1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /************************************************************
3 * EFI GUID Partition Table handling
4 *
5 * http://www.uefi.org/specs/
6 * http://www.intel.com/technology/efi/
7 *
8 * efi.[ch] by Matt Domsch <Matt_Domsch@dell.com>
9 * Copyright 2000,2001,2002,2004 Dell Inc.
10 *
11 * TODO:
12 *
13 * Changelog:
14 * Mon August 5th, 2013 Davidlohr Bueso <davidlohr@hp.com>
15 * - detect hybrid MBRs, tighter pMBR checking & cleanups.
16 *
17 * Mon Nov 09 2004 Matt Domsch <Matt_Domsch@dell.com>
18 * - test for valid PMBR and valid PGPT before ever reading
19 * AGPT, allow override with 'gpt' kernel command line option.
20 * - check for first/last_usable_lba outside of size of disk
21 *
22 * Tue Mar 26 2002 Matt Domsch <Matt_Domsch@dell.com>
23 * - Ported to 2.5.7-pre1 and 2.5.7-dj2
24 * - Applied patch to avoid fault in alternate header handling
25 * - cleaned up find_valid_gpt
26 * - On-disk structure and copy in memory is *always* LE now -
27 * swab fields as needed
28 * - remove print_gpt_header()
29 * - only use first max_p partition entries, to keep the kernel minor number
30 * and partition numbers tied.
31 *
32 * Mon Feb 04 2002 Matt Domsch <Matt_Domsch@dell.com>
33 * - Removed __PRIPTR_PREFIX - not being used
34 *
35 * Mon Jan 14 2002 Matt Domsch <Matt_Domsch@dell.com>
36 * - Ported to 2.5.2-pre11 + library crc32 patch Linus applied
37 *
38 * Thu Dec 6 2001 Matt Domsch <Matt_Domsch@dell.com>
39 * - Added compare_gpts().
40 * - moved le_efi_guid_to_cpus() back into this file. GPT is the only
41 * thing that keeps EFI GUIDs on disk.
42 * - Changed gpt structure names and members to be simpler and more Linux-like.
43 *
44 * Wed Oct 17 2001 Matt Domsch <Matt_Domsch@dell.com>
45 * - Removed CONFIG_DEVFS_VOLUMES_UUID code entirely per Martin Wilck
46 *
47 * Wed Oct 10 2001 Matt Domsch <Matt_Domsch@dell.com>
48 * - Changed function comments to DocBook style per Andreas Dilger suggestion.
49 *
50 * Mon Oct 08 2001 Matt Domsch <Matt_Domsch@dell.com>
51 * - Change read_lba() to use the page cache per Al Viro's work.
52 * - print u64s properly on all architectures
53 * - fixed debug_printk(), now Dprintk()
54 *
55 * Mon Oct 01 2001 Matt Domsch <Matt_Domsch@dell.com>
56 * - Style cleanups
57 * - made most functions static
58 * - Endianness addition
59 * - remove test for second alternate header, as it's not per spec,
60 * and is unnecessary. There's now a method to read/write the last
61 * sector of an odd-sized disk from user space. No tools have ever
62 * been released which used this code, so it's effectively dead.
63 * - Per Asit Mallick of Intel, added a test for a valid PMBR.
64 * - Added kernel command line option 'gpt' to override valid PMBR test.
65 *
66 * Wed Jun 6 2001 Martin Wilck <Martin.Wilck@Fujitsu-Siemens.com>
67 * - added devfs volume UUID support (/dev/volumes/uuids) for
68 * mounting file systems by the partition GUID.
69 *
70 * Tue Dec 5 2000 Matt Domsch <Matt_Domsch@dell.com>
71 * - Moved crc32() to linux/lib, added efi_crc32().
72 *
73 * Thu Nov 30 2000 Matt Domsch <Matt_Domsch@dell.com>
74 * - Replaced Intel's CRC32 function with an equivalent
75 * non-license-restricted version.
76 *
77 * Wed Oct 25 2000 Matt Domsch <Matt_Domsch@dell.com>
78 * - Fixed the last_lba() call to return the proper last block
79 *
80 * Thu Oct 12 2000 Matt Domsch <Matt_Domsch@dell.com>
81 * - Thanks to Andries Brouwer for his debugging assistance.
82 * - Code works, detects all the partitions.
83 *
84 ************************************************************/
85 #include <linux/kernel.h>
86 #include <linux/crc32.h>
87 #include <linux/ctype.h>
88 #include <linux/math64.h>
89 #include <linux/slab.h>
90 #include "check.h"
91 #include "efi.h"
92
93 /* This allows a kernel command line option 'gpt' to override
94 * the test for invalid PMBR. Not __initdata because reloading
95 * the partition tables happens after init too.
96 */
97 static int force_gpt;
98 static int __init
force_gpt_fn(char * str)99 force_gpt_fn(char *str)
100 {
101 force_gpt = 1;
102 return 1;
103 }
104 __setup("gpt", force_gpt_fn);
105
106
107 /**
108 * efi_crc32() - EFI version of crc32 function
109 * @buf: buffer to calculate crc32 of
110 * @len: length of buf
111 *
112 * Description: Returns EFI-style CRC32 value for @buf
113 *
114 * This function uses the little endian Ethernet polynomial
115 * but seeds the function with ~0, and xor's with ~0 at the end.
116 * Note, the EFI Specification, v1.02, has a reference to
117 * Dr. Dobbs Journal, May 1994 (actually it's in May 1992).
118 */
119 static inline u32
efi_crc32(const void * buf,unsigned long len)120 efi_crc32(const void *buf, unsigned long len)
121 {
122 return (crc32(~0L, buf, len) ^ ~0L);
123 }
124
125 /**
126 * last_lba(): return number of last logical block of device
127 * @disk: block device
128 *
129 * Description: Returns last LBA value on success, 0 on error.
130 * This is stored (by sd and ide-geometry) in
131 * the part[0] entry for this disk, and is the number of
132 * physical sectors available on the disk.
133 */
last_lba(struct gendisk * disk)134 static u64 last_lba(struct gendisk *disk)
135 {
136 return div_u64(bdev_nr_bytes(disk->part0),
137 queue_logical_block_size(disk->queue)) - 1ULL;
138 }
139
pmbr_part_valid(gpt_mbr_record * part)140 static inline int pmbr_part_valid(gpt_mbr_record *part)
141 {
142 if (part->os_type != EFI_PMBR_OSTYPE_EFI_GPT)
143 goto invalid;
144
145 /* set to 0x00000001 (i.e., the LBA of the GPT Partition Header) */
146 if (le32_to_cpu(part->starting_lba) != GPT_PRIMARY_PARTITION_TABLE_LBA)
147 goto invalid;
148
149 return GPT_MBR_PROTECTIVE;
150 invalid:
151 return 0;
152 }
153
154 /**
155 * is_pmbr_valid(): test Protective MBR for validity
156 * @mbr: pointer to a legacy mbr structure
157 * @total_sectors: amount of sectors in the device
158 *
159 * Description: Checks for a valid protective or hybrid
160 * master boot record (MBR). The validity of a pMBR depends
161 * on all of the following properties:
162 * 1) MSDOS signature is in the last two bytes of the MBR
163 * 2) One partition of type 0xEE is found
164 *
165 * In addition, a hybrid MBR will have up to three additional
166 * primary partitions, which point to the same space that's
167 * marked out by up to three GPT partitions.
168 *
169 * Returns 0 upon invalid MBR, or GPT_MBR_PROTECTIVE or
170 * GPT_MBR_HYBRID depending on the device layout.
171 */
is_pmbr_valid(legacy_mbr * mbr,sector_t total_sectors)172 static int is_pmbr_valid(legacy_mbr *mbr, sector_t total_sectors)
173 {
174 uint32_t sz = 0;
175 int i, part = 0, ret = 0; /* invalid by default */
176
177 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
178 goto done;
179
180 for (i = 0; i < 4; i++) {
181 ret = pmbr_part_valid(&mbr->partition_record[i]);
182 if (ret == GPT_MBR_PROTECTIVE) {
183 part = i;
184 /*
185 * Ok, we at least know that there's a protective MBR,
186 * now check if there are other partition types for
187 * hybrid MBR.
188 */
189 goto check_hybrid;
190 }
191 }
192
193 if (ret != GPT_MBR_PROTECTIVE)
194 goto done;
195 check_hybrid:
196 for (i = 0; i < 4; i++)
197 if ((mbr->partition_record[i].os_type !=
198 EFI_PMBR_OSTYPE_EFI_GPT) &&
199 (mbr->partition_record[i].os_type != 0x00))
200 ret = GPT_MBR_HYBRID;
201
202 /*
203 * Protective MBRs take up the lesser of the whole disk
204 * or 2 TiB (32bit LBA), ignoring the rest of the disk.
205 * Some partitioning programs, nonetheless, choose to set
206 * the size to the maximum 32-bit limitation, disregarding
207 * the disk size.
208 *
209 * Hybrid MBRs do not necessarily comply with this.
210 *
211 * Consider a bad value here to be a warning to support dd'ing
212 * an image from a smaller disk to a larger disk.
213 */
214 if (ret == GPT_MBR_PROTECTIVE) {
215 sz = le32_to_cpu(mbr->partition_record[part].size_in_lba);
216 if (sz != (uint32_t) total_sectors - 1 && sz != 0xFFFFFFFF)
217 pr_debug("GPT: mbr size in lba (%u) different than whole disk (%u).\n",
218 sz, min_t(uint32_t,
219 total_sectors - 1, 0xFFFFFFFF));
220 }
221 done:
222 return ret;
223 }
224
225 /**
226 * read_lba(): Read bytes from disk, starting at given LBA
227 * @state: disk parsed partitions
228 * @lba: the Logical Block Address of the partition table
229 * @buffer: destination buffer
230 * @count: bytes to read
231 *
232 * Description: Reads @count bytes from @state->disk into @buffer.
233 * Returns number of bytes read on success, 0 on error.
234 */
read_lba(struct parsed_partitions * state,u64 lba,u8 * buffer,size_t count)235 static size_t read_lba(struct parsed_partitions *state,
236 u64 lba, u8 *buffer, size_t count)
237 {
238 size_t totalreadcount = 0;
239 sector_t n = lba *
240 (queue_logical_block_size(state->disk->queue) / 512);
241
242 if (!buffer || lba > last_lba(state->disk))
243 return 0;
244
245 while (count) {
246 int copied = 512;
247 Sector sect;
248 unsigned char *data = read_part_sector(state, n++, §);
249 if (!data)
250 break;
251 if (copied > count)
252 copied = count;
253 memcpy(buffer, data, copied);
254 put_dev_sector(sect);
255 buffer += copied;
256 totalreadcount +=copied;
257 count -= copied;
258 }
259 return totalreadcount;
260 }
261
262 /**
263 * alloc_read_gpt_entries(): reads partition entries from disk
264 * @state: disk parsed partitions
265 * @gpt: GPT header
266 *
267 * Description: Returns ptes on success, NULL on error.
268 * Allocates space for PTEs based on information found in @gpt.
269 * Notes: remember to free pte when you're done!
270 */
alloc_read_gpt_entries(struct parsed_partitions * state,gpt_header * gpt)271 static gpt_entry *alloc_read_gpt_entries(struct parsed_partitions *state,
272 gpt_header *gpt)
273 {
274 size_t count;
275 gpt_entry *pte;
276
277 if (!gpt)
278 return NULL;
279
280 count = (size_t)le32_to_cpu(gpt->num_partition_entries) *
281 le32_to_cpu(gpt->sizeof_partition_entry);
282 if (!count)
283 return NULL;
284 pte = kmalloc(count, GFP_KERNEL);
285 if (!pte)
286 return NULL;
287
288 if (read_lba(state, le64_to_cpu(gpt->partition_entry_lba),
289 (u8 *) pte, count) < count) {
290 kfree(pte);
291 pte=NULL;
292 return NULL;
293 }
294 return pte;
295 }
296
297 /**
298 * alloc_read_gpt_header(): Allocates GPT header, reads into it from disk
299 * @state: disk parsed partitions
300 * @lba: the Logical Block Address of the partition table
301 *
302 * Description: returns GPT header on success, NULL on error. Allocates
303 * and fills a GPT header starting at @ from @state->disk.
304 * Note: remember to free gpt when finished with it.
305 */
alloc_read_gpt_header(struct parsed_partitions * state,u64 lba)306 static gpt_header *alloc_read_gpt_header(struct parsed_partitions *state,
307 u64 lba)
308 {
309 gpt_header *gpt;
310 unsigned ssz = queue_logical_block_size(state->disk->queue);
311
312 gpt = kmalloc(ssz, GFP_KERNEL);
313 if (!gpt)
314 return NULL;
315
316 if (read_lba(state, lba, (u8 *) gpt, ssz) < ssz) {
317 kfree(gpt);
318 gpt=NULL;
319 return NULL;
320 }
321
322 return gpt;
323 }
324
325 /**
326 * is_gpt_valid() - tests one GPT header and PTEs for validity
327 * @state: disk parsed partitions
328 * @lba: logical block address of the GPT header to test
329 * @gpt: GPT header ptr, filled on return.
330 * @ptes: PTEs ptr, filled on return.
331 *
332 * Description: returns 1 if valid, 0 on error.
333 * If valid, returns pointers to newly allocated GPT header and PTEs.
334 */
is_gpt_valid(struct parsed_partitions * state,u64 lba,gpt_header ** gpt,gpt_entry ** ptes)335 static int is_gpt_valid(struct parsed_partitions *state, u64 lba,
336 gpt_header **gpt, gpt_entry **ptes)
337 {
338 u32 crc, origcrc;
339 u64 lastlba, pt_size;
340
341 if (!ptes)
342 return 0;
343 if (!(*gpt = alloc_read_gpt_header(state, lba)))
344 return 0;
345
346 /* Check the GUID Partition Table signature */
347 if (le64_to_cpu((*gpt)->signature) != GPT_HEADER_SIGNATURE) {
348 pr_debug("GUID Partition Table Header signature is wrong:"
349 "%lld != %lld\n",
350 (unsigned long long)le64_to_cpu((*gpt)->signature),
351 (unsigned long long)GPT_HEADER_SIGNATURE);
352 goto fail;
353 }
354
355 /* Check the GUID Partition Table header size is too big */
356 if (le32_to_cpu((*gpt)->header_size) >
357 queue_logical_block_size(state->disk->queue)) {
358 pr_debug("GUID Partition Table Header size is too large: %u > %u\n",
359 le32_to_cpu((*gpt)->header_size),
360 queue_logical_block_size(state->disk->queue));
361 goto fail;
362 }
363
364 /* Check the GUID Partition Table header size is too small */
365 if (le32_to_cpu((*gpt)->header_size) < sizeof(gpt_header)) {
366 pr_debug("GUID Partition Table Header size is too small: %u < %zu\n",
367 le32_to_cpu((*gpt)->header_size),
368 sizeof(gpt_header));
369 goto fail;
370 }
371
372 /* Check the GUID Partition Table CRC */
373 origcrc = le32_to_cpu((*gpt)->header_crc32);
374 (*gpt)->header_crc32 = 0;
375 crc = efi_crc32((const unsigned char *) (*gpt), le32_to_cpu((*gpt)->header_size));
376
377 if (crc != origcrc) {
378 pr_debug("GUID Partition Table Header CRC is wrong: %x != %x\n",
379 crc, origcrc);
380 goto fail;
381 }
382 (*gpt)->header_crc32 = cpu_to_le32(origcrc);
383
384 /* Check that the my_lba entry points to the LBA that contains
385 * the GUID Partition Table */
386 if (le64_to_cpu((*gpt)->my_lba) != lba) {
387 pr_debug("GPT my_lba incorrect: %lld != %lld\n",
388 (unsigned long long)le64_to_cpu((*gpt)->my_lba),
389 (unsigned long long)lba);
390 goto fail;
391 }
392
393 /* Check the first_usable_lba and last_usable_lba are
394 * within the disk.
395 */
396 lastlba = last_lba(state->disk);
397 if (le64_to_cpu((*gpt)->first_usable_lba) > lastlba) {
398 pr_debug("GPT: first_usable_lba incorrect: %lld > %lld\n",
399 (unsigned long long)le64_to_cpu((*gpt)->first_usable_lba),
400 (unsigned long long)lastlba);
401 goto fail;
402 }
403 if (le64_to_cpu((*gpt)->last_usable_lba) > lastlba) {
404 pr_debug("GPT: last_usable_lba incorrect: %lld > %lld\n",
405 (unsigned long long)le64_to_cpu((*gpt)->last_usable_lba),
406 (unsigned long long)lastlba);
407 goto fail;
408 }
409 if (le64_to_cpu((*gpt)->last_usable_lba) < le64_to_cpu((*gpt)->first_usable_lba)) {
410 pr_debug("GPT: last_usable_lba incorrect: %lld > %lld\n",
411 (unsigned long long)le64_to_cpu((*gpt)->last_usable_lba),
412 (unsigned long long)le64_to_cpu((*gpt)->first_usable_lba));
413 goto fail;
414 }
415 /* Check that sizeof_partition_entry has the correct value */
416 if (le32_to_cpu((*gpt)->sizeof_partition_entry) != sizeof(gpt_entry)) {
417 pr_debug("GUID Partition Entry Size check failed.\n");
418 goto fail;
419 }
420
421 /* Sanity check partition table size */
422 pt_size = (u64)le32_to_cpu((*gpt)->num_partition_entries) *
423 le32_to_cpu((*gpt)->sizeof_partition_entry);
424 if (pt_size > KMALLOC_MAX_SIZE) {
425 pr_debug("GUID Partition Table is too large: %llu > %lu bytes\n",
426 (unsigned long long)pt_size, KMALLOC_MAX_SIZE);
427 goto fail;
428 }
429
430 if (!(*ptes = alloc_read_gpt_entries(state, *gpt)))
431 goto fail;
432
433 /* Check the GUID Partition Entry Array CRC */
434 crc = efi_crc32((const unsigned char *) (*ptes), pt_size);
435
436 if (crc != le32_to_cpu((*gpt)->partition_entry_array_crc32)) {
437 pr_debug("GUID Partition Entry Array CRC check failed.\n");
438 goto fail_ptes;
439 }
440
441 /* We're done, all's well */
442 return 1;
443
444 fail_ptes:
445 kfree(*ptes);
446 *ptes = NULL;
447 fail:
448 kfree(*gpt);
449 *gpt = NULL;
450 return 0;
451 }
452
453 /**
454 * is_pte_valid() - tests one PTE for validity
455 * @pte:pte to check
456 * @lastlba: last lba of the disk
457 *
458 * Description: returns 1 if valid, 0 on error.
459 */
460 static inline int
is_pte_valid(const gpt_entry * pte,const u64 lastlba)461 is_pte_valid(const gpt_entry *pte, const u64 lastlba)
462 {
463 if ((!efi_guidcmp(pte->partition_type_guid, NULL_GUID)) ||
464 le64_to_cpu(pte->starting_lba) > lastlba ||
465 le64_to_cpu(pte->ending_lba) > lastlba)
466 return 0;
467 return 1;
468 }
469
470 /**
471 * compare_gpts() - Search disk for valid GPT headers and PTEs
472 * @pgpt: primary GPT header
473 * @agpt: alternate GPT header
474 * @lastlba: last LBA number
475 *
476 * Description: Returns nothing. Sanity checks pgpt and agpt fields
477 * and prints warnings on discrepancies.
478 *
479 */
480 static void
compare_gpts(gpt_header * pgpt,gpt_header * agpt,u64 lastlba)481 compare_gpts(gpt_header *pgpt, gpt_header *agpt, u64 lastlba)
482 {
483 int error_found = 0;
484 if (!pgpt || !agpt)
485 return;
486 if (le64_to_cpu(pgpt->my_lba) != le64_to_cpu(agpt->alternate_lba)) {
487 pr_warn("GPT:Primary header LBA != Alt. header alternate_lba\n");
488 pr_warn("GPT:%lld != %lld\n",
489 (unsigned long long)le64_to_cpu(pgpt->my_lba),
490 (unsigned long long)le64_to_cpu(agpt->alternate_lba));
491 error_found++;
492 }
493 if (le64_to_cpu(pgpt->alternate_lba) != le64_to_cpu(agpt->my_lba)) {
494 pr_warn("GPT:Primary header alternate_lba != Alt. header my_lba\n");
495 pr_warn("GPT:%lld != %lld\n",
496 (unsigned long long)le64_to_cpu(pgpt->alternate_lba),
497 (unsigned long long)le64_to_cpu(agpt->my_lba));
498 error_found++;
499 }
500 if (le64_to_cpu(pgpt->first_usable_lba) !=
501 le64_to_cpu(agpt->first_usable_lba)) {
502 pr_warn("GPT:first_usable_lbas don't match.\n");
503 pr_warn("GPT:%lld != %lld\n",
504 (unsigned long long)le64_to_cpu(pgpt->first_usable_lba),
505 (unsigned long long)le64_to_cpu(agpt->first_usable_lba));
506 error_found++;
507 }
508 if (le64_to_cpu(pgpt->last_usable_lba) !=
509 le64_to_cpu(agpt->last_usable_lba)) {
510 pr_warn("GPT:last_usable_lbas don't match.\n");
511 pr_warn("GPT:%lld != %lld\n",
512 (unsigned long long)le64_to_cpu(pgpt->last_usable_lba),
513 (unsigned long long)le64_to_cpu(agpt->last_usable_lba));
514 error_found++;
515 }
516 if (efi_guidcmp(pgpt->disk_guid, agpt->disk_guid)) {
517 pr_warn("GPT:disk_guids don't match.\n");
518 error_found++;
519 }
520 if (le32_to_cpu(pgpt->num_partition_entries) !=
521 le32_to_cpu(agpt->num_partition_entries)) {
522 pr_warn("GPT:num_partition_entries don't match: "
523 "0x%x != 0x%x\n",
524 le32_to_cpu(pgpt->num_partition_entries),
525 le32_to_cpu(agpt->num_partition_entries));
526 error_found++;
527 }
528 if (le32_to_cpu(pgpt->sizeof_partition_entry) !=
529 le32_to_cpu(agpt->sizeof_partition_entry)) {
530 pr_warn("GPT:sizeof_partition_entry values don't match: "
531 "0x%x != 0x%x\n",
532 le32_to_cpu(pgpt->sizeof_partition_entry),
533 le32_to_cpu(agpt->sizeof_partition_entry));
534 error_found++;
535 }
536 if (le32_to_cpu(pgpt->partition_entry_array_crc32) !=
537 le32_to_cpu(agpt->partition_entry_array_crc32)) {
538 pr_warn("GPT:partition_entry_array_crc32 values don't match: "
539 "0x%x != 0x%x\n",
540 le32_to_cpu(pgpt->partition_entry_array_crc32),
541 le32_to_cpu(agpt->partition_entry_array_crc32));
542 error_found++;
543 }
544 if (le64_to_cpu(pgpt->alternate_lba) != lastlba) {
545 pr_warn("GPT:Primary header thinks Alt. header is not at the end of the disk.\n");
546 pr_warn("GPT:%lld != %lld\n",
547 (unsigned long long)le64_to_cpu(pgpt->alternate_lba),
548 (unsigned long long)lastlba);
549 error_found++;
550 }
551
552 if (le64_to_cpu(agpt->my_lba) != lastlba) {
553 pr_warn("GPT:Alternate GPT header not at the end of the disk.\n");
554 pr_warn("GPT:%lld != %lld\n",
555 (unsigned long long)le64_to_cpu(agpt->my_lba),
556 (unsigned long long)lastlba);
557 error_found++;
558 }
559
560 if (error_found)
561 pr_warn("GPT: Use GNU Parted to correct GPT errors.\n");
562 return;
563 }
564
565 /**
566 * find_valid_gpt() - Search disk for valid GPT headers and PTEs
567 * @state: disk parsed partitions
568 * @gpt: GPT header ptr, filled on return.
569 * @ptes: PTEs ptr, filled on return.
570 *
571 * Description: Returns 1 if valid, 0 on error.
572 * If valid, returns pointers to newly allocated GPT header and PTEs.
573 * Validity depends on PMBR being valid (or being overridden by the
574 * 'gpt' kernel command line option) and finding either the Primary
575 * GPT header and PTEs valid, or the Alternate GPT header and PTEs
576 * valid. If the Primary GPT header is not valid, the Alternate GPT header
577 * is not checked unless the 'gpt' kernel command line option is passed.
578 * This protects against devices which misreport their size, and forces
579 * the user to decide to use the Alternate GPT.
580 */
find_valid_gpt(struct parsed_partitions * state,gpt_header ** gpt,gpt_entry ** ptes)581 static int find_valid_gpt(struct parsed_partitions *state, gpt_header **gpt,
582 gpt_entry **ptes)
583 {
584 int good_pgpt = 0, good_agpt = 0, good_pmbr = 0;
585 gpt_header *pgpt = NULL, *agpt = NULL;
586 gpt_entry *pptes = NULL, *aptes = NULL;
587 legacy_mbr *legacymbr;
588 struct gendisk *disk = state->disk;
589 const struct block_device_operations *fops = disk->fops;
590 sector_t total_sectors = get_capacity(state->disk);
591 u64 lastlba;
592
593 if (!ptes)
594 return 0;
595
596 lastlba = last_lba(state->disk);
597 if (!force_gpt) {
598 /* This will be added to the EFI Spec. per Intel after v1.02. */
599 legacymbr = kzalloc(sizeof(*legacymbr), GFP_KERNEL);
600 if (!legacymbr)
601 goto fail;
602
603 read_lba(state, 0, (u8 *)legacymbr, sizeof(*legacymbr));
604 good_pmbr = is_pmbr_valid(legacymbr, total_sectors);
605 kfree(legacymbr);
606
607 if (!good_pmbr)
608 goto fail;
609
610 pr_debug("Device has a %s MBR\n",
611 good_pmbr == GPT_MBR_PROTECTIVE ?
612 "protective" : "hybrid");
613 }
614
615 good_pgpt = is_gpt_valid(state, GPT_PRIMARY_PARTITION_TABLE_LBA,
616 &pgpt, &pptes);
617 if (good_pgpt)
618 good_agpt = is_gpt_valid(state,
619 le64_to_cpu(pgpt->alternate_lba),
620 &agpt, &aptes);
621 if (!good_agpt && force_gpt)
622 good_agpt = is_gpt_valid(state, lastlba, &agpt, &aptes);
623
624 if (!good_agpt && force_gpt && fops->alternative_gpt_sector) {
625 sector_t agpt_sector;
626 int err;
627
628 err = fops->alternative_gpt_sector(disk, &agpt_sector);
629 if (!err)
630 good_agpt = is_gpt_valid(state, agpt_sector,
631 &agpt, &aptes);
632 }
633
634 /* The obviously unsuccessful case */
635 if (!good_pgpt && !good_agpt)
636 goto fail;
637
638 compare_gpts(pgpt, agpt, lastlba);
639
640 /* The good cases */
641 if (good_pgpt) {
642 *gpt = pgpt;
643 *ptes = pptes;
644 kfree(agpt);
645 kfree(aptes);
646 if (!good_agpt)
647 pr_warn("Alternate GPT is invalid, using primary GPT.\n");
648 return 1;
649 }
650 else if (good_agpt) {
651 *gpt = agpt;
652 *ptes = aptes;
653 kfree(pgpt);
654 kfree(pptes);
655 pr_warn("Primary GPT is invalid, using alternate GPT.\n");
656 return 1;
657 }
658
659 fail:
660 kfree(pgpt);
661 kfree(agpt);
662 kfree(pptes);
663 kfree(aptes);
664 *gpt = NULL;
665 *ptes = NULL;
666 return 0;
667 }
668
669 /**
670 * utf16_le_to_7bit(): Naively converts a UTF-16LE string to 7-bit ASCII characters
671 * @in: input UTF-16LE string
672 * @size: size of the input string
673 * @out: output string ptr, should be capable to store @size+1 characters
674 *
675 * Description: Converts @size UTF16-LE symbols from @in string to 7-bit
676 * ASCII characters and stores them to @out. Adds trailing zero to @out array.
677 */
utf16_le_to_7bit(const __le16 * in,unsigned int size,u8 * out)678 static void utf16_le_to_7bit(const __le16 *in, unsigned int size, u8 *out)
679 {
680 unsigned int i = 0;
681
682 out[size] = 0;
683
684 while (i < size) {
685 u8 c = le16_to_cpu(in[i]) & 0xff;
686
687 if (c && !isprint(c))
688 c = '!';
689 out[i] = c;
690 i++;
691 }
692 }
693
694 /**
695 * efi_partition - scan for GPT partitions
696 * @state: disk parsed partitions
697 *
698 * Description: called from check.c, if the disk contains GPT
699 * partitions, sets up partition entries in the kernel.
700 *
701 * If the first block on the disk is a legacy MBR,
702 * it will get handled by msdos_partition().
703 * If it's a Protective MBR, we'll handle it here.
704 *
705 * We do not create a Linux partition for GPT, but
706 * only for the actual data partitions.
707 * Returns:
708 * -1 if unable to read the partition table
709 * 0 if this isn't our partition table
710 * 1 if successful
711 *
712 */
efi_partition(struct parsed_partitions * state)713 int efi_partition(struct parsed_partitions *state)
714 {
715 gpt_header *gpt = NULL;
716 gpt_entry *ptes = NULL;
717 u32 i;
718 unsigned ssz = queue_logical_block_size(state->disk->queue) / 512;
719
720 if (!find_valid_gpt(state, &gpt, &ptes) || !gpt || !ptes) {
721 kfree(gpt);
722 kfree(ptes);
723 return 0;
724 }
725
726 pr_debug("GUID Partition Table is valid! Yea!\n");
727
728 for (i = 0; i < le32_to_cpu(gpt->num_partition_entries) && i < state->limit-1; i++) {
729 struct partition_meta_info *info;
730 unsigned label_max;
731 u64 start = le64_to_cpu(ptes[i].starting_lba);
732 u64 size = le64_to_cpu(ptes[i].ending_lba) -
733 le64_to_cpu(ptes[i].starting_lba) + 1ULL;
734
735 if (!is_pte_valid(&ptes[i], last_lba(state->disk)))
736 continue;
737
738 put_partition(state, i+1, start * ssz, size * ssz);
739
740 /* If this is a RAID volume, tell md */
741 if (!efi_guidcmp(ptes[i].partition_type_guid, PARTITION_LINUX_RAID_GUID))
742 state->parts[i + 1].flags = ADDPART_FLAG_RAID;
743
744 info = &state->parts[i + 1].info;
745 efi_guid_to_str(&ptes[i].unique_partition_guid, info->uuid);
746
747 /* Naively convert UTF16-LE to 7 bits. */
748 label_max = min(ARRAY_SIZE(info->volname) - 1,
749 ARRAY_SIZE(ptes[i].partition_name));
750 utf16_le_to_7bit(ptes[i].partition_name, label_max, info->volname);
751 state->parts[i + 1].has_info = true;
752 }
753 kfree(ptes);
754 kfree(gpt);
755 strlcat(state->pp_buf, "\n", PAGE_SIZE);
756 return 1;
757 }
758