1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * USB Peripheral Controller driver for Aeroflex Gaisler GRUSBDC.
4 *
5 * 2013 (c) Aeroflex Gaisler AB
6 *
7 * This driver supports GRUSBDC USB Device Controller cores available in the
8 * GRLIB VHDL IP core library.
9 *
10 * Full documentation of the GRUSBDC core can be found here:
11 * https://www.gaisler.com/products/grlib/grip.pdf
12 *
13 * Contributors:
14 * - Andreas Larsson <andreas@gaisler.com>
15 * - Marko Isomaki
16 */
17
18 /*
19 * A GRUSBDC core can have up to 16 IN endpoints and 16 OUT endpoints each
20 * individually configurable to any of the four USB transfer types. This driver
21 * only supports cores in DMA mode.
22 */
23
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/errno.h>
30 #include <linux/list.h>
31 #include <linux/interrupt.h>
32 #include <linux/device.h>
33 #include <linux/usb.h>
34 #include <linux/usb/ch9.h>
35 #include <linux/usb/gadget.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/dmapool.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/of.h>
41
42 #include <asm/byteorder.h>
43
44 #include "gr_udc.h"
45
46 #define DRIVER_NAME "gr_udc"
47 #define DRIVER_DESC "Aeroflex Gaisler GRUSBDC USB Peripheral Controller"
48
49 static const char driver_name[] = DRIVER_NAME;
50
51 #define gr_read32(x) (ioread32be((x)))
52 #define gr_write32(x, v) (iowrite32be((v), (x)))
53
54 /* USB speed and corresponding string calculated from status register value */
55 #define GR_SPEED(status) \
56 ((status & GR_STATUS_SP) ? USB_SPEED_FULL : USB_SPEED_HIGH)
57 #define GR_SPEED_STR(status) usb_speed_string(GR_SPEED(status))
58
59 /* Size of hardware buffer calculated from epctrl register value */
60 #define GR_BUFFER_SIZE(epctrl) \
61 ((((epctrl) & GR_EPCTRL_BUFSZ_MASK) >> GR_EPCTRL_BUFSZ_POS) * \
62 GR_EPCTRL_BUFSZ_SCALER)
63
64 /* ---------------------------------------------------------------------- */
65 /* Debug printout functionality */
66
67 static const char * const gr_modestring[] = {"control", "iso", "bulk", "int"};
68
gr_ep0state_string(enum gr_ep0state state)69 static const char *gr_ep0state_string(enum gr_ep0state state)
70 {
71 static const char *const names[] = {
72 [GR_EP0_DISCONNECT] = "disconnect",
73 [GR_EP0_SETUP] = "setup",
74 [GR_EP0_IDATA] = "idata",
75 [GR_EP0_ODATA] = "odata",
76 [GR_EP0_ISTATUS] = "istatus",
77 [GR_EP0_OSTATUS] = "ostatus",
78 [GR_EP0_STALL] = "stall",
79 [GR_EP0_SUSPEND] = "suspend",
80 };
81
82 if (state < 0 || state >= ARRAY_SIZE(names))
83 return "UNKNOWN";
84
85 return names[state];
86 }
87
88 #ifdef VERBOSE_DEBUG
89
gr_dbgprint_request(const char * str,struct gr_ep * ep,struct gr_request * req)90 static void gr_dbgprint_request(const char *str, struct gr_ep *ep,
91 struct gr_request *req)
92 {
93 int buflen = ep->is_in ? req->req.length : req->req.actual;
94 int rowlen = 32;
95 int plen = min(rowlen, buflen);
96
97 dev_dbg(ep->dev->dev, "%s: 0x%p, %d bytes data%s:\n", str, req, buflen,
98 (buflen > plen ? " (truncated)" : ""));
99 print_hex_dump_debug(" ", DUMP_PREFIX_NONE,
100 rowlen, 4, req->req.buf, plen, false);
101 }
102
gr_dbgprint_devreq(struct gr_udc * dev,u8 type,u8 request,u16 value,u16 index,u16 length)103 static void gr_dbgprint_devreq(struct gr_udc *dev, u8 type, u8 request,
104 u16 value, u16 index, u16 length)
105 {
106 dev_vdbg(dev->dev, "REQ: %02x.%02x v%04x i%04x l%04x\n",
107 type, request, value, index, length);
108 }
109 #else /* !VERBOSE_DEBUG */
110
gr_dbgprint_request(const char * str,struct gr_ep * ep,struct gr_request * req)111 static void gr_dbgprint_request(const char *str, struct gr_ep *ep,
112 struct gr_request *req) {}
113
gr_dbgprint_devreq(struct gr_udc * dev,u8 type,u8 request,u16 value,u16 index,u16 length)114 static void gr_dbgprint_devreq(struct gr_udc *dev, u8 type, u8 request,
115 u16 value, u16 index, u16 length) {}
116
117 #endif /* VERBOSE_DEBUG */
118
119 /* ---------------------------------------------------------------------- */
120 /* Debugfs functionality */
121
122 #ifdef CONFIG_USB_GADGET_DEBUG_FS
123
gr_seq_ep_show(struct seq_file * seq,struct gr_ep * ep)124 static void gr_seq_ep_show(struct seq_file *seq, struct gr_ep *ep)
125 {
126 u32 epctrl = gr_read32(&ep->regs->epctrl);
127 u32 epstat = gr_read32(&ep->regs->epstat);
128 int mode = (epctrl & GR_EPCTRL_TT_MASK) >> GR_EPCTRL_TT_POS;
129 struct gr_request *req;
130
131 seq_printf(seq, "%s:\n", ep->ep.name);
132 seq_printf(seq, " mode = %s\n", gr_modestring[mode]);
133 seq_printf(seq, " halted: %d\n", !!(epctrl & GR_EPCTRL_EH));
134 seq_printf(seq, " disabled: %d\n", !!(epctrl & GR_EPCTRL_ED));
135 seq_printf(seq, " valid: %d\n", !!(epctrl & GR_EPCTRL_EV));
136 seq_printf(seq, " dma_start = %d\n", ep->dma_start);
137 seq_printf(seq, " stopped = %d\n", ep->stopped);
138 seq_printf(seq, " wedged = %d\n", ep->wedged);
139 seq_printf(seq, " callback = %d\n", ep->callback);
140 seq_printf(seq, " maxpacket = %d\n", ep->ep.maxpacket);
141 seq_printf(seq, " maxpacket_limit = %d\n", ep->ep.maxpacket_limit);
142 seq_printf(seq, " bytes_per_buffer = %d\n", ep->bytes_per_buffer);
143 if (mode == 1 || mode == 3)
144 seq_printf(seq, " nt = %d\n",
145 (epctrl & GR_EPCTRL_NT_MASK) >> GR_EPCTRL_NT_POS);
146
147 seq_printf(seq, " Buffer 0: %s %s%d\n",
148 epstat & GR_EPSTAT_B0 ? "valid" : "invalid",
149 epstat & GR_EPSTAT_BS ? " " : "selected ",
150 (epstat & GR_EPSTAT_B0CNT_MASK) >> GR_EPSTAT_B0CNT_POS);
151 seq_printf(seq, " Buffer 1: %s %s%d\n",
152 epstat & GR_EPSTAT_B1 ? "valid" : "invalid",
153 epstat & GR_EPSTAT_BS ? "selected " : " ",
154 (epstat & GR_EPSTAT_B1CNT_MASK) >> GR_EPSTAT_B1CNT_POS);
155
156 if (list_empty(&ep->queue)) {
157 seq_puts(seq, " Queue: empty\n\n");
158 return;
159 }
160
161 seq_puts(seq, " Queue:\n");
162 list_for_each_entry(req, &ep->queue, queue) {
163 struct gr_dma_desc *desc;
164 struct gr_dma_desc *next;
165
166 seq_printf(seq, " 0x%p: 0x%p %d %d\n", req,
167 &req->req.buf, req->req.actual, req->req.length);
168
169 next = req->first_desc;
170 do {
171 desc = next;
172 next = desc->next_desc;
173 seq_printf(seq, " %c 0x%p (0x%08x): 0x%05x 0x%08x\n",
174 desc == req->curr_desc ? 'c' : ' ',
175 desc, desc->paddr, desc->ctrl, desc->data);
176 } while (desc != req->last_desc);
177 }
178 seq_puts(seq, "\n");
179 }
180
gr_dfs_show(struct seq_file * seq,void * v)181 static int gr_dfs_show(struct seq_file *seq, void *v)
182 {
183 struct gr_udc *dev = seq->private;
184 u32 control = gr_read32(&dev->regs->control);
185 u32 status = gr_read32(&dev->regs->status);
186 struct gr_ep *ep;
187
188 seq_printf(seq, "usb state = %s\n",
189 usb_state_string(dev->gadget.state));
190 seq_printf(seq, "address = %d\n",
191 (control & GR_CONTROL_UA_MASK) >> GR_CONTROL_UA_POS);
192 seq_printf(seq, "speed = %s\n", GR_SPEED_STR(status));
193 seq_printf(seq, "ep0state = %s\n", gr_ep0state_string(dev->ep0state));
194 seq_printf(seq, "irq_enabled = %d\n", dev->irq_enabled);
195 seq_printf(seq, "remote_wakeup = %d\n", dev->remote_wakeup);
196 seq_printf(seq, "test_mode = %d\n", dev->test_mode);
197 seq_puts(seq, "\n");
198
199 list_for_each_entry(ep, &dev->ep_list, ep_list)
200 gr_seq_ep_show(seq, ep);
201
202 return 0;
203 }
204 DEFINE_SHOW_ATTRIBUTE(gr_dfs);
205
gr_dfs_create(struct gr_udc * dev)206 static void gr_dfs_create(struct gr_udc *dev)
207 {
208 const char *name = "gr_udc_state";
209 struct dentry *root;
210
211 root = debugfs_create_dir(dev_name(dev->dev), usb_debug_root);
212 debugfs_create_file(name, 0444, root, dev, &gr_dfs_fops);
213 }
214
gr_dfs_delete(struct gr_udc * dev)215 static void gr_dfs_delete(struct gr_udc *dev)
216 {
217 debugfs_lookup_and_remove(dev_name(dev->dev), usb_debug_root);
218 }
219
220 #else /* !CONFIG_USB_GADGET_DEBUG_FS */
221
gr_dfs_create(struct gr_udc * dev)222 static void gr_dfs_create(struct gr_udc *dev) {}
gr_dfs_delete(struct gr_udc * dev)223 static void gr_dfs_delete(struct gr_udc *dev) {}
224
225 #endif /* CONFIG_USB_GADGET_DEBUG_FS */
226
227 /* ---------------------------------------------------------------------- */
228 /* DMA and request handling */
229
230 /* Allocates a new struct gr_dma_desc, sets paddr and zeroes the rest */
gr_alloc_dma_desc(struct gr_ep * ep,gfp_t gfp_flags)231 static struct gr_dma_desc *gr_alloc_dma_desc(struct gr_ep *ep, gfp_t gfp_flags)
232 {
233 dma_addr_t paddr;
234 struct gr_dma_desc *dma_desc;
235
236 dma_desc = dma_pool_zalloc(ep->dev->desc_pool, gfp_flags, &paddr);
237 if (!dma_desc) {
238 dev_err(ep->dev->dev, "Could not allocate from DMA pool\n");
239 return NULL;
240 }
241
242 dma_desc->paddr = paddr;
243
244 return dma_desc;
245 }
246
gr_free_dma_desc(struct gr_udc * dev,struct gr_dma_desc * desc)247 static inline void gr_free_dma_desc(struct gr_udc *dev,
248 struct gr_dma_desc *desc)
249 {
250 dma_pool_free(dev->desc_pool, desc, (dma_addr_t)desc->paddr);
251 }
252
253 /* Frees the chain of struct gr_dma_desc for the given request */
gr_free_dma_desc_chain(struct gr_udc * dev,struct gr_request * req)254 static void gr_free_dma_desc_chain(struct gr_udc *dev, struct gr_request *req)
255 {
256 struct gr_dma_desc *desc;
257 struct gr_dma_desc *next;
258
259 next = req->first_desc;
260 if (!next)
261 return;
262
263 do {
264 desc = next;
265 next = desc->next_desc;
266 gr_free_dma_desc(dev, desc);
267 } while (desc != req->last_desc);
268
269 req->first_desc = NULL;
270 req->curr_desc = NULL;
271 req->last_desc = NULL;
272 }
273
274 static void gr_ep0_setup(struct gr_udc *dev, struct gr_request *req);
275
276 /*
277 * Frees allocated resources and calls the appropriate completion function/setup
278 * package handler for a finished request.
279 *
280 * Must be called with dev->lock held and irqs disabled.
281 */
gr_finish_request(struct gr_ep * ep,struct gr_request * req,int status)282 static void gr_finish_request(struct gr_ep *ep, struct gr_request *req,
283 int status)
284 __releases(&dev->lock)
285 __acquires(&dev->lock)
286 {
287 struct gr_udc *dev;
288
289 list_del_init(&req->queue);
290
291 if (likely(req->req.status == -EINPROGRESS))
292 req->req.status = status;
293 else
294 status = req->req.status;
295
296 dev = ep->dev;
297 usb_gadget_unmap_request(&dev->gadget, &req->req, ep->is_in);
298 gr_free_dma_desc_chain(dev, req);
299
300 if (ep->is_in) { /* For OUT, req->req.actual gets updated bit by bit */
301 req->req.actual = req->req.length;
302 } else if (req->oddlen && req->req.actual > req->evenlen) {
303 /*
304 * Copy to user buffer in this case where length was not evenly
305 * divisible by ep->ep.maxpacket and the last descriptor was
306 * actually used.
307 */
308 char *buftail = ((char *)req->req.buf + req->evenlen);
309
310 memcpy(buftail, ep->tailbuf, req->oddlen);
311
312 if (req->req.actual > req->req.length) {
313 /* We got more data than was requested */
314 dev_dbg(ep->dev->dev, "Overflow for ep %s\n",
315 ep->ep.name);
316 gr_dbgprint_request("OVFL", ep, req);
317 req->req.status = -EOVERFLOW;
318 }
319 }
320
321 if (!status) {
322 if (ep->is_in)
323 gr_dbgprint_request("SENT", ep, req);
324 else
325 gr_dbgprint_request("RECV", ep, req);
326 }
327
328 /* Prevent changes to ep->queue during callback */
329 ep->callback = 1;
330 if (req == dev->ep0reqo && !status) {
331 if (req->setup)
332 gr_ep0_setup(dev, req);
333 else
334 dev_err(dev->dev,
335 "Unexpected non setup packet on ep0in\n");
336 } else if (req->req.complete) {
337 spin_unlock(&dev->lock);
338
339 usb_gadget_giveback_request(&ep->ep, &req->req);
340
341 spin_lock(&dev->lock);
342 }
343 ep->callback = 0;
344 }
345
gr_alloc_request(struct usb_ep * _ep,gfp_t gfp_flags)346 static struct usb_request *gr_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
347 {
348 struct gr_request *req;
349
350 req = kzalloc(sizeof(*req), gfp_flags);
351 if (!req)
352 return NULL;
353
354 INIT_LIST_HEAD(&req->queue);
355
356 return &req->req;
357 }
358
359 /*
360 * Starts DMA for endpoint ep if there are requests in the queue.
361 *
362 * Must be called with dev->lock held and with !ep->stopped.
363 */
gr_start_dma(struct gr_ep * ep)364 static void gr_start_dma(struct gr_ep *ep)
365 {
366 struct gr_request *req;
367 u32 dmactrl;
368
369 if (list_empty(&ep->queue)) {
370 ep->dma_start = 0;
371 return;
372 }
373
374 req = list_first_entry(&ep->queue, struct gr_request, queue);
375
376 /* A descriptor should already have been allocated */
377 BUG_ON(!req->curr_desc);
378
379 /*
380 * The DMA controller can not handle smaller OUT buffers than
381 * ep->ep.maxpacket. It could lead to buffer overruns if an unexpectedly
382 * long packet are received. Therefore an internal bounce buffer gets
383 * used when such a request gets enabled.
384 */
385 if (!ep->is_in && req->oddlen)
386 req->last_desc->data = ep->tailbuf_paddr;
387
388 wmb(); /* Make sure all is settled before handing it over to DMA */
389
390 /* Set the descriptor pointer in the hardware */
391 gr_write32(&ep->regs->dmaaddr, req->curr_desc->paddr);
392
393 /* Announce available descriptors */
394 dmactrl = gr_read32(&ep->regs->dmactrl);
395 gr_write32(&ep->regs->dmactrl, dmactrl | GR_DMACTRL_DA);
396
397 ep->dma_start = 1;
398 }
399
400 /*
401 * Finishes the first request in the ep's queue and, if available, starts the
402 * next request in queue.
403 *
404 * Must be called with dev->lock held, irqs disabled and with !ep->stopped.
405 */
gr_dma_advance(struct gr_ep * ep,int status)406 static void gr_dma_advance(struct gr_ep *ep, int status)
407 {
408 struct gr_request *req;
409
410 req = list_first_entry(&ep->queue, struct gr_request, queue);
411 gr_finish_request(ep, req, status);
412 gr_start_dma(ep); /* Regardless of ep->dma_start */
413 }
414
415 /*
416 * Abort DMA for an endpoint. Sets the abort DMA bit which causes an ongoing DMA
417 * transfer to be canceled and clears GR_DMACTRL_DA.
418 *
419 * Must be called with dev->lock held.
420 */
gr_abort_dma(struct gr_ep * ep)421 static void gr_abort_dma(struct gr_ep *ep)
422 {
423 u32 dmactrl;
424
425 dmactrl = gr_read32(&ep->regs->dmactrl);
426 gr_write32(&ep->regs->dmactrl, dmactrl | GR_DMACTRL_AD);
427 }
428
429 /*
430 * Allocates and sets up a struct gr_dma_desc and putting it on the descriptor
431 * chain.
432 *
433 * Size is not used for OUT endpoints. Hardware can not be instructed to handle
434 * smaller buffer than MAXPL in the OUT direction.
435 */
gr_add_dma_desc(struct gr_ep * ep,struct gr_request * req,dma_addr_t data,unsigned size,gfp_t gfp_flags)436 static int gr_add_dma_desc(struct gr_ep *ep, struct gr_request *req,
437 dma_addr_t data, unsigned size, gfp_t gfp_flags)
438 {
439 struct gr_dma_desc *desc;
440
441 desc = gr_alloc_dma_desc(ep, gfp_flags);
442 if (!desc)
443 return -ENOMEM;
444
445 desc->data = data;
446 if (ep->is_in)
447 desc->ctrl =
448 (GR_DESC_IN_CTRL_LEN_MASK & size) | GR_DESC_IN_CTRL_EN;
449 else
450 desc->ctrl = GR_DESC_OUT_CTRL_IE;
451
452 if (!req->first_desc) {
453 req->first_desc = desc;
454 req->curr_desc = desc;
455 } else {
456 req->last_desc->next_desc = desc;
457 req->last_desc->next = desc->paddr;
458 req->last_desc->ctrl |= GR_DESC_OUT_CTRL_NX;
459 }
460 req->last_desc = desc;
461
462 return 0;
463 }
464
465 /*
466 * Sets up a chain of struct gr_dma_descriptors pointing to buffers that
467 * together covers req->req.length bytes of the buffer at DMA address
468 * req->req.dma for the OUT direction.
469 *
470 * The first descriptor in the chain is enabled, the rest disabled. The
471 * interrupt handler will later enable them one by one when needed so we can
472 * find out when the transfer is finished. For OUT endpoints, all descriptors
473 * therefore generate interrutps.
474 */
gr_setup_out_desc_list(struct gr_ep * ep,struct gr_request * req,gfp_t gfp_flags)475 static int gr_setup_out_desc_list(struct gr_ep *ep, struct gr_request *req,
476 gfp_t gfp_flags)
477 {
478 u16 bytes_left; /* Bytes left to provide descriptors for */
479 u16 bytes_used; /* Bytes accommodated for */
480 int ret = 0;
481
482 req->first_desc = NULL; /* Signals that no allocation is done yet */
483 bytes_left = req->req.length;
484 bytes_used = 0;
485 while (bytes_left > 0) {
486 dma_addr_t start = req->req.dma + bytes_used;
487 u16 size = min(bytes_left, ep->bytes_per_buffer);
488
489 if (size < ep->bytes_per_buffer) {
490 /* Prepare using bounce buffer */
491 req->evenlen = req->req.length - bytes_left;
492 req->oddlen = size;
493 }
494
495 ret = gr_add_dma_desc(ep, req, start, size, gfp_flags);
496 if (ret)
497 goto alloc_err;
498
499 bytes_left -= size;
500 bytes_used += size;
501 }
502
503 req->first_desc->ctrl |= GR_DESC_OUT_CTRL_EN;
504
505 return 0;
506
507 alloc_err:
508 gr_free_dma_desc_chain(ep->dev, req);
509
510 return ret;
511 }
512
513 /*
514 * Sets up a chain of struct gr_dma_descriptors pointing to buffers that
515 * together covers req->req.length bytes of the buffer at DMA address
516 * req->req.dma for the IN direction.
517 *
518 * When more data is provided than the maximum payload size, the hardware splits
519 * this up into several payloads automatically. Moreover, ep->bytes_per_buffer
520 * is always set to a multiple of the maximum payload (restricted to the valid
521 * number of maximum payloads during high bandwidth isochronous or interrupt
522 * transfers)
523 *
524 * All descriptors are enabled from the beginning and we only generate an
525 * interrupt for the last one indicating that the entire request has been pushed
526 * to hardware.
527 */
gr_setup_in_desc_list(struct gr_ep * ep,struct gr_request * req,gfp_t gfp_flags)528 static int gr_setup_in_desc_list(struct gr_ep *ep, struct gr_request *req,
529 gfp_t gfp_flags)
530 {
531 u16 bytes_left; /* Bytes left in req to provide descriptors for */
532 u16 bytes_used; /* Bytes in req accommodated for */
533 int ret = 0;
534
535 req->first_desc = NULL; /* Signals that no allocation is done yet */
536 bytes_left = req->req.length;
537 bytes_used = 0;
538 do { /* Allow for zero length packets */
539 dma_addr_t start = req->req.dma + bytes_used;
540 u16 size = min(bytes_left, ep->bytes_per_buffer);
541
542 ret = gr_add_dma_desc(ep, req, start, size, gfp_flags);
543 if (ret)
544 goto alloc_err;
545
546 bytes_left -= size;
547 bytes_used += size;
548 } while (bytes_left > 0);
549
550 /*
551 * Send an extra zero length packet to indicate that no more data is
552 * available when req->req.zero is set and the data length is even
553 * multiples of ep->ep.maxpacket.
554 */
555 if (req->req.zero && (req->req.length % ep->ep.maxpacket == 0)) {
556 ret = gr_add_dma_desc(ep, req, 0, 0, gfp_flags);
557 if (ret)
558 goto alloc_err;
559 }
560
561 /*
562 * For IN packets we only want to know when the last packet has been
563 * transmitted (not just put into internal buffers).
564 */
565 req->last_desc->ctrl |= GR_DESC_IN_CTRL_PI;
566
567 return 0;
568
569 alloc_err:
570 gr_free_dma_desc_chain(ep->dev, req);
571
572 return ret;
573 }
574
575 /* Must be called with dev->lock held */
gr_queue(struct gr_ep * ep,struct gr_request * req,gfp_t gfp_flags)576 static int gr_queue(struct gr_ep *ep, struct gr_request *req, gfp_t gfp_flags)
577 {
578 struct gr_udc *dev = ep->dev;
579 int ret;
580
581 if (unlikely(!ep->ep.desc && ep->num != 0)) {
582 dev_err(dev->dev, "No ep descriptor for %s\n", ep->ep.name);
583 return -EINVAL;
584 }
585
586 if (unlikely(!req->req.buf || !list_empty(&req->queue))) {
587 dev_err(dev->dev,
588 "Invalid request for %s: buf=%p list_empty=%d\n",
589 ep->ep.name, req->req.buf, list_empty(&req->queue));
590 return -EINVAL;
591 }
592
593 if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) {
594 dev_err(dev->dev, "-ESHUTDOWN");
595 return -ESHUTDOWN;
596 }
597
598 /* Can't touch registers when suspended */
599 if (dev->ep0state == GR_EP0_SUSPEND) {
600 dev_err(dev->dev, "-EBUSY");
601 return -EBUSY;
602 }
603
604 /* Set up DMA mapping in case the caller didn't */
605 ret = usb_gadget_map_request(&dev->gadget, &req->req, ep->is_in);
606 if (ret) {
607 dev_err(dev->dev, "usb_gadget_map_request");
608 return ret;
609 }
610
611 if (ep->is_in)
612 ret = gr_setup_in_desc_list(ep, req, gfp_flags);
613 else
614 ret = gr_setup_out_desc_list(ep, req, gfp_flags);
615 if (ret)
616 return ret;
617
618 req->req.status = -EINPROGRESS;
619 req->req.actual = 0;
620 list_add_tail(&req->queue, &ep->queue);
621
622 /* Start DMA if not started, otherwise interrupt handler handles it */
623 if (!ep->dma_start && likely(!ep->stopped))
624 gr_start_dma(ep);
625
626 return 0;
627 }
628
629 /*
630 * Queue a request from within the driver.
631 *
632 * Must be called with dev->lock held.
633 */
gr_queue_int(struct gr_ep * ep,struct gr_request * req,gfp_t gfp_flags)634 static inline int gr_queue_int(struct gr_ep *ep, struct gr_request *req,
635 gfp_t gfp_flags)
636 {
637 if (ep->is_in)
638 gr_dbgprint_request("RESP", ep, req);
639
640 return gr_queue(ep, req, gfp_flags);
641 }
642
643 /* ---------------------------------------------------------------------- */
644 /* General helper functions */
645
646 /*
647 * Dequeue ALL requests.
648 *
649 * Must be called with dev->lock held and irqs disabled.
650 */
gr_ep_nuke(struct gr_ep * ep)651 static void gr_ep_nuke(struct gr_ep *ep)
652 {
653 struct gr_request *req;
654
655 ep->stopped = 1;
656 ep->dma_start = 0;
657 gr_abort_dma(ep);
658
659 while (!list_empty(&ep->queue)) {
660 req = list_first_entry(&ep->queue, struct gr_request, queue);
661 gr_finish_request(ep, req, -ESHUTDOWN);
662 }
663 }
664
665 /*
666 * Reset the hardware state of this endpoint.
667 *
668 * Must be called with dev->lock held.
669 */
gr_ep_reset(struct gr_ep * ep)670 static void gr_ep_reset(struct gr_ep *ep)
671 {
672 gr_write32(&ep->regs->epctrl, 0);
673 gr_write32(&ep->regs->dmactrl, 0);
674
675 ep->ep.maxpacket = MAX_CTRL_PL_SIZE;
676 ep->ep.desc = NULL;
677 ep->stopped = 1;
678 ep->dma_start = 0;
679 }
680
681 /*
682 * Generate STALL on ep0in/out.
683 *
684 * Must be called with dev->lock held.
685 */
gr_control_stall(struct gr_udc * dev)686 static void gr_control_stall(struct gr_udc *dev)
687 {
688 u32 epctrl;
689
690 epctrl = gr_read32(&dev->epo[0].regs->epctrl);
691 gr_write32(&dev->epo[0].regs->epctrl, epctrl | GR_EPCTRL_CS);
692 epctrl = gr_read32(&dev->epi[0].regs->epctrl);
693 gr_write32(&dev->epi[0].regs->epctrl, epctrl | GR_EPCTRL_CS);
694
695 dev->ep0state = GR_EP0_STALL;
696 }
697
698 /*
699 * Halts, halts and wedges, or clears halt for an endpoint.
700 *
701 * Must be called with dev->lock held.
702 */
gr_ep_halt_wedge(struct gr_ep * ep,int halt,int wedge,int fromhost)703 static int gr_ep_halt_wedge(struct gr_ep *ep, int halt, int wedge, int fromhost)
704 {
705 u32 epctrl;
706 int retval = 0;
707
708 if (ep->num && !ep->ep.desc)
709 return -EINVAL;
710
711 if (ep->num && ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC)
712 return -EOPNOTSUPP;
713
714 /* Never actually halt ep0, and therefore never clear halt for ep0 */
715 if (!ep->num) {
716 if (halt && !fromhost) {
717 /* ep0 halt from gadget - generate protocol stall */
718 gr_control_stall(ep->dev);
719 dev_dbg(ep->dev->dev, "EP: stall ep0\n");
720 return 0;
721 }
722 return -EINVAL;
723 }
724
725 dev_dbg(ep->dev->dev, "EP: %s halt %s\n",
726 (halt ? (wedge ? "wedge" : "set") : "clear"), ep->ep.name);
727
728 epctrl = gr_read32(&ep->regs->epctrl);
729 if (halt) {
730 /* Set HALT */
731 gr_write32(&ep->regs->epctrl, epctrl | GR_EPCTRL_EH);
732 ep->stopped = 1;
733 if (wedge)
734 ep->wedged = 1;
735 } else {
736 gr_write32(&ep->regs->epctrl, epctrl & ~GR_EPCTRL_EH);
737 ep->stopped = 0;
738 ep->wedged = 0;
739
740 /* Things might have been queued up in the meantime */
741 if (!ep->dma_start)
742 gr_start_dma(ep);
743 }
744
745 return retval;
746 }
747
748 /* Must be called with dev->lock held */
gr_set_ep0state(struct gr_udc * dev,enum gr_ep0state value)749 static inline void gr_set_ep0state(struct gr_udc *dev, enum gr_ep0state value)
750 {
751 if (dev->ep0state != value)
752 dev_vdbg(dev->dev, "STATE: ep0state=%s\n",
753 gr_ep0state_string(value));
754 dev->ep0state = value;
755 }
756
757 /*
758 * Should only be called when endpoints can not generate interrupts.
759 *
760 * Must be called with dev->lock held.
761 */
gr_disable_interrupts_and_pullup(struct gr_udc * dev)762 static void gr_disable_interrupts_and_pullup(struct gr_udc *dev)
763 {
764 gr_write32(&dev->regs->control, 0);
765 wmb(); /* Make sure that we do not deny one of our interrupts */
766 dev->irq_enabled = 0;
767 }
768
769 /*
770 * Stop all device activity and disable data line pullup.
771 *
772 * Must be called with dev->lock held and irqs disabled.
773 */
gr_stop_activity(struct gr_udc * dev)774 static void gr_stop_activity(struct gr_udc *dev)
775 {
776 struct gr_ep *ep;
777
778 list_for_each_entry(ep, &dev->ep_list, ep_list)
779 gr_ep_nuke(ep);
780
781 gr_disable_interrupts_and_pullup(dev);
782
783 gr_set_ep0state(dev, GR_EP0_DISCONNECT);
784 usb_gadget_set_state(&dev->gadget, USB_STATE_NOTATTACHED);
785 }
786
787 /* ---------------------------------------------------------------------- */
788 /* ep0 setup packet handling */
789
gr_ep0_testmode_complete(struct usb_ep * _ep,struct usb_request * _req)790 static void gr_ep0_testmode_complete(struct usb_ep *_ep,
791 struct usb_request *_req)
792 {
793 struct gr_ep *ep;
794 struct gr_udc *dev;
795 u32 control;
796
797 ep = container_of(_ep, struct gr_ep, ep);
798 dev = ep->dev;
799
800 spin_lock(&dev->lock);
801
802 control = gr_read32(&dev->regs->control);
803 control |= GR_CONTROL_TM | (dev->test_mode << GR_CONTROL_TS_POS);
804 gr_write32(&dev->regs->control, control);
805
806 spin_unlock(&dev->lock);
807 }
808
gr_ep0_dummy_complete(struct usb_ep * _ep,struct usb_request * _req)809 static void gr_ep0_dummy_complete(struct usb_ep *_ep, struct usb_request *_req)
810 {
811 /* Nothing needs to be done here */
812 }
813
814 /*
815 * Queue a response on ep0in.
816 *
817 * Must be called with dev->lock held.
818 */
gr_ep0_respond(struct gr_udc * dev,u8 * buf,int length,void (* complete)(struct usb_ep * ep,struct usb_request * req))819 static int gr_ep0_respond(struct gr_udc *dev, u8 *buf, int length,
820 void (*complete)(struct usb_ep *ep,
821 struct usb_request *req))
822 {
823 u8 *reqbuf = dev->ep0reqi->req.buf;
824 int status;
825 int i;
826
827 for (i = 0; i < length; i++)
828 reqbuf[i] = buf[i];
829 dev->ep0reqi->req.length = length;
830 dev->ep0reqi->req.complete = complete;
831
832 status = gr_queue_int(&dev->epi[0], dev->ep0reqi, GFP_ATOMIC);
833 if (status < 0)
834 dev_err(dev->dev,
835 "Could not queue ep0in setup response: %d\n", status);
836
837 return status;
838 }
839
840 /*
841 * Queue a 2 byte response on ep0in.
842 *
843 * Must be called with dev->lock held.
844 */
gr_ep0_respond_u16(struct gr_udc * dev,u16 response)845 static inline int gr_ep0_respond_u16(struct gr_udc *dev, u16 response)
846 {
847 __le16 le_response = cpu_to_le16(response);
848
849 return gr_ep0_respond(dev, (u8 *)&le_response, 2,
850 gr_ep0_dummy_complete);
851 }
852
853 /*
854 * Queue a ZLP response on ep0in.
855 *
856 * Must be called with dev->lock held.
857 */
gr_ep0_respond_empty(struct gr_udc * dev)858 static inline int gr_ep0_respond_empty(struct gr_udc *dev)
859 {
860 return gr_ep0_respond(dev, NULL, 0, gr_ep0_dummy_complete);
861 }
862
863 /*
864 * This is run when a SET_ADDRESS request is received. First writes
865 * the new address to the control register which is updated internally
866 * when the next IN packet is ACKED.
867 *
868 * Must be called with dev->lock held.
869 */
gr_set_address(struct gr_udc * dev,u8 address)870 static void gr_set_address(struct gr_udc *dev, u8 address)
871 {
872 u32 control;
873
874 control = gr_read32(&dev->regs->control) & ~GR_CONTROL_UA_MASK;
875 control |= (address << GR_CONTROL_UA_POS) & GR_CONTROL_UA_MASK;
876 control |= GR_CONTROL_SU;
877 gr_write32(&dev->regs->control, control);
878 }
879
880 /*
881 * Returns negative for STALL, 0 for successful handling and positive for
882 * delegation.
883 *
884 * Must be called with dev->lock held.
885 */
gr_device_request(struct gr_udc * dev,u8 type,u8 request,u16 value,u16 index)886 static int gr_device_request(struct gr_udc *dev, u8 type, u8 request,
887 u16 value, u16 index)
888 {
889 u16 response;
890 u8 test;
891
892 switch (request) {
893 case USB_REQ_SET_ADDRESS:
894 dev_dbg(dev->dev, "STATUS: address %d\n", value & 0xff);
895 gr_set_address(dev, value & 0xff);
896 if (value)
897 usb_gadget_set_state(&dev->gadget, USB_STATE_ADDRESS);
898 else
899 usb_gadget_set_state(&dev->gadget, USB_STATE_DEFAULT);
900 return gr_ep0_respond_empty(dev);
901
902 case USB_REQ_GET_STATUS:
903 /* Self powered | remote wakeup */
904 response = 0x0001 | (dev->remote_wakeup ? 0x0002 : 0);
905 return gr_ep0_respond_u16(dev, response);
906
907 case USB_REQ_SET_FEATURE:
908 switch (value) {
909 case USB_DEVICE_REMOTE_WAKEUP:
910 /* Allow remote wakeup */
911 dev->remote_wakeup = 1;
912 return gr_ep0_respond_empty(dev);
913
914 case USB_DEVICE_TEST_MODE:
915 /* The hardware does not support USB_TEST_FORCE_ENABLE */
916 test = index >> 8;
917 if (test >= USB_TEST_J && test <= USB_TEST_PACKET) {
918 dev->test_mode = test;
919 return gr_ep0_respond(dev, NULL, 0,
920 gr_ep0_testmode_complete);
921 }
922 }
923 break;
924
925 case USB_REQ_CLEAR_FEATURE:
926 switch (value) {
927 case USB_DEVICE_REMOTE_WAKEUP:
928 /* Disallow remote wakeup */
929 dev->remote_wakeup = 0;
930 return gr_ep0_respond_empty(dev);
931 }
932 break;
933 }
934
935 return 1; /* Delegate the rest */
936 }
937
938 /*
939 * Returns negative for STALL, 0 for successful handling and positive for
940 * delegation.
941 *
942 * Must be called with dev->lock held.
943 */
gr_interface_request(struct gr_udc * dev,u8 type,u8 request,u16 value,u16 index)944 static int gr_interface_request(struct gr_udc *dev, u8 type, u8 request,
945 u16 value, u16 index)
946 {
947 if (dev->gadget.state != USB_STATE_CONFIGURED)
948 return -1;
949
950 /*
951 * Should return STALL for invalid interfaces, but udc driver does not
952 * know anything about that. However, many gadget drivers do not handle
953 * GET_STATUS so we need to take care of that.
954 */
955
956 switch (request) {
957 case USB_REQ_GET_STATUS:
958 return gr_ep0_respond_u16(dev, 0x0000);
959
960 case USB_REQ_SET_FEATURE:
961 case USB_REQ_CLEAR_FEATURE:
962 /*
963 * No possible valid standard requests. Still let gadget drivers
964 * have a go at it.
965 */
966 break;
967 }
968
969 return 1; /* Delegate the rest */
970 }
971
972 /*
973 * Returns negative for STALL, 0 for successful handling and positive for
974 * delegation.
975 *
976 * Must be called with dev->lock held.
977 */
gr_endpoint_request(struct gr_udc * dev,u8 type,u8 request,u16 value,u16 index)978 static int gr_endpoint_request(struct gr_udc *dev, u8 type, u8 request,
979 u16 value, u16 index)
980 {
981 struct gr_ep *ep;
982 int status;
983 int halted;
984 u8 epnum = index & USB_ENDPOINT_NUMBER_MASK;
985 u8 is_in = index & USB_ENDPOINT_DIR_MASK;
986
987 if ((is_in && epnum >= dev->nepi) || (!is_in && epnum >= dev->nepo))
988 return -1;
989
990 if (dev->gadget.state != USB_STATE_CONFIGURED && epnum != 0)
991 return -1;
992
993 ep = (is_in ? &dev->epi[epnum] : &dev->epo[epnum]);
994
995 switch (request) {
996 case USB_REQ_GET_STATUS:
997 halted = gr_read32(&ep->regs->epctrl) & GR_EPCTRL_EH;
998 return gr_ep0_respond_u16(dev, halted ? 0x0001 : 0);
999
1000 case USB_REQ_SET_FEATURE:
1001 switch (value) {
1002 case USB_ENDPOINT_HALT:
1003 status = gr_ep_halt_wedge(ep, 1, 0, 1);
1004 if (status >= 0)
1005 status = gr_ep0_respond_empty(dev);
1006 return status;
1007 }
1008 break;
1009
1010 case USB_REQ_CLEAR_FEATURE:
1011 switch (value) {
1012 case USB_ENDPOINT_HALT:
1013 if (ep->wedged)
1014 return -1;
1015 status = gr_ep_halt_wedge(ep, 0, 0, 1);
1016 if (status >= 0)
1017 status = gr_ep0_respond_empty(dev);
1018 return status;
1019 }
1020 break;
1021 }
1022
1023 return 1; /* Delegate the rest */
1024 }
1025
1026 /* Must be called with dev->lock held */
gr_ep0out_requeue(struct gr_udc * dev)1027 static void gr_ep0out_requeue(struct gr_udc *dev)
1028 {
1029 int ret = gr_queue_int(&dev->epo[0], dev->ep0reqo, GFP_ATOMIC);
1030
1031 if (ret)
1032 dev_err(dev->dev, "Could not queue ep0out setup request: %d\n",
1033 ret);
1034 }
1035
1036 /*
1037 * The main function dealing with setup requests on ep0.
1038 *
1039 * Must be called with dev->lock held and irqs disabled
1040 */
gr_ep0_setup(struct gr_udc * dev,struct gr_request * req)1041 static void gr_ep0_setup(struct gr_udc *dev, struct gr_request *req)
1042 __releases(&dev->lock)
1043 __acquires(&dev->lock)
1044 {
1045 union {
1046 struct usb_ctrlrequest ctrl;
1047 u8 raw[8];
1048 u32 word[2];
1049 } u;
1050 u8 type;
1051 u8 request;
1052 u16 value;
1053 u16 index;
1054 u16 length;
1055 int i;
1056 int status;
1057
1058 /* Restore from ep0 halt */
1059 if (dev->ep0state == GR_EP0_STALL) {
1060 gr_set_ep0state(dev, GR_EP0_SETUP);
1061 if (!req->req.actual)
1062 goto out;
1063 }
1064
1065 if (dev->ep0state == GR_EP0_ISTATUS) {
1066 gr_set_ep0state(dev, GR_EP0_SETUP);
1067 if (req->req.actual > 0)
1068 dev_dbg(dev->dev,
1069 "Unexpected setup packet at state %s\n",
1070 gr_ep0state_string(GR_EP0_ISTATUS));
1071 else
1072 goto out; /* Got expected ZLP */
1073 } else if (dev->ep0state != GR_EP0_SETUP) {
1074 dev_info(dev->dev,
1075 "Unexpected ep0out request at state %s - stalling\n",
1076 gr_ep0state_string(dev->ep0state));
1077 gr_control_stall(dev);
1078 gr_set_ep0state(dev, GR_EP0_SETUP);
1079 goto out;
1080 } else if (!req->req.actual) {
1081 dev_dbg(dev->dev, "Unexpected ZLP at state %s\n",
1082 gr_ep0state_string(dev->ep0state));
1083 goto out;
1084 }
1085
1086 /* Handle SETUP packet */
1087 for (i = 0; i < req->req.actual; i++)
1088 u.raw[i] = ((u8 *)req->req.buf)[i];
1089
1090 type = u.ctrl.bRequestType;
1091 request = u.ctrl.bRequest;
1092 value = le16_to_cpu(u.ctrl.wValue);
1093 index = le16_to_cpu(u.ctrl.wIndex);
1094 length = le16_to_cpu(u.ctrl.wLength);
1095
1096 gr_dbgprint_devreq(dev, type, request, value, index, length);
1097
1098 /* Check for data stage */
1099 if (length) {
1100 if (type & USB_DIR_IN)
1101 gr_set_ep0state(dev, GR_EP0_IDATA);
1102 else
1103 gr_set_ep0state(dev, GR_EP0_ODATA);
1104 }
1105
1106 status = 1; /* Positive status flags delegation */
1107 if ((type & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1108 switch (type & USB_RECIP_MASK) {
1109 case USB_RECIP_DEVICE:
1110 status = gr_device_request(dev, type, request,
1111 value, index);
1112 break;
1113 case USB_RECIP_ENDPOINT:
1114 status = gr_endpoint_request(dev, type, request,
1115 value, index);
1116 break;
1117 case USB_RECIP_INTERFACE:
1118 status = gr_interface_request(dev, type, request,
1119 value, index);
1120 break;
1121 }
1122 }
1123
1124 if (status > 0) {
1125 spin_unlock(&dev->lock);
1126
1127 dev_vdbg(dev->dev, "DELEGATE\n");
1128 status = dev->driver->setup(&dev->gadget, &u.ctrl);
1129
1130 spin_lock(&dev->lock);
1131 }
1132
1133 /* Generate STALL on both ep0out and ep0in if requested */
1134 if (unlikely(status < 0)) {
1135 dev_vdbg(dev->dev, "STALL\n");
1136 gr_control_stall(dev);
1137 }
1138
1139 if ((type & USB_TYPE_MASK) == USB_TYPE_STANDARD &&
1140 request == USB_REQ_SET_CONFIGURATION) {
1141 if (!value) {
1142 dev_dbg(dev->dev, "STATUS: deconfigured\n");
1143 usb_gadget_set_state(&dev->gadget, USB_STATE_ADDRESS);
1144 } else if (status >= 0) {
1145 /* Not configured unless gadget OK:s it */
1146 dev_dbg(dev->dev, "STATUS: configured: %d\n", value);
1147 usb_gadget_set_state(&dev->gadget,
1148 USB_STATE_CONFIGURED);
1149 }
1150 }
1151
1152 /* Get ready for next stage */
1153 if (dev->ep0state == GR_EP0_ODATA)
1154 gr_set_ep0state(dev, GR_EP0_OSTATUS);
1155 else if (dev->ep0state == GR_EP0_IDATA)
1156 gr_set_ep0state(dev, GR_EP0_ISTATUS);
1157 else
1158 gr_set_ep0state(dev, GR_EP0_SETUP);
1159
1160 out:
1161 gr_ep0out_requeue(dev);
1162 }
1163
1164 /* ---------------------------------------------------------------------- */
1165 /* VBUS and USB reset handling */
1166
1167 /* Must be called with dev->lock held and irqs disabled */
gr_vbus_connected(struct gr_udc * dev,u32 status)1168 static void gr_vbus_connected(struct gr_udc *dev, u32 status)
1169 {
1170 u32 control;
1171
1172 dev->gadget.speed = GR_SPEED(status);
1173 usb_gadget_set_state(&dev->gadget, USB_STATE_POWERED);
1174
1175 /* Turn on full interrupts and pullup */
1176 control = (GR_CONTROL_SI | GR_CONTROL_UI | GR_CONTROL_VI |
1177 GR_CONTROL_SP | GR_CONTROL_EP);
1178 gr_write32(&dev->regs->control, control);
1179 }
1180
1181 /* Must be called with dev->lock held */
gr_enable_vbus_detect(struct gr_udc * dev)1182 static void gr_enable_vbus_detect(struct gr_udc *dev)
1183 {
1184 u32 status;
1185
1186 dev->irq_enabled = 1;
1187 wmb(); /* Make sure we do not ignore an interrupt */
1188 gr_write32(&dev->regs->control, GR_CONTROL_VI);
1189
1190 /* Take care of the case we are already plugged in at this point */
1191 status = gr_read32(&dev->regs->status);
1192 if (status & GR_STATUS_VB)
1193 gr_vbus_connected(dev, status);
1194 }
1195
1196 /* Must be called with dev->lock held and irqs disabled */
gr_vbus_disconnected(struct gr_udc * dev)1197 static void gr_vbus_disconnected(struct gr_udc *dev)
1198 {
1199 gr_stop_activity(dev);
1200
1201 /* Report disconnect */
1202 if (dev->driver && dev->driver->disconnect) {
1203 spin_unlock(&dev->lock);
1204
1205 dev->driver->disconnect(&dev->gadget);
1206
1207 spin_lock(&dev->lock);
1208 }
1209
1210 gr_enable_vbus_detect(dev);
1211 }
1212
1213 /* Must be called with dev->lock held and irqs disabled */
gr_udc_usbreset(struct gr_udc * dev,u32 status)1214 static void gr_udc_usbreset(struct gr_udc *dev, u32 status)
1215 {
1216 gr_set_address(dev, 0);
1217 gr_set_ep0state(dev, GR_EP0_SETUP);
1218 usb_gadget_set_state(&dev->gadget, USB_STATE_DEFAULT);
1219 dev->gadget.speed = GR_SPEED(status);
1220
1221 gr_ep_nuke(&dev->epo[0]);
1222 gr_ep_nuke(&dev->epi[0]);
1223 dev->epo[0].stopped = 0;
1224 dev->epi[0].stopped = 0;
1225 gr_ep0out_requeue(dev);
1226 }
1227
1228 /* ---------------------------------------------------------------------- */
1229 /* Irq handling */
1230
1231 /*
1232 * Handles interrupts from in endpoints. Returns whether something was handled.
1233 *
1234 * Must be called with dev->lock held, irqs disabled and with !ep->stopped.
1235 */
gr_handle_in_ep(struct gr_ep * ep)1236 static int gr_handle_in_ep(struct gr_ep *ep)
1237 {
1238 struct gr_request *req;
1239
1240 req = list_first_entry(&ep->queue, struct gr_request, queue);
1241 if (!req->last_desc)
1242 return 0;
1243
1244 if (READ_ONCE(req->last_desc->ctrl) & GR_DESC_IN_CTRL_EN)
1245 return 0; /* Not put in hardware buffers yet */
1246
1247 if (gr_read32(&ep->regs->epstat) & (GR_EPSTAT_B1 | GR_EPSTAT_B0))
1248 return 0; /* Not transmitted yet, still in hardware buffers */
1249
1250 /* Write complete */
1251 gr_dma_advance(ep, 0);
1252
1253 return 1;
1254 }
1255
1256 /*
1257 * Handles interrupts from out endpoints. Returns whether something was handled.
1258 *
1259 * Must be called with dev->lock held, irqs disabled and with !ep->stopped.
1260 */
gr_handle_out_ep(struct gr_ep * ep)1261 static int gr_handle_out_ep(struct gr_ep *ep)
1262 {
1263 u32 ep_dmactrl;
1264 u32 ctrl;
1265 u16 len;
1266 struct gr_request *req;
1267 struct gr_udc *dev = ep->dev;
1268
1269 req = list_first_entry(&ep->queue, struct gr_request, queue);
1270 if (!req->curr_desc)
1271 return 0;
1272
1273 ctrl = READ_ONCE(req->curr_desc->ctrl);
1274 if (ctrl & GR_DESC_OUT_CTRL_EN)
1275 return 0; /* Not received yet */
1276
1277 /* Read complete */
1278 len = ctrl & GR_DESC_OUT_CTRL_LEN_MASK;
1279 req->req.actual += len;
1280 if (ctrl & GR_DESC_OUT_CTRL_SE)
1281 req->setup = 1;
1282
1283 if (len < ep->ep.maxpacket || req->req.actual >= req->req.length) {
1284 /* Short packet or >= expected size - we are done */
1285
1286 if ((ep == &dev->epo[0]) && (dev->ep0state == GR_EP0_OSTATUS)) {
1287 /*
1288 * Send a status stage ZLP to ack the DATA stage in the
1289 * OUT direction. This needs to be done before
1290 * gr_dma_advance as that can lead to a call to
1291 * ep0_setup that can change dev->ep0state.
1292 */
1293 gr_ep0_respond_empty(dev);
1294 gr_set_ep0state(dev, GR_EP0_SETUP);
1295 }
1296
1297 gr_dma_advance(ep, 0);
1298 } else {
1299 /* Not done yet. Enable the next descriptor to receive more. */
1300 req->curr_desc = req->curr_desc->next_desc;
1301 req->curr_desc->ctrl |= GR_DESC_OUT_CTRL_EN;
1302
1303 ep_dmactrl = gr_read32(&ep->regs->dmactrl);
1304 gr_write32(&ep->regs->dmactrl, ep_dmactrl | GR_DMACTRL_DA);
1305 }
1306
1307 return 1;
1308 }
1309
1310 /*
1311 * Handle state changes. Returns whether something was handled.
1312 *
1313 * Must be called with dev->lock held and irqs disabled.
1314 */
gr_handle_state_changes(struct gr_udc * dev)1315 static int gr_handle_state_changes(struct gr_udc *dev)
1316 {
1317 u32 status = gr_read32(&dev->regs->status);
1318 int handled = 0;
1319 int powstate = !(dev->gadget.state == USB_STATE_NOTATTACHED ||
1320 dev->gadget.state == USB_STATE_ATTACHED);
1321
1322 /* VBUS valid detected */
1323 if (!powstate && (status & GR_STATUS_VB)) {
1324 dev_dbg(dev->dev, "STATUS: vbus valid detected\n");
1325 gr_vbus_connected(dev, status);
1326 handled = 1;
1327 }
1328
1329 /* Disconnect */
1330 if (powstate && !(status & GR_STATUS_VB)) {
1331 dev_dbg(dev->dev, "STATUS: vbus invalid detected\n");
1332 gr_vbus_disconnected(dev);
1333 handled = 1;
1334 }
1335
1336 /* USB reset detected */
1337 if (status & GR_STATUS_UR) {
1338 dev_dbg(dev->dev, "STATUS: USB reset - speed is %s\n",
1339 GR_SPEED_STR(status));
1340 gr_write32(&dev->regs->status, GR_STATUS_UR);
1341 gr_udc_usbreset(dev, status);
1342 handled = 1;
1343 }
1344
1345 /* Speed change */
1346 if (dev->gadget.speed != GR_SPEED(status)) {
1347 dev_dbg(dev->dev, "STATUS: USB Speed change to %s\n",
1348 GR_SPEED_STR(status));
1349 dev->gadget.speed = GR_SPEED(status);
1350 handled = 1;
1351 }
1352
1353 /* Going into suspend */
1354 if ((dev->ep0state != GR_EP0_SUSPEND) && !(status & GR_STATUS_SU)) {
1355 dev_dbg(dev->dev, "STATUS: USB suspend\n");
1356 gr_set_ep0state(dev, GR_EP0_SUSPEND);
1357 dev->suspended_from = dev->gadget.state;
1358 usb_gadget_set_state(&dev->gadget, USB_STATE_SUSPENDED);
1359
1360 if ((dev->gadget.speed != USB_SPEED_UNKNOWN) &&
1361 dev->driver && dev->driver->suspend) {
1362 spin_unlock(&dev->lock);
1363
1364 dev->driver->suspend(&dev->gadget);
1365
1366 spin_lock(&dev->lock);
1367 }
1368 handled = 1;
1369 }
1370
1371 /* Coming out of suspend */
1372 if ((dev->ep0state == GR_EP0_SUSPEND) && (status & GR_STATUS_SU)) {
1373 dev_dbg(dev->dev, "STATUS: USB resume\n");
1374 if (dev->suspended_from == USB_STATE_POWERED)
1375 gr_set_ep0state(dev, GR_EP0_DISCONNECT);
1376 else
1377 gr_set_ep0state(dev, GR_EP0_SETUP);
1378 usb_gadget_set_state(&dev->gadget, dev->suspended_from);
1379
1380 if ((dev->gadget.speed != USB_SPEED_UNKNOWN) &&
1381 dev->driver && dev->driver->resume) {
1382 spin_unlock(&dev->lock);
1383
1384 dev->driver->resume(&dev->gadget);
1385
1386 spin_lock(&dev->lock);
1387 }
1388 handled = 1;
1389 }
1390
1391 return handled;
1392 }
1393
1394 /* Non-interrupt context irq handler */
gr_irq_handler(int irq,void * _dev)1395 static irqreturn_t gr_irq_handler(int irq, void *_dev)
1396 {
1397 struct gr_udc *dev = _dev;
1398 struct gr_ep *ep;
1399 int handled = 0;
1400 int i;
1401 unsigned long flags;
1402
1403 spin_lock_irqsave(&dev->lock, flags);
1404
1405 if (!dev->irq_enabled)
1406 goto out;
1407
1408 /*
1409 * Check IN ep interrupts. We check these before the OUT eps because
1410 * some gadgets reuse the request that might already be currently
1411 * outstanding and needs to be completed (mainly setup requests).
1412 */
1413 for (i = 0; i < dev->nepi; i++) {
1414 ep = &dev->epi[i];
1415 if (!ep->stopped && !ep->callback && !list_empty(&ep->queue))
1416 handled = gr_handle_in_ep(ep) || handled;
1417 }
1418
1419 /* Check OUT ep interrupts */
1420 for (i = 0; i < dev->nepo; i++) {
1421 ep = &dev->epo[i];
1422 if (!ep->stopped && !ep->callback && !list_empty(&ep->queue))
1423 handled = gr_handle_out_ep(ep) || handled;
1424 }
1425
1426 /* Check status interrupts */
1427 handled = gr_handle_state_changes(dev) || handled;
1428
1429 /*
1430 * Check AMBA DMA errors. Only check if we didn't find anything else to
1431 * handle because this shouldn't happen if we did everything right.
1432 */
1433 if (!handled) {
1434 list_for_each_entry(ep, &dev->ep_list, ep_list) {
1435 if (gr_read32(&ep->regs->dmactrl) & GR_DMACTRL_AE) {
1436 dev_err(dev->dev,
1437 "AMBA Error occurred for %s\n",
1438 ep->ep.name);
1439 handled = 1;
1440 }
1441 }
1442 }
1443
1444 out:
1445 spin_unlock_irqrestore(&dev->lock, flags);
1446
1447 return handled ? IRQ_HANDLED : IRQ_NONE;
1448 }
1449
1450 /* Interrupt context irq handler */
gr_irq(int irq,void * _dev)1451 static irqreturn_t gr_irq(int irq, void *_dev)
1452 {
1453 struct gr_udc *dev = _dev;
1454
1455 if (!dev->irq_enabled)
1456 return IRQ_NONE;
1457
1458 return IRQ_WAKE_THREAD;
1459 }
1460
1461 /* ---------------------------------------------------------------------- */
1462 /* USB ep ops */
1463
1464 /* Enable endpoint. Not for ep0in and ep0out that are handled separately. */
gr_ep_enable(struct usb_ep * _ep,const struct usb_endpoint_descriptor * desc)1465 static int gr_ep_enable(struct usb_ep *_ep,
1466 const struct usb_endpoint_descriptor *desc)
1467 {
1468 struct gr_udc *dev;
1469 struct gr_ep *ep;
1470 u8 mode;
1471 u8 nt;
1472 u16 max;
1473 u16 buffer_size = 0;
1474 u32 epctrl;
1475
1476 ep = container_of(_ep, struct gr_ep, ep);
1477 if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT)
1478 return -EINVAL;
1479
1480 dev = ep->dev;
1481
1482 /* 'ep0' IN and OUT are reserved */
1483 if (ep == &dev->epo[0] || ep == &dev->epi[0])
1484 return -EINVAL;
1485
1486 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
1487 return -ESHUTDOWN;
1488
1489 /* Make sure we are clear for enabling */
1490 epctrl = gr_read32(&ep->regs->epctrl);
1491 if (epctrl & GR_EPCTRL_EV)
1492 return -EBUSY;
1493
1494 /* Check that directions match */
1495 if (!ep->is_in != !usb_endpoint_dir_in(desc))
1496 return -EINVAL;
1497
1498 /* Check ep num */
1499 if ((!ep->is_in && ep->num >= dev->nepo) ||
1500 (ep->is_in && ep->num >= dev->nepi))
1501 return -EINVAL;
1502
1503 if (usb_endpoint_xfer_control(desc)) {
1504 mode = 0;
1505 } else if (usb_endpoint_xfer_isoc(desc)) {
1506 mode = 1;
1507 } else if (usb_endpoint_xfer_bulk(desc)) {
1508 mode = 2;
1509 } else if (usb_endpoint_xfer_int(desc)) {
1510 mode = 3;
1511 } else {
1512 dev_err(dev->dev, "Unknown transfer type for %s\n",
1513 ep->ep.name);
1514 return -EINVAL;
1515 }
1516
1517 /*
1518 * Bits 10-0 set the max payload. 12-11 set the number of
1519 * additional transactions.
1520 */
1521 max = usb_endpoint_maxp(desc);
1522 nt = usb_endpoint_maxp_mult(desc) - 1;
1523 buffer_size = GR_BUFFER_SIZE(epctrl);
1524 if (nt && (mode == 0 || mode == 2)) {
1525 dev_err(dev->dev,
1526 "%s mode: multiple trans./microframe not valid\n",
1527 (mode == 2 ? "Bulk" : "Control"));
1528 return -EINVAL;
1529 } else if (nt == 0x3) {
1530 dev_err(dev->dev,
1531 "Invalid value 0x3 for additional trans./microframe\n");
1532 return -EINVAL;
1533 } else if ((nt + 1) * max > buffer_size) {
1534 dev_err(dev->dev, "Hw buffer size %d < max payload %d * %d\n",
1535 buffer_size, (nt + 1), max);
1536 return -EINVAL;
1537 } else if (max == 0) {
1538 dev_err(dev->dev, "Max payload cannot be set to 0\n");
1539 return -EINVAL;
1540 } else if (max > ep->ep.maxpacket_limit) {
1541 dev_err(dev->dev, "Requested max payload %d > limit %d\n",
1542 max, ep->ep.maxpacket_limit);
1543 return -EINVAL;
1544 }
1545
1546 spin_lock(&ep->dev->lock);
1547
1548 if (!ep->stopped) {
1549 spin_unlock(&ep->dev->lock);
1550 return -EBUSY;
1551 }
1552
1553 ep->stopped = 0;
1554 ep->wedged = 0;
1555 ep->ep.desc = desc;
1556 ep->ep.maxpacket = max;
1557 ep->dma_start = 0;
1558
1559
1560 if (nt) {
1561 /*
1562 * Maximum possible size of all payloads in one microframe
1563 * regardless of direction when using high-bandwidth mode.
1564 */
1565 ep->bytes_per_buffer = (nt + 1) * max;
1566 } else if (ep->is_in) {
1567 /*
1568 * The biggest multiple of maximum packet size that fits into
1569 * the buffer. The hardware will split up into many packets in
1570 * the IN direction.
1571 */
1572 ep->bytes_per_buffer = (buffer_size / max) * max;
1573 } else {
1574 /*
1575 * Only single packets will be placed the buffers in the OUT
1576 * direction.
1577 */
1578 ep->bytes_per_buffer = max;
1579 }
1580
1581 epctrl = (max << GR_EPCTRL_MAXPL_POS)
1582 | (nt << GR_EPCTRL_NT_POS)
1583 | (mode << GR_EPCTRL_TT_POS)
1584 | GR_EPCTRL_EV;
1585 if (ep->is_in)
1586 epctrl |= GR_EPCTRL_PI;
1587 gr_write32(&ep->regs->epctrl, epctrl);
1588
1589 gr_write32(&ep->regs->dmactrl, GR_DMACTRL_IE | GR_DMACTRL_AI);
1590
1591 spin_unlock(&ep->dev->lock);
1592
1593 dev_dbg(ep->dev->dev, "EP: %s enabled - %s with %d bytes/buffer\n",
1594 ep->ep.name, gr_modestring[mode], ep->bytes_per_buffer);
1595 return 0;
1596 }
1597
1598 /* Disable endpoint. Not for ep0in and ep0out that are handled separately. */
gr_ep_disable(struct usb_ep * _ep)1599 static int gr_ep_disable(struct usb_ep *_ep)
1600 {
1601 struct gr_ep *ep;
1602 struct gr_udc *dev;
1603 unsigned long flags;
1604
1605 ep = container_of(_ep, struct gr_ep, ep);
1606 if (!_ep || !ep->ep.desc)
1607 return -ENODEV;
1608
1609 dev = ep->dev;
1610
1611 /* 'ep0' IN and OUT are reserved */
1612 if (ep == &dev->epo[0] || ep == &dev->epi[0])
1613 return -EINVAL;
1614
1615 if (dev->ep0state == GR_EP0_SUSPEND)
1616 return -EBUSY;
1617
1618 dev_dbg(ep->dev->dev, "EP: disable %s\n", ep->ep.name);
1619
1620 spin_lock_irqsave(&dev->lock, flags);
1621
1622 gr_ep_nuke(ep);
1623 gr_ep_reset(ep);
1624 ep->ep.desc = NULL;
1625
1626 spin_unlock_irqrestore(&dev->lock, flags);
1627
1628 return 0;
1629 }
1630
1631 /*
1632 * Frees a request, but not any DMA buffers associated with it
1633 * (gr_finish_request should already have taken care of that).
1634 */
gr_free_request(struct usb_ep * _ep,struct usb_request * _req)1635 static void gr_free_request(struct usb_ep *_ep, struct usb_request *_req)
1636 {
1637 struct gr_request *req;
1638
1639 if (!_ep || !_req)
1640 return;
1641 req = container_of(_req, struct gr_request, req);
1642
1643 /* Leads to memory leak */
1644 WARN(!list_empty(&req->queue),
1645 "request not dequeued properly before freeing\n");
1646
1647 kfree(req);
1648 }
1649
1650 /* Queue a request from the gadget */
gr_queue_ext(struct usb_ep * _ep,struct usb_request * _req,gfp_t gfp_flags)1651 static int gr_queue_ext(struct usb_ep *_ep, struct usb_request *_req,
1652 gfp_t gfp_flags)
1653 {
1654 struct gr_ep *ep;
1655 struct gr_request *req;
1656 struct gr_udc *dev;
1657 int ret;
1658
1659 if (unlikely(!_ep || !_req))
1660 return -EINVAL;
1661
1662 ep = container_of(_ep, struct gr_ep, ep);
1663 req = container_of(_req, struct gr_request, req);
1664 dev = ep->dev;
1665
1666 spin_lock(&ep->dev->lock);
1667
1668 /*
1669 * The ep0 pointer in the gadget struct is used both for ep0in and
1670 * ep0out. In a data stage in the out direction ep0out needs to be used
1671 * instead of the default ep0in. Completion functions might use
1672 * driver_data, so that needs to be copied as well.
1673 */
1674 if ((ep == &dev->epi[0]) && (dev->ep0state == GR_EP0_ODATA)) {
1675 ep = &dev->epo[0];
1676 ep->ep.driver_data = dev->epi[0].ep.driver_data;
1677 }
1678
1679 if (ep->is_in)
1680 gr_dbgprint_request("EXTERN", ep, req);
1681
1682 ret = gr_queue(ep, req, GFP_ATOMIC);
1683
1684 spin_unlock(&ep->dev->lock);
1685
1686 return ret;
1687 }
1688
1689 /* Dequeue JUST ONE request */
gr_dequeue(struct usb_ep * _ep,struct usb_request * _req)1690 static int gr_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1691 {
1692 struct gr_request *req = NULL, *iter;
1693 struct gr_ep *ep;
1694 struct gr_udc *dev;
1695 int ret = 0;
1696 unsigned long flags;
1697
1698 ep = container_of(_ep, struct gr_ep, ep);
1699 if (!_ep || !_req || (!ep->ep.desc && ep->num != 0))
1700 return -EINVAL;
1701 dev = ep->dev;
1702 if (!dev->driver)
1703 return -ESHUTDOWN;
1704
1705 /* We can't touch (DMA) registers when suspended */
1706 if (dev->ep0state == GR_EP0_SUSPEND)
1707 return -EBUSY;
1708
1709 spin_lock_irqsave(&dev->lock, flags);
1710
1711 /* Make sure it's actually queued on this endpoint */
1712 list_for_each_entry(iter, &ep->queue, queue) {
1713 if (&iter->req != _req)
1714 continue;
1715 req = iter;
1716 break;
1717 }
1718 if (!req) {
1719 ret = -EINVAL;
1720 goto out;
1721 }
1722
1723 if (list_first_entry(&ep->queue, struct gr_request, queue) == req) {
1724 /* This request is currently being processed */
1725 gr_abort_dma(ep);
1726 if (ep->stopped)
1727 gr_finish_request(ep, req, -ECONNRESET);
1728 else
1729 gr_dma_advance(ep, -ECONNRESET);
1730 } else if (!list_empty(&req->queue)) {
1731 /* Not being processed - gr_finish_request dequeues it */
1732 gr_finish_request(ep, req, -ECONNRESET);
1733 } else {
1734 ret = -EOPNOTSUPP;
1735 }
1736
1737 out:
1738 spin_unlock_irqrestore(&dev->lock, flags);
1739
1740 return ret;
1741 }
1742
1743 /* Helper for gr_set_halt and gr_set_wedge */
gr_set_halt_wedge(struct usb_ep * _ep,int halt,int wedge)1744 static int gr_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
1745 {
1746 int ret;
1747 struct gr_ep *ep;
1748
1749 if (!_ep)
1750 return -ENODEV;
1751 ep = container_of(_ep, struct gr_ep, ep);
1752
1753 spin_lock(&ep->dev->lock);
1754
1755 /* Halting an IN endpoint should fail if queue is not empty */
1756 if (halt && ep->is_in && !list_empty(&ep->queue)) {
1757 ret = -EAGAIN;
1758 goto out;
1759 }
1760
1761 ret = gr_ep_halt_wedge(ep, halt, wedge, 0);
1762
1763 out:
1764 spin_unlock(&ep->dev->lock);
1765
1766 return ret;
1767 }
1768
1769 /* Halt endpoint */
gr_set_halt(struct usb_ep * _ep,int halt)1770 static int gr_set_halt(struct usb_ep *_ep, int halt)
1771 {
1772 return gr_set_halt_wedge(_ep, halt, 0);
1773 }
1774
1775 /* Halt and wedge endpoint */
gr_set_wedge(struct usb_ep * _ep)1776 static int gr_set_wedge(struct usb_ep *_ep)
1777 {
1778 return gr_set_halt_wedge(_ep, 1, 1);
1779 }
1780
1781 /*
1782 * Return the total number of bytes currently stored in the internal buffers of
1783 * the endpoint.
1784 */
gr_fifo_status(struct usb_ep * _ep)1785 static int gr_fifo_status(struct usb_ep *_ep)
1786 {
1787 struct gr_ep *ep;
1788 u32 epstat;
1789 u32 bytes = 0;
1790
1791 if (!_ep)
1792 return -ENODEV;
1793 ep = container_of(_ep, struct gr_ep, ep);
1794
1795 epstat = gr_read32(&ep->regs->epstat);
1796
1797 if (epstat & GR_EPSTAT_B0)
1798 bytes += (epstat & GR_EPSTAT_B0CNT_MASK) >> GR_EPSTAT_B0CNT_POS;
1799 if (epstat & GR_EPSTAT_B1)
1800 bytes += (epstat & GR_EPSTAT_B1CNT_MASK) >> GR_EPSTAT_B1CNT_POS;
1801
1802 return bytes;
1803 }
1804
1805
1806 /* Empty data from internal buffers of an endpoint. */
gr_fifo_flush(struct usb_ep * _ep)1807 static void gr_fifo_flush(struct usb_ep *_ep)
1808 {
1809 struct gr_ep *ep;
1810 u32 epctrl;
1811
1812 if (!_ep)
1813 return;
1814 ep = container_of(_ep, struct gr_ep, ep);
1815 dev_vdbg(ep->dev->dev, "EP: flush fifo %s\n", ep->ep.name);
1816
1817 spin_lock(&ep->dev->lock);
1818
1819 epctrl = gr_read32(&ep->regs->epctrl);
1820 epctrl |= GR_EPCTRL_CB;
1821 gr_write32(&ep->regs->epctrl, epctrl);
1822
1823 spin_unlock(&ep->dev->lock);
1824 }
1825
1826 static const struct usb_ep_ops gr_ep_ops = {
1827 .enable = gr_ep_enable,
1828 .disable = gr_ep_disable,
1829
1830 .alloc_request = gr_alloc_request,
1831 .free_request = gr_free_request,
1832
1833 .queue = gr_queue_ext,
1834 .dequeue = gr_dequeue,
1835
1836 .set_halt = gr_set_halt,
1837 .set_wedge = gr_set_wedge,
1838 .fifo_status = gr_fifo_status,
1839 .fifo_flush = gr_fifo_flush,
1840 };
1841
1842 /* ---------------------------------------------------------------------- */
1843 /* USB Gadget ops */
1844
gr_get_frame(struct usb_gadget * _gadget)1845 static int gr_get_frame(struct usb_gadget *_gadget)
1846 {
1847 struct gr_udc *dev;
1848
1849 if (!_gadget)
1850 return -ENODEV;
1851 dev = container_of(_gadget, struct gr_udc, gadget);
1852 return gr_read32(&dev->regs->status) & GR_STATUS_FN_MASK;
1853 }
1854
gr_wakeup(struct usb_gadget * _gadget)1855 static int gr_wakeup(struct usb_gadget *_gadget)
1856 {
1857 struct gr_udc *dev;
1858
1859 if (!_gadget)
1860 return -ENODEV;
1861 dev = container_of(_gadget, struct gr_udc, gadget);
1862
1863 /* Remote wakeup feature not enabled by host*/
1864 if (!dev->remote_wakeup)
1865 return -EINVAL;
1866
1867 spin_lock(&dev->lock);
1868
1869 gr_write32(&dev->regs->control,
1870 gr_read32(&dev->regs->control) | GR_CONTROL_RW);
1871
1872 spin_unlock(&dev->lock);
1873
1874 return 0;
1875 }
1876
gr_pullup(struct usb_gadget * _gadget,int is_on)1877 static int gr_pullup(struct usb_gadget *_gadget, int is_on)
1878 {
1879 struct gr_udc *dev;
1880 u32 control;
1881
1882 if (!_gadget)
1883 return -ENODEV;
1884 dev = container_of(_gadget, struct gr_udc, gadget);
1885
1886 spin_lock(&dev->lock);
1887
1888 control = gr_read32(&dev->regs->control);
1889 if (is_on)
1890 control |= GR_CONTROL_EP;
1891 else
1892 control &= ~GR_CONTROL_EP;
1893 gr_write32(&dev->regs->control, control);
1894
1895 spin_unlock(&dev->lock);
1896
1897 return 0;
1898 }
1899
gr_udc_start(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1900 static int gr_udc_start(struct usb_gadget *gadget,
1901 struct usb_gadget_driver *driver)
1902 {
1903 struct gr_udc *dev = to_gr_udc(gadget);
1904
1905 spin_lock(&dev->lock);
1906
1907 /* Hook up the driver */
1908 dev->driver = driver;
1909
1910 /* Get ready for host detection */
1911 gr_enable_vbus_detect(dev);
1912
1913 spin_unlock(&dev->lock);
1914
1915 return 0;
1916 }
1917
gr_udc_stop(struct usb_gadget * gadget)1918 static int gr_udc_stop(struct usb_gadget *gadget)
1919 {
1920 struct gr_udc *dev = to_gr_udc(gadget);
1921 unsigned long flags;
1922
1923 spin_lock_irqsave(&dev->lock, flags);
1924
1925 dev->driver = NULL;
1926 gr_stop_activity(dev);
1927
1928 spin_unlock_irqrestore(&dev->lock, flags);
1929
1930 return 0;
1931 }
1932
1933 static const struct usb_gadget_ops gr_ops = {
1934 .get_frame = gr_get_frame,
1935 .wakeup = gr_wakeup,
1936 .pullup = gr_pullup,
1937 .udc_start = gr_udc_start,
1938 .udc_stop = gr_udc_stop,
1939 /* Other operations not supported */
1940 };
1941
1942 /* ---------------------------------------------------------------------- */
1943 /* Module probe, removal and of-matching */
1944
1945 static const char * const onames[] = {
1946 "ep0out", "ep1out", "ep2out", "ep3out", "ep4out", "ep5out",
1947 "ep6out", "ep7out", "ep8out", "ep9out", "ep10out", "ep11out",
1948 "ep12out", "ep13out", "ep14out", "ep15out"
1949 };
1950
1951 static const char * const inames[] = {
1952 "ep0in", "ep1in", "ep2in", "ep3in", "ep4in", "ep5in",
1953 "ep6in", "ep7in", "ep8in", "ep9in", "ep10in", "ep11in",
1954 "ep12in", "ep13in", "ep14in", "ep15in"
1955 };
1956
1957 /* Must be called with dev->lock held */
gr_ep_init(struct gr_udc * dev,int num,int is_in,u32 maxplimit)1958 static int gr_ep_init(struct gr_udc *dev, int num, int is_in, u32 maxplimit)
1959 {
1960 struct gr_ep *ep;
1961 struct gr_request *req;
1962 struct usb_request *_req;
1963 void *buf;
1964
1965 if (is_in) {
1966 ep = &dev->epi[num];
1967 ep->ep.name = inames[num];
1968 ep->regs = &dev->regs->epi[num];
1969 } else {
1970 ep = &dev->epo[num];
1971 ep->ep.name = onames[num];
1972 ep->regs = &dev->regs->epo[num];
1973 }
1974
1975 gr_ep_reset(ep);
1976 ep->num = num;
1977 ep->is_in = is_in;
1978 ep->dev = dev;
1979 ep->ep.ops = &gr_ep_ops;
1980 INIT_LIST_HEAD(&ep->queue);
1981
1982 if (num == 0) {
1983 _req = gr_alloc_request(&ep->ep, GFP_ATOMIC);
1984 if (!_req)
1985 return -ENOMEM;
1986
1987 buf = devm_kzalloc(dev->dev, PAGE_SIZE, GFP_DMA | GFP_ATOMIC);
1988 if (!buf) {
1989 gr_free_request(&ep->ep, _req);
1990 return -ENOMEM;
1991 }
1992
1993 req = container_of(_req, struct gr_request, req);
1994 req->req.buf = buf;
1995 req->req.length = MAX_CTRL_PL_SIZE;
1996
1997 if (is_in)
1998 dev->ep0reqi = req; /* Complete gets set as used */
1999 else
2000 dev->ep0reqo = req; /* Completion treated separately */
2001
2002 usb_ep_set_maxpacket_limit(&ep->ep, MAX_CTRL_PL_SIZE);
2003 ep->bytes_per_buffer = MAX_CTRL_PL_SIZE;
2004
2005 ep->ep.caps.type_control = true;
2006 } else {
2007 usb_ep_set_maxpacket_limit(&ep->ep, (u16)maxplimit);
2008 list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
2009
2010 ep->ep.caps.type_iso = true;
2011 ep->ep.caps.type_bulk = true;
2012 ep->ep.caps.type_int = true;
2013 }
2014 list_add_tail(&ep->ep_list, &dev->ep_list);
2015
2016 if (is_in)
2017 ep->ep.caps.dir_in = true;
2018 else
2019 ep->ep.caps.dir_out = true;
2020
2021 ep->tailbuf = dma_alloc_coherent(dev->dev, ep->ep.maxpacket_limit,
2022 &ep->tailbuf_paddr, GFP_ATOMIC);
2023 if (!ep->tailbuf)
2024 return -ENOMEM;
2025
2026 return 0;
2027 }
2028
2029 /* Must be called with dev->lock held */
gr_udc_init(struct gr_udc * dev)2030 static int gr_udc_init(struct gr_udc *dev)
2031 {
2032 struct device_node *np = dev->dev->of_node;
2033 u32 epctrl_val;
2034 u32 dmactrl_val;
2035 int i;
2036 int ret = 0;
2037 u32 bufsize;
2038
2039 gr_set_address(dev, 0);
2040
2041 INIT_LIST_HEAD(&dev->gadget.ep_list);
2042 dev->gadget.speed = USB_SPEED_UNKNOWN;
2043 dev->gadget.ep0 = &dev->epi[0].ep;
2044
2045 INIT_LIST_HEAD(&dev->ep_list);
2046 gr_set_ep0state(dev, GR_EP0_DISCONNECT);
2047
2048 for (i = 0; i < dev->nepo; i++) {
2049 if (of_property_read_u32_index(np, "epobufsizes", i, &bufsize))
2050 bufsize = 1024;
2051 ret = gr_ep_init(dev, i, 0, bufsize);
2052 if (ret)
2053 return ret;
2054 }
2055
2056 for (i = 0; i < dev->nepi; i++) {
2057 if (of_property_read_u32_index(np, "epibufsizes", i, &bufsize))
2058 bufsize = 1024;
2059 ret = gr_ep_init(dev, i, 1, bufsize);
2060 if (ret)
2061 return ret;
2062 }
2063
2064 /* Must be disabled by default */
2065 dev->remote_wakeup = 0;
2066
2067 /* Enable ep0out and ep0in */
2068 epctrl_val = (MAX_CTRL_PL_SIZE << GR_EPCTRL_MAXPL_POS) | GR_EPCTRL_EV;
2069 dmactrl_val = GR_DMACTRL_IE | GR_DMACTRL_AI;
2070 gr_write32(&dev->epo[0].regs->epctrl, epctrl_val);
2071 gr_write32(&dev->epi[0].regs->epctrl, epctrl_val | GR_EPCTRL_PI);
2072 gr_write32(&dev->epo[0].regs->dmactrl, dmactrl_val);
2073 gr_write32(&dev->epi[0].regs->dmactrl, dmactrl_val);
2074
2075 return 0;
2076 }
2077
gr_ep_remove(struct gr_udc * dev,int num,int is_in)2078 static void gr_ep_remove(struct gr_udc *dev, int num, int is_in)
2079 {
2080 struct gr_ep *ep;
2081
2082 if (is_in)
2083 ep = &dev->epi[num];
2084 else
2085 ep = &dev->epo[num];
2086
2087 if (ep->tailbuf)
2088 dma_free_coherent(dev->dev, ep->ep.maxpacket_limit,
2089 ep->tailbuf, ep->tailbuf_paddr);
2090 }
2091
gr_remove(struct platform_device * pdev)2092 static int gr_remove(struct platform_device *pdev)
2093 {
2094 struct gr_udc *dev = platform_get_drvdata(pdev);
2095 int i;
2096
2097 if (dev->added)
2098 usb_del_gadget_udc(&dev->gadget); /* Shuts everything down */
2099 if (dev->driver)
2100 return -EBUSY;
2101
2102 gr_dfs_delete(dev);
2103 dma_pool_destroy(dev->desc_pool);
2104 platform_set_drvdata(pdev, NULL);
2105
2106 gr_free_request(&dev->epi[0].ep, &dev->ep0reqi->req);
2107 gr_free_request(&dev->epo[0].ep, &dev->ep0reqo->req);
2108
2109 for (i = 0; i < dev->nepo; i++)
2110 gr_ep_remove(dev, i, 0);
2111 for (i = 0; i < dev->nepi; i++)
2112 gr_ep_remove(dev, i, 1);
2113
2114 return 0;
2115 }
gr_request_irq(struct gr_udc * dev,int irq)2116 static int gr_request_irq(struct gr_udc *dev, int irq)
2117 {
2118 return devm_request_threaded_irq(dev->dev, irq, gr_irq, gr_irq_handler,
2119 IRQF_SHARED, driver_name, dev);
2120 }
2121
gr_probe(struct platform_device * pdev)2122 static int gr_probe(struct platform_device *pdev)
2123 {
2124 struct gr_udc *dev;
2125 struct gr_regs __iomem *regs;
2126 int retval;
2127 u32 status;
2128
2129 dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
2130 if (!dev)
2131 return -ENOMEM;
2132 dev->dev = &pdev->dev;
2133
2134 regs = devm_platform_ioremap_resource(pdev, 0);
2135 if (IS_ERR(regs))
2136 return PTR_ERR(regs);
2137
2138 dev->irq = platform_get_irq(pdev, 0);
2139 if (dev->irq < 0)
2140 return dev->irq;
2141
2142 /* Some core configurations has separate irqs for IN and OUT events */
2143 dev->irqi = platform_get_irq(pdev, 1);
2144 if (dev->irqi > 0) {
2145 dev->irqo = platform_get_irq(pdev, 2);
2146 if (dev->irqo < 0)
2147 return dev->irqo;
2148 } else {
2149 dev->irqi = 0;
2150 }
2151
2152 dev->gadget.name = driver_name;
2153 dev->gadget.max_speed = USB_SPEED_HIGH;
2154 dev->gadget.ops = &gr_ops;
2155
2156 spin_lock_init(&dev->lock);
2157 dev->regs = regs;
2158
2159 platform_set_drvdata(pdev, dev);
2160
2161 /* Determine number of endpoints and data interface mode */
2162 status = gr_read32(&dev->regs->status);
2163 dev->nepi = ((status & GR_STATUS_NEPI_MASK) >> GR_STATUS_NEPI_POS) + 1;
2164 dev->nepo = ((status & GR_STATUS_NEPO_MASK) >> GR_STATUS_NEPO_POS) + 1;
2165
2166 if (!(status & GR_STATUS_DM)) {
2167 dev_err(dev->dev, "Slave mode cores are not supported\n");
2168 return -ENODEV;
2169 }
2170
2171 /* --- Effects of the following calls might need explicit cleanup --- */
2172
2173 /* Create DMA pool for descriptors */
2174 dev->desc_pool = dma_pool_create("desc_pool", dev->dev,
2175 sizeof(struct gr_dma_desc), 4, 0);
2176 if (!dev->desc_pool) {
2177 dev_err(dev->dev, "Could not allocate DMA pool");
2178 return -ENOMEM;
2179 }
2180
2181 /* Inside lock so that no gadget can use this udc until probe is done */
2182 retval = usb_add_gadget_udc(dev->dev, &dev->gadget);
2183 if (retval) {
2184 dev_err(dev->dev, "Could not add gadget udc");
2185 goto out;
2186 }
2187 dev->added = 1;
2188
2189 spin_lock(&dev->lock);
2190
2191 retval = gr_udc_init(dev);
2192 if (retval) {
2193 spin_unlock(&dev->lock);
2194 goto out;
2195 }
2196
2197 /* Clear all interrupt enables that might be left on since last boot */
2198 gr_disable_interrupts_and_pullup(dev);
2199
2200 spin_unlock(&dev->lock);
2201
2202 gr_dfs_create(dev);
2203
2204 retval = gr_request_irq(dev, dev->irq);
2205 if (retval) {
2206 dev_err(dev->dev, "Failed to request irq %d\n", dev->irq);
2207 goto out;
2208 }
2209
2210 if (dev->irqi) {
2211 retval = gr_request_irq(dev, dev->irqi);
2212 if (retval) {
2213 dev_err(dev->dev, "Failed to request irqi %d\n",
2214 dev->irqi);
2215 goto out;
2216 }
2217 retval = gr_request_irq(dev, dev->irqo);
2218 if (retval) {
2219 dev_err(dev->dev, "Failed to request irqo %d\n",
2220 dev->irqo);
2221 goto out;
2222 }
2223 }
2224
2225 if (dev->irqi)
2226 dev_info(dev->dev, "regs: %p, irqs %d, %d, %d\n", dev->regs,
2227 dev->irq, dev->irqi, dev->irqo);
2228 else
2229 dev_info(dev->dev, "regs: %p, irq %d\n", dev->regs, dev->irq);
2230
2231 out:
2232 if (retval)
2233 gr_remove(pdev);
2234
2235 return retval;
2236 }
2237
2238 static const struct of_device_id gr_match[] = {
2239 {.name = "GAISLER_USBDC"},
2240 {.name = "01_021"},
2241 {},
2242 };
2243 MODULE_DEVICE_TABLE(of, gr_match);
2244
2245 static struct platform_driver gr_driver = {
2246 .driver = {
2247 .name = DRIVER_NAME,
2248 .of_match_table = gr_match,
2249 },
2250 .probe = gr_probe,
2251 .remove = gr_remove,
2252 };
2253 module_platform_driver(gr_driver);
2254
2255 MODULE_AUTHOR("Aeroflex Gaisler AB.");
2256 MODULE_DESCRIPTION(DRIVER_DESC);
2257 MODULE_LICENSE("GPL");
2258