previous pointer of
1300 * the head (or any page) not to point back to itself. But only
1301 * temporarily.
1302 */
1303
1304 #define RB_PAGE_NORMAL 0UL
1305 #define RB_PAGE_HEAD 1UL
1306 #define RB_PAGE_UPDATE 2UL
1307
1308
1309 #define RB_FLAG_MASK 3UL
1310
1311 /* PAGE_MOVED is not part of the mask */
1312 #define RB_PAGE_MOVED 4UL
1313
1314 /*
1315 * rb_list_head - remove any bit
1316 */
rb_list_head(struct list_head * list)1317 static struct list_head *rb_list_head(struct list_head *list)
1318 {
1319 unsigned long val = (unsigned long)list;
1320
1321 return (struct list_head *)(val & ~RB_FLAG_MASK);
1322 }
1323
1324 /*
1325 * rb_is_head_page - test if the given page is the head page
1326 *
1327 * Because the reader may move the head_page pointer, we can
1328 * not trust what the head page is (it may be pointing to
1329 * the reader page). But if the next page is a header page,
1330 * its flags will be non zero.
1331 */
1332 static inline int
rb_is_head_page(struct buffer_page * page,struct list_head * list)1333 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1334 {
1335 unsigned long val;
1336
1337 val = (unsigned long)list->next;
1338
1339 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1340 return RB_PAGE_MOVED;
1341
1342 return val & RB_FLAG_MASK;
1343 }
1344
1345 /*
1346 * rb_is_reader_page
1347 *
1348 * The unique thing about the reader page, is that, if the
1349 * writer is ever on it, the previous pointer never points
1350 * back to the reader page.
1351 */
rb_is_reader_page(struct buffer_page * page)1352 static bool rb_is_reader_page(struct buffer_page *page)
1353 {
1354 struct list_head *list = page->list.prev;
1355
1356 return rb_list_head(list->next) != &page->list;
1357 }
1358
1359 /*
1360 * rb_set_list_to_head - set a list_head to be pointing to head.
1361 */
rb_set_list_to_head(struct list_head * list)1362 static void rb_set_list_to_head(struct list_head *list)
1363 {
1364 unsigned long *ptr;
1365
1366 ptr = (unsigned long *)&list->next;
1367 *ptr |= RB_PAGE_HEAD;
1368 *ptr &= ~RB_PAGE_UPDATE;
1369 }
1370
1371 /*
1372 * rb_head_page_activate - sets up head page
1373 */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)1374 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1375 {
1376 struct buffer_page *head;
1377
1378 head = cpu_buffer->head_page;
1379 if (!head)
1380 return;
1381
1382 /*
1383 * Set the previous list pointer to have the HEAD flag.
1384 */
1385 rb_set_list_to_head(head->list.prev);
1386 }
1387
rb_list_head_clear(struct list_head * list)1388 static void rb_list_head_clear(struct list_head *list)
1389 {
1390 unsigned long *ptr = (unsigned long *)&list->next;
1391
1392 *ptr &= ~RB_FLAG_MASK;
1393 }
1394
1395 /*
1396 * rb_head_page_deactivate - clears head page ptr (for free list)
1397 */
1398 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)1399 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1400 {
1401 struct list_head *hd;
1402
1403 /* Go through the whole list and clear any pointers found. */
1404 rb_list_head_clear(cpu_buffer->pages);
1405
1406 list_for_each(hd, cpu_buffer->pages)
1407 rb_list_head_clear(hd);
1408 }
1409
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)1410 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1411 struct buffer_page *head,
1412 struct buffer_page *prev,
1413 int old_flag, int new_flag)
1414 {
1415 struct list_head *list;
1416 unsigned long val = (unsigned long)&head->list;
1417 unsigned long ret;
1418
1419 list = &prev->list;
1420
1421 val &= ~RB_FLAG_MASK;
1422
1423 ret = cmpxchg((unsigned long *)&list->next,
1424 val | old_flag, val | new_flag);
1425
1426 /* check if the reader took the page */
1427 if ((ret & ~RB_FLAG_MASK) != val)
1428 return RB_PAGE_MOVED;
1429
1430 return ret & RB_FLAG_MASK;
1431 }
1432
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1433 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1434 struct buffer_page *head,
1435 struct buffer_page *prev,
1436 int old_flag)
1437 {
1438 return rb_head_page_set(cpu_buffer, head, prev,
1439 old_flag, RB_PAGE_UPDATE);
1440 }
1441
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1442 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1443 struct buffer_page *head,
1444 struct buffer_page *prev,
1445 int old_flag)
1446 {
1447 return rb_head_page_set(cpu_buffer, head, prev,
1448 old_flag, RB_PAGE_HEAD);
1449 }
1450
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1451 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1452 struct buffer_page *head,
1453 struct buffer_page *prev,
1454 int old_flag)
1455 {
1456 return rb_head_page_set(cpu_buffer, head, prev,
1457 old_flag, RB_PAGE_NORMAL);
1458 }
1459
rb_inc_page(struct buffer_page ** bpage)1460 static inline void rb_inc_page(struct buffer_page **bpage)
1461 {
1462 struct list_head *p = rb_list_head((*bpage)->list.next);
1463
1464 *bpage = list_entry(p, struct buffer_page, list);
1465 }
1466
1467 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)1468 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1469 {
1470 struct buffer_page *head;
1471 struct buffer_page *page;
1472 struct list_head *list;
1473 int i;
1474
1475 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1476 return NULL;
1477
1478 /* sanity check */
1479 list = cpu_buffer->pages;
1480 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1481 return NULL;
1482
1483 page = head = cpu_buffer->head_page;
1484 /*
1485 * It is possible that the writer moves the header behind
1486 * where we started, and we miss in one loop.
1487 * A second loop should grab the header, but we'll do
1488 * three loops just because I'm paranoid.
1489 */
1490 for (i = 0; i < 3; i++) {
1491 do {
1492 if (rb_is_head_page(page, page->list.prev)) {
1493 cpu_buffer->head_page = page;
1494 return page;
1495 }
1496 rb_inc_page(&page);
1497 } while (page != head);
1498 }
1499
1500 RB_WARN_ON(cpu_buffer, 1);
1501
1502 return NULL;
1503 }
1504
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1505 static bool rb_head_page_replace(struct buffer_page *old,
1506 struct buffer_page *new)
1507 {
1508 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1509 unsigned long val;
1510
1511 val = *ptr & ~RB_FLAG_MASK;
1512 val |= RB_PAGE_HEAD;
1513
1514 return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1515 }
1516
1517 /*
1518 * rb_tail_page_update - move the tail page forward
1519 */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1520 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1521 struct buffer_page *tail_page,
1522 struct buffer_page *next_page)
1523 {
1524 unsigned long old_entries;
1525 unsigned long old_write;
1526
1527 /*
1528 * The tail page now needs to be moved forward.
1529 *
1530 * We need to reset the tail page, but without messing
1531 * with possible erasing of data brought in by interrupts
1532 * that have moved the tail page and are currently on it.
1533 *
1534 * We add a counter to the write field to denote this.
1535 */
1536 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1537 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1538
1539 /*
1540 * Just make sure we have seen our old_write and synchronize
1541 * with any interrupts that come in.
1542 */
1543 barrier();
1544
1545 /*
1546 * If the tail page is still the same as what we think
1547 * it is, then it is up to us to update the tail
1548 * pointer.
1549 */
1550 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1551 /* Zero the write counter */
1552 unsigned long val = old_write & ~RB_WRITE_MASK;
1553 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1554
1555 /*
1556 * This will only succeed if an interrupt did
1557 * not come in and change it. In which case, we
1558 * do not want to modify it.
1559 *
1560 * We add (void) to let the compiler know that we do not care
1561 * about the return value of these functions. We use the
1562 * cmpxchg to only update if an interrupt did not already
1563 * do it for us. If the cmpxchg fails, we don't care.
1564 */
1565 (void)local_cmpxchg(&next_page->write, old_write, val);
1566 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1567
1568 /*
1569 * No need to worry about races with clearing out the commit.
1570 * it only can increment when a commit takes place. But that
1571 * only happens in the outer most nested commit.
1572 */
1573 local_set(&next_page->page->commit, 0);
1574
1575 /* Either we update tail_page or an interrupt does */
1576 if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1577 local_inc(&cpu_buffer->pages_touched);
1578 }
1579 }
1580
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1581 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1582 struct buffer_page *bpage)
1583 {
1584 unsigned long val = (unsigned long)bpage;
1585
1586 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1587 }
1588
1589 /**
1590 * rb_check_pages - integrity check of buffer pages
1591 * @cpu_buffer: CPU buffer with pages to test
1592 *
1593 * As a safety measure we check to make sure the data pages have not
1594 * been corrupted.
1595 *
1596 * Callers of this function need to guarantee that the list of pages doesn't get
1597 * modified during the check. In particular, if it's possible that the function
1598 * is invoked with concurrent readers which can swap in a new reader page then
1599 * the caller should take cpu_buffer->reader_lock.
1600 */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1601 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1602 {
1603 struct list_head *head = rb_list_head(cpu_buffer->pages);
1604 struct list_head *tmp;
1605
1606 if (RB_WARN_ON(cpu_buffer,
1607 rb_list_head(rb_list_head(head->next)->prev) != head))
1608 return;
1609
1610 if (RB_WARN_ON(cpu_buffer,
1611 rb_list_head(rb_list_head(head->prev)->next) != head))
1612 return;
1613
1614 for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1615 if (RB_WARN_ON(cpu_buffer,
1616 rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1617 return;
1618
1619 if (RB_WARN_ON(cpu_buffer,
1620 rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1621 return;
1622 }
1623 }
1624
__rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,long nr_pages,struct list_head * pages)1625 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1626 long nr_pages, struct list_head *pages)
1627 {
1628 struct buffer_page *bpage, *tmp;
1629 bool user_thread = current->mm != NULL;
1630 gfp_t mflags;
1631 long i;
1632
1633 /*
1634 * Check if the available memory is there first.
1635 * Note, si_mem_available() only gives us a rough estimate of available
1636 * memory. It may not be accurate. But we don't care, we just want
1637 * to prevent doing any allocation when it is obvious that it is
1638 * not going to succeed.
1639 */
1640 i = si_mem_available();
1641 if (i < nr_pages)
1642 return -ENOMEM;
1643
1644 /*
1645 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1646 * gracefully without invoking oom-killer and the system is not
1647 * destabilized.
1648 */
1649 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1650
1651 /*
1652 * If a user thread allocates too much, and si_mem_available()
1653 * reports there's enough memory, even though there is not.
1654 * Make sure the OOM killer kills this thread. This can happen
1655 * even with RETRY_MAYFAIL because another task may be doing
1656 * an allocation after this task has taken all memory.
1657 * This is the task the OOM killer needs to take out during this
1658 * loop, even if it was triggered by an allocation somewhere else.
1659 */
1660 if (user_thread)
1661 set_current_oom_origin();
1662 for (i = 0; i < nr_pages; i++) {
1663 struct page *page;
1664
1665 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1666 mflags, cpu_to_node(cpu_buffer->cpu));
1667 if (!bpage)
1668 goto free_pages;
1669
1670 rb_check_bpage(cpu_buffer, bpage);
1671
1672 list_add(&bpage->list, pages);
1673
1674 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1675 if (!page)
1676 goto free_pages;
1677 bpage->page = page_address(page);
1678 rb_init_page(bpage->page);
1679
1680 if (user_thread && fatal_signal_pending(current))
1681 goto free_pages;
1682 }
1683 if (user_thread)
1684 clear_current_oom_origin();
1685
1686 return 0;
1687
1688 free_pages:
1689 list_for_each_entry_safe(bpage, tmp, pages, list) {
1690 list_del_init(&bpage->list);
1691 free_buffer_page(bpage);
1692 }
1693 if (user_thread)
1694 clear_current_oom_origin();
1695
1696 return -ENOMEM;
1697 }
1698
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1699 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1700 unsigned long nr_pages)
1701 {
1702 LIST_HEAD(pages);
1703
1704 WARN_ON(!nr_pages);
1705
1706 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1707 return -ENOMEM;
1708
1709 /*
1710 * The ring buffer page list is a circular list that does not
1711 * start and end with a list head. All page list items point to
1712 * other pages.
1713 */
1714 cpu_buffer->pages = pages.next;
1715 list_del(&pages);
1716
1717 cpu_buffer->nr_pages = nr_pages;
1718
1719 rb_check_pages(cpu_buffer);
1720
1721 return 0;
1722 }
1723
1724 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct trace_buffer * buffer,long nr_pages,int cpu)1725 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1726 {
1727 struct ring_buffer_per_cpu *cpu_buffer;
1728 struct buffer_page *bpage;
1729 struct page *page;
1730 int ret;
1731
1732 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1733 GFP_KERNEL, cpu_to_node(cpu));
1734 if (!cpu_buffer)
1735 return NULL;
1736
1737 cpu_buffer->cpu = cpu;
1738 cpu_buffer->buffer = buffer;
1739 raw_spin_lock_init(&cpu_buffer->reader_lock);
1740 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1741 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1742 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1743 init_completion(&cpu_buffer->update_done);
1744 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1745 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1746 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1747
1748 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1749 GFP_KERNEL, cpu_to_node(cpu));
1750 if (!bpage)
1751 goto fail_free_buffer;
1752
1753 rb_check_bpage(cpu_buffer, bpage);
1754
1755 cpu_buffer->reader_page = bpage;
1756 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1757 if (!page)
1758 goto fail_free_reader;
1759 bpage->page = page_address(page);
1760 rb_init_page(bpage->page);
1761
1762 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1763 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1764
1765 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1766 if (ret < 0)
1767 goto fail_free_reader;
1768
1769 cpu_buffer->head_page
1770 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1771 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1772
1773 rb_head_page_activate(cpu_buffer);
1774
1775 return cpu_buffer;
1776
1777 fail_free_reader:
1778 free_buffer_page(cpu_buffer->reader_page);
1779
1780 fail_free_buffer:
1781 kfree(cpu_buffer);
1782 return NULL;
1783 }
1784
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)1785 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1786 {
1787 struct list_head *head = cpu_buffer->pages;
1788 struct buffer_page *bpage, *tmp;
1789
1790 irq_work_sync(&cpu_buffer->irq_work.work);
1791
1792 free_buffer_page(cpu_buffer->reader_page);
1793
1794 if (head) {
1795 rb_head_page_deactivate(cpu_buffer);
1796
1797 list_for_each_entry_safe(bpage, tmp, head, list) {
1798 list_del_init(&bpage->list);
1799 free_buffer_page(bpage);
1800 }
1801 bpage = list_entry(head, struct buffer_page, list);
1802 free_buffer_page(bpage);
1803 }
1804
1805 free_page((unsigned long)cpu_buffer->free_page);
1806
1807 kfree(cpu_buffer);
1808 }
1809
1810 /**
1811 * __ring_buffer_alloc - allocate a new ring_buffer
1812 * @size: the size in bytes per cpu that is needed.
1813 * @flags: attributes to set for the ring buffer.
1814 * @key: ring buffer reader_lock_key.
1815 *
1816 * Currently the only flag that is available is the RB_FL_OVERWRITE
1817 * flag. This flag means that the buffer will overwrite old data
1818 * when the buffer wraps. If this flag is not set, the buffer will
1819 * drop data when the tail hits the head.
1820 */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)1821 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1822 struct lock_class_key *key)
1823 {
1824 struct trace_buffer *buffer;
1825 long nr_pages;
1826 int bsize;
1827 int cpu;
1828 int ret;
1829
1830 /* keep it in its own cache line */
1831 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1832 GFP_KERNEL);
1833 if (!buffer)
1834 return NULL;
1835
1836 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1837 goto fail_free_buffer;
1838
1839 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1840 buffer->flags = flags;
1841 buffer->clock = trace_clock_local;
1842 buffer->reader_lock_key = key;
1843
1844 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1845 init_waitqueue_head(&buffer->irq_work.waiters);
1846
1847 /* need at least two pages */
1848 if (nr_pages < 2)
1849 nr_pages = 2;
1850
1851 buffer->cpus = nr_cpu_ids;
1852
1853 bsize = sizeof(void *) * nr_cpu_ids;
1854 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1855 GFP_KERNEL);
1856 if (!buffer->buffers)
1857 goto fail_free_cpumask;
1858
1859 cpu = raw_smp_processor_id();
1860 cpumask_set_cpu(cpu, buffer->cpumask);
1861 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1862 if (!buffer->buffers[cpu])
1863 goto fail_free_buffers;
1864
1865 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1866 if (ret < 0)
1867 goto fail_free_buffers;
1868
1869 mutex_init(&buffer->mutex);
1870
1871 return buffer;
1872
1873 fail_free_buffers:
1874 for_each_buffer_cpu(buffer, cpu) {
1875 if (buffer->buffers[cpu])
1876 rb_free_cpu_buffer(buffer->buffers[cpu]);
1877 }
1878 kfree(buffer->buffers);
1879
1880 fail_free_cpumask:
1881 free_cpumask_var(buffer->cpumask);
1882
1883 fail_free_buffer:
1884 kfree(buffer);
1885 return NULL;
1886 }
1887 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1888
1889 /**
1890 * ring_buffer_free - free a ring buffer.
1891 * @buffer: the buffer to free.
1892 */
1893 void
ring_buffer_free(struct trace_buffer * buffer)1894 ring_buffer_free(struct trace_buffer *buffer)
1895 {
1896 int cpu;
1897
1898 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1899
1900 irq_work_sync(&buffer->irq_work.work);
1901
1902 for_each_buffer_cpu(buffer, cpu)
1903 rb_free_cpu_buffer(buffer->buffers[cpu]);
1904
1905 kfree(buffer->buffers);
1906 free_cpumask_var(buffer->cpumask);
1907
1908 kfree(buffer);
1909 }
1910 EXPORT_SYMBOL_GPL(ring_buffer_free);
1911
ring_buffer_set_clock(struct trace_buffer * buffer,u64 (* clock)(void))1912 void ring_buffer_set_clock(struct trace_buffer *buffer,
1913 u64 (*clock)(void))
1914 {
1915 buffer->clock = clock;
1916 }
1917
ring_buffer_set_time_stamp_abs(struct trace_buffer * buffer,bool abs)1918 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1919 {
1920 buffer->time_stamp_abs = abs;
1921 }
1922
ring_buffer_time_stamp_abs(struct trace_buffer * buffer)1923 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1924 {
1925 return buffer->time_stamp_abs;
1926 }
1927
1928 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1929
rb_page_entries(struct buffer_page * bpage)1930 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1931 {
1932 return local_read(&bpage->entries) & RB_WRITE_MASK;
1933 }
1934
rb_page_write(struct buffer_page * bpage)1935 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1936 {
1937 return local_read(&bpage->write) & RB_WRITE_MASK;
1938 }
1939
1940 static bool
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1941 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1942 {
1943 struct list_head *tail_page, *to_remove, *next_page;
1944 struct buffer_page *to_remove_page, *tmp_iter_page;
1945 struct buffer_page *last_page, *first_page;
1946 unsigned long nr_removed;
1947 unsigned long head_bit;
1948 int page_entries;
1949
1950 head_bit = 0;
1951
1952 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1953 atomic_inc(&cpu_buffer->record_disabled);
1954 /*
1955 * We don't race with the readers since we have acquired the reader
1956 * lock. We also don't race with writers after disabling recording.
1957 * This makes it easy to figure out the first and the last page to be
1958 * removed from the list. We unlink all the pages in between including
1959 * the first and last pages. This is done in a busy loop so that we
1960 * lose the least number of traces.
1961 * The pages are freed after we restart recording and unlock readers.
1962 */
1963 tail_page = &cpu_buffer->tail_page->list;
1964
1965 /*
1966 * tail page might be on reader page, we remove the next page
1967 * from the ring buffer
1968 */
1969 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1970 tail_page = rb_list_head(tail_page->next);
1971 to_remove = tail_page;
1972
1973 /* start of pages to remove */
1974 first_page = list_entry(rb_list_head(to_remove->next),
1975 struct buffer_page, list);
1976
1977 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1978 to_remove = rb_list_head(to_remove)->next;
1979 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1980 }
1981 /* Read iterators need to reset themselves when some pages removed */
1982 cpu_buffer->pages_removed += nr_removed;
1983
1984 next_page = rb_list_head(to_remove)->next;
1985
1986 /*
1987 * Now we remove all pages between tail_page and next_page.
1988 * Make sure that we have head_bit value preserved for the
1989 * next page
1990 */
1991 tail_page->next = (struct list_head *)((unsigned long)next_page |
1992 head_bit);
1993 next_page = rb_list_head(next_page);
1994 next_page->prev = tail_page;
1995
1996 /* make sure pages points to a valid page in the ring buffer */
1997 cpu_buffer->pages = next_page;
1998
1999 /* update head page */
2000 if (head_bit)
2001 cpu_buffer->head_page = list_entry(next_page,
2002 struct buffer_page, list);
2003
2004 /* pages are removed, resume tracing and then free the pages */
2005 atomic_dec(&cpu_buffer->record_disabled);
2006 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2007
2008 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2009
2010 /* last buffer page to remove */
2011 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2012 list);
2013 tmp_iter_page = first_page;
2014
2015 do {
2016 cond_resched();
2017
2018 to_remove_page = tmp_iter_page;
2019 rb_inc_page(&tmp_iter_page);
2020
2021 /* update the counters */
2022 page_entries = rb_page_entries(to_remove_page);
2023 if (page_entries) {
2024 /*
2025 * If something was added to this page, it was full
2026 * since it is not the tail page. So we deduct the
2027 * bytes consumed in ring buffer from here.
2028 * Increment overrun to account for the lost events.
2029 */
2030 local_add(page_entries, &cpu_buffer->overrun);
2031 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2032 local_inc(&cpu_buffer->pages_lost);
2033 }
2034
2035 /*
2036 * We have already removed references to this list item, just
2037 * free up the buffer_page and its page
2038 */
2039 free_buffer_page(to_remove_page);
2040 nr_removed--;
2041
2042 } while (to_remove_page != last_page);
2043
2044 RB_WARN_ON(cpu_buffer, nr_removed);
2045
2046 return nr_removed == 0;
2047 }
2048
2049 static bool
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)2050 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2051 {
2052 struct list_head *pages = &cpu_buffer->new_pages;
2053 unsigned long flags;
2054 bool success;
2055 int retries;
2056
2057 /* Can be called at early boot up, where interrupts must not been enabled */
2058 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2059 /*
2060 * We are holding the reader lock, so the reader page won't be swapped
2061 * in the ring buffer. Now we are racing with the writer trying to
2062 * move head page and the tail page.
2063 * We are going to adapt the reader page update process where:
2064 * 1. We first splice the start and end of list of new pages between
2065 * the head page and its previous page.
2066 * 2. We cmpxchg the prev_page->next to point from head page to the
2067 * start of new pages list.
2068 * 3. Finally, we update the head->prev to the end of new list.
2069 *
2070 * We will try this process 10 times, to make sure that we don't keep
2071 * spinning.
2072 */
2073 retries = 10;
2074 success = false;
2075 while (retries--) {
2076 struct list_head *head_page, *prev_page, *r;
2077 struct list_head *last_page, *first_page;
2078 struct list_head *head_page_with_bit;
2079 struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2080
2081 if (!hpage)
2082 break;
2083 head_page = &hpage->list;
2084 prev_page = head_page->prev;
2085
2086 first_page = pages->next;
2087 last_page = pages->prev;
2088
2089 head_page_with_bit = (struct list_head *)
2090 ((unsigned long)head_page | RB_PAGE_HEAD);
2091
2092 last_page->next = head_page_with_bit;
2093 first_page->prev = prev_page;
2094
2095 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2096
2097 if (r == head_page_with_bit) {
2098 /*
2099 * yay, we replaced the page pointer to our new list,
2100 * now, we just have to update to head page's prev
2101 * pointer to point to end of list
2102 */
2103 head_page->prev = last_page;
2104 success = true;
2105 break;
2106 }
2107 }
2108
2109 if (success)
2110 INIT_LIST_HEAD(pages);
2111 /*
2112 * If we weren't successful in adding in new pages, warn and stop
2113 * tracing
2114 */
2115 RB_WARN_ON(cpu_buffer, !success);
2116 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2117
2118 /* free pages if they weren't inserted */
2119 if (!success) {
2120 struct buffer_page *bpage, *tmp;
2121 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2122 list) {
2123 list_del_init(&bpage->list);
2124 free_buffer_page(bpage);
2125 }
2126 }
2127 return success;
2128 }
2129
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)2130 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2131 {
2132 bool success;
2133
2134 if (cpu_buffer->nr_pages_to_update > 0)
2135 success = rb_insert_pages(cpu_buffer);
2136 else
2137 success = rb_remove_pages(cpu_buffer,
2138 -cpu_buffer->nr_pages_to_update);
2139
2140 if (success)
2141 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2142 }
2143
update_pages_handler(struct work_struct * work)2144 static void update_pages_handler(struct work_struct *work)
2145 {
2146 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2147 struct ring_buffer_per_cpu, update_pages_work);
2148 rb_update_pages(cpu_buffer);
2149 complete(&cpu_buffer->update_done);
2150 }
2151
2152 /**
2153 * ring_buffer_resize - resize the ring buffer
2154 * @buffer: the buffer to resize.
2155 * @size: the new size.
2156 * @cpu_id: the cpu buffer to resize
2157 *
2158 * Minimum size is 2 * BUF_PAGE_SIZE.
2159 *
2160 * Returns 0 on success and < 0 on failure.
2161 */
ring_buffer_resize(struct trace_buffer * buffer,unsigned long size,int cpu_id)2162 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2163 int cpu_id)
2164 {
2165 struct ring_buffer_per_cpu *cpu_buffer;
2166 unsigned long nr_pages;
2167 int cpu, err;
2168
2169 /*
2170 * Always succeed at resizing a non-existent buffer:
2171 */
2172 if (!buffer)
2173 return 0;
2174
2175 /* Make sure the requested buffer exists */
2176 if (cpu_id != RING_BUFFER_ALL_CPUS &&
2177 !cpumask_test_cpu(cpu_id, buffer->cpumask))
2178 return 0;
2179
2180 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2181
2182 /* we need a minimum of two pages */
2183 if (nr_pages < 2)
2184 nr_pages = 2;
2185
2186 /* prevent another thread from changing buffer sizes */
2187 mutex_lock(&buffer->mutex);
2188 atomic_inc(&buffer->resizing);
2189
2190 if (cpu_id == RING_BUFFER_ALL_CPUS) {
2191 /*
2192 * Don't succeed if resizing is disabled, as a reader might be
2193 * manipulating the ring buffer and is expecting a sane state while
2194 * this is true.
2195 */
2196 for_each_buffer_cpu(buffer, cpu) {
2197 cpu_buffer = buffer->buffers[cpu];
2198 if (atomic_read(&cpu_buffer->resize_disabled)) {
2199 err = -EBUSY;
2200 goto out_err_unlock;
2201 }
2202 }
2203
2204 /* calculate the pages to update */
2205 for_each_buffer_cpu(buffer, cpu) {
2206 cpu_buffer = buffer->buffers[cpu];
2207
2208 cpu_buffer->nr_pages_to_update = nr_pages -
2209 cpu_buffer->nr_pages;
2210 /*
2211 * nothing more to do for removing pages or no update
2212 */
2213 if (cpu_buffer->nr_pages_to_update <= 0)
2214 continue;
2215 /*
2216 * to add pages, make sure all new pages can be
2217 * allocated without receiving ENOMEM
2218 */
2219 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2220 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2221 &cpu_buffer->new_pages)) {
2222 /* not enough memory for new pages */
2223 err = -ENOMEM;
2224 goto out_err;
2225 }
2226
2227 cond_resched();
2228 }
2229
2230 cpus_read_lock();
2231 /*
2232 * Fire off all the required work handlers
2233 * We can't schedule on offline CPUs, but it's not necessary
2234 * since we can change their buffer sizes without any race.
2235 */
2236 for_each_buffer_cpu(buffer, cpu) {
2237 cpu_buffer = buffer->buffers[cpu];
2238 if (!cpu_buffer->nr_pages_to_update)
2239 continue;
2240
2241 /* Can't run something on an offline CPU. */
2242 if (!cpu_online(cpu)) {
2243 rb_update_pages(cpu_buffer);
2244 cpu_buffer->nr_pages_to_update = 0;
2245 } else {
2246 /* Run directly if possible. */
2247 migrate_disable();
2248 if (cpu != smp_processor_id()) {
2249 migrate_enable();
2250 schedule_work_on(cpu,
2251 &cpu_buffer->update_pages_work);
2252 } else {
2253 update_pages_handler(&cpu_buffer->update_pages_work);
2254 migrate_enable();
2255 }
2256 }
2257 }
2258
2259 /* wait for all the updates to complete */
2260 for_each_buffer_cpu(buffer, cpu) {
2261 cpu_buffer = buffer->buffers[cpu];
2262 if (!cpu_buffer->nr_pages_to_update)
2263 continue;
2264
2265 if (cpu_online(cpu))
2266 wait_for_completion(&cpu_buffer->update_done);
2267 cpu_buffer->nr_pages_to_update = 0;
2268 }
2269
2270 cpus_read_unlock();
2271 } else {
2272 cpu_buffer = buffer->buffers[cpu_id];
2273
2274 if (nr_pages == cpu_buffer->nr_pages)
2275 goto out;
2276
2277 /*
2278 * Don't succeed if resizing is disabled, as a reader might be
2279 * manipulating the ring buffer and is expecting a sane state while
2280 * this is true.
2281 */
2282 if (atomic_read(&cpu_buffer->resize_disabled)) {
2283 err = -EBUSY;
2284 goto out_err_unlock;
2285 }
2286
2287 cpu_buffer->nr_pages_to_update = nr_pages -
2288 cpu_buffer->nr_pages;
2289
2290 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2291 if (cpu_buffer->nr_pages_to_update > 0 &&
2292 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2293 &cpu_buffer->new_pages)) {
2294 err = -ENOMEM;
2295 goto out_err;
2296 }
2297
2298 cpus_read_lock();
2299
2300 /* Can't run something on an offline CPU. */
2301 if (!cpu_online(cpu_id))
2302 rb_update_pages(cpu_buffer);
2303 else {
2304 /* Run directly if possible. */
2305 migrate_disable();
2306 if (cpu_id == smp_processor_id()) {
2307 rb_update_pages(cpu_buffer);
2308 migrate_enable();
2309 } else {
2310 migrate_enable();
2311 schedule_work_on(cpu_id,
2312 &cpu_buffer->update_pages_work);
2313 wait_for_completion(&cpu_buffer->update_done);
2314 }
2315 }
2316
2317 cpu_buffer->nr_pages_to_update = 0;
2318 cpus_read_unlock();
2319 }
2320
2321 out:
2322 /*
2323 * The ring buffer resize can happen with the ring buffer
2324 * enabled, so that the update disturbs the tracing as little
2325 * as possible. But if the buffer is disabled, we do not need
2326 * to worry about that, and we can take the time to verify
2327 * that the buffer is not corrupt.
2328 */
2329 if (atomic_read(&buffer->record_disabled)) {
2330 atomic_inc(&buffer->record_disabled);
2331 /*
2332 * Even though the buffer was disabled, we must make sure
2333 * that it is truly disabled before calling rb_check_pages.
2334 * There could have been a race between checking
2335 * record_disable and incrementing it.
2336 */
2337 synchronize_rcu();
2338 for_each_buffer_cpu(buffer, cpu) {
2339 unsigned long flags;
2340
2341 cpu_buffer = buffer->buffers[cpu];
2342 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2343 rb_check_pages(cpu_buffer);
2344 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2345 }
2346 atomic_dec(&buffer->record_disabled);
2347 }
2348
2349 atomic_dec(&buffer->resizing);
2350 mutex_unlock(&buffer->mutex);
2351 return 0;
2352
2353 out_err:
2354 for_each_buffer_cpu(buffer, cpu) {
2355 struct buffer_page *bpage, *tmp;
2356
2357 cpu_buffer = buffer->buffers[cpu];
2358 cpu_buffer->nr_pages_to_update = 0;
2359
2360 if (list_empty(&cpu_buffer->new_pages))
2361 continue;
2362
2363 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2364 list) {
2365 list_del_init(&bpage->list);
2366 free_buffer_page(bpage);
2367 }
2368 }
2369 out_err_unlock:
2370 atomic_dec(&buffer->resizing);
2371 mutex_unlock(&buffer->mutex);
2372 return err;
2373 }
2374 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2375
ring_buffer_change_overwrite(struct trace_buffer * buffer,int val)2376 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2377 {
2378 mutex_lock(&buffer->mutex);
2379 if (val)
2380 buffer->flags |= RB_FL_OVERWRITE;
2381 else
2382 buffer->flags &= ~RB_FL_OVERWRITE;
2383 mutex_unlock(&buffer->mutex);
2384 }
2385 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2386
__rb_page_index(struct buffer_page * bpage,unsigned index)2387 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2388 {
2389 return bpage->page->data + index;
2390 }
2391
2392 static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)2393 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2394 {
2395 return __rb_page_index(cpu_buffer->reader_page,
2396 cpu_buffer->reader_page->read);
2397 }
2398
2399 static struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)2400 rb_iter_head_event(struct ring_buffer_iter *iter)
2401 {
2402 struct ring_buffer_event *event;
2403 struct buffer_page *iter_head_page = iter->head_page;
2404 unsigned long commit;
2405 unsigned length;
2406
2407 if (iter->head != iter->next_event)
2408 return iter->event;
2409
2410 /*
2411 * When the writer goes across pages, it issues a cmpxchg which
2412 * is a mb(), which will synchronize with the rmb here.
2413 * (see rb_tail_page_update() and __rb_reserve_next())
2414 */
2415 commit = rb_page_commit(iter_head_page);
2416 smp_rmb();
2417
2418 /* An event needs to be at least 8 bytes in size */
2419 if (iter->head > commit - 8)
2420 goto reset;
2421
2422 event = __rb_page_index(iter_head_page, iter->head);
2423 length = rb_event_length(event);
2424
2425 /*
2426 * READ_ONCE() doesn't work on functions and we don't want the
2427 * compiler doing any crazy optimizations with length.
2428 */
2429 barrier();
2430
2431 if ((iter->head + length) > commit || length > BUF_PAGE_SIZE)
2432 /* Writer corrupted the read? */
2433 goto reset;
2434
2435 memcpy(iter->event, event, length);
2436 /*
2437 * If the page stamp is still the same after this rmb() then the
2438 * event was safely copied without the writer entering the page.
2439 */
2440 smp_rmb();
2441
2442 /* Make sure the page didn't change since we read this */
2443 if (iter->page_stamp != iter_head_page->page->time_stamp ||
2444 commit > rb_page_commit(iter_head_page))
2445 goto reset;
2446
2447 iter->next_event = iter->head + length;
2448 return iter->event;
2449 reset:
2450 /* Reset to the beginning */
2451 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2452 iter->head = 0;
2453 iter->next_event = 0;
2454 iter->missed_events = 1;
2455 return NULL;
2456 }
2457
2458 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)2459 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2460 {
2461 return rb_page_commit(bpage);
2462 }
2463
2464 static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)2465 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2466 {
2467 return rb_page_commit(cpu_buffer->commit_page);
2468 }
2469
2470 static __always_inline unsigned
rb_event_index(struct ring_buffer_event * event)2471 rb_event_index(struct ring_buffer_event *event)
2472 {
2473 unsigned long addr = (unsigned long)event;
2474
2475 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2476 }
2477
rb_inc_iter(struct ring_buffer_iter * iter)2478 static void rb_inc_iter(struct ring_buffer_iter *iter)
2479 {
2480 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2481
2482 /*
2483 * The iterator could be on the reader page (it starts there).
2484 * But the head could have moved, since the reader was
2485 * found. Check for this case and assign the iterator
2486 * to the head page instead of next.
2487 */
2488 if (iter->head_page == cpu_buffer->reader_page)
2489 iter->head_page = rb_set_head_page(cpu_buffer);
2490 else
2491 rb_inc_page(&iter->head_page);
2492
2493 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2494 iter->head = 0;
2495 iter->next_event = 0;
2496 }
2497
2498 /*
2499 * rb_handle_head_page - writer hit the head page
2500 *
2501 * Returns: +1 to retry page
2502 * 0 to continue
2503 * -1 on error
2504 */
2505 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)2506 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2507 struct buffer_page *tail_page,
2508 struct buffer_page *next_page)
2509 {
2510 struct buffer_page *new_head;
2511 int entries;
2512 int type;
2513 int ret;
2514
2515 entries = rb_page_entries(next_page);
2516
2517 /*
2518 * The hard part is here. We need to move the head
2519 * forward, and protect against both readers on
2520 * other CPUs and writers coming in via interrupts.
2521 */
2522 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2523 RB_PAGE_HEAD);
2524
2525 /*
2526 * type can be one of four:
2527 * NORMAL - an interrupt already moved it for us
2528 * HEAD - we are the first to get here.
2529 * UPDATE - we are the interrupt interrupting
2530 * a current move.
2531 * MOVED - a reader on another CPU moved the next
2532 * pointer to its reader page. Give up
2533 * and try again.
2534 */
2535
2536 switch (type) {
2537 case RB_PAGE_HEAD:
2538 /*
2539 * We changed the head to UPDATE, thus
2540 * it is our responsibility to update
2541 * the counters.
2542 */
2543 local_add(entries, &cpu_buffer->overrun);
2544 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
2545 local_inc(&cpu_buffer->pages_lost);
2546
2547 /*
2548 * The entries will be zeroed out when we move the
2549 * tail page.
2550 */
2551
2552 /* still more to do */
2553 break;
2554
2555 case RB_PAGE_UPDATE:
2556 /*
2557 * This is an interrupt that interrupt the
2558 * previous update. Still more to do.
2559 */
2560 break;
2561 case RB_PAGE_NORMAL:
2562 /*
2563 * An interrupt came in before the update
2564 * and processed this for us.
2565 * Nothing left to do.
2566 */
2567 return 1;
2568 case RB_PAGE_MOVED:
2569 /*
2570 * The reader is on another CPU and just did
2571 * a swap with our next_page.
2572 * Try again.
2573 */
2574 return 1;
2575 default:
2576 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2577 return -1;
2578 }
2579
2580 /*
2581 * Now that we are here, the old head pointer is
2582 * set to UPDATE. This will keep the reader from
2583 * swapping the head page with the reader page.
2584 * The reader (on another CPU) will spin till
2585 * we are finished.
2586 *
2587 * We just need to protect against interrupts
2588 * doing the job. We will set the next pointer
2589 * to HEAD. After that, we set the old pointer
2590 * to NORMAL, but only if it was HEAD before.
2591 * otherwise we are an interrupt, and only
2592 * want the outer most commit to reset it.
2593 */
2594 new_head = next_page;
2595 rb_inc_page(&new_head);
2596
2597 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2598 RB_PAGE_NORMAL);
2599
2600 /*
2601 * Valid returns are:
2602 * HEAD - an interrupt came in and already set it.
2603 * NORMAL - One of two things:
2604 * 1) We really set it.
2605 * 2) A bunch of interrupts came in and moved
2606 * the page forward again.
2607 */
2608 switch (ret) {
2609 case RB_PAGE_HEAD:
2610 case RB_PAGE_NORMAL:
2611 /* OK */
2612 break;
2613 default:
2614 RB_WARN_ON(cpu_buffer, 1);
2615 return -1;
2616 }
2617
2618 /*
2619 * It is possible that an interrupt came in,
2620 * set the head up, then more interrupts came in
2621 * and moved it again. When we get back here,
2622 * the page would have been set to NORMAL but we
2623 * just set it back to HEAD.
2624 *
2625 * How do you detect this? Well, if that happened
2626 * the tail page would have moved.
2627 */
2628 if (ret == RB_PAGE_NORMAL) {
2629 struct buffer_page *buffer_tail_page;
2630
2631 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2632 /*
2633 * If the tail had moved passed next, then we need
2634 * to reset the pointer.
2635 */
2636 if (buffer_tail_page != tail_page &&
2637 buffer_tail_page != next_page)
2638 rb_head_page_set_normal(cpu_buffer, new_head,
2639 next_page,
2640 RB_PAGE_HEAD);
2641 }
2642
2643 /*
2644 * If this was the outer most commit (the one that
2645 * changed the original pointer from HEAD to UPDATE),
2646 * then it is up to us to reset it to NORMAL.
2647 */
2648 if (type == RB_PAGE_HEAD) {
2649 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2650 tail_page,
2651 RB_PAGE_UPDATE);
2652 if (RB_WARN_ON(cpu_buffer,
2653 ret != RB_PAGE_UPDATE))
2654 return -1;
2655 }
2656
2657 return 0;
2658 }
2659
2660 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2661 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2662 unsigned long tail, struct rb_event_info *info)
2663 {
2664 struct buffer_page *tail_page = info->tail_page;
2665 struct ring_buffer_event *event;
2666 unsigned long length = info->length;
2667
2668 /*
2669 * Only the event that crossed the page boundary
2670 * must fill the old tail_page with padding.
2671 */
2672 if (tail >= BUF_PAGE_SIZE) {
2673 /*
2674 * If the page was filled, then we still need
2675 * to update the real_end. Reset it to zero
2676 * and the reader will ignore it.
2677 */
2678 if (tail == BUF_PAGE_SIZE)
2679 tail_page->real_end = 0;
2680
2681 local_sub(length, &tail_page->write);
2682 return;
2683 }
2684
2685 event = __rb_page_index(tail_page, tail);
2686
2687 /*
2688 * Save the original length to the meta data.
2689 * This will be used by the reader to add lost event
2690 * counter.
2691 */
2692 tail_page->real_end = tail;
2693
2694 /*
2695 * If this event is bigger than the minimum size, then
2696 * we need to be careful that we don't subtract the
2697 * write counter enough to allow another writer to slip
2698 * in on this page.
2699 * We put in a discarded commit instead, to make sure
2700 * that this space is not used again, and this space will
2701 * not be accounted into 'entries_bytes'.
2702 *
2703 * If we are less than the minimum size, we don't need to
2704 * worry about it.
2705 */
2706 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2707 /* No room for any events */
2708
2709 /* Mark the rest of the page with padding */
2710 rb_event_set_padding(event);
2711
2712 /* Make sure the padding is visible before the write update */
2713 smp_wmb();
2714
2715 /* Set the write back to the previous setting */
2716 local_sub(length, &tail_page->write);
2717 return;
2718 }
2719
2720 /* Put in a discarded event */
2721 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2722 event->type_len = RINGBUF_TYPE_PADDING;
2723 /* time delta must be non zero */
2724 event->time_delta = 1;
2725
2726 /* account for padding bytes */
2727 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2728
2729 /* Make sure the padding is visible before the tail_page->write update */
2730 smp_wmb();
2731
2732 /* Set write to end of buffer */
2733 length = (tail + length) - BUF_PAGE_SIZE;
2734 local_sub(length, &tail_page->write);
2735 }
2736
2737 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2738
2739 /*
2740 * This is the slow path, force gcc not to inline it.
2741 */
2742 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2743 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2744 unsigned long tail, struct rb_event_info *info)
2745 {
2746 struct buffer_page *tail_page = info->tail_page;
2747 struct buffer_page *commit_page = cpu_buffer->commit_page;
2748 struct trace_buffer *buffer = cpu_buffer->buffer;
2749 struct buffer_page *next_page;
2750 int ret;
2751
2752 next_page = tail_page;
2753
2754 rb_inc_page(&next_page);
2755
2756 /*
2757 * If for some reason, we had an interrupt storm that made
2758 * it all the way around the buffer, bail, and warn
2759 * about it.
2760 */
2761 if (unlikely(next_page == commit_page)) {
2762 local_inc(&cpu_buffer->commit_overrun);
2763 goto out_reset;
2764 }
2765
2766 /*
2767 * This is where the fun begins!
2768 *
2769 * We are fighting against races between a reader that
2770 * could be on another CPU trying to swap its reader
2771 * page with the buffer head.
2772 *
2773 * We are also fighting against interrupts coming in and
2774 * moving the head or tail on us as well.
2775 *
2776 * If the next page is the head page then we have filled
2777 * the buffer, unless the commit page is still on the
2778 * reader page.
2779 */
2780 if (rb_is_head_page(next_page, &tail_page->list)) {
2781
2782 /*
2783 * If the commit is not on the reader page, then
2784 * move the header page.
2785 */
2786 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2787 /*
2788 * If we are not in overwrite mode,
2789 * this is easy, just stop here.
2790 */
2791 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2792 local_inc(&cpu_buffer->dropped_events);
2793 goto out_reset;
2794 }
2795
2796 ret = rb_handle_head_page(cpu_buffer,
2797 tail_page,
2798 next_page);
2799 if (ret < 0)
2800 goto out_reset;
2801 if (ret)
2802 goto out_again;
2803 } else {
2804 /*
2805 * We need to be careful here too. The
2806 * commit page could still be on the reader
2807 * page. We could have a small buffer, and
2808 * have filled up the buffer with events
2809 * from interrupts and such, and wrapped.
2810 *
2811 * Note, if the tail page is also on the
2812 * reader_page, we let it move out.
2813 */
2814 if (unlikely((cpu_buffer->commit_page !=
2815 cpu_buffer->tail_page) &&
2816 (cpu_buffer->commit_page ==
2817 cpu_buffer->reader_page))) {
2818 local_inc(&cpu_buffer->commit_overrun);
2819 goto out_reset;
2820 }
2821 }
2822 }
2823
2824 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2825
2826 out_again:
2827
2828 rb_reset_tail(cpu_buffer, tail, info);
2829
2830 /* Commit what we have for now. */
2831 rb_end_commit(cpu_buffer);
2832 /* rb_end_commit() decs committing */
2833 local_inc(&cpu_buffer->committing);
2834
2835 /* fail and let the caller try again */
2836 return ERR_PTR(-EAGAIN);
2837
2838 out_reset:
2839 /* reset write */
2840 rb_reset_tail(cpu_buffer, tail, info);
2841
2842 return NULL;
2843 }
2844
2845 /* Slow path */
2846 static struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_event * event,u64 delta,bool abs)2847 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2848 {
2849 if (abs)
2850 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2851 else
2852 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2853
2854 /* Not the first event on the page, or not delta? */
2855 if (abs || rb_event_index(event)) {
2856 event->time_delta = delta & TS_MASK;
2857 event->array[0] = delta >> TS_SHIFT;
2858 } else {
2859 /* nope, just zero it */
2860 event->time_delta = 0;
2861 event->array[0] = 0;
2862 }
2863
2864 return skip_time_extend(event);
2865 }
2866
2867 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)2868 static inline bool sched_clock_stable(void)
2869 {
2870 return true;
2871 }
2872 #endif
2873
2874 static void
rb_check_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)2875 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2876 struct rb_event_info *info)
2877 {
2878 u64 write_stamp;
2879
2880 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2881 (unsigned long long)info->delta,
2882 (unsigned long long)info->ts,
2883 (unsigned long long)info->before,
2884 (unsigned long long)info->after,
2885 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2886 sched_clock_stable() ? "" :
2887 "If you just came from a suspend/resume,\n"
2888 "please switch to the trace global clock:\n"
2889 " echo global > /sys/kernel/tracing/trace_clock\n"
2890 "or add trace_clock=global to the kernel command line\n");
2891 }
2892
rb_add_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event ** event,struct rb_event_info * info,u64 * delta,unsigned int * length)2893 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2894 struct ring_buffer_event **event,
2895 struct rb_event_info *info,
2896 u64 *delta,
2897 unsigned int *length)
2898 {
2899 bool abs = info->add_timestamp &
2900 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2901
2902 if (unlikely(info->delta > (1ULL << 59))) {
2903 /*
2904 * Some timers can use more than 59 bits, and when a timestamp
2905 * is added to the buffer, it will lose those bits.
2906 */
2907 if (abs && (info->ts & TS_MSB)) {
2908 info->delta &= ABS_TS_MASK;
2909
2910 /* did the clock go backwards */
2911 } else if (info->before == info->after && info->before > info->ts) {
2912 /* not interrupted */
2913 static int once;
2914
2915 /*
2916 * This is possible with a recalibrating of the TSC.
2917 * Do not produce a call stack, but just report it.
2918 */
2919 if (!once) {
2920 once++;
2921 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2922 info->before, info->ts);
2923 }
2924 } else
2925 rb_check_timestamp(cpu_buffer, info);
2926 if (!abs)
2927 info->delta = 0;
2928 }
2929 *event = rb_add_time_stamp(*event, info->delta, abs);
2930 *length -= RB_LEN_TIME_EXTEND;
2931 *delta = 0;
2932 }
2933
2934 /**
2935 * rb_update_event - update event type and data
2936 * @cpu_buffer: The per cpu buffer of the @event
2937 * @event: the event to update
2938 * @info: The info to update the @event with (contains length and delta)
2939 *
2940 * Update the type and data fields of the @event. The length
2941 * is the actual size that is written to the ring buffer,
2942 * and with this, we can determine what to place into the
2943 * data field.
2944 */
2945 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)2946 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2947 struct ring_buffer_event *event,
2948 struct rb_event_info *info)
2949 {
2950 unsigned length = info->length;
2951 u64 delta = info->delta;
2952 unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2953
2954 if (!WARN_ON_ONCE(nest >= MAX_NEST))
2955 cpu_buffer->event_stamp[nest] = info->ts;
2956
2957 /*
2958 * If we need to add a timestamp, then we
2959 * add it to the start of the reserved space.
2960 */
2961 if (unlikely(info->add_timestamp))
2962 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2963
2964 event->time_delta = delta;
2965 length -= RB_EVNT_HDR_SIZE;
2966 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2967 event->type_len = 0;
2968 event->array[0] = length;
2969 } else
2970 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2971 }
2972
rb_calculate_event_length(unsigned length)2973 static unsigned rb_calculate_event_length(unsigned length)
2974 {
2975 struct ring_buffer_event event; /* Used only for sizeof array */
2976
2977 /* zero length can cause confusions */
2978 if (!length)
2979 length++;
2980
2981 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2982 length += sizeof(event.array[0]);
2983
2984 length += RB_EVNT_HDR_SIZE;
2985 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2986
2987 /*
2988 * In case the time delta is larger than the 27 bits for it
2989 * in the header, we need to add a timestamp. If another
2990 * event comes in when trying to discard this one to increase
2991 * the length, then the timestamp will be added in the allocated
2992 * space of this event. If length is bigger than the size needed
2993 * for the TIME_EXTEND, then padding has to be used. The events
2994 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2995 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2996 * As length is a multiple of 4, we only need to worry if it
2997 * is 12 (RB_LEN_TIME_EXTEND + 4).
2998 */
2999 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3000 length += RB_ALIGNMENT;
3001
3002 return length;
3003 }
3004
3005 static inline bool
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3006 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3007 struct ring_buffer_event *event)
3008 {
3009 unsigned long new_index, old_index;
3010 struct buffer_page *bpage;
3011 unsigned long addr;
3012
3013 new_index = rb_event_index(event);
3014 old_index = new_index + rb_event_ts_length(event);
3015 addr = (unsigned long)event;
3016 addr &= PAGE_MASK;
3017
3018 bpage = READ_ONCE(cpu_buffer->tail_page);
3019
3020 /*
3021 * Make sure the tail_page is still the same and
3022 * the next write location is the end of this event
3023 */
3024 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3025 unsigned long write_mask =
3026 local_read(&bpage->write) & ~RB_WRITE_MASK;
3027 unsigned long event_length = rb_event_length(event);
3028
3029 /*
3030 * For the before_stamp to be different than the write_stamp
3031 * to make sure that the next event adds an absolute
3032 * value and does not rely on the saved write stamp, which
3033 * is now going to be bogus.
3034 *
3035 * By setting the before_stamp to zero, the next event
3036 * is not going to use the write_stamp and will instead
3037 * create an absolute timestamp. This means there's no
3038 * reason to update the wirte_stamp!
3039 */
3040 rb_time_set(&cpu_buffer->before_stamp, 0);
3041
3042 /*
3043 * If an event were to come in now, it would see that the
3044 * write_stamp and the before_stamp are different, and assume
3045 * that this event just added itself before updating
3046 * the write stamp. The interrupting event will fix the
3047 * write stamp for us, and use an absolute timestamp.
3048 */
3049
3050 /*
3051 * This is on the tail page. It is possible that
3052 * a write could come in and move the tail page
3053 * and write to the next page. That is fine
3054 * because we just shorten what is on this page.
3055 */
3056 old_index += write_mask;
3057 new_index += write_mask;
3058
3059 /* caution: old_index gets updated on cmpxchg failure */
3060 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3061 /* update counters */
3062 local_sub(event_length, &cpu_buffer->entries_bytes);
3063 return true;
3064 }
3065 }
3066
3067 /* could not discard */
3068 return false;
3069 }
3070
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)3071 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3072 {
3073 local_inc(&cpu_buffer->committing);
3074 local_inc(&cpu_buffer->commits);
3075 }
3076
3077 static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)3078 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3079 {
3080 unsigned long max_count;
3081
3082 /*
3083 * We only race with interrupts and NMIs on this CPU.
3084 * If we own the commit event, then we can commit
3085 * all others that interrupted us, since the interruptions
3086 * are in stack format (they finish before they come
3087 * back to us). This allows us to do a simple loop to
3088 * assign the commit to the tail.
3089 */
3090 again:
3091 max_count = cpu_buffer->nr_pages * 100;
3092
3093 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3094 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3095 return;
3096 if (RB_WARN_ON(cpu_buffer,
3097 rb_is_reader_page(cpu_buffer->tail_page)))
3098 return;
3099 /*
3100 * No need for a memory barrier here, as the update
3101 * of the tail_page did it for this page.
3102 */
3103 local_set(&cpu_buffer->commit_page->page->commit,
3104 rb_page_write(cpu_buffer->commit_page));
3105 rb_inc_page(&cpu_buffer->commit_page);
3106 /* add barrier to keep gcc from optimizing too much */
3107 barrier();
3108 }
3109 while (rb_commit_index(cpu_buffer) !=
3110 rb_page_write(cpu_buffer->commit_page)) {
3111
3112 /* Make sure the readers see the content of what is committed. */
3113 smp_wmb();
3114 local_set(&cpu_buffer->commit_page->page->commit,
3115 rb_page_write(cpu_buffer->commit_page));
3116 RB_WARN_ON(cpu_buffer,
3117 local_read(&cpu_buffer->commit_page->page->commit) &
3118 ~RB_WRITE_MASK);
3119 barrier();
3120 }
3121
3122 /* again, keep gcc from optimizing */
3123 barrier();
3124
3125 /*
3126 * If an interrupt came in just after the first while loop
3127 * and pushed the tail page forward, we will be left with
3128 * a dangling commit that will never go forward.
3129 */
3130 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3131 goto again;
3132 }
3133
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)3134 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3135 {
3136 unsigned long commits;
3137
3138 if (RB_WARN_ON(cpu_buffer,
3139 !local_read(&cpu_buffer->committing)))
3140 return;
3141
3142 again:
3143 commits = local_read(&cpu_buffer->commits);
3144 /* synchronize with interrupts */
3145 barrier();
3146 if (local_read(&cpu_buffer->committing) == 1)
3147 rb_set_commit_to_write(cpu_buffer);
3148
3149 local_dec(&cpu_buffer->committing);
3150
3151 /* synchronize with interrupts */
3152 barrier();
3153
3154 /*
3155 * Need to account for interrupts coming in between the
3156 * updating of the commit page and the clearing of the
3157 * committing counter.
3158 */
3159 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3160 !local_read(&cpu_buffer->committing)) {
3161 local_inc(&cpu_buffer->committing);
3162 goto again;
3163 }
3164 }
3165
rb_event_discard(struct ring_buffer_event * event)3166 static inline void rb_event_discard(struct ring_buffer_event *event)
3167 {
3168 if (extended_time(event))
3169 event = skip_time_extend(event);
3170
3171 /* array[0] holds the actual length for the discarded event */
3172 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3173 event->type_len = RINGBUF_TYPE_PADDING;
3174 /* time delta must be non zero */
3175 if (!event->time_delta)
3176 event->time_delta = 1;
3177 }
3178
rb_commit(struct ring_buffer_per_cpu * cpu_buffer)3179 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3180 {
3181 local_inc(&cpu_buffer->entries);
3182 rb_end_commit(cpu_buffer);
3183 }
3184
3185 static __always_inline void
rb_wakeups(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)3186 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3187 {
3188 if (buffer->irq_work.waiters_pending) {
3189 buffer->irq_work.waiters_pending = false;
3190 /* irq_work_queue() supplies it's own memory barriers */
3191 irq_work_queue(&buffer->irq_work.work);
3192 }
3193
3194 if (cpu_buffer->irq_work.waiters_pending) {
3195 cpu_buffer->irq_work.waiters_pending = false;
3196 /* irq_work_queue() supplies it's own memory barriers */
3197 irq_work_queue(&cpu_buffer->irq_work.work);
3198 }
3199
3200 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3201 return;
3202
3203 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3204 return;
3205
3206 if (!cpu_buffer->irq_work.full_waiters_pending)
3207 return;
3208
3209 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3210
3211 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3212 return;
3213
3214 cpu_buffer->irq_work.wakeup_full = true;
3215 cpu_buffer->irq_work.full_waiters_pending = false;
3216 /* irq_work_queue() supplies it's own memory barriers */
3217 irq_work_queue(&cpu_buffer->irq_work.work);
3218 }
3219
3220 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3221 # define do_ring_buffer_record_recursion() \
3222 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3223 #else
3224 # define do_ring_buffer_record_recursion() do { } while (0)
3225 #endif
3226
3227 /*
3228 * The lock and unlock are done within a preempt disable section.
3229 * The current_context per_cpu variable can only be modified
3230 * by the current task between lock and unlock. But it can
3231 * be modified more than once via an interrupt. To pass this
3232 * information from the lock to the unlock without having to
3233 * access the 'in_interrupt()' functions again (which do show
3234 * a bit of overhead in something as critical as function tracing,
3235 * we use a bitmask trick.
3236 *
3237 * bit 1 = NMI context
3238 * bit 2 = IRQ context
3239 * bit 3 = SoftIRQ context
3240 * bit 4 = normal context.
3241 *
3242 * This works because this is the order of contexts that can
3243 * preempt other contexts. A SoftIRQ never preempts an IRQ
3244 * context.
3245 *
3246 * When the context is determined, the corresponding bit is
3247 * checked and set (if it was set, then a recursion of that context
3248 * happened).
3249 *
3250 * On unlock, we need to clear this bit. To do so, just subtract
3251 * 1 from the current_context and AND it to itself.
3252 *
3253 * (binary)
3254 * 101 - 1 = 100
3255 * 101 & 100 = 100 (clearing bit zero)
3256 *
3257 * 1010 - 1 = 1001
3258 * 1010 & 1001 = 1000 (clearing bit 1)
3259 *
3260 * The least significant bit can be cleared this way, and it
3261 * just so happens that it is the same bit corresponding to
3262 * the current context.
3263 *
3264 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3265 * is set when a recursion is detected at the current context, and if
3266 * the TRANSITION bit is already set, it will fail the recursion.
3267 * This is needed because there's a lag between the changing of
3268 * interrupt context and updating the preempt count. In this case,
3269 * a false positive will be found. To handle this, one extra recursion
3270 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3271 * bit is already set, then it is considered a recursion and the function
3272 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3273 *
3274 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3275 * to be cleared. Even if it wasn't the context that set it. That is,
3276 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3277 * is called before preempt_count() is updated, since the check will
3278 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3279 * NMI then comes in, it will set the NMI bit, but when the NMI code
3280 * does the trace_recursive_unlock() it will clear the TRANSITION bit
3281 * and leave the NMI bit set. But this is fine, because the interrupt
3282 * code that set the TRANSITION bit will then clear the NMI bit when it
3283 * calls trace_recursive_unlock(). If another NMI comes in, it will
3284 * set the TRANSITION bit and continue.
3285 *
3286 * Note: The TRANSITION bit only handles a single transition between context.
3287 */
3288
3289 static __always_inline bool
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)3290 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3291 {
3292 unsigned int val = cpu_buffer->current_context;
3293 int bit = interrupt_context_level();
3294
3295 bit = RB_CTX_NORMAL - bit;
3296
3297 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3298 /*
3299 * It is possible that this was called by transitioning
3300 * between interrupt context, and preempt_count() has not
3301 * been updated yet. In this case, use the TRANSITION bit.
3302 */
3303 bit = RB_CTX_TRANSITION;
3304 if (val & (1 << (bit + cpu_buffer->nest))) {
3305 do_ring_buffer_record_recursion();
3306 return true;
3307 }
3308 }
3309
3310 val |= (1 << (bit + cpu_buffer->nest));
3311 cpu_buffer->current_context = val;
3312
3313 return false;
3314 }
3315
3316 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)3317 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3318 {
3319 cpu_buffer->current_context &=
3320 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3321 }
3322
3323 /* The recursive locking above uses 5 bits */
3324 #define NESTED_BITS 5
3325
3326 /**
3327 * ring_buffer_nest_start - Allow to trace while nested
3328 * @buffer: The ring buffer to modify
3329 *
3330 * The ring buffer has a safety mechanism to prevent recursion.
3331 * But there may be a case where a trace needs to be done while
3332 * tracing something else. In this case, calling this function
3333 * will allow this function to nest within a currently active
3334 * ring_buffer_lock_reserve().
3335 *
3336 * Call this function before calling another ring_buffer_lock_reserve() and
3337 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3338 */
ring_buffer_nest_start(struct trace_buffer * buffer)3339 void ring_buffer_nest_start(struct trace_buffer *buffer)
3340 {
3341 struct ring_buffer_per_cpu *cpu_buffer;
3342 int cpu;
3343
3344 /* Enabled by ring_buffer_nest_end() */
3345 preempt_disable_notrace();
3346 cpu = raw_smp_processor_id();
3347 cpu_buffer = buffer->buffers[cpu];
3348 /* This is the shift value for the above recursive locking */
3349 cpu_buffer->nest += NESTED_BITS;
3350 }
3351
3352 /**
3353 * ring_buffer_nest_end - Allow to trace while nested
3354 * @buffer: The ring buffer to modify
3355 *
3356 * Must be called after ring_buffer_nest_start() and after the
3357 * ring_buffer_unlock_commit().
3358 */
ring_buffer_nest_end(struct trace_buffer * buffer)3359 void ring_buffer_nest_end(struct trace_buffer *buffer)
3360 {
3361 struct ring_buffer_per_cpu *cpu_buffer;
3362 int cpu;
3363
3364 /* disabled by ring_buffer_nest_start() */
3365 cpu = raw_smp_processor_id();
3366 cpu_buffer = buffer->buffers[cpu];
3367 /* This is the shift value for the above recursive locking */
3368 cpu_buffer->nest -= NESTED_BITS;
3369 preempt_enable_notrace();
3370 }
3371
3372 /**
3373 * ring_buffer_unlock_commit - commit a reserved
3374 * @buffer: The buffer to commit to
3375 *
3376 * This commits the data to the ring buffer, and releases any locks held.
3377 *
3378 * Must be paired with ring_buffer_lock_reserve.
3379 */
ring_buffer_unlock_commit(struct trace_buffer * buffer)3380 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3381 {
3382 struct ring_buffer_per_cpu *cpu_buffer;
3383 int cpu = raw_smp_processor_id();
3384
3385 cpu_buffer = buffer->buffers[cpu];
3386
3387 rb_commit(cpu_buffer);
3388
3389 rb_wakeups(buffer, cpu_buffer);
3390
3391 trace_recursive_unlock(cpu_buffer);
3392
3393 preempt_enable_notrace();
3394
3395 return 0;
3396 }
3397 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3398
3399 /* Special value to validate all deltas on a page. */
3400 #define CHECK_FULL_PAGE 1L
3401
3402 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
dump_buffer_page(struct buffer_data_page * bpage,struct rb_event_info * info,unsigned long tail)3403 static void dump_buffer_page(struct buffer_data_page *bpage,
3404 struct rb_event_info *info,
3405 unsigned long tail)
3406 {
3407 struct ring_buffer_event *event;
3408 u64 ts, delta;
3409 int e;
3410
3411 ts = bpage->time_stamp;
3412 pr_warn(" [%lld] PAGE TIME STAMP\n", ts);
3413
3414 for (e = 0; e < tail; e += rb_event_length(event)) {
3415
3416 event = (struct ring_buffer_event *)(bpage->data + e);
3417
3418 switch (event->type_len) {
3419
3420 case RINGBUF_TYPE_TIME_EXTEND:
3421 delta = rb_event_time_stamp(event);
3422 ts += delta;
3423 pr_warn(" [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3424 break;
3425
3426 case RINGBUF_TYPE_TIME_STAMP:
3427 delta = rb_event_time_stamp(event);
3428 ts = rb_fix_abs_ts(delta, ts);
3429 pr_warn(" [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3430 break;
3431
3432 case RINGBUF_TYPE_PADDING:
3433 ts += event->time_delta;
3434 pr_warn(" [%lld] delta:%d PADDING\n", ts, event->time_delta);
3435 break;
3436
3437 case RINGBUF_TYPE_DATA:
3438 ts += event->time_delta;
3439 pr_warn(" [%lld] delta:%d\n", ts, event->time_delta);
3440 break;
3441
3442 default:
3443 break;
3444 }
3445 }
3446 }
3447
3448 static DEFINE_PER_CPU(atomic_t, checking);
3449 static atomic_t ts_dump;
3450
3451 /*
3452 * Check if the current event time stamp matches the deltas on
3453 * the buffer page.
3454 */
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)3455 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3456 struct rb_event_info *info,
3457 unsigned long tail)
3458 {
3459 struct ring_buffer_event *event;
3460 struct buffer_data_page *bpage;
3461 u64 ts, delta;
3462 bool full = false;
3463 int e;
3464
3465 bpage = info->tail_page->page;
3466
3467 if (tail == CHECK_FULL_PAGE) {
3468 full = true;
3469 tail = local_read(&bpage->commit);
3470 } else if (info->add_timestamp &
3471 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3472 /* Ignore events with absolute time stamps */
3473 return;
3474 }
3475
3476 /*
3477 * Do not check the first event (skip possible extends too).
3478 * Also do not check if previous events have not been committed.
3479 */
3480 if (tail <= 8 || tail > local_read(&bpage->commit))
3481 return;
3482
3483 /*
3484 * If this interrupted another event,
3485 */
3486 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3487 goto out;
3488
3489 ts = bpage->time_stamp;
3490
3491 for (e = 0; e < tail; e += rb_event_length(event)) {
3492
3493 event = (struct ring_buffer_event *)(bpage->data + e);
3494
3495 switch (event->type_len) {
3496
3497 case RINGBUF_TYPE_TIME_EXTEND:
3498 delta = rb_event_time_stamp(event);
3499 ts += delta;
3500 break;
3501
3502 case RINGBUF_TYPE_TIME_STAMP:
3503 delta = rb_event_time_stamp(event);
3504 ts = rb_fix_abs_ts(delta, ts);
3505 break;
3506
3507 case RINGBUF_TYPE_PADDING:
3508 if (event->time_delta == 1)
3509 break;
3510 fallthrough;
3511 case RINGBUF_TYPE_DATA:
3512 ts += event->time_delta;
3513 break;
3514
3515 default:
3516 RB_WARN_ON(cpu_buffer, 1);
3517 }
3518 }
3519 if ((full && ts > info->ts) ||
3520 (!full && ts + info->delta != info->ts)) {
3521 /* If another report is happening, ignore this one */
3522 if (atomic_inc_return(&ts_dump) != 1) {
3523 atomic_dec(&ts_dump);
3524 goto out;
3525 }
3526 atomic_inc(&cpu_buffer->record_disabled);
3527 /* There's some cases in boot up that this can happen */
3528 WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3529 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3530 cpu_buffer->cpu,
3531 ts + info->delta, info->ts, info->delta,
3532 info->before, info->after,
3533 full ? " (full)" : "");
3534 dump_buffer_page(bpage, info, tail);
3535 atomic_dec(&ts_dump);
3536 /* Do not re-enable checking */
3537 return;
3538 }
3539 out:
3540 atomic_dec(this_cpu_ptr(&checking));
3541 }
3542 #else
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)3543 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3544 struct rb_event_info *info,
3545 unsigned long tail)
3546 {
3547 }
3548 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3549
3550 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)3551 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3552 struct rb_event_info *info)
3553 {
3554 struct ring_buffer_event *event;
3555 struct buffer_page *tail_page;
3556 unsigned long tail, write, w;
3557 bool a_ok;
3558 bool b_ok;
3559
3560 /* Don't let the compiler play games with cpu_buffer->tail_page */
3561 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3562
3563 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK;
3564 barrier();
3565 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3566 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3567 barrier();
3568 info->ts = rb_time_stamp(cpu_buffer->buffer);
3569
3570 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3571 info->delta = info->ts;
3572 } else {
3573 /*
3574 * If interrupting an event time update, we may need an
3575 * absolute timestamp.
3576 * Don't bother if this is the start of a new page (w == 0).
3577 */
3578 if (!w) {
3579 /* Use the sub-buffer timestamp */
3580 info->delta = 0;
3581 } else if (unlikely(!a_ok || !b_ok || info->before != info->after)) {
3582 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3583 info->length += RB_LEN_TIME_EXTEND;
3584 } else {
3585 info->delta = info->ts - info->after;
3586 if (unlikely(test_time_stamp(info->delta))) {
3587 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3588 info->length += RB_LEN_TIME_EXTEND;
3589 }
3590 }
3591 }
3592
3593 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts);
3594
3595 /*C*/ write = local_add_return(info->length, &tail_page->write);
3596
3597 /* set write to only the index of the write */
3598 write &= RB_WRITE_MASK;
3599
3600 tail = write - info->length;
3601
3602 /* See if we shot pass the end of this buffer page */
3603 if (unlikely(write > BUF_PAGE_SIZE)) {
3604 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3605 return rb_move_tail(cpu_buffer, tail, info);
3606 }
3607
3608 if (likely(tail == w)) {
3609 /* Nothing interrupted us between A and C */
3610 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts);
3611 /*
3612 * If something came in between C and D, the write stamp
3613 * may now not be in sync. But that's fine as the before_stamp
3614 * will be different and then next event will just be forced
3615 * to use an absolute timestamp.
3616 */
3617 if (likely(!(info->add_timestamp &
3618 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3619 /* This did not interrupt any time update */
3620 info->delta = info->ts - info->after;
3621 else
3622 /* Just use full timestamp for interrupting event */
3623 info->delta = info->ts;
3624 check_buffer(cpu_buffer, info, tail);
3625 } else {
3626 u64 ts;
3627 /* SLOW PATH - Interrupted between A and C */
3628
3629 /* Save the old before_stamp */
3630 a_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3631 RB_WARN_ON(cpu_buffer, !a_ok);
3632
3633 /*
3634 * Read a new timestamp and update the before_stamp to make
3635 * the next event after this one force using an absolute
3636 * timestamp. This is in case an interrupt were to come in
3637 * between E and F.
3638 */
3639 ts = rb_time_stamp(cpu_buffer->buffer);
3640 rb_time_set(&cpu_buffer->before_stamp, ts);
3641
3642 barrier();
3643 /*E*/ a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3644 /* Was interrupted before here, write_stamp must be valid */
3645 RB_WARN_ON(cpu_buffer, !a_ok);
3646 barrier();
3647 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3648 info->after == info->before && info->after < ts) {
3649 /*
3650 * Nothing came after this event between C and F, it is
3651 * safe to use info->after for the delta as it
3652 * matched info->before and is still valid.
3653 */
3654 info->delta = ts - info->after;
3655 } else {
3656 /*
3657 * Interrupted between C and F:
3658 * Lost the previous events time stamp. Just set the
3659 * delta to zero, and this will be the same time as
3660 * the event this event interrupted. And the events that
3661 * came after this will still be correct (as they would
3662 * have built their delta on the previous event.
3663 */
3664 info->delta = 0;
3665 }
3666 info->ts = ts;
3667 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3668 }
3669
3670 /*
3671 * If this is the first commit on the page, then it has the same
3672 * timestamp as the page itself.
3673 */
3674 if (unlikely(!tail && !(info->add_timestamp &
3675 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3676 info->delta = 0;
3677
3678 /* We reserved something on the buffer */
3679
3680 event = __rb_page_index(tail_page, tail);
3681 rb_update_event(cpu_buffer, event, info);
3682
3683 local_inc(&tail_page->entries);
3684
3685 /*
3686 * If this is the first commit on the page, then update
3687 * its timestamp.
3688 */
3689 if (unlikely(!tail))
3690 tail_page->page->time_stamp = info->ts;
3691
3692 /* account for these added bytes */
3693 local_add(info->length, &cpu_buffer->entries_bytes);
3694
3695 return event;
3696 }
3697
3698 static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)3699 rb_reserve_next_event(struct trace_buffer *buffer,
3700 struct ring_buffer_per_cpu *cpu_buffer,
3701 unsigned long length)
3702 {
3703 struct ring_buffer_event *event;
3704 struct rb_event_info info;
3705 int nr_loops = 0;
3706 int add_ts_default;
3707
3708 /* ring buffer does cmpxchg, make sure it is safe in NMI context */
3709 if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
3710 (unlikely(in_nmi()))) {
3711 return NULL;
3712 }
3713
3714 rb_start_commit(cpu_buffer);
3715 /* The commit page can not change after this */
3716
3717 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3718 /*
3719 * Due to the ability to swap a cpu buffer from a buffer
3720 * it is possible it was swapped before we committed.
3721 * (committing stops a swap). We check for it here and
3722 * if it happened, we have to fail the write.
3723 */
3724 barrier();
3725 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3726 local_dec(&cpu_buffer->committing);
3727 local_dec(&cpu_buffer->commits);
3728 return NULL;
3729 }
3730 #endif
3731
3732 info.length = rb_calculate_event_length(length);
3733
3734 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3735 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3736 info.length += RB_LEN_TIME_EXTEND;
3737 if (info.length > BUF_MAX_DATA_SIZE)
3738 goto out_fail;
3739 } else {
3740 add_ts_default = RB_ADD_STAMP_NONE;
3741 }
3742
3743 again:
3744 info.add_timestamp = add_ts_default;
3745 info.delta = 0;
3746
3747 /*
3748 * We allow for interrupts to reenter here and do a trace.
3749 * If one does, it will cause this original code to loop
3750 * back here. Even with heavy interrupts happening, this
3751 * should only happen a few times in a row. If this happens
3752 * 1000 times in a row, there must be either an interrupt
3753 * storm or we have something buggy.
3754 * Bail!
3755 */
3756 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3757 goto out_fail;
3758
3759 event = __rb_reserve_next(cpu_buffer, &info);
3760
3761 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3762 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3763 info.length -= RB_LEN_TIME_EXTEND;
3764 goto again;
3765 }
3766
3767 if (likely(event))
3768 return event;
3769 out_fail:
3770 rb_end_commit(cpu_buffer);
3771 return NULL;
3772 }
3773
3774 /**
3775 * ring_buffer_lock_reserve - reserve a part of the buffer
3776 * @buffer: the ring buffer to reserve from
3777 * @length: the length of the data to reserve (excluding event header)
3778 *
3779 * Returns a reserved event on the ring buffer to copy directly to.
3780 * The user of this interface will need to get the body to write into
3781 * and can use the ring_buffer_event_data() interface.
3782 *
3783 * The length is the length of the data needed, not the event length
3784 * which also includes the event header.
3785 *
3786 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3787 * If NULL is returned, then nothing has been allocated or locked.
3788 */
3789 struct ring_buffer_event *
ring_buffer_lock_reserve(struct trace_buffer * buffer,unsigned long length)3790 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3791 {
3792 struct ring_buffer_per_cpu *cpu_buffer;
3793 struct ring_buffer_event *event;
3794 int cpu;
3795
3796 /* If we are tracing schedule, we don't want to recurse */
3797 preempt_disable_notrace();
3798
3799 if (unlikely(atomic_read(&buffer->record_disabled)))
3800 goto out;
3801
3802 cpu = raw_smp_processor_id();
3803
3804 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3805 goto out;
3806
3807 cpu_buffer = buffer->buffers[cpu];
3808
3809 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3810 goto out;
3811
3812 if (unlikely(length > BUF_MAX_DATA_SIZE))
3813 goto out;
3814
3815 if (unlikely(trace_recursive_lock(cpu_buffer)))
3816 goto out;
3817
3818 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3819 if (!event)
3820 goto out_unlock;
3821
3822 return event;
3823
3824 out_unlock:
3825 trace_recursive_unlock(cpu_buffer);
3826 out:
3827 preempt_enable_notrace();
3828 return NULL;
3829 }
3830 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3831
3832 /*
3833 * Decrement the entries to the page that an event is on.
3834 * The event does not even need to exist, only the pointer
3835 * to the page it is on. This may only be called before the commit
3836 * takes place.
3837 */
3838 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3839 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3840 struct ring_buffer_event *event)
3841 {
3842 unsigned long addr = (unsigned long)event;
3843 struct buffer_page *bpage = cpu_buffer->commit_page;
3844 struct buffer_page *start;
3845
3846 addr &= PAGE_MASK;
3847
3848 /* Do the likely case first */
3849 if (likely(bpage->page == (void *)addr)) {
3850 local_dec(&bpage->entries);
3851 return;
3852 }
3853
3854 /*
3855 * Because the commit page may be on the reader page we
3856 * start with the next page and check the end loop there.
3857 */
3858 rb_inc_page(&bpage);
3859 start = bpage;
3860 do {
3861 if (bpage->page == (void *)addr) {
3862 local_dec(&bpage->entries);
3863 return;
3864 }
3865 rb_inc_page(&bpage);
3866 } while (bpage != start);
3867
3868 /* commit not part of this buffer?? */
3869 RB_WARN_ON(cpu_buffer, 1);
3870 }
3871
3872 /**
3873 * ring_buffer_discard_commit - discard an event that has not been committed
3874 * @buffer: the ring buffer
3875 * @event: non committed event to discard
3876 *
3877 * Sometimes an event that is in the ring buffer needs to be ignored.
3878 * This function lets the user discard an event in the ring buffer
3879 * and then that event will not be read later.
3880 *
3881 * This function only works if it is called before the item has been
3882 * committed. It will try to free the event from the ring buffer
3883 * if another event has not been added behind it.
3884 *
3885 * If another event has been added behind it, it will set the event
3886 * up as discarded, and perform the commit.
3887 *
3888 * If this function is called, do not call ring_buffer_unlock_commit on
3889 * the event.
3890 */
ring_buffer_discard_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)3891 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3892 struct ring_buffer_event *event)
3893 {
3894 struct ring_buffer_per_cpu *cpu_buffer;
3895 int cpu;
3896
3897 /* The event is discarded regardless */
3898 rb_event_discard(event);
3899
3900 cpu = smp_processor_id();
3901 cpu_buffer = buffer->buffers[cpu];
3902
3903 /*
3904 * This must only be called if the event has not been
3905 * committed yet. Thus we can assume that preemption
3906 * is still disabled.
3907 */
3908 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3909
3910 rb_decrement_entry(cpu_buffer, event);
3911 if (rb_try_to_discard(cpu_buffer, event))
3912 goto out;
3913
3914 out:
3915 rb_end_commit(cpu_buffer);
3916
3917 trace_recursive_unlock(cpu_buffer);
3918
3919 preempt_enable_notrace();
3920
3921 }
3922 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3923
3924 /**
3925 * ring_buffer_write - write data to the buffer without reserving
3926 * @buffer: The ring buffer to write to.
3927 * @length: The length of the data being written (excluding the event header)
3928 * @data: The data to write to the buffer.
3929 *
3930 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3931 * one function. If you already have the data to write to the buffer, it
3932 * may be easier to simply call this function.
3933 *
3934 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3935 * and not the length of the event which would hold the header.
3936 */
ring_buffer_write(struct trace_buffer * buffer,unsigned long length,void * data)3937 int ring_buffer_write(struct trace_buffer *buffer,
3938 unsigned long length,
3939 void *data)
3940 {
3941 struct ring_buffer_per_cpu *cpu_buffer;
3942 struct ring_buffer_event *event;
3943 void *body;
3944 int ret = -EBUSY;
3945 int cpu;
3946
3947 preempt_disable_notrace();
3948
3949 if (atomic_read(&buffer->record_disabled))
3950 goto out;
3951
3952 cpu = raw_smp_processor_id();
3953
3954 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3955 goto out;
3956
3957 cpu_buffer = buffer->buffers[cpu];
3958
3959 if (atomic_read(&cpu_buffer->record_disabled))
3960 goto out;
3961
3962 if (length > BUF_MAX_DATA_SIZE)
3963 goto out;
3964
3965 if (unlikely(trace_recursive_lock(cpu_buffer)))
3966 goto out;
3967
3968 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3969 if (!event)
3970 goto out_unlock;
3971
3972 body = rb_event_data(event);
3973
3974 memcpy(body, data, length);
3975
3976 rb_commit(cpu_buffer);
3977
3978 rb_wakeups(buffer, cpu_buffer);
3979
3980 ret = 0;
3981
3982 out_unlock:
3983 trace_recursive_unlock(cpu_buffer);
3984
3985 out:
3986 preempt_enable_notrace();
3987
3988 return ret;
3989 }
3990 EXPORT_SYMBOL_GPL(ring_buffer_write);
3991
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)3992 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3993 {
3994 struct buffer_page *reader = cpu_buffer->reader_page;
3995 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3996 struct buffer_page *commit = cpu_buffer->commit_page;
3997
3998 /* In case of error, head will be NULL */
3999 if (unlikely(!head))
4000 return true;
4001
4002 /* Reader should exhaust content in reader page */
4003 if (reader->read != rb_page_commit(reader))
4004 return false;
4005
4006 /*
4007 * If writers are committing on the reader page, knowing all
4008 * committed content has been read, the ring buffer is empty.
4009 */
4010 if (commit == reader)
4011 return true;
4012
4013 /*
4014 * If writers are committing on a page other than reader page
4015 * and head page, there should always be content to read.
4016 */
4017 if (commit != head)
4018 return false;
4019
4020 /*
4021 * Writers are committing on the head page, we just need
4022 * to care about there're committed data, and the reader will
4023 * swap reader page with head page when it is to read data.
4024 */
4025 return rb_page_commit(commit) == 0;
4026 }
4027
4028 /**
4029 * ring_buffer_record_disable - stop all writes into the buffer
4030 * @buffer: The ring buffer to stop writes to.
4031 *
4032 * This prevents all writes to the buffer. Any attempt to write
4033 * to the buffer after this will fail and return NULL.
4034 *
4035 * The caller should call synchronize_rcu() after this.
4036 */
ring_buffer_record_disable(struct trace_buffer * buffer)4037 void ring_buffer_record_disable(struct trace_buffer *buffer)
4038 {
4039 atomic_inc(&buffer->record_disabled);
4040 }
4041 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4042
4043 /**
4044 * ring_buffer_record_enable - enable writes to the buffer
4045 * @buffer: The ring buffer to enable writes
4046 *
4047 * Note, multiple disables will need the same number of enables
4048 * to truly enable the writing (much like preempt_disable).
4049 */
ring_buffer_record_enable(struct trace_buffer * buffer)4050 void ring_buffer_record_enable(struct trace_buffer *buffer)
4051 {
4052 atomic_dec(&buffer->record_disabled);
4053 }
4054 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4055
4056 /**
4057 * ring_buffer_record_off - stop all writes into the buffer
4058 * @buffer: The ring buffer to stop writes to.
4059 *
4060 * This prevents all writes to the buffer. Any attempt to write
4061 * to the buffer after this will fail and return NULL.
4062 *
4063 * This is different than ring_buffer_record_disable() as
4064 * it works like an on/off switch, where as the disable() version
4065 * must be paired with a enable().
4066 */
ring_buffer_record_off(struct trace_buffer * buffer)4067 void ring_buffer_record_off(struct trace_buffer *buffer)
4068 {
4069 unsigned int rd;
4070 unsigned int new_rd;
4071
4072 rd = atomic_read(&buffer->record_disabled);
4073 do {
4074 new_rd = rd | RB_BUFFER_OFF;
4075 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4076 }
4077 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4078
4079 /**
4080 * ring_buffer_record_on - restart writes into the buffer
4081 * @buffer: The ring buffer to start writes to.
4082 *
4083 * This enables all writes to the buffer that was disabled by
4084 * ring_buffer_record_off().
4085 *
4086 * This is different than ring_buffer_record_enable() as
4087 * it works like an on/off switch, where as the enable() version
4088 * must be paired with a disable().
4089 */
ring_buffer_record_on(struct trace_buffer * buffer)4090 void ring_buffer_record_on(struct trace_buffer *buffer)
4091 {
4092 unsigned int rd;
4093 unsigned int new_rd;
4094
4095 rd = atomic_read(&buffer->record_disabled);
4096 do {
4097 new_rd = rd & ~RB_BUFFER_OFF;
4098 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4099 }
4100 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4101
4102 /**
4103 * ring_buffer_record_is_on - return true if the ring buffer can write
4104 * @buffer: The ring buffer to see if write is enabled
4105 *
4106 * Returns true if the ring buffer is in a state that it accepts writes.
4107 */
ring_buffer_record_is_on(struct trace_buffer * buffer)4108 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4109 {
4110 return !atomic_read(&buffer->record_disabled);
4111 }
4112
4113 /**
4114 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4115 * @buffer: The ring buffer to see if write is set enabled
4116 *
4117 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4118 * Note that this does NOT mean it is in a writable state.
4119 *
4120 * It may return true when the ring buffer has been disabled by
4121 * ring_buffer_record_disable(), as that is a temporary disabling of
4122 * the ring buffer.
4123 */
ring_buffer_record_is_set_on(struct trace_buffer * buffer)4124 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4125 {
4126 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4127 }
4128
4129 /**
4130 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4131 * @buffer: The ring buffer to stop writes to.
4132 * @cpu: The CPU buffer to stop
4133 *
4134 * This prevents all writes to the buffer. Any attempt to write
4135 * to the buffer after this will fail and return NULL.
4136 *
4137 * The caller should call synchronize_rcu() after this.
4138 */
ring_buffer_record_disable_cpu(struct trace_buffer * buffer,int cpu)4139 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4140 {
4141 struct ring_buffer_per_cpu *cpu_buffer;
4142
4143 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4144 return;
4145
4146 cpu_buffer = buffer->buffers[cpu];
4147 atomic_inc(&cpu_buffer->record_disabled);
4148 }
4149 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4150
4151 /**
4152 * ring_buffer_record_enable_cpu - enable writes to the buffer
4153 * @buffer: The ring buffer to enable writes
4154 * @cpu: The CPU to enable.
4155 *
4156 * Note, multiple disables will need the same number of enables
4157 * to truly enable the writing (much like preempt_disable).
4158 */
ring_buffer_record_enable_cpu(struct trace_buffer * buffer,int cpu)4159 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4160 {
4161 struct ring_buffer_per_cpu *cpu_buffer;
4162
4163 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4164 return;
4165
4166 cpu_buffer = buffer->buffers[cpu];
4167 atomic_dec(&cpu_buffer->record_disabled);
4168 }
4169 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4170
4171 /*
4172 * The total entries in the ring buffer is the running counter
4173 * of entries entered into the ring buffer, minus the sum of
4174 * the entries read from the ring buffer and the number of
4175 * entries that were overwritten.
4176 */
4177 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)4178 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4179 {
4180 return local_read(&cpu_buffer->entries) -
4181 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4182 }
4183
4184 /**
4185 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4186 * @buffer: The ring buffer
4187 * @cpu: The per CPU buffer to read from.
4188 */
ring_buffer_oldest_event_ts(struct trace_buffer * buffer,int cpu)4189 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4190 {
4191 unsigned long flags;
4192 struct ring_buffer_per_cpu *cpu_buffer;
4193 struct buffer_page *bpage;
4194 u64 ret = 0;
4195
4196 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4197 return 0;
4198
4199 cpu_buffer = buffer->buffers[cpu];
4200 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4201 /*
4202 * if the tail is on reader_page, oldest time stamp is on the reader
4203 * page
4204 */
4205 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4206 bpage = cpu_buffer->reader_page;
4207 else
4208 bpage = rb_set_head_page(cpu_buffer);
4209 if (bpage)
4210 ret = bpage->page->time_stamp;
4211 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4212
4213 return ret;
4214 }
4215 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4216
4217 /**
4218 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4219 * @buffer: The ring buffer
4220 * @cpu: The per CPU buffer to read from.
4221 */
ring_buffer_bytes_cpu(struct trace_buffer * buffer,int cpu)4222 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4223 {
4224 struct ring_buffer_per_cpu *cpu_buffer;
4225 unsigned long ret;
4226
4227 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4228 return 0;
4229
4230 cpu_buffer = buffer->buffers[cpu];
4231 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4232
4233 return ret;
4234 }
4235 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4236
4237 /**
4238 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4239 * @buffer: The ring buffer
4240 * @cpu: The per CPU buffer to get the entries from.
4241 */
ring_buffer_entries_cpu(struct trace_buffer * buffer,int cpu)4242 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4243 {
4244 struct ring_buffer_per_cpu *cpu_buffer;
4245
4246 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4247 return 0;
4248
4249 cpu_buffer = buffer->buffers[cpu];
4250
4251 return rb_num_of_entries(cpu_buffer);
4252 }
4253 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4254
4255 /**
4256 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4257 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4258 * @buffer: The ring buffer
4259 * @cpu: The per CPU buffer to get the number of overruns from
4260 */
ring_buffer_overrun_cpu(struct trace_buffer * buffer,int cpu)4261 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4262 {
4263 struct ring_buffer_per_cpu *cpu_buffer;
4264 unsigned long ret;
4265
4266 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4267 return 0;
4268
4269 cpu_buffer = buffer->buffers[cpu];
4270 ret = local_read(&cpu_buffer->overrun);
4271
4272 return ret;
4273 }
4274 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4275
4276 /**
4277 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4278 * commits failing due to the buffer wrapping around while there are uncommitted
4279 * events, such as during an interrupt storm.
4280 * @buffer: The ring buffer
4281 * @cpu: The per CPU buffer to get the number of overruns from
4282 */
4283 unsigned long
ring_buffer_commit_overrun_cpu(struct trace_buffer * buffer,int cpu)4284 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4285 {
4286 struct ring_buffer_per_cpu *cpu_buffer;
4287 unsigned long ret;
4288
4289 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4290 return 0;
4291
4292 cpu_buffer = buffer->buffers[cpu];
4293 ret = local_read(&cpu_buffer->commit_overrun);
4294
4295 return ret;
4296 }
4297 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4298
4299 /**
4300 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4301 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4302 * @buffer: The ring buffer
4303 * @cpu: The per CPU buffer to get the number of overruns from
4304 */
4305 unsigned long
ring_buffer_dropped_events_cpu(struct trace_buffer * buffer,int cpu)4306 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4307 {
4308 struct ring_buffer_per_cpu *cpu_buffer;
4309 unsigned long ret;
4310
4311 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4312 return 0;
4313
4314 cpu_buffer = buffer->buffers[cpu];
4315 ret = local_read(&cpu_buffer->dropped_events);
4316
4317 return ret;
4318 }
4319 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4320
4321 /**
4322 * ring_buffer_read_events_cpu - get the number of events successfully read
4323 * @buffer: The ring buffer
4324 * @cpu: The per CPU buffer to get the number of events read
4325 */
4326 unsigned long
ring_buffer_read_events_cpu(struct trace_buffer * buffer,int cpu)4327 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4328 {
4329 struct ring_buffer_per_cpu *cpu_buffer;
4330
4331 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4332 return 0;
4333
4334 cpu_buffer = buffer->buffers[cpu];
4335 return cpu_buffer->read;
4336 }
4337 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4338
4339 /**
4340 * ring_buffer_entries - get the number of entries in a buffer
4341 * @buffer: The ring buffer
4342 *
4343 * Returns the total number of entries in the ring buffer
4344 * (all CPU entries)
4345 */
ring_buffer_entries(struct trace_buffer * buffer)4346 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4347 {
4348 struct ring_buffer_per_cpu *cpu_buffer;
4349 unsigned long entries = 0;
4350 int cpu;
4351
4352 /* if you care about this being correct, lock the buffer */
4353 for_each_buffer_cpu(buffer, cpu) {
4354 cpu_buffer = buffer->buffers[cpu];
4355 entries += rb_num_of_entries(cpu_buffer);
4356 }
4357
4358 return entries;
4359 }
4360 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4361
4362 /**
4363 * ring_buffer_overruns - get the number of overruns in buffer
4364 * @buffer: The ring buffer
4365 *
4366 * Returns the total number of overruns in the ring buffer
4367 * (all CPU entries)
4368 */
ring_buffer_overruns(struct trace_buffer * buffer)4369 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4370 {
4371 struct ring_buffer_per_cpu *cpu_buffer;
4372 unsigned long overruns = 0;
4373 int cpu;
4374
4375 /* if you care about this being correct, lock the buffer */
4376 for_each_buffer_cpu(buffer, cpu) {
4377 cpu_buffer = buffer->buffers[cpu];
4378 overruns += local_read(&cpu_buffer->overrun);
4379 }
4380
4381 return overruns;
4382 }
4383 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4384
rb_iter_reset(struct ring_buffer_iter * iter)4385 static void rb_iter_reset(struct ring_buffer_iter *iter)
4386 {
4387 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4388
4389 /* Iterator usage is expected to have record disabled */
4390 iter->head_page = cpu_buffer->reader_page;
4391 iter->head = cpu_buffer->reader_page->read;
4392 iter->next_event = iter->head;
4393
4394 iter->cache_reader_page = iter->head_page;
4395 iter->cache_read = cpu_buffer->read;
4396 iter->cache_pages_removed = cpu_buffer->pages_removed;
4397
4398 if (iter->head) {
4399 iter->read_stamp = cpu_buffer->read_stamp;
4400 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4401 } else {
4402 iter->read_stamp = iter->head_page->page->time_stamp;
4403 iter->page_stamp = iter->read_stamp;
4404 }
4405 }
4406
4407 /**
4408 * ring_buffer_iter_reset - reset an iterator
4409 * @iter: The iterator to reset
4410 *
4411 * Resets the iterator, so that it will start from the beginning
4412 * again.
4413 */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)4414 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4415 {
4416 struct ring_buffer_per_cpu *cpu_buffer;
4417 unsigned long flags;
4418
4419 if (!iter)
4420 return;
4421
4422 cpu_buffer = iter->cpu_buffer;
4423
4424 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4425 rb_iter_reset(iter);
4426 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4427 }
4428 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4429
4430 /**
4431 * ring_buffer_iter_empty - check if an iterator has no more to read
4432 * @iter: The iterator to check
4433 */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)4434 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4435 {
4436 struct ring_buffer_per_cpu *cpu_buffer;
4437 struct buffer_page *reader;
4438 struct buffer_page *head_page;
4439 struct buffer_page *commit_page;
4440 struct buffer_page *curr_commit_page;
4441 unsigned commit;
4442 u64 curr_commit_ts;
4443 u64 commit_ts;
4444
4445 cpu_buffer = iter->cpu_buffer;
4446 reader = cpu_buffer->reader_page;
4447 head_page = cpu_buffer->head_page;
4448 commit_page = READ_ONCE(cpu_buffer->commit_page);
4449 commit_ts = commit_page->page->time_stamp;
4450
4451 /*
4452 * When the writer goes across pages, it issues a cmpxchg which
4453 * is a mb(), which will synchronize with the rmb here.
4454 * (see rb_tail_page_update())
4455 */
4456 smp_rmb();
4457 commit = rb_page_commit(commit_page);
4458 /* We want to make sure that the commit page doesn't change */
4459 smp_rmb();
4460
4461 /* Make sure commit page didn't change */
4462 curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4463 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4464
4465 /* If the commit page changed, then there's more data */
4466 if (curr_commit_page != commit_page ||
4467 curr_commit_ts != commit_ts)
4468 return 0;
4469
4470 /* Still racy, as it may return a false positive, but that's OK */
4471 return ((iter->head_page == commit_page && iter->head >= commit) ||
4472 (iter->head_page == reader && commit_page == head_page &&
4473 head_page->read == commit &&
4474 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4475 }
4476 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4477
4478 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)4479 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4480 struct ring_buffer_event *event)
4481 {
4482 u64 delta;
4483
4484 switch (event->type_len) {
4485 case RINGBUF_TYPE_PADDING:
4486 return;
4487
4488 case RINGBUF_TYPE_TIME_EXTEND:
4489 delta = rb_event_time_stamp(event);
4490 cpu_buffer->read_stamp += delta;
4491 return;
4492
4493 case RINGBUF_TYPE_TIME_STAMP:
4494 delta = rb_event_time_stamp(event);
4495 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4496 cpu_buffer->read_stamp = delta;
4497 return;
4498
4499 case RINGBUF_TYPE_DATA:
4500 cpu_buffer->read_stamp += event->time_delta;
4501 return;
4502
4503 default:
4504 RB_WARN_ON(cpu_buffer, 1);
4505 }
4506 }
4507
4508 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)4509 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4510 struct ring_buffer_event *event)
4511 {
4512 u64 delta;
4513
4514 switch (event->type_len) {
4515 case RINGBUF_TYPE_PADDING:
4516 return;
4517
4518 case RINGBUF_TYPE_TIME_EXTEND:
4519 delta = rb_event_time_stamp(event);
4520 iter->read_stamp += delta;
4521 return;
4522
4523 case RINGBUF_TYPE_TIME_STAMP:
4524 delta = rb_event_time_stamp(event);
4525 delta = rb_fix_abs_ts(delta, iter->read_stamp);
4526 iter->read_stamp = delta;
4527 return;
4528
4529 case RINGBUF_TYPE_DATA:
4530 iter->read_stamp += event->time_delta;
4531 return;
4532
4533 default:
4534 RB_WARN_ON(iter->cpu_buffer, 1);
4535 }
4536 }
4537
4538 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)4539 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4540 {
4541 struct buffer_page *reader = NULL;
4542 unsigned long overwrite;
4543 unsigned long flags;
4544 int nr_loops = 0;
4545 bool ret;
4546
4547 local_irq_save(flags);
4548 arch_spin_lock(&cpu_buffer->lock);
4549
4550 again:
4551 /*
4552 * This should normally only loop twice. But because the
4553 * start of the reader inserts an empty page, it causes
4554 * a case where we will loop three times. There should be no
4555 * reason to loop four times (that I know of).
4556 */
4557 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4558 reader = NULL;
4559 goto out;
4560 }
4561
4562 reader = cpu_buffer->reader_page;
4563
4564 /* If there's more to read, return this page */
4565 if (cpu_buffer->reader_page->read < rb_page_size(reader))
4566 goto out;
4567
4568 /* Never should we have an index greater than the size */
4569 if (RB_WARN_ON(cpu_buffer,
4570 cpu_buffer->reader_page->read > rb_page_size(reader)))
4571 goto out;
4572
4573 /* check if we caught up to the tail */
4574 reader = NULL;
4575 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4576 goto out;
4577
4578 /* Don't bother swapping if the ring buffer is empty */
4579 if (rb_num_of_entries(cpu_buffer) == 0)
4580 goto out;
4581
4582 /*
4583 * Reset the reader page to size zero.
4584 */
4585 local_set(&cpu_buffer->reader_page->write, 0);
4586 local_set(&cpu_buffer->reader_page->entries, 0);
4587 local_set(&cpu_buffer->reader_page->page->commit, 0);
4588 cpu_buffer->reader_page->real_end = 0;
4589
4590 spin:
4591 /*
4592 * Splice the empty reader page into the list around the head.
4593 */
4594 reader = rb_set_head_page(cpu_buffer);
4595 if (!reader)
4596 goto out;
4597 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4598 cpu_buffer->reader_page->list.prev = reader->list.prev;
4599
4600 /*
4601 * cpu_buffer->pages just needs to point to the buffer, it
4602 * has no specific buffer page to point to. Lets move it out
4603 * of our way so we don't accidentally swap it.
4604 */
4605 cpu_buffer->pages = reader->list.prev;
4606
4607 /* The reader page will be pointing to the new head */
4608 rb_set_list_to_head(&cpu_buffer->reader_page->list);
4609
4610 /*
4611 * We want to make sure we read the overruns after we set up our
4612 * pointers to the next object. The writer side does a
4613 * cmpxchg to cross pages which acts as the mb on the writer
4614 * side. Note, the reader will constantly fail the swap
4615 * while the writer is updating the pointers, so this
4616 * guarantees that the overwrite recorded here is the one we
4617 * want to compare with the last_overrun.
4618 */
4619 smp_mb();
4620 overwrite = local_read(&(cpu_buffer->overrun));
4621
4622 /*
4623 * Here's the tricky part.
4624 *
4625 * We need to move the pointer past the header page.
4626 * But we can only do that if a writer is not currently
4627 * moving it. The page before the header page has the
4628 * flag bit '1' set if it is pointing to the page we want.
4629 * but if the writer is in the process of moving it
4630 * than it will be '2' or already moved '0'.
4631 */
4632
4633 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4634
4635 /*
4636 * If we did not convert it, then we must try again.
4637 */
4638 if (!ret)
4639 goto spin;
4640
4641 /*
4642 * Yay! We succeeded in replacing the page.
4643 *
4644 * Now make the new head point back to the reader page.
4645 */
4646 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4647 rb_inc_page(&cpu_buffer->head_page);
4648
4649 local_inc(&cpu_buffer->pages_read);
4650
4651 /* Finally update the reader page to the new head */
4652 cpu_buffer->reader_page = reader;
4653 cpu_buffer->reader_page->read = 0;
4654
4655 if (overwrite != cpu_buffer->last_overrun) {
4656 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4657 cpu_buffer->last_overrun = overwrite;
4658 }
4659
4660 goto again;
4661
4662 out:
4663 /* Update the read_stamp on the first event */
4664 if (reader && reader->read == 0)
4665 cpu_buffer->read_stamp = reader->page->time_stamp;
4666
4667 arch_spin_unlock(&cpu_buffer->lock);
4668 local_irq_restore(flags);
4669
4670 /*
4671 * The writer has preempt disable, wait for it. But not forever
4672 * Although, 1 second is pretty much "forever"
4673 */
4674 #define USECS_WAIT 1000000
4675 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4676 /* If the write is past the end of page, a writer is still updating it */
4677 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4678 break;
4679
4680 udelay(1);
4681
4682 /* Get the latest version of the reader write value */
4683 smp_rmb();
4684 }
4685
4686 /* The writer is not moving forward? Something is wrong */
4687 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4688 reader = NULL;
4689
4690 /*
4691 * Make sure we see any padding after the write update
4692 * (see rb_reset_tail()).
4693 *
4694 * In addition, a writer may be writing on the reader page
4695 * if the page has not been fully filled, so the read barrier
4696 * is also needed to make sure we see the content of what is
4697 * committed by the writer (see rb_set_commit_to_write()).
4698 */
4699 smp_rmb();
4700
4701
4702 return reader;
4703 }
4704
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)4705 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4706 {
4707 struct ring_buffer_event *event;
4708 struct buffer_page *reader;
4709 unsigned length;
4710
4711 reader = rb_get_reader_page(cpu_buffer);
4712
4713 /* This function should not be called when buffer is empty */
4714 if (RB_WARN_ON(cpu_buffer, !reader))
4715 return;
4716
4717 event = rb_reader_event(cpu_buffer);
4718
4719 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4720 cpu_buffer->read++;
4721
4722 rb_update_read_stamp(cpu_buffer, event);
4723
4724 length = rb_event_length(event);
4725 cpu_buffer->reader_page->read += length;
4726 cpu_buffer->read_bytes += length;
4727 }
4728
rb_advance_iter(struct ring_buffer_iter * iter)4729 static void rb_advance_iter(struct ring_buffer_iter *iter)
4730 {
4731 struct ring_buffer_per_cpu *cpu_buffer;
4732
4733 cpu_buffer = iter->cpu_buffer;
4734
4735 /* If head == next_event then we need to jump to the next event */
4736 if (iter->head == iter->next_event) {
4737 /* If the event gets overwritten again, there's nothing to do */
4738 if (rb_iter_head_event(iter) == NULL)
4739 return;
4740 }
4741
4742 iter->head = iter->next_event;
4743
4744 /*
4745 * Check if we are at the end of the buffer.
4746 */
4747 if (iter->next_event >= rb_page_size(iter->head_page)) {
4748 /* discarded commits can make the page empty */
4749 if (iter->head_page == cpu_buffer->commit_page)
4750 return;
4751 rb_inc_iter(iter);
4752 return;
4753 }
4754
4755 rb_update_iter_read_stamp(iter, iter->event);
4756 }
4757
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)4758 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4759 {
4760 return cpu_buffer->lost_events;
4761 }
4762
4763 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)4764 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4765 unsigned long *lost_events)
4766 {
4767 struct ring_buffer_event *event;
4768 struct buffer_page *reader;
4769 int nr_loops = 0;
4770
4771 if (ts)
4772 *ts = 0;
4773 again:
4774 /*
4775 * We repeat when a time extend is encountered.
4776 * Since the time extend is always attached to a data event,
4777 * we should never loop more than once.
4778 * (We never hit the following condition more than twice).
4779 */
4780 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4781 return NULL;
4782
4783 reader = rb_get_reader_page(cpu_buffer);
4784 if (!reader)
4785 return NULL;
4786
4787 event = rb_reader_event(cpu_buffer);
4788
4789 switch (event->type_len) {
4790 case RINGBUF_TYPE_PADDING:
4791 if (rb_null_event(event))
4792 RB_WARN_ON(cpu_buffer, 1);
4793 /*
4794 * Because the writer could be discarding every
4795 * event it creates (which would probably be bad)
4796 * if we were to go back to "again" then we may never
4797 * catch up, and will trigger the warn on, or lock
4798 * the box. Return the padding, and we will release
4799 * the current locks, and try again.
4800 */
4801 return event;
4802
4803 case RINGBUF_TYPE_TIME_EXTEND:
4804 /* Internal data, OK to advance */
4805 rb_advance_reader(cpu_buffer);
4806 goto again;
4807
4808 case RINGBUF_TYPE_TIME_STAMP:
4809 if (ts) {
4810 *ts = rb_event_time_stamp(event);
4811 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4812 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4813 cpu_buffer->cpu, ts);
4814 }
4815 /* Internal data, OK to advance */
4816 rb_advance_reader(cpu_buffer);
4817 goto again;
4818
4819 case RINGBUF_TYPE_DATA:
4820 if (ts && !(*ts)) {
4821 *ts = cpu_buffer->read_stamp + event->time_delta;
4822 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4823 cpu_buffer->cpu, ts);
4824 }
4825 if (lost_events)
4826 *lost_events = rb_lost_events(cpu_buffer);
4827 return event;
4828
4829 default:
4830 RB_WARN_ON(cpu_buffer, 1);
4831 }
4832
4833 return NULL;
4834 }
4835 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4836
4837 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)4838 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4839 {
4840 struct trace_buffer *buffer;
4841 struct ring_buffer_per_cpu *cpu_buffer;
4842 struct ring_buffer_event *event;
4843 int nr_loops = 0;
4844
4845 if (ts)
4846 *ts = 0;
4847
4848 cpu_buffer = iter->cpu_buffer;
4849 buffer = cpu_buffer->buffer;
4850
4851 /*
4852 * Check if someone performed a consuming read to the buffer
4853 * or removed some pages from the buffer. In these cases,
4854 * iterator was invalidated and we need to reset it.
4855 */
4856 if (unlikely(iter->cache_read != cpu_buffer->read ||
4857 iter->cache_reader_page != cpu_buffer->reader_page ||
4858 iter->cache_pages_removed != cpu_buffer->pages_removed))
4859 rb_iter_reset(iter);
4860
4861 again:
4862 if (ring_buffer_iter_empty(iter))
4863 return NULL;
4864
4865 /*
4866 * As the writer can mess with what the iterator is trying
4867 * to read, just give up if we fail to get an event after
4868 * three tries. The iterator is not as reliable when reading
4869 * the ring buffer with an active write as the consumer is.
4870 * Do not warn if the three failures is reached.
4871 */
4872 if (++nr_loops > 3)
4873 return NULL;
4874
4875 if (rb_per_cpu_empty(cpu_buffer))
4876 return NULL;
4877
4878 if (iter->head >= rb_page_size(iter->head_page)) {
4879 rb_inc_iter(iter);
4880 goto again;
4881 }
4882
4883 event = rb_iter_head_event(iter);
4884 if (!event)
4885 goto again;
4886
4887 switch (event->type_len) {
4888 case RINGBUF_TYPE_PADDING:
4889 if (rb_null_event(event)) {
4890 rb_inc_iter(iter);
4891 goto again;
4892 }
4893 rb_advance_iter(iter);
4894 return event;
4895
4896 case RINGBUF_TYPE_TIME_EXTEND:
4897 /* Internal data, OK to advance */
4898 rb_advance_iter(iter);
4899 goto again;
4900
4901 case RINGBUF_TYPE_TIME_STAMP:
4902 if (ts) {
4903 *ts = rb_event_time_stamp(event);
4904 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4905 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4906 cpu_buffer->cpu, ts);
4907 }
4908 /* Internal data, OK to advance */
4909 rb_advance_iter(iter);
4910 goto again;
4911
4912 case RINGBUF_TYPE_DATA:
4913 if (ts && !(*ts)) {
4914 *ts = iter->read_stamp + event->time_delta;
4915 ring_buffer_normalize_time_stamp(buffer,
4916 cpu_buffer->cpu, ts);
4917 }
4918 return event;
4919
4920 default:
4921 RB_WARN_ON(cpu_buffer, 1);
4922 }
4923
4924 return NULL;
4925 }
4926 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4927
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)4928 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4929 {
4930 if (likely(!in_nmi())) {
4931 raw_spin_lock(&cpu_buffer->reader_lock);
4932 return true;
4933 }
4934
4935 /*
4936 * If an NMI die dumps out the content of the ring buffer
4937 * trylock must be used to prevent a deadlock if the NMI
4938 * preempted a task that holds the ring buffer locks. If
4939 * we get the lock then all is fine, if not, then continue
4940 * to do the read, but this can corrupt the ring buffer,
4941 * so it must be permanently disabled from future writes.
4942 * Reading from NMI is a oneshot deal.
4943 */
4944 if (raw_spin_trylock(&cpu_buffer->reader_lock))
4945 return true;
4946
4947 /* Continue without locking, but disable the ring buffer */
4948 atomic_inc(&cpu_buffer->record_disabled);
4949 return false;
4950 }
4951
4952 static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)4953 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4954 {
4955 if (likely(locked))
4956 raw_spin_unlock(&cpu_buffer->reader_lock);
4957 }
4958
4959 /**
4960 * ring_buffer_peek - peek at the next event to be read
4961 * @buffer: The ring buffer to read
4962 * @cpu: The cpu to peak at
4963 * @ts: The timestamp counter of this event.
4964 * @lost_events: a variable to store if events were lost (may be NULL)
4965 *
4966 * This will return the event that will be read next, but does
4967 * not consume the data.
4968 */
4969 struct ring_buffer_event *
ring_buffer_peek(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)4970 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4971 unsigned long *lost_events)
4972 {
4973 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4974 struct ring_buffer_event *event;
4975 unsigned long flags;
4976 bool dolock;
4977
4978 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4979 return NULL;
4980
4981 again:
4982 local_irq_save(flags);
4983 dolock = rb_reader_lock(cpu_buffer);
4984 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4985 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4986 rb_advance_reader(cpu_buffer);
4987 rb_reader_unlock(cpu_buffer, dolock);
4988 local_irq_restore(flags);
4989
4990 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4991 goto again;
4992
4993 return event;
4994 }
4995
4996 /** ring_buffer_iter_dropped - report if there are dropped events
4997 * @iter: The ring buffer iterator
4998 *
4999 * Returns true if there was dropped events since the last peek.
5000 */
ring_buffer_iter_dropped(struct ring_buffer_iter * iter)5001 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5002 {
5003 bool ret = iter->missed_events != 0;
5004
5005 iter->missed_events = 0;
5006 return ret;
5007 }
5008 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5009
5010 /**
5011 * ring_buffer_iter_peek - peek at the next event to be read
5012 * @iter: The ring buffer iterator
5013 * @ts: The timestamp counter of this event.
5014 *
5015 * This will return the event that will be read next, but does
5016 * not increment the iterator.
5017 */
5018 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5019 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5020 {
5021 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5022 struct ring_buffer_event *event;
5023 unsigned long flags;
5024
5025 again:
5026 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5027 event = rb_iter_peek(iter, ts);
5028 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5029
5030 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5031 goto again;
5032
5033 return event;
5034 }
5035
5036 /**
5037 * ring_buffer_consume - return an event and consume it
5038 * @buffer: The ring buffer to get the next event from
5039 * @cpu: the cpu to read the buffer from
5040 * @ts: a variable to store the timestamp (may be NULL)
5041 * @lost_events: a variable to store if events were lost (may be NULL)
5042 *
5043 * Returns the next event in the ring buffer, and that event is consumed.
5044 * Meaning, that sequential reads will keep returning a different event,
5045 * and eventually empty the ring buffer if the producer is slower.
5046 */
5047 struct ring_buffer_event *
ring_buffer_consume(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5048 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5049 unsigned long *lost_events)
5050 {
5051 struct ring_buffer_per_cpu *cpu_buffer;
5052 struct ring_buffer_event *event = NULL;
5053 unsigned long flags;
5054 bool dolock;
5055
5056 again:
5057 /* might be called in atomic */
5058 preempt_disable();
5059
5060 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5061 goto out;
5062
5063 cpu_buffer = buffer->buffers[cpu];
5064 local_irq_save(flags);
5065 dolock = rb_reader_lock(cpu_buffer);
5066
5067 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5068 if (event) {
5069 cpu_buffer->lost_events = 0;
5070 rb_advance_reader(cpu_buffer);
5071 }
5072
5073 rb_reader_unlock(cpu_buffer, dolock);
5074 local_irq_restore(flags);
5075
5076 out:
5077 preempt_enable();
5078
5079 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5080 goto again;
5081
5082 return event;
5083 }
5084 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5085
5086 /**
5087 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5088 * @buffer: The ring buffer to read from
5089 * @cpu: The cpu buffer to iterate over
5090 * @flags: gfp flags to use for memory allocation
5091 *
5092 * This performs the initial preparations necessary to iterate
5093 * through the buffer. Memory is allocated, buffer recording
5094 * is disabled, and the iterator pointer is returned to the caller.
5095 *
5096 * Disabling buffer recording prevents the reading from being
5097 * corrupted. This is not a consuming read, so a producer is not
5098 * expected.
5099 *
5100 * After a sequence of ring_buffer_read_prepare calls, the user is
5101 * expected to make at least one call to ring_buffer_read_prepare_sync.
5102 * Afterwards, ring_buffer_read_start is invoked to get things going
5103 * for real.
5104 *
5105 * This overall must be paired with ring_buffer_read_finish.
5106 */
5107 struct ring_buffer_iter *
ring_buffer_read_prepare(struct trace_buffer * buffer,int cpu,gfp_t flags)5108 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5109 {
5110 struct ring_buffer_per_cpu *cpu_buffer;
5111 struct ring_buffer_iter *iter;
5112
5113 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5114 return NULL;
5115
5116 iter = kzalloc(sizeof(*iter), flags);
5117 if (!iter)
5118 return NULL;
5119
5120 /* Holds the entire event: data and meta data */
5121 iter->event = kmalloc(BUF_PAGE_SIZE, flags);
5122 if (!iter->event) {
5123 kfree(iter);
5124 return NULL;
5125 }
5126
5127 cpu_buffer = buffer->buffers[cpu];
5128
5129 iter->cpu_buffer = cpu_buffer;
5130
5131 atomic_inc(&cpu_buffer->resize_disabled);
5132
5133 return iter;
5134 }
5135 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5136
5137 /**
5138 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5139 *
5140 * All previously invoked ring_buffer_read_prepare calls to prepare
5141 * iterators will be synchronized. Afterwards, read_buffer_read_start
5142 * calls on those iterators are allowed.
5143 */
5144 void
ring_buffer_read_prepare_sync(void)5145 ring_buffer_read_prepare_sync(void)
5146 {
5147 synchronize_rcu();
5148 }
5149 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5150
5151 /**
5152 * ring_buffer_read_start - start a non consuming read of the buffer
5153 * @iter: The iterator returned by ring_buffer_read_prepare
5154 *
5155 * This finalizes the startup of an iteration through the buffer.
5156 * The iterator comes from a call to ring_buffer_read_prepare and
5157 * an intervening ring_buffer_read_prepare_sync must have been
5158 * performed.
5159 *
5160 * Must be paired with ring_buffer_read_finish.
5161 */
5162 void
ring_buffer_read_start(struct ring_buffer_iter * iter)5163 ring_buffer_read_start(struct ring_buffer_iter *iter)
5164 {
5165 struct ring_buffer_per_cpu *cpu_buffer;
5166 unsigned long flags;
5167
5168 if (!iter)
5169 return;
5170
5171 cpu_buffer = iter->cpu_buffer;
5172
5173 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5174 arch_spin_lock(&cpu_buffer->lock);
5175 rb_iter_reset(iter);
5176 arch_spin_unlock(&cpu_buffer->lock);
5177 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5178 }
5179 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5180
5181 /**
5182 * ring_buffer_read_finish - finish reading the iterator of the buffer
5183 * @iter: The iterator retrieved by ring_buffer_start
5184 *
5185 * This re-enables the recording to the buffer, and frees the
5186 * iterator.
5187 */
5188 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)5189 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5190 {
5191 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5192 unsigned long flags;
5193
5194 /*
5195 * Ring buffer is disabled from recording, here's a good place
5196 * to check the integrity of the ring buffer.
5197 * Must prevent readers from trying to read, as the check
5198 * clears the HEAD page and readers require it.
5199 */
5200 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5201 rb_check_pages(cpu_buffer);
5202 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5203
5204 atomic_dec(&cpu_buffer->resize_disabled);
5205 kfree(iter->event);
5206 kfree(iter);
5207 }
5208 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5209
5210 /**
5211 * ring_buffer_iter_advance - advance the iterator to the next location
5212 * @iter: The ring buffer iterator
5213 *
5214 * Move the location of the iterator such that the next read will
5215 * be the next location of the iterator.
5216 */
ring_buffer_iter_advance(struct ring_buffer_iter * iter)5217 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5218 {
5219 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5220 unsigned long flags;
5221
5222 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5223
5224 rb_advance_iter(iter);
5225
5226 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5227 }
5228 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5229
5230 /**
5231 * ring_buffer_size - return the size of the ring buffer (in bytes)
5232 * @buffer: The ring buffer.
5233 * @cpu: The CPU to get ring buffer size from.
5234 */
ring_buffer_size(struct trace_buffer * buffer,int cpu)5235 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5236 {
5237 /*
5238 * Earlier, this method returned
5239 * BUF_PAGE_SIZE * buffer->nr_pages
5240 * Since the nr_pages field is now removed, we have converted this to
5241 * return the per cpu buffer value.
5242 */
5243 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5244 return 0;
5245
5246 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5247 }
5248 EXPORT_SYMBOL_GPL(ring_buffer_size);
5249
rb_clear_buffer_page(struct buffer_page * page)5250 static void rb_clear_buffer_page(struct buffer_page *page)
5251 {
5252 local_set(&page->write, 0);
5253 local_set(&page->entries, 0);
5254 rb_init_page(page->page);
5255 page->read = 0;
5256 }
5257
5258 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)5259 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5260 {
5261 struct buffer_page *page;
5262
5263 rb_head_page_deactivate(cpu_buffer);
5264
5265 cpu_buffer->head_page
5266 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5267 rb_clear_buffer_page(cpu_buffer->head_page);
5268 list_for_each_entry(page, cpu_buffer->pages, list) {
5269 rb_clear_buffer_page(page);
5270 }
5271
5272 cpu_buffer->tail_page = cpu_buffer->head_page;
5273 cpu_buffer->commit_page = cpu_buffer->head_page;
5274
5275 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5276 INIT_LIST_HEAD(&cpu_buffer->new_pages);
5277 rb_clear_buffer_page(cpu_buffer->reader_page);
5278
5279 local_set(&cpu_buffer->entries_bytes, 0);
5280 local_set(&cpu_buffer->overrun, 0);
5281 local_set(&cpu_buffer->commit_overrun, 0);
5282 local_set(&cpu_buffer->dropped_events, 0);
5283 local_set(&cpu_buffer->entries, 0);
5284 local_set(&cpu_buffer->committing, 0);
5285 local_set(&cpu_buffer->commits, 0);
5286 local_set(&cpu_buffer->pages_touched, 0);
5287 local_set(&cpu_buffer->pages_lost, 0);
5288 local_set(&cpu_buffer->pages_read, 0);
5289 cpu_buffer->last_pages_touch = 0;
5290 cpu_buffer->shortest_full = 0;
5291 cpu_buffer->read = 0;
5292 cpu_buffer->read_bytes = 0;
5293
5294 rb_time_set(&cpu_buffer->write_stamp, 0);
5295 rb_time_set(&cpu_buffer->before_stamp, 0);
5296
5297 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5298
5299 cpu_buffer->lost_events = 0;
5300 cpu_buffer->last_overrun = 0;
5301
5302 rb_head_page_activate(cpu_buffer);
5303 cpu_buffer->pages_removed = 0;
5304 }
5305
5306 /* Must have disabled the cpu buffer then done a synchronize_rcu */
reset_disabled_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)5307 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5308 {
5309 unsigned long flags;
5310
5311 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5312
5313 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5314 goto out;
5315
5316 arch_spin_lock(&cpu_buffer->lock);
5317
5318 rb_reset_cpu(cpu_buffer);
5319
5320 arch_spin_unlock(&cpu_buffer->lock);
5321
5322 out:
5323 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5324 }
5325
5326 /**
5327 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5328 * @buffer: The ring buffer to reset a per cpu buffer of
5329 * @cpu: The CPU buffer to be reset
5330 */
ring_buffer_reset_cpu(struct trace_buffer * buffer,int cpu)5331 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5332 {
5333 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5334
5335 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5336 return;
5337
5338 /* prevent another thread from changing buffer sizes */
5339 mutex_lock(&buffer->mutex);
5340
5341 atomic_inc(&cpu_buffer->resize_disabled);
5342 atomic_inc(&cpu_buffer->record_disabled);
5343
5344 /* Make sure all commits have finished */
5345 synchronize_rcu();
5346
5347 reset_disabled_cpu_buffer(cpu_buffer);
5348
5349 atomic_dec(&cpu_buffer->record_disabled);
5350 atomic_dec(&cpu_buffer->resize_disabled);
5351
5352 mutex_unlock(&buffer->mutex);
5353 }
5354 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5355
5356 /* Flag to ensure proper resetting of atomic variables */
5357 #define RESET_BIT (1 << 30)
5358
5359 /**
5360 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5361 * @buffer: The ring buffer to reset a per cpu buffer of
5362 */
ring_buffer_reset_online_cpus(struct trace_buffer * buffer)5363 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5364 {
5365 struct ring_buffer_per_cpu *cpu_buffer;
5366 int cpu;
5367
5368 /* prevent another thread from changing buffer sizes */
5369 mutex_lock(&buffer->mutex);
5370
5371 for_each_online_buffer_cpu(buffer, cpu) {
5372 cpu_buffer = buffer->buffers[cpu];
5373
5374 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5375 atomic_inc(&cpu_buffer->record_disabled);
5376 }
5377
5378 /* Make sure all commits have finished */
5379 synchronize_rcu();
5380
5381 for_each_buffer_cpu(buffer, cpu) {
5382 cpu_buffer = buffer->buffers[cpu];
5383
5384 /*
5385 * If a CPU came online during the synchronize_rcu(), then
5386 * ignore it.
5387 */
5388 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5389 continue;
5390
5391 reset_disabled_cpu_buffer(cpu_buffer);
5392
5393 atomic_dec(&cpu_buffer->record_disabled);
5394 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5395 }
5396
5397 mutex_unlock(&buffer->mutex);
5398 }
5399
5400 /**
5401 * ring_buffer_reset - reset a ring buffer
5402 * @buffer: The ring buffer to reset all cpu buffers
5403 */
ring_buffer_reset(struct trace_buffer * buffer)5404 void ring_buffer_reset(struct trace_buffer *buffer)
5405 {
5406 struct ring_buffer_per_cpu *cpu_buffer;
5407 int cpu;
5408
5409 /* prevent another thread from changing buffer sizes */
5410 mutex_lock(&buffer->mutex);
5411
5412 for_each_buffer_cpu(buffer, cpu) {
5413 cpu_buffer = buffer->buffers[cpu];
5414
5415 atomic_inc(&cpu_buffer->resize_disabled);
5416 atomic_inc(&cpu_buffer->record_disabled);
5417 }
5418
5419 /* Make sure all commits have finished */
5420 synchronize_rcu();
5421
5422 for_each_buffer_cpu(buffer, cpu) {
5423 cpu_buffer = buffer->buffers[cpu];
5424
5425 reset_disabled_cpu_buffer(cpu_buffer);
5426
5427 atomic_dec(&cpu_buffer->record_disabled);
5428 atomic_dec(&cpu_buffer->resize_disabled);
5429 }
5430
5431 mutex_unlock(&buffer->mutex);
5432 }
5433 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5434
5435 /**
5436 * ring_buffer_empty - is the ring buffer empty?
5437 * @buffer: The ring buffer to test
5438 */
ring_buffer_empty(struct trace_buffer * buffer)5439 bool ring_buffer_empty(struct trace_buffer *buffer)
5440 {
5441 struct ring_buffer_per_cpu *cpu_buffer;
5442 unsigned long flags;
5443 bool dolock;
5444 bool ret;
5445 int cpu;
5446
5447 /* yes this is racy, but if you don't like the race, lock the buffer */
5448 for_each_buffer_cpu(buffer, cpu) {
5449 cpu_buffer = buffer->buffers[cpu];
5450 local_irq_save(flags);
5451 dolock = rb_reader_lock(cpu_buffer);
5452 ret = rb_per_cpu_empty(cpu_buffer);
5453 rb_reader_unlock(cpu_buffer, dolock);
5454 local_irq_restore(flags);
5455
5456 if (!ret)
5457 return false;
5458 }
5459
5460 return true;
5461 }
5462 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5463
5464 /**
5465 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5466 * @buffer: The ring buffer
5467 * @cpu: The CPU buffer to test
5468 */
ring_buffer_empty_cpu(struct trace_buffer * buffer,int cpu)5469 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5470 {
5471 struct ring_buffer_per_cpu *cpu_buffer;
5472 unsigned long flags;
5473 bool dolock;
5474 bool ret;
5475
5476 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5477 return true;
5478
5479 cpu_buffer = buffer->buffers[cpu];
5480 local_irq_save(flags);
5481 dolock = rb_reader_lock(cpu_buffer);
5482 ret = rb_per_cpu_empty(cpu_buffer);
5483 rb_reader_unlock(cpu_buffer, dolock);
5484 local_irq_restore(flags);
5485
5486 return ret;
5487 }
5488 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5489
5490 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5491 /**
5492 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5493 * @buffer_a: One buffer to swap with
5494 * @buffer_b: The other buffer to swap with
5495 * @cpu: the CPU of the buffers to swap
5496 *
5497 * This function is useful for tracers that want to take a "snapshot"
5498 * of a CPU buffer and has another back up buffer lying around.
5499 * it is expected that the tracer handles the cpu buffer not being
5500 * used at the moment.
5501 */
ring_buffer_swap_cpu(struct trace_buffer * buffer_a,struct trace_buffer * buffer_b,int cpu)5502 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5503 struct trace_buffer *buffer_b, int cpu)
5504 {
5505 struct ring_buffer_per_cpu *cpu_buffer_a;
5506 struct ring_buffer_per_cpu *cpu_buffer_b;
5507 int ret = -EINVAL;
5508
5509 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5510 !cpumask_test_cpu(cpu, buffer_b->cpumask))
5511 goto out;
5512
5513 cpu_buffer_a = buffer_a->buffers[cpu];
5514 cpu_buffer_b = buffer_b->buffers[cpu];
5515
5516 /* At least make sure the two buffers are somewhat the same */
5517 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5518 goto out;
5519
5520 ret = -EAGAIN;
5521
5522 if (atomic_read(&buffer_a->record_disabled))
5523 goto out;
5524
5525 if (atomic_read(&buffer_b->record_disabled))
5526 goto out;
5527
5528 if (atomic_read(&cpu_buffer_a->record_disabled))
5529 goto out;
5530
5531 if (atomic_read(&cpu_buffer_b->record_disabled))
5532 goto out;
5533
5534 /*
5535 * We can't do a synchronize_rcu here because this
5536 * function can be called in atomic context.
5537 * Normally this will be called from the same CPU as cpu.
5538 * If not it's up to the caller to protect this.
5539 */
5540 atomic_inc(&cpu_buffer_a->record_disabled);
5541 atomic_inc(&cpu_buffer_b->record_disabled);
5542
5543 ret = -EBUSY;
5544 if (local_read(&cpu_buffer_a->committing))
5545 goto out_dec;
5546 if (local_read(&cpu_buffer_b->committing))
5547 goto out_dec;
5548
5549 /*
5550 * When resize is in progress, we cannot swap it because
5551 * it will mess the state of the cpu buffer.
5552 */
5553 if (atomic_read(&buffer_a->resizing))
5554 goto out_dec;
5555 if (atomic_read(&buffer_b->resizing))
5556 goto out_dec;
5557
5558 buffer_a->buffers[cpu] = cpu_buffer_b;
5559 buffer_b->buffers[cpu] = cpu_buffer_a;
5560
5561 cpu_buffer_b->buffer = buffer_a;
5562 cpu_buffer_a->buffer = buffer_b;
5563
5564 ret = 0;
5565
5566 out_dec:
5567 atomic_dec(&cpu_buffer_a->record_disabled);
5568 atomic_dec(&cpu_buffer_b->record_disabled);
5569 out:
5570 return ret;
5571 }
5572 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5573 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5574
5575 /**
5576 * ring_buffer_alloc_read_page - allocate a page to read from buffer
5577 * @buffer: the buffer to allocate for.
5578 * @cpu: the cpu buffer to allocate.
5579 *
5580 * This function is used in conjunction with ring_buffer_read_page.
5581 * When reading a full page from the ring buffer, these functions
5582 * can be used to speed up the process. The calling function should
5583 * allocate a few pages first with this function. Then when it
5584 * needs to get pages from the ring buffer, it passes the result
5585 * of this function into ring_buffer_read_page, which will swap
5586 * the page that was allocated, with the read page of the buffer.
5587 *
5588 * Returns:
5589 * The page allocated, or ERR_PTR
5590 */
ring_buffer_alloc_read_page(struct trace_buffer * buffer,int cpu)5591 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5592 {
5593 struct ring_buffer_per_cpu *cpu_buffer;
5594 struct buffer_data_page *bpage = NULL;
5595 unsigned long flags;
5596 struct page *page;
5597
5598 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5599 return ERR_PTR(-ENODEV);
5600
5601 cpu_buffer = buffer->buffers[cpu];
5602 local_irq_save(flags);
5603 arch_spin_lock(&cpu_buffer->lock);
5604
5605 if (cpu_buffer->free_page) {
5606 bpage = cpu_buffer->free_page;
5607 cpu_buffer->free_page = NULL;
5608 }
5609
5610 arch_spin_unlock(&cpu_buffer->lock);
5611 local_irq_restore(flags);
5612
5613 if (bpage)
5614 goto out;
5615
5616 page = alloc_pages_node(cpu_to_node(cpu),
5617 GFP_KERNEL | __GFP_NORETRY, 0);
5618 if (!page)
5619 return ERR_PTR(-ENOMEM);
5620
5621 bpage = page_address(page);
5622
5623 out:
5624 rb_init_page(bpage);
5625
5626 return bpage;
5627 }
5628 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5629
5630 /**
5631 * ring_buffer_free_read_page - free an allocated read page
5632 * @buffer: the buffer the page was allocate for
5633 * @cpu: the cpu buffer the page came from
5634 * @data: the page to free
5635 *
5636 * Free a page allocated from ring_buffer_alloc_read_page.
5637 */
ring_buffer_free_read_page(struct trace_buffer * buffer,int cpu,void * data)5638 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5639 {
5640 struct ring_buffer_per_cpu *cpu_buffer;
5641 struct buffer_data_page *bpage = data;
5642 struct page *page = virt_to_page(bpage);
5643 unsigned long flags;
5644
5645 if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5646 return;
5647
5648 cpu_buffer = buffer->buffers[cpu];
5649
5650 /* If the page is still in use someplace else, we can't reuse it */
5651 if (page_ref_count(page) > 1)
5652 goto out;
5653
5654 local_irq_save(flags);
5655 arch_spin_lock(&cpu_buffer->lock);
5656
5657 if (!cpu_buffer->free_page) {
5658 cpu_buffer->free_page = bpage;
5659 bpage = NULL;
5660 }
5661
5662 arch_spin_unlock(&cpu_buffer->lock);
5663 local_irq_restore(flags);
5664
5665 out:
5666 free_page((unsigned long)bpage);
5667 }
5668 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5669
5670 /**
5671 * ring_buffer_read_page - extract a page from the ring buffer
5672 * @buffer: buffer to extract from
5673 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5674 * @len: amount to extract
5675 * @cpu: the cpu of the buffer to extract
5676 * @full: should the extraction only happen when the page is full.
5677 *
5678 * This function will pull out a page from the ring buffer and consume it.
5679 * @data_page must be the address of the variable that was returned
5680 * from ring_buffer_alloc_read_page. This is because the page might be used
5681 * to swap with a page in the ring buffer.
5682 *
5683 * for example:
5684 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
5685 * if (IS_ERR(rpage))
5686 * return PTR_ERR(rpage);
5687 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5688 * if (ret >= 0)
5689 * process_page(rpage, ret);
5690 *
5691 * When @full is set, the function will not return true unless
5692 * the writer is off the reader page.
5693 *
5694 * Note: it is up to the calling functions to handle sleeps and wakeups.
5695 * The ring buffer can be used anywhere in the kernel and can not
5696 * blindly call wake_up. The layer that uses the ring buffer must be
5697 * responsible for that.
5698 *
5699 * Returns:
5700 * >=0 if data has been transferred, returns the offset of consumed data.
5701 * <0 if no data has been transferred.
5702 */
ring_buffer_read_page(struct trace_buffer * buffer,void ** data_page,size_t len,int cpu,int full)5703 int ring_buffer_read_page(struct trace_buffer *buffer,
5704 void **data_page, size_t len, int cpu, int full)
5705 {
5706 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5707 struct ring_buffer_event *event;
5708 struct buffer_data_page *bpage;
5709 struct buffer_page *reader;
5710 unsigned long missed_events;
5711 unsigned long flags;
5712 unsigned int commit;
5713 unsigned int read;
5714 u64 save_timestamp;
5715 int ret = -1;
5716
5717 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5718 goto out;
5719
5720 /*
5721 * If len is not big enough to hold the page header, then
5722 * we can not copy anything.
5723 */
5724 if (len <= BUF_PAGE_HDR_SIZE)
5725 goto out;
5726
5727 len -= BUF_PAGE_HDR_SIZE;
5728
5729 if (!data_page)
5730 goto out;
5731
5732 bpage = *data_page;
5733 if (!bpage)
5734 goto out;
5735
5736 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5737
5738 reader = rb_get_reader_page(cpu_buffer);
5739 if (!reader)
5740 goto out_unlock;
5741
5742 event = rb_reader_event(cpu_buffer);
5743
5744 read = reader->read;
5745 commit = rb_page_commit(reader);
5746
5747 /* Check if any events were dropped */
5748 missed_events = cpu_buffer->lost_events;
5749
5750 /*
5751 * If this page has been partially read or
5752 * if len is not big enough to read the rest of the page or
5753 * a writer is still on the page, then
5754 * we must copy the data from the page to the buffer.
5755 * Otherwise, we can simply swap the page with the one passed in.
5756 */
5757 if (read || (len < (commit - read)) ||
5758 cpu_buffer->reader_page == cpu_buffer->commit_page) {
5759 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5760 unsigned int rpos = read;
5761 unsigned int pos = 0;
5762 unsigned int size;
5763
5764 /*
5765 * If a full page is expected, this can still be returned
5766 * if there's been a previous partial read and the
5767 * rest of the page can be read and the commit page is off
5768 * the reader page.
5769 */
5770 if (full &&
5771 (!read || (len < (commit - read)) ||
5772 cpu_buffer->reader_page == cpu_buffer->commit_page))
5773 goto out_unlock;
5774
5775 if (len > (commit - read))
5776 len = (commit - read);
5777
5778 /* Always keep the time extend and data together */
5779 size = rb_event_ts_length(event);
5780
5781 if (len < size)
5782 goto out_unlock;
5783
5784 /* save the current timestamp, since the user will need it */
5785 save_timestamp = cpu_buffer->read_stamp;
5786
5787 /* Need to copy one event at a time */
5788 do {
5789 /* We need the size of one event, because
5790 * rb_advance_reader only advances by one event,
5791 * whereas rb_event_ts_length may include the size of
5792 * one or two events.
5793 * We have already ensured there's enough space if this
5794 * is a time extend. */
5795 size = rb_event_length(event);
5796 memcpy(bpage->data + pos, rpage->data + rpos, size);
5797
5798 len -= size;
5799
5800 rb_advance_reader(cpu_buffer);
5801 rpos = reader->read;
5802 pos += size;
5803
5804 if (rpos >= commit)
5805 break;
5806
5807 event = rb_reader_event(cpu_buffer);
5808 /* Always keep the time extend and data together */
5809 size = rb_event_ts_length(event);
5810 } while (len >= size);
5811
5812 /* update bpage */
5813 local_set(&bpage->commit, pos);
5814 bpage->time_stamp = save_timestamp;
5815
5816 /* we copied everything to the beginning */
5817 read = 0;
5818 } else {
5819 /* update the entry counter */
5820 cpu_buffer->read += rb_page_entries(reader);
5821 cpu_buffer->read_bytes += rb_page_commit(reader);
5822
5823 /* swap the pages */
5824 rb_init_page(bpage);
5825 bpage = reader->page;
5826 reader->page = *data_page;
5827 local_set(&reader->write, 0);
5828 local_set(&reader->entries, 0);
5829 reader->read = 0;
5830 *data_page = bpage;
5831
5832 /*
5833 * Use the real_end for the data size,
5834 * This gives us a chance to store the lost events
5835 * on the page.
5836 */
5837 if (reader->real_end)
5838 local_set(&bpage->commit, reader->real_end);
5839 }
5840 ret = read;
5841
5842 cpu_buffer->lost_events = 0;
5843
5844 commit = local_read(&bpage->commit);
5845 /*
5846 * Set a flag in the commit field if we lost events
5847 */
5848 if (missed_events) {
5849 /* If there is room at the end of the page to save the
5850 * missed events, then record it there.
5851 */
5852 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5853 memcpy(&bpage->data[commit], &missed_events,
5854 sizeof(missed_events));
5855 local_add(RB_MISSED_STORED, &bpage->commit);
5856 commit += sizeof(missed_events);
5857 }
5858 local_add(RB_MISSED_EVENTS, &bpage->commit);
5859 }
5860
5861 /*
5862 * This page may be off to user land. Zero it out here.
5863 */
5864 if (commit < BUF_PAGE_SIZE)
5865 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5866
5867 out_unlock:
5868 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5869
5870 out:
5871 return ret;
5872 }
5873 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5874
5875 /*
5876 * We only allocate new buffers, never free them if the CPU goes down.
5877 * If we were to free the buffer, then the user would lose any trace that was in
5878 * the buffer.
5879 */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)5880 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5881 {
5882 struct trace_buffer *buffer;
5883 long nr_pages_same;
5884 int cpu_i;
5885 unsigned long nr_pages;
5886
5887 buffer = container_of(node, struct trace_buffer, node);
5888 if (cpumask_test_cpu(cpu, buffer->cpumask))
5889 return 0;
5890
5891 nr_pages = 0;
5892 nr_pages_same = 1;
5893 /* check if all cpu sizes are same */
5894 for_each_buffer_cpu(buffer, cpu_i) {
5895 /* fill in the size from first enabled cpu */
5896 if (nr_pages == 0)
5897 nr_pages = buffer->buffers[cpu_i]->nr_pages;
5898 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5899 nr_pages_same = 0;
5900 break;
5901 }
5902 }
5903 /* allocate minimum pages, user can later expand it */
5904 if (!nr_pages_same)
5905 nr_pages = 2;
5906 buffer->buffers[cpu] =
5907 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5908 if (!buffer->buffers[cpu]) {
5909 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5910 cpu);
5911 return -ENOMEM;
5912 }
5913 smp_wmb();
5914 cpumask_set_cpu(cpu, buffer->cpumask);
5915 return 0;
5916 }
5917
5918 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5919 /*
5920 * This is a basic integrity check of the ring buffer.
5921 * Late in the boot cycle this test will run when configured in.
5922 * It will kick off a thread per CPU that will go into a loop
5923 * writing to the per cpu ring buffer various sizes of data.
5924 * Some of the data will be large items, some small.
5925 *
5926 * Another thread is created that goes into a spin, sending out
5927 * IPIs to the other CPUs to also write into the ring buffer.
5928 * this is to test the nesting ability of the buffer.
5929 *
5930 * Basic stats are recorded and reported. If something in the
5931 * ring buffer should happen that's not expected, a big warning
5932 * is displayed and all ring buffers are disabled.
5933 */
5934 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5935
5936 struct rb_test_data {
5937 struct trace_buffer *buffer;
5938 unsigned long events;
5939 unsigned long bytes_written;
5940 unsigned long bytes_alloc;
5941 unsigned long bytes_dropped;
5942 unsigned long events_nested;
5943 unsigned long bytes_written_nested;
5944 unsigned long bytes_alloc_nested;
5945 unsigned long bytes_dropped_nested;
5946 int min_size_nested;
5947 int max_size_nested;
5948 int max_size;
5949 int min_size;
5950 int cpu;
5951 int cnt;
5952 };
5953
5954 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5955
5956 /* 1 meg per cpu */
5957 #define RB_TEST_BUFFER_SIZE 1048576
5958
5959 static char rb_string[] __initdata =
5960 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5961 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5962 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5963
5964 static bool rb_test_started __initdata;
5965
5966 struct rb_item {
5967 int size;
5968 char str[];
5969 };
5970
rb_write_something(struct rb_test_data * data,bool nested)5971 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5972 {
5973 struct ring_buffer_event *event;
5974 struct rb_item *item;
5975 bool started;
5976 int event_len;
5977 int size;
5978 int len;
5979 int cnt;
5980
5981 /* Have nested writes different that what is written */
5982 cnt = data->cnt + (nested ? 27 : 0);
5983
5984 /* Multiply cnt by ~e, to make some unique increment */
5985 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5986
5987 len = size + sizeof(struct rb_item);
5988
5989 started = rb_test_started;
5990 /* read rb_test_started before checking buffer enabled */
5991 smp_rmb();
5992
5993 event = ring_buffer_lock_reserve(data->buffer, len);
5994 if (!event) {
5995 /* Ignore dropped events before test starts. */
5996 if (started) {
5997 if (nested)
5998 data->bytes_dropped += len;
5999 else
6000 data->bytes_dropped_nested += len;
6001 }
6002 return len;
6003 }
6004
6005 event_len = ring_buffer_event_length(event);
6006
6007 if (RB_WARN_ON(data->buffer, event_len < len))
6008 goto out;
6009
6010 item = ring_buffer_event_data(event);
6011 item->size = size;
6012 memcpy(item->str, rb_string, size);
6013
6014 if (nested) {
6015 data->bytes_alloc_nested += event_len;
6016 data->bytes_written_nested += len;
6017 data->events_nested++;
6018 if (!data->min_size_nested || len < data->min_size_nested)
6019 data->min_size_nested = len;
6020 if (len > data->max_size_nested)
6021 data->max_size_nested = len;
6022 } else {
6023 data->bytes_alloc += event_len;
6024 data->bytes_written += len;
6025 data->events++;
6026 if (!data->min_size || len < data->min_size)
6027 data->max_size = len;
6028 if (len > data->max_size)
6029 data->max_size = len;
6030 }
6031
6032 out:
6033 ring_buffer_unlock_commit(data->buffer);
6034
6035 return 0;
6036 }
6037
rb_test(void * arg)6038 static __init int rb_test(void *arg)
6039 {
6040 struct rb_test_data *data = arg;
6041
6042 while (!kthread_should_stop()) {
6043 rb_write_something(data, false);
6044 data->cnt++;
6045
6046 set_current_state(TASK_INTERRUPTIBLE);
6047 /* Now sleep between a min of 100-300us and a max of 1ms */
6048 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6049 }
6050
6051 return 0;
6052 }
6053
rb_ipi(void * ignore)6054 static __init void rb_ipi(void *ignore)
6055 {
6056 struct rb_test_data *data;
6057 int cpu = smp_processor_id();
6058
6059 data = &rb_data[cpu];
6060 rb_write_something(data, true);
6061 }
6062
rb_hammer_test(void * arg)6063 static __init int rb_hammer_test(void *arg)
6064 {
6065 while (!kthread_should_stop()) {
6066
6067 /* Send an IPI to all cpus to write data! */
6068 smp_call_function(rb_ipi, NULL, 1);
6069 /* No sleep, but for non preempt, let others run */
6070 schedule();
6071 }
6072
6073 return 0;
6074 }
6075
test_ringbuffer(void)6076 static __init int test_ringbuffer(void)
6077 {
6078 struct task_struct *rb_hammer;
6079 struct trace_buffer *buffer;
6080 int cpu;
6081 int ret = 0;
6082
6083 if (security_locked_down(LOCKDOWN_TRACEFS)) {
6084 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6085 return 0;
6086 }
6087
6088 pr_info("Running ring buffer tests...\n");
6089
6090 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6091 if (WARN_ON(!buffer))
6092 return 0;
6093
6094 /* Disable buffer so that threads can't write to it yet */
6095 ring_buffer_record_off(buffer);
6096
6097 for_each_online_cpu(cpu) {
6098 rb_data[cpu].buffer = buffer;
6099 rb_data[cpu].cpu = cpu;
6100 rb_data[cpu].cnt = cpu;
6101 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6102 cpu, "rbtester/%u");
6103 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6104 pr_cont("FAILED\n");
6105 ret = PTR_ERR(rb_threads[cpu]);
6106 goto out_free;
6107 }
6108 }
6109
6110 /* Now create the rb hammer! */
6111 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6112 if (WARN_ON(IS_ERR(rb_hammer))) {
6113 pr_cont("FAILED\n");
6114 ret = PTR_ERR(rb_hammer);
6115 goto out_free;
6116 }
6117
6118 ring_buffer_record_on(buffer);
6119 /*
6120 * Show buffer is enabled before setting rb_test_started.
6121 * Yes there's a small race window where events could be
6122 * dropped and the thread wont catch it. But when a ring
6123 * buffer gets enabled, there will always be some kind of
6124 * delay before other CPUs see it. Thus, we don't care about
6125 * those dropped events. We care about events dropped after
6126 * the threads see that the buffer is active.
6127 */
6128 smp_wmb();
6129 rb_test_started = true;
6130
6131 set_current_state(TASK_INTERRUPTIBLE);
6132 /* Just run for 10 seconds */;
6133 schedule_timeout(10 * HZ);
6134
6135 kthread_stop(rb_hammer);
6136
6137 out_free:
6138 for_each_online_cpu(cpu) {
6139 if (!rb_threads[cpu])
6140 break;
6141 kthread_stop(rb_threads[cpu]);
6142 }
6143 if (ret) {
6144 ring_buffer_free(buffer);
6145 return ret;
6146 }
6147
6148 /* Report! */
6149 pr_info("finished\n");
6150 for_each_online_cpu(cpu) {
6151 struct ring_buffer_event *event;
6152 struct rb_test_data *data = &rb_data[cpu];
6153 struct rb_item *item;
6154 unsigned long total_events;
6155 unsigned long total_dropped;
6156 unsigned long total_written;
6157 unsigned long total_alloc;
6158 unsigned long total_read = 0;
6159 unsigned long total_size = 0;
6160 unsigned long total_len = 0;
6161 unsigned long total_lost = 0;
6162 unsigned long lost;
6163 int big_event_size;
6164 int small_event_size;
6165
6166 ret = -1;
6167
6168 total_events = data->events + data->events_nested;
6169 total_written = data->bytes_written + data->bytes_written_nested;
6170 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6171 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6172
6173 big_event_size = data->max_size + data->max_size_nested;
6174 small_event_size = data->min_size + data->min_size_nested;
6175
6176 pr_info("CPU %d:\n", cpu);
6177 pr_info(" events: %ld\n", total_events);
6178 pr_info(" dropped bytes: %ld\n", total_dropped);
6179 pr_info(" alloced bytes: %ld\n", total_alloc);
6180 pr_info(" written bytes: %ld\n", total_written);
6181 pr_info(" biggest event: %d\n", big_event_size);
6182 pr_info(" smallest event: %d\n", small_event_size);
6183
6184 if (RB_WARN_ON(buffer, total_dropped))
6185 break;
6186
6187 ret = 0;
6188
6189 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6190 total_lost += lost;
6191 item = ring_buffer_event_data(event);
6192 total_len += ring_buffer_event_length(event);
6193 total_size += item->size + sizeof(struct rb_item);
6194 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6195 pr_info("FAILED!\n");
6196 pr_info("buffer had: %.*s\n", item->size, item->str);
6197 pr_info("expected: %.*s\n", item->size, rb_string);
6198 RB_WARN_ON(buffer, 1);
6199 ret = -1;
6200 break;
6201 }
6202 total_read++;
6203 }
6204 if (ret)
6205 break;
6206
6207 ret = -1;
6208
6209 pr_info(" read events: %ld\n", total_read);
6210 pr_info(" lost events: %ld\n", total_lost);
6211 pr_info(" total events: %ld\n", total_lost + total_read);
6212 pr_info(" recorded len bytes: %ld\n", total_len);
6213 pr_info(" recorded size bytes: %ld\n", total_size);
6214 if (total_lost) {
6215 pr_info(" With dropped events, record len and size may not match\n"
6216 " alloced and written from above\n");
6217 } else {
6218 if (RB_WARN_ON(buffer, total_len != total_alloc ||
6219 total_size != total_written))
6220 break;
6221 }
6222 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6223 break;
6224
6225 ret = 0;
6226 }
6227 if (!ret)
6228 pr_info("Ring buffer PASSED!\n");
6229
6230 ring_buffer_free(buffer);
6231 return 0;
6232 }
6233
6234 late_initcall(test_ringbuffer);
6235 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
6236