1 /*
2 * MIPS Boston development board emulation.
3 *
4 * Copyright (c) 2016 Imagination Technologies
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22
23 #include "elf.h"
24 #include "hw/boards.h"
25 #include "hw/char/serial.h"
26 #include "hw/ide/pci.h"
27 #include "hw/ide/ahci-pci.h"
28 #include "hw/loader.h"
29 #include "hw/loader-fit.h"
30 #include "hw/mips/bootloader.h"
31 #include "hw/mips/cps.h"
32 #include "hw/pci-host/xilinx-pcie.h"
33 #include "hw/qdev-clock.h"
34 #include "hw/qdev-properties.h"
35 #include "qapi/error.h"
36 #include "qemu/error-report.h"
37 #include "qemu/guest-random.h"
38 #include "qemu/log.h"
39 #include "chardev/char.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/sysemu.h"
42 #include "sysemu/qtest.h"
43 #include "sysemu/runstate.h"
44 #include "sysemu/reset.h"
45
46 #include <libfdt.h>
47 #include "qom/object.h"
48
49 #define TYPE_BOSTON "mips-boston"
50 typedef struct BostonState BostonState;
51 DECLARE_INSTANCE_CHECKER(BostonState, BOSTON,
52 TYPE_BOSTON)
53
54 #define FDT_IRQ_TYPE_NONE 0
55 #define FDT_IRQ_TYPE_LEVEL_HIGH 4
56 #define FDT_GIC_SHARED 0
57 #define FDT_GIC_LOCAL 1
58 #define FDT_BOSTON_CLK_SYS 1
59 #define FDT_BOSTON_CLK_CPU 2
60 #define FDT_PCI_IRQ_MAP_PINS 4
61 #define FDT_PCI_IRQ_MAP_DESCS 6
62
63 struct BostonState {
64 SysBusDevice parent_obj;
65
66 MachineState *mach;
67 MIPSCPSState cps;
68 SerialMM *uart;
69 Clock *cpuclk;
70
71 CharBackend lcd_display;
72 char lcd_content[8];
73 bool lcd_inited;
74
75 hwaddr kernel_entry;
76 hwaddr fdt_base;
77 };
78
79 enum {
80 BOSTON_LOWDDR,
81 BOSTON_PCIE0,
82 BOSTON_PCIE1,
83 BOSTON_PCIE2,
84 BOSTON_PCIE2_MMIO,
85 BOSTON_CM,
86 BOSTON_GIC,
87 BOSTON_CDMM,
88 BOSTON_CPC,
89 BOSTON_PLATREG,
90 BOSTON_UART,
91 BOSTON_LCD,
92 BOSTON_FLASH,
93 BOSTON_PCIE1_MMIO,
94 BOSTON_PCIE0_MMIO,
95 BOSTON_HIGHDDR,
96 };
97
98 static const MemMapEntry boston_memmap[] = {
99 [BOSTON_LOWDDR] = { 0x0, 0x10000000 },
100 [BOSTON_PCIE0] = { 0x10000000, 0x2000000 },
101 [BOSTON_PCIE1] = { 0x12000000, 0x2000000 },
102 [BOSTON_PCIE2] = { 0x14000000, 0x2000000 },
103 [BOSTON_PCIE2_MMIO] = { 0x16000000, 0x100000 },
104 [BOSTON_CM] = { 0x16100000, 0x20000 },
105 [BOSTON_GIC] = { 0x16120000, 0x20000 },
106 [BOSTON_CDMM] = { 0x16140000, 0x8000 },
107 [BOSTON_CPC] = { 0x16200000, 0x8000 },
108 [BOSTON_PLATREG] = { 0x17ffd000, 0x1000 },
109 [BOSTON_UART] = { 0x17ffe000, 0x20 },
110 [BOSTON_LCD] = { 0x17fff000, 0x8 },
111 [BOSTON_FLASH] = { 0x18000000, 0x8000000 },
112 [BOSTON_PCIE1_MMIO] = { 0x20000000, 0x20000000 },
113 [BOSTON_PCIE0_MMIO] = { 0x40000000, 0x40000000 },
114 [BOSTON_HIGHDDR] = { 0x80000000, 0x0 },
115 };
116
117 enum boston_plat_reg {
118 PLAT_FPGA_BUILD = 0x00,
119 PLAT_CORE_CL = 0x04,
120 PLAT_WRAPPER_CL = 0x08,
121 PLAT_SYSCLK_STATUS = 0x0c,
122 PLAT_SOFTRST_CTL = 0x10,
123 #define PLAT_SOFTRST_CTL_SYSRESET (1 << 4)
124 PLAT_DDR3_STATUS = 0x14,
125 #define PLAT_DDR3_STATUS_LOCKED (1 << 0)
126 #define PLAT_DDR3_STATUS_CALIBRATED (1 << 2)
127 PLAT_PCIE_STATUS = 0x18,
128 #define PLAT_PCIE_STATUS_PCIE0_LOCKED (1 << 0)
129 #define PLAT_PCIE_STATUS_PCIE1_LOCKED (1 << 8)
130 #define PLAT_PCIE_STATUS_PCIE2_LOCKED (1 << 16)
131 PLAT_FLASH_CTL = 0x1c,
132 PLAT_SPARE0 = 0x20,
133 PLAT_SPARE1 = 0x24,
134 PLAT_SPARE2 = 0x28,
135 PLAT_SPARE3 = 0x2c,
136 PLAT_MMCM_DIV = 0x30,
137 #define PLAT_MMCM_DIV_CLK0DIV_SHIFT 0
138 #define PLAT_MMCM_DIV_INPUT_SHIFT 8
139 #define PLAT_MMCM_DIV_MUL_SHIFT 16
140 #define PLAT_MMCM_DIV_CLK1DIV_SHIFT 24
141 PLAT_BUILD_CFG = 0x34,
142 #define PLAT_BUILD_CFG_IOCU_EN (1 << 0)
143 #define PLAT_BUILD_CFG_PCIE0_EN (1 << 1)
144 #define PLAT_BUILD_CFG_PCIE1_EN (1 << 2)
145 #define PLAT_BUILD_CFG_PCIE2_EN (1 << 3)
146 PLAT_DDR_CFG = 0x38,
147 #define PLAT_DDR_CFG_SIZE (0xf << 0)
148 #define PLAT_DDR_CFG_MHZ (0xfff << 4)
149 PLAT_NOC_PCIE0_ADDR = 0x3c,
150 PLAT_NOC_PCIE1_ADDR = 0x40,
151 PLAT_NOC_PCIE2_ADDR = 0x44,
152 PLAT_SYS_CTL = 0x48,
153 };
154
boston_lcd_event(void * opaque,QEMUChrEvent event)155 static void boston_lcd_event(void *opaque, QEMUChrEvent event)
156 {
157 BostonState *s = opaque;
158 if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
159 qemu_chr_fe_printf(&s->lcd_display, " ");
160 s->lcd_inited = true;
161 }
162 }
163
boston_lcd_read(void * opaque,hwaddr addr,unsigned size)164 static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
165 unsigned size)
166 {
167 BostonState *s = opaque;
168 uint64_t val = 0;
169
170 switch (size) {
171 case 8:
172 val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
173 val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
174 val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
175 val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
176 /* fall through */
177 case 4:
178 val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
179 val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
180 /* fall through */
181 case 2:
182 val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
183 /* fall through */
184 case 1:
185 val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
186 break;
187 }
188
189 return val;
190 }
191
boston_lcd_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)192 static void boston_lcd_write(void *opaque, hwaddr addr,
193 uint64_t val, unsigned size)
194 {
195 BostonState *s = opaque;
196
197 switch (size) {
198 case 8:
199 s->lcd_content[(addr + 7) & 0x7] = val >> 56;
200 s->lcd_content[(addr + 6) & 0x7] = val >> 48;
201 s->lcd_content[(addr + 5) & 0x7] = val >> 40;
202 s->lcd_content[(addr + 4) & 0x7] = val >> 32;
203 /* fall through */
204 case 4:
205 s->lcd_content[(addr + 3) & 0x7] = val >> 24;
206 s->lcd_content[(addr + 2) & 0x7] = val >> 16;
207 /* fall through */
208 case 2:
209 s->lcd_content[(addr + 1) & 0x7] = val >> 8;
210 /* fall through */
211 case 1:
212 s->lcd_content[(addr + 0) & 0x7] = val;
213 break;
214 }
215
216 qemu_chr_fe_printf(&s->lcd_display,
217 "\r%-8.8s", s->lcd_content);
218 }
219
220 static const MemoryRegionOps boston_lcd_ops = {
221 .read = boston_lcd_read,
222 .write = boston_lcd_write,
223 .endianness = DEVICE_NATIVE_ENDIAN,
224 };
225
boston_platreg_read(void * opaque,hwaddr addr,unsigned size)226 static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
227 unsigned size)
228 {
229 BostonState *s = opaque;
230 uint32_t gic_freq, val;
231
232 if (size != 4) {
233 qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
234 return 0;
235 }
236
237 switch (addr & 0xffff) {
238 case PLAT_FPGA_BUILD:
239 case PLAT_CORE_CL:
240 case PLAT_WRAPPER_CL:
241 return 0;
242 case PLAT_DDR3_STATUS:
243 return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
244 case PLAT_MMCM_DIV:
245 gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
246 val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
247 val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
248 val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
249 val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
250 return val;
251 case PLAT_BUILD_CFG:
252 val = PLAT_BUILD_CFG_PCIE0_EN;
253 val |= PLAT_BUILD_CFG_PCIE1_EN;
254 val |= PLAT_BUILD_CFG_PCIE2_EN;
255 return val;
256 case PLAT_DDR_CFG:
257 val = s->mach->ram_size / GiB;
258 assert(!(val & ~PLAT_DDR_CFG_SIZE));
259 val |= PLAT_DDR_CFG_MHZ;
260 return val;
261 default:
262 qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
263 addr & 0xffff);
264 return 0;
265 }
266 }
267
boston_platreg_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)268 static void boston_platreg_write(void *opaque, hwaddr addr,
269 uint64_t val, unsigned size)
270 {
271 if (size != 4) {
272 qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
273 return;
274 }
275
276 switch (addr & 0xffff) {
277 case PLAT_FPGA_BUILD:
278 case PLAT_CORE_CL:
279 case PLAT_WRAPPER_CL:
280 case PLAT_DDR3_STATUS:
281 case PLAT_PCIE_STATUS:
282 case PLAT_MMCM_DIV:
283 case PLAT_BUILD_CFG:
284 case PLAT_DDR_CFG:
285 /* read only */
286 break;
287 case PLAT_SOFTRST_CTL:
288 if (val & PLAT_SOFTRST_CTL_SYSRESET) {
289 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
290 }
291 break;
292 default:
293 qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
294 " = 0x%" PRIx64 "\n", addr & 0xffff, val);
295 break;
296 }
297 }
298
299 static const MemoryRegionOps boston_platreg_ops = {
300 .read = boston_platreg_read,
301 .write = boston_platreg_write,
302 .endianness = DEVICE_NATIVE_ENDIAN,
303 };
304
mips_boston_instance_init(Object * obj)305 static void mips_boston_instance_init(Object *obj)
306 {
307 BostonState *s = BOSTON(obj);
308
309 s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
310 clock_set_hz(s->cpuclk, 1000000000); /* 1 GHz */
311 }
312
313 static const TypeInfo boston_device = {
314 .name = TYPE_BOSTON,
315 .parent = TYPE_SYS_BUS_DEVICE,
316 .instance_size = sizeof(BostonState),
317 .instance_init = mips_boston_instance_init,
318 };
319
boston_register_types(void)320 static void boston_register_types(void)
321 {
322 type_register_static(&boston_device);
323 }
type_init(boston_register_types)324 type_init(boston_register_types)
325
326 static void gen_firmware(void *p, hwaddr kernel_entry, hwaddr fdt_addr)
327 {
328 uint64_t regaddr;
329
330 /* Move CM GCRs */
331 regaddr = cpu_mips_phys_to_kseg1(NULL, GCR_BASE_ADDR + GCR_BASE_OFS),
332 bl_gen_write_ulong(&p, regaddr,
333 boston_memmap[BOSTON_CM].base);
334
335 /* Move & enable GIC GCRs */
336 regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base
337 + GCR_GIC_BASE_OFS),
338 bl_gen_write_ulong(&p, regaddr,
339 boston_memmap[BOSTON_GIC].base | GCR_GIC_BASE_GICEN_MSK);
340
341 /* Move & enable CPC GCRs */
342 regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base
343 + GCR_CPC_BASE_OFS),
344 bl_gen_write_ulong(&p, regaddr,
345 boston_memmap[BOSTON_CPC].base | GCR_CPC_BASE_CPCEN_MSK);
346
347 /*
348 * Setup argument registers to follow the UHI boot protocol:
349 *
350 * a0/$4 = -2
351 * a1/$5 = virtual address of FDT
352 * a2/$6 = 0
353 * a3/$7 = 0
354 */
355 bl_gen_jump_kernel(&p,
356 true, 0, true, (int32_t)-2,
357 true, fdt_addr, true, 0, true, 0,
358 kernel_entry);
359 }
360
boston_fdt_filter(void * opaque,const void * fdt_orig,const void * match_data,hwaddr * load_addr)361 static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
362 const void *match_data, hwaddr *load_addr)
363 {
364 BostonState *s = BOSTON(opaque);
365 MachineState *machine = s->mach;
366 const char *cmdline;
367 int err;
368 size_t ram_low_sz, ram_high_sz;
369 size_t fdt_sz = fdt_totalsize(fdt_orig) * 2;
370 g_autofree void *fdt = g_malloc0(fdt_sz);
371 uint8_t rng_seed[32];
372
373 err = fdt_open_into(fdt_orig, fdt, fdt_sz);
374 if (err) {
375 fprintf(stderr, "unable to open FDT\n");
376 return NULL;
377 }
378
379 qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
380 qemu_fdt_setprop(fdt, "/chosen", "rng-seed", rng_seed, sizeof(rng_seed));
381
382 cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
383 ? machine->kernel_cmdline : " ";
384 err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
385 if (err < 0) {
386 fprintf(stderr, "couldn't set /chosen/bootargs\n");
387 return NULL;
388 }
389
390 ram_low_sz = MIN(256 * MiB, machine->ram_size);
391 ram_high_sz = machine->ram_size - ram_low_sz;
392 qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
393 1, boston_memmap[BOSTON_LOWDDR].base, 1, ram_low_sz,
394 1, boston_memmap[BOSTON_HIGHDDR].base + ram_low_sz,
395 1, ram_high_sz);
396
397 fdt = g_realloc(fdt, fdt_totalsize(fdt));
398 qemu_fdt_dumpdtb(fdt, fdt_sz);
399
400 s->fdt_base = *load_addr;
401
402 return g_steal_pointer(&fdt);
403 }
404
boston_kernel_filter(void * opaque,const void * kernel,hwaddr * load_addr,hwaddr * entry_addr)405 static const void *boston_kernel_filter(void *opaque, const void *kernel,
406 hwaddr *load_addr, hwaddr *entry_addr)
407 {
408 BostonState *s = BOSTON(opaque);
409
410 s->kernel_entry = *entry_addr;
411
412 return kernel;
413 }
414
415 static const struct fit_loader_match boston_matches[] = {
416 { "img,boston" },
417 { NULL },
418 };
419
420 static const struct fit_loader boston_fit_loader = {
421 .matches = boston_matches,
422 .addr_to_phys = cpu_mips_kseg0_to_phys,
423 .fdt_filter = boston_fdt_filter,
424 .kernel_filter = boston_kernel_filter,
425 };
426
427 static inline XilinxPCIEHost *
xilinx_pcie_init(MemoryRegion * sys_mem,uint32_t bus_nr,hwaddr cfg_base,uint64_t cfg_size,hwaddr mmio_base,uint64_t mmio_size,qemu_irq irq)428 xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
429 hwaddr cfg_base, uint64_t cfg_size,
430 hwaddr mmio_base, uint64_t mmio_size,
431 qemu_irq irq)
432 {
433 DeviceState *dev;
434 MemoryRegion *cfg, *mmio;
435
436 dev = qdev_new(TYPE_XILINX_PCIE_HOST);
437
438 qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
439 qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
440 qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
441 qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
442 qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
443
444 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
445
446 cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
447 memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
448
449 mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
450 memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
451
452 qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
453
454 return XILINX_PCIE_HOST(dev);
455 }
456
457
fdt_create_pcie(void * fdt,int gic_ph,int irq,hwaddr reg_base,hwaddr reg_size,hwaddr mmio_base,hwaddr mmio_size)458 static void fdt_create_pcie(void *fdt, int gic_ph, int irq, hwaddr reg_base,
459 hwaddr reg_size, hwaddr mmio_base, hwaddr mmio_size)
460 {
461 int i;
462 char *name, *intc_name;
463 uint32_t intc_ph;
464 uint32_t interrupt_map[FDT_PCI_IRQ_MAP_PINS][FDT_PCI_IRQ_MAP_DESCS];
465
466 intc_ph = qemu_fdt_alloc_phandle(fdt);
467 name = g_strdup_printf("/soc/pci@%" HWADDR_PRIx, reg_base);
468 qemu_fdt_add_subnode(fdt, name);
469 qemu_fdt_setprop_string(fdt, name, "compatible",
470 "xlnx,axi-pcie-host-1.00.a");
471 qemu_fdt_setprop_string(fdt, name, "device_type", "pci");
472 qemu_fdt_setprop_cells(fdt, name, "reg", reg_base, reg_size);
473
474 qemu_fdt_setprop_cell(fdt, name, "#address-cells", 3);
475 qemu_fdt_setprop_cell(fdt, name, "#size-cells", 2);
476 qemu_fdt_setprop_cell(fdt, name, "#interrupt-cells", 1);
477
478 qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", gic_ph);
479 qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_SHARED, irq,
480 FDT_IRQ_TYPE_LEVEL_HIGH);
481
482 qemu_fdt_setprop_cells(fdt, name, "ranges", 0x02000000, 0, mmio_base,
483 mmio_base, 0, mmio_size);
484 qemu_fdt_setprop_cells(fdt, name, "bus-range", 0x00, 0xff);
485
486
487
488 intc_name = g_strdup_printf("%s/interrupt-controller", name);
489 qemu_fdt_add_subnode(fdt, intc_name);
490 qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
491 qemu_fdt_setprop_cell(fdt, intc_name, "#address-cells", 0);
492 qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
493 qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_ph);
494
495 qemu_fdt_setprop_cells(fdt, name, "interrupt-map-mask", 0, 0, 0, 7);
496 for (i = 0; i < FDT_PCI_IRQ_MAP_PINS; i++) {
497 uint32_t *irqmap = interrupt_map[i];
498
499 irqmap[0] = cpu_to_be32(0);
500 irqmap[1] = cpu_to_be32(0);
501 irqmap[2] = cpu_to_be32(0);
502 irqmap[3] = cpu_to_be32(i + 1);
503 irqmap[4] = cpu_to_be32(intc_ph);
504 irqmap[5] = cpu_to_be32(i + 1);
505 }
506 qemu_fdt_setprop(fdt, name, "interrupt-map",
507 &interrupt_map, sizeof(interrupt_map));
508
509 g_free(intc_name);
510 g_free(name);
511 }
512
create_fdt(BostonState * s,const MemMapEntry * memmap,int * dt_size)513 static const void *create_fdt(BostonState *s,
514 const MemMapEntry *memmap, int *dt_size)
515 {
516 void *fdt;
517 int cpu;
518 MachineState *ms = s->mach;
519 uint32_t platreg_ph, gic_ph, clk_ph;
520 char *name, *gic_name, *platreg_name, *stdout_name;
521 static const char * const syscon_compat[2] = {
522 "img,boston-platform-regs", "syscon"
523 };
524
525 fdt = create_device_tree(dt_size);
526 if (!fdt) {
527 error_report("create_device_tree() failed");
528 exit(1);
529 }
530
531 platreg_ph = qemu_fdt_alloc_phandle(fdt);
532 gic_ph = qemu_fdt_alloc_phandle(fdt);
533 clk_ph = qemu_fdt_alloc_phandle(fdt);
534
535 qemu_fdt_setprop_string(fdt, "/", "model", "img,boston");
536 qemu_fdt_setprop_string(fdt, "/", "compatible", "img,boston");
537 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x1);
538 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x1);
539
540
541 qemu_fdt_add_subnode(fdt, "/cpus");
542 qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
543 qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
544
545 for (cpu = 0; cpu < ms->smp.cpus; cpu++) {
546 name = g_strdup_printf("/cpus/cpu@%d", cpu);
547 qemu_fdt_add_subnode(fdt, name);
548 qemu_fdt_setprop_string(fdt, name, "compatible", "img,mips");
549 qemu_fdt_setprop_string(fdt, name, "status", "okay");
550 qemu_fdt_setprop_cell(fdt, name, "reg", cpu);
551 qemu_fdt_setprop_string(fdt, name, "device_type", "cpu");
552 qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_CPU);
553 g_free(name);
554 }
555
556 qemu_fdt_add_subnode(fdt, "/soc");
557 qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
558 qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
559 qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x1);
560 qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x1);
561
562 fdt_create_pcie(fdt, gic_ph, 2,
563 memmap[BOSTON_PCIE0].base, memmap[BOSTON_PCIE0].size,
564 memmap[BOSTON_PCIE0_MMIO].base, memmap[BOSTON_PCIE0_MMIO].size);
565
566 fdt_create_pcie(fdt, gic_ph, 1,
567 memmap[BOSTON_PCIE1].base, memmap[BOSTON_PCIE1].size,
568 memmap[BOSTON_PCIE1_MMIO].base, memmap[BOSTON_PCIE1_MMIO].size);
569
570 fdt_create_pcie(fdt, gic_ph, 0,
571 memmap[BOSTON_PCIE2].base, memmap[BOSTON_PCIE2].size,
572 memmap[BOSTON_PCIE2_MMIO].base, memmap[BOSTON_PCIE2_MMIO].size);
573
574 /* GIC with it's timer node */
575 gic_name = g_strdup_printf("/soc/interrupt-controller@%" HWADDR_PRIx,
576 memmap[BOSTON_GIC].base);
577 qemu_fdt_add_subnode(fdt, gic_name);
578 qemu_fdt_setprop_string(fdt, gic_name, "compatible", "mti,gic");
579 qemu_fdt_setprop_cells(fdt, gic_name, "reg", memmap[BOSTON_GIC].base,
580 memmap[BOSTON_GIC].size);
581 qemu_fdt_setprop(fdt, gic_name, "interrupt-controller", NULL, 0);
582 qemu_fdt_setprop_cell(fdt, gic_name, "#interrupt-cells", 3);
583 qemu_fdt_setprop_cell(fdt, gic_name, "phandle", gic_ph);
584
585 name = g_strdup_printf("%s/timer", gic_name);
586 qemu_fdt_add_subnode(fdt, name);
587 qemu_fdt_setprop_string(fdt, name, "compatible", "mti,gic-timer");
588 qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_LOCAL, 1,
589 FDT_IRQ_TYPE_NONE);
590 qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_CPU);
591 g_free(name);
592 g_free(gic_name);
593
594 /* CDMM node */
595 name = g_strdup_printf("/soc/cdmm@%" HWADDR_PRIx, memmap[BOSTON_CDMM].base);
596 qemu_fdt_add_subnode(fdt, name);
597 qemu_fdt_setprop_string(fdt, name, "compatible", "mti,mips-cdmm");
598 qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_CDMM].base,
599 memmap[BOSTON_CDMM].size);
600 g_free(name);
601
602 /* CPC node */
603 name = g_strdup_printf("/soc/cpc@%" HWADDR_PRIx, memmap[BOSTON_CPC].base);
604 qemu_fdt_add_subnode(fdt, name);
605 qemu_fdt_setprop_string(fdt, name, "compatible", "mti,mips-cpc");
606 qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_CPC].base,
607 memmap[BOSTON_CPC].size);
608 g_free(name);
609
610 /* platreg and it's clk node */
611 platreg_name = g_strdup_printf("/soc/system-controller@%" HWADDR_PRIx,
612 memmap[BOSTON_PLATREG].base);
613 qemu_fdt_add_subnode(fdt, platreg_name);
614 qemu_fdt_setprop_string_array(fdt, platreg_name, "compatible",
615 (char **)&syscon_compat,
616 ARRAY_SIZE(syscon_compat));
617 qemu_fdt_setprop_cells(fdt, platreg_name, "reg",
618 memmap[BOSTON_PLATREG].base,
619 memmap[BOSTON_PLATREG].size);
620 qemu_fdt_setprop_cell(fdt, platreg_name, "phandle", platreg_ph);
621
622 name = g_strdup_printf("%s/clock", platreg_name);
623 qemu_fdt_add_subnode(fdt, name);
624 qemu_fdt_setprop_string(fdt, name, "compatible", "img,boston-clock");
625 qemu_fdt_setprop_cell(fdt, name, "#clock-cells", 1);
626 qemu_fdt_setprop_cell(fdt, name, "phandle", clk_ph);
627 g_free(name);
628 g_free(platreg_name);
629
630 /* reboot node */
631 name = g_strdup_printf("/soc/reboot");
632 qemu_fdt_add_subnode(fdt, name);
633 qemu_fdt_setprop_string(fdt, name, "compatible", "syscon-reboot");
634 qemu_fdt_setprop_cell(fdt, name, "regmap", platreg_ph);
635 qemu_fdt_setprop_cell(fdt, name, "offset", 0x10);
636 qemu_fdt_setprop_cell(fdt, name, "mask", 0x10);
637 g_free(name);
638
639 /* uart node */
640 name = g_strdup_printf("/soc/uart@%" HWADDR_PRIx, memmap[BOSTON_UART].base);
641 qemu_fdt_add_subnode(fdt, name);
642 qemu_fdt_setprop_string(fdt, name, "compatible", "ns16550a");
643 qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_UART].base,
644 memmap[BOSTON_UART].size);
645 qemu_fdt_setprop_cell(fdt, name, "reg-shift", 0x2);
646 qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", gic_ph);
647 qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_SHARED, 3,
648 FDT_IRQ_TYPE_LEVEL_HIGH);
649 qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_SYS);
650
651 qemu_fdt_add_subnode(fdt, "/chosen");
652 stdout_name = g_strdup_printf("%s:115200", name);
653 qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", stdout_name);
654 g_free(stdout_name);
655 g_free(name);
656
657 /* lcd node */
658 name = g_strdup_printf("/soc/lcd@%" HWADDR_PRIx, memmap[BOSTON_LCD].base);
659 qemu_fdt_add_subnode(fdt, name);
660 qemu_fdt_setprop_string(fdt, name, "compatible", "img,boston-lcd");
661 qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_LCD].base,
662 memmap[BOSTON_LCD].size);
663 g_free(name);
664
665 name = g_strdup_printf("/memory@0");
666 qemu_fdt_add_subnode(fdt, name);
667 qemu_fdt_setprop_string(fdt, name, "device_type", "memory");
668 g_free(name);
669
670 return fdt;
671 }
672
boston_mach_init(MachineState * machine)673 static void boston_mach_init(MachineState *machine)
674 {
675 DeviceState *dev;
676 BostonState *s;
677 MemoryRegion *flash, *ddr_low_alias, *lcd, *platreg;
678 MemoryRegion *sys_mem = get_system_memory();
679 XilinxPCIEHost *pcie2;
680 PCIDevice *pdev;
681 AHCIPCIState *ich9;
682 DriveInfo *hd[6];
683 Chardev *chr;
684 int fw_size, fit_err;
685
686 if ((machine->ram_size % GiB) ||
687 (machine->ram_size > (2 * GiB))) {
688 error_report("Memory size must be 1GB or 2GB");
689 exit(1);
690 }
691
692 dev = qdev_new(TYPE_BOSTON);
693 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
694
695 s = BOSTON(dev);
696 s->mach = machine;
697
698 if (!cpu_type_supports_cps_smp(machine->cpu_type)) {
699 error_report("Boston requires CPUs which support CPS");
700 exit(1);
701 }
702
703 object_initialize_child(OBJECT(machine), "cps", &s->cps, TYPE_MIPS_CPS);
704 object_property_set_str(OBJECT(&s->cps), "cpu-type", machine->cpu_type,
705 &error_fatal);
706 object_property_set_uint(OBJECT(&s->cps), "num-vp", machine->smp.cpus,
707 &error_fatal);
708 qdev_connect_clock_in(DEVICE(&s->cps), "clk-in",
709 qdev_get_clock_out(dev, "cpu-refclk"));
710 sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
711
712 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
713
714 flash = g_new(MemoryRegion, 1);
715 memory_region_init_rom(flash, NULL, "boston.flash",
716 boston_memmap[BOSTON_FLASH].size, &error_fatal);
717 memory_region_add_subregion_overlap(sys_mem,
718 boston_memmap[BOSTON_FLASH].base,
719 flash, 0);
720
721 memory_region_add_subregion_overlap(sys_mem,
722 boston_memmap[BOSTON_HIGHDDR].base,
723 machine->ram, 0);
724
725 ddr_low_alias = g_new(MemoryRegion, 1);
726 memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
727 machine->ram, 0,
728 MIN(machine->ram_size, (256 * MiB)));
729 memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
730
731 xilinx_pcie_init(sys_mem, 0,
732 boston_memmap[BOSTON_PCIE0].base,
733 boston_memmap[BOSTON_PCIE0].size,
734 boston_memmap[BOSTON_PCIE0_MMIO].base,
735 boston_memmap[BOSTON_PCIE0_MMIO].size,
736 get_cps_irq(&s->cps, 2));
737
738 xilinx_pcie_init(sys_mem, 1,
739 boston_memmap[BOSTON_PCIE1].base,
740 boston_memmap[BOSTON_PCIE1].size,
741 boston_memmap[BOSTON_PCIE1_MMIO].base,
742 boston_memmap[BOSTON_PCIE1_MMIO].size,
743 get_cps_irq(&s->cps, 1));
744
745 pcie2 = xilinx_pcie_init(sys_mem, 2,
746 boston_memmap[BOSTON_PCIE2].base,
747 boston_memmap[BOSTON_PCIE2].size,
748 boston_memmap[BOSTON_PCIE2_MMIO].base,
749 boston_memmap[BOSTON_PCIE2_MMIO].size,
750 get_cps_irq(&s->cps, 0));
751
752 platreg = g_new(MemoryRegion, 1);
753 memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
754 "boston-platregs",
755 boston_memmap[BOSTON_PLATREG].size);
756 memory_region_add_subregion_overlap(sys_mem,
757 boston_memmap[BOSTON_PLATREG].base, platreg, 0);
758
759 s->uart = serial_mm_init(sys_mem, boston_memmap[BOSTON_UART].base, 2,
760 get_cps_irq(&s->cps, 3), 10000000,
761 serial_hd(0), DEVICE_NATIVE_ENDIAN);
762
763 lcd = g_new(MemoryRegion, 1);
764 memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
765 memory_region_add_subregion_overlap(sys_mem,
766 boston_memmap[BOSTON_LCD].base, lcd, 0);
767
768 chr = qemu_chr_new("lcd", "vc:320x240", NULL);
769 qemu_chr_fe_init(&s->lcd_display, chr, NULL);
770 qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
771 boston_lcd_event, NULL, s, NULL, true);
772
773 pdev = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
774 PCI_DEVFN(0, 0), TYPE_ICH9_AHCI);
775 ich9 = ICH9_AHCI(pdev);
776 g_assert(ARRAY_SIZE(hd) == ich9->ahci.ports);
777 ide_drive_get(hd, ich9->ahci.ports);
778 ahci_ide_create_devs(&ich9->ahci, hd);
779
780 if (machine->firmware) {
781 fw_size = load_image_targphys(machine->firmware,
782 0x1fc00000, 4 * MiB);
783 if (fw_size == -1) {
784 error_report("unable to load firmware image '%s'",
785 machine->firmware);
786 exit(1);
787 }
788 } else if (machine->kernel_filename) {
789 uint64_t kernel_entry, kernel_high;
790 ssize_t kernel_size;
791
792 kernel_size = load_elf(machine->kernel_filename, NULL,
793 cpu_mips_kseg0_to_phys, NULL,
794 &kernel_entry, NULL, &kernel_high,
795 NULL, 0, EM_MIPS, 1, 0);
796
797 if (kernel_size > 0) {
798 int dt_size;
799 g_autofree const void *dtb_file_data = NULL;
800 g_autofree const void *dtb_load_data = NULL;
801 hwaddr dtb_paddr = QEMU_ALIGN_UP(kernel_high, 64 * KiB);
802 hwaddr dtb_vaddr = cpu_mips_phys_to_kseg0(NULL, dtb_paddr);
803
804 s->kernel_entry = kernel_entry;
805 if (machine->dtb) {
806 dtb_file_data = load_device_tree(machine->dtb, &dt_size);
807 } else {
808 dtb_file_data = create_fdt(s, boston_memmap, &dt_size);
809 }
810
811 dtb_load_data = boston_fdt_filter(s, dtb_file_data,
812 NULL, &dtb_vaddr);
813
814 /* Calculate real fdt size after filter */
815 dt_size = fdt_totalsize(dtb_load_data);
816 rom_add_blob_fixed("dtb", dtb_load_data, dt_size, dtb_paddr);
817 qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
818 rom_ptr(dtb_paddr, dt_size));
819 } else {
820 /* Try to load file as FIT */
821 fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
822 if (fit_err) {
823 error_report("unable to load kernel image");
824 exit(1);
825 }
826 }
827
828 gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
829 s->kernel_entry, s->fdt_base);
830 } else if (!qtest_enabled()) {
831 error_report("Please provide either a -kernel or -bios argument");
832 exit(1);
833 }
834 }
835
boston_mach_class_init(MachineClass * mc)836 static void boston_mach_class_init(MachineClass *mc)
837 {
838 mc->desc = "MIPS Boston";
839 mc->init = boston_mach_init;
840 mc->block_default_type = IF_IDE;
841 mc->default_ram_size = 1 * GiB;
842 mc->default_ram_id = "boston.ddr";
843 mc->max_cpus = 16;
844 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
845 }
846
847 DEFINE_MACHINE("boston", boston_mach_class_init)
848