xref: /openbmc/qemu/hw/ppc/spapr_numa.c (revision 6a0eddb34a642be919260e2964e5b4780f80ffdf)
1  /*
2   * QEMU PowerPC pSeries Logical Partition NUMA associativity handling
3   *
4   * Copyright IBM Corp. 2020
5   *
6   * Authors:
7   *  Daniel Henrique Barboza      <danielhb413@gmail.com>
8   *
9   * This work is licensed under the terms of the GNU GPL, version 2 or later.
10   * See the COPYING file in the top-level directory.
11   */
12  
13  #include "qemu/osdep.h"
14  #include "hw/ppc/spapr_numa.h"
15  #include "hw/pci-host/spapr.h"
16  #include "hw/ppc/fdt.h"
17  
18  /* Moved from hw/ppc/spapr_pci_nvlink2.c */
19  #define SPAPR_GPU_NUMA_ID           (cpu_to_be32(1))
20  
21  /*
22   * Retrieves max_dist_ref_points of the current NUMA affinity.
23   */
get_max_dist_ref_points(SpaprMachineState * spapr)24  static int get_max_dist_ref_points(SpaprMachineState *spapr)
25  {
26      if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
27          return FORM2_DIST_REF_POINTS;
28      }
29  
30      return FORM1_DIST_REF_POINTS;
31  }
32  
33  /*
34   * Retrieves numa_assoc_size of the current NUMA affinity.
35   */
get_numa_assoc_size(SpaprMachineState * spapr)36  static int get_numa_assoc_size(SpaprMachineState *spapr)
37  {
38      if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
39          return FORM2_NUMA_ASSOC_SIZE;
40      }
41  
42      return FORM1_NUMA_ASSOC_SIZE;
43  }
44  
45  /*
46   * Retrieves vcpu_assoc_size of the current NUMA affinity.
47   *
48   * vcpu_assoc_size is the size of ibm,associativity array
49   * for CPUs, which has an extra element (vcpu_id) in the end.
50   */
get_vcpu_assoc_size(SpaprMachineState * spapr)51  static int get_vcpu_assoc_size(SpaprMachineState *spapr)
52  {
53      return get_numa_assoc_size(spapr) + 1;
54  }
55  
56  /*
57   * Retrieves the ibm,associativity array of NUMA node 'node_id'
58   * for the current NUMA affinity.
59   */
get_associativity(SpaprMachineState * spapr,int node_id)60  static const uint32_t *get_associativity(SpaprMachineState *spapr, int node_id)
61  {
62      if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
63          return spapr->FORM2_assoc_array[node_id];
64      }
65      return spapr->FORM1_assoc_array[node_id];
66  }
67  
68  /*
69   * Wrapper that returns node distance from ms->numa_state->nodes
70   * after handling edge cases where the distance might be absent.
71   */
get_numa_distance(MachineState * ms,int src,int dst)72  static int get_numa_distance(MachineState *ms, int src, int dst)
73  {
74      NodeInfo *numa_info = ms->numa_state->nodes;
75      int ret = numa_info[src].distance[dst];
76  
77      if (ret != 0) {
78          return ret;
79      }
80  
81      /*
82       * In case QEMU adds a default NUMA single node when the user
83       * did not add any, or where the user did not supply distances,
84       * the distance will be absent (zero). Return local/remote
85       * distance in this case.
86       */
87      if (src == dst) {
88          return NUMA_DISTANCE_MIN;
89      }
90  
91      return NUMA_DISTANCE_DEFAULT;
92  }
93  
spapr_numa_is_symmetrical(MachineState * ms)94  static bool spapr_numa_is_symmetrical(MachineState *ms)
95  {
96      int nb_numa_nodes = ms->numa_state->num_nodes;
97      int src, dst;
98  
99      for (src = 0; src < nb_numa_nodes; src++) {
100          for (dst = src; dst < nb_numa_nodes; dst++) {
101              if (get_numa_distance(ms, src, dst) !=
102                  get_numa_distance(ms, dst, src)) {
103                  return false;
104              }
105          }
106      }
107  
108      return true;
109  }
110  
111  /*
112   * This function will translate the user distances into
113   * what the kernel understand as possible values: 10
114   * (local distance), 20, 40, 80 and 160, and return the equivalent
115   * NUMA level for each. Current heuristic is:
116   *  - local distance (10) returns numa_level = 0x4, meaning there is
117   *    no rounding for local distance
118   *  - distances between 11 and 30 inclusive -> rounded to 20,
119   *    numa_level = 0x3
120   *  - distances between 31 and 60 inclusive -> rounded to 40,
121   *    numa_level = 0x2
122   *  - distances between 61 and 120 inclusive -> rounded to 80,
123   *    numa_level = 0x1
124   *  - everything above 120 returns numa_level = 0 to indicate that
125   *    there is no match. This will be calculated as disntace = 160
126   *    by the kernel (as of v5.9)
127   */
spapr_numa_get_numa_level(uint8_t distance)128  static uint8_t spapr_numa_get_numa_level(uint8_t distance)
129  {
130      if (distance == 10) {
131          return 0x4;
132      } else if (distance > 11 && distance <= 30) {
133          return 0x3;
134      } else if (distance > 31 && distance <= 60) {
135          return 0x2;
136      } else if (distance > 61 && distance <= 120) {
137          return 0x1;
138      }
139  
140      return 0;
141  }
142  
spapr_numa_define_FORM1_domains(SpaprMachineState * spapr)143  static void spapr_numa_define_FORM1_domains(SpaprMachineState *spapr)
144  {
145      MachineState *ms = MACHINE(spapr);
146      int nb_numa_nodes = ms->numa_state->num_nodes;
147      int src, dst, i, j;
148  
149      /*
150       * Fill all associativity domains of non-zero NUMA nodes with
151       * node_id. This is required because the default value (0) is
152       * considered a match with associativity domains of node 0.
153       */
154      for (i = 1; i < nb_numa_nodes; i++) {
155          for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
156              spapr->FORM1_assoc_array[i][j] = cpu_to_be32(i);
157          }
158      }
159  
160      for (src = 0; src < nb_numa_nodes; src++) {
161          for (dst = src; dst < nb_numa_nodes; dst++) {
162              /*
163               * This is how the associativity domain between A and B
164               * is calculated:
165               *
166               * - get the distance D between them
167               * - get the correspondent NUMA level 'n_level' for D
168               * - all associativity arrays were initialized with their own
169               * numa_ids, and we're calculating the distance in node_id
170               * ascending order, starting from node id 0 (the first node
171               * retrieved by numa_state). This will have a cascade effect in
172               * the algorithm because the associativity domains that node 0
173               * defines will be carried over to other nodes, and node 1
174               * associativities will be carried over after taking node 0
175               * associativities into account, and so on. This happens because
176               * we'll assign assoc_src as the associativity domain of dst
177               * as well, for all NUMA levels beyond and including n_level.
178               *
179               * The PPC kernel expects the associativity domains of node 0 to
180               * be always 0, and this algorithm will grant that by default.
181               */
182              uint8_t distance = get_numa_distance(ms, src, dst);
183              uint8_t n_level = spapr_numa_get_numa_level(distance);
184              uint32_t assoc_src;
185  
186              /*
187               * n_level = 0 means that the distance is greater than our last
188               * rounded value (120). In this case there is no NUMA level match
189               * between src and dst and we can skip the remaining of the loop.
190               *
191               * The Linux kernel will assume that the distance between src and
192               * dst, in this case of no match, is 10 (local distance) doubled
193               * for each NUMA it didn't match. We have FORM1_DIST_REF_POINTS
194               * levels (4), so this gives us 10*2*2*2*2 = 160.
195               *
196               * This logic can be seen in the Linux kernel source code, as of
197               * v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
198               */
199              if (n_level == 0) {
200                  continue;
201              }
202  
203              /*
204               * We must assign all assoc_src to dst, starting from n_level
205               * and going up to 0x1.
206               */
207              for (i = n_level; i > 0; i--) {
208                  assoc_src = spapr->FORM1_assoc_array[src][i];
209                  spapr->FORM1_assoc_array[dst][i] = assoc_src;
210              }
211          }
212      }
213  
214  }
215  
spapr_numa_FORM1_affinity_check(MachineState * machine)216  static void spapr_numa_FORM1_affinity_check(MachineState *machine)
217  {
218      int i;
219  
220      /*
221       * Check we don't have a memory-less/cpu-less NUMA node
222       * Firmware relies on the existing memory/cpu topology to provide the
223       * NUMA topology to the kernel.
224       * And the linux kernel needs to know the NUMA topology at start
225       * to be able to hotplug CPUs later.
226       */
227      if (machine->numa_state->num_nodes) {
228          for (i = 0; i < machine->numa_state->num_nodes; ++i) {
229              /* check for memory-less node */
230              if (machine->numa_state->nodes[i].node_mem == 0) {
231                  CPUState *cs;
232                  int found = 0;
233                  /* check for cpu-less node */
234                  CPU_FOREACH(cs) {
235                      PowerPCCPU *cpu = POWERPC_CPU(cs);
236                      if (cpu->node_id == i) {
237                          found = 1;
238                          break;
239                      }
240                  }
241                  /* memory-less and cpu-less node */
242                  if (!found) {
243                      error_report(
244  "Memory-less/cpu-less nodes are not supported with FORM1 NUMA (node %d)", i);
245                      exit(EXIT_FAILURE);
246                  }
247              }
248          }
249      }
250  
251      if (!spapr_numa_is_symmetrical(machine)) {
252          error_report(
253  "Asymmetrical NUMA topologies aren't supported in the pSeries machine using FORM1 NUMA");
254          exit(EXIT_FAILURE);
255      }
256  }
257  
258  /*
259   * Set NUMA machine state data based on FORM1 affinity semantics.
260   */
spapr_numa_FORM1_affinity_init(SpaprMachineState * spapr,MachineState * machine)261  static void spapr_numa_FORM1_affinity_init(SpaprMachineState *spapr,
262                                             MachineState *machine)
263  {
264      SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
265      int nb_numa_nodes = machine->numa_state->num_nodes;
266      int i, j;
267  
268      /*
269       * For all associativity arrays: first position is the size,
270       * position FORM1_DIST_REF_POINTS is always the numa_id,
271       * represented by the index 'i'.
272       *
273       * This will break on sparse NUMA setups, when/if QEMU starts
274       * to support it, because there will be no more guarantee that
275       * 'i' will be a valid node_id set by the user.
276       */
277      for (i = 0; i < nb_numa_nodes; i++) {
278          spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
279          spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
280      }
281  
282      for (i = nb_numa_nodes; i < nb_numa_nodes; i++) {
283          spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
284  
285          for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
286              uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
287                                   SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
288              spapr->FORM1_assoc_array[i][j] = gpu_assoc;
289          }
290  
291          spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
292      }
293  
294      /*
295       * Guests pseries-5.1 and older uses zeroed associativity domains,
296       * i.e. no domain definition based on NUMA distance input.
297       *
298       * Same thing with guests that have only one NUMA node.
299       */
300      if (smc->pre_5_2_numa_associativity ||
301          machine->numa_state->num_nodes <= 1) {
302          return;
303      }
304  
305      spapr_numa_define_FORM1_domains(spapr);
306  }
307  
308  /*
309   * Init NUMA FORM2 machine state data
310   */
spapr_numa_FORM2_affinity_init(SpaprMachineState * spapr)311  static void spapr_numa_FORM2_affinity_init(SpaprMachineState *spapr)
312  {
313      int i;
314  
315      /*
316       * For all resources but CPUs, FORM2 associativity arrays will
317       * be a size 2 array with the following format:
318       *
319       * ibm,associativity = {1, numa_id}
320       *
321       * CPUs will write an additional 'vcpu_id' on top of the arrays
322       * being initialized here. 'numa_id' is represented by the
323       * index 'i' of the loop.
324       */
325      for (i = 0; i < NUMA_NODES_MAX_NUM; i++) {
326          spapr->FORM2_assoc_array[i][0] = cpu_to_be32(1);
327          spapr->FORM2_assoc_array[i][1] = cpu_to_be32(i);
328      }
329  }
330  
spapr_numa_associativity_init(SpaprMachineState * spapr,MachineState * machine)331  void spapr_numa_associativity_init(SpaprMachineState *spapr,
332                                     MachineState *machine)
333  {
334      spapr_numa_FORM1_affinity_init(spapr, machine);
335      spapr_numa_FORM2_affinity_init(spapr);
336  }
337  
spapr_numa_associativity_check(SpaprMachineState * spapr)338  void spapr_numa_associativity_check(SpaprMachineState *spapr)
339  {
340      /*
341       * FORM2 does not have any restrictions we need to handle
342       * at CAS time, for now.
343       */
344      if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
345          return;
346      }
347  
348      spapr_numa_FORM1_affinity_check(MACHINE(spapr));
349  }
350  
spapr_numa_write_associativity_dt(SpaprMachineState * spapr,void * fdt,int offset,int nodeid)351  void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
352                                         int offset, int nodeid)
353  {
354      const uint32_t *associativity = get_associativity(spapr, nodeid);
355  
356      _FDT((fdt_setprop(fdt, offset, "ibm,associativity",
357                        associativity,
358                        get_numa_assoc_size(spapr) * sizeof(uint32_t))));
359  }
360  
spapr_numa_get_vcpu_assoc(SpaprMachineState * spapr,PowerPCCPU * cpu)361  static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
362                                             PowerPCCPU *cpu)
363  {
364      const uint32_t *associativity = get_associativity(spapr, cpu->node_id);
365      int max_distance_ref_points = get_max_dist_ref_points(spapr);
366      int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
367      uint32_t *vcpu_assoc = g_new(uint32_t, vcpu_assoc_size);
368      int index = spapr_get_vcpu_id(cpu);
369  
370      /*
371       * VCPUs have an extra 'cpu_id' value in ibm,associativity
372       * compared to other resources. Increment the size at index
373       * 0, put cpu_id last, then copy the remaining associativity
374       * domains.
375       */
376      vcpu_assoc[0] = cpu_to_be32(max_distance_ref_points + 1);
377      vcpu_assoc[vcpu_assoc_size - 1] = cpu_to_be32(index);
378      memcpy(vcpu_assoc + 1, associativity + 1,
379             (vcpu_assoc_size - 2) * sizeof(uint32_t));
380  
381      return vcpu_assoc;
382  }
383  
spapr_numa_fixup_cpu_dt(SpaprMachineState * spapr,void * fdt,int offset,PowerPCCPU * cpu)384  int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
385                              int offset, PowerPCCPU *cpu)
386  {
387      g_autofree uint32_t *vcpu_assoc = NULL;
388      int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
389  
390      vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);
391  
392      /* Advertise NUMA via ibm,associativity */
393      return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
394                         vcpu_assoc_size * sizeof(uint32_t));
395  }
396  
397  
spapr_numa_write_assoc_lookup_arrays(SpaprMachineState * spapr,void * fdt,int offset)398  int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
399                                           int offset)
400  {
401      MachineState *machine = MACHINE(spapr);
402      int max_distance_ref_points = get_max_dist_ref_points(spapr);
403      int nb_numa_nodes = machine->numa_state->num_nodes;
404      int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
405      g_autofree uint32_t *int_buf = NULL;
406      uint32_t *cur_index;
407      int i;
408  
409      /* ibm,associativity-lookup-arrays */
410      int_buf = g_new0(uint32_t, nr_nodes * max_distance_ref_points + 2);
411      cur_index = int_buf;
412      int_buf[0] = cpu_to_be32(nr_nodes);
413       /* Number of entries per associativity list */
414      int_buf[1] = cpu_to_be32(max_distance_ref_points);
415      cur_index += 2;
416      for (i = 0; i < nr_nodes; i++) {
417          /*
418           * For the lookup-array we use the ibm,associativity array of the
419           * current NUMA affinity, without the first element (size).
420           */
421          const uint32_t *associativity = get_associativity(spapr, i);
422          memcpy(cur_index, ++associativity,
423                 sizeof(uint32_t) * max_distance_ref_points);
424          cur_index += max_distance_ref_points;
425      }
426  
427      return fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays",
428                         int_buf, (cur_index - int_buf) * sizeof(uint32_t));
429  }
430  
spapr_numa_FORM1_write_rtas_dt(SpaprMachineState * spapr,void * fdt,int rtas)431  static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState *spapr,
432                                             void *fdt, int rtas)
433  {
434      MachineState *ms = MACHINE(spapr);
435      SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
436      uint32_t refpoints[] = {
437          cpu_to_be32(0x4),
438          cpu_to_be32(0x3),
439          cpu_to_be32(0x2),
440          cpu_to_be32(0x1),
441      };
442      uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
443      uint32_t maxdomain = ms->numa_state->num_nodes;
444      uint32_t maxdomains[] = {
445          cpu_to_be32(4),
446          cpu_to_be32(maxdomain),
447          cpu_to_be32(maxdomain),
448          cpu_to_be32(maxdomain),
449          cpu_to_be32(maxdomain)
450      };
451  
452      if (smc->pre_5_2_numa_associativity ||
453          ms->numa_state->num_nodes <= 1) {
454          uint32_t legacy_refpoints[] = {
455              cpu_to_be32(0x4),
456              cpu_to_be32(0x4),
457              cpu_to_be32(0x2),
458          };
459          uint32_t legacy_maxdomains[] = {
460              cpu_to_be32(4),
461              cpu_to_be32(0),
462              cpu_to_be32(0),
463              cpu_to_be32(0),
464              cpu_to_be32(maxdomain ? maxdomain : 1),
465          };
466  
467          G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
468          G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));
469  
470          nr_refpoints = 3;
471  
472          memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
473          memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));
474  
475          /* pseries-5.0 and older reference-points array is {0x4, 0x4} */
476          if (smc->pre_5_1_assoc_refpoints) {
477              nr_refpoints = 2;
478          }
479      }
480  
481      _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
482                       refpoints, nr_refpoints * sizeof(refpoints[0])));
483  
484      _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
485                       maxdomains, sizeof(maxdomains)));
486  }
487  
spapr_numa_FORM2_write_rtas_tables(SpaprMachineState * spapr,void * fdt,int rtas)488  static void spapr_numa_FORM2_write_rtas_tables(SpaprMachineState *spapr,
489                                                 void *fdt, int rtas)
490  {
491      MachineState *ms = MACHINE(spapr);
492      int nb_numa_nodes = ms->numa_state->num_nodes;
493      int distance_table_entries = nb_numa_nodes * nb_numa_nodes;
494      g_autofree uint32_t *lookup_index_table = NULL;
495      g_autofree uint8_t *distance_table = NULL;
496      int src, dst, i, distance_table_size;
497  
498      /*
499       * ibm,numa-lookup-index-table: array with length and a
500       * list of NUMA ids present in the guest.
501       */
502      lookup_index_table = g_new0(uint32_t, nb_numa_nodes + 1);
503      lookup_index_table[0] = cpu_to_be32(nb_numa_nodes);
504  
505      for (i = 0; i < nb_numa_nodes; i++) {
506          lookup_index_table[i + 1] = cpu_to_be32(i);
507      }
508  
509      _FDT(fdt_setprop(fdt, rtas, "ibm,numa-lookup-index-table",
510                       lookup_index_table,
511                       (nb_numa_nodes + 1) * sizeof(uint32_t)));
512  
513      /*
514       * ibm,numa-distance-table: contains all node distances. First
515       * element is the size of the table as uint32, followed up
516       * by all the uint8 distances from the first NUMA node, then all
517       * distances from the second NUMA node and so on.
518       *
519       * ibm,numa-lookup-index-table is used by guest to navigate this
520       * array because NUMA ids can be sparse (node 0 is the first,
521       * node 8 is the second ...).
522       */
523      distance_table_size = distance_table_entries * sizeof(uint8_t) +
524                            sizeof(uint32_t);
525      distance_table = g_new0(uint8_t, distance_table_size);
526      stl_be_p(distance_table, distance_table_entries);
527  
528      /* Skip the uint32_t array length at the start */
529      i = sizeof(uint32_t);
530  
531      for (src = 0; src < nb_numa_nodes; src++) {
532          for (dst = 0; dst < nb_numa_nodes; dst++) {
533              distance_table[i++] = get_numa_distance(ms, src, dst);
534          }
535      }
536  
537      _FDT(fdt_setprop(fdt, rtas, "ibm,numa-distance-table",
538                       distance_table, distance_table_size));
539  }
540  
541  /*
542   * This helper could be compressed in a single function with
543   * FORM1 logic since we're setting the same DT values, with the
544   * difference being a call to spapr_numa_FORM2_write_rtas_tables()
545   * in the end. The separation was made to avoid clogging FORM1 code
546   * which already has to deal with compat modes from previous
547   * QEMU machine types.
548   */
spapr_numa_FORM2_write_rtas_dt(SpaprMachineState * spapr,void * fdt,int rtas)549  static void spapr_numa_FORM2_write_rtas_dt(SpaprMachineState *spapr,
550                                             void *fdt, int rtas)
551  {
552      MachineState *ms = MACHINE(spapr);
553  
554      /*
555       * In FORM2, ibm,associativity-reference-points will point to
556       * the element in the ibm,associativity array that contains the
557       * primary domain index (for FORM2, the first element).
558       *
559       * This value (in our case, the numa-id) is then used as an index
560       * to retrieve all other attributes of the node (distance,
561       * bandwidth, latency) via ibm,numa-lookup-index-table and other
562       * ibm,numa-*-table properties.
563       */
564      uint32_t refpoints[] = { cpu_to_be32(1) };
565  
566      uint32_t maxdomain = ms->numa_state->num_nodes;
567      uint32_t maxdomains[] = { cpu_to_be32(1), cpu_to_be32(maxdomain) };
568  
569      _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
570                       refpoints, sizeof(refpoints)));
571  
572      _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
573                       maxdomains, sizeof(maxdomains)));
574  
575      spapr_numa_FORM2_write_rtas_tables(spapr, fdt, rtas);
576  }
577  
578  /*
579   * Helper that writes ibm,associativity-reference-points and
580   * max-associativity-domains in the RTAS pointed by @rtas
581   * in the DT @fdt.
582   */
spapr_numa_write_rtas_dt(SpaprMachineState * spapr,void * fdt,int rtas)583  void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
584  {
585      if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
586          spapr_numa_FORM2_write_rtas_dt(spapr, fdt, rtas);
587          return;
588      }
589  
590      spapr_numa_FORM1_write_rtas_dt(spapr, fdt, rtas);
591  }
592  
h_home_node_associativity(PowerPCCPU * cpu,SpaprMachineState * spapr,target_ulong opcode,target_ulong * args)593  static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
594                                                SpaprMachineState *spapr,
595                                                target_ulong opcode,
596                                                target_ulong *args)
597  {
598      g_autofree uint32_t *vcpu_assoc = NULL;
599      target_ulong flags = args[0];
600      target_ulong procno = args[1];
601      PowerPCCPU *tcpu;
602      int idx, assoc_idx;
603      int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
604  
605      /* only support procno from H_REGISTER_VPA */
606      if (flags != 0x1) {
607          return H_FUNCTION;
608      }
609  
610      tcpu = spapr_find_cpu(procno);
611      if (tcpu == NULL) {
612          return H_P2;
613      }
614  
615      /*
616       * Given that we want to be flexible with the sizes and indexes,
617       * we must consider that there is a hard limit of how many
618       * associativities domain we can fit in R4 up to R9, which would be
619       * 12 associativity domains for vcpus. Assert and bail if that's
620       * not the case.
621       */
622      g_assert((vcpu_assoc_size - 1) <= 12);
623  
624      vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
625      /* assoc_idx starts at 1 to skip associativity size */
626      assoc_idx = 1;
627  
628  #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
629                               ((uint64_t)(b) & 0xffffffff))
630  
631      for (idx = 0; idx < 6; idx++) {
632          int32_t a, b;
633  
634          /*
635           * vcpu_assoc[] will contain the associativity domains for tcpu,
636           * including tcpu->node_id and procno, meaning that we don't
637           * need to use these variables here.
638           *
639           * We'll read 2 values at a time to fill up the ASSOCIATIVITY()
640           * macro. The ternary will fill the remaining registers with -1
641           * after we went through vcpu_assoc[].
642           */
643          a = assoc_idx < vcpu_assoc_size ?
644              be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
645          b = assoc_idx < vcpu_assoc_size ?
646              be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
647  
648          args[idx] = ASSOCIATIVITY(a, b);
649      }
650  #undef ASSOCIATIVITY
651  
652      return H_SUCCESS;
653  }
654  
spapr_numa_register_types(void)655  static void spapr_numa_register_types(void)
656  {
657      /* Virtual Processor Home Node */
658      spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
659                               h_home_node_associativity);
660  }
661  
662  type_init(spapr_numa_register_types)
663