xref: /openbmc/u-boot/lib/hashtable.c (revision e35171e9)
1 // SPDX-License-Identifier: LGPL-2.1+
2 /*
3  * This implementation is based on code from uClibc-0.9.30.3 but was
4  * modified and extended for use within U-Boot.
5  *
6  * Copyright (C) 2010-2013 Wolfgang Denk <wd@denx.de>
7  *
8  * Original license header:
9  *
10  * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc.
11  * This file is part of the GNU C Library.
12  * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993.
13  */
14 
15 #include <errno.h>
16 #include <malloc.h>
17 
18 #ifdef USE_HOSTCC		/* HOST build */
19 # include <string.h>
20 # include <assert.h>
21 # include <ctype.h>
22 
23 # ifndef debug
24 #  ifdef DEBUG
25 #   define debug(fmt,args...)	printf(fmt ,##args)
26 #  else
27 #   define debug(fmt,args...)
28 #  endif
29 # endif
30 #else				/* U-Boot build */
31 # include <common.h>
32 # include <linux/string.h>
33 # include <linux/ctype.h>
34 #endif
35 
36 #ifndef	CONFIG_ENV_MIN_ENTRIES	/* minimum number of entries */
37 #define	CONFIG_ENV_MIN_ENTRIES 64
38 #endif
39 #ifndef	CONFIG_ENV_MAX_ENTRIES	/* maximum number of entries */
40 #define	CONFIG_ENV_MAX_ENTRIES 512
41 #endif
42 
43 #define USED_FREE 0
44 #define USED_DELETED -1
45 
46 #include <env_callback.h>
47 #include <env_flags.h>
48 #include <search.h>
49 #include <slre.h>
50 
51 /*
52  * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
53  * [Knuth]	      The Art of Computer Programming, part 3 (6.4)
54  */
55 
56 /*
57  * The reentrant version has no static variables to maintain the state.
58  * Instead the interface of all functions is extended to take an argument
59  * which describes the current status.
60  */
61 
62 typedef struct _ENTRY {
63 	int used;
64 	ENTRY entry;
65 } _ENTRY;
66 
67 
68 static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep,
69 	int idx);
70 
71 /*
72  * hcreate()
73  */
74 
75 /*
76  * For the used double hash method the table size has to be a prime. To
77  * correct the user given table size we need a prime test.  This trivial
78  * algorithm is adequate because
79  * a)  the code is (most probably) called a few times per program run and
80  * b)  the number is small because the table must fit in the core
81  * */
isprime(unsigned int number)82 static int isprime(unsigned int number)
83 {
84 	/* no even number will be passed */
85 	unsigned int div = 3;
86 
87 	while (div * div < number && number % div != 0)
88 		div += 2;
89 
90 	return number % div != 0;
91 }
92 
93 /*
94  * Before using the hash table we must allocate memory for it.
95  * Test for an existing table are done. We allocate one element
96  * more as the found prime number says. This is done for more effective
97  * indexing as explained in the comment for the hsearch function.
98  * The contents of the table is zeroed, especially the field used
99  * becomes zero.
100  */
101 
hcreate_r(size_t nel,struct hsearch_data * htab)102 int hcreate_r(size_t nel, struct hsearch_data *htab)
103 {
104 	/* Test for correct arguments.  */
105 	if (htab == NULL) {
106 		__set_errno(EINVAL);
107 		return 0;
108 	}
109 
110 	/* There is still another table active. Return with error. */
111 	if (htab->table != NULL)
112 		return 0;
113 
114 	/* Change nel to the first prime number not smaller as nel. */
115 	nel |= 1;		/* make odd */
116 	while (!isprime(nel))
117 		nel += 2;
118 
119 	htab->size = nel;
120 	htab->filled = 0;
121 
122 	/* allocate memory and zero out */
123 	htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY));
124 	if (htab->table == NULL)
125 		return 0;
126 
127 	/* everything went alright */
128 	return 1;
129 }
130 
131 
132 /*
133  * hdestroy()
134  */
135 
136 /*
137  * After using the hash table it has to be destroyed. The used memory can
138  * be freed and the local static variable can be marked as not used.
139  */
140 
hdestroy_r(struct hsearch_data * htab)141 void hdestroy_r(struct hsearch_data *htab)
142 {
143 	int i;
144 
145 	/* Test for correct arguments.  */
146 	if (htab == NULL) {
147 		__set_errno(EINVAL);
148 		return;
149 	}
150 
151 	/* free used memory */
152 	for (i = 1; i <= htab->size; ++i) {
153 		if (htab->table[i].used > 0) {
154 			ENTRY *ep = &htab->table[i].entry;
155 
156 			free((void *)ep->key);
157 			free(ep->data);
158 		}
159 	}
160 	free(htab->table);
161 
162 	/* the sign for an existing table is an value != NULL in htable */
163 	htab->table = NULL;
164 }
165 
166 /*
167  * hsearch()
168  */
169 
170 /*
171  * This is the search function. It uses double hashing with open addressing.
172  * The argument item.key has to be a pointer to an zero terminated, most
173  * probably strings of chars. The function for generating a number of the
174  * strings is simple but fast. It can be replaced by a more complex function
175  * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown.
176  *
177  * We use an trick to speed up the lookup. The table is created by hcreate
178  * with one more element available. This enables us to use the index zero
179  * special. This index will never be used because we store the first hash
180  * index in the field used where zero means not used. Every other value
181  * means used. The used field can be used as a first fast comparison for
182  * equality of the stored and the parameter value. This helps to prevent
183  * unnecessary expensive calls of strcmp.
184  *
185  * This implementation differs from the standard library version of
186  * this function in a number of ways:
187  *
188  * - While the standard version does not make any assumptions about
189  *   the type of the stored data objects at all, this implementation
190  *   works with NUL terminated strings only.
191  * - Instead of storing just pointers to the original objects, we
192  *   create local copies so the caller does not need to care about the
193  *   data any more.
194  * - The standard implementation does not provide a way to update an
195  *   existing entry.  This version will create a new entry or update an
196  *   existing one when both "action == ENTER" and "item.data != NULL".
197  * - Instead of returning 1 on success, we return the index into the
198  *   internal hash table, which is also guaranteed to be positive.
199  *   This allows us direct access to the found hash table slot for
200  *   example for functions like hdelete().
201  */
202 
hmatch_r(const char * match,int last_idx,ENTRY ** retval,struct hsearch_data * htab)203 int hmatch_r(const char *match, int last_idx, ENTRY ** retval,
204 	     struct hsearch_data *htab)
205 {
206 	unsigned int idx;
207 	size_t key_len = strlen(match);
208 
209 	for (idx = last_idx + 1; idx < htab->size; ++idx) {
210 		if (htab->table[idx].used <= 0)
211 			continue;
212 		if (!strncmp(match, htab->table[idx].entry.key, key_len)) {
213 			*retval = &htab->table[idx].entry;
214 			return idx;
215 		}
216 	}
217 
218 	__set_errno(ESRCH);
219 	*retval = NULL;
220 	return 0;
221 }
222 
223 /*
224  * Compare an existing entry with the desired key, and overwrite if the action
225  * is ENTER.  This is simply a helper function for hsearch_r().
226  */
_compare_and_overwrite_entry(ENTRY item,ACTION action,ENTRY ** retval,struct hsearch_data * htab,int flag,unsigned int hval,unsigned int idx)227 static inline int _compare_and_overwrite_entry(ENTRY item, ACTION action,
228 	ENTRY **retval, struct hsearch_data *htab, int flag,
229 	unsigned int hval, unsigned int idx)
230 {
231 	if (htab->table[idx].used == hval
232 	    && strcmp(item.key, htab->table[idx].entry.key) == 0) {
233 		/* Overwrite existing value? */
234 		if ((action == ENTER) && (item.data != NULL)) {
235 			/* check for permission */
236 			if (htab->change_ok != NULL && htab->change_ok(
237 			    &htab->table[idx].entry, item.data,
238 			    env_op_overwrite, flag)) {
239 				debug("change_ok() rejected setting variable "
240 					"%s, skipping it!\n", item.key);
241 				__set_errno(EPERM);
242 				*retval = NULL;
243 				return 0;
244 			}
245 
246 			/* If there is a callback, call it */
247 			if (htab->table[idx].entry.callback &&
248 			    htab->table[idx].entry.callback(item.key,
249 			    item.data, env_op_overwrite, flag)) {
250 				debug("callback() rejected setting variable "
251 					"%s, skipping it!\n", item.key);
252 				__set_errno(EINVAL);
253 				*retval = NULL;
254 				return 0;
255 			}
256 
257 			free(htab->table[idx].entry.data);
258 			htab->table[idx].entry.data = strdup(item.data);
259 			if (!htab->table[idx].entry.data) {
260 				__set_errno(ENOMEM);
261 				*retval = NULL;
262 				return 0;
263 			}
264 		}
265 		/* return found entry */
266 		*retval = &htab->table[idx].entry;
267 		return idx;
268 	}
269 	/* keep searching */
270 	return -1;
271 }
272 
hsearch_r(ENTRY item,ACTION action,ENTRY ** retval,struct hsearch_data * htab,int flag)273 int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval,
274 	      struct hsearch_data *htab, int flag)
275 {
276 	unsigned int hval;
277 	unsigned int count;
278 	unsigned int len = strlen(item.key);
279 	unsigned int idx;
280 	unsigned int first_deleted = 0;
281 	int ret;
282 
283 	/* Compute an value for the given string. Perhaps use a better method. */
284 	hval = len;
285 	count = len;
286 	while (count-- > 0) {
287 		hval <<= 4;
288 		hval += item.key[count];
289 	}
290 
291 	/*
292 	 * First hash function:
293 	 * simply take the modul but prevent zero.
294 	 */
295 	hval %= htab->size;
296 	if (hval == 0)
297 		++hval;
298 
299 	/* The first index tried. */
300 	idx = hval;
301 
302 	if (htab->table[idx].used) {
303 		/*
304 		 * Further action might be required according to the
305 		 * action value.
306 		 */
307 		unsigned hval2;
308 
309 		if (htab->table[idx].used == USED_DELETED
310 		    && !first_deleted)
311 			first_deleted = idx;
312 
313 		ret = _compare_and_overwrite_entry(item, action, retval, htab,
314 			flag, hval, idx);
315 		if (ret != -1)
316 			return ret;
317 
318 		/*
319 		 * Second hash function:
320 		 * as suggested in [Knuth]
321 		 */
322 		hval2 = 1 + hval % (htab->size - 2);
323 
324 		do {
325 			/*
326 			 * Because SIZE is prime this guarantees to
327 			 * step through all available indices.
328 			 */
329 			if (idx <= hval2)
330 				idx = htab->size + idx - hval2;
331 			else
332 				idx -= hval2;
333 
334 			/*
335 			 * If we visited all entries leave the loop
336 			 * unsuccessfully.
337 			 */
338 			if (idx == hval)
339 				break;
340 
341 			if (htab->table[idx].used == USED_DELETED
342 			    && !first_deleted)
343 				first_deleted = idx;
344 
345 			/* If entry is found use it. */
346 			ret = _compare_and_overwrite_entry(item, action, retval,
347 				htab, flag, hval, idx);
348 			if (ret != -1)
349 				return ret;
350 		}
351 		while (htab->table[idx].used != USED_FREE);
352 	}
353 
354 	/* An empty bucket has been found. */
355 	if (action == ENTER) {
356 		/*
357 		 * If table is full and another entry should be
358 		 * entered return with error.
359 		 */
360 		if (htab->filled == htab->size) {
361 			__set_errno(ENOMEM);
362 			*retval = NULL;
363 			return 0;
364 		}
365 
366 		/*
367 		 * Create new entry;
368 		 * create copies of item.key and item.data
369 		 */
370 		if (first_deleted)
371 			idx = first_deleted;
372 
373 		htab->table[idx].used = hval;
374 		htab->table[idx].entry.key = strdup(item.key);
375 		htab->table[idx].entry.data = strdup(item.data);
376 		if (!htab->table[idx].entry.key ||
377 		    !htab->table[idx].entry.data) {
378 			__set_errno(ENOMEM);
379 			*retval = NULL;
380 			return 0;
381 		}
382 
383 		++htab->filled;
384 
385 		/* This is a new entry, so look up a possible callback */
386 		env_callback_init(&htab->table[idx].entry);
387 		/* Also look for flags */
388 		env_flags_init(&htab->table[idx].entry);
389 
390 		/* check for permission */
391 		if (htab->change_ok != NULL && htab->change_ok(
392 		    &htab->table[idx].entry, item.data, env_op_create, flag)) {
393 			debug("change_ok() rejected setting variable "
394 				"%s, skipping it!\n", item.key);
395 			_hdelete(item.key, htab, &htab->table[idx].entry, idx);
396 			__set_errno(EPERM);
397 			*retval = NULL;
398 			return 0;
399 		}
400 
401 		/* If there is a callback, call it */
402 		if (htab->table[idx].entry.callback &&
403 		    htab->table[idx].entry.callback(item.key, item.data,
404 		    env_op_create, flag)) {
405 			debug("callback() rejected setting variable "
406 				"%s, skipping it!\n", item.key);
407 			_hdelete(item.key, htab, &htab->table[idx].entry, idx);
408 			__set_errno(EINVAL);
409 			*retval = NULL;
410 			return 0;
411 		}
412 
413 		/* return new entry */
414 		*retval = &htab->table[idx].entry;
415 		return 1;
416 	}
417 
418 	__set_errno(ESRCH);
419 	*retval = NULL;
420 	return 0;
421 }
422 
423 
424 /*
425  * hdelete()
426  */
427 
428 /*
429  * The standard implementation of hsearch(3) does not provide any way
430  * to delete any entries from the hash table.  We extend the code to
431  * do that.
432  */
433 
_hdelete(const char * key,struct hsearch_data * htab,ENTRY * ep,int idx)434 static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep,
435 	int idx)
436 {
437 	/* free used ENTRY */
438 	debug("hdelete: DELETING key \"%s\"\n", key);
439 	free((void *)ep->key);
440 	free(ep->data);
441 	ep->callback = NULL;
442 	ep->flags = 0;
443 	htab->table[idx].used = USED_DELETED;
444 
445 	--htab->filled;
446 }
447 
hdelete_r(const char * key,struct hsearch_data * htab,int flag)448 int hdelete_r(const char *key, struct hsearch_data *htab, int flag)
449 {
450 	ENTRY e, *ep;
451 	int idx;
452 
453 	debug("hdelete: DELETE key \"%s\"\n", key);
454 
455 	e.key = (char *)key;
456 
457 	idx = hsearch_r(e, FIND, &ep, htab, 0);
458 	if (idx == 0) {
459 		__set_errno(ESRCH);
460 		return 0;	/* not found */
461 	}
462 
463 	/* Check for permission */
464 	if (htab->change_ok != NULL &&
465 	    htab->change_ok(ep, NULL, env_op_delete, flag)) {
466 		debug("change_ok() rejected deleting variable "
467 			"%s, skipping it!\n", key);
468 		__set_errno(EPERM);
469 		return 0;
470 	}
471 
472 	/* If there is a callback, call it */
473 	if (htab->table[idx].entry.callback &&
474 	    htab->table[idx].entry.callback(key, NULL, env_op_delete, flag)) {
475 		debug("callback() rejected deleting variable "
476 			"%s, skipping it!\n", key);
477 		__set_errno(EINVAL);
478 		return 0;
479 	}
480 
481 	_hdelete(key, htab, ep, idx);
482 
483 	return 1;
484 }
485 
486 #if !(defined(CONFIG_SPL_BUILD) && !defined(CONFIG_SPL_SAVEENV))
487 /*
488  * hexport()
489  */
490 
491 /*
492  * Export the data stored in the hash table in linearized form.
493  *
494  * Entries are exported as "name=value" strings, separated by an
495  * arbitrary (non-NUL, of course) separator character. This allows to
496  * use this function both when formatting the U-Boot environment for
497  * external storage (using '\0' as separator), but also when using it
498  * for the "printenv" command to print all variables, simply by using
499  * as '\n" as separator. This can also be used for new features like
500  * exporting the environment data as text file, including the option
501  * for later re-import.
502  *
503  * The entries in the result list will be sorted by ascending key
504  * values.
505  *
506  * If the separator character is different from NUL, then any
507  * separator characters and backslash characters in the values will
508  * be escaped by a preceding backslash in output. This is needed for
509  * example to enable multi-line values, especially when the output
510  * shall later be parsed (for example, for re-import).
511  *
512  * There are several options how the result buffer is handled:
513  *
514  * *resp  size
515  * -----------
516  *  NULL    0	A string of sufficient length will be allocated.
517  *  NULL   >0	A string of the size given will be
518  *		allocated. An error will be returned if the size is
519  *		not sufficient.  Any unused bytes in the string will
520  *		be '\0'-padded.
521  * !NULL    0	The user-supplied buffer will be used. No length
522  *		checking will be performed, i. e. it is assumed that
523  *		the buffer size will always be big enough. DANGEROUS.
524  * !NULL   >0	The user-supplied buffer will be used. An error will
525  *		be returned if the size is not sufficient.  Any unused
526  *		bytes in the string will be '\0'-padded.
527  */
528 
cmpkey(const void * p1,const void * p2)529 static int cmpkey(const void *p1, const void *p2)
530 {
531 	ENTRY *e1 = *(ENTRY **) p1;
532 	ENTRY *e2 = *(ENTRY **) p2;
533 
534 	return (strcmp(e1->key, e2->key));
535 }
536 
match_string(int flag,const char * str,const char * pat,void * priv)537 static int match_string(int flag, const char *str, const char *pat, void *priv)
538 {
539 	switch (flag & H_MATCH_METHOD) {
540 	case H_MATCH_IDENT:
541 		if (strcmp(str, pat) == 0)
542 			return 1;
543 		break;
544 	case H_MATCH_SUBSTR:
545 		if (strstr(str, pat))
546 			return 1;
547 		break;
548 #ifdef CONFIG_REGEX
549 	case H_MATCH_REGEX:
550 		{
551 			struct slre *slrep = (struct slre *)priv;
552 
553 			if (slre_match(slrep, str, strlen(str), NULL))
554 				return 1;
555 		}
556 		break;
557 #endif
558 	default:
559 		printf("## ERROR: unsupported match method: 0x%02x\n",
560 			flag & H_MATCH_METHOD);
561 		break;
562 	}
563 	return 0;
564 }
565 
match_entry(ENTRY * ep,int flag,int argc,char * const argv[])566 static int match_entry(ENTRY *ep, int flag,
567 		 int argc, char * const argv[])
568 {
569 	int arg;
570 	void *priv = NULL;
571 
572 	for (arg = 0; arg < argc; ++arg) {
573 #ifdef CONFIG_REGEX
574 		struct slre slre;
575 
576 		if (slre_compile(&slre, argv[arg]) == 0) {
577 			printf("Error compiling regex: %s\n", slre.err_str);
578 			return 0;
579 		}
580 
581 		priv = (void *)&slre;
582 #endif
583 		if (flag & H_MATCH_KEY) {
584 			if (match_string(flag, ep->key, argv[arg], priv))
585 				return 1;
586 		}
587 		if (flag & H_MATCH_DATA) {
588 			if (match_string(flag, ep->data, argv[arg], priv))
589 				return 1;
590 		}
591 	}
592 	return 0;
593 }
594 
hexport_r(struct hsearch_data * htab,const char sep,int flag,char ** resp,size_t size,int argc,char * const argv[])595 ssize_t hexport_r(struct hsearch_data *htab, const char sep, int flag,
596 		 char **resp, size_t size,
597 		 int argc, char * const argv[])
598 {
599 	ENTRY *list[htab->size];
600 	char *res, *p;
601 	size_t totlen;
602 	int i, n;
603 
604 	/* Test for correct arguments.  */
605 	if ((resp == NULL) || (htab == NULL)) {
606 		__set_errno(EINVAL);
607 		return (-1);
608 	}
609 
610 	debug("EXPORT  table = %p, htab.size = %d, htab.filled = %d, size = %lu\n",
611 	      htab, htab->size, htab->filled, (ulong)size);
612 	/*
613 	 * Pass 1:
614 	 * search used entries,
615 	 * save addresses and compute total length
616 	 */
617 	for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) {
618 
619 		if (htab->table[i].used > 0) {
620 			ENTRY *ep = &htab->table[i].entry;
621 			int found = match_entry(ep, flag, argc, argv);
622 
623 			if ((argc > 0) && (found == 0))
624 				continue;
625 
626 			if ((flag & H_HIDE_DOT) && ep->key[0] == '.')
627 				continue;
628 
629 			list[n++] = ep;
630 
631 			totlen += strlen(ep->key);
632 
633 			if (sep == '\0') {
634 				totlen += strlen(ep->data);
635 			} else {	/* check if escapes are needed */
636 				char *s = ep->data;
637 
638 				while (*s) {
639 					++totlen;
640 					/* add room for needed escape chars */
641 					if ((*s == sep) || (*s == '\\'))
642 						++totlen;
643 					++s;
644 				}
645 			}
646 			totlen += 2;	/* for '=' and 'sep' char */
647 		}
648 	}
649 
650 #ifdef DEBUG
651 	/* Pass 1a: print unsorted list */
652 	printf("Unsorted: n=%d\n", n);
653 	for (i = 0; i < n; ++i) {
654 		printf("\t%3d: %p ==> %-10s => %s\n",
655 		       i, list[i], list[i]->key, list[i]->data);
656 	}
657 #endif
658 
659 	/* Sort list by keys */
660 	qsort(list, n, sizeof(ENTRY *), cmpkey);
661 
662 	/* Check if the user supplied buffer size is sufficient */
663 	if (size) {
664 		if (size < totlen + 1) {	/* provided buffer too small */
665 			printf("Env export buffer too small: %lu, but need %lu\n",
666 			       (ulong)size, (ulong)totlen + 1);
667 			__set_errno(ENOMEM);
668 			return (-1);
669 		}
670 	} else {
671 		size = totlen + 1;
672 	}
673 
674 	/* Check if the user provided a buffer */
675 	if (*resp) {
676 		/* yes; clear it */
677 		res = *resp;
678 		memset(res, '\0', size);
679 	} else {
680 		/* no, allocate and clear one */
681 		*resp = res = calloc(1, size);
682 		if (res == NULL) {
683 			__set_errno(ENOMEM);
684 			return (-1);
685 		}
686 	}
687 	/*
688 	 * Pass 2:
689 	 * export sorted list of result data
690 	 */
691 	for (i = 0, p = res; i < n; ++i) {
692 		const char *s;
693 
694 		s = list[i]->key;
695 		while (*s)
696 			*p++ = *s++;
697 		*p++ = '=';
698 
699 		s = list[i]->data;
700 
701 		while (*s) {
702 			if ((*s == sep) || (*s == '\\'))
703 				*p++ = '\\';	/* escape */
704 			*p++ = *s++;
705 		}
706 		*p++ = sep;
707 	}
708 	*p = '\0';		/* terminate result */
709 
710 	return size;
711 }
712 #endif
713 
714 
715 /*
716  * himport()
717  */
718 
719 /*
720  * Check whether variable 'name' is amongst vars[],
721  * and remove all instances by setting the pointer to NULL
722  */
drop_var_from_set(const char * name,int nvars,char * vars[])723 static int drop_var_from_set(const char *name, int nvars, char * vars[])
724 {
725 	int i = 0;
726 	int res = 0;
727 
728 	/* No variables specified means process all of them */
729 	if (nvars == 0)
730 		return 1;
731 
732 	for (i = 0; i < nvars; i++) {
733 		if (vars[i] == NULL)
734 			continue;
735 		/* If we found it, delete all of them */
736 		if (!strcmp(name, vars[i])) {
737 			vars[i] = NULL;
738 			res = 1;
739 		}
740 	}
741 	if (!res)
742 		debug("Skipping non-listed variable %s\n", name);
743 
744 	return res;
745 }
746 
747 /*
748  * Import linearized data into hash table.
749  *
750  * This is the inverse function to hexport(): it takes a linear list
751  * of "name=value" pairs and creates hash table entries from it.
752  *
753  * Entries without "value", i. e. consisting of only "name" or
754  * "name=", will cause this entry to be deleted from the hash table.
755  *
756  * The "flag" argument can be used to control the behaviour: when the
757  * H_NOCLEAR bit is set, then an existing hash table will kept, i. e.
758  * new data will be added to an existing hash table; otherwise, if no
759  * vars are passed, old data will be discarded and a new hash table
760  * will be created. If vars are passed, passed vars that are not in
761  * the linear list of "name=value" pairs will be removed from the
762  * current hash table.
763  *
764  * The separator character for the "name=value" pairs can be selected,
765  * so we both support importing from externally stored environment
766  * data (separated by NUL characters) and from plain text files
767  * (entries separated by newline characters).
768  *
769  * To allow for nicely formatted text input, leading white space
770  * (sequences of SPACE and TAB chars) is ignored, and entries starting
771  * (after removal of any leading white space) with a '#' character are
772  * considered comments and ignored.
773  *
774  * [NOTE: this means that a variable name cannot start with a '#'
775  * character.]
776  *
777  * When using a non-NUL separator character, backslash is used as
778  * escape character in the value part, allowing for example for
779  * multi-line values.
780  *
781  * In theory, arbitrary separator characters can be used, but only
782  * '\0' and '\n' have really been tested.
783  */
784 
himport_r(struct hsearch_data * htab,const char * env,size_t size,const char sep,int flag,int crlf_is_lf,int nvars,char * const vars[])785 int himport_r(struct hsearch_data *htab,
786 		const char *env, size_t size, const char sep, int flag,
787 		int crlf_is_lf, int nvars, char * const vars[])
788 {
789 	char *data, *sp, *dp, *name, *value;
790 	char *localvars[nvars];
791 	int i;
792 
793 	/* Test for correct arguments.  */
794 	if (htab == NULL) {
795 		__set_errno(EINVAL);
796 		return 0;
797 	}
798 
799 	/* we allocate new space to make sure we can write to the array */
800 	if ((data = malloc(size + 1)) == NULL) {
801 		debug("himport_r: can't malloc %lu bytes\n", (ulong)size + 1);
802 		__set_errno(ENOMEM);
803 		return 0;
804 	}
805 	memcpy(data, env, size);
806 	data[size] = '\0';
807 	dp = data;
808 
809 	/* make a local copy of the list of variables */
810 	if (nvars)
811 		memcpy(localvars, vars, sizeof(vars[0]) * nvars);
812 
813 	if ((flag & H_NOCLEAR) == 0 && !nvars) {
814 		/* Destroy old hash table if one exists */
815 		debug("Destroy Hash Table: %p table = %p\n", htab,
816 		       htab->table);
817 		if (htab->table)
818 			hdestroy_r(htab);
819 	}
820 
821 	/*
822 	 * Create new hash table (if needed).  The computation of the hash
823 	 * table size is based on heuristics: in a sample of some 70+
824 	 * existing systems we found an average size of 39+ bytes per entry
825 	 * in the environment (for the whole key=value pair). Assuming a
826 	 * size of 8 per entry (= safety factor of ~5) should provide enough
827 	 * safety margin for any existing environment definitions and still
828 	 * allow for more than enough dynamic additions. Note that the
829 	 * "size" argument is supposed to give the maximum environment size
830 	 * (CONFIG_ENV_SIZE).  This heuristics will result in
831 	 * unreasonably large numbers (and thus memory footprint) for
832 	 * big flash environments (>8,000 entries for 64 KB
833 	 * environment size), so we clip it to a reasonable value.
834 	 * On the other hand we need to add some more entries for free
835 	 * space when importing very small buffers. Both boundaries can
836 	 * be overwritten in the board config file if needed.
837 	 */
838 
839 	if (!htab->table) {
840 		int nent = CONFIG_ENV_MIN_ENTRIES + size / 8;
841 
842 		if (nent > CONFIG_ENV_MAX_ENTRIES)
843 			nent = CONFIG_ENV_MAX_ENTRIES;
844 
845 		debug("Create Hash Table: N=%d\n", nent);
846 
847 		if (hcreate_r(nent, htab) == 0) {
848 			free(data);
849 			return 0;
850 		}
851 	}
852 
853 	if (!size) {
854 		free(data);
855 		return 1;		/* everything OK */
856 	}
857 	if(crlf_is_lf) {
858 		/* Remove Carriage Returns in front of Line Feeds */
859 		unsigned ignored_crs = 0;
860 		for(;dp < data + size && *dp; ++dp) {
861 			if(*dp == '\r' &&
862 			   dp < data + size - 1 && *(dp+1) == '\n')
863 				++ignored_crs;
864 			else
865 				*(dp-ignored_crs) = *dp;
866 		}
867 		size -= ignored_crs;
868 		dp = data;
869 	}
870 	/* Parse environment; allow for '\0' and 'sep' as separators */
871 	do {
872 		ENTRY e, *rv;
873 
874 		/* skip leading white space */
875 		while (isblank(*dp))
876 			++dp;
877 
878 		/* skip comment lines */
879 		if (*dp == '#') {
880 			while (*dp && (*dp != sep))
881 				++dp;
882 			++dp;
883 			continue;
884 		}
885 
886 		/* parse name */
887 		for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp)
888 			;
889 
890 		/* deal with "name" and "name=" entries (delete var) */
891 		if (*dp == '\0' || *(dp + 1) == '\0' ||
892 		    *dp == sep || *(dp + 1) == sep) {
893 			if (*dp == '=')
894 				*dp++ = '\0';
895 			*dp++ = '\0';	/* terminate name */
896 
897 			debug("DELETE CANDIDATE: \"%s\"\n", name);
898 			if (!drop_var_from_set(name, nvars, localvars))
899 				continue;
900 
901 			if (hdelete_r(name, htab, flag) == 0)
902 				debug("DELETE ERROR ##############################\n");
903 
904 			continue;
905 		}
906 		*dp++ = '\0';	/* terminate name */
907 
908 		/* parse value; deal with escapes */
909 		for (value = sp = dp; *dp && (*dp != sep); ++dp) {
910 			if ((*dp == '\\') && *(dp + 1))
911 				++dp;
912 			*sp++ = *dp;
913 		}
914 		*sp++ = '\0';	/* terminate value */
915 		++dp;
916 
917 		if (*name == 0) {
918 			debug("INSERT: unable to use an empty key\n");
919 			__set_errno(EINVAL);
920 			free(data);
921 			return 0;
922 		}
923 
924 		/* Skip variables which are not supposed to be processed */
925 		if (!drop_var_from_set(name, nvars, localvars))
926 			continue;
927 
928 		/* enter into hash table */
929 		e.key = name;
930 		e.data = value;
931 
932 		hsearch_r(e, ENTER, &rv, htab, flag);
933 		if (rv == NULL)
934 			printf("himport_r: can't insert \"%s=%s\" into hash table\n",
935 				name, value);
936 
937 		debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n",
938 			htab, htab->filled, htab->size,
939 			rv, name, value);
940 	} while ((dp < data + size) && *dp);	/* size check needed for text */
941 						/* without '\0' termination */
942 	debug("INSERT: free(data = %p)\n", data);
943 	free(data);
944 
945 	if (flag & H_NOCLEAR)
946 		goto end;
947 
948 	/* process variables which were not considered */
949 	for (i = 0; i < nvars; i++) {
950 		if (localvars[i] == NULL)
951 			continue;
952 		/*
953 		 * All variables which were not deleted from the variable list
954 		 * were not present in the imported env
955 		 * This could mean two things:
956 		 * a) if the variable was present in current env, we delete it
957 		 * b) if the variable was not present in current env, we notify
958 		 *    it might be a typo
959 		 */
960 		if (hdelete_r(localvars[i], htab, flag) == 0)
961 			printf("WARNING: '%s' neither in running nor in imported env!\n", localvars[i]);
962 		else
963 			printf("WARNING: '%s' not in imported env, deleting it!\n", localvars[i]);
964 	}
965 
966 end:
967 	debug("INSERT: done\n");
968 	return 1;		/* everything OK */
969 }
970 
971 /*
972  * hwalk_r()
973  */
974 
975 /*
976  * Walk all of the entries in the hash, calling the callback for each one.
977  * this allows some generic operation to be performed on each element.
978  */
hwalk_r(struct hsearch_data * htab,int (* callback)(ENTRY *))979 int hwalk_r(struct hsearch_data *htab, int (*callback)(ENTRY *))
980 {
981 	int i;
982 	int retval;
983 
984 	for (i = 1; i <= htab->size; ++i) {
985 		if (htab->table[i].used > 0) {
986 			retval = callback(&htab->table[i].entry);
987 			if (retval)
988 				return retval;
989 		}
990 	}
991 
992 	return 0;
993 }
994