xref: /openbmc/linux/kernel/events/uprobes.c (revision 5b981d83)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>	/* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>		/* anon_vma_prepare */
21 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
22 #include <linux/swap.h>		/* folio_free_swap */
23 #include <linux/ptrace.h>	/* user_enable_single_step */
24 #include <linux/kdebug.h>	/* notifier mechanism */
25 #include <linux/percpu-rwsem.h>
26 #include <linux/task_work.h>
27 #include <linux/shmem_fs.h>
28 #include <linux/khugepaged.h>
29 
30 #include <linux/uprobes.h>
31 
32 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
33 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
34 
35 static struct rb_root uprobes_tree = RB_ROOT;
36 /*
37  * allows us to skip the uprobe_mmap if there are no uprobe events active
38  * at this time.  Probably a fine grained per inode count is better?
39  */
40 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
41 
42 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
43 
44 #define UPROBES_HASH_SZ	13
45 /* serialize uprobe->pending_list */
46 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
47 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
48 
49 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
50 
51 /* Have a copy of original instruction */
52 #define UPROBE_COPY_INSN	0
53 
54 struct uprobe {
55 	struct rb_node		rb_node;	/* node in the rb tree */
56 	refcount_t		ref;
57 	struct rw_semaphore	register_rwsem;
58 	struct rw_semaphore	consumer_rwsem;
59 	struct list_head	pending_list;
60 	struct uprobe_consumer	*consumers;
61 	struct inode		*inode;		/* Also hold a ref to inode */
62 	loff_t			offset;
63 	loff_t			ref_ctr_offset;
64 	unsigned long		flags;
65 
66 	/*
67 	 * The generic code assumes that it has two members of unknown type
68 	 * owned by the arch-specific code:
69 	 *
70 	 * 	insn -	copy_insn() saves the original instruction here for
71 	 *		arch_uprobe_analyze_insn().
72 	 *
73 	 *	ixol -	potentially modified instruction to execute out of
74 	 *		line, copied to xol_area by xol_get_insn_slot().
75 	 */
76 	struct arch_uprobe	arch;
77 };
78 
79 struct delayed_uprobe {
80 	struct list_head list;
81 	struct uprobe *uprobe;
82 	struct mm_struct *mm;
83 };
84 
85 static DEFINE_MUTEX(delayed_uprobe_lock);
86 static LIST_HEAD(delayed_uprobe_list);
87 
88 /*
89  * Execute out of line area: anonymous executable mapping installed
90  * by the probed task to execute the copy of the original instruction
91  * mangled by set_swbp().
92  *
93  * On a breakpoint hit, thread contests for a slot.  It frees the
94  * slot after singlestep. Currently a fixed number of slots are
95  * allocated.
96  */
97 struct xol_area {
98 	wait_queue_head_t 		wq;		/* if all slots are busy */
99 	atomic_t 			slot_count;	/* number of in-use slots */
100 	unsigned long 			*bitmap;	/* 0 = free slot */
101 
102 	struct vm_special_mapping	xol_mapping;
103 	struct page 			*pages[2];
104 	/*
105 	 * We keep the vma's vm_start rather than a pointer to the vma
106 	 * itself.  The probed process or a naughty kernel module could make
107 	 * the vma go away, and we must handle that reasonably gracefully.
108 	 */
109 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
110 };
111 
112 /*
113  * valid_vma: Verify if the specified vma is an executable vma
114  * Relax restrictions while unregistering: vm_flags might have
115  * changed after breakpoint was inserted.
116  *	- is_register: indicates if we are in register context.
117  *	- Return 1 if the specified virtual address is in an
118  *	  executable vma.
119  */
valid_vma(struct vm_area_struct * vma,bool is_register)120 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
121 {
122 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
123 
124 	if (is_register)
125 		flags |= VM_WRITE;
126 
127 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
128 }
129 
offset_to_vaddr(struct vm_area_struct * vma,loff_t offset)130 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
131 {
132 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
133 }
134 
vaddr_to_offset(struct vm_area_struct * vma,unsigned long vaddr)135 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
136 {
137 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
138 }
139 
140 /**
141  * __replace_page - replace page in vma by new page.
142  * based on replace_page in mm/ksm.c
143  *
144  * @vma:      vma that holds the pte pointing to page
145  * @addr:     address the old @page is mapped at
146  * @old_page: the page we are replacing by new_page
147  * @new_page: the modified page we replace page by
148  *
149  * If @new_page is NULL, only unmap @old_page.
150  *
151  * Returns 0 on success, negative error code otherwise.
152  */
__replace_page(struct vm_area_struct * vma,unsigned long addr,struct page * old_page,struct page * new_page)153 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
154 				struct page *old_page, struct page *new_page)
155 {
156 	struct folio *old_folio = page_folio(old_page);
157 	struct folio *new_folio;
158 	struct mm_struct *mm = vma->vm_mm;
159 	DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0);
160 	int err;
161 	struct mmu_notifier_range range;
162 
163 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
164 				addr + PAGE_SIZE);
165 
166 	if (new_page) {
167 		new_folio = page_folio(new_page);
168 		err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL);
169 		if (err)
170 			return err;
171 	}
172 
173 	/* For folio_free_swap() below */
174 	folio_lock(old_folio);
175 
176 	mmu_notifier_invalidate_range_start(&range);
177 	err = -EAGAIN;
178 	if (!page_vma_mapped_walk(&pvmw))
179 		goto unlock;
180 	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
181 
182 	if (new_page) {
183 		folio_get(new_folio);
184 		page_add_new_anon_rmap(new_page, vma, addr);
185 		folio_add_lru_vma(new_folio, vma);
186 	} else
187 		/* no new page, just dec_mm_counter for old_page */
188 		dec_mm_counter(mm, MM_ANONPAGES);
189 
190 	if (!folio_test_anon(old_folio)) {
191 		dec_mm_counter(mm, mm_counter_file(old_page));
192 		inc_mm_counter(mm, MM_ANONPAGES);
193 	}
194 
195 	flush_cache_page(vma, addr, pte_pfn(ptep_get(pvmw.pte)));
196 	ptep_clear_flush(vma, addr, pvmw.pte);
197 	if (new_page)
198 		set_pte_at_notify(mm, addr, pvmw.pte,
199 				  mk_pte(new_page, vma->vm_page_prot));
200 
201 	page_remove_rmap(old_page, vma, false);
202 	if (!folio_mapped(old_folio))
203 		folio_free_swap(old_folio);
204 	page_vma_mapped_walk_done(&pvmw);
205 	folio_put(old_folio);
206 
207 	err = 0;
208  unlock:
209 	mmu_notifier_invalidate_range_end(&range);
210 	folio_unlock(old_folio);
211 	return err;
212 }
213 
214 /**
215  * is_swbp_insn - check if instruction is breakpoint instruction.
216  * @insn: instruction to be checked.
217  * Default implementation of is_swbp_insn
218  * Returns true if @insn is a breakpoint instruction.
219  */
is_swbp_insn(uprobe_opcode_t * insn)220 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
221 {
222 	return *insn == UPROBE_SWBP_INSN;
223 }
224 
225 /**
226  * is_trap_insn - check if instruction is breakpoint instruction.
227  * @insn: instruction to be checked.
228  * Default implementation of is_trap_insn
229  * Returns true if @insn is a breakpoint instruction.
230  *
231  * This function is needed for the case where an architecture has multiple
232  * trap instructions (like powerpc).
233  */
is_trap_insn(uprobe_opcode_t * insn)234 bool __weak is_trap_insn(uprobe_opcode_t *insn)
235 {
236 	return is_swbp_insn(insn);
237 }
238 
copy_from_page(struct page * page,unsigned long vaddr,void * dst,int len)239 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
240 {
241 	void *kaddr = kmap_atomic(page);
242 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
243 	kunmap_atomic(kaddr);
244 }
245 
copy_to_page(struct page * page,unsigned long vaddr,const void * src,int len)246 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
247 {
248 	void *kaddr = kmap_atomic(page);
249 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
250 	kunmap_atomic(kaddr);
251 }
252 
verify_opcode(struct page * page,unsigned long vaddr,uprobe_opcode_t * new_opcode)253 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
254 {
255 	uprobe_opcode_t old_opcode;
256 	bool is_swbp;
257 
258 	/*
259 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
260 	 * We do not check if it is any other 'trap variant' which could
261 	 * be conditional trap instruction such as the one powerpc supports.
262 	 *
263 	 * The logic is that we do not care if the underlying instruction
264 	 * is a trap variant; uprobes always wins over any other (gdb)
265 	 * breakpoint.
266 	 */
267 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
268 	is_swbp = is_swbp_insn(&old_opcode);
269 
270 	if (is_swbp_insn(new_opcode)) {
271 		if (is_swbp)		/* register: already installed? */
272 			return 0;
273 	} else {
274 		if (!is_swbp)		/* unregister: was it changed by us? */
275 			return 0;
276 	}
277 
278 	return 1;
279 }
280 
281 static struct delayed_uprobe *
delayed_uprobe_check(struct uprobe * uprobe,struct mm_struct * mm)282 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
283 {
284 	struct delayed_uprobe *du;
285 
286 	list_for_each_entry(du, &delayed_uprobe_list, list)
287 		if (du->uprobe == uprobe && du->mm == mm)
288 			return du;
289 	return NULL;
290 }
291 
delayed_uprobe_add(struct uprobe * uprobe,struct mm_struct * mm)292 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
293 {
294 	struct delayed_uprobe *du;
295 
296 	if (delayed_uprobe_check(uprobe, mm))
297 		return 0;
298 
299 	du  = kzalloc(sizeof(*du), GFP_KERNEL);
300 	if (!du)
301 		return -ENOMEM;
302 
303 	du->uprobe = uprobe;
304 	du->mm = mm;
305 	list_add(&du->list, &delayed_uprobe_list);
306 	return 0;
307 }
308 
delayed_uprobe_delete(struct delayed_uprobe * du)309 static void delayed_uprobe_delete(struct delayed_uprobe *du)
310 {
311 	if (WARN_ON(!du))
312 		return;
313 	list_del(&du->list);
314 	kfree(du);
315 }
316 
delayed_uprobe_remove(struct uprobe * uprobe,struct mm_struct * mm)317 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
318 {
319 	struct list_head *pos, *q;
320 	struct delayed_uprobe *du;
321 
322 	if (!uprobe && !mm)
323 		return;
324 
325 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
326 		du = list_entry(pos, struct delayed_uprobe, list);
327 
328 		if (uprobe && du->uprobe != uprobe)
329 			continue;
330 		if (mm && du->mm != mm)
331 			continue;
332 
333 		delayed_uprobe_delete(du);
334 	}
335 }
336 
valid_ref_ctr_vma(struct uprobe * uprobe,struct vm_area_struct * vma)337 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
338 			      struct vm_area_struct *vma)
339 {
340 	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
341 
342 	return uprobe->ref_ctr_offset &&
343 		vma->vm_file &&
344 		file_inode(vma->vm_file) == uprobe->inode &&
345 		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
346 		vma->vm_start <= vaddr &&
347 		vma->vm_end > vaddr;
348 }
349 
350 static struct vm_area_struct *
find_ref_ctr_vma(struct uprobe * uprobe,struct mm_struct * mm)351 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
352 {
353 	VMA_ITERATOR(vmi, mm, 0);
354 	struct vm_area_struct *tmp;
355 
356 	for_each_vma(vmi, tmp)
357 		if (valid_ref_ctr_vma(uprobe, tmp))
358 			return tmp;
359 
360 	return NULL;
361 }
362 
363 static int
__update_ref_ctr(struct mm_struct * mm,unsigned long vaddr,short d)364 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
365 {
366 	void *kaddr;
367 	struct page *page;
368 	int ret;
369 	short *ptr;
370 
371 	if (!vaddr || !d)
372 		return -EINVAL;
373 
374 	ret = get_user_pages_remote(mm, vaddr, 1,
375 				    FOLL_WRITE, &page, NULL);
376 	if (unlikely(ret <= 0)) {
377 		/*
378 		 * We are asking for 1 page. If get_user_pages_remote() fails,
379 		 * it may return 0, in that case we have to return error.
380 		 */
381 		return ret == 0 ? -EBUSY : ret;
382 	}
383 
384 	kaddr = kmap_atomic(page);
385 	ptr = kaddr + (vaddr & ~PAGE_MASK);
386 
387 	if (unlikely(*ptr + d < 0)) {
388 		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
389 			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
390 		ret = -EINVAL;
391 		goto out;
392 	}
393 
394 	*ptr += d;
395 	ret = 0;
396 out:
397 	kunmap_atomic(kaddr);
398 	put_page(page);
399 	return ret;
400 }
401 
update_ref_ctr_warn(struct uprobe * uprobe,struct mm_struct * mm,short d)402 static void update_ref_ctr_warn(struct uprobe *uprobe,
403 				struct mm_struct *mm, short d)
404 {
405 	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
406 		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
407 		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
408 		(unsigned long long) uprobe->offset,
409 		(unsigned long long) uprobe->ref_ctr_offset, mm);
410 }
411 
update_ref_ctr(struct uprobe * uprobe,struct mm_struct * mm,short d)412 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
413 			  short d)
414 {
415 	struct vm_area_struct *rc_vma;
416 	unsigned long rc_vaddr;
417 	int ret = 0;
418 
419 	rc_vma = find_ref_ctr_vma(uprobe, mm);
420 
421 	if (rc_vma) {
422 		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
423 		ret = __update_ref_ctr(mm, rc_vaddr, d);
424 		if (ret)
425 			update_ref_ctr_warn(uprobe, mm, d);
426 
427 		if (d > 0)
428 			return ret;
429 	}
430 
431 	mutex_lock(&delayed_uprobe_lock);
432 	if (d > 0)
433 		ret = delayed_uprobe_add(uprobe, mm);
434 	else
435 		delayed_uprobe_remove(uprobe, mm);
436 	mutex_unlock(&delayed_uprobe_lock);
437 
438 	return ret;
439 }
440 
441 /*
442  * NOTE:
443  * Expect the breakpoint instruction to be the smallest size instruction for
444  * the architecture. If an arch has variable length instruction and the
445  * breakpoint instruction is not of the smallest length instruction
446  * supported by that architecture then we need to modify is_trap_at_addr and
447  * uprobe_write_opcode accordingly. This would never be a problem for archs
448  * that have fixed length instructions.
449  *
450  * uprobe_write_opcode - write the opcode at a given virtual address.
451  * @auprobe: arch specific probepoint information.
452  * @mm: the probed process address space.
453  * @vaddr: the virtual address to store the opcode.
454  * @opcode: opcode to be written at @vaddr.
455  *
456  * Called with mm->mmap_lock held for write.
457  * Return 0 (success) or a negative errno.
458  */
uprobe_write_opcode(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr,uprobe_opcode_t opcode)459 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
460 			unsigned long vaddr, uprobe_opcode_t opcode)
461 {
462 	struct uprobe *uprobe;
463 	struct page *old_page, *new_page;
464 	struct vm_area_struct *vma;
465 	int ret, is_register, ref_ctr_updated = 0;
466 	bool orig_page_huge = false;
467 	unsigned int gup_flags = FOLL_FORCE;
468 
469 	is_register = is_swbp_insn(&opcode);
470 	uprobe = container_of(auprobe, struct uprobe, arch);
471 
472 retry:
473 	if (is_register)
474 		gup_flags |= FOLL_SPLIT_PMD;
475 	/* Read the page with vaddr into memory */
476 	old_page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma);
477 	if (IS_ERR_OR_NULL(old_page))
478 		return old_page ? PTR_ERR(old_page) : 0;
479 
480 	ret = verify_opcode(old_page, vaddr, &opcode);
481 	if (ret <= 0)
482 		goto put_old;
483 
484 	if (WARN(!is_register && PageCompound(old_page),
485 		 "uprobe unregister should never work on compound page\n")) {
486 		ret = -EINVAL;
487 		goto put_old;
488 	}
489 
490 	/* We are going to replace instruction, update ref_ctr. */
491 	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
492 		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
493 		if (ret)
494 			goto put_old;
495 
496 		ref_ctr_updated = 1;
497 	}
498 
499 	ret = 0;
500 	if (!is_register && !PageAnon(old_page))
501 		goto put_old;
502 
503 	ret = anon_vma_prepare(vma);
504 	if (ret)
505 		goto put_old;
506 
507 	ret = -ENOMEM;
508 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
509 	if (!new_page)
510 		goto put_old;
511 
512 	__SetPageUptodate(new_page);
513 	copy_highpage(new_page, old_page);
514 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
515 
516 	if (!is_register) {
517 		struct page *orig_page;
518 		pgoff_t index;
519 
520 		VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
521 
522 		index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
523 		orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
524 					  index);
525 
526 		if (orig_page) {
527 			if (PageUptodate(orig_page) &&
528 			    pages_identical(new_page, orig_page)) {
529 				/* let go new_page */
530 				put_page(new_page);
531 				new_page = NULL;
532 
533 				if (PageCompound(orig_page))
534 					orig_page_huge = true;
535 			}
536 			put_page(orig_page);
537 		}
538 	}
539 
540 	ret = __replace_page(vma, vaddr, old_page, new_page);
541 	if (new_page)
542 		put_page(new_page);
543 put_old:
544 	put_page(old_page);
545 
546 	if (unlikely(ret == -EAGAIN))
547 		goto retry;
548 
549 	/* Revert back reference counter if instruction update failed. */
550 	if (ret && is_register && ref_ctr_updated)
551 		update_ref_ctr(uprobe, mm, -1);
552 
553 	/* try collapse pmd for compound page */
554 	if (!ret && orig_page_huge)
555 		collapse_pte_mapped_thp(mm, vaddr, false);
556 
557 	return ret;
558 }
559 
560 /**
561  * set_swbp - store breakpoint at a given address.
562  * @auprobe: arch specific probepoint information.
563  * @mm: the probed process address space.
564  * @vaddr: the virtual address to insert the opcode.
565  *
566  * For mm @mm, store the breakpoint instruction at @vaddr.
567  * Return 0 (success) or a negative errno.
568  */
set_swbp(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)569 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
570 {
571 	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
572 }
573 
574 /**
575  * set_orig_insn - Restore the original instruction.
576  * @mm: the probed process address space.
577  * @auprobe: arch specific probepoint information.
578  * @vaddr: the virtual address to insert the opcode.
579  *
580  * For mm @mm, restore the original opcode (opcode) at @vaddr.
581  * Return 0 (success) or a negative errno.
582  */
583 int __weak
set_orig_insn(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)584 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
585 {
586 	return uprobe_write_opcode(auprobe, mm, vaddr,
587 			*(uprobe_opcode_t *)&auprobe->insn);
588 }
589 
get_uprobe(struct uprobe * uprobe)590 static struct uprobe *get_uprobe(struct uprobe *uprobe)
591 {
592 	refcount_inc(&uprobe->ref);
593 	return uprobe;
594 }
595 
put_uprobe(struct uprobe * uprobe)596 static void put_uprobe(struct uprobe *uprobe)
597 {
598 	if (refcount_dec_and_test(&uprobe->ref)) {
599 		/*
600 		 * If application munmap(exec_vma) before uprobe_unregister()
601 		 * gets called, we don't get a chance to remove uprobe from
602 		 * delayed_uprobe_list from remove_breakpoint(). Do it here.
603 		 */
604 		mutex_lock(&delayed_uprobe_lock);
605 		delayed_uprobe_remove(uprobe, NULL);
606 		mutex_unlock(&delayed_uprobe_lock);
607 		kfree(uprobe);
608 	}
609 }
610 
611 static __always_inline
uprobe_cmp(const struct inode * l_inode,const loff_t l_offset,const struct uprobe * r)612 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
613 	       const struct uprobe *r)
614 {
615 	if (l_inode < r->inode)
616 		return -1;
617 
618 	if (l_inode > r->inode)
619 		return 1;
620 
621 	if (l_offset < r->offset)
622 		return -1;
623 
624 	if (l_offset > r->offset)
625 		return 1;
626 
627 	return 0;
628 }
629 
630 #define __node_2_uprobe(node) \
631 	rb_entry((node), struct uprobe, rb_node)
632 
633 struct __uprobe_key {
634 	struct inode *inode;
635 	loff_t offset;
636 };
637 
__uprobe_cmp_key(const void * key,const struct rb_node * b)638 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
639 {
640 	const struct __uprobe_key *a = key;
641 	return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
642 }
643 
__uprobe_cmp(struct rb_node * a,const struct rb_node * b)644 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
645 {
646 	struct uprobe *u = __node_2_uprobe(a);
647 	return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
648 }
649 
__find_uprobe(struct inode * inode,loff_t offset)650 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
651 {
652 	struct __uprobe_key key = {
653 		.inode = inode,
654 		.offset = offset,
655 	};
656 	struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key);
657 
658 	if (node)
659 		return get_uprobe(__node_2_uprobe(node));
660 
661 	return NULL;
662 }
663 
664 /*
665  * Find a uprobe corresponding to a given inode:offset
666  * Acquires uprobes_treelock
667  */
find_uprobe(struct inode * inode,loff_t offset)668 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
669 {
670 	struct uprobe *uprobe;
671 
672 	spin_lock(&uprobes_treelock);
673 	uprobe = __find_uprobe(inode, offset);
674 	spin_unlock(&uprobes_treelock);
675 
676 	return uprobe;
677 }
678 
__insert_uprobe(struct uprobe * uprobe)679 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
680 {
681 	struct rb_node *node;
682 
683 	node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
684 	if (node)
685 		return get_uprobe(__node_2_uprobe(node));
686 
687 	/* get access + creation ref */
688 	refcount_set(&uprobe->ref, 2);
689 	return NULL;
690 }
691 
692 /*
693  * Acquire uprobes_treelock.
694  * Matching uprobe already exists in rbtree;
695  *	increment (access refcount) and return the matching uprobe.
696  *
697  * No matching uprobe; insert the uprobe in rb_tree;
698  *	get a double refcount (access + creation) and return NULL.
699  */
insert_uprobe(struct uprobe * uprobe)700 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
701 {
702 	struct uprobe *u;
703 
704 	spin_lock(&uprobes_treelock);
705 	u = __insert_uprobe(uprobe);
706 	spin_unlock(&uprobes_treelock);
707 
708 	return u;
709 }
710 
711 static void
ref_ctr_mismatch_warn(struct uprobe * cur_uprobe,struct uprobe * uprobe)712 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
713 {
714 	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
715 		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
716 		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
717 		(unsigned long long) cur_uprobe->ref_ctr_offset,
718 		(unsigned long long) uprobe->ref_ctr_offset);
719 }
720 
alloc_uprobe(struct inode * inode,loff_t offset,loff_t ref_ctr_offset)721 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
722 				   loff_t ref_ctr_offset)
723 {
724 	struct uprobe *uprobe, *cur_uprobe;
725 
726 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
727 	if (!uprobe)
728 		return NULL;
729 
730 	uprobe->inode = inode;
731 	uprobe->offset = offset;
732 	uprobe->ref_ctr_offset = ref_ctr_offset;
733 	init_rwsem(&uprobe->register_rwsem);
734 	init_rwsem(&uprobe->consumer_rwsem);
735 
736 	/* add to uprobes_tree, sorted on inode:offset */
737 	cur_uprobe = insert_uprobe(uprobe);
738 	/* a uprobe exists for this inode:offset combination */
739 	if (cur_uprobe) {
740 		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
741 			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
742 			put_uprobe(cur_uprobe);
743 			kfree(uprobe);
744 			return ERR_PTR(-EINVAL);
745 		}
746 		kfree(uprobe);
747 		uprobe = cur_uprobe;
748 	}
749 
750 	return uprobe;
751 }
752 
consumer_add(struct uprobe * uprobe,struct uprobe_consumer * uc)753 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
754 {
755 	down_write(&uprobe->consumer_rwsem);
756 	uc->next = uprobe->consumers;
757 	uprobe->consumers = uc;
758 	up_write(&uprobe->consumer_rwsem);
759 }
760 
761 /*
762  * For uprobe @uprobe, delete the consumer @uc.
763  * Return true if the @uc is deleted successfully
764  * or return false.
765  */
consumer_del(struct uprobe * uprobe,struct uprobe_consumer * uc)766 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
767 {
768 	struct uprobe_consumer **con;
769 	bool ret = false;
770 
771 	down_write(&uprobe->consumer_rwsem);
772 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
773 		if (*con == uc) {
774 			*con = uc->next;
775 			ret = true;
776 			break;
777 		}
778 	}
779 	up_write(&uprobe->consumer_rwsem);
780 
781 	return ret;
782 }
783 
__copy_insn(struct address_space * mapping,struct file * filp,void * insn,int nbytes,loff_t offset)784 static int __copy_insn(struct address_space *mapping, struct file *filp,
785 			void *insn, int nbytes, loff_t offset)
786 {
787 	struct page *page;
788 	/*
789 	 * Ensure that the page that has the original instruction is populated
790 	 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
791 	 * see uprobe_register().
792 	 */
793 	if (mapping->a_ops->read_folio)
794 		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
795 	else
796 		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
797 	if (IS_ERR(page))
798 		return PTR_ERR(page);
799 
800 	copy_from_page(page, offset, insn, nbytes);
801 	put_page(page);
802 
803 	return 0;
804 }
805 
copy_insn(struct uprobe * uprobe,struct file * filp)806 static int copy_insn(struct uprobe *uprobe, struct file *filp)
807 {
808 	struct address_space *mapping = uprobe->inode->i_mapping;
809 	loff_t offs = uprobe->offset;
810 	void *insn = &uprobe->arch.insn;
811 	int size = sizeof(uprobe->arch.insn);
812 	int len, err = -EIO;
813 
814 	/* Copy only available bytes, -EIO if nothing was read */
815 	do {
816 		if (offs >= i_size_read(uprobe->inode))
817 			break;
818 
819 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
820 		err = __copy_insn(mapping, filp, insn, len, offs);
821 		if (err)
822 			break;
823 
824 		insn += len;
825 		offs += len;
826 		size -= len;
827 	} while (size);
828 
829 	return err;
830 }
831 
prepare_uprobe(struct uprobe * uprobe,struct file * file,struct mm_struct * mm,unsigned long vaddr)832 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
833 				struct mm_struct *mm, unsigned long vaddr)
834 {
835 	int ret = 0;
836 
837 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
838 		return ret;
839 
840 	/* TODO: move this into _register, until then we abuse this sem. */
841 	down_write(&uprobe->consumer_rwsem);
842 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
843 		goto out;
844 
845 	ret = copy_insn(uprobe, file);
846 	if (ret)
847 		goto out;
848 
849 	ret = -ENOTSUPP;
850 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
851 		goto out;
852 
853 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
854 	if (ret)
855 		goto out;
856 
857 	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
858 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
859 
860  out:
861 	up_write(&uprobe->consumer_rwsem);
862 
863 	return ret;
864 }
865 
consumer_filter(struct uprobe_consumer * uc,enum uprobe_filter_ctx ctx,struct mm_struct * mm)866 static inline bool consumer_filter(struct uprobe_consumer *uc,
867 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
868 {
869 	return !uc->filter || uc->filter(uc, ctx, mm);
870 }
871 
filter_chain(struct uprobe * uprobe,enum uprobe_filter_ctx ctx,struct mm_struct * mm)872 static bool filter_chain(struct uprobe *uprobe,
873 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
874 {
875 	struct uprobe_consumer *uc;
876 	bool ret = false;
877 
878 	down_read(&uprobe->consumer_rwsem);
879 	for (uc = uprobe->consumers; uc; uc = uc->next) {
880 		ret = consumer_filter(uc, ctx, mm);
881 		if (ret)
882 			break;
883 	}
884 	up_read(&uprobe->consumer_rwsem);
885 
886 	return ret;
887 }
888 
889 static int
install_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long vaddr)890 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
891 			struct vm_area_struct *vma, unsigned long vaddr)
892 {
893 	bool first_uprobe;
894 	int ret;
895 
896 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
897 	if (ret)
898 		return ret;
899 
900 	/*
901 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
902 	 * the task can hit this breakpoint right after __replace_page().
903 	 */
904 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
905 	if (first_uprobe)
906 		set_bit(MMF_HAS_UPROBES, &mm->flags);
907 
908 	ret = set_swbp(&uprobe->arch, mm, vaddr);
909 	if (!ret)
910 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
911 	else if (first_uprobe)
912 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
913 
914 	return ret;
915 }
916 
917 static int
remove_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,unsigned long vaddr)918 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
919 {
920 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
921 	return set_orig_insn(&uprobe->arch, mm, vaddr);
922 }
923 
uprobe_is_active(struct uprobe * uprobe)924 static inline bool uprobe_is_active(struct uprobe *uprobe)
925 {
926 	return !RB_EMPTY_NODE(&uprobe->rb_node);
927 }
928 /*
929  * There could be threads that have already hit the breakpoint. They
930  * will recheck the current insn and restart if find_uprobe() fails.
931  * See find_active_uprobe().
932  */
delete_uprobe(struct uprobe * uprobe)933 static void delete_uprobe(struct uprobe *uprobe)
934 {
935 	if (WARN_ON(!uprobe_is_active(uprobe)))
936 		return;
937 
938 	spin_lock(&uprobes_treelock);
939 	rb_erase(&uprobe->rb_node, &uprobes_tree);
940 	spin_unlock(&uprobes_treelock);
941 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
942 	put_uprobe(uprobe);
943 }
944 
945 struct map_info {
946 	struct map_info *next;
947 	struct mm_struct *mm;
948 	unsigned long vaddr;
949 };
950 
free_map_info(struct map_info * info)951 static inline struct map_info *free_map_info(struct map_info *info)
952 {
953 	struct map_info *next = info->next;
954 	kfree(info);
955 	return next;
956 }
957 
958 static struct map_info *
build_map_info(struct address_space * mapping,loff_t offset,bool is_register)959 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
960 {
961 	unsigned long pgoff = offset >> PAGE_SHIFT;
962 	struct vm_area_struct *vma;
963 	struct map_info *curr = NULL;
964 	struct map_info *prev = NULL;
965 	struct map_info *info;
966 	int more = 0;
967 
968  again:
969 	i_mmap_lock_read(mapping);
970 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
971 		if (!valid_vma(vma, is_register))
972 			continue;
973 
974 		if (!prev && !more) {
975 			/*
976 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
977 			 * reclaim. This is optimistic, no harm done if it fails.
978 			 */
979 			prev = kmalloc(sizeof(struct map_info),
980 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
981 			if (prev)
982 				prev->next = NULL;
983 		}
984 		if (!prev) {
985 			more++;
986 			continue;
987 		}
988 
989 		if (!mmget_not_zero(vma->vm_mm))
990 			continue;
991 
992 		info = prev;
993 		prev = prev->next;
994 		info->next = curr;
995 		curr = info;
996 
997 		info->mm = vma->vm_mm;
998 		info->vaddr = offset_to_vaddr(vma, offset);
999 	}
1000 	i_mmap_unlock_read(mapping);
1001 
1002 	if (!more)
1003 		goto out;
1004 
1005 	prev = curr;
1006 	while (curr) {
1007 		mmput(curr->mm);
1008 		curr = curr->next;
1009 	}
1010 
1011 	do {
1012 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1013 		if (!info) {
1014 			curr = ERR_PTR(-ENOMEM);
1015 			goto out;
1016 		}
1017 		info->next = prev;
1018 		prev = info;
1019 	} while (--more);
1020 
1021 	goto again;
1022  out:
1023 	while (prev)
1024 		prev = free_map_info(prev);
1025 	return curr;
1026 }
1027 
1028 static int
register_for_each_vma(struct uprobe * uprobe,struct uprobe_consumer * new)1029 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1030 {
1031 	bool is_register = !!new;
1032 	struct map_info *info;
1033 	int err = 0;
1034 
1035 	percpu_down_write(&dup_mmap_sem);
1036 	info = build_map_info(uprobe->inode->i_mapping,
1037 					uprobe->offset, is_register);
1038 	if (IS_ERR(info)) {
1039 		err = PTR_ERR(info);
1040 		goto out;
1041 	}
1042 
1043 	while (info) {
1044 		struct mm_struct *mm = info->mm;
1045 		struct vm_area_struct *vma;
1046 
1047 		if (err && is_register)
1048 			goto free;
1049 
1050 		mmap_write_lock(mm);
1051 		vma = find_vma(mm, info->vaddr);
1052 		if (!vma || !valid_vma(vma, is_register) ||
1053 		    file_inode(vma->vm_file) != uprobe->inode)
1054 			goto unlock;
1055 
1056 		if (vma->vm_start > info->vaddr ||
1057 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1058 			goto unlock;
1059 
1060 		if (is_register) {
1061 			/* consult only the "caller", new consumer. */
1062 			if (consumer_filter(new,
1063 					UPROBE_FILTER_REGISTER, mm))
1064 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1065 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1066 			if (!filter_chain(uprobe,
1067 					UPROBE_FILTER_UNREGISTER, mm))
1068 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1069 		}
1070 
1071  unlock:
1072 		mmap_write_unlock(mm);
1073  free:
1074 		mmput(mm);
1075 		info = free_map_info(info);
1076 	}
1077  out:
1078 	percpu_up_write(&dup_mmap_sem);
1079 	return err;
1080 }
1081 
1082 static void
__uprobe_unregister(struct uprobe * uprobe,struct uprobe_consumer * uc)1083 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1084 {
1085 	int err;
1086 
1087 	if (WARN_ON(!consumer_del(uprobe, uc)))
1088 		return;
1089 
1090 	err = register_for_each_vma(uprobe, NULL);
1091 	/* TODO : cant unregister? schedule a worker thread */
1092 	if (!uprobe->consumers && !err)
1093 		delete_uprobe(uprobe);
1094 }
1095 
1096 /*
1097  * uprobe_unregister - unregister an already registered probe.
1098  * @inode: the file in which the probe has to be removed.
1099  * @offset: offset from the start of the file.
1100  * @uc: identify which probe if multiple probes are colocated.
1101  */
uprobe_unregister(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)1102 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1103 {
1104 	struct uprobe *uprobe;
1105 
1106 	uprobe = find_uprobe(inode, offset);
1107 	if (WARN_ON(!uprobe))
1108 		return;
1109 
1110 	down_write(&uprobe->register_rwsem);
1111 	__uprobe_unregister(uprobe, uc);
1112 	up_write(&uprobe->register_rwsem);
1113 	put_uprobe(uprobe);
1114 }
1115 EXPORT_SYMBOL_GPL(uprobe_unregister);
1116 
1117 /*
1118  * __uprobe_register - register a probe
1119  * @inode: the file in which the probe has to be placed.
1120  * @offset: offset from the start of the file.
1121  * @uc: information on howto handle the probe..
1122  *
1123  * Apart from the access refcount, __uprobe_register() takes a creation
1124  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1125  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1126  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1127  * @uprobe even before the register operation is complete. Creation
1128  * refcount is released when the last @uc for the @uprobe
1129  * unregisters. Caller of __uprobe_register() is required to keep @inode
1130  * (and the containing mount) referenced.
1131  *
1132  * Return errno if it cannot successully install probes
1133  * else return 0 (success)
1134  */
__uprobe_register(struct inode * inode,loff_t offset,loff_t ref_ctr_offset,struct uprobe_consumer * uc)1135 static int __uprobe_register(struct inode *inode, loff_t offset,
1136 			     loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1137 {
1138 	struct uprobe *uprobe;
1139 	int ret;
1140 
1141 	/* Uprobe must have at least one set consumer */
1142 	if (!uc->handler && !uc->ret_handler)
1143 		return -EINVAL;
1144 
1145 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1146 	if (!inode->i_mapping->a_ops->read_folio &&
1147 	    !shmem_mapping(inode->i_mapping))
1148 		return -EIO;
1149 	/* Racy, just to catch the obvious mistakes */
1150 	if (offset > i_size_read(inode))
1151 		return -EINVAL;
1152 
1153 	/*
1154 	 * This ensures that copy_from_page(), copy_to_page() and
1155 	 * __update_ref_ctr() can't cross page boundary.
1156 	 */
1157 	if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1158 		return -EINVAL;
1159 	if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1160 		return -EINVAL;
1161 
1162  retry:
1163 	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1164 	if (!uprobe)
1165 		return -ENOMEM;
1166 	if (IS_ERR(uprobe))
1167 		return PTR_ERR(uprobe);
1168 
1169 	/*
1170 	 * We can race with uprobe_unregister()->delete_uprobe().
1171 	 * Check uprobe_is_active() and retry if it is false.
1172 	 */
1173 	down_write(&uprobe->register_rwsem);
1174 	ret = -EAGAIN;
1175 	if (likely(uprobe_is_active(uprobe))) {
1176 		consumer_add(uprobe, uc);
1177 		ret = register_for_each_vma(uprobe, uc);
1178 		if (ret)
1179 			__uprobe_unregister(uprobe, uc);
1180 	}
1181 	up_write(&uprobe->register_rwsem);
1182 	put_uprobe(uprobe);
1183 
1184 	if (unlikely(ret == -EAGAIN))
1185 		goto retry;
1186 	return ret;
1187 }
1188 
uprobe_register(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)1189 int uprobe_register(struct inode *inode, loff_t offset,
1190 		    struct uprobe_consumer *uc)
1191 {
1192 	return __uprobe_register(inode, offset, 0, uc);
1193 }
1194 EXPORT_SYMBOL_GPL(uprobe_register);
1195 
uprobe_register_refctr(struct inode * inode,loff_t offset,loff_t ref_ctr_offset,struct uprobe_consumer * uc)1196 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1197 			   loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1198 {
1199 	return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1200 }
1201 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1202 
1203 /*
1204  * uprobe_apply - unregister an already registered probe.
1205  * @inode: the file in which the probe has to be removed.
1206  * @offset: offset from the start of the file.
1207  * @uc: consumer which wants to add more or remove some breakpoints
1208  * @add: add or remove the breakpoints
1209  */
uprobe_apply(struct inode * inode,loff_t offset,struct uprobe_consumer * uc,bool add)1210 int uprobe_apply(struct inode *inode, loff_t offset,
1211 			struct uprobe_consumer *uc, bool add)
1212 {
1213 	struct uprobe *uprobe;
1214 	struct uprobe_consumer *con;
1215 	int ret = -ENOENT;
1216 
1217 	uprobe = find_uprobe(inode, offset);
1218 	if (WARN_ON(!uprobe))
1219 		return ret;
1220 
1221 	down_write(&uprobe->register_rwsem);
1222 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
1223 		;
1224 	if (con)
1225 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
1226 	up_write(&uprobe->register_rwsem);
1227 	put_uprobe(uprobe);
1228 
1229 	return ret;
1230 }
1231 
unapply_uprobe(struct uprobe * uprobe,struct mm_struct * mm)1232 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1233 {
1234 	VMA_ITERATOR(vmi, mm, 0);
1235 	struct vm_area_struct *vma;
1236 	int err = 0;
1237 
1238 	mmap_read_lock(mm);
1239 	for_each_vma(vmi, vma) {
1240 		unsigned long vaddr;
1241 		loff_t offset;
1242 
1243 		if (!valid_vma(vma, false) ||
1244 		    file_inode(vma->vm_file) != uprobe->inode)
1245 			continue;
1246 
1247 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1248 		if (uprobe->offset <  offset ||
1249 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1250 			continue;
1251 
1252 		vaddr = offset_to_vaddr(vma, uprobe->offset);
1253 		err |= remove_breakpoint(uprobe, mm, vaddr);
1254 	}
1255 	mmap_read_unlock(mm);
1256 
1257 	return err;
1258 }
1259 
1260 static struct rb_node *
find_node_in_range(struct inode * inode,loff_t min,loff_t max)1261 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1262 {
1263 	struct rb_node *n = uprobes_tree.rb_node;
1264 
1265 	while (n) {
1266 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1267 
1268 		if (inode < u->inode) {
1269 			n = n->rb_left;
1270 		} else if (inode > u->inode) {
1271 			n = n->rb_right;
1272 		} else {
1273 			if (max < u->offset)
1274 				n = n->rb_left;
1275 			else if (min > u->offset)
1276 				n = n->rb_right;
1277 			else
1278 				break;
1279 		}
1280 	}
1281 
1282 	return n;
1283 }
1284 
1285 /*
1286  * For a given range in vma, build a list of probes that need to be inserted.
1287  */
build_probe_list(struct inode * inode,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * head)1288 static void build_probe_list(struct inode *inode,
1289 				struct vm_area_struct *vma,
1290 				unsigned long start, unsigned long end,
1291 				struct list_head *head)
1292 {
1293 	loff_t min, max;
1294 	struct rb_node *n, *t;
1295 	struct uprobe *u;
1296 
1297 	INIT_LIST_HEAD(head);
1298 	min = vaddr_to_offset(vma, start);
1299 	max = min + (end - start) - 1;
1300 
1301 	spin_lock(&uprobes_treelock);
1302 	n = find_node_in_range(inode, min, max);
1303 	if (n) {
1304 		for (t = n; t; t = rb_prev(t)) {
1305 			u = rb_entry(t, struct uprobe, rb_node);
1306 			if (u->inode != inode || u->offset < min)
1307 				break;
1308 			list_add(&u->pending_list, head);
1309 			get_uprobe(u);
1310 		}
1311 		for (t = n; (t = rb_next(t)); ) {
1312 			u = rb_entry(t, struct uprobe, rb_node);
1313 			if (u->inode != inode || u->offset > max)
1314 				break;
1315 			list_add(&u->pending_list, head);
1316 			get_uprobe(u);
1317 		}
1318 	}
1319 	spin_unlock(&uprobes_treelock);
1320 }
1321 
1322 /* @vma contains reference counter, not the probed instruction. */
delayed_ref_ctr_inc(struct vm_area_struct * vma)1323 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1324 {
1325 	struct list_head *pos, *q;
1326 	struct delayed_uprobe *du;
1327 	unsigned long vaddr;
1328 	int ret = 0, err = 0;
1329 
1330 	mutex_lock(&delayed_uprobe_lock);
1331 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1332 		du = list_entry(pos, struct delayed_uprobe, list);
1333 
1334 		if (du->mm != vma->vm_mm ||
1335 		    !valid_ref_ctr_vma(du->uprobe, vma))
1336 			continue;
1337 
1338 		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1339 		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1340 		if (ret) {
1341 			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1342 			if (!err)
1343 				err = ret;
1344 		}
1345 		delayed_uprobe_delete(du);
1346 	}
1347 	mutex_unlock(&delayed_uprobe_lock);
1348 	return err;
1349 }
1350 
1351 /*
1352  * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1353  *
1354  * Currently we ignore all errors and always return 0, the callers
1355  * can't handle the failure anyway.
1356  */
uprobe_mmap(struct vm_area_struct * vma)1357 int uprobe_mmap(struct vm_area_struct *vma)
1358 {
1359 	struct list_head tmp_list;
1360 	struct uprobe *uprobe, *u;
1361 	struct inode *inode;
1362 
1363 	if (no_uprobe_events())
1364 		return 0;
1365 
1366 	if (vma->vm_file &&
1367 	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1368 	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1369 		delayed_ref_ctr_inc(vma);
1370 
1371 	if (!valid_vma(vma, true))
1372 		return 0;
1373 
1374 	inode = file_inode(vma->vm_file);
1375 	if (!inode)
1376 		return 0;
1377 
1378 	mutex_lock(uprobes_mmap_hash(inode));
1379 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1380 	/*
1381 	 * We can race with uprobe_unregister(), this uprobe can be already
1382 	 * removed. But in this case filter_chain() must return false, all
1383 	 * consumers have gone away.
1384 	 */
1385 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1386 		if (!fatal_signal_pending(current) &&
1387 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1388 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1389 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1390 		}
1391 		put_uprobe(uprobe);
1392 	}
1393 	mutex_unlock(uprobes_mmap_hash(inode));
1394 
1395 	return 0;
1396 }
1397 
1398 static bool
vma_has_uprobes(struct vm_area_struct * vma,unsigned long start,unsigned long end)1399 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1400 {
1401 	loff_t min, max;
1402 	struct inode *inode;
1403 	struct rb_node *n;
1404 
1405 	inode = file_inode(vma->vm_file);
1406 
1407 	min = vaddr_to_offset(vma, start);
1408 	max = min + (end - start) - 1;
1409 
1410 	spin_lock(&uprobes_treelock);
1411 	n = find_node_in_range(inode, min, max);
1412 	spin_unlock(&uprobes_treelock);
1413 
1414 	return !!n;
1415 }
1416 
1417 /*
1418  * Called in context of a munmap of a vma.
1419  */
uprobe_munmap(struct vm_area_struct * vma,unsigned long start,unsigned long end)1420 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1421 {
1422 	if (no_uprobe_events() || !valid_vma(vma, false))
1423 		return;
1424 
1425 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1426 		return;
1427 
1428 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1429 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1430 		return;
1431 
1432 	if (vma_has_uprobes(vma, start, end))
1433 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1434 }
1435 
1436 /* Slot allocation for XOL */
xol_add_vma(struct mm_struct * mm,struct xol_area * area)1437 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1438 {
1439 	struct vm_area_struct *vma;
1440 	int ret;
1441 
1442 	if (mmap_write_lock_killable(mm))
1443 		return -EINTR;
1444 
1445 	if (mm->uprobes_state.xol_area) {
1446 		ret = -EALREADY;
1447 		goto fail;
1448 	}
1449 
1450 	if (!area->vaddr) {
1451 		/* Try to map as high as possible, this is only a hint. */
1452 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1453 						PAGE_SIZE, 0, 0);
1454 		if (IS_ERR_VALUE(area->vaddr)) {
1455 			ret = area->vaddr;
1456 			goto fail;
1457 		}
1458 	}
1459 
1460 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1461 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1462 				&area->xol_mapping);
1463 	if (IS_ERR(vma)) {
1464 		ret = PTR_ERR(vma);
1465 		goto fail;
1466 	}
1467 
1468 	ret = 0;
1469 	/* pairs with get_xol_area() */
1470 	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1471  fail:
1472 	mmap_write_unlock(mm);
1473 
1474 	return ret;
1475 }
1476 
__create_xol_area(unsigned long vaddr)1477 static struct xol_area *__create_xol_area(unsigned long vaddr)
1478 {
1479 	struct mm_struct *mm = current->mm;
1480 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1481 	struct xol_area *area;
1482 
1483 	area = kzalloc(sizeof(*area), GFP_KERNEL);
1484 	if (unlikely(!area))
1485 		goto out;
1486 
1487 	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1488 			       GFP_KERNEL);
1489 	if (!area->bitmap)
1490 		goto free_area;
1491 
1492 	area->xol_mapping.name = "[uprobes]";
1493 	area->xol_mapping.pages = area->pages;
1494 	area->pages[0] = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
1495 	if (!area->pages[0])
1496 		goto free_bitmap;
1497 	area->pages[1] = NULL;
1498 
1499 	area->vaddr = vaddr;
1500 	init_waitqueue_head(&area->wq);
1501 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1502 	set_bit(0, area->bitmap);
1503 	atomic_set(&area->slot_count, 1);
1504 	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1505 
1506 	if (!xol_add_vma(mm, area))
1507 		return area;
1508 
1509 	__free_page(area->pages[0]);
1510  free_bitmap:
1511 	kfree(area->bitmap);
1512  free_area:
1513 	kfree(area);
1514  out:
1515 	return NULL;
1516 }
1517 
1518 /*
1519  * get_xol_area - Allocate process's xol_area if necessary.
1520  * This area will be used for storing instructions for execution out of line.
1521  *
1522  * Returns the allocated area or NULL.
1523  */
get_xol_area(void)1524 static struct xol_area *get_xol_area(void)
1525 {
1526 	struct mm_struct *mm = current->mm;
1527 	struct xol_area *area;
1528 
1529 	if (!mm->uprobes_state.xol_area)
1530 		__create_xol_area(0);
1531 
1532 	/* Pairs with xol_add_vma() smp_store_release() */
1533 	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1534 	return area;
1535 }
1536 
1537 /*
1538  * uprobe_clear_state - Free the area allocated for slots.
1539  */
uprobe_clear_state(struct mm_struct * mm)1540 void uprobe_clear_state(struct mm_struct *mm)
1541 {
1542 	struct xol_area *area = mm->uprobes_state.xol_area;
1543 
1544 	mutex_lock(&delayed_uprobe_lock);
1545 	delayed_uprobe_remove(NULL, mm);
1546 	mutex_unlock(&delayed_uprobe_lock);
1547 
1548 	if (!area)
1549 		return;
1550 
1551 	put_page(area->pages[0]);
1552 	kfree(area->bitmap);
1553 	kfree(area);
1554 }
1555 
uprobe_start_dup_mmap(void)1556 void uprobe_start_dup_mmap(void)
1557 {
1558 	percpu_down_read(&dup_mmap_sem);
1559 }
1560 
uprobe_end_dup_mmap(void)1561 void uprobe_end_dup_mmap(void)
1562 {
1563 	percpu_up_read(&dup_mmap_sem);
1564 }
1565 
uprobe_dup_mmap(struct mm_struct * oldmm,struct mm_struct * newmm)1566 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1567 {
1568 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1569 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1570 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1571 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1572 	}
1573 }
1574 
1575 /*
1576  *  - search for a free slot.
1577  */
xol_take_insn_slot(struct xol_area * area)1578 static unsigned long xol_take_insn_slot(struct xol_area *area)
1579 {
1580 	unsigned long slot_addr;
1581 	int slot_nr;
1582 
1583 	do {
1584 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1585 		if (slot_nr < UINSNS_PER_PAGE) {
1586 			if (!test_and_set_bit(slot_nr, area->bitmap))
1587 				break;
1588 
1589 			slot_nr = UINSNS_PER_PAGE;
1590 			continue;
1591 		}
1592 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1593 	} while (slot_nr >= UINSNS_PER_PAGE);
1594 
1595 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1596 	atomic_inc(&area->slot_count);
1597 
1598 	return slot_addr;
1599 }
1600 
1601 /*
1602  * xol_get_insn_slot - allocate a slot for xol.
1603  * Returns the allocated slot address or 0.
1604  */
xol_get_insn_slot(struct uprobe * uprobe)1605 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1606 {
1607 	struct xol_area *area;
1608 	unsigned long xol_vaddr;
1609 
1610 	area = get_xol_area();
1611 	if (!area)
1612 		return 0;
1613 
1614 	xol_vaddr = xol_take_insn_slot(area);
1615 	if (unlikely(!xol_vaddr))
1616 		return 0;
1617 
1618 	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1619 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1620 
1621 	return xol_vaddr;
1622 }
1623 
1624 /*
1625  * xol_free_insn_slot - If slot was earlier allocated by
1626  * @xol_get_insn_slot(), make the slot available for
1627  * subsequent requests.
1628  */
xol_free_insn_slot(struct task_struct * tsk)1629 static void xol_free_insn_slot(struct task_struct *tsk)
1630 {
1631 	struct xol_area *area;
1632 	unsigned long vma_end;
1633 	unsigned long slot_addr;
1634 
1635 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1636 		return;
1637 
1638 	slot_addr = tsk->utask->xol_vaddr;
1639 	if (unlikely(!slot_addr))
1640 		return;
1641 
1642 	area = tsk->mm->uprobes_state.xol_area;
1643 	vma_end = area->vaddr + PAGE_SIZE;
1644 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1645 		unsigned long offset;
1646 		int slot_nr;
1647 
1648 		offset = slot_addr - area->vaddr;
1649 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1650 		if (slot_nr >= UINSNS_PER_PAGE)
1651 			return;
1652 
1653 		clear_bit(slot_nr, area->bitmap);
1654 		atomic_dec(&area->slot_count);
1655 		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1656 		if (waitqueue_active(&area->wq))
1657 			wake_up(&area->wq);
1658 
1659 		tsk->utask->xol_vaddr = 0;
1660 	}
1661 }
1662 
arch_uprobe_copy_ixol(struct page * page,unsigned long vaddr,void * src,unsigned long len)1663 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1664 				  void *src, unsigned long len)
1665 {
1666 	/* Initialize the slot */
1667 	copy_to_page(page, vaddr, src, len);
1668 
1669 	/*
1670 	 * We probably need flush_icache_user_page() but it needs vma.
1671 	 * This should work on most of architectures by default. If
1672 	 * architecture needs to do something different it can define
1673 	 * its own version of the function.
1674 	 */
1675 	flush_dcache_page(page);
1676 }
1677 
1678 /**
1679  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1680  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1681  * instruction.
1682  * Return the address of the breakpoint instruction.
1683  */
uprobe_get_swbp_addr(struct pt_regs * regs)1684 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1685 {
1686 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1687 }
1688 
uprobe_get_trap_addr(struct pt_regs * regs)1689 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1690 {
1691 	struct uprobe_task *utask = current->utask;
1692 
1693 	if (unlikely(utask && utask->active_uprobe))
1694 		return utask->vaddr;
1695 
1696 	return instruction_pointer(regs);
1697 }
1698 
free_ret_instance(struct return_instance * ri)1699 static struct return_instance *free_ret_instance(struct return_instance *ri)
1700 {
1701 	struct return_instance *next = ri->next;
1702 	put_uprobe(ri->uprobe);
1703 	kfree(ri);
1704 	return next;
1705 }
1706 
1707 /*
1708  * Called with no locks held.
1709  * Called in context of an exiting or an exec-ing thread.
1710  */
uprobe_free_utask(struct task_struct * t)1711 void uprobe_free_utask(struct task_struct *t)
1712 {
1713 	struct uprobe_task *utask = t->utask;
1714 	struct return_instance *ri;
1715 
1716 	if (!utask)
1717 		return;
1718 
1719 	if (utask->active_uprobe)
1720 		put_uprobe(utask->active_uprobe);
1721 
1722 	ri = utask->return_instances;
1723 	while (ri)
1724 		ri = free_ret_instance(ri);
1725 
1726 	xol_free_insn_slot(t);
1727 	kfree(utask);
1728 	t->utask = NULL;
1729 }
1730 
1731 /*
1732  * Allocate a uprobe_task object for the task if necessary.
1733  * Called when the thread hits a breakpoint.
1734  *
1735  * Returns:
1736  * - pointer to new uprobe_task on success
1737  * - NULL otherwise
1738  */
get_utask(void)1739 static struct uprobe_task *get_utask(void)
1740 {
1741 	if (!current->utask)
1742 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1743 	return current->utask;
1744 }
1745 
dup_utask(struct task_struct * t,struct uprobe_task * o_utask)1746 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1747 {
1748 	struct uprobe_task *n_utask;
1749 	struct return_instance **p, *o, *n;
1750 
1751 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1752 	if (!n_utask)
1753 		return -ENOMEM;
1754 	t->utask = n_utask;
1755 
1756 	p = &n_utask->return_instances;
1757 	for (o = o_utask->return_instances; o; o = o->next) {
1758 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1759 		if (!n)
1760 			return -ENOMEM;
1761 
1762 		*n = *o;
1763 		get_uprobe(n->uprobe);
1764 		n->next = NULL;
1765 
1766 		*p = n;
1767 		p = &n->next;
1768 		n_utask->depth++;
1769 	}
1770 
1771 	return 0;
1772 }
1773 
uprobe_warn(struct task_struct * t,const char * msg)1774 static void uprobe_warn(struct task_struct *t, const char *msg)
1775 {
1776 	pr_warn("uprobe: %s:%d failed to %s\n",
1777 			current->comm, current->pid, msg);
1778 }
1779 
dup_xol_work(struct callback_head * work)1780 static void dup_xol_work(struct callback_head *work)
1781 {
1782 	if (current->flags & PF_EXITING)
1783 		return;
1784 
1785 	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1786 			!fatal_signal_pending(current))
1787 		uprobe_warn(current, "dup xol area");
1788 }
1789 
1790 /*
1791  * Called in context of a new clone/fork from copy_process.
1792  */
uprobe_copy_process(struct task_struct * t,unsigned long flags)1793 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1794 {
1795 	struct uprobe_task *utask = current->utask;
1796 	struct mm_struct *mm = current->mm;
1797 	struct xol_area *area;
1798 
1799 	t->utask = NULL;
1800 
1801 	if (!utask || !utask->return_instances)
1802 		return;
1803 
1804 	if (mm == t->mm && !(flags & CLONE_VFORK))
1805 		return;
1806 
1807 	if (dup_utask(t, utask))
1808 		return uprobe_warn(t, "dup ret instances");
1809 
1810 	/* The task can fork() after dup_xol_work() fails */
1811 	area = mm->uprobes_state.xol_area;
1812 	if (!area)
1813 		return uprobe_warn(t, "dup xol area");
1814 
1815 	if (mm == t->mm)
1816 		return;
1817 
1818 	t->utask->dup_xol_addr = area->vaddr;
1819 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1820 	task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1821 }
1822 
1823 /*
1824  * Current area->vaddr notion assume the trampoline address is always
1825  * equal area->vaddr.
1826  *
1827  * Returns -1 in case the xol_area is not allocated.
1828  */
get_trampoline_vaddr(void)1829 static unsigned long get_trampoline_vaddr(void)
1830 {
1831 	struct xol_area *area;
1832 	unsigned long trampoline_vaddr = -1;
1833 
1834 	/* Pairs with xol_add_vma() smp_store_release() */
1835 	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1836 	if (area)
1837 		trampoline_vaddr = area->vaddr;
1838 
1839 	return trampoline_vaddr;
1840 }
1841 
cleanup_return_instances(struct uprobe_task * utask,bool chained,struct pt_regs * regs)1842 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1843 					struct pt_regs *regs)
1844 {
1845 	struct return_instance *ri = utask->return_instances;
1846 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1847 
1848 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1849 		ri = free_ret_instance(ri);
1850 		utask->depth--;
1851 	}
1852 	utask->return_instances = ri;
1853 }
1854 
prepare_uretprobe(struct uprobe * uprobe,struct pt_regs * regs)1855 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1856 {
1857 	struct return_instance *ri;
1858 	struct uprobe_task *utask;
1859 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1860 	bool chained;
1861 
1862 	if (!get_xol_area())
1863 		return;
1864 
1865 	utask = get_utask();
1866 	if (!utask)
1867 		return;
1868 
1869 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1870 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1871 				" nestedness limit pid/tgid=%d/%d\n",
1872 				current->pid, current->tgid);
1873 		return;
1874 	}
1875 
1876 	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1877 	if (!ri)
1878 		return;
1879 
1880 	trampoline_vaddr = get_trampoline_vaddr();
1881 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1882 	if (orig_ret_vaddr == -1)
1883 		goto fail;
1884 
1885 	/* drop the entries invalidated by longjmp() */
1886 	chained = (orig_ret_vaddr == trampoline_vaddr);
1887 	cleanup_return_instances(utask, chained, regs);
1888 
1889 	/*
1890 	 * We don't want to keep trampoline address in stack, rather keep the
1891 	 * original return address of first caller thru all the consequent
1892 	 * instances. This also makes breakpoint unwrapping easier.
1893 	 */
1894 	if (chained) {
1895 		if (!utask->return_instances) {
1896 			/*
1897 			 * This situation is not possible. Likely we have an
1898 			 * attack from user-space.
1899 			 */
1900 			uprobe_warn(current, "handle tail call");
1901 			goto fail;
1902 		}
1903 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1904 	}
1905 
1906 	ri->uprobe = get_uprobe(uprobe);
1907 	ri->func = instruction_pointer(regs);
1908 	ri->stack = user_stack_pointer(regs);
1909 	ri->orig_ret_vaddr = orig_ret_vaddr;
1910 	ri->chained = chained;
1911 
1912 	utask->depth++;
1913 	ri->next = utask->return_instances;
1914 	utask->return_instances = ri;
1915 
1916 	return;
1917  fail:
1918 	kfree(ri);
1919 }
1920 
1921 /* Prepare to single-step probed instruction out of line. */
1922 static int
pre_ssout(struct uprobe * uprobe,struct pt_regs * regs,unsigned long bp_vaddr)1923 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1924 {
1925 	struct uprobe_task *utask;
1926 	unsigned long xol_vaddr;
1927 	int err;
1928 
1929 	utask = get_utask();
1930 	if (!utask)
1931 		return -ENOMEM;
1932 
1933 	xol_vaddr = xol_get_insn_slot(uprobe);
1934 	if (!xol_vaddr)
1935 		return -ENOMEM;
1936 
1937 	utask->xol_vaddr = xol_vaddr;
1938 	utask->vaddr = bp_vaddr;
1939 
1940 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1941 	if (unlikely(err)) {
1942 		xol_free_insn_slot(current);
1943 		return err;
1944 	}
1945 
1946 	utask->active_uprobe = uprobe;
1947 	utask->state = UTASK_SSTEP;
1948 	return 0;
1949 }
1950 
1951 /*
1952  * If we are singlestepping, then ensure this thread is not connected to
1953  * non-fatal signals until completion of singlestep.  When xol insn itself
1954  * triggers the signal,  restart the original insn even if the task is
1955  * already SIGKILL'ed (since coredump should report the correct ip).  This
1956  * is even more important if the task has a handler for SIGSEGV/etc, The
1957  * _same_ instruction should be repeated again after return from the signal
1958  * handler, and SSTEP can never finish in this case.
1959  */
uprobe_deny_signal(void)1960 bool uprobe_deny_signal(void)
1961 {
1962 	struct task_struct *t = current;
1963 	struct uprobe_task *utask = t->utask;
1964 
1965 	if (likely(!utask || !utask->active_uprobe))
1966 		return false;
1967 
1968 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1969 
1970 	if (task_sigpending(t)) {
1971 		spin_lock_irq(&t->sighand->siglock);
1972 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1973 		spin_unlock_irq(&t->sighand->siglock);
1974 
1975 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1976 			utask->state = UTASK_SSTEP_TRAPPED;
1977 			set_tsk_thread_flag(t, TIF_UPROBE);
1978 		}
1979 	}
1980 
1981 	return true;
1982 }
1983 
mmf_recalc_uprobes(struct mm_struct * mm)1984 static void mmf_recalc_uprobes(struct mm_struct *mm)
1985 {
1986 	VMA_ITERATOR(vmi, mm, 0);
1987 	struct vm_area_struct *vma;
1988 
1989 	for_each_vma(vmi, vma) {
1990 		if (!valid_vma(vma, false))
1991 			continue;
1992 		/*
1993 		 * This is not strictly accurate, we can race with
1994 		 * uprobe_unregister() and see the already removed
1995 		 * uprobe if delete_uprobe() was not yet called.
1996 		 * Or this uprobe can be filtered out.
1997 		 */
1998 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1999 			return;
2000 	}
2001 
2002 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2003 }
2004 
is_trap_at_addr(struct mm_struct * mm,unsigned long vaddr)2005 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2006 {
2007 	struct page *page;
2008 	uprobe_opcode_t opcode;
2009 	int result;
2010 
2011 	if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2012 		return -EINVAL;
2013 
2014 	pagefault_disable();
2015 	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2016 	pagefault_enable();
2017 
2018 	if (likely(result == 0))
2019 		goto out;
2020 
2021 	/*
2022 	 * The NULL 'tsk' here ensures that any faults that occur here
2023 	 * will not be accounted to the task.  'mm' *is* current->mm,
2024 	 * but we treat this as a 'remote' access since it is
2025 	 * essentially a kernel access to the memory.
2026 	 */
2027 	result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page, NULL);
2028 	if (result < 0)
2029 		return result;
2030 
2031 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2032 	put_page(page);
2033  out:
2034 	/* This needs to return true for any variant of the trap insn */
2035 	return is_trap_insn(&opcode);
2036 }
2037 
find_active_uprobe(unsigned long bp_vaddr,int * is_swbp)2038 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2039 {
2040 	struct mm_struct *mm = current->mm;
2041 	struct uprobe *uprobe = NULL;
2042 	struct vm_area_struct *vma;
2043 
2044 	mmap_read_lock(mm);
2045 	vma = vma_lookup(mm, bp_vaddr);
2046 	if (vma) {
2047 		if (valid_vma(vma, false)) {
2048 			struct inode *inode = file_inode(vma->vm_file);
2049 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2050 
2051 			uprobe = find_uprobe(inode, offset);
2052 		}
2053 
2054 		if (!uprobe)
2055 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2056 	} else {
2057 		*is_swbp = -EFAULT;
2058 	}
2059 
2060 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2061 		mmf_recalc_uprobes(mm);
2062 	mmap_read_unlock(mm);
2063 
2064 	return uprobe;
2065 }
2066 
handler_chain(struct uprobe * uprobe,struct pt_regs * regs)2067 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2068 {
2069 	struct uprobe_consumer *uc;
2070 	int remove = UPROBE_HANDLER_REMOVE;
2071 	bool need_prep = false; /* prepare return uprobe, when needed */
2072 
2073 	down_read(&uprobe->register_rwsem);
2074 	current->utask->auprobe = &uprobe->arch;
2075 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2076 		int rc = 0;
2077 
2078 		if (uc->handler) {
2079 			rc = uc->handler(uc, regs);
2080 			WARN(rc & ~UPROBE_HANDLER_MASK,
2081 				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2082 		}
2083 
2084 		if (uc->ret_handler)
2085 			need_prep = true;
2086 
2087 		remove &= rc;
2088 	}
2089 	current->utask->auprobe = NULL;
2090 
2091 	if (need_prep && !remove)
2092 		prepare_uretprobe(uprobe, regs); /* put bp at return */
2093 
2094 	if (remove && uprobe->consumers) {
2095 		WARN_ON(!uprobe_is_active(uprobe));
2096 		unapply_uprobe(uprobe, current->mm);
2097 	}
2098 	up_read(&uprobe->register_rwsem);
2099 }
2100 
2101 static void
handle_uretprobe_chain(struct return_instance * ri,struct pt_regs * regs)2102 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2103 {
2104 	struct uprobe *uprobe = ri->uprobe;
2105 	struct uprobe_consumer *uc;
2106 
2107 	down_read(&uprobe->register_rwsem);
2108 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2109 		if (uc->ret_handler)
2110 			uc->ret_handler(uc, ri->func, regs);
2111 	}
2112 	up_read(&uprobe->register_rwsem);
2113 }
2114 
find_next_ret_chain(struct return_instance * ri)2115 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2116 {
2117 	bool chained;
2118 
2119 	do {
2120 		chained = ri->chained;
2121 		ri = ri->next;	/* can't be NULL if chained */
2122 	} while (chained);
2123 
2124 	return ri;
2125 }
2126 
handle_trampoline(struct pt_regs * regs)2127 static void handle_trampoline(struct pt_regs *regs)
2128 {
2129 	struct uprobe_task *utask;
2130 	struct return_instance *ri, *next;
2131 	bool valid;
2132 
2133 	utask = current->utask;
2134 	if (!utask)
2135 		goto sigill;
2136 
2137 	ri = utask->return_instances;
2138 	if (!ri)
2139 		goto sigill;
2140 
2141 	do {
2142 		/*
2143 		 * We should throw out the frames invalidated by longjmp().
2144 		 * If this chain is valid, then the next one should be alive
2145 		 * or NULL; the latter case means that nobody but ri->func
2146 		 * could hit this trampoline on return. TODO: sigaltstack().
2147 		 */
2148 		next = find_next_ret_chain(ri);
2149 		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2150 
2151 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2152 		do {
2153 			if (valid)
2154 				handle_uretprobe_chain(ri, regs);
2155 			ri = free_ret_instance(ri);
2156 			utask->depth--;
2157 		} while (ri != next);
2158 	} while (!valid);
2159 
2160 	utask->return_instances = ri;
2161 	return;
2162 
2163  sigill:
2164 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2165 	force_sig(SIGILL);
2166 
2167 }
2168 
arch_uprobe_ignore(struct arch_uprobe * aup,struct pt_regs * regs)2169 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2170 {
2171 	return false;
2172 }
2173 
arch_uretprobe_is_alive(struct return_instance * ret,enum rp_check ctx,struct pt_regs * regs)2174 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2175 					struct pt_regs *regs)
2176 {
2177 	return true;
2178 }
2179 
2180 /*
2181  * Run handler and ask thread to singlestep.
2182  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2183  */
handle_swbp(struct pt_regs * regs)2184 static void handle_swbp(struct pt_regs *regs)
2185 {
2186 	struct uprobe *uprobe;
2187 	unsigned long bp_vaddr;
2188 	int is_swbp;
2189 
2190 	bp_vaddr = uprobe_get_swbp_addr(regs);
2191 	if (bp_vaddr == get_trampoline_vaddr())
2192 		return handle_trampoline(regs);
2193 
2194 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2195 	if (!uprobe) {
2196 		if (is_swbp > 0) {
2197 			/* No matching uprobe; signal SIGTRAP. */
2198 			force_sig(SIGTRAP);
2199 		} else {
2200 			/*
2201 			 * Either we raced with uprobe_unregister() or we can't
2202 			 * access this memory. The latter is only possible if
2203 			 * another thread plays with our ->mm. In both cases
2204 			 * we can simply restart. If this vma was unmapped we
2205 			 * can pretend this insn was not executed yet and get
2206 			 * the (correct) SIGSEGV after restart.
2207 			 */
2208 			instruction_pointer_set(regs, bp_vaddr);
2209 		}
2210 		return;
2211 	}
2212 
2213 	/* change it in advance for ->handler() and restart */
2214 	instruction_pointer_set(regs, bp_vaddr);
2215 
2216 	/*
2217 	 * TODO: move copy_insn/etc into _register and remove this hack.
2218 	 * After we hit the bp, _unregister + _register can install the
2219 	 * new and not-yet-analyzed uprobe at the same address, restart.
2220 	 */
2221 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2222 		goto out;
2223 
2224 	/*
2225 	 * Pairs with the smp_wmb() in prepare_uprobe().
2226 	 *
2227 	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2228 	 * we must also see the stores to &uprobe->arch performed by the
2229 	 * prepare_uprobe() call.
2230 	 */
2231 	smp_rmb();
2232 
2233 	/* Tracing handlers use ->utask to communicate with fetch methods */
2234 	if (!get_utask())
2235 		goto out;
2236 
2237 	if (arch_uprobe_ignore(&uprobe->arch, regs))
2238 		goto out;
2239 
2240 	handler_chain(uprobe, regs);
2241 
2242 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2243 		goto out;
2244 
2245 	if (!pre_ssout(uprobe, regs, bp_vaddr))
2246 		return;
2247 
2248 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2249 out:
2250 	put_uprobe(uprobe);
2251 }
2252 
2253 /*
2254  * Perform required fix-ups and disable singlestep.
2255  * Allow pending signals to take effect.
2256  */
handle_singlestep(struct uprobe_task * utask,struct pt_regs * regs)2257 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2258 {
2259 	struct uprobe *uprobe;
2260 	int err = 0;
2261 
2262 	uprobe = utask->active_uprobe;
2263 	if (utask->state == UTASK_SSTEP_ACK)
2264 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2265 	else if (utask->state == UTASK_SSTEP_TRAPPED)
2266 		arch_uprobe_abort_xol(&uprobe->arch, regs);
2267 	else
2268 		WARN_ON_ONCE(1);
2269 
2270 	put_uprobe(uprobe);
2271 	utask->active_uprobe = NULL;
2272 	utask->state = UTASK_RUNNING;
2273 	xol_free_insn_slot(current);
2274 
2275 	spin_lock_irq(&current->sighand->siglock);
2276 	recalc_sigpending(); /* see uprobe_deny_signal() */
2277 	spin_unlock_irq(&current->sighand->siglock);
2278 
2279 	if (unlikely(err)) {
2280 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2281 		force_sig(SIGILL);
2282 	}
2283 }
2284 
2285 /*
2286  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2287  * allows the thread to return from interrupt. After that handle_swbp()
2288  * sets utask->active_uprobe.
2289  *
2290  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2291  * and allows the thread to return from interrupt.
2292  *
2293  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2294  * uprobe_notify_resume().
2295  */
uprobe_notify_resume(struct pt_regs * regs)2296 void uprobe_notify_resume(struct pt_regs *regs)
2297 {
2298 	struct uprobe_task *utask;
2299 
2300 	clear_thread_flag(TIF_UPROBE);
2301 
2302 	utask = current->utask;
2303 	if (utask && utask->active_uprobe)
2304 		handle_singlestep(utask, regs);
2305 	else
2306 		handle_swbp(regs);
2307 }
2308 
2309 /*
2310  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2311  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2312  */
uprobe_pre_sstep_notifier(struct pt_regs * regs)2313 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2314 {
2315 	if (!current->mm)
2316 		return 0;
2317 
2318 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2319 	    (!current->utask || !current->utask->return_instances))
2320 		return 0;
2321 
2322 	set_thread_flag(TIF_UPROBE);
2323 	return 1;
2324 }
2325 
2326 /*
2327  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2328  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2329  */
uprobe_post_sstep_notifier(struct pt_regs * regs)2330 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2331 {
2332 	struct uprobe_task *utask = current->utask;
2333 
2334 	if (!current->mm || !utask || !utask->active_uprobe)
2335 		/* task is currently not uprobed */
2336 		return 0;
2337 
2338 	utask->state = UTASK_SSTEP_ACK;
2339 	set_thread_flag(TIF_UPROBE);
2340 	return 1;
2341 }
2342 
2343 static struct notifier_block uprobe_exception_nb = {
2344 	.notifier_call		= arch_uprobe_exception_notify,
2345 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2346 };
2347 
uprobes_init(void)2348 void __init uprobes_init(void)
2349 {
2350 	int i;
2351 
2352 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2353 		mutex_init(&uprobes_mmap_mutex[i]);
2354 
2355 	BUG_ON(register_die_notifier(&uprobe_exception_nb));
2356 }
2357