xref: /openbmc/linux/drivers/powercap/intel_rapl_common.c (revision 34d6f206a88c2651d216bd3487ac956a40b2ba8e)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Common code for Intel Running Average Power Limit (RAPL) support.
4   * Copyright (c) 2019, Intel Corporation.
5   */
6  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7  
8  #include <linux/cleanup.h>
9  #include <linux/kernel.h>
10  #include <linux/module.h>
11  #include <linux/list.h>
12  #include <linux/types.h>
13  #include <linux/device.h>
14  #include <linux/slab.h>
15  #include <linux/log2.h>
16  #include <linux/bitmap.h>
17  #include <linux/delay.h>
18  #include <linux/sysfs.h>
19  #include <linux/cpu.h>
20  #include <linux/powercap.h>
21  #include <linux/suspend.h>
22  #include <linux/intel_rapl.h>
23  #include <linux/processor.h>
24  #include <linux/platform_device.h>
25  
26  #include <asm/iosf_mbi.h>
27  #include <asm/cpu_device_id.h>
28  #include <asm/intel-family.h>
29  
30  /* bitmasks for RAPL MSRs, used by primitive access functions */
31  #define ENERGY_STATUS_MASK      0xffffffff
32  
33  #define POWER_LIMIT1_MASK       0x7FFF
34  #define POWER_LIMIT1_ENABLE     BIT(15)
35  #define POWER_LIMIT1_CLAMP      BIT(16)
36  
37  #define POWER_LIMIT2_MASK       (0x7FFFULL<<32)
38  #define POWER_LIMIT2_ENABLE     BIT_ULL(47)
39  #define POWER_LIMIT2_CLAMP      BIT_ULL(48)
40  #define POWER_HIGH_LOCK         BIT_ULL(63)
41  #define POWER_LOW_LOCK          BIT(31)
42  
43  #define POWER_LIMIT4_MASK		0x1FFF
44  
45  #define TIME_WINDOW1_MASK       (0x7FULL<<17)
46  #define TIME_WINDOW2_MASK       (0x7FULL<<49)
47  
48  #define POWER_UNIT_OFFSET	0
49  #define POWER_UNIT_MASK		0x0F
50  
51  #define ENERGY_UNIT_OFFSET	0x08
52  #define ENERGY_UNIT_MASK	0x1F00
53  
54  #define TIME_UNIT_OFFSET	0x10
55  #define TIME_UNIT_MASK		0xF0000
56  
57  #define POWER_INFO_MAX_MASK     (0x7fffULL<<32)
58  #define POWER_INFO_MIN_MASK     (0x7fffULL<<16)
59  #define POWER_INFO_MAX_TIME_WIN_MASK     (0x3fULL<<48)
60  #define POWER_INFO_THERMAL_SPEC_MASK     0x7fff
61  
62  #define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
63  #define PP_POLICY_MASK         0x1F
64  
65  /*
66   * SPR has different layout for Psys Domain PowerLimit registers.
67   * There are 17 bits of PL1 and PL2 instead of 15 bits.
68   * The Enable bits and TimeWindow bits are also shifted as a result.
69   */
70  #define PSYS_POWER_LIMIT1_MASK       0x1FFFF
71  #define PSYS_POWER_LIMIT1_ENABLE     BIT(17)
72  
73  #define PSYS_POWER_LIMIT2_MASK       (0x1FFFFULL<<32)
74  #define PSYS_POWER_LIMIT2_ENABLE     BIT_ULL(49)
75  
76  #define PSYS_TIME_WINDOW1_MASK       (0x7FULL<<19)
77  #define PSYS_TIME_WINDOW2_MASK       (0x7FULL<<51)
78  
79  /* bitmasks for RAPL TPMI, used by primitive access functions */
80  #define TPMI_POWER_LIMIT_MASK	0x3FFFF
81  #define TPMI_POWER_LIMIT_ENABLE	BIT_ULL(62)
82  #define TPMI_TIME_WINDOW_MASK	(0x7FULL<<18)
83  #define TPMI_INFO_SPEC_MASK	0x3FFFF
84  #define TPMI_INFO_MIN_MASK	(0x3FFFFULL << 18)
85  #define TPMI_INFO_MAX_MASK	(0x3FFFFULL << 36)
86  #define TPMI_INFO_MAX_TIME_WIN_MASK	(0x7FULL << 54)
87  
88  /* Non HW constants */
89  #define RAPL_PRIMITIVE_DERIVED       BIT(1)	/* not from raw data */
90  #define RAPL_PRIMITIVE_DUMMY         BIT(2)
91  
92  #define TIME_WINDOW_MAX_MSEC 40000
93  #define TIME_WINDOW_MIN_MSEC 250
94  #define ENERGY_UNIT_SCALE    1000	/* scale from driver unit to powercap unit */
95  enum unit_type {
96  	ARBITRARY_UNIT,		/* no translation */
97  	POWER_UNIT,
98  	ENERGY_UNIT,
99  	TIME_UNIT,
100  };
101  
102  /* per domain data, some are optional */
103  #define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
104  
105  #define	DOMAIN_STATE_INACTIVE           BIT(0)
106  #define	DOMAIN_STATE_POWER_LIMIT_SET    BIT(1)
107  
108  static const char *pl_names[NR_POWER_LIMITS] = {
109  	[POWER_LIMIT1] = "long_term",
110  	[POWER_LIMIT2] = "short_term",
111  	[POWER_LIMIT4] = "peak_power",
112  };
113  
114  enum pl_prims {
115  	PL_ENABLE,
116  	PL_CLAMP,
117  	PL_LIMIT,
118  	PL_TIME_WINDOW,
119  	PL_MAX_POWER,
120  	PL_LOCK,
121  };
122  
is_pl_valid(struct rapl_domain * rd,int pl)123  static bool is_pl_valid(struct rapl_domain *rd, int pl)
124  {
125  	if (pl < POWER_LIMIT1 || pl > POWER_LIMIT4)
126  		return false;
127  	return rd->rpl[pl].name ? true : false;
128  }
129  
get_pl_lock_prim(struct rapl_domain * rd,int pl)130  static int get_pl_lock_prim(struct rapl_domain *rd, int pl)
131  {
132  	if (rd->rp->priv->type == RAPL_IF_TPMI) {
133  		if (pl == POWER_LIMIT1)
134  			return PL1_LOCK;
135  		if (pl == POWER_LIMIT2)
136  			return PL2_LOCK;
137  		if (pl == POWER_LIMIT4)
138  			return PL4_LOCK;
139  	}
140  
141  	/* MSR/MMIO Interface doesn't have Lock bit for PL4 */
142  	if (pl == POWER_LIMIT4)
143  		return -EINVAL;
144  
145  	/*
146  	 * Power Limit register that supports two power limits has a different
147  	 * bit position for the Lock bit.
148  	 */
149  	if (rd->rp->priv->limits[rd->id] & BIT(POWER_LIMIT2))
150  		return FW_HIGH_LOCK;
151  	return FW_LOCK;
152  }
153  
get_pl_prim(struct rapl_domain * rd,int pl,enum pl_prims prim)154  static int get_pl_prim(struct rapl_domain *rd, int pl, enum pl_prims prim)
155  {
156  	switch (pl) {
157  	case POWER_LIMIT1:
158  		if (prim == PL_ENABLE)
159  			return PL1_ENABLE;
160  		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
161  			return PL1_CLAMP;
162  		if (prim == PL_LIMIT)
163  			return POWER_LIMIT1;
164  		if (prim == PL_TIME_WINDOW)
165  			return TIME_WINDOW1;
166  		if (prim == PL_MAX_POWER)
167  			return THERMAL_SPEC_POWER;
168  		if (prim == PL_LOCK)
169  			return get_pl_lock_prim(rd, pl);
170  		return -EINVAL;
171  	case POWER_LIMIT2:
172  		if (prim == PL_ENABLE)
173  			return PL2_ENABLE;
174  		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
175  			return PL2_CLAMP;
176  		if (prim == PL_LIMIT)
177  			return POWER_LIMIT2;
178  		if (prim == PL_TIME_WINDOW)
179  			return TIME_WINDOW2;
180  		if (prim == PL_MAX_POWER)
181  			return MAX_POWER;
182  		if (prim == PL_LOCK)
183  			return get_pl_lock_prim(rd, pl);
184  		return -EINVAL;
185  	case POWER_LIMIT4:
186  		if (prim == PL_LIMIT)
187  			return POWER_LIMIT4;
188  		if (prim == PL_ENABLE)
189  			return PL4_ENABLE;
190  		/* PL4 would be around two times PL2, use same prim as PL2. */
191  		if (prim == PL_MAX_POWER)
192  			return MAX_POWER;
193  		if (prim == PL_LOCK)
194  			return get_pl_lock_prim(rd, pl);
195  		return -EINVAL;
196  	default:
197  		return -EINVAL;
198  	}
199  }
200  
201  #define power_zone_to_rapl_domain(_zone) \
202  	container_of(_zone, struct rapl_domain, power_zone)
203  
204  struct rapl_defaults {
205  	u8 floor_freq_reg_addr;
206  	int (*check_unit)(struct rapl_domain *rd);
207  	void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
208  	u64 (*compute_time_window)(struct rapl_domain *rd, u64 val,
209  				    bool to_raw);
210  	unsigned int dram_domain_energy_unit;
211  	unsigned int psys_domain_energy_unit;
212  	bool spr_psys_bits;
213  };
214  static struct rapl_defaults *defaults_msr;
215  static const struct rapl_defaults defaults_tpmi;
216  
get_defaults(struct rapl_package * rp)217  static struct rapl_defaults *get_defaults(struct rapl_package *rp)
218  {
219  	return rp->priv->defaults;
220  }
221  
222  /* Sideband MBI registers */
223  #define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
224  #define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
225  
226  #define PACKAGE_PLN_INT_SAVED   BIT(0)
227  #define MAX_PRIM_NAME (32)
228  
229  /* per domain data. used to describe individual knobs such that access function
230   * can be consolidated into one instead of many inline functions.
231   */
232  struct rapl_primitive_info {
233  	const char *name;
234  	u64 mask;
235  	int shift;
236  	enum rapl_domain_reg_id id;
237  	enum unit_type unit;
238  	u32 flag;
239  };
240  
241  #define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) {	\
242  		.name = #p,			\
243  		.mask = m,			\
244  		.shift = s,			\
245  		.id = i,			\
246  		.unit = u,			\
247  		.flag = f			\
248  	}
249  
250  static void rapl_init_domains(struct rapl_package *rp);
251  static int rapl_read_data_raw(struct rapl_domain *rd,
252  			      enum rapl_primitives prim,
253  			      bool xlate, u64 *data);
254  static int rapl_write_data_raw(struct rapl_domain *rd,
255  			       enum rapl_primitives prim,
256  			       unsigned long long value);
257  static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
258  			      enum pl_prims pl_prim,
259  			      bool xlate, u64 *data);
260  static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
261  			       enum pl_prims pl_prim,
262  			       unsigned long long value);
263  static u64 rapl_unit_xlate(struct rapl_domain *rd,
264  			   enum unit_type type, u64 value, int to_raw);
265  static void package_power_limit_irq_save(struct rapl_package *rp);
266  
267  static LIST_HEAD(rapl_packages);	/* guarded by CPU hotplug lock */
268  
269  static const char *const rapl_domain_names[] = {
270  	"package",
271  	"core",
272  	"uncore",
273  	"dram",
274  	"psys",
275  };
276  
get_energy_counter(struct powercap_zone * power_zone,u64 * energy_raw)277  static int get_energy_counter(struct powercap_zone *power_zone,
278  			      u64 *energy_raw)
279  {
280  	struct rapl_domain *rd;
281  	u64 energy_now;
282  
283  	/* prevent CPU hotplug, make sure the RAPL domain does not go
284  	 * away while reading the counter.
285  	 */
286  	cpus_read_lock();
287  	rd = power_zone_to_rapl_domain(power_zone);
288  
289  	if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
290  		*energy_raw = energy_now;
291  		cpus_read_unlock();
292  
293  		return 0;
294  	}
295  	cpus_read_unlock();
296  
297  	return -EIO;
298  }
299  
get_max_energy_counter(struct powercap_zone * pcd_dev,u64 * energy)300  static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
301  {
302  	struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
303  
304  	*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
305  	return 0;
306  }
307  
release_zone(struct powercap_zone * power_zone)308  static int release_zone(struct powercap_zone *power_zone)
309  {
310  	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
311  	struct rapl_package *rp = rd->rp;
312  
313  	/* package zone is the last zone of a package, we can free
314  	 * memory here since all children has been unregistered.
315  	 */
316  	if (rd->id == RAPL_DOMAIN_PACKAGE) {
317  		kfree(rd);
318  		rp->domains = NULL;
319  	}
320  
321  	return 0;
322  
323  }
324  
find_nr_power_limit(struct rapl_domain * rd)325  static int find_nr_power_limit(struct rapl_domain *rd)
326  {
327  	int i, nr_pl = 0;
328  
329  	for (i = 0; i < NR_POWER_LIMITS; i++) {
330  		if (is_pl_valid(rd, i))
331  			nr_pl++;
332  	}
333  
334  	return nr_pl;
335  }
336  
set_domain_enable(struct powercap_zone * power_zone,bool mode)337  static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
338  {
339  	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
340  	struct rapl_defaults *defaults = get_defaults(rd->rp);
341  	int ret;
342  
343  	cpus_read_lock();
344  	ret = rapl_write_pl_data(rd, POWER_LIMIT1, PL_ENABLE, mode);
345  	if (!ret && defaults->set_floor_freq)
346  		defaults->set_floor_freq(rd, mode);
347  	cpus_read_unlock();
348  
349  	return ret;
350  }
351  
get_domain_enable(struct powercap_zone * power_zone,bool * mode)352  static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
353  {
354  	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
355  	u64 val;
356  	int ret;
357  
358  	if (rd->rpl[POWER_LIMIT1].locked) {
359  		*mode = false;
360  		return 0;
361  	}
362  	cpus_read_lock();
363  	ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, true, &val);
364  	if (!ret)
365  		*mode = val;
366  	cpus_read_unlock();
367  
368  	return ret;
369  }
370  
371  /* per RAPL domain ops, in the order of rapl_domain_type */
372  static const struct powercap_zone_ops zone_ops[] = {
373  	/* RAPL_DOMAIN_PACKAGE */
374  	{
375  	 .get_energy_uj = get_energy_counter,
376  	 .get_max_energy_range_uj = get_max_energy_counter,
377  	 .release = release_zone,
378  	 .set_enable = set_domain_enable,
379  	 .get_enable = get_domain_enable,
380  	 },
381  	/* RAPL_DOMAIN_PP0 */
382  	{
383  	 .get_energy_uj = get_energy_counter,
384  	 .get_max_energy_range_uj = get_max_energy_counter,
385  	 .release = release_zone,
386  	 .set_enable = set_domain_enable,
387  	 .get_enable = get_domain_enable,
388  	 },
389  	/* RAPL_DOMAIN_PP1 */
390  	{
391  	 .get_energy_uj = get_energy_counter,
392  	 .get_max_energy_range_uj = get_max_energy_counter,
393  	 .release = release_zone,
394  	 .set_enable = set_domain_enable,
395  	 .get_enable = get_domain_enable,
396  	 },
397  	/* RAPL_DOMAIN_DRAM */
398  	{
399  	 .get_energy_uj = get_energy_counter,
400  	 .get_max_energy_range_uj = get_max_energy_counter,
401  	 .release = release_zone,
402  	 .set_enable = set_domain_enable,
403  	 .get_enable = get_domain_enable,
404  	 },
405  	/* RAPL_DOMAIN_PLATFORM */
406  	{
407  	 .get_energy_uj = get_energy_counter,
408  	 .get_max_energy_range_uj = get_max_energy_counter,
409  	 .release = release_zone,
410  	 .set_enable = set_domain_enable,
411  	 .get_enable = get_domain_enable,
412  	 },
413  };
414  
415  /*
416   * Constraint index used by powercap can be different than power limit (PL)
417   * index in that some  PLs maybe missing due to non-existent MSRs. So we
418   * need to convert here by finding the valid PLs only (name populated).
419   */
contraint_to_pl(struct rapl_domain * rd,int cid)420  static int contraint_to_pl(struct rapl_domain *rd, int cid)
421  {
422  	int i, j;
423  
424  	for (i = POWER_LIMIT1, j = 0; i < NR_POWER_LIMITS; i++) {
425  		if (is_pl_valid(rd, i) && j++ == cid) {
426  			pr_debug("%s: index %d\n", __func__, i);
427  			return i;
428  		}
429  	}
430  	pr_err("Cannot find matching power limit for constraint %d\n", cid);
431  
432  	return -EINVAL;
433  }
434  
set_power_limit(struct powercap_zone * power_zone,int cid,u64 power_limit)435  static int set_power_limit(struct powercap_zone *power_zone, int cid,
436  			   u64 power_limit)
437  {
438  	struct rapl_domain *rd;
439  	struct rapl_package *rp;
440  	int ret = 0;
441  	int id;
442  
443  	cpus_read_lock();
444  	rd = power_zone_to_rapl_domain(power_zone);
445  	id = contraint_to_pl(rd, cid);
446  	rp = rd->rp;
447  
448  	ret = rapl_write_pl_data(rd, id, PL_LIMIT, power_limit);
449  	if (!ret)
450  		package_power_limit_irq_save(rp);
451  	cpus_read_unlock();
452  	return ret;
453  }
454  
get_current_power_limit(struct powercap_zone * power_zone,int cid,u64 * data)455  static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
456  				   u64 *data)
457  {
458  	struct rapl_domain *rd;
459  	u64 val;
460  	int ret = 0;
461  	int id;
462  
463  	cpus_read_lock();
464  	rd = power_zone_to_rapl_domain(power_zone);
465  	id = contraint_to_pl(rd, cid);
466  
467  	ret = rapl_read_pl_data(rd, id, PL_LIMIT, true, &val);
468  	if (!ret)
469  		*data = val;
470  
471  	cpus_read_unlock();
472  
473  	return ret;
474  }
475  
set_time_window(struct powercap_zone * power_zone,int cid,u64 window)476  static int set_time_window(struct powercap_zone *power_zone, int cid,
477  			   u64 window)
478  {
479  	struct rapl_domain *rd;
480  	int ret = 0;
481  	int id;
482  
483  	cpus_read_lock();
484  	rd = power_zone_to_rapl_domain(power_zone);
485  	id = contraint_to_pl(rd, cid);
486  
487  	ret = rapl_write_pl_data(rd, id, PL_TIME_WINDOW, window);
488  
489  	cpus_read_unlock();
490  	return ret;
491  }
492  
get_time_window(struct powercap_zone * power_zone,int cid,u64 * data)493  static int get_time_window(struct powercap_zone *power_zone, int cid,
494  			   u64 *data)
495  {
496  	struct rapl_domain *rd;
497  	u64 val;
498  	int ret = 0;
499  	int id;
500  
501  	cpus_read_lock();
502  	rd = power_zone_to_rapl_domain(power_zone);
503  	id = contraint_to_pl(rd, cid);
504  
505  	ret = rapl_read_pl_data(rd, id, PL_TIME_WINDOW, true, &val);
506  	if (!ret)
507  		*data = val;
508  
509  	cpus_read_unlock();
510  
511  	return ret;
512  }
513  
get_constraint_name(struct powercap_zone * power_zone,int cid)514  static const char *get_constraint_name(struct powercap_zone *power_zone,
515  				       int cid)
516  {
517  	struct rapl_domain *rd;
518  	int id;
519  
520  	rd = power_zone_to_rapl_domain(power_zone);
521  	id = contraint_to_pl(rd, cid);
522  	if (id >= 0)
523  		return rd->rpl[id].name;
524  
525  	return NULL;
526  }
527  
get_max_power(struct powercap_zone * power_zone,int cid,u64 * data)528  static int get_max_power(struct powercap_zone *power_zone, int cid, u64 *data)
529  {
530  	struct rapl_domain *rd;
531  	u64 val;
532  	int ret = 0;
533  	int id;
534  
535  	cpus_read_lock();
536  	rd = power_zone_to_rapl_domain(power_zone);
537  	id = contraint_to_pl(rd, cid);
538  
539  	ret = rapl_read_pl_data(rd, id, PL_MAX_POWER, true, &val);
540  	if (!ret)
541  		*data = val;
542  
543  	/* As a generalization rule, PL4 would be around two times PL2. */
544  	if (id == POWER_LIMIT4)
545  		*data = *data * 2;
546  
547  	cpus_read_unlock();
548  
549  	return ret;
550  }
551  
552  static const struct powercap_zone_constraint_ops constraint_ops = {
553  	.set_power_limit_uw = set_power_limit,
554  	.get_power_limit_uw = get_current_power_limit,
555  	.set_time_window_us = set_time_window,
556  	.get_time_window_us = get_time_window,
557  	.get_max_power_uw = get_max_power,
558  	.get_name = get_constraint_name,
559  };
560  
561  /* Return the id used for read_raw/write_raw callback */
get_rid(struct rapl_package * rp)562  static int get_rid(struct rapl_package *rp)
563  {
564  	return rp->lead_cpu >= 0 ? rp->lead_cpu : rp->id;
565  }
566  
567  /* called after domain detection and package level data are set */
rapl_init_domains(struct rapl_package * rp)568  static void rapl_init_domains(struct rapl_package *rp)
569  {
570  	enum rapl_domain_type i;
571  	enum rapl_domain_reg_id j;
572  	struct rapl_domain *rd = rp->domains;
573  
574  	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
575  		unsigned int mask = rp->domain_map & (1 << i);
576  		int t;
577  
578  		if (!mask)
579  			continue;
580  
581  		rd->rp = rp;
582  
583  		if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
584  			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
585  				rp->lead_cpu >= 0 ? topology_physical_package_id(rp->lead_cpu) :
586  				rp->id);
587  		} else {
588  			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
589  				rapl_domain_names[i]);
590  		}
591  
592  		rd->id = i;
593  
594  		/* PL1 is supported by default */
595  		rp->priv->limits[i] |= BIT(POWER_LIMIT1);
596  
597  		for (t = POWER_LIMIT1; t < NR_POWER_LIMITS; t++) {
598  			if (rp->priv->limits[i] & BIT(t))
599  				rd->rpl[t].name = pl_names[t];
600  		}
601  
602  		for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
603  			rd->regs[j] = rp->priv->regs[i][j];
604  
605  		rd++;
606  	}
607  }
608  
rapl_unit_xlate(struct rapl_domain * rd,enum unit_type type,u64 value,int to_raw)609  static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
610  			   u64 value, int to_raw)
611  {
612  	u64 units = 1;
613  	struct rapl_defaults *defaults = get_defaults(rd->rp);
614  	u64 scale = 1;
615  
616  	switch (type) {
617  	case POWER_UNIT:
618  		units = rd->power_unit;
619  		break;
620  	case ENERGY_UNIT:
621  		scale = ENERGY_UNIT_SCALE;
622  		units = rd->energy_unit;
623  		break;
624  	case TIME_UNIT:
625  		return defaults->compute_time_window(rd, value, to_raw);
626  	case ARBITRARY_UNIT:
627  	default:
628  		return value;
629  	}
630  
631  	if (to_raw)
632  		return div64_u64(value, units) * scale;
633  
634  	value *= units;
635  
636  	return div64_u64(value, scale);
637  }
638  
639  /* RAPL primitives for MSR and MMIO I/F */
640  static struct rapl_primitive_info rpi_msr[NR_RAPL_PRIMITIVES] = {
641  	/* name, mask, shift, msr index, unit divisor */
642  	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
643  			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
644  	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
645  			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
646  	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
647  				RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
648  	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
649  			    RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
650  	[FW_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
651  			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
652  	[FW_HIGH_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_HIGH_LOCK, 63,
653  			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
654  	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
655  			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
656  	[PL1_CLAMP] = PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
657  			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
658  	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
659  			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
660  	[PL2_CLAMP] = PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
661  			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
662  	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
663  			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
664  	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
665  			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
666  	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
667  			    0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
668  	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
669  			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
670  	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
671  			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
672  	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
673  			    RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
674  	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
675  			    RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
676  	[PRIORITY_LEVEL] = PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
677  			    RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
678  	[PSYS_POWER_LIMIT1] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT1, PSYS_POWER_LIMIT1_MASK, 0,
679  			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
680  	[PSYS_POWER_LIMIT2] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT2, PSYS_POWER_LIMIT2_MASK, 32,
681  			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
682  	[PSYS_PL1_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL1_ENABLE, PSYS_POWER_LIMIT1_ENABLE, 17,
683  			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
684  	[PSYS_PL2_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL2_ENABLE, PSYS_POWER_LIMIT2_ENABLE, 49,
685  			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
686  	[PSYS_TIME_WINDOW1] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW1, PSYS_TIME_WINDOW1_MASK, 19,
687  			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
688  	[PSYS_TIME_WINDOW2] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW2, PSYS_TIME_WINDOW2_MASK, 51,
689  			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
690  	/* non-hardware */
691  	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
692  			    RAPL_PRIMITIVE_DERIVED),
693  };
694  
695  /* RAPL primitives for TPMI I/F */
696  static struct rapl_primitive_info rpi_tpmi[NR_RAPL_PRIMITIVES] = {
697  	/* name, mask, shift, msr index, unit divisor */
698  	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, TPMI_POWER_LIMIT_MASK, 0,
699  		RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
700  	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, TPMI_POWER_LIMIT_MASK, 0,
701  		RAPL_DOMAIN_REG_PL2, POWER_UNIT, 0),
702  	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, TPMI_POWER_LIMIT_MASK, 0,
703  		RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
704  	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
705  		RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
706  	[PL1_LOCK] = PRIMITIVE_INFO_INIT(PL1_LOCK, POWER_HIGH_LOCK, 63,
707  		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
708  	[PL2_LOCK] = PRIMITIVE_INFO_INIT(PL2_LOCK, POWER_HIGH_LOCK, 63,
709  		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
710  	[PL4_LOCK] = PRIMITIVE_INFO_INIT(PL4_LOCK, POWER_HIGH_LOCK, 63,
711  		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
712  	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
713  		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
714  	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
715  		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
716  	[PL4_ENABLE] = PRIMITIVE_INFO_INIT(PL4_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
717  		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
718  	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TPMI_TIME_WINDOW_MASK, 18,
719  		RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
720  	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TPMI_TIME_WINDOW_MASK, 18,
721  		RAPL_DOMAIN_REG_PL2, TIME_UNIT, 0),
722  	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, TPMI_INFO_SPEC_MASK, 0,
723  		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
724  	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, TPMI_INFO_MAX_MASK, 36,
725  		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
726  	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, TPMI_INFO_MIN_MASK, 18,
727  		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
728  	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, TPMI_INFO_MAX_TIME_WIN_MASK, 54,
729  		RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
730  	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
731  		RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
732  	/* non-hardware */
733  	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0,
734  		POWER_UNIT, RAPL_PRIMITIVE_DERIVED),
735  };
736  
get_rpi(struct rapl_package * rp,int prim)737  static struct rapl_primitive_info *get_rpi(struct rapl_package *rp, int prim)
738  {
739  	struct rapl_primitive_info *rpi = rp->priv->rpi;
740  
741  	if (prim < 0 || prim >= NR_RAPL_PRIMITIVES || !rpi)
742  		return NULL;
743  
744  	return &rpi[prim];
745  }
746  
rapl_config(struct rapl_package * rp)747  static int rapl_config(struct rapl_package *rp)
748  {
749  	switch (rp->priv->type) {
750  	/* MMIO I/F shares the same register layout as MSR registers */
751  	case RAPL_IF_MMIO:
752  	case RAPL_IF_MSR:
753  		rp->priv->defaults = (void *)defaults_msr;
754  		rp->priv->rpi = (void *)rpi_msr;
755  		break;
756  	case RAPL_IF_TPMI:
757  		rp->priv->defaults = (void *)&defaults_tpmi;
758  		rp->priv->rpi = (void *)rpi_tpmi;
759  		break;
760  	default:
761  		return -EINVAL;
762  	}
763  
764  	/* defaults_msr can be NULL on unsupported platforms */
765  	if (!rp->priv->defaults || !rp->priv->rpi)
766  		return -ENODEV;
767  
768  	return 0;
769  }
770  
771  static enum rapl_primitives
prim_fixups(struct rapl_domain * rd,enum rapl_primitives prim)772  prim_fixups(struct rapl_domain *rd, enum rapl_primitives prim)
773  {
774  	struct rapl_defaults *defaults = get_defaults(rd->rp);
775  
776  	if (!defaults->spr_psys_bits)
777  		return prim;
778  
779  	if (rd->id != RAPL_DOMAIN_PLATFORM)
780  		return prim;
781  
782  	switch (prim) {
783  	case POWER_LIMIT1:
784  		return PSYS_POWER_LIMIT1;
785  	case POWER_LIMIT2:
786  		return PSYS_POWER_LIMIT2;
787  	case PL1_ENABLE:
788  		return PSYS_PL1_ENABLE;
789  	case PL2_ENABLE:
790  		return PSYS_PL2_ENABLE;
791  	case TIME_WINDOW1:
792  		return PSYS_TIME_WINDOW1;
793  	case TIME_WINDOW2:
794  		return PSYS_TIME_WINDOW2;
795  	default:
796  		return prim;
797  	}
798  }
799  
800  /* Read primitive data based on its related struct rapl_primitive_info.
801   * if xlate flag is set, return translated data based on data units, i.e.
802   * time, energy, and power.
803   * RAPL MSRs are non-architectual and are laid out not consistently across
804   * domains. Here we use primitive info to allow writing consolidated access
805   * functions.
806   * For a given primitive, it is processed by MSR mask and shift. Unit conversion
807   * is pre-assigned based on RAPL unit MSRs read at init time.
808   * 63-------------------------- 31--------------------------- 0
809   * |                           xxxxx (mask)                   |
810   * |                                |<- shift ----------------|
811   * 63-------------------------- 31--------------------------- 0
812   */
rapl_read_data_raw(struct rapl_domain * rd,enum rapl_primitives prim,bool xlate,u64 * data)813  static int rapl_read_data_raw(struct rapl_domain *rd,
814  			      enum rapl_primitives prim, bool xlate, u64 *data)
815  {
816  	u64 value;
817  	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
818  	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
819  	struct reg_action ra;
820  
821  	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
822  		return -EINVAL;
823  
824  	ra.reg = rd->regs[rpi->id];
825  	if (!ra.reg.val)
826  		return -EINVAL;
827  
828  	/* non-hardware data are collected by the polling thread */
829  	if (rpi->flag & RAPL_PRIMITIVE_DERIVED) {
830  		*data = rd->rdd.primitives[prim];
831  		return 0;
832  	}
833  
834  	ra.mask = rpi->mask;
835  
836  	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
837  		pr_debug("failed to read reg 0x%llx for %s:%s\n", ra.reg.val, rd->rp->name, rd->name);
838  		return -EIO;
839  	}
840  
841  	value = ra.value >> rpi->shift;
842  
843  	if (xlate)
844  		*data = rapl_unit_xlate(rd, rpi->unit, value, 0);
845  	else
846  		*data = value;
847  
848  	return 0;
849  }
850  
851  /* Similar use of primitive info in the read counterpart */
rapl_write_data_raw(struct rapl_domain * rd,enum rapl_primitives prim,unsigned long long value)852  static int rapl_write_data_raw(struct rapl_domain *rd,
853  			       enum rapl_primitives prim,
854  			       unsigned long long value)
855  {
856  	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
857  	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
858  	u64 bits;
859  	struct reg_action ra;
860  	int ret;
861  
862  	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
863  		return -EINVAL;
864  
865  	bits = rapl_unit_xlate(rd, rpi->unit, value, 1);
866  	bits <<= rpi->shift;
867  	bits &= rpi->mask;
868  
869  	memset(&ra, 0, sizeof(ra));
870  
871  	ra.reg = rd->regs[rpi->id];
872  	ra.mask = rpi->mask;
873  	ra.value = bits;
874  
875  	ret = rd->rp->priv->write_raw(get_rid(rd->rp), &ra);
876  
877  	return ret;
878  }
879  
rapl_read_pl_data(struct rapl_domain * rd,int pl,enum pl_prims pl_prim,bool xlate,u64 * data)880  static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
881  			      enum pl_prims pl_prim, bool xlate, u64 *data)
882  {
883  	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
884  
885  	if (!is_pl_valid(rd, pl))
886  		return -EINVAL;
887  
888  	return rapl_read_data_raw(rd, prim, xlate, data);
889  }
890  
rapl_write_pl_data(struct rapl_domain * rd,int pl,enum pl_prims pl_prim,unsigned long long value)891  static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
892  			       enum pl_prims pl_prim,
893  			       unsigned long long value)
894  {
895  	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
896  
897  	if (!is_pl_valid(rd, pl))
898  		return -EINVAL;
899  
900  	if (rd->rpl[pl].locked) {
901  		pr_debug("%s:%s:%s locked by BIOS\n", rd->rp->name, rd->name, pl_names[pl]);
902  		return -EACCES;
903  	}
904  
905  	return rapl_write_data_raw(rd, prim, value);
906  }
907  /*
908   * Raw RAPL data stored in MSRs are in certain scales. We need to
909   * convert them into standard units based on the units reported in
910   * the RAPL unit MSRs. This is specific to CPUs as the method to
911   * calculate units differ on different CPUs.
912   * We convert the units to below format based on CPUs.
913   * i.e.
914   * energy unit: picoJoules  : Represented in picoJoules by default
915   * power unit : microWatts  : Represented in milliWatts by default
916   * time unit  : microseconds: Represented in seconds by default
917   */
rapl_check_unit_core(struct rapl_domain * rd)918  static int rapl_check_unit_core(struct rapl_domain *rd)
919  {
920  	struct reg_action ra;
921  	u32 value;
922  
923  	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
924  	ra.mask = ~0;
925  	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
926  		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
927  			ra.reg.val, rd->rp->name, rd->name);
928  		return -ENODEV;
929  	}
930  
931  	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
932  	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
933  
934  	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
935  	rd->power_unit = 1000000 / (1 << value);
936  
937  	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
938  	rd->time_unit = 1000000 / (1 << value);
939  
940  	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
941  		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
942  
943  	return 0;
944  }
945  
rapl_check_unit_atom(struct rapl_domain * rd)946  static int rapl_check_unit_atom(struct rapl_domain *rd)
947  {
948  	struct reg_action ra;
949  	u32 value;
950  
951  	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
952  	ra.mask = ~0;
953  	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
954  		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
955  			ra.reg.val, rd->rp->name, rd->name);
956  		return -ENODEV;
957  	}
958  
959  	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
960  	rd->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
961  
962  	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
963  	rd->power_unit = (1 << value) * 1000;
964  
965  	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
966  	rd->time_unit = 1000000 / (1 << value);
967  
968  	pr_debug("Atom %s:%s energy=%dpJ, time=%dus, power=%duW\n",
969  		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
970  
971  	return 0;
972  }
973  
power_limit_irq_save_cpu(void * info)974  static void power_limit_irq_save_cpu(void *info)
975  {
976  	u32 l, h = 0;
977  	struct rapl_package *rp = (struct rapl_package *)info;
978  
979  	/* save the state of PLN irq mask bit before disabling it */
980  	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
981  	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
982  		rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
983  		rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
984  	}
985  	l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
986  	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
987  }
988  
989  /* REVISIT:
990   * When package power limit is set artificially low by RAPL, LVT
991   * thermal interrupt for package power limit should be ignored
992   * since we are not really exceeding the real limit. The intention
993   * is to avoid excessive interrupts while we are trying to save power.
994   * A useful feature might be routing the package_power_limit interrupt
995   * to userspace via eventfd. once we have a usecase, this is simple
996   * to do by adding an atomic notifier.
997   */
998  
package_power_limit_irq_save(struct rapl_package * rp)999  static void package_power_limit_irq_save(struct rapl_package *rp)
1000  {
1001  	if (rp->lead_cpu < 0)
1002  		return;
1003  
1004  	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1005  		return;
1006  
1007  	smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
1008  }
1009  
1010  /*
1011   * Restore per package power limit interrupt enable state. Called from cpu
1012   * hotplug code on package removal.
1013   */
package_power_limit_irq_restore(struct rapl_package * rp)1014  static void package_power_limit_irq_restore(struct rapl_package *rp)
1015  {
1016  	u32 l, h;
1017  
1018  	if (rp->lead_cpu < 0)
1019  		return;
1020  
1021  	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1022  		return;
1023  
1024  	/* irq enable state not saved, nothing to restore */
1025  	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
1026  		return;
1027  
1028  	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
1029  
1030  	if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
1031  		l |= PACKAGE_THERM_INT_PLN_ENABLE;
1032  	else
1033  		l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
1034  
1035  	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
1036  }
1037  
set_floor_freq_default(struct rapl_domain * rd,bool mode)1038  static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
1039  {
1040  	int i;
1041  
1042  	/* always enable clamp such that p-state can go below OS requested
1043  	 * range. power capping priority over guranteed frequency.
1044  	 */
1045  	rapl_write_pl_data(rd, POWER_LIMIT1, PL_CLAMP, mode);
1046  
1047  	for (i = POWER_LIMIT2; i < NR_POWER_LIMITS; i++) {
1048  		rapl_write_pl_data(rd, i, PL_ENABLE, mode);
1049  		rapl_write_pl_data(rd, i, PL_CLAMP, mode);
1050  	}
1051  }
1052  
set_floor_freq_atom(struct rapl_domain * rd,bool enable)1053  static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
1054  {
1055  	static u32 power_ctrl_orig_val;
1056  	struct rapl_defaults *defaults = get_defaults(rd->rp);
1057  	u32 mdata;
1058  
1059  	if (!defaults->floor_freq_reg_addr) {
1060  		pr_err("Invalid floor frequency config register\n");
1061  		return;
1062  	}
1063  
1064  	if (!power_ctrl_orig_val)
1065  		iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
1066  			      defaults->floor_freq_reg_addr,
1067  			      &power_ctrl_orig_val);
1068  	mdata = power_ctrl_orig_val;
1069  	if (enable) {
1070  		mdata &= ~(0x7f << 8);
1071  		mdata |= 1 << 8;
1072  	}
1073  	iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
1074  		       defaults->floor_freq_reg_addr, mdata);
1075  }
1076  
rapl_compute_time_window_core(struct rapl_domain * rd,u64 value,bool to_raw)1077  static u64 rapl_compute_time_window_core(struct rapl_domain *rd, u64 value,
1078  					 bool to_raw)
1079  {
1080  	u64 f, y;		/* fraction and exp. used for time unit */
1081  
1082  	/*
1083  	 * Special processing based on 2^Y*(1+F/4), refer
1084  	 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
1085  	 */
1086  	if (!to_raw) {
1087  		f = (value & 0x60) >> 5;
1088  		y = value & 0x1f;
1089  		value = (1 << y) * (4 + f) * rd->time_unit / 4;
1090  	} else {
1091  		if (value < rd->time_unit)
1092  			return 0;
1093  
1094  		do_div(value, rd->time_unit);
1095  		y = ilog2(value);
1096  
1097  		/*
1098  		 * The target hardware field is 7 bits wide, so return all ones
1099  		 * if the exponent is too large.
1100  		 */
1101  		if (y > 0x1f)
1102  			return 0x7f;
1103  
1104  		f = div64_u64(4 * (value - (1ULL << y)), 1ULL << y);
1105  		value = (y & 0x1f) | ((f & 0x3) << 5);
1106  	}
1107  	return value;
1108  }
1109  
rapl_compute_time_window_atom(struct rapl_domain * rd,u64 value,bool to_raw)1110  static u64 rapl_compute_time_window_atom(struct rapl_domain *rd, u64 value,
1111  					 bool to_raw)
1112  {
1113  	/*
1114  	 * Atom time unit encoding is straight forward val * time_unit,
1115  	 * where time_unit is default to 1 sec. Never 0.
1116  	 */
1117  	if (!to_raw)
1118  		return (value) ? value * rd->time_unit : rd->time_unit;
1119  
1120  	value = div64_u64(value, rd->time_unit);
1121  
1122  	return value;
1123  }
1124  
1125  /* TPMI Unit register has different layout */
1126  #define TPMI_POWER_UNIT_OFFSET	POWER_UNIT_OFFSET
1127  #define TPMI_POWER_UNIT_MASK	POWER_UNIT_MASK
1128  #define TPMI_ENERGY_UNIT_OFFSET	0x06
1129  #define TPMI_ENERGY_UNIT_MASK	0x7C0
1130  #define TPMI_TIME_UNIT_OFFSET	0x0C
1131  #define TPMI_TIME_UNIT_MASK	0xF000
1132  
rapl_check_unit_tpmi(struct rapl_domain * rd)1133  static int rapl_check_unit_tpmi(struct rapl_domain *rd)
1134  {
1135  	struct reg_action ra;
1136  	u32 value;
1137  
1138  	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
1139  	ra.mask = ~0;
1140  	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
1141  		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
1142  			ra.reg.val, rd->rp->name, rd->name);
1143  		return -ENODEV;
1144  	}
1145  
1146  	value = (ra.value & TPMI_ENERGY_UNIT_MASK) >> TPMI_ENERGY_UNIT_OFFSET;
1147  	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
1148  
1149  	value = (ra.value & TPMI_POWER_UNIT_MASK) >> TPMI_POWER_UNIT_OFFSET;
1150  	rd->power_unit = 1000000 / (1 << value);
1151  
1152  	value = (ra.value & TPMI_TIME_UNIT_MASK) >> TPMI_TIME_UNIT_OFFSET;
1153  	rd->time_unit = 1000000 / (1 << value);
1154  
1155  	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
1156  		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
1157  
1158  	return 0;
1159  }
1160  
1161  static const struct rapl_defaults defaults_tpmi = {
1162  	.check_unit = rapl_check_unit_tpmi,
1163  	/* Reuse existing logic, ignore the PL_CLAMP failures and enable all Power Limits */
1164  	.set_floor_freq = set_floor_freq_default,
1165  	.compute_time_window = rapl_compute_time_window_core,
1166  };
1167  
1168  static const struct rapl_defaults rapl_defaults_core = {
1169  	.floor_freq_reg_addr = 0,
1170  	.check_unit = rapl_check_unit_core,
1171  	.set_floor_freq = set_floor_freq_default,
1172  	.compute_time_window = rapl_compute_time_window_core,
1173  };
1174  
1175  static const struct rapl_defaults rapl_defaults_hsw_server = {
1176  	.check_unit = rapl_check_unit_core,
1177  	.set_floor_freq = set_floor_freq_default,
1178  	.compute_time_window = rapl_compute_time_window_core,
1179  	.dram_domain_energy_unit = 15300,
1180  };
1181  
1182  static const struct rapl_defaults rapl_defaults_spr_server = {
1183  	.check_unit = rapl_check_unit_core,
1184  	.set_floor_freq = set_floor_freq_default,
1185  	.compute_time_window = rapl_compute_time_window_core,
1186  	.psys_domain_energy_unit = 1000000000,
1187  	.spr_psys_bits = true,
1188  };
1189  
1190  static const struct rapl_defaults rapl_defaults_byt = {
1191  	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
1192  	.check_unit = rapl_check_unit_atom,
1193  	.set_floor_freq = set_floor_freq_atom,
1194  	.compute_time_window = rapl_compute_time_window_atom,
1195  };
1196  
1197  static const struct rapl_defaults rapl_defaults_tng = {
1198  	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
1199  	.check_unit = rapl_check_unit_atom,
1200  	.set_floor_freq = set_floor_freq_atom,
1201  	.compute_time_window = rapl_compute_time_window_atom,
1202  };
1203  
1204  static const struct rapl_defaults rapl_defaults_ann = {
1205  	.floor_freq_reg_addr = 0,
1206  	.check_unit = rapl_check_unit_atom,
1207  	.set_floor_freq = NULL,
1208  	.compute_time_window = rapl_compute_time_window_atom,
1209  };
1210  
1211  static const struct rapl_defaults rapl_defaults_cht = {
1212  	.floor_freq_reg_addr = 0,
1213  	.check_unit = rapl_check_unit_atom,
1214  	.set_floor_freq = NULL,
1215  	.compute_time_window = rapl_compute_time_window_atom,
1216  };
1217  
1218  static const struct rapl_defaults rapl_defaults_amd = {
1219  	.check_unit = rapl_check_unit_core,
1220  };
1221  
1222  static const struct x86_cpu_id rapl_ids[] __initconst = {
1223  	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE,		&rapl_defaults_core),
1224  	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X,	&rapl_defaults_core),
1225  
1226  	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE,		&rapl_defaults_core),
1227  	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X,		&rapl_defaults_core),
1228  
1229  	X86_MATCH_INTEL_FAM6_MODEL(HASWELL,		&rapl_defaults_core),
1230  	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L,		&rapl_defaults_core),
1231  	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G,		&rapl_defaults_core),
1232  	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X,		&rapl_defaults_hsw_server),
1233  
1234  	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL,		&rapl_defaults_core),
1235  	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G,		&rapl_defaults_core),
1236  	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D,		&rapl_defaults_core),
1237  	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X,		&rapl_defaults_hsw_server),
1238  
1239  	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE,		&rapl_defaults_core),
1240  	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L,		&rapl_defaults_core),
1241  	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X,		&rapl_defaults_hsw_server),
1242  	X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L,		&rapl_defaults_core),
1243  	X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE,		&rapl_defaults_core),
1244  	X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L,	&rapl_defaults_core),
1245  	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,		&rapl_defaults_core),
1246  	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE,		&rapl_defaults_core),
1247  	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI,	&rapl_defaults_core),
1248  	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,		&rapl_defaults_hsw_server),
1249  	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,		&rapl_defaults_hsw_server),
1250  	X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L,		&rapl_defaults_core),
1251  	X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE,		&rapl_defaults_core),
1252  	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L,		&rapl_defaults_core),
1253  	X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE,		&rapl_defaults_core),
1254  	X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE,		&rapl_defaults_core),
1255  	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE,		&rapl_defaults_core),
1256  	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L,		&rapl_defaults_core),
1257  	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GRACEMONT,	&rapl_defaults_core),
1258  	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE,		&rapl_defaults_core),
1259  	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_P,        &rapl_defaults_core),
1260  	X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_S,	&rapl_defaults_core),
1261  	X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE,		&rapl_defaults_core),
1262  	X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L,	&rapl_defaults_core),
1263  	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X,	&rapl_defaults_spr_server),
1264  	X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X,	&rapl_defaults_spr_server),
1265  	X86_MATCH_INTEL_FAM6_MODEL(LAKEFIELD,		&rapl_defaults_core),
1266  
1267  	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,	&rapl_defaults_byt),
1268  	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,	&rapl_defaults_cht),
1269  	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID,	&rapl_defaults_tng),
1270  	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID,	&rapl_defaults_ann),
1271  	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT,	&rapl_defaults_core),
1272  	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS,	&rapl_defaults_core),
1273  	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D,	&rapl_defaults_core),
1274  	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT,	&rapl_defaults_core),
1275  	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D,	&rapl_defaults_core),
1276  	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L,	&rapl_defaults_core),
1277  
1278  	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL,	&rapl_defaults_hsw_server),
1279  	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM,	&rapl_defaults_hsw_server),
1280  
1281  	X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
1282  	X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
1283  	X86_MATCH_VENDOR_FAM(AMD, 0x1A, &rapl_defaults_amd),
1284  	X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
1285  	{}
1286  };
1287  MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1288  
1289  /* Read once for all raw primitive data for domains */
rapl_update_domain_data(struct rapl_package * rp)1290  static void rapl_update_domain_data(struct rapl_package *rp)
1291  {
1292  	int dmn, prim;
1293  	u64 val;
1294  
1295  	for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1296  		pr_debug("update %s domain %s data\n", rp->name,
1297  			 rp->domains[dmn].name);
1298  		/* exclude non-raw primitives */
1299  		for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1300  			struct rapl_primitive_info *rpi = get_rpi(rp, prim);
1301  
1302  			if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1303  						rpi->unit, &val))
1304  				rp->domains[dmn].rdd.primitives[prim] = val;
1305  		}
1306  	}
1307  
1308  }
1309  
rapl_package_register_powercap(struct rapl_package * rp)1310  static int rapl_package_register_powercap(struct rapl_package *rp)
1311  {
1312  	struct rapl_domain *rd;
1313  	struct powercap_zone *power_zone = NULL;
1314  	int nr_pl, ret;
1315  
1316  	/* Update the domain data of the new package */
1317  	rapl_update_domain_data(rp);
1318  
1319  	/* first we register package domain as the parent zone */
1320  	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1321  		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1322  			nr_pl = find_nr_power_limit(rd);
1323  			pr_debug("register package domain %s\n", rp->name);
1324  			power_zone = powercap_register_zone(&rd->power_zone,
1325  					    rp->priv->control_type, rp->name,
1326  					    NULL, &zone_ops[rd->id], nr_pl,
1327  					    &constraint_ops);
1328  			if (IS_ERR(power_zone)) {
1329  				pr_debug("failed to register power zone %s\n",
1330  					 rp->name);
1331  				return PTR_ERR(power_zone);
1332  			}
1333  			/* track parent zone in per package/socket data */
1334  			rp->power_zone = power_zone;
1335  			/* done, only one package domain per socket */
1336  			break;
1337  		}
1338  	}
1339  	if (!power_zone) {
1340  		pr_err("no package domain found, unknown topology!\n");
1341  		return -ENODEV;
1342  	}
1343  	/* now register domains as children of the socket/package */
1344  	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1345  		struct powercap_zone *parent = rp->power_zone;
1346  
1347  		if (rd->id == RAPL_DOMAIN_PACKAGE)
1348  			continue;
1349  		if (rd->id == RAPL_DOMAIN_PLATFORM)
1350  			parent = NULL;
1351  		/* number of power limits per domain varies */
1352  		nr_pl = find_nr_power_limit(rd);
1353  		power_zone = powercap_register_zone(&rd->power_zone,
1354  						    rp->priv->control_type,
1355  						    rd->name, parent,
1356  						    &zone_ops[rd->id], nr_pl,
1357  						    &constraint_ops);
1358  
1359  		if (IS_ERR(power_zone)) {
1360  			pr_debug("failed to register power_zone, %s:%s\n",
1361  				 rp->name, rd->name);
1362  			ret = PTR_ERR(power_zone);
1363  			goto err_cleanup;
1364  		}
1365  	}
1366  	return 0;
1367  
1368  err_cleanup:
1369  	/*
1370  	 * Clean up previously initialized domains within the package if we
1371  	 * failed after the first domain setup.
1372  	 */
1373  	while (--rd >= rp->domains) {
1374  		pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1375  		powercap_unregister_zone(rp->priv->control_type,
1376  					 &rd->power_zone);
1377  	}
1378  
1379  	return ret;
1380  }
1381  
rapl_check_domain(int domain,struct rapl_package * rp)1382  static int rapl_check_domain(int domain, struct rapl_package *rp)
1383  {
1384  	struct reg_action ra;
1385  
1386  	switch (domain) {
1387  	case RAPL_DOMAIN_PACKAGE:
1388  	case RAPL_DOMAIN_PP0:
1389  	case RAPL_DOMAIN_PP1:
1390  	case RAPL_DOMAIN_DRAM:
1391  	case RAPL_DOMAIN_PLATFORM:
1392  		ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1393  		break;
1394  	default:
1395  		pr_err("invalid domain id %d\n", domain);
1396  		return -EINVAL;
1397  	}
1398  	/* make sure domain counters are available and contains non-zero
1399  	 * values, otherwise skip it.
1400  	 */
1401  
1402  	ra.mask = ENERGY_STATUS_MASK;
1403  	if (rp->priv->read_raw(get_rid(rp), &ra) || !ra.value)
1404  		return -ENODEV;
1405  
1406  	return 0;
1407  }
1408  
1409  /*
1410   * Get per domain energy/power/time unit.
1411   * RAPL Interfaces without per domain unit register will use the package
1412   * scope unit register to set per domain units.
1413   */
rapl_get_domain_unit(struct rapl_domain * rd)1414  static int rapl_get_domain_unit(struct rapl_domain *rd)
1415  {
1416  	struct rapl_defaults *defaults = get_defaults(rd->rp);
1417  	int ret;
1418  
1419  	if (!rd->regs[RAPL_DOMAIN_REG_UNIT].val) {
1420  		if (!rd->rp->priv->reg_unit.val) {
1421  			pr_err("No valid Unit register found\n");
1422  			return -ENODEV;
1423  		}
1424  		rd->regs[RAPL_DOMAIN_REG_UNIT] = rd->rp->priv->reg_unit;
1425  	}
1426  
1427  	if (!defaults->check_unit) {
1428  		pr_err("missing .check_unit() callback\n");
1429  		return -ENODEV;
1430  	}
1431  
1432  	ret = defaults->check_unit(rd);
1433  	if (ret)
1434  		return ret;
1435  
1436  	if (rd->id == RAPL_DOMAIN_DRAM && defaults->dram_domain_energy_unit)
1437  		rd->energy_unit = defaults->dram_domain_energy_unit;
1438  	if (rd->id == RAPL_DOMAIN_PLATFORM && defaults->psys_domain_energy_unit)
1439  		rd->energy_unit = defaults->psys_domain_energy_unit;
1440  	return 0;
1441  }
1442  
1443  /*
1444   * Check if power limits are available. Two cases when they are not available:
1445   * 1. Locked by BIOS, in this case we still provide read-only access so that
1446   *    users can see what limit is set by the BIOS.
1447   * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1448   *    exist at all. In this case, we do not show the constraints in powercap.
1449   *
1450   * Called after domains are detected and initialized.
1451   */
rapl_detect_powerlimit(struct rapl_domain * rd)1452  static void rapl_detect_powerlimit(struct rapl_domain *rd)
1453  {
1454  	u64 val64;
1455  	int i;
1456  
1457  	for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1458  		if (!rapl_read_pl_data(rd, i, PL_LOCK, false, &val64)) {
1459  			if (val64) {
1460  				rd->rpl[i].locked = true;
1461  				pr_info("%s:%s:%s locked by BIOS\n",
1462  					rd->rp->name, rd->name, pl_names[i]);
1463  			}
1464  		}
1465  
1466  		if (rapl_read_pl_data(rd, i, PL_LIMIT, false, &val64))
1467  			rd->rpl[i].name = NULL;
1468  	}
1469  }
1470  
1471  /* Detect active and valid domains for the given CPU, caller must
1472   * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1473   */
rapl_detect_domains(struct rapl_package * rp)1474  static int rapl_detect_domains(struct rapl_package *rp)
1475  {
1476  	struct rapl_domain *rd;
1477  	int i;
1478  
1479  	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1480  		/* use physical package id to read counters */
1481  		if (!rapl_check_domain(i, rp)) {
1482  			rp->domain_map |= 1 << i;
1483  			pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1484  		}
1485  	}
1486  	rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1487  	if (!rp->nr_domains) {
1488  		pr_debug("no valid rapl domains found in %s\n", rp->name);
1489  		return -ENODEV;
1490  	}
1491  	pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1492  
1493  	rp->domains = kcalloc(rp->nr_domains, sizeof(struct rapl_domain),
1494  			      GFP_KERNEL);
1495  	if (!rp->domains)
1496  		return -ENOMEM;
1497  
1498  	rapl_init_domains(rp);
1499  
1500  	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1501  		rapl_get_domain_unit(rd);
1502  		rapl_detect_powerlimit(rd);
1503  	}
1504  
1505  	return 0;
1506  }
1507  
1508  /* called from CPU hotplug notifier, hotplug lock held */
rapl_remove_package_cpuslocked(struct rapl_package * rp)1509  void rapl_remove_package_cpuslocked(struct rapl_package *rp)
1510  {
1511  	struct rapl_domain *rd, *rd_package = NULL;
1512  
1513  	package_power_limit_irq_restore(rp);
1514  
1515  	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1516  		int i;
1517  
1518  		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1519  			rapl_write_pl_data(rd, i, PL_ENABLE, 0);
1520  			rapl_write_pl_data(rd, i, PL_CLAMP, 0);
1521  		}
1522  
1523  		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1524  			rd_package = rd;
1525  			continue;
1526  		}
1527  		pr_debug("remove package, undo power limit on %s: %s\n",
1528  			 rp->name, rd->name);
1529  		powercap_unregister_zone(rp->priv->control_type,
1530  					 &rd->power_zone);
1531  	}
1532  	/* do parent zone last */
1533  	powercap_unregister_zone(rp->priv->control_type,
1534  				 &rd_package->power_zone);
1535  	list_del(&rp->plist);
1536  	kfree(rp);
1537  }
1538  EXPORT_SYMBOL_GPL(rapl_remove_package_cpuslocked);
1539  
rapl_remove_package(struct rapl_package * rp)1540  void rapl_remove_package(struct rapl_package *rp)
1541  {
1542  	guard(cpus_read_lock)();
1543  	rapl_remove_package_cpuslocked(rp);
1544  }
1545  EXPORT_SYMBOL_GPL(rapl_remove_package);
1546  
1547  /* caller to ensure CPU hotplug lock is held */
rapl_find_package_domain_cpuslocked(int id,struct rapl_if_priv * priv,bool id_is_cpu)1548  struct rapl_package *rapl_find_package_domain_cpuslocked(int id, struct rapl_if_priv *priv,
1549  							 bool id_is_cpu)
1550  {
1551  	struct rapl_package *rp;
1552  	int uid;
1553  
1554  	if (id_is_cpu)
1555  		uid = topology_logical_die_id(id);
1556  	else
1557  		uid = id;
1558  
1559  	list_for_each_entry(rp, &rapl_packages, plist) {
1560  		if (rp->id == uid
1561  		    && rp->priv->control_type == priv->control_type)
1562  			return rp;
1563  	}
1564  
1565  	return NULL;
1566  }
1567  EXPORT_SYMBOL_GPL(rapl_find_package_domain_cpuslocked);
1568  
rapl_find_package_domain(int id,struct rapl_if_priv * priv,bool id_is_cpu)1569  struct rapl_package *rapl_find_package_domain(int id, struct rapl_if_priv *priv, bool id_is_cpu)
1570  {
1571  	guard(cpus_read_lock)();
1572  	return rapl_find_package_domain_cpuslocked(id, priv, id_is_cpu);
1573  }
1574  EXPORT_SYMBOL_GPL(rapl_find_package_domain);
1575  
1576  /* called from CPU hotplug notifier, hotplug lock held */
rapl_add_package_cpuslocked(int id,struct rapl_if_priv * priv,bool id_is_cpu)1577  struct rapl_package *rapl_add_package_cpuslocked(int id, struct rapl_if_priv *priv, bool id_is_cpu)
1578  {
1579  	struct rapl_package *rp;
1580  	int ret;
1581  
1582  	rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
1583  	if (!rp)
1584  		return ERR_PTR(-ENOMEM);
1585  
1586  	if (id_is_cpu) {
1587  		rp->id = topology_logical_die_id(id);
1588  		rp->lead_cpu = id;
1589  		if (topology_max_die_per_package() > 1)
1590  			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d-die-%d",
1591  				 topology_physical_package_id(id), topology_die_id(id));
1592  		else
1593  			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
1594  				 topology_physical_package_id(id));
1595  	} else {
1596  		rp->id = id;
1597  		rp->lead_cpu = -1;
1598  		snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d", id);
1599  	}
1600  
1601  	rp->priv = priv;
1602  	ret = rapl_config(rp);
1603  	if (ret)
1604  		goto err_free_package;
1605  
1606  	/* check if the package contains valid domains */
1607  	if (rapl_detect_domains(rp)) {
1608  		ret = -ENODEV;
1609  		goto err_free_package;
1610  	}
1611  	ret = rapl_package_register_powercap(rp);
1612  	if (!ret) {
1613  		INIT_LIST_HEAD(&rp->plist);
1614  		list_add(&rp->plist, &rapl_packages);
1615  		return rp;
1616  	}
1617  
1618  err_free_package:
1619  	kfree(rp->domains);
1620  	kfree(rp);
1621  	return ERR_PTR(ret);
1622  }
1623  EXPORT_SYMBOL_GPL(rapl_add_package_cpuslocked);
1624  
rapl_add_package(int id,struct rapl_if_priv * priv,bool id_is_cpu)1625  struct rapl_package *rapl_add_package(int id, struct rapl_if_priv *priv, bool id_is_cpu)
1626  {
1627  	guard(cpus_read_lock)();
1628  	return rapl_add_package_cpuslocked(id, priv, id_is_cpu);
1629  }
1630  EXPORT_SYMBOL_GPL(rapl_add_package);
1631  
power_limit_state_save(void)1632  static void power_limit_state_save(void)
1633  {
1634  	struct rapl_package *rp;
1635  	struct rapl_domain *rd;
1636  	int ret, i;
1637  
1638  	cpus_read_lock();
1639  	list_for_each_entry(rp, &rapl_packages, plist) {
1640  		if (!rp->power_zone)
1641  			continue;
1642  		rd = power_zone_to_rapl_domain(rp->power_zone);
1643  		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1644  			ret = rapl_read_pl_data(rd, i, PL_LIMIT, true,
1645  						 &rd->rpl[i].last_power_limit);
1646  			if (ret)
1647  				rd->rpl[i].last_power_limit = 0;
1648  		}
1649  	}
1650  	cpus_read_unlock();
1651  }
1652  
power_limit_state_restore(void)1653  static void power_limit_state_restore(void)
1654  {
1655  	struct rapl_package *rp;
1656  	struct rapl_domain *rd;
1657  	int i;
1658  
1659  	cpus_read_lock();
1660  	list_for_each_entry(rp, &rapl_packages, plist) {
1661  		if (!rp->power_zone)
1662  			continue;
1663  		rd = power_zone_to_rapl_domain(rp->power_zone);
1664  		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++)
1665  			if (rd->rpl[i].last_power_limit)
1666  				rapl_write_pl_data(rd, i, PL_LIMIT,
1667  					       rd->rpl[i].last_power_limit);
1668  	}
1669  	cpus_read_unlock();
1670  }
1671  
rapl_pm_callback(struct notifier_block * nb,unsigned long mode,void * _unused)1672  static int rapl_pm_callback(struct notifier_block *nb,
1673  			    unsigned long mode, void *_unused)
1674  {
1675  	switch (mode) {
1676  	case PM_SUSPEND_PREPARE:
1677  		power_limit_state_save();
1678  		break;
1679  	case PM_POST_SUSPEND:
1680  		power_limit_state_restore();
1681  		break;
1682  	}
1683  	return NOTIFY_OK;
1684  }
1685  
1686  static struct notifier_block rapl_pm_notifier = {
1687  	.notifier_call = rapl_pm_callback,
1688  };
1689  
1690  static struct platform_device *rapl_msr_platdev;
1691  
rapl_init(void)1692  static int __init rapl_init(void)
1693  {
1694  	const struct x86_cpu_id *id;
1695  	int ret;
1696  
1697  	id = x86_match_cpu(rapl_ids);
1698  	if (id) {
1699  		defaults_msr = (struct rapl_defaults *)id->driver_data;
1700  
1701  		rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
1702  		if (!rapl_msr_platdev)
1703  			return -ENOMEM;
1704  
1705  		ret = platform_device_add(rapl_msr_platdev);
1706  		if (ret) {
1707  			platform_device_put(rapl_msr_platdev);
1708  			return ret;
1709  		}
1710  	}
1711  
1712  	ret = register_pm_notifier(&rapl_pm_notifier);
1713  	if (ret && rapl_msr_platdev) {
1714  		platform_device_del(rapl_msr_platdev);
1715  		platform_device_put(rapl_msr_platdev);
1716  	}
1717  
1718  	return ret;
1719  }
1720  
rapl_exit(void)1721  static void __exit rapl_exit(void)
1722  {
1723  	platform_device_unregister(rapl_msr_platdev);
1724  	unregister_pm_notifier(&rapl_pm_notifier);
1725  }
1726  
1727  fs_initcall(rapl_init);
1728  module_exit(rapl_exit);
1729  
1730  MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
1731  MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
1732  MODULE_LICENSE("GPL v2");
1733