1 /*
2 * AArch64 translation
3 *
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20
21 #include "exec/exec-all.h"
22 #include "translate.h"
23 #include "translate-a64.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34
35 static const char *regnames[] = {
36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41
42 enum a64_shift_type {
43 A64_SHIFT_TYPE_LSL = 0,
44 A64_SHIFT_TYPE_LSR = 1,
45 A64_SHIFT_TYPE_ASR = 2,
46 A64_SHIFT_TYPE_ROR = 3
47 };
48
49 /*
50 * Helpers for extracting complex instruction fields
51 */
52
53 /*
54 * For load/store with an unsigned 12 bit immediate scaled by the element
55 * size. The input has the immediate field in bits [14:3] and the element
56 * size in [2:0].
57 */
uimm_scaled(DisasContext * s,int x)58 static int uimm_scaled(DisasContext *s, int x)
59 {
60 unsigned imm = x >> 3;
61 unsigned scale = extract32(x, 0, 3);
62 return imm << scale;
63 }
64
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
scale_by_log2_tag_granule(DisasContext * s,int x)66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68 return x << LOG2_TAG_GRANULE;
69 }
70
71 /*
72 * Include the generated decoders.
73 */
74
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77
78 /* Table based decoder typedefs - used when the relevant bits for decode
79 * are too awkwardly scattered across the instruction (eg SIMD).
80 */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82
83 typedef struct AArch64DecodeTable {
84 uint32_t pattern;
85 uint32_t mask;
86 AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88
89 /* initialize TCG globals. */
a64_translate_init(void)90 void a64_translate_init(void)
91 {
92 int i;
93
94 cpu_pc = tcg_global_mem_new_i64(tcg_env,
95 offsetof(CPUARMState, pc),
96 "pc");
97 for (i = 0; i < 32; i++) {
98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99 offsetof(CPUARMState, xregs[i]),
100 regnames[i]);
101 }
102
103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104 offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106
107 /*
108 * Return the core mmu_idx to use for A64 load/store insns which
109 * have a "unprivileged load/store" variant. Those insns access
110 * EL0 if executed from an EL which has control over EL0 (usually
111 * EL1) but behave like normal loads and stores if executed from
112 * elsewhere (eg EL3).
113 *
114 * @unpriv : true for the unprivileged encoding; false for the
115 * normal encoding (in which case we will return the same
116 * thing as get_mem_index().
117 */
get_a64_user_mem_index(DisasContext * s,bool unpriv)118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120 /*
121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122 * which is the usual mmu_idx for this cpu state.
123 */
124 ARMMMUIdx useridx = s->mmu_idx;
125
126 if (unpriv && s->unpriv) {
127 /*
128 * We have pre-computed the condition for AccType_UNPRIV.
129 * Therefore we should never get here with a mmu_idx for
130 * which we do not know the corresponding user mmu_idx.
131 */
132 switch (useridx) {
133 case ARMMMUIdx_E10_1:
134 case ARMMMUIdx_E10_1_PAN:
135 useridx = ARMMMUIdx_E10_0;
136 break;
137 case ARMMMUIdx_E20_2:
138 case ARMMMUIdx_E20_2_PAN:
139 useridx = ARMMMUIdx_E20_0;
140 break;
141 default:
142 g_assert_not_reached();
143 }
144 }
145 return arm_to_core_mmu_idx(useridx);
146 }
147
set_btype_raw(int val)148 static void set_btype_raw(int val)
149 {
150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151 offsetof(CPUARMState, btype));
152 }
153
set_btype(DisasContext * s,int val)154 static void set_btype(DisasContext *s, int val)
155 {
156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
157 tcg_debug_assert(val >= 1 && val <= 3);
158 set_btype_raw(val);
159 s->btype = -1;
160 }
161
reset_btype(DisasContext * s)162 static void reset_btype(DisasContext *s)
163 {
164 if (s->btype != 0) {
165 set_btype_raw(0);
166 s->btype = 0;
167 }
168 }
169
gen_pc_plus_diff(DisasContext * s,TCGv_i64 dest,target_long diff)170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172 assert(s->pc_save != -1);
173 if (tb_cflags(s->base.tb) & CF_PCREL) {
174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175 } else {
176 tcg_gen_movi_i64(dest, s->pc_curr + diff);
177 }
178 }
179
gen_a64_update_pc(DisasContext * s,target_long diff)180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182 gen_pc_plus_diff(s, cpu_pc, diff);
183 s->pc_save = s->pc_curr + diff;
184 }
185
186 /*
187 * Handle Top Byte Ignore (TBI) bits.
188 *
189 * If address tagging is enabled via the TCR TBI bits:
190 * + for EL2 and EL3 there is only one TBI bit, and if it is set
191 * then the address is zero-extended, clearing bits [63:56]
192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193 * and TBI1 controls addresses with bit 55 == 1.
194 * If the appropriate TBI bit is set for the address then
195 * the address is sign-extended from bit 55 into bits [63:56]
196 *
197 * Here We have concatenated TBI{1,0} into tbi.
198 */
gen_top_byte_ignore(DisasContext * s,TCGv_i64 dst,TCGv_i64 src,int tbi)199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200 TCGv_i64 src, int tbi)
201 {
202 if (tbi == 0) {
203 /* Load unmodified address */
204 tcg_gen_mov_i64(dst, src);
205 } else if (!regime_has_2_ranges(s->mmu_idx)) {
206 /* Force tag byte to all zero */
207 tcg_gen_extract_i64(dst, src, 0, 56);
208 } else {
209 /* Sign-extend from bit 55. */
210 tcg_gen_sextract_i64(dst, src, 0, 56);
211
212 switch (tbi) {
213 case 1:
214 /* tbi0 but !tbi1: only use the extension if positive */
215 tcg_gen_and_i64(dst, dst, src);
216 break;
217 case 2:
218 /* !tbi0 but tbi1: only use the extension if negative */
219 tcg_gen_or_i64(dst, dst, src);
220 break;
221 case 3:
222 /* tbi0 and tbi1: always use the extension */
223 break;
224 default:
225 g_assert_not_reached();
226 }
227 }
228 }
229
gen_a64_set_pc(DisasContext * s,TCGv_i64 src)230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232 /*
233 * If address tagging is enabled for instructions via the TCR TBI bits,
234 * then loading an address into the PC will clear out any tag.
235 */
236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237 s->pc_save = -1;
238 }
239
240 /*
241 * Handle MTE and/or TBI.
242 *
243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
244 * for the tag to be present in the FAR_ELx register. But for user-only
245 * mode we do not have a TLB with which to implement this, so we must
246 * remove the top byte now.
247 *
248 * Always return a fresh temporary that we can increment independently
249 * of the write-back address.
250 */
251
clean_data_tbi(DisasContext * s,TCGv_i64 addr)252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254 TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256 gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258 tcg_gen_mov_i64(clean, addr);
259 #endif
260 return clean;
261 }
262
263 /* Insert a zero tag into src, with the result at dst. */
gen_address_with_allocation_tag0(TCGv_i64 dst,TCGv_i64 src)264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268
gen_probe_access(DisasContext * s,TCGv_i64 ptr,MMUAccessType acc,int log2_size)269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270 MMUAccessType acc, int log2_size)
271 {
272 gen_helper_probe_access(tcg_env, ptr,
273 tcg_constant_i32(acc),
274 tcg_constant_i32(get_mem_index(s)),
275 tcg_constant_i32(1 << log2_size));
276 }
277
278 /*
279 * For MTE, check a single logical or atomic access. This probes a single
280 * address, the exact one specified. The size and alignment of the access
281 * is not relevant to MTE, per se, but watchpoints do require the size,
282 * and we want to recognize those before making any other changes to state.
283 */
gen_mte_check1_mmuidx(DisasContext * s,TCGv_i64 addr,bool is_write,bool tag_checked,MemOp memop,bool is_unpriv,int core_idx)284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285 bool is_write, bool tag_checked,
286 MemOp memop, bool is_unpriv,
287 int core_idx)
288 {
289 if (tag_checked && s->mte_active[is_unpriv]) {
290 TCGv_i64 ret;
291 int desc = 0;
292
293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299
300 ret = tcg_temp_new_i64();
301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302
303 return ret;
304 }
305 return clean_data_tbi(s, addr);
306 }
307
gen_mte_check1(DisasContext * s,TCGv_i64 addr,bool is_write,bool tag_checked,MemOp memop)308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309 bool tag_checked, MemOp memop)
310 {
311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312 false, get_mem_index(s));
313 }
314
315 /*
316 * For MTE, check multiple logical sequential accesses.
317 */
gen_mte_checkN(DisasContext * s,TCGv_i64 addr,bool is_write,bool tag_checked,int total_size,MemOp single_mop)318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319 bool tag_checked, int total_size, MemOp single_mop)
320 {
321 if (tag_checked && s->mte_active[0]) {
322 TCGv_i64 ret;
323 int desc = 0;
324
325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331
332 ret = tcg_temp_new_i64();
333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334
335 return ret;
336 }
337 return clean_data_tbi(s, addr);
338 }
339
340 /*
341 * Generate the special alignment check that applies to AccType_ATOMIC
342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343 * naturally aligned, but it must not cross a 16-byte boundary.
344 * See AArch64.CheckAlignment().
345 */
check_lse2_align(DisasContext * s,int rn,int imm,bool is_write,MemOp mop)346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347 bool is_write, MemOp mop)
348 {
349 TCGv_i32 tmp;
350 TCGv_i64 addr;
351 TCGLabel *over_label;
352 MMUAccessType type;
353 int mmu_idx;
354
355 tmp = tcg_temp_new_i32();
356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357 tcg_gen_addi_i32(tmp, tmp, imm & 15);
358 tcg_gen_andi_i32(tmp, tmp, 15);
359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360
361 over_label = gen_new_label();
362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363
364 addr = tcg_temp_new_i64();
365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366
367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368 mmu_idx = get_mem_index(s);
369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370 tcg_constant_i32(mmu_idx));
371
372 gen_set_label(over_label);
373
374 }
375
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
check_atomic_align(DisasContext * s,int rn,MemOp mop)377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379 MemOp size = mop & MO_SIZE;
380
381 if (size == MO_8) {
382 return mop;
383 }
384
385 /*
386 * If size == MO_128, this is a LDXP, and the operation is single-copy
387 * atomic for each doubleword, not the entire quadword; it still must
388 * be quadword aligned.
389 */
390 if (size == MO_128) {
391 return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392 MO_ATOM_IFALIGN_PAIR);
393 }
394 if (dc_isar_feature(aa64_lse2, s)) {
395 check_lse2_align(s, rn, 0, true, mop);
396 } else {
397 mop |= MO_ALIGN;
398 }
399 return finalize_memop(s, mop);
400 }
401
402 /* Handle the alignment check for AccType_ORDERED instructions. */
check_ordered_align(DisasContext * s,int rn,int imm,bool is_write,MemOp mop)403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404 bool is_write, MemOp mop)
405 {
406 MemOp size = mop & MO_SIZE;
407
408 if (size == MO_8) {
409 return mop;
410 }
411 if (size == MO_128) {
412 return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413 MO_ATOM_IFALIGN_PAIR);
414 }
415 if (!dc_isar_feature(aa64_lse2, s)) {
416 mop |= MO_ALIGN;
417 } else if (!s->naa) {
418 check_lse2_align(s, rn, imm, is_write, mop);
419 }
420 return finalize_memop(s, mop);
421 }
422
423 typedef struct DisasCompare64 {
424 TCGCond cond;
425 TCGv_i64 value;
426 } DisasCompare64;
427
a64_test_cc(DisasCompare64 * c64,int cc)428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430 DisasCompare c32;
431
432 arm_test_cc(&c32, cc);
433
434 /*
435 * Sign-extend the 32-bit value so that the GE/LT comparisons work
436 * properly. The NE/EQ comparisons are also fine with this choice.
437 */
438 c64->cond = c32.cond;
439 c64->value = tcg_temp_new_i64();
440 tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442
gen_rebuild_hflags(DisasContext * s)443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447
gen_exception_internal(int excp)448 static void gen_exception_internal(int excp)
449 {
450 assert(excp_is_internal(excp));
451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453
gen_exception_internal_insn(DisasContext * s,int excp)454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456 gen_a64_update_pc(s, 0);
457 gen_exception_internal(excp);
458 s->base.is_jmp = DISAS_NORETURN;
459 }
460
gen_exception_bkpt_insn(DisasContext * s,uint32_t syndrome)461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463 gen_a64_update_pc(s, 0);
464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465 s->base.is_jmp = DISAS_NORETURN;
466 }
467
gen_step_complete_exception(DisasContext * s)468 static void gen_step_complete_exception(DisasContext *s)
469 {
470 /* We just completed step of an insn. Move from Active-not-pending
471 * to Active-pending, and then also take the swstep exception.
472 * This corresponds to making the (IMPDEF) choice to prioritize
473 * swstep exceptions over asynchronous exceptions taken to an exception
474 * level where debug is disabled. This choice has the advantage that
475 * we do not need to maintain internal state corresponding to the
476 * ISV/EX syndrome bits between completion of the step and generation
477 * of the exception, and our syndrome information is always correct.
478 */
479 gen_ss_advance(s);
480 gen_swstep_exception(s, 1, s->is_ldex);
481 s->base.is_jmp = DISAS_NORETURN;
482 }
483
use_goto_tb(DisasContext * s,uint64_t dest)484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486 if (s->ss_active) {
487 return false;
488 }
489 return translator_use_goto_tb(&s->base, dest);
490 }
491
gen_goto_tb(DisasContext * s,int n,int64_t diff)492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494 if (use_goto_tb(s, s->pc_curr + diff)) {
495 /*
496 * For pcrel, the pc must always be up-to-date on entry to
497 * the linked TB, so that it can use simple additions for all
498 * further adjustments. For !pcrel, the linked TB is compiled
499 * to know its full virtual address, so we can delay the
500 * update to pc to the unlinked path. A long chain of links
501 * can thus avoid many updates to the PC.
502 */
503 if (tb_cflags(s->base.tb) & CF_PCREL) {
504 gen_a64_update_pc(s, diff);
505 tcg_gen_goto_tb(n);
506 } else {
507 tcg_gen_goto_tb(n);
508 gen_a64_update_pc(s, diff);
509 }
510 tcg_gen_exit_tb(s->base.tb, n);
511 s->base.is_jmp = DISAS_NORETURN;
512 } else {
513 gen_a64_update_pc(s, diff);
514 if (s->ss_active) {
515 gen_step_complete_exception(s);
516 } else {
517 tcg_gen_lookup_and_goto_ptr();
518 s->base.is_jmp = DISAS_NORETURN;
519 }
520 }
521 }
522
523 /*
524 * Register access functions
525 *
526 * These functions are used for directly accessing a register in where
527 * changes to the final register value are likely to be made. If you
528 * need to use a register for temporary calculation (e.g. index type
529 * operations) use the read_* form.
530 *
531 * B1.2.1 Register mappings
532 *
533 * In instruction register encoding 31 can refer to ZR (zero register) or
534 * the SP (stack pointer) depending on context. In QEMU's case we map SP
535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536 * This is the point of the _sp forms.
537 */
cpu_reg(DisasContext * s,int reg)538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540 if (reg == 31) {
541 TCGv_i64 t = tcg_temp_new_i64();
542 tcg_gen_movi_i64(t, 0);
543 return t;
544 } else {
545 return cpu_X[reg];
546 }
547 }
548
549 /* register access for when 31 == SP */
cpu_reg_sp(DisasContext * s,int reg)550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552 return cpu_X[reg];
553 }
554
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556 * representing the register contents. This TCGv is an auto-freed
557 * temporary so it need not be explicitly freed, and may be modified.
558 */
read_cpu_reg(DisasContext * s,int reg,int sf)559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561 TCGv_i64 v = tcg_temp_new_i64();
562 if (reg != 31) {
563 if (sf) {
564 tcg_gen_mov_i64(v, cpu_X[reg]);
565 } else {
566 tcg_gen_ext32u_i64(v, cpu_X[reg]);
567 }
568 } else {
569 tcg_gen_movi_i64(v, 0);
570 }
571 return v;
572 }
573
read_cpu_reg_sp(DisasContext * s,int reg,int sf)574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576 TCGv_i64 v = tcg_temp_new_i64();
577 if (sf) {
578 tcg_gen_mov_i64(v, cpu_X[reg]);
579 } else {
580 tcg_gen_ext32u_i64(v, cpu_X[reg]);
581 }
582 return v;
583 }
584
585 /* Return the offset into CPUARMState of a slice (from
586 * the least significant end) of FP register Qn (ie
587 * Dn, Sn, Hn or Bn).
588 * (Note that this is not the same mapping as for A32; see cpu.h)
589 */
fp_reg_offset(DisasContext * s,int regno,MemOp size)590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592 return vec_reg_offset(s, regno, 0, size);
593 }
594
595 /* Offset of the high half of the 128 bit vector Qn */
fp_reg_hi_offset(DisasContext * s,int regno)596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598 return vec_reg_offset(s, regno, 1, MO_64);
599 }
600
601 /* Convenience accessors for reading and writing single and double
602 * FP registers. Writing clears the upper parts of the associated
603 * 128 bit vector register, as required by the architecture.
604 * Note that unlike the GP register accessors, the values returned
605 * by the read functions must be manually freed.
606 */
read_fp_dreg(DisasContext * s,int reg)607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609 TCGv_i64 v = tcg_temp_new_i64();
610
611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612 return v;
613 }
614
read_fp_sreg(DisasContext * s,int reg)615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617 TCGv_i32 v = tcg_temp_new_i32();
618
619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620 return v;
621 }
622
read_fp_hreg(DisasContext * s,int reg)623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625 TCGv_i32 v = tcg_temp_new_i32();
626
627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628 return v;
629 }
630
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632 * If SVE is not enabled, then there are only 128 bits in the vector.
633 */
clear_vec_high(DisasContext * s,bool is_q,int rd)634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636 unsigned ofs = fp_reg_offset(s, rd, MO_64);
637 unsigned vsz = vec_full_reg_size(s);
638
639 /* Nop move, with side effect of clearing the tail. */
640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642
write_fp_dreg(DisasContext * s,int reg,TCGv_i64 v)643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645 unsigned ofs = fp_reg_offset(s, reg, MO_64);
646
647 tcg_gen_st_i64(v, tcg_env, ofs);
648 clear_vec_high(s, false, reg);
649 }
650
write_fp_sreg(DisasContext * s,int reg,TCGv_i32 v)651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653 TCGv_i64 tmp = tcg_temp_new_i64();
654
655 tcg_gen_extu_i32_i64(tmp, v);
656 write_fp_dreg(s, reg, tmp);
657 }
658
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
gen_gvec_fn2(DisasContext * s,bool is_q,int rd,int rn,GVecGen2Fn * gvec_fn,int vece)660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661 GVecGen2Fn *gvec_fn, int vece)
662 {
663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664 is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668 * an expander function.
669 */
gen_gvec_fn2i(DisasContext * s,bool is_q,int rd,int rn,int64_t imm,GVecGen2iFn * gvec_fn,int vece)670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674 imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
gen_gvec_fn3(DisasContext * s,bool is_q,int rd,int rn,int rm,GVecGen3Fn * gvec_fn,int vece)678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679 GVecGen3Fn *gvec_fn, int vece)
680 {
681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */
gen_gvec_fn4(DisasContext * s,bool is_q,int rd,int rn,int rm,int rx,GVecGen4Fn * gvec_fn,int vece)686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687 int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691 is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693
694 /* Expand a 2-operand operation using an out-of-line helper. */
gen_gvec_op2_ool(DisasContext * s,bool is_q,int rd,int rn,int data,gen_helper_gvec_2 * fn)695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696 int rn, int data, gen_helper_gvec_2 *fn)
697 {
698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699 vec_full_reg_offset(s, rn),
700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702
703 /* Expand a 3-operand operation using an out-of-line helper. */
gen_gvec_op3_ool(DisasContext * s,bool is_q,int rd,int rn,int rm,int data,gen_helper_gvec_3 * fn)704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705 int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708 vec_full_reg_offset(s, rn),
709 vec_full_reg_offset(s, rm),
710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714 * an out-of-line helper.
715 */
gen_gvec_op3_fpst(DisasContext * s,bool is_q,int rd,int rn,int rm,bool is_fp16,int data,gen_helper_gvec_3_ptr * fn)716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717 int rm, bool is_fp16, int data,
718 gen_helper_gvec_3_ptr *fn)
719 {
720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722 vec_full_reg_offset(s, rn),
723 vec_full_reg_offset(s, rm), fpst,
724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726
727 /* Expand a 4-operand operation using an out-of-line helper. */
gen_gvec_op4_ool(DisasContext * s,bool is_q,int rd,int rn,int rm,int ra,int data,gen_helper_gvec_4 * fn)728 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
729 int rm, int ra, int data, gen_helper_gvec_4 *fn)
730 {
731 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
732 vec_full_reg_offset(s, rn),
733 vec_full_reg_offset(s, rm),
734 vec_full_reg_offset(s, ra),
735 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
736 }
737
738 /*
739 * Expand a 4-operand + fpstatus pointer + simd data value operation using
740 * an out-of-line helper.
741 */
gen_gvec_op4_fpst(DisasContext * s,bool is_q,int rd,int rn,int rm,int ra,bool is_fp16,int data,gen_helper_gvec_4_ptr * fn)742 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
743 int rm, int ra, bool is_fp16, int data,
744 gen_helper_gvec_4_ptr *fn)
745 {
746 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
747 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
748 vec_full_reg_offset(s, rn),
749 vec_full_reg_offset(s, rm),
750 vec_full_reg_offset(s, ra), fpst,
751 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
752 }
753
754 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
755 * than the 32 bit equivalent.
756 */
gen_set_NZ64(TCGv_i64 result)757 static inline void gen_set_NZ64(TCGv_i64 result)
758 {
759 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
760 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
761 }
762
763 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
gen_logic_CC(int sf,TCGv_i64 result)764 static inline void gen_logic_CC(int sf, TCGv_i64 result)
765 {
766 if (sf) {
767 gen_set_NZ64(result);
768 } else {
769 tcg_gen_extrl_i64_i32(cpu_ZF, result);
770 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
771 }
772 tcg_gen_movi_i32(cpu_CF, 0);
773 tcg_gen_movi_i32(cpu_VF, 0);
774 }
775
776 /* dest = T0 + T1; compute C, N, V and Z flags */
gen_add64_CC(TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)777 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
778 {
779 TCGv_i64 result, flag, tmp;
780 result = tcg_temp_new_i64();
781 flag = tcg_temp_new_i64();
782 tmp = tcg_temp_new_i64();
783
784 tcg_gen_movi_i64(tmp, 0);
785 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
786
787 tcg_gen_extrl_i64_i32(cpu_CF, flag);
788
789 gen_set_NZ64(result);
790
791 tcg_gen_xor_i64(flag, result, t0);
792 tcg_gen_xor_i64(tmp, t0, t1);
793 tcg_gen_andc_i64(flag, flag, tmp);
794 tcg_gen_extrh_i64_i32(cpu_VF, flag);
795
796 tcg_gen_mov_i64(dest, result);
797 }
798
gen_add32_CC(TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)799 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
800 {
801 TCGv_i32 t0_32 = tcg_temp_new_i32();
802 TCGv_i32 t1_32 = tcg_temp_new_i32();
803 TCGv_i32 tmp = tcg_temp_new_i32();
804
805 tcg_gen_movi_i32(tmp, 0);
806 tcg_gen_extrl_i64_i32(t0_32, t0);
807 tcg_gen_extrl_i64_i32(t1_32, t1);
808 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
809 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
810 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
811 tcg_gen_xor_i32(tmp, t0_32, t1_32);
812 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
813 tcg_gen_extu_i32_i64(dest, cpu_NF);
814 }
815
gen_add_CC(int sf,TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)816 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
817 {
818 if (sf) {
819 gen_add64_CC(dest, t0, t1);
820 } else {
821 gen_add32_CC(dest, t0, t1);
822 }
823 }
824
825 /* dest = T0 - T1; compute C, N, V and Z flags */
gen_sub64_CC(TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)826 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
827 {
828 /* 64 bit arithmetic */
829 TCGv_i64 result, flag, tmp;
830
831 result = tcg_temp_new_i64();
832 flag = tcg_temp_new_i64();
833 tcg_gen_sub_i64(result, t0, t1);
834
835 gen_set_NZ64(result);
836
837 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
838 tcg_gen_extrl_i64_i32(cpu_CF, flag);
839
840 tcg_gen_xor_i64(flag, result, t0);
841 tmp = tcg_temp_new_i64();
842 tcg_gen_xor_i64(tmp, t0, t1);
843 tcg_gen_and_i64(flag, flag, tmp);
844 tcg_gen_extrh_i64_i32(cpu_VF, flag);
845 tcg_gen_mov_i64(dest, result);
846 }
847
gen_sub32_CC(TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)848 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
849 {
850 /* 32 bit arithmetic */
851 TCGv_i32 t0_32 = tcg_temp_new_i32();
852 TCGv_i32 t1_32 = tcg_temp_new_i32();
853 TCGv_i32 tmp;
854
855 tcg_gen_extrl_i64_i32(t0_32, t0);
856 tcg_gen_extrl_i64_i32(t1_32, t1);
857 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
858 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
859 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
860 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
861 tmp = tcg_temp_new_i32();
862 tcg_gen_xor_i32(tmp, t0_32, t1_32);
863 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
864 tcg_gen_extu_i32_i64(dest, cpu_NF);
865 }
866
gen_sub_CC(int sf,TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)867 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
868 {
869 if (sf) {
870 gen_sub64_CC(dest, t0, t1);
871 } else {
872 gen_sub32_CC(dest, t0, t1);
873 }
874 }
875
876 /* dest = T0 + T1 + CF; do not compute flags. */
gen_adc(int sf,TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)877 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
878 {
879 TCGv_i64 flag = tcg_temp_new_i64();
880 tcg_gen_extu_i32_i64(flag, cpu_CF);
881 tcg_gen_add_i64(dest, t0, t1);
882 tcg_gen_add_i64(dest, dest, flag);
883
884 if (!sf) {
885 tcg_gen_ext32u_i64(dest, dest);
886 }
887 }
888
889 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
gen_adc_CC(int sf,TCGv_i64 dest,TCGv_i64 t0,TCGv_i64 t1)890 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892 if (sf) {
893 TCGv_i64 result = tcg_temp_new_i64();
894 TCGv_i64 cf_64 = tcg_temp_new_i64();
895 TCGv_i64 vf_64 = tcg_temp_new_i64();
896 TCGv_i64 tmp = tcg_temp_new_i64();
897 TCGv_i64 zero = tcg_constant_i64(0);
898
899 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
900 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
901 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
902 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
903 gen_set_NZ64(result);
904
905 tcg_gen_xor_i64(vf_64, result, t0);
906 tcg_gen_xor_i64(tmp, t0, t1);
907 tcg_gen_andc_i64(vf_64, vf_64, tmp);
908 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
909
910 tcg_gen_mov_i64(dest, result);
911 } else {
912 TCGv_i32 t0_32 = tcg_temp_new_i32();
913 TCGv_i32 t1_32 = tcg_temp_new_i32();
914 TCGv_i32 tmp = tcg_temp_new_i32();
915 TCGv_i32 zero = tcg_constant_i32(0);
916
917 tcg_gen_extrl_i64_i32(t0_32, t0);
918 tcg_gen_extrl_i64_i32(t1_32, t1);
919 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
920 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
921
922 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
923 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
924 tcg_gen_xor_i32(tmp, t0_32, t1_32);
925 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
926 tcg_gen_extu_i32_i64(dest, cpu_NF);
927 }
928 }
929
930 /*
931 * Load/Store generators
932 */
933
934 /*
935 * Store from GPR register to memory.
936 */
do_gpr_st_memidx(DisasContext * s,TCGv_i64 source,TCGv_i64 tcg_addr,MemOp memop,int memidx,bool iss_valid,unsigned int iss_srt,bool iss_sf,bool iss_ar)937 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
938 TCGv_i64 tcg_addr, MemOp memop, int memidx,
939 bool iss_valid,
940 unsigned int iss_srt,
941 bool iss_sf, bool iss_ar)
942 {
943 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
944
945 if (iss_valid) {
946 uint32_t syn;
947
948 syn = syn_data_abort_with_iss(0,
949 (memop & MO_SIZE),
950 false,
951 iss_srt,
952 iss_sf,
953 iss_ar,
954 0, 0, 0, 0, 0, false);
955 disas_set_insn_syndrome(s, syn);
956 }
957 }
958
do_gpr_st(DisasContext * s,TCGv_i64 source,TCGv_i64 tcg_addr,MemOp memop,bool iss_valid,unsigned int iss_srt,bool iss_sf,bool iss_ar)959 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
960 TCGv_i64 tcg_addr, MemOp memop,
961 bool iss_valid,
962 unsigned int iss_srt,
963 bool iss_sf, bool iss_ar)
964 {
965 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
966 iss_valid, iss_srt, iss_sf, iss_ar);
967 }
968
969 /*
970 * Load from memory to GPR register
971 */
do_gpr_ld_memidx(DisasContext * s,TCGv_i64 dest,TCGv_i64 tcg_addr,MemOp memop,bool extend,int memidx,bool iss_valid,unsigned int iss_srt,bool iss_sf,bool iss_ar)972 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
973 MemOp memop, bool extend, int memidx,
974 bool iss_valid, unsigned int iss_srt,
975 bool iss_sf, bool iss_ar)
976 {
977 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
978
979 if (extend && (memop & MO_SIGN)) {
980 g_assert((memop & MO_SIZE) <= MO_32);
981 tcg_gen_ext32u_i64(dest, dest);
982 }
983
984 if (iss_valid) {
985 uint32_t syn;
986
987 syn = syn_data_abort_with_iss(0,
988 (memop & MO_SIZE),
989 (memop & MO_SIGN) != 0,
990 iss_srt,
991 iss_sf,
992 iss_ar,
993 0, 0, 0, 0, 0, false);
994 disas_set_insn_syndrome(s, syn);
995 }
996 }
997
do_gpr_ld(DisasContext * s,TCGv_i64 dest,TCGv_i64 tcg_addr,MemOp memop,bool extend,bool iss_valid,unsigned int iss_srt,bool iss_sf,bool iss_ar)998 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
999 MemOp memop, bool extend,
1000 bool iss_valid, unsigned int iss_srt,
1001 bool iss_sf, bool iss_ar)
1002 {
1003 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1004 iss_valid, iss_srt, iss_sf, iss_ar);
1005 }
1006
1007 /*
1008 * Store from FP register to memory
1009 */
do_fp_st(DisasContext * s,int srcidx,TCGv_i64 tcg_addr,MemOp mop)1010 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1011 {
1012 /* This writes the bottom N bits of a 128 bit wide vector to memory */
1013 TCGv_i64 tmplo = tcg_temp_new_i64();
1014
1015 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1016
1017 if ((mop & MO_SIZE) < MO_128) {
1018 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1019 } else {
1020 TCGv_i64 tmphi = tcg_temp_new_i64();
1021 TCGv_i128 t16 = tcg_temp_new_i128();
1022
1023 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1024 tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1025
1026 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1027 }
1028 }
1029
1030 /*
1031 * Load from memory to FP register
1032 */
do_fp_ld(DisasContext * s,int destidx,TCGv_i64 tcg_addr,MemOp mop)1033 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1034 {
1035 /* This always zero-extends and writes to a full 128 bit wide vector */
1036 TCGv_i64 tmplo = tcg_temp_new_i64();
1037 TCGv_i64 tmphi = NULL;
1038
1039 if ((mop & MO_SIZE) < MO_128) {
1040 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1041 } else {
1042 TCGv_i128 t16 = tcg_temp_new_i128();
1043
1044 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1045
1046 tmphi = tcg_temp_new_i64();
1047 tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1048 }
1049
1050 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1051
1052 if (tmphi) {
1053 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1054 }
1055 clear_vec_high(s, tmphi != NULL, destidx);
1056 }
1057
1058 /*
1059 * Vector load/store helpers.
1060 *
1061 * The principal difference between this and a FP load is that we don't
1062 * zero extend as we are filling a partial chunk of the vector register.
1063 * These functions don't support 128 bit loads/stores, which would be
1064 * normal load/store operations.
1065 *
1066 * The _i32 versions are useful when operating on 32 bit quantities
1067 * (eg for floating point single or using Neon helper functions).
1068 */
1069
1070 /* Get value of an element within a vector register */
read_vec_element(DisasContext * s,TCGv_i64 tcg_dest,int srcidx,int element,MemOp memop)1071 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1072 int element, MemOp memop)
1073 {
1074 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1075 switch ((unsigned)memop) {
1076 case MO_8:
1077 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1078 break;
1079 case MO_16:
1080 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1081 break;
1082 case MO_32:
1083 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1084 break;
1085 case MO_8|MO_SIGN:
1086 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1087 break;
1088 case MO_16|MO_SIGN:
1089 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1090 break;
1091 case MO_32|MO_SIGN:
1092 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1093 break;
1094 case MO_64:
1095 case MO_64|MO_SIGN:
1096 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1097 break;
1098 default:
1099 g_assert_not_reached();
1100 }
1101 }
1102
read_vec_element_i32(DisasContext * s,TCGv_i32 tcg_dest,int srcidx,int element,MemOp memop)1103 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1104 int element, MemOp memop)
1105 {
1106 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1107 switch (memop) {
1108 case MO_8:
1109 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1110 break;
1111 case MO_16:
1112 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1113 break;
1114 case MO_8|MO_SIGN:
1115 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1116 break;
1117 case MO_16|MO_SIGN:
1118 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1119 break;
1120 case MO_32:
1121 case MO_32|MO_SIGN:
1122 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1123 break;
1124 default:
1125 g_assert_not_reached();
1126 }
1127 }
1128
1129 /* Set value of an element within a vector register */
write_vec_element(DisasContext * s,TCGv_i64 tcg_src,int destidx,int element,MemOp memop)1130 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1131 int element, MemOp memop)
1132 {
1133 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1134 switch (memop) {
1135 case MO_8:
1136 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1137 break;
1138 case MO_16:
1139 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1140 break;
1141 case MO_32:
1142 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1143 break;
1144 case MO_64:
1145 tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1146 break;
1147 default:
1148 g_assert_not_reached();
1149 }
1150 }
1151
write_vec_element_i32(DisasContext * s,TCGv_i32 tcg_src,int destidx,int element,MemOp memop)1152 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1153 int destidx, int element, MemOp memop)
1154 {
1155 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1156 switch (memop) {
1157 case MO_8:
1158 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1159 break;
1160 case MO_16:
1161 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1162 break;
1163 case MO_32:
1164 tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1165 break;
1166 default:
1167 g_assert_not_reached();
1168 }
1169 }
1170
1171 /* Store from vector register to memory */
do_vec_st(DisasContext * s,int srcidx,int element,TCGv_i64 tcg_addr,MemOp mop)1172 static void do_vec_st(DisasContext *s, int srcidx, int element,
1173 TCGv_i64 tcg_addr, MemOp mop)
1174 {
1175 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1176
1177 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1178 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1179 }
1180
1181 /* Load from memory to vector register */
do_vec_ld(DisasContext * s,int destidx,int element,TCGv_i64 tcg_addr,MemOp mop)1182 static void do_vec_ld(DisasContext *s, int destidx, int element,
1183 TCGv_i64 tcg_addr, MemOp mop)
1184 {
1185 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1186
1187 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1188 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1189 }
1190
1191 /* Check that FP/Neon access is enabled. If it is, return
1192 * true. If not, emit code to generate an appropriate exception,
1193 * and return false; the caller should not emit any code for
1194 * the instruction. Note that this check must happen after all
1195 * unallocated-encoding checks (otherwise the syndrome information
1196 * for the resulting exception will be incorrect).
1197 */
fp_access_check_only(DisasContext * s)1198 static bool fp_access_check_only(DisasContext *s)
1199 {
1200 if (s->fp_excp_el) {
1201 assert(!s->fp_access_checked);
1202 s->fp_access_checked = true;
1203
1204 gen_exception_insn_el(s, 0, EXCP_UDEF,
1205 syn_fp_access_trap(1, 0xe, false, 0),
1206 s->fp_excp_el);
1207 return false;
1208 }
1209 s->fp_access_checked = true;
1210 return true;
1211 }
1212
fp_access_check(DisasContext * s)1213 static bool fp_access_check(DisasContext *s)
1214 {
1215 if (!fp_access_check_only(s)) {
1216 return false;
1217 }
1218 if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1219 gen_exception_insn(s, 0, EXCP_UDEF,
1220 syn_smetrap(SME_ET_Streaming, false));
1221 return false;
1222 }
1223 return true;
1224 }
1225
1226 /*
1227 * Check that SVE access is enabled. If it is, return true.
1228 * If not, emit code to generate an appropriate exception and return false.
1229 * This function corresponds to CheckSVEEnabled().
1230 */
sve_access_check(DisasContext * s)1231 bool sve_access_check(DisasContext *s)
1232 {
1233 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1234 assert(dc_isar_feature(aa64_sme, s));
1235 if (!sme_sm_enabled_check(s)) {
1236 goto fail_exit;
1237 }
1238 } else if (s->sve_excp_el) {
1239 gen_exception_insn_el(s, 0, EXCP_UDEF,
1240 syn_sve_access_trap(), s->sve_excp_el);
1241 goto fail_exit;
1242 }
1243 s->sve_access_checked = true;
1244 return fp_access_check(s);
1245
1246 fail_exit:
1247 /* Assert that we only raise one exception per instruction. */
1248 assert(!s->sve_access_checked);
1249 s->sve_access_checked = true;
1250 return false;
1251 }
1252
1253 /*
1254 * Check that SME access is enabled, raise an exception if not.
1255 * Note that this function corresponds to CheckSMEAccess and is
1256 * only used directly for cpregs.
1257 */
sme_access_check(DisasContext * s)1258 static bool sme_access_check(DisasContext *s)
1259 {
1260 if (s->sme_excp_el) {
1261 gen_exception_insn_el(s, 0, EXCP_UDEF,
1262 syn_smetrap(SME_ET_AccessTrap, false),
1263 s->sme_excp_el);
1264 return false;
1265 }
1266 return true;
1267 }
1268
1269 /* This function corresponds to CheckSMEEnabled. */
sme_enabled_check(DisasContext * s)1270 bool sme_enabled_check(DisasContext *s)
1271 {
1272 /*
1273 * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1274 * to be zero when fp_excp_el has priority. This is because we need
1275 * sme_excp_el by itself for cpregs access checks.
1276 */
1277 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1278 s->fp_access_checked = true;
1279 return sme_access_check(s);
1280 }
1281 return fp_access_check_only(s);
1282 }
1283
1284 /* Common subroutine for CheckSMEAnd*Enabled. */
sme_enabled_check_with_svcr(DisasContext * s,unsigned req)1285 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1286 {
1287 if (!sme_enabled_check(s)) {
1288 return false;
1289 }
1290 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1291 gen_exception_insn(s, 0, EXCP_UDEF,
1292 syn_smetrap(SME_ET_NotStreaming, false));
1293 return false;
1294 }
1295 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1296 gen_exception_insn(s, 0, EXCP_UDEF,
1297 syn_smetrap(SME_ET_InactiveZA, false));
1298 return false;
1299 }
1300 return true;
1301 }
1302
1303 /*
1304 * Expanders for AdvSIMD translation functions.
1305 */
1306
do_gvec_op2_ool(DisasContext * s,arg_qrr_e * a,int data,gen_helper_gvec_2 * fn)1307 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1308 gen_helper_gvec_2 *fn)
1309 {
1310 if (!a->q && a->esz == MO_64) {
1311 return false;
1312 }
1313 if (fp_access_check(s)) {
1314 gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1315 }
1316 return true;
1317 }
1318
do_gvec_op3_ool(DisasContext * s,arg_qrrr_e * a,int data,gen_helper_gvec_3 * fn)1319 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1320 gen_helper_gvec_3 *fn)
1321 {
1322 if (!a->q && a->esz == MO_64) {
1323 return false;
1324 }
1325 if (fp_access_check(s)) {
1326 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1327 }
1328 return true;
1329 }
1330
do_gvec_fn3(DisasContext * s,arg_qrrr_e * a,GVecGen3Fn * fn)1331 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1332 {
1333 if (!a->q && a->esz == MO_64) {
1334 return false;
1335 }
1336 if (fp_access_check(s)) {
1337 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1338 }
1339 return true;
1340 }
1341
do_gvec_fn3_no64(DisasContext * s,arg_qrrr_e * a,GVecGen3Fn * fn)1342 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1343 {
1344 if (a->esz == MO_64) {
1345 return false;
1346 }
1347 if (fp_access_check(s)) {
1348 gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1349 }
1350 return true;
1351 }
1352
do_gvec_fn3_no8_no64(DisasContext * s,arg_qrrr_e * a,GVecGen3Fn * fn)1353 static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1354 {
1355 if (a->esz == MO_8) {
1356 return false;
1357 }
1358 return do_gvec_fn3_no64(s, a, fn);
1359 }
1360
do_gvec_fn4(DisasContext * s,arg_qrrrr_e * a,GVecGen4Fn * fn)1361 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1362 {
1363 if (!a->q && a->esz == MO_64) {
1364 return false;
1365 }
1366 if (fp_access_check(s)) {
1367 gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1368 }
1369 return true;
1370 }
1371
1372 /*
1373 * This utility function is for doing register extension with an
1374 * optional shift. You will likely want to pass a temporary for the
1375 * destination register. See DecodeRegExtend() in the ARM ARM.
1376 */
ext_and_shift_reg(TCGv_i64 tcg_out,TCGv_i64 tcg_in,int option,unsigned int shift)1377 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1378 int option, unsigned int shift)
1379 {
1380 int extsize = extract32(option, 0, 2);
1381 bool is_signed = extract32(option, 2, 1);
1382
1383 tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1384 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1385 }
1386
gen_check_sp_alignment(DisasContext * s)1387 static inline void gen_check_sp_alignment(DisasContext *s)
1388 {
1389 /* The AArch64 architecture mandates that (if enabled via PSTATE
1390 * or SCTLR bits) there is a check that SP is 16-aligned on every
1391 * SP-relative load or store (with an exception generated if it is not).
1392 * In line with general QEMU practice regarding misaligned accesses,
1393 * we omit these checks for the sake of guest program performance.
1394 * This function is provided as a hook so we can more easily add these
1395 * checks in future (possibly as a "favour catching guest program bugs
1396 * over speed" user selectable option).
1397 */
1398 }
1399
1400 /*
1401 * This provides a simple table based table lookup decoder. It is
1402 * intended to be used when the relevant bits for decode are too
1403 * awkwardly placed and switch/if based logic would be confusing and
1404 * deeply nested. Since it's a linear search through the table, tables
1405 * should be kept small.
1406 *
1407 * It returns the first handler where insn & mask == pattern, or
1408 * NULL if there is no match.
1409 * The table is terminated by an empty mask (i.e. 0)
1410 */
lookup_disas_fn(const AArch64DecodeTable * table,uint32_t insn)1411 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1412 uint32_t insn)
1413 {
1414 const AArch64DecodeTable *tptr = table;
1415
1416 while (tptr->mask) {
1417 if ((insn & tptr->mask) == tptr->pattern) {
1418 return tptr->disas_fn;
1419 }
1420 tptr++;
1421 }
1422 return NULL;
1423 }
1424
1425 /*
1426 * The instruction disassembly implemented here matches
1427 * the instruction encoding classifications in chapter C4
1428 * of the ARM Architecture Reference Manual (DDI0487B_a);
1429 * classification names and decode diagrams here should generally
1430 * match up with those in the manual.
1431 */
1432
trans_B(DisasContext * s,arg_i * a)1433 static bool trans_B(DisasContext *s, arg_i *a)
1434 {
1435 reset_btype(s);
1436 gen_goto_tb(s, 0, a->imm);
1437 return true;
1438 }
1439
trans_BL(DisasContext * s,arg_i * a)1440 static bool trans_BL(DisasContext *s, arg_i *a)
1441 {
1442 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1443 reset_btype(s);
1444 gen_goto_tb(s, 0, a->imm);
1445 return true;
1446 }
1447
1448
trans_CBZ(DisasContext * s,arg_cbz * a)1449 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1450 {
1451 DisasLabel match;
1452 TCGv_i64 tcg_cmp;
1453
1454 tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1455 reset_btype(s);
1456
1457 match = gen_disas_label(s);
1458 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1459 tcg_cmp, 0, match.label);
1460 gen_goto_tb(s, 0, 4);
1461 set_disas_label(s, match);
1462 gen_goto_tb(s, 1, a->imm);
1463 return true;
1464 }
1465
trans_TBZ(DisasContext * s,arg_tbz * a)1466 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1467 {
1468 DisasLabel match;
1469 TCGv_i64 tcg_cmp;
1470
1471 tcg_cmp = tcg_temp_new_i64();
1472 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1473
1474 reset_btype(s);
1475
1476 match = gen_disas_label(s);
1477 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1478 tcg_cmp, 0, match.label);
1479 gen_goto_tb(s, 0, 4);
1480 set_disas_label(s, match);
1481 gen_goto_tb(s, 1, a->imm);
1482 return true;
1483 }
1484
trans_B_cond(DisasContext * s,arg_B_cond * a)1485 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1486 {
1487 /* BC.cond is only present with FEAT_HBC */
1488 if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1489 return false;
1490 }
1491 reset_btype(s);
1492 if (a->cond < 0x0e) {
1493 /* genuinely conditional branches */
1494 DisasLabel match = gen_disas_label(s);
1495 arm_gen_test_cc(a->cond, match.label);
1496 gen_goto_tb(s, 0, 4);
1497 set_disas_label(s, match);
1498 gen_goto_tb(s, 1, a->imm);
1499 } else {
1500 /* 0xe and 0xf are both "always" conditions */
1501 gen_goto_tb(s, 0, a->imm);
1502 }
1503 return true;
1504 }
1505
set_btype_for_br(DisasContext * s,int rn)1506 static void set_btype_for_br(DisasContext *s, int rn)
1507 {
1508 if (dc_isar_feature(aa64_bti, s)) {
1509 /* BR to {x16,x17} or !guard -> 1, else 3. */
1510 if (rn == 16 || rn == 17) {
1511 set_btype(s, 1);
1512 } else {
1513 TCGv_i64 pc = tcg_temp_new_i64();
1514 gen_pc_plus_diff(s, pc, 0);
1515 gen_helper_guarded_page_br(tcg_env, pc);
1516 s->btype = -1;
1517 }
1518 }
1519 }
1520
set_btype_for_blr(DisasContext * s)1521 static void set_btype_for_blr(DisasContext *s)
1522 {
1523 if (dc_isar_feature(aa64_bti, s)) {
1524 /* BLR sets BTYPE to 2, regardless of source guarded page. */
1525 set_btype(s, 2);
1526 }
1527 }
1528
trans_BR(DisasContext * s,arg_r * a)1529 static bool trans_BR(DisasContext *s, arg_r *a)
1530 {
1531 set_btype_for_br(s, a->rn);
1532 gen_a64_set_pc(s, cpu_reg(s, a->rn));
1533 s->base.is_jmp = DISAS_JUMP;
1534 return true;
1535 }
1536
trans_BLR(DisasContext * s,arg_r * a)1537 static bool trans_BLR(DisasContext *s, arg_r *a)
1538 {
1539 TCGv_i64 dst = cpu_reg(s, a->rn);
1540 TCGv_i64 lr = cpu_reg(s, 30);
1541 if (dst == lr) {
1542 TCGv_i64 tmp = tcg_temp_new_i64();
1543 tcg_gen_mov_i64(tmp, dst);
1544 dst = tmp;
1545 }
1546 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1547 gen_a64_set_pc(s, dst);
1548 set_btype_for_blr(s);
1549 s->base.is_jmp = DISAS_JUMP;
1550 return true;
1551 }
1552
trans_RET(DisasContext * s,arg_r * a)1553 static bool trans_RET(DisasContext *s, arg_r *a)
1554 {
1555 gen_a64_set_pc(s, cpu_reg(s, a->rn));
1556 s->base.is_jmp = DISAS_JUMP;
1557 return true;
1558 }
1559
auth_branch_target(DisasContext * s,TCGv_i64 dst,TCGv_i64 modifier,bool use_key_a)1560 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1561 TCGv_i64 modifier, bool use_key_a)
1562 {
1563 TCGv_i64 truedst;
1564 /*
1565 * Return the branch target for a BRAA/RETA/etc, which is either
1566 * just the destination dst, or that value with the pauth check
1567 * done and the code removed from the high bits.
1568 */
1569 if (!s->pauth_active) {
1570 return dst;
1571 }
1572
1573 truedst = tcg_temp_new_i64();
1574 if (use_key_a) {
1575 gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1576 } else {
1577 gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1578 }
1579 return truedst;
1580 }
1581
trans_BRAZ(DisasContext * s,arg_braz * a)1582 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1583 {
1584 TCGv_i64 dst;
1585
1586 if (!dc_isar_feature(aa64_pauth, s)) {
1587 return false;
1588 }
1589
1590 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1591 set_btype_for_br(s, a->rn);
1592 gen_a64_set_pc(s, dst);
1593 s->base.is_jmp = DISAS_JUMP;
1594 return true;
1595 }
1596
trans_BLRAZ(DisasContext * s,arg_braz * a)1597 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1598 {
1599 TCGv_i64 dst, lr;
1600
1601 if (!dc_isar_feature(aa64_pauth, s)) {
1602 return false;
1603 }
1604
1605 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1606 lr = cpu_reg(s, 30);
1607 if (dst == lr) {
1608 TCGv_i64 tmp = tcg_temp_new_i64();
1609 tcg_gen_mov_i64(tmp, dst);
1610 dst = tmp;
1611 }
1612 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1613 gen_a64_set_pc(s, dst);
1614 set_btype_for_blr(s);
1615 s->base.is_jmp = DISAS_JUMP;
1616 return true;
1617 }
1618
trans_RETA(DisasContext * s,arg_reta * a)1619 static bool trans_RETA(DisasContext *s, arg_reta *a)
1620 {
1621 TCGv_i64 dst;
1622
1623 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1624 gen_a64_set_pc(s, dst);
1625 s->base.is_jmp = DISAS_JUMP;
1626 return true;
1627 }
1628
trans_BRA(DisasContext * s,arg_bra * a)1629 static bool trans_BRA(DisasContext *s, arg_bra *a)
1630 {
1631 TCGv_i64 dst;
1632
1633 if (!dc_isar_feature(aa64_pauth, s)) {
1634 return false;
1635 }
1636 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1637 gen_a64_set_pc(s, dst);
1638 set_btype_for_br(s, a->rn);
1639 s->base.is_jmp = DISAS_JUMP;
1640 return true;
1641 }
1642
trans_BLRA(DisasContext * s,arg_bra * a)1643 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1644 {
1645 TCGv_i64 dst, lr;
1646
1647 if (!dc_isar_feature(aa64_pauth, s)) {
1648 return false;
1649 }
1650 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1651 lr = cpu_reg(s, 30);
1652 if (dst == lr) {
1653 TCGv_i64 tmp = tcg_temp_new_i64();
1654 tcg_gen_mov_i64(tmp, dst);
1655 dst = tmp;
1656 }
1657 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1658 gen_a64_set_pc(s, dst);
1659 set_btype_for_blr(s);
1660 s->base.is_jmp = DISAS_JUMP;
1661 return true;
1662 }
1663
trans_ERET(DisasContext * s,arg_ERET * a)1664 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1665 {
1666 TCGv_i64 dst;
1667
1668 if (s->current_el == 0) {
1669 return false;
1670 }
1671 if (s->trap_eret) {
1672 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1673 return true;
1674 }
1675 dst = tcg_temp_new_i64();
1676 tcg_gen_ld_i64(dst, tcg_env,
1677 offsetof(CPUARMState, elr_el[s->current_el]));
1678
1679 translator_io_start(&s->base);
1680
1681 gen_helper_exception_return(tcg_env, dst);
1682 /* Must exit loop to check un-masked IRQs */
1683 s->base.is_jmp = DISAS_EXIT;
1684 return true;
1685 }
1686
trans_ERETA(DisasContext * s,arg_reta * a)1687 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1688 {
1689 TCGv_i64 dst;
1690
1691 if (!dc_isar_feature(aa64_pauth, s)) {
1692 return false;
1693 }
1694 if (s->current_el == 0) {
1695 return false;
1696 }
1697 /* The FGT trap takes precedence over an auth trap. */
1698 if (s->trap_eret) {
1699 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1700 return true;
1701 }
1702 dst = tcg_temp_new_i64();
1703 tcg_gen_ld_i64(dst, tcg_env,
1704 offsetof(CPUARMState, elr_el[s->current_el]));
1705
1706 dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1707
1708 translator_io_start(&s->base);
1709
1710 gen_helper_exception_return(tcg_env, dst);
1711 /* Must exit loop to check un-masked IRQs */
1712 s->base.is_jmp = DISAS_EXIT;
1713 return true;
1714 }
1715
trans_NOP(DisasContext * s,arg_NOP * a)1716 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1717 {
1718 return true;
1719 }
1720
trans_YIELD(DisasContext * s,arg_YIELD * a)1721 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1722 {
1723 /*
1724 * When running in MTTCG we don't generate jumps to the yield and
1725 * WFE helpers as it won't affect the scheduling of other vCPUs.
1726 * If we wanted to more completely model WFE/SEV so we don't busy
1727 * spin unnecessarily we would need to do something more involved.
1728 */
1729 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1730 s->base.is_jmp = DISAS_YIELD;
1731 }
1732 return true;
1733 }
1734
trans_WFI(DisasContext * s,arg_WFI * a)1735 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1736 {
1737 s->base.is_jmp = DISAS_WFI;
1738 return true;
1739 }
1740
trans_WFE(DisasContext * s,arg_WFI * a)1741 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1742 {
1743 /*
1744 * When running in MTTCG we don't generate jumps to the yield and
1745 * WFE helpers as it won't affect the scheduling of other vCPUs.
1746 * If we wanted to more completely model WFE/SEV so we don't busy
1747 * spin unnecessarily we would need to do something more involved.
1748 */
1749 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1750 s->base.is_jmp = DISAS_WFE;
1751 }
1752 return true;
1753 }
1754
trans_WFIT(DisasContext * s,arg_WFIT * a)1755 static bool trans_WFIT(DisasContext *s, arg_WFIT *a)
1756 {
1757 if (!dc_isar_feature(aa64_wfxt, s)) {
1758 return false;
1759 }
1760
1761 /*
1762 * Because we need to pass the register value to the helper,
1763 * it's easier to emit the code now, unlike trans_WFI which
1764 * defers it to aarch64_tr_tb_stop(). That means we need to
1765 * check ss_active so that single-stepping a WFIT doesn't halt.
1766 */
1767 if (s->ss_active) {
1768 /* Act like a NOP under architectural singlestep */
1769 return true;
1770 }
1771
1772 gen_a64_update_pc(s, 4);
1773 gen_helper_wfit(tcg_env, cpu_reg(s, a->rd));
1774 /* Go back to the main loop to check for interrupts */
1775 s->base.is_jmp = DISAS_EXIT;
1776 return true;
1777 }
1778
trans_WFET(DisasContext * s,arg_WFET * a)1779 static bool trans_WFET(DisasContext *s, arg_WFET *a)
1780 {
1781 if (!dc_isar_feature(aa64_wfxt, s)) {
1782 return false;
1783 }
1784
1785 /*
1786 * We rely here on our WFE implementation being a NOP, so we
1787 * don't need to do anything different to handle the WFET timeout
1788 * from what trans_WFE does.
1789 */
1790 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1791 s->base.is_jmp = DISAS_WFE;
1792 }
1793 return true;
1794 }
1795
trans_XPACLRI(DisasContext * s,arg_XPACLRI * a)1796 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1797 {
1798 if (s->pauth_active) {
1799 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1800 }
1801 return true;
1802 }
1803
trans_PACIA1716(DisasContext * s,arg_PACIA1716 * a)1804 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1805 {
1806 if (s->pauth_active) {
1807 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1808 }
1809 return true;
1810 }
1811
trans_PACIB1716(DisasContext * s,arg_PACIB1716 * a)1812 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1813 {
1814 if (s->pauth_active) {
1815 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1816 }
1817 return true;
1818 }
1819
trans_AUTIA1716(DisasContext * s,arg_AUTIA1716 * a)1820 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1821 {
1822 if (s->pauth_active) {
1823 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1824 }
1825 return true;
1826 }
1827
trans_AUTIB1716(DisasContext * s,arg_AUTIB1716 * a)1828 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1829 {
1830 if (s->pauth_active) {
1831 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1832 }
1833 return true;
1834 }
1835
trans_ESB(DisasContext * s,arg_ESB * a)1836 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1837 {
1838 /* Without RAS, we must implement this as NOP. */
1839 if (dc_isar_feature(aa64_ras, s)) {
1840 /*
1841 * QEMU does not have a source of physical SErrors,
1842 * so we are only concerned with virtual SErrors.
1843 * The pseudocode in the ARM for this case is
1844 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1845 * AArch64.vESBOperation();
1846 * Most of the condition can be evaluated at translation time.
1847 * Test for EL2 present, and defer test for SEL2 to runtime.
1848 */
1849 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1850 gen_helper_vesb(tcg_env);
1851 }
1852 }
1853 return true;
1854 }
1855
trans_PACIAZ(DisasContext * s,arg_PACIAZ * a)1856 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1857 {
1858 if (s->pauth_active) {
1859 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1860 }
1861 return true;
1862 }
1863
trans_PACIASP(DisasContext * s,arg_PACIASP * a)1864 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1865 {
1866 if (s->pauth_active) {
1867 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1868 }
1869 return true;
1870 }
1871
trans_PACIBZ(DisasContext * s,arg_PACIBZ * a)1872 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1873 {
1874 if (s->pauth_active) {
1875 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1876 }
1877 return true;
1878 }
1879
trans_PACIBSP(DisasContext * s,arg_PACIBSP * a)1880 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1881 {
1882 if (s->pauth_active) {
1883 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1884 }
1885 return true;
1886 }
1887
trans_AUTIAZ(DisasContext * s,arg_AUTIAZ * a)1888 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1889 {
1890 if (s->pauth_active) {
1891 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1892 }
1893 return true;
1894 }
1895
trans_AUTIASP(DisasContext * s,arg_AUTIASP * a)1896 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1897 {
1898 if (s->pauth_active) {
1899 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1900 }
1901 return true;
1902 }
1903
trans_AUTIBZ(DisasContext * s,arg_AUTIBZ * a)1904 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1905 {
1906 if (s->pauth_active) {
1907 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1908 }
1909 return true;
1910 }
1911
trans_AUTIBSP(DisasContext * s,arg_AUTIBSP * a)1912 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1913 {
1914 if (s->pauth_active) {
1915 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1916 }
1917 return true;
1918 }
1919
trans_CLREX(DisasContext * s,arg_CLREX * a)1920 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1921 {
1922 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1923 return true;
1924 }
1925
trans_DSB_DMB(DisasContext * s,arg_DSB_DMB * a)1926 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1927 {
1928 /* We handle DSB and DMB the same way */
1929 TCGBar bar;
1930
1931 switch (a->types) {
1932 case 1: /* MBReqTypes_Reads */
1933 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1934 break;
1935 case 2: /* MBReqTypes_Writes */
1936 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1937 break;
1938 default: /* MBReqTypes_All */
1939 bar = TCG_BAR_SC | TCG_MO_ALL;
1940 break;
1941 }
1942 tcg_gen_mb(bar);
1943 return true;
1944 }
1945
trans_ISB(DisasContext * s,arg_ISB * a)1946 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1947 {
1948 /*
1949 * We need to break the TB after this insn to execute
1950 * self-modifying code correctly and also to take
1951 * any pending interrupts immediately.
1952 */
1953 reset_btype(s);
1954 gen_goto_tb(s, 0, 4);
1955 return true;
1956 }
1957
trans_SB(DisasContext * s,arg_SB * a)1958 static bool trans_SB(DisasContext *s, arg_SB *a)
1959 {
1960 if (!dc_isar_feature(aa64_sb, s)) {
1961 return false;
1962 }
1963 /*
1964 * TODO: There is no speculation barrier opcode for TCG;
1965 * MB and end the TB instead.
1966 */
1967 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1968 gen_goto_tb(s, 0, 4);
1969 return true;
1970 }
1971
trans_CFINV(DisasContext * s,arg_CFINV * a)1972 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1973 {
1974 if (!dc_isar_feature(aa64_condm_4, s)) {
1975 return false;
1976 }
1977 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1978 return true;
1979 }
1980
trans_XAFLAG(DisasContext * s,arg_XAFLAG * a)1981 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1982 {
1983 TCGv_i32 z;
1984
1985 if (!dc_isar_feature(aa64_condm_5, s)) {
1986 return false;
1987 }
1988
1989 z = tcg_temp_new_i32();
1990
1991 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1992
1993 /*
1994 * (!C & !Z) << 31
1995 * (!(C | Z)) << 31
1996 * ~((C | Z) << 31)
1997 * ~-(C | Z)
1998 * (C | Z) - 1
1999 */
2000 tcg_gen_or_i32(cpu_NF, cpu_CF, z);
2001 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
2002
2003 /* !(Z & C) */
2004 tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
2005 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
2006
2007 /* (!C & Z) << 31 -> -(Z & ~C) */
2008 tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
2009 tcg_gen_neg_i32(cpu_VF, cpu_VF);
2010
2011 /* C | Z */
2012 tcg_gen_or_i32(cpu_CF, cpu_CF, z);
2013
2014 return true;
2015 }
2016
trans_AXFLAG(DisasContext * s,arg_AXFLAG * a)2017 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
2018 {
2019 if (!dc_isar_feature(aa64_condm_5, s)) {
2020 return false;
2021 }
2022
2023 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
2024 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
2025
2026 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
2027 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
2028
2029 tcg_gen_movi_i32(cpu_NF, 0);
2030 tcg_gen_movi_i32(cpu_VF, 0);
2031
2032 return true;
2033 }
2034
trans_MSR_i_UAO(DisasContext * s,arg_i * a)2035 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
2036 {
2037 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
2038 return false;
2039 }
2040 if (a->imm & 1) {
2041 set_pstate_bits(PSTATE_UAO);
2042 } else {
2043 clear_pstate_bits(PSTATE_UAO);
2044 }
2045 gen_rebuild_hflags(s);
2046 s->base.is_jmp = DISAS_TOO_MANY;
2047 return true;
2048 }
2049
trans_MSR_i_PAN(DisasContext * s,arg_i * a)2050 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
2051 {
2052 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
2053 return false;
2054 }
2055 if (a->imm & 1) {
2056 set_pstate_bits(PSTATE_PAN);
2057 } else {
2058 clear_pstate_bits(PSTATE_PAN);
2059 }
2060 gen_rebuild_hflags(s);
2061 s->base.is_jmp = DISAS_TOO_MANY;
2062 return true;
2063 }
2064
trans_MSR_i_SPSEL(DisasContext * s,arg_i * a)2065 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2066 {
2067 if (s->current_el == 0) {
2068 return false;
2069 }
2070 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2071 s->base.is_jmp = DISAS_TOO_MANY;
2072 return true;
2073 }
2074
trans_MSR_i_SBSS(DisasContext * s,arg_i * a)2075 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2076 {
2077 if (!dc_isar_feature(aa64_ssbs, s)) {
2078 return false;
2079 }
2080 if (a->imm & 1) {
2081 set_pstate_bits(PSTATE_SSBS);
2082 } else {
2083 clear_pstate_bits(PSTATE_SSBS);
2084 }
2085 /* Don't need to rebuild hflags since SSBS is a nop */
2086 s->base.is_jmp = DISAS_TOO_MANY;
2087 return true;
2088 }
2089
trans_MSR_i_DIT(DisasContext * s,arg_i * a)2090 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2091 {
2092 if (!dc_isar_feature(aa64_dit, s)) {
2093 return false;
2094 }
2095 if (a->imm & 1) {
2096 set_pstate_bits(PSTATE_DIT);
2097 } else {
2098 clear_pstate_bits(PSTATE_DIT);
2099 }
2100 /* There's no need to rebuild hflags because DIT is a nop */
2101 s->base.is_jmp = DISAS_TOO_MANY;
2102 return true;
2103 }
2104
trans_MSR_i_TCO(DisasContext * s,arg_i * a)2105 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2106 {
2107 if (dc_isar_feature(aa64_mte, s)) {
2108 /* Full MTE is enabled -- set the TCO bit as directed. */
2109 if (a->imm & 1) {
2110 set_pstate_bits(PSTATE_TCO);
2111 } else {
2112 clear_pstate_bits(PSTATE_TCO);
2113 }
2114 gen_rebuild_hflags(s);
2115 /* Many factors, including TCO, go into MTE_ACTIVE. */
2116 s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2117 return true;
2118 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2119 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */
2120 return true;
2121 } else {
2122 /* Insn not present */
2123 return false;
2124 }
2125 }
2126
trans_MSR_i_DAIFSET(DisasContext * s,arg_i * a)2127 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2128 {
2129 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2130 s->base.is_jmp = DISAS_TOO_MANY;
2131 return true;
2132 }
2133
trans_MSR_i_DAIFCLEAR(DisasContext * s,arg_i * a)2134 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2135 {
2136 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2137 /* Exit the cpu loop to re-evaluate pending IRQs. */
2138 s->base.is_jmp = DISAS_UPDATE_EXIT;
2139 return true;
2140 }
2141
trans_MSR_i_ALLINT(DisasContext * s,arg_i * a)2142 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2143 {
2144 if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2145 return false;
2146 }
2147
2148 if (a->imm == 0) {
2149 clear_pstate_bits(PSTATE_ALLINT);
2150 } else if (s->current_el > 1) {
2151 set_pstate_bits(PSTATE_ALLINT);
2152 } else {
2153 gen_helper_msr_set_allint_el1(tcg_env);
2154 }
2155
2156 /* Exit the cpu loop to re-evaluate pending IRQs. */
2157 s->base.is_jmp = DISAS_UPDATE_EXIT;
2158 return true;
2159 }
2160
trans_MSR_i_SVCR(DisasContext * s,arg_MSR_i_SVCR * a)2161 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2162 {
2163 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2164 return false;
2165 }
2166 if (sme_access_check(s)) {
2167 int old = s->pstate_sm | (s->pstate_za << 1);
2168 int new = a->imm * 3;
2169
2170 if ((old ^ new) & a->mask) {
2171 /* At least one bit changes. */
2172 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2173 tcg_constant_i32(a->mask));
2174 s->base.is_jmp = DISAS_TOO_MANY;
2175 }
2176 }
2177 return true;
2178 }
2179
gen_get_nzcv(TCGv_i64 tcg_rt)2180 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2181 {
2182 TCGv_i32 tmp = tcg_temp_new_i32();
2183 TCGv_i32 nzcv = tcg_temp_new_i32();
2184
2185 /* build bit 31, N */
2186 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2187 /* build bit 30, Z */
2188 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2189 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2190 /* build bit 29, C */
2191 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2192 /* build bit 28, V */
2193 tcg_gen_shri_i32(tmp, cpu_VF, 31);
2194 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2195 /* generate result */
2196 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2197 }
2198
gen_set_nzcv(TCGv_i64 tcg_rt)2199 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2200 {
2201 TCGv_i32 nzcv = tcg_temp_new_i32();
2202
2203 /* take NZCV from R[t] */
2204 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2205
2206 /* bit 31, N */
2207 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2208 /* bit 30, Z */
2209 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2210 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2211 /* bit 29, C */
2212 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2213 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2214 /* bit 28, V */
2215 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2216 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2217 }
2218
gen_sysreg_undef(DisasContext * s,bool isread,uint8_t op0,uint8_t op1,uint8_t op2,uint8_t crn,uint8_t crm,uint8_t rt)2219 static void gen_sysreg_undef(DisasContext *s, bool isread,
2220 uint8_t op0, uint8_t op1, uint8_t op2,
2221 uint8_t crn, uint8_t crm, uint8_t rt)
2222 {
2223 /*
2224 * Generate code to emit an UNDEF with correct syndrome
2225 * information for a failed system register access.
2226 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2227 * but if FEAT_IDST is implemented then read accesses to registers
2228 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2229 * syndrome.
2230 */
2231 uint32_t syndrome;
2232
2233 if (isread && dc_isar_feature(aa64_ids, s) &&
2234 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2235 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2236 } else {
2237 syndrome = syn_uncategorized();
2238 }
2239 gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2240 }
2241
2242 /* MRS - move from system register
2243 * MSR (register) - move to system register
2244 * SYS
2245 * SYSL
2246 * These are all essentially the same insn in 'read' and 'write'
2247 * versions, with varying op0 fields.
2248 */
handle_sys(DisasContext * s,bool isread,unsigned int op0,unsigned int op1,unsigned int op2,unsigned int crn,unsigned int crm,unsigned int rt)2249 static void handle_sys(DisasContext *s, bool isread,
2250 unsigned int op0, unsigned int op1, unsigned int op2,
2251 unsigned int crn, unsigned int crm, unsigned int rt)
2252 {
2253 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2254 crn, crm, op0, op1, op2);
2255 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2256 bool need_exit_tb = false;
2257 bool nv_trap_to_el2 = false;
2258 bool nv_redirect_reg = false;
2259 bool skip_fp_access_checks = false;
2260 bool nv2_mem_redirect = false;
2261 TCGv_ptr tcg_ri = NULL;
2262 TCGv_i64 tcg_rt;
2263 uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2264
2265 if (crn == 11 || crn == 15) {
2266 /*
2267 * Check for TIDCP trap, which must take precedence over
2268 * the UNDEF for "no such register" etc.
2269 */
2270 switch (s->current_el) {
2271 case 0:
2272 if (dc_isar_feature(aa64_tidcp1, s)) {
2273 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2274 }
2275 break;
2276 case 1:
2277 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2278 break;
2279 }
2280 }
2281
2282 if (!ri) {
2283 /* Unknown register; this might be a guest error or a QEMU
2284 * unimplemented feature.
2285 */
2286 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2287 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2288 isread ? "read" : "write", op0, op1, crn, crm, op2);
2289 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2290 return;
2291 }
2292
2293 if (s->nv2 && ri->nv2_redirect_offset) {
2294 /*
2295 * Some registers always redirect to memory; some only do so if
2296 * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2297 * pairs which share an offset; see the table in R_CSRPQ).
2298 */
2299 if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2300 nv2_mem_redirect = s->nv1;
2301 } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2302 nv2_mem_redirect = !s->nv1;
2303 } else {
2304 nv2_mem_redirect = true;
2305 }
2306 }
2307
2308 /* Check access permissions */
2309 if (!cp_access_ok(s->current_el, ri, isread)) {
2310 /*
2311 * FEAT_NV/NV2 handling does not do the usual FP access checks
2312 * for registers only accessible at EL2 (though it *does* do them
2313 * for registers accessible at EL1).
2314 */
2315 skip_fp_access_checks = true;
2316 if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2317 /*
2318 * This is one of the few EL2 registers which should redirect
2319 * to the equivalent EL1 register. We do that after running
2320 * the EL2 register's accessfn.
2321 */
2322 nv_redirect_reg = true;
2323 assert(!nv2_mem_redirect);
2324 } else if (nv2_mem_redirect) {
2325 /*
2326 * NV2 redirect-to-memory takes precedence over trap to EL2 or
2327 * UNDEF to EL1.
2328 */
2329 } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2330 /*
2331 * This register / instruction exists and is an EL2 register, so
2332 * we must trap to EL2 if accessed in nested virtualization EL1
2333 * instead of UNDEFing. We'll do that after the usual access checks.
2334 * (This makes a difference only for a couple of registers like
2335 * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2336 * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2337 * an accessfn which does nothing when called from EL1, because
2338 * the trap-to-EL3 controls which would apply to that register
2339 * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2340 */
2341 nv_trap_to_el2 = true;
2342 } else {
2343 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2344 return;
2345 }
2346 }
2347
2348 if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2349 /* Emit code to perform further access permissions checks at
2350 * runtime; this may result in an exception.
2351 */
2352 gen_a64_update_pc(s, 0);
2353 tcg_ri = tcg_temp_new_ptr();
2354 gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2355 tcg_constant_i32(key),
2356 tcg_constant_i32(syndrome),
2357 tcg_constant_i32(isread));
2358 } else if (ri->type & ARM_CP_RAISES_EXC) {
2359 /*
2360 * The readfn or writefn might raise an exception;
2361 * synchronize the CPU state in case it does.
2362 */
2363 gen_a64_update_pc(s, 0);
2364 }
2365
2366 if (!skip_fp_access_checks) {
2367 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2368 return;
2369 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2370 return;
2371 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2372 return;
2373 }
2374 }
2375
2376 if (nv_trap_to_el2) {
2377 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2378 return;
2379 }
2380
2381 if (nv_redirect_reg) {
2382 /*
2383 * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2384 * Conveniently in all cases the encoding of the EL1 register is
2385 * identical to the EL2 register except that opc1 is 0.
2386 * Get the reginfo for the EL1 register to use for the actual access.
2387 * We don't use the EL1 register's access function, and
2388 * fine-grained-traps on EL1 also do not apply here.
2389 */
2390 key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2391 crn, crm, op0, 0, op2);
2392 ri = get_arm_cp_reginfo(s->cp_regs, key);
2393 assert(ri);
2394 assert(cp_access_ok(s->current_el, ri, isread));
2395 /*
2396 * We might not have done an update_pc earlier, so check we don't
2397 * need it. We could support this in future if necessary.
2398 */
2399 assert(!(ri->type & ARM_CP_RAISES_EXC));
2400 }
2401
2402 if (nv2_mem_redirect) {
2403 /*
2404 * This system register is being redirected into an EL2 memory access.
2405 * This means it is not an IO operation, doesn't change hflags,
2406 * and need not end the TB, because it has no side effects.
2407 *
2408 * The access is 64-bit single copy atomic, guaranteed aligned because
2409 * of the definition of VCNR_EL2. Its endianness depends on
2410 * SCTLR_EL2.EE, not on the data endianness of EL1.
2411 * It is done under either the EL2 translation regime or the EL2&0
2412 * translation regime, depending on HCR_EL2.E2H. It behaves as if
2413 * PSTATE.PAN is 0.
2414 */
2415 TCGv_i64 ptr = tcg_temp_new_i64();
2416 MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2417 ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2418 int memidx = arm_to_core_mmu_idx(armmemidx);
2419 uint32_t syn;
2420
2421 mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2422
2423 tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2424 tcg_gen_addi_i64(ptr, ptr,
2425 (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2426 tcg_rt = cpu_reg(s, rt);
2427
2428 syn = syn_data_abort_vncr(0, !isread, 0);
2429 disas_set_insn_syndrome(s, syn);
2430 if (isread) {
2431 tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2432 } else {
2433 tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2434 }
2435 return;
2436 }
2437
2438 /* Handle special cases first */
2439 switch (ri->type & ARM_CP_SPECIAL_MASK) {
2440 case 0:
2441 break;
2442 case ARM_CP_NOP:
2443 return;
2444 case ARM_CP_NZCV:
2445 tcg_rt = cpu_reg(s, rt);
2446 if (isread) {
2447 gen_get_nzcv(tcg_rt);
2448 } else {
2449 gen_set_nzcv(tcg_rt);
2450 }
2451 return;
2452 case ARM_CP_CURRENTEL:
2453 {
2454 /*
2455 * Reads as current EL value from pstate, which is
2456 * guaranteed to be constant by the tb flags.
2457 * For nested virt we should report EL2.
2458 */
2459 int el = s->nv ? 2 : s->current_el;
2460 tcg_rt = cpu_reg(s, rt);
2461 tcg_gen_movi_i64(tcg_rt, el << 2);
2462 return;
2463 }
2464 case ARM_CP_DC_ZVA:
2465 /* Writes clear the aligned block of memory which rt points into. */
2466 if (s->mte_active[0]) {
2467 int desc = 0;
2468
2469 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2470 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2471 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2472
2473 tcg_rt = tcg_temp_new_i64();
2474 gen_helper_mte_check_zva(tcg_rt, tcg_env,
2475 tcg_constant_i32(desc), cpu_reg(s, rt));
2476 } else {
2477 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2478 }
2479 gen_helper_dc_zva(tcg_env, tcg_rt);
2480 return;
2481 case ARM_CP_DC_GVA:
2482 {
2483 TCGv_i64 clean_addr, tag;
2484
2485 /*
2486 * DC_GVA, like DC_ZVA, requires that we supply the original
2487 * pointer for an invalid page. Probe that address first.
2488 */
2489 tcg_rt = cpu_reg(s, rt);
2490 clean_addr = clean_data_tbi(s, tcg_rt);
2491 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2492
2493 if (s->ata[0]) {
2494 /* Extract the tag from the register to match STZGM. */
2495 tag = tcg_temp_new_i64();
2496 tcg_gen_shri_i64(tag, tcg_rt, 56);
2497 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2498 }
2499 }
2500 return;
2501 case ARM_CP_DC_GZVA:
2502 {
2503 TCGv_i64 clean_addr, tag;
2504
2505 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2506 tcg_rt = cpu_reg(s, rt);
2507 clean_addr = clean_data_tbi(s, tcg_rt);
2508 gen_helper_dc_zva(tcg_env, clean_addr);
2509
2510 if (s->ata[0]) {
2511 /* Extract the tag from the register to match STZGM. */
2512 tag = tcg_temp_new_i64();
2513 tcg_gen_shri_i64(tag, tcg_rt, 56);
2514 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2515 }
2516 }
2517 return;
2518 default:
2519 g_assert_not_reached();
2520 }
2521
2522 if (ri->type & ARM_CP_IO) {
2523 /* I/O operations must end the TB here (whether read or write) */
2524 need_exit_tb = translator_io_start(&s->base);
2525 }
2526
2527 tcg_rt = cpu_reg(s, rt);
2528
2529 if (isread) {
2530 if (ri->type & ARM_CP_CONST) {
2531 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2532 } else if (ri->readfn) {
2533 if (!tcg_ri) {
2534 tcg_ri = gen_lookup_cp_reg(key);
2535 }
2536 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2537 } else {
2538 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2539 }
2540 } else {
2541 if (ri->type & ARM_CP_CONST) {
2542 /* If not forbidden by access permissions, treat as WI */
2543 return;
2544 } else if (ri->writefn) {
2545 if (!tcg_ri) {
2546 tcg_ri = gen_lookup_cp_reg(key);
2547 }
2548 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2549 } else {
2550 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2551 }
2552 }
2553
2554 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2555 /*
2556 * A write to any coprocessor register that ends a TB
2557 * must rebuild the hflags for the next TB.
2558 */
2559 gen_rebuild_hflags(s);
2560 /*
2561 * We default to ending the TB on a coprocessor register write,
2562 * but allow this to be suppressed by the register definition
2563 * (usually only necessary to work around guest bugs).
2564 */
2565 need_exit_tb = true;
2566 }
2567 if (need_exit_tb) {
2568 s->base.is_jmp = DISAS_UPDATE_EXIT;
2569 }
2570 }
2571
trans_SYS(DisasContext * s,arg_SYS * a)2572 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2573 {
2574 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2575 return true;
2576 }
2577
trans_SVC(DisasContext * s,arg_i * a)2578 static bool trans_SVC(DisasContext *s, arg_i *a)
2579 {
2580 /*
2581 * For SVC, HVC and SMC we advance the single-step state
2582 * machine before taking the exception. This is architecturally
2583 * mandated, to ensure that single-stepping a system call
2584 * instruction works properly.
2585 */
2586 uint32_t syndrome = syn_aa64_svc(a->imm);
2587 if (s->fgt_svc) {
2588 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2589 return true;
2590 }
2591 gen_ss_advance(s);
2592 gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2593 return true;
2594 }
2595
trans_HVC(DisasContext * s,arg_i * a)2596 static bool trans_HVC(DisasContext *s, arg_i *a)
2597 {
2598 int target_el = s->current_el == 3 ? 3 : 2;
2599
2600 if (s->current_el == 0) {
2601 unallocated_encoding(s);
2602 return true;
2603 }
2604 /*
2605 * The pre HVC helper handles cases when HVC gets trapped
2606 * as an undefined insn by runtime configuration.
2607 */
2608 gen_a64_update_pc(s, 0);
2609 gen_helper_pre_hvc(tcg_env);
2610 /* Architecture requires ss advance before we do the actual work */
2611 gen_ss_advance(s);
2612 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2613 return true;
2614 }
2615
trans_SMC(DisasContext * s,arg_i * a)2616 static bool trans_SMC(DisasContext *s, arg_i *a)
2617 {
2618 if (s->current_el == 0) {
2619 unallocated_encoding(s);
2620 return true;
2621 }
2622 gen_a64_update_pc(s, 0);
2623 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2624 /* Architecture requires ss advance before we do the actual work */
2625 gen_ss_advance(s);
2626 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2627 return true;
2628 }
2629
trans_BRK(DisasContext * s,arg_i * a)2630 static bool trans_BRK(DisasContext *s, arg_i *a)
2631 {
2632 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2633 return true;
2634 }
2635
trans_HLT(DisasContext * s,arg_i * a)2636 static bool trans_HLT(DisasContext *s, arg_i *a)
2637 {
2638 /*
2639 * HLT. This has two purposes.
2640 * Architecturally, it is an external halting debug instruction.
2641 * Since QEMU doesn't implement external debug, we treat this as
2642 * it is required for halting debug disabled: it will UNDEF.
2643 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2644 */
2645 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2646 gen_exception_internal_insn(s, EXCP_SEMIHOST);
2647 } else {
2648 unallocated_encoding(s);
2649 }
2650 return true;
2651 }
2652
2653 /*
2654 * Load/Store exclusive instructions are implemented by remembering
2655 * the value/address loaded, and seeing if these are the same
2656 * when the store is performed. This is not actually the architecturally
2657 * mandated semantics, but it works for typical guest code sequences
2658 * and avoids having to monitor regular stores.
2659 *
2660 * The store exclusive uses the atomic cmpxchg primitives to avoid
2661 * races in multi-threaded linux-user and when MTTCG softmmu is
2662 * enabled.
2663 */
gen_load_exclusive(DisasContext * s,int rt,int rt2,int rn,int size,bool is_pair)2664 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2665 int size, bool is_pair)
2666 {
2667 int idx = get_mem_index(s);
2668 TCGv_i64 dirty_addr, clean_addr;
2669 MemOp memop = check_atomic_align(s, rn, size + is_pair);
2670
2671 s->is_ldex = true;
2672 dirty_addr = cpu_reg_sp(s, rn);
2673 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2674
2675 g_assert(size <= 3);
2676 if (is_pair) {
2677 g_assert(size >= 2);
2678 if (size == 2) {
2679 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2680 if (s->be_data == MO_LE) {
2681 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2682 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2683 } else {
2684 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2685 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2686 }
2687 } else {
2688 TCGv_i128 t16 = tcg_temp_new_i128();
2689
2690 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2691
2692 if (s->be_data == MO_LE) {
2693 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2694 cpu_exclusive_high, t16);
2695 } else {
2696 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2697 cpu_exclusive_val, t16);
2698 }
2699 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2700 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2701 }
2702 } else {
2703 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2704 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2705 }
2706 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2707 }
2708
gen_store_exclusive(DisasContext * s,int rd,int rt,int rt2,int rn,int size,int is_pair)2709 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2710 int rn, int size, int is_pair)
2711 {
2712 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2713 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2714 * [addr] = {Rt};
2715 * if (is_pair) {
2716 * [addr + datasize] = {Rt2};
2717 * }
2718 * {Rd} = 0;
2719 * } else {
2720 * {Rd} = 1;
2721 * }
2722 * env->exclusive_addr = -1;
2723 */
2724 TCGLabel *fail_label = gen_new_label();
2725 TCGLabel *done_label = gen_new_label();
2726 TCGv_i64 tmp, clean_addr;
2727 MemOp memop;
2728
2729 /*
2730 * FIXME: We are out of spec here. We have recorded only the address
2731 * from load_exclusive, not the entire range, and we assume that the
2732 * size of the access on both sides match. The architecture allows the
2733 * store to be smaller than the load, so long as the stored bytes are
2734 * within the range recorded by the load.
2735 */
2736
2737 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2738 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2739 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2740
2741 /*
2742 * The write, and any associated faults, only happen if the virtual
2743 * and physical addresses pass the exclusive monitor check. These
2744 * faults are exceedingly unlikely, because normally the guest uses
2745 * the exact same address register for the load_exclusive, and we
2746 * would have recognized these faults there.
2747 *
2748 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2749 * unaligned 4-byte write within the range of an aligned 8-byte load.
2750 * With LSE2, the store would need to cross a 16-byte boundary when the
2751 * load did not, which would mean the store is outside the range
2752 * recorded for the monitor, which would have failed a corrected monitor
2753 * check above. For now, we assume no size change and retain the
2754 * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2755 *
2756 * It is possible to trigger an MTE fault, by performing the load with
2757 * a virtual address with a valid tag and performing the store with the
2758 * same virtual address and a different invalid tag.
2759 */
2760 memop = size + is_pair;
2761 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2762 memop |= MO_ALIGN;
2763 }
2764 memop = finalize_memop(s, memop);
2765 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2766
2767 tmp = tcg_temp_new_i64();
2768 if (is_pair) {
2769 if (size == 2) {
2770 if (s->be_data == MO_LE) {
2771 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2772 } else {
2773 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2774 }
2775 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2776 cpu_exclusive_val, tmp,
2777 get_mem_index(s), memop);
2778 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2779 } else {
2780 TCGv_i128 t16 = tcg_temp_new_i128();
2781 TCGv_i128 c16 = tcg_temp_new_i128();
2782 TCGv_i64 a, b;
2783
2784 if (s->be_data == MO_LE) {
2785 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2786 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2787 cpu_exclusive_high);
2788 } else {
2789 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2790 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2791 cpu_exclusive_val);
2792 }
2793
2794 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2795 get_mem_index(s), memop);
2796
2797 a = tcg_temp_new_i64();
2798 b = tcg_temp_new_i64();
2799 if (s->be_data == MO_LE) {
2800 tcg_gen_extr_i128_i64(a, b, t16);
2801 } else {
2802 tcg_gen_extr_i128_i64(b, a, t16);
2803 }
2804
2805 tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2806 tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2807 tcg_gen_or_i64(tmp, a, b);
2808
2809 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2810 }
2811 } else {
2812 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2813 cpu_reg(s, rt), get_mem_index(s), memop);
2814 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2815 }
2816 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2817 tcg_gen_br(done_label);
2818
2819 gen_set_label(fail_label);
2820 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2821 gen_set_label(done_label);
2822 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2823 }
2824
gen_compare_and_swap(DisasContext * s,int rs,int rt,int rn,int size)2825 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2826 int rn, int size)
2827 {
2828 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2829 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2830 int memidx = get_mem_index(s);
2831 TCGv_i64 clean_addr;
2832 MemOp memop;
2833
2834 if (rn == 31) {
2835 gen_check_sp_alignment(s);
2836 }
2837 memop = check_atomic_align(s, rn, size);
2838 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2839 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2840 memidx, memop);
2841 }
2842
gen_compare_and_swap_pair(DisasContext * s,int rs,int rt,int rn,int size)2843 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2844 int rn, int size)
2845 {
2846 TCGv_i64 s1 = cpu_reg(s, rs);
2847 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2848 TCGv_i64 t1 = cpu_reg(s, rt);
2849 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2850 TCGv_i64 clean_addr;
2851 int memidx = get_mem_index(s);
2852 MemOp memop;
2853
2854 if (rn == 31) {
2855 gen_check_sp_alignment(s);
2856 }
2857
2858 /* This is a single atomic access, despite the "pair". */
2859 memop = check_atomic_align(s, rn, size + 1);
2860 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2861
2862 if (size == 2) {
2863 TCGv_i64 cmp = tcg_temp_new_i64();
2864 TCGv_i64 val = tcg_temp_new_i64();
2865
2866 if (s->be_data == MO_LE) {
2867 tcg_gen_concat32_i64(val, t1, t2);
2868 tcg_gen_concat32_i64(cmp, s1, s2);
2869 } else {
2870 tcg_gen_concat32_i64(val, t2, t1);
2871 tcg_gen_concat32_i64(cmp, s2, s1);
2872 }
2873
2874 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2875
2876 if (s->be_data == MO_LE) {
2877 tcg_gen_extr32_i64(s1, s2, cmp);
2878 } else {
2879 tcg_gen_extr32_i64(s2, s1, cmp);
2880 }
2881 } else {
2882 TCGv_i128 cmp = tcg_temp_new_i128();
2883 TCGv_i128 val = tcg_temp_new_i128();
2884
2885 if (s->be_data == MO_LE) {
2886 tcg_gen_concat_i64_i128(val, t1, t2);
2887 tcg_gen_concat_i64_i128(cmp, s1, s2);
2888 } else {
2889 tcg_gen_concat_i64_i128(val, t2, t1);
2890 tcg_gen_concat_i64_i128(cmp, s2, s1);
2891 }
2892
2893 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2894
2895 if (s->be_data == MO_LE) {
2896 tcg_gen_extr_i128_i64(s1, s2, cmp);
2897 } else {
2898 tcg_gen_extr_i128_i64(s2, s1, cmp);
2899 }
2900 }
2901 }
2902
2903 /*
2904 * Compute the ISS.SF bit for syndrome information if an exception
2905 * is taken on a load or store. This indicates whether the instruction
2906 * is accessing a 32-bit or 64-bit register. This logic is derived
2907 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2908 */
ldst_iss_sf(int size,bool sign,bool ext)2909 static bool ldst_iss_sf(int size, bool sign, bool ext)
2910 {
2911
2912 if (sign) {
2913 /*
2914 * Signed loads are 64 bit results if we are not going to
2915 * do a zero-extend from 32 to 64 after the load.
2916 * (For a store, sign and ext are always false.)
2917 */
2918 return !ext;
2919 } else {
2920 /* Unsigned loads/stores work at the specified size */
2921 return size == MO_64;
2922 }
2923 }
2924
trans_STXR(DisasContext * s,arg_stxr * a)2925 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2926 {
2927 if (a->rn == 31) {
2928 gen_check_sp_alignment(s);
2929 }
2930 if (a->lasr) {
2931 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2932 }
2933 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2934 return true;
2935 }
2936
trans_LDXR(DisasContext * s,arg_stxr * a)2937 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2938 {
2939 if (a->rn == 31) {
2940 gen_check_sp_alignment(s);
2941 }
2942 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2943 if (a->lasr) {
2944 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2945 }
2946 return true;
2947 }
2948
trans_STLR(DisasContext * s,arg_stlr * a)2949 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2950 {
2951 TCGv_i64 clean_addr;
2952 MemOp memop;
2953 bool iss_sf = ldst_iss_sf(a->sz, false, false);
2954
2955 /*
2956 * StoreLORelease is the same as Store-Release for QEMU, but
2957 * needs the feature-test.
2958 */
2959 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2960 return false;
2961 }
2962 /* Generate ISS for non-exclusive accesses including LASR. */
2963 if (a->rn == 31) {
2964 gen_check_sp_alignment(s);
2965 }
2966 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2967 memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2968 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2969 true, a->rn != 31, memop);
2970 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2971 iss_sf, a->lasr);
2972 return true;
2973 }
2974
trans_LDAR(DisasContext * s,arg_stlr * a)2975 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2976 {
2977 TCGv_i64 clean_addr;
2978 MemOp memop;
2979 bool iss_sf = ldst_iss_sf(a->sz, false, false);
2980
2981 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2982 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2983 return false;
2984 }
2985 /* Generate ISS for non-exclusive accesses including LASR. */
2986 if (a->rn == 31) {
2987 gen_check_sp_alignment(s);
2988 }
2989 memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2990 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2991 false, a->rn != 31, memop);
2992 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2993 a->rt, iss_sf, a->lasr);
2994 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2995 return true;
2996 }
2997
trans_STXP(DisasContext * s,arg_stxr * a)2998 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2999 {
3000 if (a->rn == 31) {
3001 gen_check_sp_alignment(s);
3002 }
3003 if (a->lasr) {
3004 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3005 }
3006 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
3007 return true;
3008 }
3009
trans_LDXP(DisasContext * s,arg_stxr * a)3010 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
3011 {
3012 if (a->rn == 31) {
3013 gen_check_sp_alignment(s);
3014 }
3015 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
3016 if (a->lasr) {
3017 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3018 }
3019 return true;
3020 }
3021
trans_CASP(DisasContext * s,arg_CASP * a)3022 static bool trans_CASP(DisasContext *s, arg_CASP *a)
3023 {
3024 if (!dc_isar_feature(aa64_atomics, s)) {
3025 return false;
3026 }
3027 if (((a->rt | a->rs) & 1) != 0) {
3028 return false;
3029 }
3030
3031 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
3032 return true;
3033 }
3034
trans_CAS(DisasContext * s,arg_CAS * a)3035 static bool trans_CAS(DisasContext *s, arg_CAS *a)
3036 {
3037 if (!dc_isar_feature(aa64_atomics, s)) {
3038 return false;
3039 }
3040 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
3041 return true;
3042 }
3043
trans_LD_lit(DisasContext * s,arg_ldlit * a)3044 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
3045 {
3046 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
3047 TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
3048 TCGv_i64 clean_addr = tcg_temp_new_i64();
3049 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3050
3051 gen_pc_plus_diff(s, clean_addr, a->imm);
3052 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3053 false, true, a->rt, iss_sf, false);
3054 return true;
3055 }
3056
trans_LD_lit_v(DisasContext * s,arg_ldlit * a)3057 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3058 {
3059 /* Load register (literal), vector version */
3060 TCGv_i64 clean_addr;
3061 MemOp memop;
3062
3063 if (!fp_access_check(s)) {
3064 return true;
3065 }
3066 memop = finalize_memop_asimd(s, a->sz);
3067 clean_addr = tcg_temp_new_i64();
3068 gen_pc_plus_diff(s, clean_addr, a->imm);
3069 do_fp_ld(s, a->rt, clean_addr, memop);
3070 return true;
3071 }
3072
op_addr_ldstpair_pre(DisasContext * s,arg_ldstpair * a,TCGv_i64 * clean_addr,TCGv_i64 * dirty_addr,uint64_t offset,bool is_store,MemOp mop)3073 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3074 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3075 uint64_t offset, bool is_store, MemOp mop)
3076 {
3077 if (a->rn == 31) {
3078 gen_check_sp_alignment(s);
3079 }
3080
3081 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3082 if (!a->p) {
3083 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3084 }
3085
3086 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3087 (a->w || a->rn != 31), 2 << a->sz, mop);
3088 }
3089
op_addr_ldstpair_post(DisasContext * s,arg_ldstpair * a,TCGv_i64 dirty_addr,uint64_t offset)3090 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3091 TCGv_i64 dirty_addr, uint64_t offset)
3092 {
3093 if (a->w) {
3094 if (a->p) {
3095 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3096 }
3097 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3098 }
3099 }
3100
trans_STP(DisasContext * s,arg_ldstpair * a)3101 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3102 {
3103 uint64_t offset = a->imm << a->sz;
3104 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3105 MemOp mop = finalize_memop(s, a->sz);
3106
3107 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3108 tcg_rt = cpu_reg(s, a->rt);
3109 tcg_rt2 = cpu_reg(s, a->rt2);
3110 /*
3111 * We built mop above for the single logical access -- rebuild it
3112 * now for the paired operation.
3113 *
3114 * With LSE2, non-sign-extending pairs are treated atomically if
3115 * aligned, and if unaligned one of the pair will be completely
3116 * within a 16-byte block and that element will be atomic.
3117 * Otherwise each element is separately atomic.
3118 * In all cases, issue one operation with the correct atomicity.
3119 */
3120 mop = a->sz + 1;
3121 if (s->align_mem) {
3122 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3123 }
3124 mop = finalize_memop_pair(s, mop);
3125 if (a->sz == 2) {
3126 TCGv_i64 tmp = tcg_temp_new_i64();
3127
3128 if (s->be_data == MO_LE) {
3129 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3130 } else {
3131 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3132 }
3133 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3134 } else {
3135 TCGv_i128 tmp = tcg_temp_new_i128();
3136
3137 if (s->be_data == MO_LE) {
3138 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3139 } else {
3140 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3141 }
3142 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3143 }
3144 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3145 return true;
3146 }
3147
trans_LDP(DisasContext * s,arg_ldstpair * a)3148 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3149 {
3150 uint64_t offset = a->imm << a->sz;
3151 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3152 MemOp mop = finalize_memop(s, a->sz);
3153
3154 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3155 tcg_rt = cpu_reg(s, a->rt);
3156 tcg_rt2 = cpu_reg(s, a->rt2);
3157
3158 /*
3159 * We built mop above for the single logical access -- rebuild it
3160 * now for the paired operation.
3161 *
3162 * With LSE2, non-sign-extending pairs are treated atomically if
3163 * aligned, and if unaligned one of the pair will be completely
3164 * within a 16-byte block and that element will be atomic.
3165 * Otherwise each element is separately atomic.
3166 * In all cases, issue one operation with the correct atomicity.
3167 *
3168 * This treats sign-extending loads like zero-extending loads,
3169 * since that reuses the most code below.
3170 */
3171 mop = a->sz + 1;
3172 if (s->align_mem) {
3173 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3174 }
3175 mop = finalize_memop_pair(s, mop);
3176 if (a->sz == 2) {
3177 int o2 = s->be_data == MO_LE ? 32 : 0;
3178 int o1 = o2 ^ 32;
3179
3180 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3181 if (a->sign) {
3182 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3183 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3184 } else {
3185 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3186 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3187 }
3188 } else {
3189 TCGv_i128 tmp = tcg_temp_new_i128();
3190
3191 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3192 if (s->be_data == MO_LE) {
3193 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3194 } else {
3195 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3196 }
3197 }
3198 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3199 return true;
3200 }
3201
trans_STP_v(DisasContext * s,arg_ldstpair * a)3202 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3203 {
3204 uint64_t offset = a->imm << a->sz;
3205 TCGv_i64 clean_addr, dirty_addr;
3206 MemOp mop;
3207
3208 if (!fp_access_check(s)) {
3209 return true;
3210 }
3211
3212 /* LSE2 does not merge FP pairs; leave these as separate operations. */
3213 mop = finalize_memop_asimd(s, a->sz);
3214 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3215 do_fp_st(s, a->rt, clean_addr, mop);
3216 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3217 do_fp_st(s, a->rt2, clean_addr, mop);
3218 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3219 return true;
3220 }
3221
trans_LDP_v(DisasContext * s,arg_ldstpair * a)3222 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3223 {
3224 uint64_t offset = a->imm << a->sz;
3225 TCGv_i64 clean_addr, dirty_addr;
3226 MemOp mop;
3227
3228 if (!fp_access_check(s)) {
3229 return true;
3230 }
3231
3232 /* LSE2 does not merge FP pairs; leave these as separate operations. */
3233 mop = finalize_memop_asimd(s, a->sz);
3234 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3235 do_fp_ld(s, a->rt, clean_addr, mop);
3236 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3237 do_fp_ld(s, a->rt2, clean_addr, mop);
3238 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3239 return true;
3240 }
3241
trans_STGP(DisasContext * s,arg_ldstpair * a)3242 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3243 {
3244 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3245 uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3246 MemOp mop;
3247 TCGv_i128 tmp;
3248
3249 /* STGP only comes in one size. */
3250 tcg_debug_assert(a->sz == MO_64);
3251
3252 if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3253 return false;
3254 }
3255
3256 if (a->rn == 31) {
3257 gen_check_sp_alignment(s);
3258 }
3259
3260 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3261 if (!a->p) {
3262 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3263 }
3264
3265 clean_addr = clean_data_tbi(s, dirty_addr);
3266 tcg_rt = cpu_reg(s, a->rt);
3267 tcg_rt2 = cpu_reg(s, a->rt2);
3268
3269 /*
3270 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3271 * and one tag operation. We implement it as one single aligned 16-byte
3272 * memory operation for convenience. Note that the alignment ensures
3273 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3274 */
3275 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3276
3277 tmp = tcg_temp_new_i128();
3278 if (s->be_data == MO_LE) {
3279 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3280 } else {
3281 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3282 }
3283 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3284
3285 /* Perform the tag store, if tag access enabled. */
3286 if (s->ata[0]) {
3287 if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3288 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3289 } else {
3290 gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3291 }
3292 }
3293
3294 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3295 return true;
3296 }
3297
op_addr_ldst_imm_pre(DisasContext * s,arg_ldst_imm * a,TCGv_i64 * clean_addr,TCGv_i64 * dirty_addr,uint64_t offset,bool is_store,MemOp mop)3298 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3299 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3300 uint64_t offset, bool is_store, MemOp mop)
3301 {
3302 int memidx;
3303
3304 if (a->rn == 31) {
3305 gen_check_sp_alignment(s);
3306 }
3307
3308 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3309 if (!a->p) {
3310 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3311 }
3312 memidx = get_a64_user_mem_index(s, a->unpriv);
3313 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3314 a->w || a->rn != 31,
3315 mop, a->unpriv, memidx);
3316 }
3317
op_addr_ldst_imm_post(DisasContext * s,arg_ldst_imm * a,TCGv_i64 dirty_addr,uint64_t offset)3318 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3319 TCGv_i64 dirty_addr, uint64_t offset)
3320 {
3321 if (a->w) {
3322 if (a->p) {
3323 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3324 }
3325 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3326 }
3327 }
3328
trans_STR_i(DisasContext * s,arg_ldst_imm * a)3329 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3330 {
3331 bool iss_sf, iss_valid = !a->w;
3332 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3333 int memidx = get_a64_user_mem_index(s, a->unpriv);
3334 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3335
3336 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3337
3338 tcg_rt = cpu_reg(s, a->rt);
3339 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3340
3341 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3342 iss_valid, a->rt, iss_sf, false);
3343 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3344 return true;
3345 }
3346
trans_LDR_i(DisasContext * s,arg_ldst_imm * a)3347 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3348 {
3349 bool iss_sf, iss_valid = !a->w;
3350 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3351 int memidx = get_a64_user_mem_index(s, a->unpriv);
3352 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3353
3354 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3355
3356 tcg_rt = cpu_reg(s, a->rt);
3357 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3358
3359 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3360 a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3361 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3362 return true;
3363 }
3364
trans_STR_v_i(DisasContext * s,arg_ldst_imm * a)3365 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3366 {
3367 TCGv_i64 clean_addr, dirty_addr;
3368 MemOp mop;
3369
3370 if (!fp_access_check(s)) {
3371 return true;
3372 }
3373 mop = finalize_memop_asimd(s, a->sz);
3374 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3375 do_fp_st(s, a->rt, clean_addr, mop);
3376 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3377 return true;
3378 }
3379
trans_LDR_v_i(DisasContext * s,arg_ldst_imm * a)3380 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3381 {
3382 TCGv_i64 clean_addr, dirty_addr;
3383 MemOp mop;
3384
3385 if (!fp_access_check(s)) {
3386 return true;
3387 }
3388 mop = finalize_memop_asimd(s, a->sz);
3389 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3390 do_fp_ld(s, a->rt, clean_addr, mop);
3391 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3392 return true;
3393 }
3394
op_addr_ldst_pre(DisasContext * s,arg_ldst * a,TCGv_i64 * clean_addr,TCGv_i64 * dirty_addr,bool is_store,MemOp memop)3395 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3396 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3397 bool is_store, MemOp memop)
3398 {
3399 TCGv_i64 tcg_rm;
3400
3401 if (a->rn == 31) {
3402 gen_check_sp_alignment(s);
3403 }
3404 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3405
3406 tcg_rm = read_cpu_reg(s, a->rm, 1);
3407 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3408
3409 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3410 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3411 }
3412
trans_LDR(DisasContext * s,arg_ldst * a)3413 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3414 {
3415 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3416 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3417 MemOp memop;
3418
3419 if (extract32(a->opt, 1, 1) == 0) {
3420 return false;
3421 }
3422
3423 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3424 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3425 tcg_rt = cpu_reg(s, a->rt);
3426 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3427 a->ext, true, a->rt, iss_sf, false);
3428 return true;
3429 }
3430
trans_STR(DisasContext * s,arg_ldst * a)3431 static bool trans_STR(DisasContext *s, arg_ldst *a)
3432 {
3433 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3434 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3435 MemOp memop;
3436
3437 if (extract32(a->opt, 1, 1) == 0) {
3438 return false;
3439 }
3440
3441 memop = finalize_memop(s, a->sz);
3442 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3443 tcg_rt = cpu_reg(s, a->rt);
3444 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3445 return true;
3446 }
3447
trans_LDR_v(DisasContext * s,arg_ldst * a)3448 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3449 {
3450 TCGv_i64 clean_addr, dirty_addr;
3451 MemOp memop;
3452
3453 if (extract32(a->opt, 1, 1) == 0) {
3454 return false;
3455 }
3456
3457 if (!fp_access_check(s)) {
3458 return true;
3459 }
3460
3461 memop = finalize_memop_asimd(s, a->sz);
3462 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3463 do_fp_ld(s, a->rt, clean_addr, memop);
3464 return true;
3465 }
3466
trans_STR_v(DisasContext * s,arg_ldst * a)3467 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3468 {
3469 TCGv_i64 clean_addr, dirty_addr;
3470 MemOp memop;
3471
3472 if (extract32(a->opt, 1, 1) == 0) {
3473 return false;
3474 }
3475
3476 if (!fp_access_check(s)) {
3477 return true;
3478 }
3479
3480 memop = finalize_memop_asimd(s, a->sz);
3481 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3482 do_fp_st(s, a->rt, clean_addr, memop);
3483 return true;
3484 }
3485
3486
do_atomic_ld(DisasContext * s,arg_atomic * a,AtomicThreeOpFn * fn,int sign,bool invert)3487 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3488 int sign, bool invert)
3489 {
3490 MemOp mop = a->sz | sign;
3491 TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3492
3493 if (a->rn == 31) {
3494 gen_check_sp_alignment(s);
3495 }
3496 mop = check_atomic_align(s, a->rn, mop);
3497 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3498 a->rn != 31, mop);
3499 tcg_rs = read_cpu_reg(s, a->rs, true);
3500 tcg_rt = cpu_reg(s, a->rt);
3501 if (invert) {
3502 tcg_gen_not_i64(tcg_rs, tcg_rs);
3503 }
3504 /*
3505 * The tcg atomic primitives are all full barriers. Therefore we
3506 * can ignore the Acquire and Release bits of this instruction.
3507 */
3508 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3509
3510 if (mop & MO_SIGN) {
3511 switch (a->sz) {
3512 case MO_8:
3513 tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3514 break;
3515 case MO_16:
3516 tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3517 break;
3518 case MO_32:
3519 tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3520 break;
3521 case MO_64:
3522 break;
3523 default:
3524 g_assert_not_reached();
3525 }
3526 }
3527 return true;
3528 }
3529
3530 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3531 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3532 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3533 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
TRANS_FEAT(LDSMAX,aa64_atomics,do_atomic_ld,a,tcg_gen_atomic_fetch_smax_i64,MO_SIGN,false)3534 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3535 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3536 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3537 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3538 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3539
3540 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3541 {
3542 bool iss_sf = ldst_iss_sf(a->sz, false, false);
3543 TCGv_i64 clean_addr;
3544 MemOp mop;
3545
3546 if (!dc_isar_feature(aa64_atomics, s) ||
3547 !dc_isar_feature(aa64_rcpc_8_3, s)) {
3548 return false;
3549 }
3550 if (a->rn == 31) {
3551 gen_check_sp_alignment(s);
3552 }
3553 mop = check_ordered_align(s, a->rn, 0, false, a->sz);
3554 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3555 a->rn != 31, mop);
3556 /*
3557 * LDAPR* are a special case because they are a simple load, not a
3558 * fetch-and-do-something op.
3559 * The architectural consistency requirements here are weaker than
3560 * full load-acquire (we only need "load-acquire processor consistent"),
3561 * but we choose to implement them as full LDAQ.
3562 */
3563 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3564 true, a->rt, iss_sf, true);
3565 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3566 return true;
3567 }
3568
trans_LDRA(DisasContext * s,arg_LDRA * a)3569 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3570 {
3571 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3572 MemOp memop;
3573
3574 /* Load with pointer authentication */
3575 if (!dc_isar_feature(aa64_pauth, s)) {
3576 return false;
3577 }
3578
3579 if (a->rn == 31) {
3580 gen_check_sp_alignment(s);
3581 }
3582 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3583
3584 if (s->pauth_active) {
3585 if (!a->m) {
3586 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3587 tcg_constant_i64(0));
3588 } else {
3589 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3590 tcg_constant_i64(0));
3591 }
3592 }
3593
3594 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3595
3596 memop = finalize_memop(s, MO_64);
3597
3598 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3599 clean_addr = gen_mte_check1(s, dirty_addr, false,
3600 a->w || a->rn != 31, memop);
3601
3602 tcg_rt = cpu_reg(s, a->rt);
3603 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3604 /* extend */ false, /* iss_valid */ !a->w,
3605 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3606
3607 if (a->w) {
3608 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3609 }
3610 return true;
3611 }
3612
trans_LDAPR_i(DisasContext * s,arg_ldapr_stlr_i * a)3613 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3614 {
3615 TCGv_i64 clean_addr, dirty_addr;
3616 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3617 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3618
3619 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3620 return false;
3621 }
3622
3623 if (a->rn == 31) {
3624 gen_check_sp_alignment(s);
3625 }
3626
3627 mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3628 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3629 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3630 clean_addr = clean_data_tbi(s, dirty_addr);
3631
3632 /*
3633 * Load-AcquirePC semantics; we implement as the slightly more
3634 * restrictive Load-Acquire.
3635 */
3636 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3637 a->rt, iss_sf, true);
3638 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3639 return true;
3640 }
3641
trans_STLR_i(DisasContext * s,arg_ldapr_stlr_i * a)3642 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3643 {
3644 TCGv_i64 clean_addr, dirty_addr;
3645 MemOp mop = a->sz;
3646 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3647
3648 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3649 return false;
3650 }
3651
3652 /* TODO: ARMv8.4-LSE SCTLR.nAA */
3653
3654 if (a->rn == 31) {
3655 gen_check_sp_alignment(s);
3656 }
3657
3658 mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3659 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3660 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3661 clean_addr = clean_data_tbi(s, dirty_addr);
3662
3663 /* Store-Release semantics */
3664 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3665 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3666 return true;
3667 }
3668
trans_LD_mult(DisasContext * s,arg_ldst_mult * a)3669 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3670 {
3671 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3672 MemOp endian, align, mop;
3673
3674 int total; /* total bytes */
3675 int elements; /* elements per vector */
3676 int r;
3677 int size = a->sz;
3678
3679 if (!a->p && a->rm != 0) {
3680 /* For non-postindexed accesses the Rm field must be 0 */
3681 return false;
3682 }
3683 if (size == 3 && !a->q && a->selem != 1) {
3684 return false;
3685 }
3686 if (!fp_access_check(s)) {
3687 return true;
3688 }
3689
3690 if (a->rn == 31) {
3691 gen_check_sp_alignment(s);
3692 }
3693
3694 /* For our purposes, bytes are always little-endian. */
3695 endian = s->be_data;
3696 if (size == 0) {
3697 endian = MO_LE;
3698 }
3699
3700 total = a->rpt * a->selem * (a->q ? 16 : 8);
3701 tcg_rn = cpu_reg_sp(s, a->rn);
3702
3703 /*
3704 * Issue the MTE check vs the logical repeat count, before we
3705 * promote consecutive little-endian elements below.
3706 */
3707 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3708 finalize_memop_asimd(s, size));
3709
3710 /*
3711 * Consecutive little-endian elements from a single register
3712 * can be promoted to a larger little-endian operation.
3713 */
3714 align = MO_ALIGN;
3715 if (a->selem == 1 && endian == MO_LE) {
3716 align = pow2_align(size);
3717 size = 3;
3718 }
3719 if (!s->align_mem) {
3720 align = 0;
3721 }
3722 mop = endian | size | align;
3723
3724 elements = (a->q ? 16 : 8) >> size;
3725 tcg_ebytes = tcg_constant_i64(1 << size);
3726 for (r = 0; r < a->rpt; r++) {
3727 int e;
3728 for (e = 0; e < elements; e++) {
3729 int xs;
3730 for (xs = 0; xs < a->selem; xs++) {
3731 int tt = (a->rt + r + xs) % 32;
3732 do_vec_ld(s, tt, e, clean_addr, mop);
3733 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3734 }
3735 }
3736 }
3737
3738 /*
3739 * For non-quad operations, setting a slice of the low 64 bits of
3740 * the register clears the high 64 bits (in the ARM ARM pseudocode
3741 * this is implicit in the fact that 'rval' is a 64 bit wide
3742 * variable). For quad operations, we might still need to zero
3743 * the high bits of SVE.
3744 */
3745 for (r = 0; r < a->rpt * a->selem; r++) {
3746 int tt = (a->rt + r) % 32;
3747 clear_vec_high(s, a->q, tt);
3748 }
3749
3750 if (a->p) {
3751 if (a->rm == 31) {
3752 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3753 } else {
3754 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3755 }
3756 }
3757 return true;
3758 }
3759
trans_ST_mult(DisasContext * s,arg_ldst_mult * a)3760 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3761 {
3762 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3763 MemOp endian, align, mop;
3764
3765 int total; /* total bytes */
3766 int elements; /* elements per vector */
3767 int r;
3768 int size = a->sz;
3769
3770 if (!a->p && a->rm != 0) {
3771 /* For non-postindexed accesses the Rm field must be 0 */
3772 return false;
3773 }
3774 if (size == 3 && !a->q && a->selem != 1) {
3775 return false;
3776 }
3777 if (!fp_access_check(s)) {
3778 return true;
3779 }
3780
3781 if (a->rn == 31) {
3782 gen_check_sp_alignment(s);
3783 }
3784
3785 /* For our purposes, bytes are always little-endian. */
3786 endian = s->be_data;
3787 if (size == 0) {
3788 endian = MO_LE;
3789 }
3790
3791 total = a->rpt * a->selem * (a->q ? 16 : 8);
3792 tcg_rn = cpu_reg_sp(s, a->rn);
3793
3794 /*
3795 * Issue the MTE check vs the logical repeat count, before we
3796 * promote consecutive little-endian elements below.
3797 */
3798 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3799 finalize_memop_asimd(s, size));
3800
3801 /*
3802 * Consecutive little-endian elements from a single register
3803 * can be promoted to a larger little-endian operation.
3804 */
3805 align = MO_ALIGN;
3806 if (a->selem == 1 && endian == MO_LE) {
3807 align = pow2_align(size);
3808 size = 3;
3809 }
3810 if (!s->align_mem) {
3811 align = 0;
3812 }
3813 mop = endian | size | align;
3814
3815 elements = (a->q ? 16 : 8) >> size;
3816 tcg_ebytes = tcg_constant_i64(1 << size);
3817 for (r = 0; r < a->rpt; r++) {
3818 int e;
3819 for (e = 0; e < elements; e++) {
3820 int xs;
3821 for (xs = 0; xs < a->selem; xs++) {
3822 int tt = (a->rt + r + xs) % 32;
3823 do_vec_st(s, tt, e, clean_addr, mop);
3824 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3825 }
3826 }
3827 }
3828
3829 if (a->p) {
3830 if (a->rm == 31) {
3831 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3832 } else {
3833 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3834 }
3835 }
3836 return true;
3837 }
3838
trans_ST_single(DisasContext * s,arg_ldst_single * a)3839 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3840 {
3841 int xs, total, rt;
3842 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3843 MemOp mop;
3844
3845 if (!a->p && a->rm != 0) {
3846 return false;
3847 }
3848 if (!fp_access_check(s)) {
3849 return true;
3850 }
3851
3852 if (a->rn == 31) {
3853 gen_check_sp_alignment(s);
3854 }
3855
3856 total = a->selem << a->scale;
3857 tcg_rn = cpu_reg_sp(s, a->rn);
3858
3859 mop = finalize_memop_asimd(s, a->scale);
3860 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3861 total, mop);
3862
3863 tcg_ebytes = tcg_constant_i64(1 << a->scale);
3864 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3865 do_vec_st(s, rt, a->index, clean_addr, mop);
3866 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3867 }
3868
3869 if (a->p) {
3870 if (a->rm == 31) {
3871 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3872 } else {
3873 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3874 }
3875 }
3876 return true;
3877 }
3878
trans_LD_single(DisasContext * s,arg_ldst_single * a)3879 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3880 {
3881 int xs, total, rt;
3882 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3883 MemOp mop;
3884
3885 if (!a->p && a->rm != 0) {
3886 return false;
3887 }
3888 if (!fp_access_check(s)) {
3889 return true;
3890 }
3891
3892 if (a->rn == 31) {
3893 gen_check_sp_alignment(s);
3894 }
3895
3896 total = a->selem << a->scale;
3897 tcg_rn = cpu_reg_sp(s, a->rn);
3898
3899 mop = finalize_memop_asimd(s, a->scale);
3900 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3901 total, mop);
3902
3903 tcg_ebytes = tcg_constant_i64(1 << a->scale);
3904 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3905 do_vec_ld(s, rt, a->index, clean_addr, mop);
3906 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3907 }
3908
3909 if (a->p) {
3910 if (a->rm == 31) {
3911 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3912 } else {
3913 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3914 }
3915 }
3916 return true;
3917 }
3918
trans_LD_single_repl(DisasContext * s,arg_LD_single_repl * a)3919 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3920 {
3921 int xs, total, rt;
3922 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3923 MemOp mop;
3924
3925 if (!a->p && a->rm != 0) {
3926 return false;
3927 }
3928 if (!fp_access_check(s)) {
3929 return true;
3930 }
3931
3932 if (a->rn == 31) {
3933 gen_check_sp_alignment(s);
3934 }
3935
3936 total = a->selem << a->scale;
3937 tcg_rn = cpu_reg_sp(s, a->rn);
3938
3939 mop = finalize_memop_asimd(s, a->scale);
3940 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3941 total, mop);
3942
3943 tcg_ebytes = tcg_constant_i64(1 << a->scale);
3944 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3945 /* Load and replicate to all elements */
3946 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3947
3948 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3949 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3950 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3951 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3952 }
3953
3954 if (a->p) {
3955 if (a->rm == 31) {
3956 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3957 } else {
3958 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3959 }
3960 }
3961 return true;
3962 }
3963
trans_STZGM(DisasContext * s,arg_ldst_tag * a)3964 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3965 {
3966 TCGv_i64 addr, clean_addr, tcg_rt;
3967 int size = 4 << s->dcz_blocksize;
3968
3969 if (!dc_isar_feature(aa64_mte, s)) {
3970 return false;
3971 }
3972 if (s->current_el == 0) {
3973 return false;
3974 }
3975
3976 if (a->rn == 31) {
3977 gen_check_sp_alignment(s);
3978 }
3979
3980 addr = read_cpu_reg_sp(s, a->rn, true);
3981 tcg_gen_addi_i64(addr, addr, a->imm);
3982 tcg_rt = cpu_reg(s, a->rt);
3983
3984 if (s->ata[0]) {
3985 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3986 }
3987 /*
3988 * The non-tags portion of STZGM is mostly like DC_ZVA,
3989 * except the alignment happens before the access.
3990 */
3991 clean_addr = clean_data_tbi(s, addr);
3992 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3993 gen_helper_dc_zva(tcg_env, clean_addr);
3994 return true;
3995 }
3996
trans_STGM(DisasContext * s,arg_ldst_tag * a)3997 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3998 {
3999 TCGv_i64 addr, clean_addr, tcg_rt;
4000
4001 if (!dc_isar_feature(aa64_mte, s)) {
4002 return false;
4003 }
4004 if (s->current_el == 0) {
4005 return false;
4006 }
4007
4008 if (a->rn == 31) {
4009 gen_check_sp_alignment(s);
4010 }
4011
4012 addr = read_cpu_reg_sp(s, a->rn, true);
4013 tcg_gen_addi_i64(addr, addr, a->imm);
4014 tcg_rt = cpu_reg(s, a->rt);
4015
4016 if (s->ata[0]) {
4017 gen_helper_stgm(tcg_env, addr, tcg_rt);
4018 } else {
4019 MMUAccessType acc = MMU_DATA_STORE;
4020 int size = 4 << s->gm_blocksize;
4021
4022 clean_addr = clean_data_tbi(s, addr);
4023 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4024 gen_probe_access(s, clean_addr, acc, size);
4025 }
4026 return true;
4027 }
4028
trans_LDGM(DisasContext * s,arg_ldst_tag * a)4029 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
4030 {
4031 TCGv_i64 addr, clean_addr, tcg_rt;
4032
4033 if (!dc_isar_feature(aa64_mte, s)) {
4034 return false;
4035 }
4036 if (s->current_el == 0) {
4037 return false;
4038 }
4039
4040 if (a->rn == 31) {
4041 gen_check_sp_alignment(s);
4042 }
4043
4044 addr = read_cpu_reg_sp(s, a->rn, true);
4045 tcg_gen_addi_i64(addr, addr, a->imm);
4046 tcg_rt = cpu_reg(s, a->rt);
4047
4048 if (s->ata[0]) {
4049 gen_helper_ldgm(tcg_rt, tcg_env, addr);
4050 } else {
4051 MMUAccessType acc = MMU_DATA_LOAD;
4052 int size = 4 << s->gm_blocksize;
4053
4054 clean_addr = clean_data_tbi(s, addr);
4055 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4056 gen_probe_access(s, clean_addr, acc, size);
4057 /* The result tags are zeros. */
4058 tcg_gen_movi_i64(tcg_rt, 0);
4059 }
4060 return true;
4061 }
4062
trans_LDG(DisasContext * s,arg_ldst_tag * a)4063 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4064 {
4065 TCGv_i64 addr, clean_addr, tcg_rt;
4066
4067 if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4068 return false;
4069 }
4070
4071 if (a->rn == 31) {
4072 gen_check_sp_alignment(s);
4073 }
4074
4075 addr = read_cpu_reg_sp(s, a->rn, true);
4076 if (!a->p) {
4077 /* pre-index or signed offset */
4078 tcg_gen_addi_i64(addr, addr, a->imm);
4079 }
4080
4081 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4082 tcg_rt = cpu_reg(s, a->rt);
4083 if (s->ata[0]) {
4084 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4085 } else {
4086 /*
4087 * Tag access disabled: we must check for aborts on the load
4088 * load from [rn+offset], and then insert a 0 tag into rt.
4089 */
4090 clean_addr = clean_data_tbi(s, addr);
4091 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4092 gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4093 }
4094
4095 if (a->w) {
4096 /* pre-index or post-index */
4097 if (a->p) {
4098 /* post-index */
4099 tcg_gen_addi_i64(addr, addr, a->imm);
4100 }
4101 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4102 }
4103 return true;
4104 }
4105
do_STG(DisasContext * s,arg_ldst_tag * a,bool is_zero,bool is_pair)4106 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4107 {
4108 TCGv_i64 addr, tcg_rt;
4109
4110 if (a->rn == 31) {
4111 gen_check_sp_alignment(s);
4112 }
4113
4114 addr = read_cpu_reg_sp(s, a->rn, true);
4115 if (!a->p) {
4116 /* pre-index or signed offset */
4117 tcg_gen_addi_i64(addr, addr, a->imm);
4118 }
4119 tcg_rt = cpu_reg_sp(s, a->rt);
4120 if (!s->ata[0]) {
4121 /*
4122 * For STG and ST2G, we need to check alignment and probe memory.
4123 * TODO: For STZG and STZ2G, we could rely on the stores below,
4124 * at least for system mode; user-only won't enforce alignment.
4125 */
4126 if (is_pair) {
4127 gen_helper_st2g_stub(tcg_env, addr);
4128 } else {
4129 gen_helper_stg_stub(tcg_env, addr);
4130 }
4131 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4132 if (is_pair) {
4133 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4134 } else {
4135 gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4136 }
4137 } else {
4138 if (is_pair) {
4139 gen_helper_st2g(tcg_env, addr, tcg_rt);
4140 } else {
4141 gen_helper_stg(tcg_env, addr, tcg_rt);
4142 }
4143 }
4144
4145 if (is_zero) {
4146 TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4147 TCGv_i64 zero64 = tcg_constant_i64(0);
4148 TCGv_i128 zero128 = tcg_temp_new_i128();
4149 int mem_index = get_mem_index(s);
4150 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4151
4152 tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4153
4154 /* This is 1 or 2 atomic 16-byte operations. */
4155 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4156 if (is_pair) {
4157 tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4158 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4159 }
4160 }
4161
4162 if (a->w) {
4163 /* pre-index or post-index */
4164 if (a->p) {
4165 /* post-index */
4166 tcg_gen_addi_i64(addr, addr, a->imm);
4167 }
4168 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4169 }
4170 return true;
4171 }
4172
4173 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4174 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4175 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4176 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4177
4178 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4179
do_SET(DisasContext * s,arg_set * a,bool is_epilogue,bool is_setg,SetFn fn)4180 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4181 bool is_setg, SetFn fn)
4182 {
4183 int memidx;
4184 uint32_t syndrome, desc = 0;
4185
4186 if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4187 return false;
4188 }
4189
4190 /*
4191 * UNPREDICTABLE cases: we choose to UNDEF, which allows
4192 * us to pull this check before the CheckMOPSEnabled() test
4193 * (which we do in the helper function)
4194 */
4195 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4196 a->rd == 31 || a->rn == 31) {
4197 return false;
4198 }
4199
4200 memidx = get_a64_user_mem_index(s, a->unpriv);
4201
4202 /*
4203 * We pass option_a == true, matching our implementation;
4204 * we pass wrong_option == false: helper function may set that bit.
4205 */
4206 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4207 is_epilogue, false, true, a->rd, a->rs, a->rn);
4208
4209 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4210 /* We may need to do MTE tag checking, so assemble the descriptor */
4211 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4212 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4213 desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4214 /* SIZEM1 and ALIGN we leave 0 (byte write) */
4215 }
4216 /* The helper function always needs the memidx even with MTE disabled */
4217 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4218
4219 /*
4220 * The helper needs the register numbers, but since they're in
4221 * the syndrome anyway, we let it extract them from there rather
4222 * than passing in an extra three integer arguments.
4223 */
4224 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4225 return true;
4226 }
4227
4228 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4229 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4230 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4231 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4232 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4233 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4234
4235 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4236
do_CPY(DisasContext * s,arg_cpy * a,bool is_epilogue,CpyFn fn)4237 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4238 {
4239 int rmemidx, wmemidx;
4240 uint32_t syndrome, rdesc = 0, wdesc = 0;
4241 bool wunpriv = extract32(a->options, 0, 1);
4242 bool runpriv = extract32(a->options, 1, 1);
4243
4244 /*
4245 * UNPREDICTABLE cases: we choose to UNDEF, which allows
4246 * us to pull this check before the CheckMOPSEnabled() test
4247 * (which we do in the helper function)
4248 */
4249 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4250 a->rd == 31 || a->rs == 31 || a->rn == 31) {
4251 return false;
4252 }
4253
4254 rmemidx = get_a64_user_mem_index(s, runpriv);
4255 wmemidx = get_a64_user_mem_index(s, wunpriv);
4256
4257 /*
4258 * We pass option_a == true, matching our implementation;
4259 * we pass wrong_option == false: helper function may set that bit.
4260 */
4261 syndrome = syn_mop(false, false, a->options, is_epilogue,
4262 false, true, a->rd, a->rs, a->rn);
4263
4264 /* If we need to do MTE tag checking, assemble the descriptors */
4265 if (s->mte_active[runpriv]) {
4266 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4267 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4268 }
4269 if (s->mte_active[wunpriv]) {
4270 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4271 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4272 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4273 }
4274 /* The helper function needs these parts of the descriptor regardless */
4275 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4276 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4277
4278 /*
4279 * The helper needs the register numbers, but since they're in
4280 * the syndrome anyway, we let it extract them from there rather
4281 * than passing in an extra three integer arguments.
4282 */
4283 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4284 tcg_constant_i32(rdesc));
4285 return true;
4286 }
4287
4288 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4289 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4290 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4291 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4292 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4293 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4294
4295 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4296
gen_rri(DisasContext * s,arg_rri_sf * a,bool rd_sp,bool rn_sp,ArithTwoOp * fn)4297 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4298 bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4299 {
4300 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4301 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4302 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4303
4304 fn(tcg_rd, tcg_rn, tcg_imm);
4305 if (!a->sf) {
4306 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4307 }
4308 return true;
4309 }
4310
4311 /*
4312 * PC-rel. addressing
4313 */
4314
trans_ADR(DisasContext * s,arg_ri * a)4315 static bool trans_ADR(DisasContext *s, arg_ri *a)
4316 {
4317 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4318 return true;
4319 }
4320
trans_ADRP(DisasContext * s,arg_ri * a)4321 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4322 {
4323 int64_t offset = (int64_t)a->imm << 12;
4324
4325 /* The page offset is ok for CF_PCREL. */
4326 offset -= s->pc_curr & 0xfff;
4327 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4328 return true;
4329 }
4330
4331 /*
4332 * Add/subtract (immediate)
4333 */
4334 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4335 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4336 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4337 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4338
4339 /*
4340 * Add/subtract (immediate, with tags)
4341 */
4342
gen_add_sub_imm_with_tags(DisasContext * s,arg_rri_tag * a,bool sub_op)4343 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4344 bool sub_op)
4345 {
4346 TCGv_i64 tcg_rn, tcg_rd;
4347 int imm;
4348
4349 imm = a->uimm6 << LOG2_TAG_GRANULE;
4350 if (sub_op) {
4351 imm = -imm;
4352 }
4353
4354 tcg_rn = cpu_reg_sp(s, a->rn);
4355 tcg_rd = cpu_reg_sp(s, a->rd);
4356
4357 if (s->ata[0]) {
4358 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4359 tcg_constant_i32(imm),
4360 tcg_constant_i32(a->uimm4));
4361 } else {
4362 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4363 gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4364 }
4365 return true;
4366 }
4367
TRANS_FEAT(ADDG_i,aa64_mte_insn_reg,gen_add_sub_imm_with_tags,a,false)4368 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4369 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4370
4371 /* The input should be a value in the bottom e bits (with higher
4372 * bits zero); returns that value replicated into every element
4373 * of size e in a 64 bit integer.
4374 */
4375 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4376 {
4377 assert(e != 0);
4378 while (e < 64) {
4379 mask |= mask << e;
4380 e *= 2;
4381 }
4382 return mask;
4383 }
4384
4385 /*
4386 * Logical (immediate)
4387 */
4388
4389 /*
4390 * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4391 * only require the wmask. Returns false if the imms/immr/immn are a reserved
4392 * value (ie should cause a guest UNDEF exception), and true if they are
4393 * valid, in which case the decoded bit pattern is written to result.
4394 */
logic_imm_decode_wmask(uint64_t * result,unsigned int immn,unsigned int imms,unsigned int immr)4395 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4396 unsigned int imms, unsigned int immr)
4397 {
4398 uint64_t mask;
4399 unsigned e, levels, s, r;
4400 int len;
4401
4402 assert(immn < 2 && imms < 64 && immr < 64);
4403
4404 /* The bit patterns we create here are 64 bit patterns which
4405 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4406 * 64 bits each. Each element contains the same value: a run
4407 * of between 1 and e-1 non-zero bits, rotated within the
4408 * element by between 0 and e-1 bits.
4409 *
4410 * The element size and run length are encoded into immn (1 bit)
4411 * and imms (6 bits) as follows:
4412 * 64 bit elements: immn = 1, imms = <length of run - 1>
4413 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4414 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4415 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4416 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4417 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4418 * Notice that immn = 0, imms = 11111x is the only combination
4419 * not covered by one of the above options; this is reserved.
4420 * Further, <length of run - 1> all-ones is a reserved pattern.
4421 *
4422 * In all cases the rotation is by immr % e (and immr is 6 bits).
4423 */
4424
4425 /* First determine the element size */
4426 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4427 if (len < 1) {
4428 /* This is the immn == 0, imms == 0x11111x case */
4429 return false;
4430 }
4431 e = 1 << len;
4432
4433 levels = e - 1;
4434 s = imms & levels;
4435 r = immr & levels;
4436
4437 if (s == levels) {
4438 /* <length of run - 1> mustn't be all-ones. */
4439 return false;
4440 }
4441
4442 /* Create the value of one element: s+1 set bits rotated
4443 * by r within the element (which is e bits wide)...
4444 */
4445 mask = MAKE_64BIT_MASK(0, s + 1);
4446 if (r) {
4447 mask = (mask >> r) | (mask << (e - r));
4448 mask &= MAKE_64BIT_MASK(0, e);
4449 }
4450 /* ...then replicate the element over the whole 64 bit value */
4451 mask = bitfield_replicate(mask, e);
4452 *result = mask;
4453 return true;
4454 }
4455
gen_rri_log(DisasContext * s,arg_rri_log * a,bool set_cc,void (* fn)(TCGv_i64,TCGv_i64,int64_t))4456 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4457 void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4458 {
4459 TCGv_i64 tcg_rd, tcg_rn;
4460 uint64_t imm;
4461
4462 /* Some immediate field values are reserved. */
4463 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4464 extract32(a->dbm, 0, 6),
4465 extract32(a->dbm, 6, 6))) {
4466 return false;
4467 }
4468 if (!a->sf) {
4469 imm &= 0xffffffffull;
4470 }
4471
4472 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4473 tcg_rn = cpu_reg(s, a->rn);
4474
4475 fn(tcg_rd, tcg_rn, imm);
4476 if (set_cc) {
4477 gen_logic_CC(a->sf, tcg_rd);
4478 }
4479 if (!a->sf) {
4480 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4481 }
4482 return true;
4483 }
4484
TRANS(AND_i,gen_rri_log,a,false,tcg_gen_andi_i64)4485 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4486 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4487 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4488 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4489
4490 /*
4491 * Move wide (immediate)
4492 */
4493
4494 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4495 {
4496 int pos = a->hw << 4;
4497 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4498 return true;
4499 }
4500
trans_MOVN(DisasContext * s,arg_movw * a)4501 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4502 {
4503 int pos = a->hw << 4;
4504 uint64_t imm = a->imm;
4505
4506 imm = ~(imm << pos);
4507 if (!a->sf) {
4508 imm = (uint32_t)imm;
4509 }
4510 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4511 return true;
4512 }
4513
trans_MOVK(DisasContext * s,arg_movw * a)4514 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4515 {
4516 int pos = a->hw << 4;
4517 TCGv_i64 tcg_rd, tcg_im;
4518
4519 tcg_rd = cpu_reg(s, a->rd);
4520 tcg_im = tcg_constant_i64(a->imm);
4521 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4522 if (!a->sf) {
4523 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4524 }
4525 return true;
4526 }
4527
4528 /*
4529 * Bitfield
4530 */
4531
trans_SBFM(DisasContext * s,arg_SBFM * a)4532 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4533 {
4534 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4535 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4536 unsigned int bitsize = a->sf ? 64 : 32;
4537 unsigned int ri = a->immr;
4538 unsigned int si = a->imms;
4539 unsigned int pos, len;
4540
4541 if (si >= ri) {
4542 /* Wd<s-r:0> = Wn<s:r> */
4543 len = (si - ri) + 1;
4544 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4545 if (!a->sf) {
4546 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4547 }
4548 } else {
4549 /* Wd<32+s-r,32-r> = Wn<s:0> */
4550 len = si + 1;
4551 pos = (bitsize - ri) & (bitsize - 1);
4552
4553 if (len < ri) {
4554 /*
4555 * Sign extend the destination field from len to fill the
4556 * balance of the word. Let the deposit below insert all
4557 * of those sign bits.
4558 */
4559 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4560 len = ri;
4561 }
4562
4563 /*
4564 * We start with zero, and we haven't modified any bits outside
4565 * bitsize, therefore no final zero-extension is unneeded for !sf.
4566 */
4567 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4568 }
4569 return true;
4570 }
4571
trans_UBFM(DisasContext * s,arg_UBFM * a)4572 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4573 {
4574 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4575 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4576 unsigned int bitsize = a->sf ? 64 : 32;
4577 unsigned int ri = a->immr;
4578 unsigned int si = a->imms;
4579 unsigned int pos, len;
4580
4581 tcg_rd = cpu_reg(s, a->rd);
4582 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4583
4584 if (si >= ri) {
4585 /* Wd<s-r:0> = Wn<s:r> */
4586 len = (si - ri) + 1;
4587 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4588 } else {
4589 /* Wd<32+s-r,32-r> = Wn<s:0> */
4590 len = si + 1;
4591 pos = (bitsize - ri) & (bitsize - 1);
4592 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4593 }
4594 return true;
4595 }
4596
trans_BFM(DisasContext * s,arg_BFM * a)4597 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4598 {
4599 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4600 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4601 unsigned int bitsize = a->sf ? 64 : 32;
4602 unsigned int ri = a->immr;
4603 unsigned int si = a->imms;
4604 unsigned int pos, len;
4605
4606 tcg_rd = cpu_reg(s, a->rd);
4607 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4608
4609 if (si >= ri) {
4610 /* Wd<s-r:0> = Wn<s:r> */
4611 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4612 len = (si - ri) + 1;
4613 pos = 0;
4614 } else {
4615 /* Wd<32+s-r,32-r> = Wn<s:0> */
4616 len = si + 1;
4617 pos = (bitsize - ri) & (bitsize - 1);
4618 }
4619
4620 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4621 if (!a->sf) {
4622 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4623 }
4624 return true;
4625 }
4626
trans_EXTR(DisasContext * s,arg_extract * a)4627 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4628 {
4629 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4630
4631 tcg_rd = cpu_reg(s, a->rd);
4632
4633 if (unlikely(a->imm == 0)) {
4634 /*
4635 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4636 * so an extract from bit 0 is a special case.
4637 */
4638 if (a->sf) {
4639 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4640 } else {
4641 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4642 }
4643 } else {
4644 tcg_rm = cpu_reg(s, a->rm);
4645 tcg_rn = cpu_reg(s, a->rn);
4646
4647 if (a->sf) {
4648 /* Specialization to ROR happens in EXTRACT2. */
4649 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4650 } else {
4651 TCGv_i32 t0 = tcg_temp_new_i32();
4652
4653 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4654 if (a->rm == a->rn) {
4655 tcg_gen_rotri_i32(t0, t0, a->imm);
4656 } else {
4657 TCGv_i32 t1 = tcg_temp_new_i32();
4658 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4659 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4660 }
4661 tcg_gen_extu_i32_i64(tcg_rd, t0);
4662 }
4663 }
4664 return true;
4665 }
4666
4667 /*
4668 * Cryptographic AES, SHA, SHA512
4669 */
4670
4671 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4672 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4673 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4674 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4675
4676 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4677 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4678 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4679 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4680
4681 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4682 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4683 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4684
4685 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4686 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4687 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4688
4689 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4690 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4691 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
TRANS_FEAT(RAX1,aa64_sha3,do_gvec_fn3,a,gen_gvec_rax1)4692 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4693 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4694 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4695 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4696
4697 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4698 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4699
4700 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4701 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
4702
4703 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
4704 {
4705 if (!dc_isar_feature(aa64_sm3, s)) {
4706 return false;
4707 }
4708 if (fp_access_check(s)) {
4709 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
4710 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
4711 TCGv_i32 tcg_op3 = tcg_temp_new_i32();
4712 TCGv_i32 tcg_res = tcg_temp_new_i32();
4713 unsigned vsz, dofs;
4714
4715 read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
4716 read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
4717 read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
4718
4719 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
4720 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
4721 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
4722 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
4723
4724 /* Clear the whole register first, then store bits [127:96]. */
4725 vsz = vec_full_reg_size(s);
4726 dofs = vec_full_reg_offset(s, a->rd);
4727 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
4728 write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
4729 }
4730 return true;
4731 }
4732
do_crypto3i(DisasContext * s,arg_crypto3i * a,gen_helper_gvec_3 * fn)4733 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
4734 {
4735 if (fp_access_check(s)) {
4736 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
4737 }
4738 return true;
4739 }
TRANS_FEAT(SM3TT1A,aa64_sm3,do_crypto3i,a,gen_helper_crypto_sm3tt1a)4740 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
4741 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
4742 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
4743 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
4744
4745 static bool trans_XAR(DisasContext *s, arg_XAR *a)
4746 {
4747 if (!dc_isar_feature(aa64_sha3, s)) {
4748 return false;
4749 }
4750 if (fp_access_check(s)) {
4751 gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
4752 vec_full_reg_offset(s, a->rn),
4753 vec_full_reg_offset(s, a->rm), a->imm, 16,
4754 vec_full_reg_size(s));
4755 }
4756 return true;
4757 }
4758
4759 /*
4760 * Advanced SIMD copy
4761 */
4762
decode_esz_idx(int imm,MemOp * pesz,unsigned * pidx)4763 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
4764 {
4765 unsigned esz = ctz32(imm);
4766 if (esz <= MO_64) {
4767 *pesz = esz;
4768 *pidx = imm >> (esz + 1);
4769 return true;
4770 }
4771 return false;
4772 }
4773
trans_DUP_element_s(DisasContext * s,arg_DUP_element_s * a)4774 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
4775 {
4776 MemOp esz;
4777 unsigned idx;
4778
4779 if (!decode_esz_idx(a->imm, &esz, &idx)) {
4780 return false;
4781 }
4782 if (fp_access_check(s)) {
4783 /*
4784 * This instruction just extracts the specified element and
4785 * zero-extends it into the bottom of the destination register.
4786 */
4787 TCGv_i64 tmp = tcg_temp_new_i64();
4788 read_vec_element(s, tmp, a->rn, idx, esz);
4789 write_fp_dreg(s, a->rd, tmp);
4790 }
4791 return true;
4792 }
4793
trans_DUP_element_v(DisasContext * s,arg_DUP_element_v * a)4794 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
4795 {
4796 MemOp esz;
4797 unsigned idx;
4798
4799 if (!decode_esz_idx(a->imm, &esz, &idx)) {
4800 return false;
4801 }
4802 if (esz == MO_64 && !a->q) {
4803 return false;
4804 }
4805 if (fp_access_check(s)) {
4806 tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
4807 vec_reg_offset(s, a->rn, idx, esz),
4808 a->q ? 16 : 8, vec_full_reg_size(s));
4809 }
4810 return true;
4811 }
4812
trans_DUP_general(DisasContext * s,arg_DUP_general * a)4813 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
4814 {
4815 MemOp esz;
4816 unsigned idx;
4817
4818 if (!decode_esz_idx(a->imm, &esz, &idx)) {
4819 return false;
4820 }
4821 if (esz == MO_64 && !a->q) {
4822 return false;
4823 }
4824 if (fp_access_check(s)) {
4825 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4826 a->q ? 16 : 8, vec_full_reg_size(s),
4827 cpu_reg(s, a->rn));
4828 }
4829 return true;
4830 }
4831
do_smov_umov(DisasContext * s,arg_SMOV * a,MemOp is_signed)4832 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
4833 {
4834 MemOp esz;
4835 unsigned idx;
4836
4837 if (!decode_esz_idx(a->imm, &esz, &idx)) {
4838 return false;
4839 }
4840 if (is_signed) {
4841 if (esz == MO_64 || (esz == MO_32 && !a->q)) {
4842 return false;
4843 }
4844 } else {
4845 if (esz == MO_64 ? !a->q : a->q) {
4846 return false;
4847 }
4848 }
4849 if (fp_access_check(s)) {
4850 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4851 read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
4852 if (is_signed && !a->q) {
4853 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4854 }
4855 }
4856 return true;
4857 }
4858
TRANS(SMOV,do_smov_umov,a,MO_SIGN)4859 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
4860 TRANS(UMOV, do_smov_umov, a, 0)
4861
4862 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
4863 {
4864 MemOp esz;
4865 unsigned idx;
4866
4867 if (!decode_esz_idx(a->imm, &esz, &idx)) {
4868 return false;
4869 }
4870 if (fp_access_check(s)) {
4871 write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
4872 clear_vec_high(s, true, a->rd);
4873 }
4874 return true;
4875 }
4876
trans_INS_element(DisasContext * s,arg_INS_element * a)4877 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
4878 {
4879 MemOp esz;
4880 unsigned didx, sidx;
4881
4882 if (!decode_esz_idx(a->di, &esz, &didx)) {
4883 return false;
4884 }
4885 sidx = a->si >> esz;
4886 if (fp_access_check(s)) {
4887 TCGv_i64 tmp = tcg_temp_new_i64();
4888
4889 read_vec_element(s, tmp, a->rn, sidx, esz);
4890 write_vec_element(s, tmp, a->rd, didx, esz);
4891
4892 /* INS is considered a 128-bit write for SVE. */
4893 clear_vec_high(s, true, a->rd);
4894 }
4895 return true;
4896 }
4897
4898 /*
4899 * Advanced SIMD three same
4900 */
4901
4902 typedef struct FPScalar {
4903 void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4904 void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
4905 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
4906 } FPScalar;
4907
do_fp3_scalar(DisasContext * s,arg_rrr_e * a,const FPScalar * f)4908 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f)
4909 {
4910 switch (a->esz) {
4911 case MO_64:
4912 if (fp_access_check(s)) {
4913 TCGv_i64 t0 = read_fp_dreg(s, a->rn);
4914 TCGv_i64 t1 = read_fp_dreg(s, a->rm);
4915 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4916 write_fp_dreg(s, a->rd, t0);
4917 }
4918 break;
4919 case MO_32:
4920 if (fp_access_check(s)) {
4921 TCGv_i32 t0 = read_fp_sreg(s, a->rn);
4922 TCGv_i32 t1 = read_fp_sreg(s, a->rm);
4923 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
4924 write_fp_sreg(s, a->rd, t0);
4925 }
4926 break;
4927 case MO_16:
4928 if (!dc_isar_feature(aa64_fp16, s)) {
4929 return false;
4930 }
4931 if (fp_access_check(s)) {
4932 TCGv_i32 t0 = read_fp_hreg(s, a->rn);
4933 TCGv_i32 t1 = read_fp_hreg(s, a->rm);
4934 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
4935 write_fp_sreg(s, a->rd, t0);
4936 }
4937 break;
4938 default:
4939 return false;
4940 }
4941 return true;
4942 }
4943
4944 static const FPScalar f_scalar_fadd = {
4945 gen_helper_vfp_addh,
4946 gen_helper_vfp_adds,
4947 gen_helper_vfp_addd,
4948 };
4949 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd)
4950
4951 static const FPScalar f_scalar_fsub = {
4952 gen_helper_vfp_subh,
4953 gen_helper_vfp_subs,
4954 gen_helper_vfp_subd,
4955 };
4956 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub)
4957
4958 static const FPScalar f_scalar_fdiv = {
4959 gen_helper_vfp_divh,
4960 gen_helper_vfp_divs,
4961 gen_helper_vfp_divd,
4962 };
4963 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv)
4964
4965 static const FPScalar f_scalar_fmul = {
4966 gen_helper_vfp_mulh,
4967 gen_helper_vfp_muls,
4968 gen_helper_vfp_muld,
4969 };
4970 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul)
4971
4972 static const FPScalar f_scalar_fmax = {
4973 gen_helper_advsimd_maxh,
4974 gen_helper_vfp_maxs,
4975 gen_helper_vfp_maxd,
4976 };
4977 TRANS(FMAX_s, do_fp3_scalar, a, &f_scalar_fmax)
4978
4979 static const FPScalar f_scalar_fmin = {
4980 gen_helper_advsimd_minh,
4981 gen_helper_vfp_mins,
4982 gen_helper_vfp_mind,
4983 };
4984 TRANS(FMIN_s, do_fp3_scalar, a, &f_scalar_fmin)
4985
4986 static const FPScalar f_scalar_fmaxnm = {
4987 gen_helper_advsimd_maxnumh,
4988 gen_helper_vfp_maxnums,
4989 gen_helper_vfp_maxnumd,
4990 };
4991 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm)
4992
4993 static const FPScalar f_scalar_fminnm = {
4994 gen_helper_advsimd_minnumh,
4995 gen_helper_vfp_minnums,
4996 gen_helper_vfp_minnumd,
4997 };
4998 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm)
4999
5000 static const FPScalar f_scalar_fmulx = {
5001 gen_helper_advsimd_mulxh,
5002 gen_helper_vfp_mulxs,
5003 gen_helper_vfp_mulxd,
5004 };
5005 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx)
5006
gen_fnmul_h(TCGv_i32 d,TCGv_i32 n,TCGv_i32 m,TCGv_ptr s)5007 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5008 {
5009 gen_helper_vfp_mulh(d, n, m, s);
5010 gen_vfp_negh(d, d);
5011 }
5012
gen_fnmul_s(TCGv_i32 d,TCGv_i32 n,TCGv_i32 m,TCGv_ptr s)5013 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5014 {
5015 gen_helper_vfp_muls(d, n, m, s);
5016 gen_vfp_negs(d, d);
5017 }
5018
gen_fnmul_d(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m,TCGv_ptr s)5019 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5020 {
5021 gen_helper_vfp_muld(d, n, m, s);
5022 gen_vfp_negd(d, d);
5023 }
5024
5025 static const FPScalar f_scalar_fnmul = {
5026 gen_fnmul_h,
5027 gen_fnmul_s,
5028 gen_fnmul_d,
5029 };
5030 TRANS(FNMUL_s, do_fp3_scalar, a, &f_scalar_fnmul)
5031
5032 static const FPScalar f_scalar_fcmeq = {
5033 gen_helper_advsimd_ceq_f16,
5034 gen_helper_neon_ceq_f32,
5035 gen_helper_neon_ceq_f64,
5036 };
5037 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq)
5038
5039 static const FPScalar f_scalar_fcmge = {
5040 gen_helper_advsimd_cge_f16,
5041 gen_helper_neon_cge_f32,
5042 gen_helper_neon_cge_f64,
5043 };
5044 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge)
5045
5046 static const FPScalar f_scalar_fcmgt = {
5047 gen_helper_advsimd_cgt_f16,
5048 gen_helper_neon_cgt_f32,
5049 gen_helper_neon_cgt_f64,
5050 };
5051 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt)
5052
5053 static const FPScalar f_scalar_facge = {
5054 gen_helper_advsimd_acge_f16,
5055 gen_helper_neon_acge_f32,
5056 gen_helper_neon_acge_f64,
5057 };
5058 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge)
5059
5060 static const FPScalar f_scalar_facgt = {
5061 gen_helper_advsimd_acgt_f16,
5062 gen_helper_neon_acgt_f32,
5063 gen_helper_neon_acgt_f64,
5064 };
5065 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt)
5066
gen_fabd_h(TCGv_i32 d,TCGv_i32 n,TCGv_i32 m,TCGv_ptr s)5067 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5068 {
5069 gen_helper_vfp_subh(d, n, m, s);
5070 gen_vfp_absh(d, d);
5071 }
5072
gen_fabd_s(TCGv_i32 d,TCGv_i32 n,TCGv_i32 m,TCGv_ptr s)5073 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5074 {
5075 gen_helper_vfp_subs(d, n, m, s);
5076 gen_vfp_abss(d, d);
5077 }
5078
gen_fabd_d(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m,TCGv_ptr s)5079 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5080 {
5081 gen_helper_vfp_subd(d, n, m, s);
5082 gen_vfp_absd(d, d);
5083 }
5084
5085 static const FPScalar f_scalar_fabd = {
5086 gen_fabd_h,
5087 gen_fabd_s,
5088 gen_fabd_d,
5089 };
5090 TRANS(FABD_s, do_fp3_scalar, a, &f_scalar_fabd)
5091
5092 static const FPScalar f_scalar_frecps = {
5093 gen_helper_recpsf_f16,
5094 gen_helper_recpsf_f32,
5095 gen_helper_recpsf_f64,
5096 };
5097 TRANS(FRECPS_s, do_fp3_scalar, a, &f_scalar_frecps)
5098
5099 static const FPScalar f_scalar_frsqrts = {
5100 gen_helper_rsqrtsf_f16,
5101 gen_helper_rsqrtsf_f32,
5102 gen_helper_rsqrtsf_f64,
5103 };
5104 TRANS(FRSQRTS_s, do_fp3_scalar, a, &f_scalar_frsqrts)
5105
do_satacc_s(DisasContext * s,arg_rrr_e * a,MemOp sgn_n,MemOp sgn_m,void (* gen_bhs)(TCGv_i64,TCGv_i64,TCGv_i64,TCGv_i64,MemOp),void (* gen_d)(TCGv_i64,TCGv_i64,TCGv_i64,TCGv_i64))5106 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a,
5107 MemOp sgn_n, MemOp sgn_m,
5108 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp),
5109 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
5110 {
5111 TCGv_i64 t0, t1, t2, qc;
5112 MemOp esz = a->esz;
5113
5114 if (!fp_access_check(s)) {
5115 return true;
5116 }
5117
5118 t0 = tcg_temp_new_i64();
5119 t1 = tcg_temp_new_i64();
5120 t2 = tcg_temp_new_i64();
5121 qc = tcg_temp_new_i64();
5122 read_vec_element(s, t1, a->rn, 0, esz | sgn_n);
5123 read_vec_element(s, t2, a->rm, 0, esz | sgn_m);
5124 tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5125
5126 if (esz == MO_64) {
5127 gen_d(t0, qc, t1, t2);
5128 } else {
5129 gen_bhs(t0, qc, t1, t2, esz);
5130 tcg_gen_ext_i64(t0, t0, esz);
5131 }
5132
5133 write_fp_dreg(s, a->rd, t0);
5134 tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5135 return true;
5136 }
5137
TRANS(SQADD_s,do_satacc_s,a,MO_SIGN,MO_SIGN,gen_sqadd_bhs,gen_sqadd_d)5138 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d)
5139 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d)
5140 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d)
5141 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d)
5142 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d)
5143 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d)
5144
5145 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a,
5146 void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64))
5147 {
5148 if (fp_access_check(s)) {
5149 TCGv_i64 t0 = tcg_temp_new_i64();
5150 TCGv_i64 t1 = tcg_temp_new_i64();
5151
5152 read_vec_element(s, t0, a->rn, 0, MO_64);
5153 read_vec_element(s, t1, a->rm, 0, MO_64);
5154 fn(t0, t0, t1);
5155 write_fp_dreg(s, a->rd, t0);
5156 }
5157 return true;
5158 }
5159
5160 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64)
5161 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64)
5162 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64)
5163 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64)
5164 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64)
5165 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64)
5166
5167 typedef struct ENVScalar2 {
5168 NeonGenTwoOpEnvFn *gen_bhs[3];
5169 NeonGenTwo64OpEnvFn *gen_d;
5170 } ENVScalar2;
5171
do_env_scalar2(DisasContext * s,arg_rrr_e * a,const ENVScalar2 * f)5172 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f)
5173 {
5174 if (!fp_access_check(s)) {
5175 return true;
5176 }
5177 if (a->esz == MO_64) {
5178 TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5179 TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5180 f->gen_d(t0, tcg_env, t0, t1);
5181 write_fp_dreg(s, a->rd, t0);
5182 } else {
5183 TCGv_i32 t0 = tcg_temp_new_i32();
5184 TCGv_i32 t1 = tcg_temp_new_i32();
5185
5186 read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5187 read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5188 f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5189 write_fp_sreg(s, a->rd, t0);
5190 }
5191 return true;
5192 }
5193
5194 static const ENVScalar2 f_scalar_sqshl = {
5195 { gen_helper_neon_qshl_s8,
5196 gen_helper_neon_qshl_s16,
5197 gen_helper_neon_qshl_s32 },
5198 gen_helper_neon_qshl_s64,
5199 };
5200 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl)
5201
5202 static const ENVScalar2 f_scalar_uqshl = {
5203 { gen_helper_neon_qshl_u8,
5204 gen_helper_neon_qshl_u16,
5205 gen_helper_neon_qshl_u32 },
5206 gen_helper_neon_qshl_u64,
5207 };
5208 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl)
5209
5210 static const ENVScalar2 f_scalar_sqrshl = {
5211 { gen_helper_neon_qrshl_s8,
5212 gen_helper_neon_qrshl_s16,
5213 gen_helper_neon_qrshl_s32 },
5214 gen_helper_neon_qrshl_s64,
5215 };
5216 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl)
5217
5218 static const ENVScalar2 f_scalar_uqrshl = {
5219 { gen_helper_neon_qrshl_u8,
5220 gen_helper_neon_qrshl_u16,
5221 gen_helper_neon_qrshl_u32 },
5222 gen_helper_neon_qrshl_u64,
5223 };
5224 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl)
5225
do_env_scalar2_hs(DisasContext * s,arg_rrr_e * a,const ENVScalar2 * f)5226 static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a,
5227 const ENVScalar2 *f)
5228 {
5229 if (a->esz == MO_16 || a->esz == MO_32) {
5230 return do_env_scalar2(s, a, f);
5231 }
5232 return false;
5233 }
5234
5235 static const ENVScalar2 f_scalar_sqdmulh = {
5236 { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 }
5237 };
5238 TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh)
5239
5240 static const ENVScalar2 f_scalar_sqrdmulh = {
5241 { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 }
5242 };
5243 TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh)
5244
5245 typedef struct ENVScalar3 {
5246 NeonGenThreeOpEnvFn *gen_hs[2];
5247 } ENVScalar3;
5248
do_env_scalar3_hs(DisasContext * s,arg_rrr_e * a,const ENVScalar3 * f)5249 static bool do_env_scalar3_hs(DisasContext *s, arg_rrr_e *a,
5250 const ENVScalar3 *f)
5251 {
5252 TCGv_i32 t0, t1, t2;
5253
5254 if (a->esz != MO_16 && a->esz != MO_32) {
5255 return false;
5256 }
5257 if (!fp_access_check(s)) {
5258 return true;
5259 }
5260
5261 t0 = tcg_temp_new_i32();
5262 t1 = tcg_temp_new_i32();
5263 t2 = tcg_temp_new_i32();
5264 read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5265 read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5266 read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5267 f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5268 write_fp_sreg(s, a->rd, t0);
5269 return true;
5270 }
5271
5272 static const ENVScalar3 f_scalar_sqrdmlah = {
5273 { gen_helper_neon_qrdmlah_s16, gen_helper_neon_qrdmlah_s32 }
5274 };
5275 TRANS_FEAT(SQRDMLAH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlah)
5276
5277 static const ENVScalar3 f_scalar_sqrdmlsh = {
5278 { gen_helper_neon_qrdmlsh_s16, gen_helper_neon_qrdmlsh_s32 }
5279 };
5280 TRANS_FEAT(SQRDMLSH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlsh)
5281
do_cmop_d(DisasContext * s,arg_rrr_e * a,TCGCond cond)5282 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond)
5283 {
5284 if (fp_access_check(s)) {
5285 TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5286 TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5287 tcg_gen_negsetcond_i64(cond, t0, t0, t1);
5288 write_fp_dreg(s, a->rd, t0);
5289 }
5290 return true;
5291 }
5292
TRANS(CMGT_s,do_cmop_d,a,TCG_COND_GT)5293 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT)
5294 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU)
5295 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE)
5296 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU)
5297 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ)
5298 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE)
5299
5300 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, int data,
5301 gen_helper_gvec_3_ptr * const fns[3])
5302 {
5303 MemOp esz = a->esz;
5304
5305 switch (esz) {
5306 case MO_64:
5307 if (!a->q) {
5308 return false;
5309 }
5310 break;
5311 case MO_32:
5312 break;
5313 case MO_16:
5314 if (!dc_isar_feature(aa64_fp16, s)) {
5315 return false;
5316 }
5317 break;
5318 default:
5319 return false;
5320 }
5321 if (fp_access_check(s)) {
5322 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
5323 esz == MO_16, data, fns[esz - 1]);
5324 }
5325 return true;
5326 }
5327
5328 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5329 gen_helper_gvec_fadd_h,
5330 gen_helper_gvec_fadd_s,
5331 gen_helper_gvec_fadd_d,
5332 };
5333 TRANS(FADD_v, do_fp3_vector, a, 0, f_vector_fadd)
5334
5335 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5336 gen_helper_gvec_fsub_h,
5337 gen_helper_gvec_fsub_s,
5338 gen_helper_gvec_fsub_d,
5339 };
5340 TRANS(FSUB_v, do_fp3_vector, a, 0, f_vector_fsub)
5341
5342 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5343 gen_helper_gvec_fdiv_h,
5344 gen_helper_gvec_fdiv_s,
5345 gen_helper_gvec_fdiv_d,
5346 };
5347 TRANS(FDIV_v, do_fp3_vector, a, 0, f_vector_fdiv)
5348
5349 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5350 gen_helper_gvec_fmul_h,
5351 gen_helper_gvec_fmul_s,
5352 gen_helper_gvec_fmul_d,
5353 };
5354 TRANS(FMUL_v, do_fp3_vector, a, 0, f_vector_fmul)
5355
5356 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5357 gen_helper_gvec_fmax_h,
5358 gen_helper_gvec_fmax_s,
5359 gen_helper_gvec_fmax_d,
5360 };
5361 TRANS(FMAX_v, do_fp3_vector, a, 0, f_vector_fmax)
5362
5363 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5364 gen_helper_gvec_fmin_h,
5365 gen_helper_gvec_fmin_s,
5366 gen_helper_gvec_fmin_d,
5367 };
5368 TRANS(FMIN_v, do_fp3_vector, a, 0, f_vector_fmin)
5369
5370 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5371 gen_helper_gvec_fmaxnum_h,
5372 gen_helper_gvec_fmaxnum_s,
5373 gen_helper_gvec_fmaxnum_d,
5374 };
5375 TRANS(FMAXNM_v, do_fp3_vector, a, 0, f_vector_fmaxnm)
5376
5377 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5378 gen_helper_gvec_fminnum_h,
5379 gen_helper_gvec_fminnum_s,
5380 gen_helper_gvec_fminnum_d,
5381 };
5382 TRANS(FMINNM_v, do_fp3_vector, a, 0, f_vector_fminnm)
5383
5384 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5385 gen_helper_gvec_fmulx_h,
5386 gen_helper_gvec_fmulx_s,
5387 gen_helper_gvec_fmulx_d,
5388 };
5389 TRANS(FMULX_v, do_fp3_vector, a, 0, f_vector_fmulx)
5390
5391 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5392 gen_helper_gvec_vfma_h,
5393 gen_helper_gvec_vfma_s,
5394 gen_helper_gvec_vfma_d,
5395 };
5396 TRANS(FMLA_v, do_fp3_vector, a, 0, f_vector_fmla)
5397
5398 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5399 gen_helper_gvec_vfms_h,
5400 gen_helper_gvec_vfms_s,
5401 gen_helper_gvec_vfms_d,
5402 };
5403 TRANS(FMLS_v, do_fp3_vector, a, 0, f_vector_fmls)
5404
5405 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5406 gen_helper_gvec_fceq_h,
5407 gen_helper_gvec_fceq_s,
5408 gen_helper_gvec_fceq_d,
5409 };
5410 TRANS(FCMEQ_v, do_fp3_vector, a, 0, f_vector_fcmeq)
5411
5412 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5413 gen_helper_gvec_fcge_h,
5414 gen_helper_gvec_fcge_s,
5415 gen_helper_gvec_fcge_d,
5416 };
5417 TRANS(FCMGE_v, do_fp3_vector, a, 0, f_vector_fcmge)
5418
5419 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5420 gen_helper_gvec_fcgt_h,
5421 gen_helper_gvec_fcgt_s,
5422 gen_helper_gvec_fcgt_d,
5423 };
5424 TRANS(FCMGT_v, do_fp3_vector, a, 0, f_vector_fcmgt)
5425
5426 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5427 gen_helper_gvec_facge_h,
5428 gen_helper_gvec_facge_s,
5429 gen_helper_gvec_facge_d,
5430 };
5431 TRANS(FACGE_v, do_fp3_vector, a, 0, f_vector_facge)
5432
5433 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5434 gen_helper_gvec_facgt_h,
5435 gen_helper_gvec_facgt_s,
5436 gen_helper_gvec_facgt_d,
5437 };
5438 TRANS(FACGT_v, do_fp3_vector, a, 0, f_vector_facgt)
5439
5440 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5441 gen_helper_gvec_fabd_h,
5442 gen_helper_gvec_fabd_s,
5443 gen_helper_gvec_fabd_d,
5444 };
5445 TRANS(FABD_v, do_fp3_vector, a, 0, f_vector_fabd)
5446
5447 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5448 gen_helper_gvec_recps_h,
5449 gen_helper_gvec_recps_s,
5450 gen_helper_gvec_recps_d,
5451 };
5452 TRANS(FRECPS_v, do_fp3_vector, a, 0, f_vector_frecps)
5453
5454 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5455 gen_helper_gvec_rsqrts_h,
5456 gen_helper_gvec_rsqrts_s,
5457 gen_helper_gvec_rsqrts_d,
5458 };
5459 TRANS(FRSQRTS_v, do_fp3_vector, a, 0, f_vector_frsqrts)
5460
5461 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
5462 gen_helper_gvec_faddp_h,
5463 gen_helper_gvec_faddp_s,
5464 gen_helper_gvec_faddp_d,
5465 };
5466 TRANS(FADDP_v, do_fp3_vector, a, 0, f_vector_faddp)
5467
5468 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = {
5469 gen_helper_gvec_fmaxp_h,
5470 gen_helper_gvec_fmaxp_s,
5471 gen_helper_gvec_fmaxp_d,
5472 };
5473 TRANS(FMAXP_v, do_fp3_vector, a, 0, f_vector_fmaxp)
5474
5475 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = {
5476 gen_helper_gvec_fminp_h,
5477 gen_helper_gvec_fminp_s,
5478 gen_helper_gvec_fminp_d,
5479 };
5480 TRANS(FMINP_v, do_fp3_vector, a, 0, f_vector_fminp)
5481
5482 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = {
5483 gen_helper_gvec_fmaxnump_h,
5484 gen_helper_gvec_fmaxnump_s,
5485 gen_helper_gvec_fmaxnump_d,
5486 };
5487 TRANS(FMAXNMP_v, do_fp3_vector, a, 0, f_vector_fmaxnmp)
5488
5489 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = {
5490 gen_helper_gvec_fminnump_h,
5491 gen_helper_gvec_fminnump_s,
5492 gen_helper_gvec_fminnump_d,
5493 };
5494 TRANS(FMINNMP_v, do_fp3_vector, a, 0, f_vector_fminnmp)
5495
do_fmlal(DisasContext * s,arg_qrrr_e * a,bool is_s,bool is_2)5496 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2)
5497 {
5498 if (fp_access_check(s)) {
5499 int data = (is_2 << 1) | is_s;
5500 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5501 vec_full_reg_offset(s, a->rn),
5502 vec_full_reg_offset(s, a->rm), tcg_env,
5503 a->q ? 16 : 8, vec_full_reg_size(s),
5504 data, gen_helper_gvec_fmlal_a64);
5505 }
5506 return true;
5507 }
5508
TRANS_FEAT(FMLAL_v,aa64_fhm,do_fmlal,a,false,false)5509 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false)
5510 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false)
5511 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true)
5512 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true)
5513
5514 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp)
5515 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp)
5516 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp)
5517 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp)
5518 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp)
5519
5520 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and)
5521 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc)
5522 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or)
5523 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc)
5524 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor)
5525
5526 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c)
5527 {
5528 if (fp_access_check(s)) {
5529 gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0);
5530 }
5531 return true;
5532 }
5533
5534 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm)
5535 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd)
5536 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn)
5537
TRANS(SQADD_v,do_gvec_fn3,a,gen_gvec_sqadd_qc)5538 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc)
5539 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc)
5540 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc)
5541 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc)
5542 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc)
5543 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc)
5544
5545 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl)
5546 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl)
5547 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl)
5548 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl)
5549 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl)
5550 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl)
5551 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl)
5552 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl)
5553
5554 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add)
5555 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub)
5556 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd)
5557 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd)
5558 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub)
5559 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub)
5560 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd)
5561 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd)
5562 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax)
5563 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax)
5564 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin)
5565 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin)
5566 TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba)
5567 TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba)
5568 TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd)
5569 TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd)
5570 TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul)
5571 TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b)
5572 TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla)
5573 TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls)
5574
5575 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond)
5576 {
5577 if (a->esz == MO_64 && !a->q) {
5578 return false;
5579 }
5580 if (fp_access_check(s)) {
5581 tcg_gen_gvec_cmp(cond, a->esz,
5582 vec_full_reg_offset(s, a->rd),
5583 vec_full_reg_offset(s, a->rn),
5584 vec_full_reg_offset(s, a->rm),
5585 a->q ? 16 : 8, vec_full_reg_size(s));
5586 }
5587 return true;
5588 }
5589
TRANS(CMGT_v,do_cmop_v,a,TCG_COND_GT)5590 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT)
5591 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU)
5592 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE)
5593 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU)
5594 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ)
5595 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst)
5596
5597 TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc)
5598 TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc)
5599 TRANS_FEAT(SQRDMLAH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlah_qc)
5600 TRANS_FEAT(SQRDMLSH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlsh_qc)
5601
5602 static bool do_dot_vector(DisasContext *s, arg_qrrr_e *a,
5603 gen_helper_gvec_4 *fn)
5604 {
5605 if (fp_access_check(s)) {
5606 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn);
5607 }
5608 return true;
5609 }
5610
TRANS_FEAT(SDOT_v,aa64_dp,do_dot_vector,a,gen_helper_gvec_sdot_b)5611 TRANS_FEAT(SDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_sdot_b)
5612 TRANS_FEAT(UDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_udot_b)
5613 TRANS_FEAT(USDOT_v, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usdot_b)
5614 TRANS_FEAT(BFDOT_v, aa64_bf16, do_dot_vector, a, gen_helper_gvec_bfdot)
5615 TRANS_FEAT(BFMMLA, aa64_bf16, do_dot_vector, a, gen_helper_gvec_bfmmla)
5616 TRANS_FEAT(SMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_smmla_b)
5617 TRANS_FEAT(UMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_ummla_b)
5618 TRANS_FEAT(USMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usmmla_b)
5619
5620 static bool trans_BFMLAL_v(DisasContext *s, arg_qrrr_e *a)
5621 {
5622 if (!dc_isar_feature(aa64_bf16, s)) {
5623 return false;
5624 }
5625 if (fp_access_check(s)) {
5626 /* Q bit selects BFMLALB vs BFMLALT. */
5627 gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, false, a->q,
5628 gen_helper_gvec_bfmlal);
5629 }
5630 return true;
5631 }
5632
5633 static gen_helper_gvec_3_ptr * const f_vector_fcadd[3] = {
5634 gen_helper_gvec_fcaddh,
5635 gen_helper_gvec_fcadds,
5636 gen_helper_gvec_fcaddd,
5637 };
5638 TRANS_FEAT(FCADD_90, aa64_fcma, do_fp3_vector, a, 0, f_vector_fcadd)
5639 TRANS_FEAT(FCADD_270, aa64_fcma, do_fp3_vector, a, 1, f_vector_fcadd)
5640
trans_FCMLA_v(DisasContext * s,arg_FCMLA_v * a)5641 static bool trans_FCMLA_v(DisasContext *s, arg_FCMLA_v *a)
5642 {
5643 gen_helper_gvec_4_ptr *fn;
5644
5645 if (!dc_isar_feature(aa64_fcma, s)) {
5646 return false;
5647 }
5648 switch (a->esz) {
5649 case MO_64:
5650 if (!a->q) {
5651 return false;
5652 }
5653 fn = gen_helper_gvec_fcmlad;
5654 break;
5655 case MO_32:
5656 fn = gen_helper_gvec_fcmlas;
5657 break;
5658 case MO_16:
5659 if (!dc_isar_feature(aa64_fp16, s)) {
5660 return false;
5661 }
5662 fn = gen_helper_gvec_fcmlah;
5663 break;
5664 default:
5665 return false;
5666 }
5667 if (fp_access_check(s)) {
5668 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
5669 a->esz == MO_16, a->rot, fn);
5670 }
5671 return true;
5672 }
5673
5674 /*
5675 * Widening vector x vector/indexed.
5676 *
5677 * These read from the top or bottom half of a 128-bit vector.
5678 * After widening, optionally accumulate with a 128-bit vector.
5679 * Implement these inline, as the number of elements are limited
5680 * and the related SVE and SME operations on larger vectors use
5681 * even/odd elements instead of top/bottom half.
5682 *
5683 * If idx >= 0, operand 2 is indexed, otherwise vector.
5684 * If acc, operand 0 is loaded with rd.
5685 */
5686
5687 /* For low half, iterating up. */
do_3op_widening(DisasContext * s,MemOp memop,int top,int rd,int rn,int rm,int idx,NeonGenTwo64OpFn * fn,bool acc)5688 static bool do_3op_widening(DisasContext *s, MemOp memop, int top,
5689 int rd, int rn, int rm, int idx,
5690 NeonGenTwo64OpFn *fn, bool acc)
5691 {
5692 TCGv_i64 tcg_op0 = tcg_temp_new_i64();
5693 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
5694 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
5695 MemOp esz = memop & MO_SIZE;
5696 int half = 8 >> esz;
5697 int top_swap, top_half;
5698
5699 /* There are no 64x64->128 bit operations. */
5700 if (esz >= MO_64) {
5701 return false;
5702 }
5703 if (!fp_access_check(s)) {
5704 return true;
5705 }
5706
5707 if (idx >= 0) {
5708 read_vec_element(s, tcg_op2, rm, idx, memop);
5709 }
5710
5711 /*
5712 * For top half inputs, iterate forward; backward for bottom half.
5713 * This means the store to the destination will not occur until
5714 * overlapping input inputs are consumed.
5715 * Use top_swap to conditionally invert the forward iteration index.
5716 */
5717 top_swap = top ? 0 : half - 1;
5718 top_half = top ? half : 0;
5719
5720 for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
5721 int elt = elt_fwd ^ top_swap;
5722
5723 read_vec_element(s, tcg_op1, rn, elt + top_half, memop);
5724 if (idx < 0) {
5725 read_vec_element(s, tcg_op2, rm, elt + top_half, memop);
5726 }
5727 if (acc) {
5728 read_vec_element(s, tcg_op0, rd, elt, memop + 1);
5729 }
5730 fn(tcg_op0, tcg_op1, tcg_op2);
5731 write_vec_element(s, tcg_op0, rd, elt, esz + 1);
5732 }
5733 clear_vec_high(s, 1, rd);
5734 return true;
5735 }
5736
gen_muladd_i64(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5737 static void gen_muladd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5738 {
5739 TCGv_i64 t = tcg_temp_new_i64();
5740 tcg_gen_mul_i64(t, n, m);
5741 tcg_gen_add_i64(d, d, t);
5742 }
5743
gen_mulsub_i64(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5744 static void gen_mulsub_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5745 {
5746 TCGv_i64 t = tcg_temp_new_i64();
5747 tcg_gen_mul_i64(t, n, m);
5748 tcg_gen_sub_i64(d, d, t);
5749 }
5750
5751 TRANS(SMULL_v, do_3op_widening,
5752 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5753 tcg_gen_mul_i64, false)
5754 TRANS(UMULL_v, do_3op_widening,
5755 a->esz, a->q, a->rd, a->rn, a->rm, -1,
5756 tcg_gen_mul_i64, false)
5757 TRANS(SMLAL_v, do_3op_widening,
5758 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5759 gen_muladd_i64, true)
5760 TRANS(UMLAL_v, do_3op_widening,
5761 a->esz, a->q, a->rd, a->rn, a->rm, -1,
5762 gen_muladd_i64, true)
5763 TRANS(SMLSL_v, do_3op_widening,
5764 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5765 gen_mulsub_i64, true)
5766 TRANS(UMLSL_v, do_3op_widening,
5767 a->esz, a->q, a->rd, a->rn, a->rm, -1,
5768 gen_mulsub_i64, true)
5769
5770 TRANS(SMULL_vi, do_3op_widening,
5771 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
5772 tcg_gen_mul_i64, false)
5773 TRANS(UMULL_vi, do_3op_widening,
5774 a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
5775 tcg_gen_mul_i64, false)
5776 TRANS(SMLAL_vi, do_3op_widening,
5777 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
5778 gen_muladd_i64, true)
5779 TRANS(UMLAL_vi, do_3op_widening,
5780 a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
5781 gen_muladd_i64, true)
5782 TRANS(SMLSL_vi, do_3op_widening,
5783 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
5784 gen_mulsub_i64, true)
5785 TRANS(UMLSL_vi, do_3op_widening,
5786 a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
5787 gen_mulsub_i64, true)
5788
gen_sabd_i64(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5789 static void gen_sabd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5790 {
5791 TCGv_i64 t1 = tcg_temp_new_i64();
5792 TCGv_i64 t2 = tcg_temp_new_i64();
5793
5794 tcg_gen_sub_i64(t1, n, m);
5795 tcg_gen_sub_i64(t2, m, n);
5796 tcg_gen_movcond_i64(TCG_COND_GE, d, n, m, t1, t2);
5797 }
5798
gen_uabd_i64(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5799 static void gen_uabd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5800 {
5801 TCGv_i64 t1 = tcg_temp_new_i64();
5802 TCGv_i64 t2 = tcg_temp_new_i64();
5803
5804 tcg_gen_sub_i64(t1, n, m);
5805 tcg_gen_sub_i64(t2, m, n);
5806 tcg_gen_movcond_i64(TCG_COND_GEU, d, n, m, t1, t2);
5807 }
5808
gen_saba_i64(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5809 static void gen_saba_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5810 {
5811 TCGv_i64 t = tcg_temp_new_i64();
5812 gen_sabd_i64(t, n, m);
5813 tcg_gen_add_i64(d, d, t);
5814 }
5815
gen_uaba_i64(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5816 static void gen_uaba_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5817 {
5818 TCGv_i64 t = tcg_temp_new_i64();
5819 gen_uabd_i64(t, n, m);
5820 tcg_gen_add_i64(d, d, t);
5821 }
5822
5823 TRANS(SADDL_v, do_3op_widening,
5824 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5825 tcg_gen_add_i64, false)
5826 TRANS(UADDL_v, do_3op_widening,
5827 a->esz, a->q, a->rd, a->rn, a->rm, -1,
5828 tcg_gen_add_i64, false)
5829 TRANS(SSUBL_v, do_3op_widening,
5830 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5831 tcg_gen_sub_i64, false)
5832 TRANS(USUBL_v, do_3op_widening,
5833 a->esz, a->q, a->rd, a->rn, a->rm, -1,
5834 tcg_gen_sub_i64, false)
5835 TRANS(SABDL_v, do_3op_widening,
5836 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5837 gen_sabd_i64, false)
5838 TRANS(UABDL_v, do_3op_widening,
5839 a->esz, a->q, a->rd, a->rn, a->rm, -1,
5840 gen_uabd_i64, false)
5841 TRANS(SABAL_v, do_3op_widening,
5842 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5843 gen_saba_i64, true)
5844 TRANS(UABAL_v, do_3op_widening,
5845 a->esz, a->q, a->rd, a->rn, a->rm, -1,
5846 gen_uaba_i64, true)
5847
gen_sqdmull_h(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5848 static void gen_sqdmull_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5849 {
5850 tcg_gen_mul_i64(d, n, m);
5851 gen_helper_neon_addl_saturate_s32(d, tcg_env, d, d);
5852 }
5853
gen_sqdmull_s(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5854 static void gen_sqdmull_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5855 {
5856 tcg_gen_mul_i64(d, n, m);
5857 gen_helper_neon_addl_saturate_s64(d, tcg_env, d, d);
5858 }
5859
gen_sqdmlal_h(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5860 static void gen_sqdmlal_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5861 {
5862 TCGv_i64 t = tcg_temp_new_i64();
5863
5864 tcg_gen_mul_i64(t, n, m);
5865 gen_helper_neon_addl_saturate_s32(t, tcg_env, t, t);
5866 gen_helper_neon_addl_saturate_s32(d, tcg_env, d, t);
5867 }
5868
gen_sqdmlal_s(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5869 static void gen_sqdmlal_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5870 {
5871 TCGv_i64 t = tcg_temp_new_i64();
5872
5873 tcg_gen_mul_i64(t, n, m);
5874 gen_helper_neon_addl_saturate_s64(t, tcg_env, t, t);
5875 gen_helper_neon_addl_saturate_s64(d, tcg_env, d, t);
5876 }
5877
gen_sqdmlsl_h(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5878 static void gen_sqdmlsl_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5879 {
5880 TCGv_i64 t = tcg_temp_new_i64();
5881
5882 tcg_gen_mul_i64(t, n, m);
5883 gen_helper_neon_addl_saturate_s32(t, tcg_env, t, t);
5884 tcg_gen_neg_i64(t, t);
5885 gen_helper_neon_addl_saturate_s32(d, tcg_env, d, t);
5886 }
5887
gen_sqdmlsl_s(TCGv_i64 d,TCGv_i64 n,TCGv_i64 m)5888 static void gen_sqdmlsl_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
5889 {
5890 TCGv_i64 t = tcg_temp_new_i64();
5891
5892 tcg_gen_mul_i64(t, n, m);
5893 gen_helper_neon_addl_saturate_s64(t, tcg_env, t, t);
5894 tcg_gen_neg_i64(t, t);
5895 gen_helper_neon_addl_saturate_s64(d, tcg_env, d, t);
5896 }
5897
5898 TRANS(SQDMULL_v, do_3op_widening,
5899 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5900 a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
5901 TRANS(SQDMLAL_v, do_3op_widening,
5902 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5903 a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
5904 TRANS(SQDMLSL_v, do_3op_widening,
5905 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
5906 a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
5907
5908 TRANS(SQDMULL_vi, do_3op_widening,
5909 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
5910 a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
5911 TRANS(SQDMLAL_vi, do_3op_widening,
5912 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
5913 a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
5914 TRANS(SQDMLSL_vi, do_3op_widening,
5915 a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
5916 a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
5917
do_addsub_wide(DisasContext * s,arg_qrrr_e * a,MemOp sign,bool sub)5918 static bool do_addsub_wide(DisasContext *s, arg_qrrr_e *a,
5919 MemOp sign, bool sub)
5920 {
5921 TCGv_i64 tcg_op0, tcg_op1;
5922 MemOp esz = a->esz;
5923 int half = 8 >> esz;
5924 bool top = a->q;
5925 int top_swap = top ? 0 : half - 1;
5926 int top_half = top ? half : 0;
5927
5928 /* There are no 64x64->128 bit operations. */
5929 if (esz >= MO_64) {
5930 return false;
5931 }
5932 if (!fp_access_check(s)) {
5933 return true;
5934 }
5935 tcg_op0 = tcg_temp_new_i64();
5936 tcg_op1 = tcg_temp_new_i64();
5937
5938 for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
5939 int elt = elt_fwd ^ top_swap;
5940
5941 read_vec_element(s, tcg_op1, a->rm, elt + top_half, esz | sign);
5942 read_vec_element(s, tcg_op0, a->rn, elt, esz + 1);
5943 if (sub) {
5944 tcg_gen_sub_i64(tcg_op0, tcg_op0, tcg_op1);
5945 } else {
5946 tcg_gen_add_i64(tcg_op0, tcg_op0, tcg_op1);
5947 }
5948 write_vec_element(s, tcg_op0, a->rd, elt, esz + 1);
5949 }
5950 clear_vec_high(s, 1, a->rd);
5951 return true;
5952 }
5953
TRANS(SADDW,do_addsub_wide,a,MO_SIGN,false)5954 TRANS(SADDW, do_addsub_wide, a, MO_SIGN, false)
5955 TRANS(UADDW, do_addsub_wide, a, 0, false)
5956 TRANS(SSUBW, do_addsub_wide, a, MO_SIGN, true)
5957 TRANS(USUBW, do_addsub_wide, a, 0, true)
5958
5959 static bool do_addsub_highnarrow(DisasContext *s, arg_qrrr_e *a,
5960 bool sub, bool round)
5961 {
5962 TCGv_i64 tcg_op0, tcg_op1;
5963 MemOp esz = a->esz;
5964 int half = 8 >> esz;
5965 bool top = a->q;
5966 int ebits = 8 << esz;
5967 uint64_t rbit = 1ull << (ebits - 1);
5968 int top_swap, top_half;
5969
5970 /* There are no 128x128->64 bit operations. */
5971 if (esz >= MO_64) {
5972 return false;
5973 }
5974 if (!fp_access_check(s)) {
5975 return true;
5976 }
5977 tcg_op0 = tcg_temp_new_i64();
5978 tcg_op1 = tcg_temp_new_i64();
5979
5980 /*
5981 * For top half inputs, iterate backward; forward for bottom half.
5982 * This means the store to the destination will not occur until
5983 * overlapping input inputs are consumed.
5984 */
5985 top_swap = top ? half - 1 : 0;
5986 top_half = top ? half : 0;
5987
5988 for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
5989 int elt = elt_fwd ^ top_swap;
5990
5991 read_vec_element(s, tcg_op1, a->rm, elt, esz + 1);
5992 read_vec_element(s, tcg_op0, a->rn, elt, esz + 1);
5993 if (sub) {
5994 tcg_gen_sub_i64(tcg_op0, tcg_op0, tcg_op1);
5995 } else {
5996 tcg_gen_add_i64(tcg_op0, tcg_op0, tcg_op1);
5997 }
5998 if (round) {
5999 tcg_gen_addi_i64(tcg_op0, tcg_op0, rbit);
6000 }
6001 tcg_gen_shri_i64(tcg_op0, tcg_op0, ebits);
6002 write_vec_element(s, tcg_op0, a->rd, elt + top_half, esz);
6003 }
6004 clear_vec_high(s, top, a->rd);
6005 return true;
6006 }
6007
TRANS(ADDHN,do_addsub_highnarrow,a,false,false)6008 TRANS(ADDHN, do_addsub_highnarrow, a, false, false)
6009 TRANS(SUBHN, do_addsub_highnarrow, a, true, false)
6010 TRANS(RADDHN, do_addsub_highnarrow, a, false, true)
6011 TRANS(RSUBHN, do_addsub_highnarrow, a, true, true)
6012
6013 static bool do_pmull(DisasContext *s, arg_qrrr_e *a, gen_helper_gvec_3 *fn)
6014 {
6015 if (fp_access_check(s)) {
6016 /* The Q field specifies lo/hi half input for these insns. */
6017 gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->q, fn);
6018 }
6019 return true;
6020 }
6021
TRANS(PMULL_p8,do_pmull,a,gen_helper_neon_pmull_h)6022 TRANS(PMULL_p8, do_pmull, a, gen_helper_neon_pmull_h)
6023 TRANS_FEAT(PMULL_p64, aa64_pmull, do_pmull, a, gen_helper_gvec_pmull_q)
6024
6025 /*
6026 * Advanced SIMD scalar/vector x indexed element
6027 */
6028
6029 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
6030 {
6031 switch (a->esz) {
6032 case MO_64:
6033 if (fp_access_check(s)) {
6034 TCGv_i64 t0 = read_fp_dreg(s, a->rn);
6035 TCGv_i64 t1 = tcg_temp_new_i64();
6036
6037 read_vec_element(s, t1, a->rm, a->idx, MO_64);
6038 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
6039 write_fp_dreg(s, a->rd, t0);
6040 }
6041 break;
6042 case MO_32:
6043 if (fp_access_check(s)) {
6044 TCGv_i32 t0 = read_fp_sreg(s, a->rn);
6045 TCGv_i32 t1 = tcg_temp_new_i32();
6046
6047 read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
6048 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
6049 write_fp_sreg(s, a->rd, t0);
6050 }
6051 break;
6052 case MO_16:
6053 if (!dc_isar_feature(aa64_fp16, s)) {
6054 return false;
6055 }
6056 if (fp_access_check(s)) {
6057 TCGv_i32 t0 = read_fp_hreg(s, a->rn);
6058 TCGv_i32 t1 = tcg_temp_new_i32();
6059
6060 read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
6061 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
6062 write_fp_sreg(s, a->rd, t0);
6063 }
6064 break;
6065 default:
6066 g_assert_not_reached();
6067 }
6068 return true;
6069 }
6070
6071 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
6072 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
6073
do_fmla_scalar_idx(DisasContext * s,arg_rrx_e * a,bool neg)6074 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
6075 {
6076 switch (a->esz) {
6077 case MO_64:
6078 if (fp_access_check(s)) {
6079 TCGv_i64 t0 = read_fp_dreg(s, a->rd);
6080 TCGv_i64 t1 = read_fp_dreg(s, a->rn);
6081 TCGv_i64 t2 = tcg_temp_new_i64();
6082
6083 read_vec_element(s, t2, a->rm, a->idx, MO_64);
6084 if (neg) {
6085 gen_vfp_negd(t1, t1);
6086 }
6087 gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
6088 write_fp_dreg(s, a->rd, t0);
6089 }
6090 break;
6091 case MO_32:
6092 if (fp_access_check(s)) {
6093 TCGv_i32 t0 = read_fp_sreg(s, a->rd);
6094 TCGv_i32 t1 = read_fp_sreg(s, a->rn);
6095 TCGv_i32 t2 = tcg_temp_new_i32();
6096
6097 read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
6098 if (neg) {
6099 gen_vfp_negs(t1, t1);
6100 }
6101 gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_FPCR));
6102 write_fp_sreg(s, a->rd, t0);
6103 }
6104 break;
6105 case MO_16:
6106 if (!dc_isar_feature(aa64_fp16, s)) {
6107 return false;
6108 }
6109 if (fp_access_check(s)) {
6110 TCGv_i32 t0 = read_fp_hreg(s, a->rd);
6111 TCGv_i32 t1 = read_fp_hreg(s, a->rn);
6112 TCGv_i32 t2 = tcg_temp_new_i32();
6113
6114 read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
6115 if (neg) {
6116 gen_vfp_negh(t1, t1);
6117 }
6118 gen_helper_advsimd_muladdh(t0, t1, t2, t0,
6119 fpstatus_ptr(FPST_FPCR_F16));
6120 write_fp_sreg(s, a->rd, t0);
6121 }
6122 break;
6123 default:
6124 g_assert_not_reached();
6125 }
6126 return true;
6127 }
6128
TRANS(FMLA_si,do_fmla_scalar_idx,a,false)6129 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
6130 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
6131
6132 static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a,
6133 const ENVScalar2 *f)
6134 {
6135 if (a->esz < MO_16 || a->esz > MO_32) {
6136 return false;
6137 }
6138 if (fp_access_check(s)) {
6139 TCGv_i32 t0 = tcg_temp_new_i32();
6140 TCGv_i32 t1 = tcg_temp_new_i32();
6141
6142 read_vec_element_i32(s, t0, a->rn, 0, a->esz);
6143 read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
6144 f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
6145 write_fp_sreg(s, a->rd, t0);
6146 }
6147 return true;
6148 }
6149
6150 TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh)
6151 TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh)
6152
do_env_scalar3_idx_hs(DisasContext * s,arg_rrx_e * a,const ENVScalar3 * f)6153 static bool do_env_scalar3_idx_hs(DisasContext *s, arg_rrx_e *a,
6154 const ENVScalar3 *f)
6155 {
6156 if (a->esz < MO_16 || a->esz > MO_32) {
6157 return false;
6158 }
6159 if (fp_access_check(s)) {
6160 TCGv_i32 t0 = tcg_temp_new_i32();
6161 TCGv_i32 t1 = tcg_temp_new_i32();
6162 TCGv_i32 t2 = tcg_temp_new_i32();
6163
6164 read_vec_element_i32(s, t0, a->rn, 0, a->esz);
6165 read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
6166 read_vec_element_i32(s, t2, a->rd, 0, a->esz);
6167 f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
6168 write_fp_sreg(s, a->rd, t0);
6169 }
6170 return true;
6171 }
6172
6173 TRANS_FEAT(SQRDMLAH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlah)
6174 TRANS_FEAT(SQRDMLSH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlsh)
6175
do_scalar_muladd_widening_idx(DisasContext * s,arg_rrx_e * a,NeonGenTwo64OpFn * fn,bool acc)6176 static bool do_scalar_muladd_widening_idx(DisasContext *s, arg_rrx_e *a,
6177 NeonGenTwo64OpFn *fn, bool acc)
6178 {
6179 if (fp_access_check(s)) {
6180 TCGv_i64 t0 = tcg_temp_new_i64();
6181 TCGv_i64 t1 = tcg_temp_new_i64();
6182 TCGv_i64 t2 = tcg_temp_new_i64();
6183 unsigned vsz, dofs;
6184
6185 if (acc) {
6186 read_vec_element(s, t0, a->rd, 0, a->esz + 1);
6187 }
6188 read_vec_element(s, t1, a->rn, 0, a->esz | MO_SIGN);
6189 read_vec_element(s, t2, a->rm, a->idx, a->esz | MO_SIGN);
6190 fn(t0, t1, t2);
6191
6192 /* Clear the whole register first, then store scalar. */
6193 vsz = vec_full_reg_size(s);
6194 dofs = vec_full_reg_offset(s, a->rd);
6195 tcg_gen_gvec_dup_imm(MO_64, dofs, vsz, vsz, 0);
6196 write_vec_element(s, t0, a->rd, 0, a->esz + 1);
6197 }
6198 return true;
6199 }
6200
6201 TRANS(SQDMULL_si, do_scalar_muladd_widening_idx, a,
6202 a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
6203 TRANS(SQDMLAL_si, do_scalar_muladd_widening_idx, a,
6204 a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
6205 TRANS(SQDMLSL_si, do_scalar_muladd_widening_idx, a,
6206 a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
6207
do_fp3_vector_idx(DisasContext * s,arg_qrrx_e * a,gen_helper_gvec_3_ptr * const fns[3])6208 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
6209 gen_helper_gvec_3_ptr * const fns[3])
6210 {
6211 MemOp esz = a->esz;
6212
6213 switch (esz) {
6214 case MO_64:
6215 if (!a->q) {
6216 return false;
6217 }
6218 break;
6219 case MO_32:
6220 break;
6221 case MO_16:
6222 if (!dc_isar_feature(aa64_fp16, s)) {
6223 return false;
6224 }
6225 break;
6226 default:
6227 g_assert_not_reached();
6228 }
6229 if (fp_access_check(s)) {
6230 gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
6231 esz == MO_16, a->idx, fns[esz - 1]);
6232 }
6233 return true;
6234 }
6235
6236 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
6237 gen_helper_gvec_fmul_idx_h,
6238 gen_helper_gvec_fmul_idx_s,
6239 gen_helper_gvec_fmul_idx_d,
6240 };
6241 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
6242
6243 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
6244 gen_helper_gvec_fmulx_idx_h,
6245 gen_helper_gvec_fmulx_idx_s,
6246 gen_helper_gvec_fmulx_idx_d,
6247 };
TRANS(FMULX_vi,do_fp3_vector_idx,a,f_vector_idx_fmulx)6248 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
6249
6250 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
6251 {
6252 static gen_helper_gvec_4_ptr * const fns[3] = {
6253 gen_helper_gvec_fmla_idx_h,
6254 gen_helper_gvec_fmla_idx_s,
6255 gen_helper_gvec_fmla_idx_d,
6256 };
6257 MemOp esz = a->esz;
6258
6259 switch (esz) {
6260 case MO_64:
6261 if (!a->q) {
6262 return false;
6263 }
6264 break;
6265 case MO_32:
6266 break;
6267 case MO_16:
6268 if (!dc_isar_feature(aa64_fp16, s)) {
6269 return false;
6270 }
6271 break;
6272 default:
6273 g_assert_not_reached();
6274 }
6275 if (fp_access_check(s)) {
6276 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
6277 esz == MO_16, (a->idx << 1) | neg,
6278 fns[esz - 1]);
6279 }
6280 return true;
6281 }
6282
TRANS(FMLA_vi,do_fmla_vector_idx,a,false)6283 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
6284 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
6285
6286 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2)
6287 {
6288 if (fp_access_check(s)) {
6289 int data = (a->idx << 2) | (is_2 << 1) | is_s;
6290 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
6291 vec_full_reg_offset(s, a->rn),
6292 vec_full_reg_offset(s, a->rm), tcg_env,
6293 a->q ? 16 : 8, vec_full_reg_size(s),
6294 data, gen_helper_gvec_fmlal_idx_a64);
6295 }
6296 return true;
6297 }
6298
TRANS_FEAT(FMLAL_vi,aa64_fhm,do_fmlal_idx,a,false,false)6299 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false)
6300 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false)
6301 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true)
6302 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true)
6303
6304 static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a,
6305 gen_helper_gvec_3 * const fns[2])
6306 {
6307 assert(a->esz == MO_16 || a->esz == MO_32);
6308 if (fp_access_check(s)) {
6309 gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]);
6310 }
6311 return true;
6312 }
6313
6314 static gen_helper_gvec_3 * const f_vector_idx_mul[2] = {
6315 gen_helper_gvec_mul_idx_h,
6316 gen_helper_gvec_mul_idx_s,
6317 };
TRANS(MUL_vi,do_int3_vector_idx,a,f_vector_idx_mul)6318 TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul)
6319
6320 static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub)
6321 {
6322 static gen_helper_gvec_4 * const fns[2][2] = {
6323 { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h },
6324 { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s },
6325 };
6326
6327 assert(a->esz == MO_16 || a->esz == MO_32);
6328 if (fp_access_check(s)) {
6329 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd,
6330 a->idx, fns[a->esz - 1][sub]);
6331 }
6332 return true;
6333 }
6334
TRANS(MLA_vi,do_mla_vector_idx,a,false)6335 TRANS(MLA_vi, do_mla_vector_idx, a, false)
6336 TRANS(MLS_vi, do_mla_vector_idx, a, true)
6337
6338 static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a,
6339 gen_helper_gvec_4 * const fns[2])
6340 {
6341 assert(a->esz == MO_16 || a->esz == MO_32);
6342 if (fp_access_check(s)) {
6343 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
6344 vec_full_reg_offset(s, a->rn),
6345 vec_full_reg_offset(s, a->rm),
6346 offsetof(CPUARMState, vfp.qc),
6347 a->q ? 16 : 8, vec_full_reg_size(s),
6348 a->idx, fns[a->esz - 1]);
6349 }
6350 return true;
6351 }
6352
6353 static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = {
6354 gen_helper_neon_sqdmulh_idx_h,
6355 gen_helper_neon_sqdmulh_idx_s,
6356 };
6357 TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh)
6358
6359 static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = {
6360 gen_helper_neon_sqrdmulh_idx_h,
6361 gen_helper_neon_sqrdmulh_idx_s,
6362 };
6363 TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh)
6364
6365 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlah[2] = {
6366 gen_helper_neon_sqrdmlah_idx_h,
6367 gen_helper_neon_sqrdmlah_idx_s,
6368 };
6369 TRANS_FEAT(SQRDMLAH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
6370 f_vector_idx_sqrdmlah)
6371
6372 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlsh[2] = {
6373 gen_helper_neon_sqrdmlsh_idx_h,
6374 gen_helper_neon_sqrdmlsh_idx_s,
6375 };
TRANS_FEAT(SQRDMLSH_vi,aa64_rdm,do_int3_qc_vector_idx,a,f_vector_idx_sqrdmlsh)6376 TRANS_FEAT(SQRDMLSH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
6377 f_vector_idx_sqrdmlsh)
6378
6379 static bool do_dot_vector_idx(DisasContext *s, arg_qrrx_e *a,
6380 gen_helper_gvec_4 *fn)
6381 {
6382 if (fp_access_check(s)) {
6383 gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn);
6384 }
6385 return true;
6386 }
6387
TRANS_FEAT(SDOT_vi,aa64_dp,do_dot_vector_idx,a,gen_helper_gvec_sdot_idx_b)6388 TRANS_FEAT(SDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_sdot_idx_b)
6389 TRANS_FEAT(UDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_udot_idx_b)
6390 TRANS_FEAT(SUDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
6391 gen_helper_gvec_sudot_idx_b)
6392 TRANS_FEAT(USDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
6393 gen_helper_gvec_usdot_idx_b)
6394 TRANS_FEAT(BFDOT_vi, aa64_bf16, do_dot_vector_idx, a,
6395 gen_helper_gvec_bfdot_idx)
6396
6397 static bool trans_BFMLAL_vi(DisasContext *s, arg_qrrx_e *a)
6398 {
6399 if (!dc_isar_feature(aa64_bf16, s)) {
6400 return false;
6401 }
6402 if (fp_access_check(s)) {
6403 /* Q bit selects BFMLALB vs BFMLALT. */
6404 gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd, 0,
6405 (a->idx << 1) | a->q,
6406 gen_helper_gvec_bfmlal_idx);
6407 }
6408 return true;
6409 }
6410
trans_FCMLA_vi(DisasContext * s,arg_FCMLA_vi * a)6411 static bool trans_FCMLA_vi(DisasContext *s, arg_FCMLA_vi *a)
6412 {
6413 gen_helper_gvec_4_ptr *fn;
6414
6415 if (!dc_isar_feature(aa64_fcma, s)) {
6416 return false;
6417 }
6418 switch (a->esz) {
6419 case MO_16:
6420 if (!dc_isar_feature(aa64_fp16, s)) {
6421 return false;
6422 }
6423 fn = gen_helper_gvec_fcmlah_idx;
6424 break;
6425 case MO_32:
6426 fn = gen_helper_gvec_fcmlas_idx;
6427 break;
6428 default:
6429 g_assert_not_reached();
6430 }
6431 if (fp_access_check(s)) {
6432 gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
6433 a->esz == MO_16, (a->idx << 2) | a->rot, fn);
6434 }
6435 return true;
6436 }
6437
6438 /*
6439 * Advanced SIMD scalar pairwise
6440 */
6441
do_fp3_scalar_pair(DisasContext * s,arg_rr_e * a,const FPScalar * f)6442 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
6443 {
6444 switch (a->esz) {
6445 case MO_64:
6446 if (fp_access_check(s)) {
6447 TCGv_i64 t0 = tcg_temp_new_i64();
6448 TCGv_i64 t1 = tcg_temp_new_i64();
6449
6450 read_vec_element(s, t0, a->rn, 0, MO_64);
6451 read_vec_element(s, t1, a->rn, 1, MO_64);
6452 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
6453 write_fp_dreg(s, a->rd, t0);
6454 }
6455 break;
6456 case MO_32:
6457 if (fp_access_check(s)) {
6458 TCGv_i32 t0 = tcg_temp_new_i32();
6459 TCGv_i32 t1 = tcg_temp_new_i32();
6460
6461 read_vec_element_i32(s, t0, a->rn, 0, MO_32);
6462 read_vec_element_i32(s, t1, a->rn, 1, MO_32);
6463 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_FPCR));
6464 write_fp_sreg(s, a->rd, t0);
6465 }
6466 break;
6467 case MO_16:
6468 if (!dc_isar_feature(aa64_fp16, s)) {
6469 return false;
6470 }
6471 if (fp_access_check(s)) {
6472 TCGv_i32 t0 = tcg_temp_new_i32();
6473 TCGv_i32 t1 = tcg_temp_new_i32();
6474
6475 read_vec_element_i32(s, t0, a->rn, 0, MO_16);
6476 read_vec_element_i32(s, t1, a->rn, 1, MO_16);
6477 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_FPCR_F16));
6478 write_fp_sreg(s, a->rd, t0);
6479 }
6480 break;
6481 default:
6482 g_assert_not_reached();
6483 }
6484 return true;
6485 }
6486
6487 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
6488 TRANS(FMAXP_s, do_fp3_scalar_pair, a, &f_scalar_fmax)
6489 TRANS(FMINP_s, do_fp3_scalar_pair, a, &f_scalar_fmin)
6490 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm)
6491 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm)
6492
trans_ADDP_s(DisasContext * s,arg_rr_e * a)6493 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a)
6494 {
6495 if (fp_access_check(s)) {
6496 TCGv_i64 t0 = tcg_temp_new_i64();
6497 TCGv_i64 t1 = tcg_temp_new_i64();
6498
6499 read_vec_element(s, t0, a->rn, 0, MO_64);
6500 read_vec_element(s, t1, a->rn, 1, MO_64);
6501 tcg_gen_add_i64(t0, t0, t1);
6502 write_fp_dreg(s, a->rd, t0);
6503 }
6504 return true;
6505 }
6506
6507 /*
6508 * Floating-point conditional select
6509 */
6510
trans_FCSEL(DisasContext * s,arg_FCSEL * a)6511 static bool trans_FCSEL(DisasContext *s, arg_FCSEL *a)
6512 {
6513 TCGv_i64 t_true, t_false;
6514 DisasCompare64 c;
6515
6516 switch (a->esz) {
6517 case MO_32:
6518 case MO_64:
6519 break;
6520 case MO_16:
6521 if (!dc_isar_feature(aa64_fp16, s)) {
6522 return false;
6523 }
6524 break;
6525 default:
6526 return false;
6527 }
6528
6529 if (!fp_access_check(s)) {
6530 return true;
6531 }
6532
6533 /* Zero extend sreg & hreg inputs to 64 bits now. */
6534 t_true = tcg_temp_new_i64();
6535 t_false = tcg_temp_new_i64();
6536 read_vec_element(s, t_true, a->rn, 0, a->esz);
6537 read_vec_element(s, t_false, a->rm, 0, a->esz);
6538
6539 a64_test_cc(&c, a->cond);
6540 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6541 t_true, t_false);
6542
6543 /*
6544 * Note that sregs & hregs write back zeros to the high bits,
6545 * and we've already done the zero-extension.
6546 */
6547 write_fp_dreg(s, a->rd, t_true);
6548 return true;
6549 }
6550
6551 /*
6552 * Floating-point data-processing (3 source)
6553 */
6554
do_fmadd(DisasContext * s,arg_rrrr_e * a,bool neg_a,bool neg_n)6555 static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n)
6556 {
6557 TCGv_ptr fpst;
6558
6559 /*
6560 * These are fused multiply-add. Note that doing the negations here
6561 * as separate steps is correct: an input NaN should come out with
6562 * its sign bit flipped if it is a negated-input.
6563 */
6564 switch (a->esz) {
6565 case MO_64:
6566 if (fp_access_check(s)) {
6567 TCGv_i64 tn = read_fp_dreg(s, a->rn);
6568 TCGv_i64 tm = read_fp_dreg(s, a->rm);
6569 TCGv_i64 ta = read_fp_dreg(s, a->ra);
6570
6571 if (neg_a) {
6572 gen_vfp_negd(ta, ta);
6573 }
6574 if (neg_n) {
6575 gen_vfp_negd(tn, tn);
6576 }
6577 fpst = fpstatus_ptr(FPST_FPCR);
6578 gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst);
6579 write_fp_dreg(s, a->rd, ta);
6580 }
6581 break;
6582
6583 case MO_32:
6584 if (fp_access_check(s)) {
6585 TCGv_i32 tn = read_fp_sreg(s, a->rn);
6586 TCGv_i32 tm = read_fp_sreg(s, a->rm);
6587 TCGv_i32 ta = read_fp_sreg(s, a->ra);
6588
6589 if (neg_a) {
6590 gen_vfp_negs(ta, ta);
6591 }
6592 if (neg_n) {
6593 gen_vfp_negs(tn, tn);
6594 }
6595 fpst = fpstatus_ptr(FPST_FPCR);
6596 gen_helper_vfp_muladds(ta, tn, tm, ta, fpst);
6597 write_fp_sreg(s, a->rd, ta);
6598 }
6599 break;
6600
6601 case MO_16:
6602 if (!dc_isar_feature(aa64_fp16, s)) {
6603 return false;
6604 }
6605 if (fp_access_check(s)) {
6606 TCGv_i32 tn = read_fp_hreg(s, a->rn);
6607 TCGv_i32 tm = read_fp_hreg(s, a->rm);
6608 TCGv_i32 ta = read_fp_hreg(s, a->ra);
6609
6610 if (neg_a) {
6611 gen_vfp_negh(ta, ta);
6612 }
6613 if (neg_n) {
6614 gen_vfp_negh(tn, tn);
6615 }
6616 fpst = fpstatus_ptr(FPST_FPCR_F16);
6617 gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst);
6618 write_fp_sreg(s, a->rd, ta);
6619 }
6620 break;
6621
6622 default:
6623 return false;
6624 }
6625 return true;
6626 }
6627
TRANS(FMADD,do_fmadd,a,false,false)6628 TRANS(FMADD, do_fmadd, a, false, false)
6629 TRANS(FNMADD, do_fmadd, a, true, true)
6630 TRANS(FMSUB, do_fmadd, a, false, true)
6631 TRANS(FNMSUB, do_fmadd, a, true, false)
6632
6633 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
6634 * Note that it is the caller's responsibility to ensure that the
6635 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
6636 * mandated semantics for out of range shifts.
6637 */
6638 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
6639 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
6640 {
6641 switch (shift_type) {
6642 case A64_SHIFT_TYPE_LSL:
6643 tcg_gen_shl_i64(dst, src, shift_amount);
6644 break;
6645 case A64_SHIFT_TYPE_LSR:
6646 tcg_gen_shr_i64(dst, src, shift_amount);
6647 break;
6648 case A64_SHIFT_TYPE_ASR:
6649 if (!sf) {
6650 tcg_gen_ext32s_i64(dst, src);
6651 }
6652 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
6653 break;
6654 case A64_SHIFT_TYPE_ROR:
6655 if (sf) {
6656 tcg_gen_rotr_i64(dst, src, shift_amount);
6657 } else {
6658 TCGv_i32 t0, t1;
6659 t0 = tcg_temp_new_i32();
6660 t1 = tcg_temp_new_i32();
6661 tcg_gen_extrl_i64_i32(t0, src);
6662 tcg_gen_extrl_i64_i32(t1, shift_amount);
6663 tcg_gen_rotr_i32(t0, t0, t1);
6664 tcg_gen_extu_i32_i64(dst, t0);
6665 }
6666 break;
6667 default:
6668 assert(FALSE); /* all shift types should be handled */
6669 break;
6670 }
6671
6672 if (!sf) { /* zero extend final result */
6673 tcg_gen_ext32u_i64(dst, dst);
6674 }
6675 }
6676
6677 /* Shift a TCGv src by immediate, put result in dst.
6678 * The shift amount must be in range (this should always be true as the
6679 * relevant instructions will UNDEF on bad shift immediates).
6680 */
shift_reg_imm(TCGv_i64 dst,TCGv_i64 src,int sf,enum a64_shift_type shift_type,unsigned int shift_i)6681 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
6682 enum a64_shift_type shift_type, unsigned int shift_i)
6683 {
6684 assert(shift_i < (sf ? 64 : 32));
6685
6686 if (shift_i == 0) {
6687 tcg_gen_mov_i64(dst, src);
6688 } else {
6689 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
6690 }
6691 }
6692
6693 /* Logical (shifted register)
6694 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
6695 * +----+-----+-----------+-------+---+------+--------+------+------+
6696 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
6697 * +----+-----+-----------+-------+---+------+--------+------+------+
6698 */
disas_logic_reg(DisasContext * s,uint32_t insn)6699 static void disas_logic_reg(DisasContext *s, uint32_t insn)
6700 {
6701 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
6702 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
6703
6704 sf = extract32(insn, 31, 1);
6705 opc = extract32(insn, 29, 2);
6706 shift_type = extract32(insn, 22, 2);
6707 invert = extract32(insn, 21, 1);
6708 rm = extract32(insn, 16, 5);
6709 shift_amount = extract32(insn, 10, 6);
6710 rn = extract32(insn, 5, 5);
6711 rd = extract32(insn, 0, 5);
6712
6713 if (!sf && (shift_amount & (1 << 5))) {
6714 unallocated_encoding(s);
6715 return;
6716 }
6717
6718 tcg_rd = cpu_reg(s, rd);
6719
6720 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
6721 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
6722 * register-register MOV and MVN, so it is worth special casing.
6723 */
6724 tcg_rm = cpu_reg(s, rm);
6725 if (invert) {
6726 tcg_gen_not_i64(tcg_rd, tcg_rm);
6727 if (!sf) {
6728 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6729 }
6730 } else {
6731 if (sf) {
6732 tcg_gen_mov_i64(tcg_rd, tcg_rm);
6733 } else {
6734 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
6735 }
6736 }
6737 return;
6738 }
6739
6740 tcg_rm = read_cpu_reg(s, rm, sf);
6741
6742 if (shift_amount) {
6743 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
6744 }
6745
6746 tcg_rn = cpu_reg(s, rn);
6747
6748 switch (opc | (invert << 2)) {
6749 case 0: /* AND */
6750 case 3: /* ANDS */
6751 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
6752 break;
6753 case 1: /* ORR */
6754 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
6755 break;
6756 case 2: /* EOR */
6757 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
6758 break;
6759 case 4: /* BIC */
6760 case 7: /* BICS */
6761 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
6762 break;
6763 case 5: /* ORN */
6764 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
6765 break;
6766 case 6: /* EON */
6767 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
6768 break;
6769 default:
6770 assert(FALSE);
6771 break;
6772 }
6773
6774 if (!sf) {
6775 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6776 }
6777
6778 if (opc == 3) {
6779 gen_logic_CC(sf, tcg_rd);
6780 }
6781 }
6782
6783 /*
6784 * Add/subtract (extended register)
6785 *
6786 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
6787 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6788 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
6789 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
6790 *
6791 * sf: 0 -> 32bit, 1 -> 64bit
6792 * op: 0 -> add , 1 -> sub
6793 * S: 1 -> set flags
6794 * opt: 00
6795 * option: extension type (see DecodeRegExtend)
6796 * imm3: optional shift to Rm
6797 *
6798 * Rd = Rn + LSL(extend(Rm), amount)
6799 */
disas_add_sub_ext_reg(DisasContext * s,uint32_t insn)6800 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
6801 {
6802 int rd = extract32(insn, 0, 5);
6803 int rn = extract32(insn, 5, 5);
6804 int imm3 = extract32(insn, 10, 3);
6805 int option = extract32(insn, 13, 3);
6806 int rm = extract32(insn, 16, 5);
6807 int opt = extract32(insn, 22, 2);
6808 bool setflags = extract32(insn, 29, 1);
6809 bool sub_op = extract32(insn, 30, 1);
6810 bool sf = extract32(insn, 31, 1);
6811
6812 TCGv_i64 tcg_rm, tcg_rn; /* temps */
6813 TCGv_i64 tcg_rd;
6814 TCGv_i64 tcg_result;
6815
6816 if (imm3 > 4 || opt != 0) {
6817 unallocated_encoding(s);
6818 return;
6819 }
6820
6821 /* non-flag setting ops may use SP */
6822 if (!setflags) {
6823 tcg_rd = cpu_reg_sp(s, rd);
6824 } else {
6825 tcg_rd = cpu_reg(s, rd);
6826 }
6827 tcg_rn = read_cpu_reg_sp(s, rn, sf);
6828
6829 tcg_rm = read_cpu_reg(s, rm, sf);
6830 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
6831
6832 tcg_result = tcg_temp_new_i64();
6833
6834 if (!setflags) {
6835 if (sub_op) {
6836 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6837 } else {
6838 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6839 }
6840 } else {
6841 if (sub_op) {
6842 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6843 } else {
6844 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6845 }
6846 }
6847
6848 if (sf) {
6849 tcg_gen_mov_i64(tcg_rd, tcg_result);
6850 } else {
6851 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6852 }
6853 }
6854
6855 /*
6856 * Add/subtract (shifted register)
6857 *
6858 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
6859 * +--+--+--+-----------+-----+--+-------+---------+------+------+
6860 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
6861 * +--+--+--+-----------+-----+--+-------+---------+------+------+
6862 *
6863 * sf: 0 -> 32bit, 1 -> 64bit
6864 * op: 0 -> add , 1 -> sub
6865 * S: 1 -> set flags
6866 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
6867 * imm6: Shift amount to apply to Rm before the add/sub
6868 */
disas_add_sub_reg(DisasContext * s,uint32_t insn)6869 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
6870 {
6871 int rd = extract32(insn, 0, 5);
6872 int rn = extract32(insn, 5, 5);
6873 int imm6 = extract32(insn, 10, 6);
6874 int rm = extract32(insn, 16, 5);
6875 int shift_type = extract32(insn, 22, 2);
6876 bool setflags = extract32(insn, 29, 1);
6877 bool sub_op = extract32(insn, 30, 1);
6878 bool sf = extract32(insn, 31, 1);
6879
6880 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6881 TCGv_i64 tcg_rn, tcg_rm;
6882 TCGv_i64 tcg_result;
6883
6884 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
6885 unallocated_encoding(s);
6886 return;
6887 }
6888
6889 tcg_rn = read_cpu_reg(s, rn, sf);
6890 tcg_rm = read_cpu_reg(s, rm, sf);
6891
6892 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
6893
6894 tcg_result = tcg_temp_new_i64();
6895
6896 if (!setflags) {
6897 if (sub_op) {
6898 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
6899 } else {
6900 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
6901 }
6902 } else {
6903 if (sub_op) {
6904 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
6905 } else {
6906 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
6907 }
6908 }
6909
6910 if (sf) {
6911 tcg_gen_mov_i64(tcg_rd, tcg_result);
6912 } else {
6913 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
6914 }
6915 }
6916
6917 /* Data-processing (3 source)
6918 *
6919 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
6920 * +--+------+-----------+------+------+----+------+------+------+
6921 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
6922 * +--+------+-----------+------+------+----+------+------+------+
6923 */
disas_data_proc_3src(DisasContext * s,uint32_t insn)6924 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
6925 {
6926 int rd = extract32(insn, 0, 5);
6927 int rn = extract32(insn, 5, 5);
6928 int ra = extract32(insn, 10, 5);
6929 int rm = extract32(insn, 16, 5);
6930 int op_id = (extract32(insn, 29, 3) << 4) |
6931 (extract32(insn, 21, 3) << 1) |
6932 extract32(insn, 15, 1);
6933 bool sf = extract32(insn, 31, 1);
6934 bool is_sub = extract32(op_id, 0, 1);
6935 bool is_high = extract32(op_id, 2, 1);
6936 bool is_signed = false;
6937 TCGv_i64 tcg_op1;
6938 TCGv_i64 tcg_op2;
6939 TCGv_i64 tcg_tmp;
6940
6941 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
6942 switch (op_id) {
6943 case 0x42: /* SMADDL */
6944 case 0x43: /* SMSUBL */
6945 case 0x44: /* SMULH */
6946 is_signed = true;
6947 break;
6948 case 0x0: /* MADD (32bit) */
6949 case 0x1: /* MSUB (32bit) */
6950 case 0x40: /* MADD (64bit) */
6951 case 0x41: /* MSUB (64bit) */
6952 case 0x4a: /* UMADDL */
6953 case 0x4b: /* UMSUBL */
6954 case 0x4c: /* UMULH */
6955 break;
6956 default:
6957 unallocated_encoding(s);
6958 return;
6959 }
6960
6961 if (is_high) {
6962 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
6963 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6964 TCGv_i64 tcg_rn = cpu_reg(s, rn);
6965 TCGv_i64 tcg_rm = cpu_reg(s, rm);
6966
6967 if (is_signed) {
6968 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6969 } else {
6970 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
6971 }
6972 return;
6973 }
6974
6975 tcg_op1 = tcg_temp_new_i64();
6976 tcg_op2 = tcg_temp_new_i64();
6977 tcg_tmp = tcg_temp_new_i64();
6978
6979 if (op_id < 0x42) {
6980 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
6981 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
6982 } else {
6983 if (is_signed) {
6984 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
6985 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
6986 } else {
6987 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
6988 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
6989 }
6990 }
6991
6992 if (ra == 31 && !is_sub) {
6993 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
6994 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
6995 } else {
6996 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
6997 if (is_sub) {
6998 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
6999 } else {
7000 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
7001 }
7002 }
7003
7004 if (!sf) {
7005 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
7006 }
7007 }
7008
7009 /* Add/subtract (with carry)
7010 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
7011 * +--+--+--+------------------------+------+-------------+------+-----+
7012 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
7013 * +--+--+--+------------------------+------+-------------+------+-----+
7014 */
7015
disas_adc_sbc(DisasContext * s,uint32_t insn)7016 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
7017 {
7018 unsigned int sf, op, setflags, rm, rn, rd;
7019 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
7020
7021 sf = extract32(insn, 31, 1);
7022 op = extract32(insn, 30, 1);
7023 setflags = extract32(insn, 29, 1);
7024 rm = extract32(insn, 16, 5);
7025 rn = extract32(insn, 5, 5);
7026 rd = extract32(insn, 0, 5);
7027
7028 tcg_rd = cpu_reg(s, rd);
7029 tcg_rn = cpu_reg(s, rn);
7030
7031 if (op) {
7032 tcg_y = tcg_temp_new_i64();
7033 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
7034 } else {
7035 tcg_y = cpu_reg(s, rm);
7036 }
7037
7038 if (setflags) {
7039 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
7040 } else {
7041 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
7042 }
7043 }
7044
7045 /*
7046 * Rotate right into flags
7047 * 31 30 29 21 15 10 5 4 0
7048 * +--+--+--+-----------------+--------+-----------+------+--+------+
7049 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
7050 * +--+--+--+-----------------+--------+-----------+------+--+------+
7051 */
disas_rotate_right_into_flags(DisasContext * s,uint32_t insn)7052 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
7053 {
7054 int mask = extract32(insn, 0, 4);
7055 int o2 = extract32(insn, 4, 1);
7056 int rn = extract32(insn, 5, 5);
7057 int imm6 = extract32(insn, 15, 6);
7058 int sf_op_s = extract32(insn, 29, 3);
7059 TCGv_i64 tcg_rn;
7060 TCGv_i32 nzcv;
7061
7062 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
7063 unallocated_encoding(s);
7064 return;
7065 }
7066
7067 tcg_rn = read_cpu_reg(s, rn, 1);
7068 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
7069
7070 nzcv = tcg_temp_new_i32();
7071 tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
7072
7073 if (mask & 8) { /* N */
7074 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
7075 }
7076 if (mask & 4) { /* Z */
7077 tcg_gen_not_i32(cpu_ZF, nzcv);
7078 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
7079 }
7080 if (mask & 2) { /* C */
7081 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
7082 }
7083 if (mask & 1) { /* V */
7084 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
7085 }
7086 }
7087
7088 /*
7089 * Evaluate into flags
7090 * 31 30 29 21 15 14 10 5 4 0
7091 * +--+--+--+-----------------+---------+----+---------+------+--+------+
7092 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
7093 * +--+--+--+-----------------+---------+----+---------+------+--+------+
7094 */
disas_evaluate_into_flags(DisasContext * s,uint32_t insn)7095 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
7096 {
7097 int o3_mask = extract32(insn, 0, 5);
7098 int rn = extract32(insn, 5, 5);
7099 int o2 = extract32(insn, 15, 6);
7100 int sz = extract32(insn, 14, 1);
7101 int sf_op_s = extract32(insn, 29, 3);
7102 TCGv_i32 tmp;
7103 int shift;
7104
7105 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
7106 !dc_isar_feature(aa64_condm_4, s)) {
7107 unallocated_encoding(s);
7108 return;
7109 }
7110 shift = sz ? 16 : 24; /* SETF16 or SETF8 */
7111
7112 tmp = tcg_temp_new_i32();
7113 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
7114 tcg_gen_shli_i32(cpu_NF, tmp, shift);
7115 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
7116 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
7117 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
7118 }
7119
7120 /* Conditional compare (immediate / register)
7121 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
7122 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
7123 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
7124 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
7125 * [1] y [0] [0]
7126 */
disas_cc(DisasContext * s,uint32_t insn)7127 static void disas_cc(DisasContext *s, uint32_t insn)
7128 {
7129 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
7130 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
7131 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
7132 DisasCompare c;
7133
7134 if (!extract32(insn, 29, 1)) {
7135 unallocated_encoding(s);
7136 return;
7137 }
7138 if (insn & (1 << 10 | 1 << 4)) {
7139 unallocated_encoding(s);
7140 return;
7141 }
7142 sf = extract32(insn, 31, 1);
7143 op = extract32(insn, 30, 1);
7144 is_imm = extract32(insn, 11, 1);
7145 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
7146 cond = extract32(insn, 12, 4);
7147 rn = extract32(insn, 5, 5);
7148 nzcv = extract32(insn, 0, 4);
7149
7150 /* Set T0 = !COND. */
7151 tcg_t0 = tcg_temp_new_i32();
7152 arm_test_cc(&c, cond);
7153 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
7154
7155 /* Load the arguments for the new comparison. */
7156 if (is_imm) {
7157 tcg_y = tcg_temp_new_i64();
7158 tcg_gen_movi_i64(tcg_y, y);
7159 } else {
7160 tcg_y = cpu_reg(s, y);
7161 }
7162 tcg_rn = cpu_reg(s, rn);
7163
7164 /* Set the flags for the new comparison. */
7165 tcg_tmp = tcg_temp_new_i64();
7166 if (op) {
7167 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
7168 } else {
7169 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
7170 }
7171
7172 /* If COND was false, force the flags to #nzcv. Compute two masks
7173 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
7174 * For tcg hosts that support ANDC, we can make do with just T1.
7175 * In either case, allow the tcg optimizer to delete any unused mask.
7176 */
7177 tcg_t1 = tcg_temp_new_i32();
7178 tcg_t2 = tcg_temp_new_i32();
7179 tcg_gen_neg_i32(tcg_t1, tcg_t0);
7180 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
7181
7182 if (nzcv & 8) { /* N */
7183 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
7184 } else {
7185 if (TCG_TARGET_HAS_andc_i32) {
7186 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
7187 } else {
7188 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
7189 }
7190 }
7191 if (nzcv & 4) { /* Z */
7192 if (TCG_TARGET_HAS_andc_i32) {
7193 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
7194 } else {
7195 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
7196 }
7197 } else {
7198 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
7199 }
7200 if (nzcv & 2) { /* C */
7201 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
7202 } else {
7203 if (TCG_TARGET_HAS_andc_i32) {
7204 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
7205 } else {
7206 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
7207 }
7208 }
7209 if (nzcv & 1) { /* V */
7210 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
7211 } else {
7212 if (TCG_TARGET_HAS_andc_i32) {
7213 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
7214 } else {
7215 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
7216 }
7217 }
7218 }
7219
7220 /* Conditional select
7221 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
7222 * +----+----+---+-----------------+------+------+-----+------+------+
7223 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
7224 * +----+----+---+-----------------+------+------+-----+------+------+
7225 */
disas_cond_select(DisasContext * s,uint32_t insn)7226 static void disas_cond_select(DisasContext *s, uint32_t insn)
7227 {
7228 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
7229 TCGv_i64 tcg_rd, zero;
7230 DisasCompare64 c;
7231
7232 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
7233 /* S == 1 or op2<1> == 1 */
7234 unallocated_encoding(s);
7235 return;
7236 }
7237 sf = extract32(insn, 31, 1);
7238 else_inv = extract32(insn, 30, 1);
7239 rm = extract32(insn, 16, 5);
7240 cond = extract32(insn, 12, 4);
7241 else_inc = extract32(insn, 10, 1);
7242 rn = extract32(insn, 5, 5);
7243 rd = extract32(insn, 0, 5);
7244
7245 tcg_rd = cpu_reg(s, rd);
7246
7247 a64_test_cc(&c, cond);
7248 zero = tcg_constant_i64(0);
7249
7250 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
7251 /* CSET & CSETM. */
7252 if (else_inv) {
7253 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
7254 tcg_rd, c.value, zero);
7255 } else {
7256 tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
7257 tcg_rd, c.value, zero);
7258 }
7259 } else {
7260 TCGv_i64 t_true = cpu_reg(s, rn);
7261 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
7262 if (else_inv && else_inc) {
7263 tcg_gen_neg_i64(t_false, t_false);
7264 } else if (else_inv) {
7265 tcg_gen_not_i64(t_false, t_false);
7266 } else if (else_inc) {
7267 tcg_gen_addi_i64(t_false, t_false, 1);
7268 }
7269 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
7270 }
7271
7272 if (!sf) {
7273 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7274 }
7275 }
7276
handle_clz(DisasContext * s,unsigned int sf,unsigned int rn,unsigned int rd)7277 static void handle_clz(DisasContext *s, unsigned int sf,
7278 unsigned int rn, unsigned int rd)
7279 {
7280 TCGv_i64 tcg_rd, tcg_rn;
7281 tcg_rd = cpu_reg(s, rd);
7282 tcg_rn = cpu_reg(s, rn);
7283
7284 if (sf) {
7285 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
7286 } else {
7287 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
7288 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
7289 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
7290 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
7291 }
7292 }
7293
handle_cls(DisasContext * s,unsigned int sf,unsigned int rn,unsigned int rd)7294 static void handle_cls(DisasContext *s, unsigned int sf,
7295 unsigned int rn, unsigned int rd)
7296 {
7297 TCGv_i64 tcg_rd, tcg_rn;
7298 tcg_rd = cpu_reg(s, rd);
7299 tcg_rn = cpu_reg(s, rn);
7300
7301 if (sf) {
7302 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
7303 } else {
7304 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
7305 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
7306 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
7307 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
7308 }
7309 }
7310
handle_rbit(DisasContext * s,unsigned int sf,unsigned int rn,unsigned int rd)7311 static void handle_rbit(DisasContext *s, unsigned int sf,
7312 unsigned int rn, unsigned int rd)
7313 {
7314 TCGv_i64 tcg_rd, tcg_rn;
7315 tcg_rd = cpu_reg(s, rd);
7316 tcg_rn = cpu_reg(s, rn);
7317
7318 if (sf) {
7319 gen_helper_rbit64(tcg_rd, tcg_rn);
7320 } else {
7321 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
7322 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
7323 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
7324 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
7325 }
7326 }
7327
7328 /* REV with sf==1, opcode==3 ("REV64") */
handle_rev64(DisasContext * s,unsigned int sf,unsigned int rn,unsigned int rd)7329 static void handle_rev64(DisasContext *s, unsigned int sf,
7330 unsigned int rn, unsigned int rd)
7331 {
7332 if (!sf) {
7333 unallocated_encoding(s);
7334 return;
7335 }
7336 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
7337 }
7338
7339 /* REV with sf==0, opcode==2
7340 * REV32 (sf==1, opcode==2)
7341 */
handle_rev32(DisasContext * s,unsigned int sf,unsigned int rn,unsigned int rd)7342 static void handle_rev32(DisasContext *s, unsigned int sf,
7343 unsigned int rn, unsigned int rd)
7344 {
7345 TCGv_i64 tcg_rd = cpu_reg(s, rd);
7346 TCGv_i64 tcg_rn = cpu_reg(s, rn);
7347
7348 if (sf) {
7349 tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
7350 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
7351 } else {
7352 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
7353 }
7354 }
7355
7356 /* REV16 (opcode==1) */
handle_rev16(DisasContext * s,unsigned int sf,unsigned int rn,unsigned int rd)7357 static void handle_rev16(DisasContext *s, unsigned int sf,
7358 unsigned int rn, unsigned int rd)
7359 {
7360 TCGv_i64 tcg_rd = cpu_reg(s, rd);
7361 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7362 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
7363 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
7364
7365 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
7366 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
7367 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
7368 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
7369 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
7370 }
7371
7372 /* Data-processing (1 source)
7373 * 31 30 29 28 21 20 16 15 10 9 5 4 0
7374 * +----+---+---+-----------------+---------+--------+------+------+
7375 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
7376 * +----+---+---+-----------------+---------+--------+------+------+
7377 */
disas_data_proc_1src(DisasContext * s,uint32_t insn)7378 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
7379 {
7380 unsigned int sf, opcode, opcode2, rn, rd;
7381 TCGv_i64 tcg_rd;
7382
7383 if (extract32(insn, 29, 1)) {
7384 unallocated_encoding(s);
7385 return;
7386 }
7387
7388 sf = extract32(insn, 31, 1);
7389 opcode = extract32(insn, 10, 6);
7390 opcode2 = extract32(insn, 16, 5);
7391 rn = extract32(insn, 5, 5);
7392 rd = extract32(insn, 0, 5);
7393
7394 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
7395
7396 switch (MAP(sf, opcode2, opcode)) {
7397 case MAP(0, 0x00, 0x00): /* RBIT */
7398 case MAP(1, 0x00, 0x00):
7399 handle_rbit(s, sf, rn, rd);
7400 break;
7401 case MAP(0, 0x00, 0x01): /* REV16 */
7402 case MAP(1, 0x00, 0x01):
7403 handle_rev16(s, sf, rn, rd);
7404 break;
7405 case MAP(0, 0x00, 0x02): /* REV/REV32 */
7406 case MAP(1, 0x00, 0x02):
7407 handle_rev32(s, sf, rn, rd);
7408 break;
7409 case MAP(1, 0x00, 0x03): /* REV64 */
7410 handle_rev64(s, sf, rn, rd);
7411 break;
7412 case MAP(0, 0x00, 0x04): /* CLZ */
7413 case MAP(1, 0x00, 0x04):
7414 handle_clz(s, sf, rn, rd);
7415 break;
7416 case MAP(0, 0x00, 0x05): /* CLS */
7417 case MAP(1, 0x00, 0x05):
7418 handle_cls(s, sf, rn, rd);
7419 break;
7420 case MAP(1, 0x01, 0x00): /* PACIA */
7421 if (s->pauth_active) {
7422 tcg_rd = cpu_reg(s, rd);
7423 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7424 } else if (!dc_isar_feature(aa64_pauth, s)) {
7425 goto do_unallocated;
7426 }
7427 break;
7428 case MAP(1, 0x01, 0x01): /* PACIB */
7429 if (s->pauth_active) {
7430 tcg_rd = cpu_reg(s, rd);
7431 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7432 } else if (!dc_isar_feature(aa64_pauth, s)) {
7433 goto do_unallocated;
7434 }
7435 break;
7436 case MAP(1, 0x01, 0x02): /* PACDA */
7437 if (s->pauth_active) {
7438 tcg_rd = cpu_reg(s, rd);
7439 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7440 } else if (!dc_isar_feature(aa64_pauth, s)) {
7441 goto do_unallocated;
7442 }
7443 break;
7444 case MAP(1, 0x01, 0x03): /* PACDB */
7445 if (s->pauth_active) {
7446 tcg_rd = cpu_reg(s, rd);
7447 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7448 } else if (!dc_isar_feature(aa64_pauth, s)) {
7449 goto do_unallocated;
7450 }
7451 break;
7452 case MAP(1, 0x01, 0x04): /* AUTIA */
7453 if (s->pauth_active) {
7454 tcg_rd = cpu_reg(s, rd);
7455 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7456 } else if (!dc_isar_feature(aa64_pauth, s)) {
7457 goto do_unallocated;
7458 }
7459 break;
7460 case MAP(1, 0x01, 0x05): /* AUTIB */
7461 if (s->pauth_active) {
7462 tcg_rd = cpu_reg(s, rd);
7463 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7464 } else if (!dc_isar_feature(aa64_pauth, s)) {
7465 goto do_unallocated;
7466 }
7467 break;
7468 case MAP(1, 0x01, 0x06): /* AUTDA */
7469 if (s->pauth_active) {
7470 tcg_rd = cpu_reg(s, rd);
7471 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7472 } else if (!dc_isar_feature(aa64_pauth, s)) {
7473 goto do_unallocated;
7474 }
7475 break;
7476 case MAP(1, 0x01, 0x07): /* AUTDB */
7477 if (s->pauth_active) {
7478 tcg_rd = cpu_reg(s, rd);
7479 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
7480 } else if (!dc_isar_feature(aa64_pauth, s)) {
7481 goto do_unallocated;
7482 }
7483 break;
7484 case MAP(1, 0x01, 0x08): /* PACIZA */
7485 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7486 goto do_unallocated;
7487 } else if (s->pauth_active) {
7488 tcg_rd = cpu_reg(s, rd);
7489 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7490 }
7491 break;
7492 case MAP(1, 0x01, 0x09): /* PACIZB */
7493 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7494 goto do_unallocated;
7495 } else if (s->pauth_active) {
7496 tcg_rd = cpu_reg(s, rd);
7497 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7498 }
7499 break;
7500 case MAP(1, 0x01, 0x0a): /* PACDZA */
7501 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7502 goto do_unallocated;
7503 } else if (s->pauth_active) {
7504 tcg_rd = cpu_reg(s, rd);
7505 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7506 }
7507 break;
7508 case MAP(1, 0x01, 0x0b): /* PACDZB */
7509 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7510 goto do_unallocated;
7511 } else if (s->pauth_active) {
7512 tcg_rd = cpu_reg(s, rd);
7513 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7514 }
7515 break;
7516 case MAP(1, 0x01, 0x0c): /* AUTIZA */
7517 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7518 goto do_unallocated;
7519 } else if (s->pauth_active) {
7520 tcg_rd = cpu_reg(s, rd);
7521 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7522 }
7523 break;
7524 case MAP(1, 0x01, 0x0d): /* AUTIZB */
7525 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7526 goto do_unallocated;
7527 } else if (s->pauth_active) {
7528 tcg_rd = cpu_reg(s, rd);
7529 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7530 }
7531 break;
7532 case MAP(1, 0x01, 0x0e): /* AUTDZA */
7533 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7534 goto do_unallocated;
7535 } else if (s->pauth_active) {
7536 tcg_rd = cpu_reg(s, rd);
7537 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7538 }
7539 break;
7540 case MAP(1, 0x01, 0x0f): /* AUTDZB */
7541 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7542 goto do_unallocated;
7543 } else if (s->pauth_active) {
7544 tcg_rd = cpu_reg(s, rd);
7545 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
7546 }
7547 break;
7548 case MAP(1, 0x01, 0x10): /* XPACI */
7549 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7550 goto do_unallocated;
7551 } else if (s->pauth_active) {
7552 tcg_rd = cpu_reg(s, rd);
7553 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
7554 }
7555 break;
7556 case MAP(1, 0x01, 0x11): /* XPACD */
7557 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
7558 goto do_unallocated;
7559 } else if (s->pauth_active) {
7560 tcg_rd = cpu_reg(s, rd);
7561 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
7562 }
7563 break;
7564 default:
7565 do_unallocated:
7566 unallocated_encoding(s);
7567 break;
7568 }
7569
7570 #undef MAP
7571 }
7572
handle_div(DisasContext * s,bool is_signed,unsigned int sf,unsigned int rm,unsigned int rn,unsigned int rd)7573 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
7574 unsigned int rm, unsigned int rn, unsigned int rd)
7575 {
7576 TCGv_i64 tcg_n, tcg_m, tcg_rd;
7577 tcg_rd = cpu_reg(s, rd);
7578
7579 if (!sf && is_signed) {
7580 tcg_n = tcg_temp_new_i64();
7581 tcg_m = tcg_temp_new_i64();
7582 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
7583 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
7584 } else {
7585 tcg_n = read_cpu_reg(s, rn, sf);
7586 tcg_m = read_cpu_reg(s, rm, sf);
7587 }
7588
7589 if (is_signed) {
7590 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
7591 } else {
7592 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
7593 }
7594
7595 if (!sf) { /* zero extend final result */
7596 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7597 }
7598 }
7599
7600 /* LSLV, LSRV, ASRV, RORV */
handle_shift_reg(DisasContext * s,enum a64_shift_type shift_type,unsigned int sf,unsigned int rm,unsigned int rn,unsigned int rd)7601 static void handle_shift_reg(DisasContext *s,
7602 enum a64_shift_type shift_type, unsigned int sf,
7603 unsigned int rm, unsigned int rn, unsigned int rd)
7604 {
7605 TCGv_i64 tcg_shift = tcg_temp_new_i64();
7606 TCGv_i64 tcg_rd = cpu_reg(s, rd);
7607 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
7608
7609 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
7610 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
7611 }
7612
7613 /* CRC32[BHWX], CRC32C[BHWX] */
handle_crc32(DisasContext * s,unsigned int sf,unsigned int sz,bool crc32c,unsigned int rm,unsigned int rn,unsigned int rd)7614 static void handle_crc32(DisasContext *s,
7615 unsigned int sf, unsigned int sz, bool crc32c,
7616 unsigned int rm, unsigned int rn, unsigned int rd)
7617 {
7618 TCGv_i64 tcg_acc, tcg_val;
7619 TCGv_i32 tcg_bytes;
7620
7621 if (!dc_isar_feature(aa64_crc32, s)
7622 || (sf == 1 && sz != 3)
7623 || (sf == 0 && sz == 3)) {
7624 unallocated_encoding(s);
7625 return;
7626 }
7627
7628 if (sz == 3) {
7629 tcg_val = cpu_reg(s, rm);
7630 } else {
7631 uint64_t mask;
7632 switch (sz) {
7633 case 0:
7634 mask = 0xFF;
7635 break;
7636 case 1:
7637 mask = 0xFFFF;
7638 break;
7639 case 2:
7640 mask = 0xFFFFFFFF;
7641 break;
7642 default:
7643 g_assert_not_reached();
7644 }
7645 tcg_val = tcg_temp_new_i64();
7646 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
7647 }
7648
7649 tcg_acc = cpu_reg(s, rn);
7650 tcg_bytes = tcg_constant_i32(1 << sz);
7651
7652 if (crc32c) {
7653 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7654 } else {
7655 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
7656 }
7657 }
7658
7659 /* Data-processing (2 source)
7660 * 31 30 29 28 21 20 16 15 10 9 5 4 0
7661 * +----+---+---+-----------------+------+--------+------+------+
7662 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
7663 * +----+---+---+-----------------+------+--------+------+------+
7664 */
disas_data_proc_2src(DisasContext * s,uint32_t insn)7665 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
7666 {
7667 unsigned int sf, rm, opcode, rn, rd, setflag;
7668 sf = extract32(insn, 31, 1);
7669 setflag = extract32(insn, 29, 1);
7670 rm = extract32(insn, 16, 5);
7671 opcode = extract32(insn, 10, 6);
7672 rn = extract32(insn, 5, 5);
7673 rd = extract32(insn, 0, 5);
7674
7675 if (setflag && opcode != 0) {
7676 unallocated_encoding(s);
7677 return;
7678 }
7679
7680 switch (opcode) {
7681 case 0: /* SUBP(S) */
7682 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7683 goto do_unallocated;
7684 } else {
7685 TCGv_i64 tcg_n, tcg_m, tcg_d;
7686
7687 tcg_n = read_cpu_reg_sp(s, rn, true);
7688 tcg_m = read_cpu_reg_sp(s, rm, true);
7689 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
7690 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
7691 tcg_d = cpu_reg(s, rd);
7692
7693 if (setflag) {
7694 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
7695 } else {
7696 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
7697 }
7698 }
7699 break;
7700 case 2: /* UDIV */
7701 handle_div(s, false, sf, rm, rn, rd);
7702 break;
7703 case 3: /* SDIV */
7704 handle_div(s, true, sf, rm, rn, rd);
7705 break;
7706 case 4: /* IRG */
7707 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7708 goto do_unallocated;
7709 }
7710 if (s->ata[0]) {
7711 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
7712 cpu_reg_sp(s, rn), cpu_reg(s, rm));
7713 } else {
7714 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
7715 cpu_reg_sp(s, rn));
7716 }
7717 break;
7718 case 5: /* GMI */
7719 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
7720 goto do_unallocated;
7721 } else {
7722 TCGv_i64 t = tcg_temp_new_i64();
7723
7724 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
7725 tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
7726 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
7727 }
7728 break;
7729 case 8: /* LSLV */
7730 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
7731 break;
7732 case 9: /* LSRV */
7733 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
7734 break;
7735 case 10: /* ASRV */
7736 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
7737 break;
7738 case 11: /* RORV */
7739 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
7740 break;
7741 case 12: /* PACGA */
7742 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
7743 goto do_unallocated;
7744 }
7745 gen_helper_pacga(cpu_reg(s, rd), tcg_env,
7746 cpu_reg(s, rn), cpu_reg_sp(s, rm));
7747 break;
7748 case 16:
7749 case 17:
7750 case 18:
7751 case 19:
7752 case 20:
7753 case 21:
7754 case 22:
7755 case 23: /* CRC32 */
7756 {
7757 int sz = extract32(opcode, 0, 2);
7758 bool crc32c = extract32(opcode, 2, 1);
7759 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
7760 break;
7761 }
7762 default:
7763 do_unallocated:
7764 unallocated_encoding(s);
7765 break;
7766 }
7767 }
7768
7769 /*
7770 * Data processing - register
7771 * 31 30 29 28 25 21 20 16 10 0
7772 * +--+---+--+---+-------+-----+-------+-------+---------+
7773 * | |op0| |op1| 1 0 1 | op2 | | op3 | |
7774 * +--+---+--+---+-------+-----+-------+-------+---------+
7775 */
disas_data_proc_reg(DisasContext * s,uint32_t insn)7776 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
7777 {
7778 int op0 = extract32(insn, 30, 1);
7779 int op1 = extract32(insn, 28, 1);
7780 int op2 = extract32(insn, 21, 4);
7781 int op3 = extract32(insn, 10, 6);
7782
7783 if (!op1) {
7784 if (op2 & 8) {
7785 if (op2 & 1) {
7786 /* Add/sub (extended register) */
7787 disas_add_sub_ext_reg(s, insn);
7788 } else {
7789 /* Add/sub (shifted register) */
7790 disas_add_sub_reg(s, insn);
7791 }
7792 } else {
7793 /* Logical (shifted register) */
7794 disas_logic_reg(s, insn);
7795 }
7796 return;
7797 }
7798
7799 switch (op2) {
7800 case 0x0:
7801 switch (op3) {
7802 case 0x00: /* Add/subtract (with carry) */
7803 disas_adc_sbc(s, insn);
7804 break;
7805
7806 case 0x01: /* Rotate right into flags */
7807 case 0x21:
7808 disas_rotate_right_into_flags(s, insn);
7809 break;
7810
7811 case 0x02: /* Evaluate into flags */
7812 case 0x12:
7813 case 0x22:
7814 case 0x32:
7815 disas_evaluate_into_flags(s, insn);
7816 break;
7817
7818 default:
7819 goto do_unallocated;
7820 }
7821 break;
7822
7823 case 0x2: /* Conditional compare */
7824 disas_cc(s, insn); /* both imm and reg forms */
7825 break;
7826
7827 case 0x4: /* Conditional select */
7828 disas_cond_select(s, insn);
7829 break;
7830
7831 case 0x6: /* Data-processing */
7832 if (op0) { /* (1 source) */
7833 disas_data_proc_1src(s, insn);
7834 } else { /* (2 source) */
7835 disas_data_proc_2src(s, insn);
7836 }
7837 break;
7838 case 0x8 ... 0xf: /* (3 source) */
7839 disas_data_proc_3src(s, insn);
7840 break;
7841
7842 default:
7843 do_unallocated:
7844 unallocated_encoding(s);
7845 break;
7846 }
7847 }
7848
handle_fp_compare(DisasContext * s,int size,unsigned int rn,unsigned int rm,bool cmp_with_zero,bool signal_all_nans)7849 static void handle_fp_compare(DisasContext *s, int size,
7850 unsigned int rn, unsigned int rm,
7851 bool cmp_with_zero, bool signal_all_nans)
7852 {
7853 TCGv_i64 tcg_flags = tcg_temp_new_i64();
7854 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7855
7856 if (size == MO_64) {
7857 TCGv_i64 tcg_vn, tcg_vm;
7858
7859 tcg_vn = read_fp_dreg(s, rn);
7860 if (cmp_with_zero) {
7861 tcg_vm = tcg_constant_i64(0);
7862 } else {
7863 tcg_vm = read_fp_dreg(s, rm);
7864 }
7865 if (signal_all_nans) {
7866 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7867 } else {
7868 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7869 }
7870 } else {
7871 TCGv_i32 tcg_vn = tcg_temp_new_i32();
7872 TCGv_i32 tcg_vm = tcg_temp_new_i32();
7873
7874 read_vec_element_i32(s, tcg_vn, rn, 0, size);
7875 if (cmp_with_zero) {
7876 tcg_gen_movi_i32(tcg_vm, 0);
7877 } else {
7878 read_vec_element_i32(s, tcg_vm, rm, 0, size);
7879 }
7880
7881 switch (size) {
7882 case MO_32:
7883 if (signal_all_nans) {
7884 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7885 } else {
7886 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7887 }
7888 break;
7889 case MO_16:
7890 if (signal_all_nans) {
7891 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7892 } else {
7893 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7894 }
7895 break;
7896 default:
7897 g_assert_not_reached();
7898 }
7899 }
7900
7901 gen_set_nzcv(tcg_flags);
7902 }
7903
7904 /* Floating point compare
7905 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
7906 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7907 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
7908 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
7909 */
disas_fp_compare(DisasContext * s,uint32_t insn)7910 static void disas_fp_compare(DisasContext *s, uint32_t insn)
7911 {
7912 unsigned int mos, type, rm, op, rn, opc, op2r;
7913 int size;
7914
7915 mos = extract32(insn, 29, 3);
7916 type = extract32(insn, 22, 2);
7917 rm = extract32(insn, 16, 5);
7918 op = extract32(insn, 14, 2);
7919 rn = extract32(insn, 5, 5);
7920 opc = extract32(insn, 3, 2);
7921 op2r = extract32(insn, 0, 3);
7922
7923 if (mos || op || op2r) {
7924 unallocated_encoding(s);
7925 return;
7926 }
7927
7928 switch (type) {
7929 case 0:
7930 size = MO_32;
7931 break;
7932 case 1:
7933 size = MO_64;
7934 break;
7935 case 3:
7936 size = MO_16;
7937 if (dc_isar_feature(aa64_fp16, s)) {
7938 break;
7939 }
7940 /* fallthru */
7941 default:
7942 unallocated_encoding(s);
7943 return;
7944 }
7945
7946 if (!fp_access_check(s)) {
7947 return;
7948 }
7949
7950 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
7951 }
7952
7953 /* Floating point conditional compare
7954 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
7955 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7956 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
7957 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
7958 */
disas_fp_ccomp(DisasContext * s,uint32_t insn)7959 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
7960 {
7961 unsigned int mos, type, rm, cond, rn, op, nzcv;
7962 TCGLabel *label_continue = NULL;
7963 int size;
7964
7965 mos = extract32(insn, 29, 3);
7966 type = extract32(insn, 22, 2);
7967 rm = extract32(insn, 16, 5);
7968 cond = extract32(insn, 12, 4);
7969 rn = extract32(insn, 5, 5);
7970 op = extract32(insn, 4, 1);
7971 nzcv = extract32(insn, 0, 4);
7972
7973 if (mos) {
7974 unallocated_encoding(s);
7975 return;
7976 }
7977
7978 switch (type) {
7979 case 0:
7980 size = MO_32;
7981 break;
7982 case 1:
7983 size = MO_64;
7984 break;
7985 case 3:
7986 size = MO_16;
7987 if (dc_isar_feature(aa64_fp16, s)) {
7988 break;
7989 }
7990 /* fallthru */
7991 default:
7992 unallocated_encoding(s);
7993 return;
7994 }
7995
7996 if (!fp_access_check(s)) {
7997 return;
7998 }
7999
8000 if (cond < 0x0e) { /* not always */
8001 TCGLabel *label_match = gen_new_label();
8002 label_continue = gen_new_label();
8003 arm_gen_test_cc(cond, label_match);
8004 /* nomatch: */
8005 gen_set_nzcv(tcg_constant_i64(nzcv << 28));
8006 tcg_gen_br(label_continue);
8007 gen_set_label(label_match);
8008 }
8009
8010 handle_fp_compare(s, size, rn, rm, false, op);
8011
8012 if (cond < 0x0e) {
8013 gen_set_label(label_continue);
8014 }
8015 }
8016
8017 /* Floating-point data-processing (1 source) - half precision */
handle_fp_1src_half(DisasContext * s,int opcode,int rd,int rn)8018 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
8019 {
8020 TCGv_ptr fpst = NULL;
8021 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
8022 TCGv_i32 tcg_res = tcg_temp_new_i32();
8023
8024 switch (opcode) {
8025 case 0x0: /* FMOV */
8026 tcg_gen_mov_i32(tcg_res, tcg_op);
8027 break;
8028 case 0x1: /* FABS */
8029 gen_vfp_absh(tcg_res, tcg_op);
8030 break;
8031 case 0x2: /* FNEG */
8032 gen_vfp_negh(tcg_res, tcg_op);
8033 break;
8034 case 0x3: /* FSQRT */
8035 fpst = fpstatus_ptr(FPST_FPCR_F16);
8036 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
8037 break;
8038 case 0x8: /* FRINTN */
8039 case 0x9: /* FRINTP */
8040 case 0xa: /* FRINTM */
8041 case 0xb: /* FRINTZ */
8042 case 0xc: /* FRINTA */
8043 {
8044 TCGv_i32 tcg_rmode;
8045
8046 fpst = fpstatus_ptr(FPST_FPCR_F16);
8047 tcg_rmode = gen_set_rmode(opcode & 7, fpst);
8048 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
8049 gen_restore_rmode(tcg_rmode, fpst);
8050 break;
8051 }
8052 case 0xe: /* FRINTX */
8053 fpst = fpstatus_ptr(FPST_FPCR_F16);
8054 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
8055 break;
8056 case 0xf: /* FRINTI */
8057 fpst = fpstatus_ptr(FPST_FPCR_F16);
8058 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
8059 break;
8060 default:
8061 g_assert_not_reached();
8062 }
8063
8064 write_fp_sreg(s, rd, tcg_res);
8065 }
8066
8067 /* Floating-point data-processing (1 source) - single precision */
handle_fp_1src_single(DisasContext * s,int opcode,int rd,int rn)8068 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
8069 {
8070 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
8071 TCGv_i32 tcg_op, tcg_res;
8072 TCGv_ptr fpst;
8073 int rmode = -1;
8074
8075 tcg_op = read_fp_sreg(s, rn);
8076 tcg_res = tcg_temp_new_i32();
8077
8078 switch (opcode) {
8079 case 0x0: /* FMOV */
8080 tcg_gen_mov_i32(tcg_res, tcg_op);
8081 goto done;
8082 case 0x1: /* FABS */
8083 gen_vfp_abss(tcg_res, tcg_op);
8084 goto done;
8085 case 0x2: /* FNEG */
8086 gen_vfp_negs(tcg_res, tcg_op);
8087 goto done;
8088 case 0x3: /* FSQRT */
8089 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
8090 goto done;
8091 case 0x6: /* BFCVT */
8092 gen_fpst = gen_helper_bfcvt;
8093 break;
8094 case 0x8: /* FRINTN */
8095 case 0x9: /* FRINTP */
8096 case 0xa: /* FRINTM */
8097 case 0xb: /* FRINTZ */
8098 case 0xc: /* FRINTA */
8099 rmode = opcode & 7;
8100 gen_fpst = gen_helper_rints;
8101 break;
8102 case 0xe: /* FRINTX */
8103 gen_fpst = gen_helper_rints_exact;
8104 break;
8105 case 0xf: /* FRINTI */
8106 gen_fpst = gen_helper_rints;
8107 break;
8108 case 0x10: /* FRINT32Z */
8109 rmode = FPROUNDING_ZERO;
8110 gen_fpst = gen_helper_frint32_s;
8111 break;
8112 case 0x11: /* FRINT32X */
8113 gen_fpst = gen_helper_frint32_s;
8114 break;
8115 case 0x12: /* FRINT64Z */
8116 rmode = FPROUNDING_ZERO;
8117 gen_fpst = gen_helper_frint64_s;
8118 break;
8119 case 0x13: /* FRINT64X */
8120 gen_fpst = gen_helper_frint64_s;
8121 break;
8122 default:
8123 g_assert_not_reached();
8124 }
8125
8126 fpst = fpstatus_ptr(FPST_FPCR);
8127 if (rmode >= 0) {
8128 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
8129 gen_fpst(tcg_res, tcg_op, fpst);
8130 gen_restore_rmode(tcg_rmode, fpst);
8131 } else {
8132 gen_fpst(tcg_res, tcg_op, fpst);
8133 }
8134
8135 done:
8136 write_fp_sreg(s, rd, tcg_res);
8137 }
8138
8139 /* Floating-point data-processing (1 source) - double precision */
handle_fp_1src_double(DisasContext * s,int opcode,int rd,int rn)8140 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
8141 {
8142 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
8143 TCGv_i64 tcg_op, tcg_res;
8144 TCGv_ptr fpst;
8145 int rmode = -1;
8146
8147 switch (opcode) {
8148 case 0x0: /* FMOV */
8149 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
8150 return;
8151 }
8152
8153 tcg_op = read_fp_dreg(s, rn);
8154 tcg_res = tcg_temp_new_i64();
8155
8156 switch (opcode) {
8157 case 0x1: /* FABS */
8158 gen_vfp_absd(tcg_res, tcg_op);
8159 goto done;
8160 case 0x2: /* FNEG */
8161 gen_vfp_negd(tcg_res, tcg_op);
8162 goto done;
8163 case 0x3: /* FSQRT */
8164 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
8165 goto done;
8166 case 0x8: /* FRINTN */
8167 case 0x9: /* FRINTP */
8168 case 0xa: /* FRINTM */
8169 case 0xb: /* FRINTZ */
8170 case 0xc: /* FRINTA */
8171 rmode = opcode & 7;
8172 gen_fpst = gen_helper_rintd;
8173 break;
8174 case 0xe: /* FRINTX */
8175 gen_fpst = gen_helper_rintd_exact;
8176 break;
8177 case 0xf: /* FRINTI */
8178 gen_fpst = gen_helper_rintd;
8179 break;
8180 case 0x10: /* FRINT32Z */
8181 rmode = FPROUNDING_ZERO;
8182 gen_fpst = gen_helper_frint32_d;
8183 break;
8184 case 0x11: /* FRINT32X */
8185 gen_fpst = gen_helper_frint32_d;
8186 break;
8187 case 0x12: /* FRINT64Z */
8188 rmode = FPROUNDING_ZERO;
8189 gen_fpst = gen_helper_frint64_d;
8190 break;
8191 case 0x13: /* FRINT64X */
8192 gen_fpst = gen_helper_frint64_d;
8193 break;
8194 default:
8195 g_assert_not_reached();
8196 }
8197
8198 fpst = fpstatus_ptr(FPST_FPCR);
8199 if (rmode >= 0) {
8200 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
8201 gen_fpst(tcg_res, tcg_op, fpst);
8202 gen_restore_rmode(tcg_rmode, fpst);
8203 } else {
8204 gen_fpst(tcg_res, tcg_op, fpst);
8205 }
8206
8207 done:
8208 write_fp_dreg(s, rd, tcg_res);
8209 }
8210
handle_fp_fcvt(DisasContext * s,int opcode,int rd,int rn,int dtype,int ntype)8211 static void handle_fp_fcvt(DisasContext *s, int opcode,
8212 int rd, int rn, int dtype, int ntype)
8213 {
8214 switch (ntype) {
8215 case 0x0:
8216 {
8217 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
8218 if (dtype == 1) {
8219 /* Single to double */
8220 TCGv_i64 tcg_rd = tcg_temp_new_i64();
8221 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
8222 write_fp_dreg(s, rd, tcg_rd);
8223 } else {
8224 /* Single to half */
8225 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8226 TCGv_i32 ahp = get_ahp_flag();
8227 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
8228
8229 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
8230 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
8231 write_fp_sreg(s, rd, tcg_rd);
8232 }
8233 break;
8234 }
8235 case 0x1:
8236 {
8237 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8238 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8239 if (dtype == 0) {
8240 /* Double to single */
8241 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
8242 } else {
8243 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
8244 TCGv_i32 ahp = get_ahp_flag();
8245 /* Double to half */
8246 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
8247 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
8248 }
8249 write_fp_sreg(s, rd, tcg_rd);
8250 break;
8251 }
8252 case 0x3:
8253 {
8254 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
8255 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
8256 TCGv_i32 tcg_ahp = get_ahp_flag();
8257 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
8258 if (dtype == 0) {
8259 /* Half to single */
8260 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8261 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
8262 write_fp_sreg(s, rd, tcg_rd);
8263 } else {
8264 /* Half to double */
8265 TCGv_i64 tcg_rd = tcg_temp_new_i64();
8266 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
8267 write_fp_dreg(s, rd, tcg_rd);
8268 }
8269 break;
8270 }
8271 default:
8272 g_assert_not_reached();
8273 }
8274 }
8275
8276 /* Floating point data-processing (1 source)
8277 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
8278 * +---+---+---+-----------+------+---+--------+-----------+------+------+
8279 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
8280 * +---+---+---+-----------+------+---+--------+-----------+------+------+
8281 */
disas_fp_1src(DisasContext * s,uint32_t insn)8282 static void disas_fp_1src(DisasContext *s, uint32_t insn)
8283 {
8284 int mos = extract32(insn, 29, 3);
8285 int type = extract32(insn, 22, 2);
8286 int opcode = extract32(insn, 15, 6);
8287 int rn = extract32(insn, 5, 5);
8288 int rd = extract32(insn, 0, 5);
8289
8290 if (mos) {
8291 goto do_unallocated;
8292 }
8293
8294 switch (opcode) {
8295 case 0x4: case 0x5: case 0x7:
8296 {
8297 /* FCVT between half, single and double precision */
8298 int dtype = extract32(opcode, 0, 2);
8299 if (type == 2 || dtype == type) {
8300 goto do_unallocated;
8301 }
8302 if (!fp_access_check(s)) {
8303 return;
8304 }
8305
8306 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
8307 break;
8308 }
8309
8310 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
8311 if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
8312 goto do_unallocated;
8313 }
8314 /* fall through */
8315 case 0x0 ... 0x3:
8316 case 0x8 ... 0xc:
8317 case 0xe ... 0xf:
8318 /* 32-to-32 and 64-to-64 ops */
8319 switch (type) {
8320 case 0:
8321 if (!fp_access_check(s)) {
8322 return;
8323 }
8324 handle_fp_1src_single(s, opcode, rd, rn);
8325 break;
8326 case 1:
8327 if (!fp_access_check(s)) {
8328 return;
8329 }
8330 handle_fp_1src_double(s, opcode, rd, rn);
8331 break;
8332 case 3:
8333 if (!dc_isar_feature(aa64_fp16, s)) {
8334 goto do_unallocated;
8335 }
8336
8337 if (!fp_access_check(s)) {
8338 return;
8339 }
8340 handle_fp_1src_half(s, opcode, rd, rn);
8341 break;
8342 default:
8343 goto do_unallocated;
8344 }
8345 break;
8346
8347 case 0x6:
8348 switch (type) {
8349 case 1: /* BFCVT */
8350 if (!dc_isar_feature(aa64_bf16, s)) {
8351 goto do_unallocated;
8352 }
8353 if (!fp_access_check(s)) {
8354 return;
8355 }
8356 handle_fp_1src_single(s, opcode, rd, rn);
8357 break;
8358 default:
8359 goto do_unallocated;
8360 }
8361 break;
8362
8363 default:
8364 do_unallocated:
8365 unallocated_encoding(s);
8366 break;
8367 }
8368 }
8369
8370 /* Floating point immediate
8371 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
8372 * +---+---+---+-----------+------+---+------------+-------+------+------+
8373 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
8374 * +---+---+---+-----------+------+---+------------+-------+------+------+
8375 */
disas_fp_imm(DisasContext * s,uint32_t insn)8376 static void disas_fp_imm(DisasContext *s, uint32_t insn)
8377 {
8378 int rd = extract32(insn, 0, 5);
8379 int imm5 = extract32(insn, 5, 5);
8380 int imm8 = extract32(insn, 13, 8);
8381 int type = extract32(insn, 22, 2);
8382 int mos = extract32(insn, 29, 3);
8383 uint64_t imm;
8384 MemOp sz;
8385
8386 if (mos || imm5) {
8387 unallocated_encoding(s);
8388 return;
8389 }
8390
8391 switch (type) {
8392 case 0:
8393 sz = MO_32;
8394 break;
8395 case 1:
8396 sz = MO_64;
8397 break;
8398 case 3:
8399 sz = MO_16;
8400 if (dc_isar_feature(aa64_fp16, s)) {
8401 break;
8402 }
8403 /* fallthru */
8404 default:
8405 unallocated_encoding(s);
8406 return;
8407 }
8408
8409 if (!fp_access_check(s)) {
8410 return;
8411 }
8412
8413 imm = vfp_expand_imm(sz, imm8);
8414 write_fp_dreg(s, rd, tcg_constant_i64(imm));
8415 }
8416
8417 /* Handle floating point <=> fixed point conversions. Note that we can
8418 * also deal with fp <=> integer conversions as a special case (scale == 64)
8419 * OPTME: consider handling that special case specially or at least skipping
8420 * the call to scalbn in the helpers for zero shifts.
8421 */
handle_fpfpcvt(DisasContext * s,int rd,int rn,int opcode,bool itof,int rmode,int scale,int sf,int type)8422 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
8423 bool itof, int rmode, int scale, int sf, int type)
8424 {
8425 bool is_signed = !(opcode & 1);
8426 TCGv_ptr tcg_fpstatus;
8427 TCGv_i32 tcg_shift, tcg_single;
8428 TCGv_i64 tcg_double;
8429
8430 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
8431
8432 tcg_shift = tcg_constant_i32(64 - scale);
8433
8434 if (itof) {
8435 TCGv_i64 tcg_int = cpu_reg(s, rn);
8436 if (!sf) {
8437 TCGv_i64 tcg_extend = tcg_temp_new_i64();
8438
8439 if (is_signed) {
8440 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
8441 } else {
8442 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
8443 }
8444
8445 tcg_int = tcg_extend;
8446 }
8447
8448 switch (type) {
8449 case 1: /* float64 */
8450 tcg_double = tcg_temp_new_i64();
8451 if (is_signed) {
8452 gen_helper_vfp_sqtod(tcg_double, tcg_int,
8453 tcg_shift, tcg_fpstatus);
8454 } else {
8455 gen_helper_vfp_uqtod(tcg_double, tcg_int,
8456 tcg_shift, tcg_fpstatus);
8457 }
8458 write_fp_dreg(s, rd, tcg_double);
8459 break;
8460
8461 case 0: /* float32 */
8462 tcg_single = tcg_temp_new_i32();
8463 if (is_signed) {
8464 gen_helper_vfp_sqtos(tcg_single, tcg_int,
8465 tcg_shift, tcg_fpstatus);
8466 } else {
8467 gen_helper_vfp_uqtos(tcg_single, tcg_int,
8468 tcg_shift, tcg_fpstatus);
8469 }
8470 write_fp_sreg(s, rd, tcg_single);
8471 break;
8472
8473 case 3: /* float16 */
8474 tcg_single = tcg_temp_new_i32();
8475 if (is_signed) {
8476 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
8477 tcg_shift, tcg_fpstatus);
8478 } else {
8479 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
8480 tcg_shift, tcg_fpstatus);
8481 }
8482 write_fp_sreg(s, rd, tcg_single);
8483 break;
8484
8485 default:
8486 g_assert_not_reached();
8487 }
8488 } else {
8489 TCGv_i64 tcg_int = cpu_reg(s, rd);
8490 TCGv_i32 tcg_rmode;
8491
8492 if (extract32(opcode, 2, 1)) {
8493 /* There are too many rounding modes to all fit into rmode,
8494 * so FCVTA[US] is a special case.
8495 */
8496 rmode = FPROUNDING_TIEAWAY;
8497 }
8498
8499 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
8500
8501 switch (type) {
8502 case 1: /* float64 */
8503 tcg_double = read_fp_dreg(s, rn);
8504 if (is_signed) {
8505 if (!sf) {
8506 gen_helper_vfp_tosld(tcg_int, tcg_double,
8507 tcg_shift, tcg_fpstatus);
8508 } else {
8509 gen_helper_vfp_tosqd(tcg_int, tcg_double,
8510 tcg_shift, tcg_fpstatus);
8511 }
8512 } else {
8513 if (!sf) {
8514 gen_helper_vfp_tould(tcg_int, tcg_double,
8515 tcg_shift, tcg_fpstatus);
8516 } else {
8517 gen_helper_vfp_touqd(tcg_int, tcg_double,
8518 tcg_shift, tcg_fpstatus);
8519 }
8520 }
8521 if (!sf) {
8522 tcg_gen_ext32u_i64(tcg_int, tcg_int);
8523 }
8524 break;
8525
8526 case 0: /* float32 */
8527 tcg_single = read_fp_sreg(s, rn);
8528 if (sf) {
8529 if (is_signed) {
8530 gen_helper_vfp_tosqs(tcg_int, tcg_single,
8531 tcg_shift, tcg_fpstatus);
8532 } else {
8533 gen_helper_vfp_touqs(tcg_int, tcg_single,
8534 tcg_shift, tcg_fpstatus);
8535 }
8536 } else {
8537 TCGv_i32 tcg_dest = tcg_temp_new_i32();
8538 if (is_signed) {
8539 gen_helper_vfp_tosls(tcg_dest, tcg_single,
8540 tcg_shift, tcg_fpstatus);
8541 } else {
8542 gen_helper_vfp_touls(tcg_dest, tcg_single,
8543 tcg_shift, tcg_fpstatus);
8544 }
8545 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
8546 }
8547 break;
8548
8549 case 3: /* float16 */
8550 tcg_single = read_fp_sreg(s, rn);
8551 if (sf) {
8552 if (is_signed) {
8553 gen_helper_vfp_tosqh(tcg_int, tcg_single,
8554 tcg_shift, tcg_fpstatus);
8555 } else {
8556 gen_helper_vfp_touqh(tcg_int, tcg_single,
8557 tcg_shift, tcg_fpstatus);
8558 }
8559 } else {
8560 TCGv_i32 tcg_dest = tcg_temp_new_i32();
8561 if (is_signed) {
8562 gen_helper_vfp_toslh(tcg_dest, tcg_single,
8563 tcg_shift, tcg_fpstatus);
8564 } else {
8565 gen_helper_vfp_toulh(tcg_dest, tcg_single,
8566 tcg_shift, tcg_fpstatus);
8567 }
8568 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
8569 }
8570 break;
8571
8572 default:
8573 g_assert_not_reached();
8574 }
8575
8576 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8577 }
8578 }
8579
8580 /* Floating point <-> fixed point conversions
8581 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
8582 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
8583 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
8584 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
8585 */
disas_fp_fixed_conv(DisasContext * s,uint32_t insn)8586 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
8587 {
8588 int rd = extract32(insn, 0, 5);
8589 int rn = extract32(insn, 5, 5);
8590 int scale = extract32(insn, 10, 6);
8591 int opcode = extract32(insn, 16, 3);
8592 int rmode = extract32(insn, 19, 2);
8593 int type = extract32(insn, 22, 2);
8594 bool sbit = extract32(insn, 29, 1);
8595 bool sf = extract32(insn, 31, 1);
8596 bool itof;
8597
8598 if (sbit || (!sf && scale < 32)) {
8599 unallocated_encoding(s);
8600 return;
8601 }
8602
8603 switch (type) {
8604 case 0: /* float32 */
8605 case 1: /* float64 */
8606 break;
8607 case 3: /* float16 */
8608 if (dc_isar_feature(aa64_fp16, s)) {
8609 break;
8610 }
8611 /* fallthru */
8612 default:
8613 unallocated_encoding(s);
8614 return;
8615 }
8616
8617 switch ((rmode << 3) | opcode) {
8618 case 0x2: /* SCVTF */
8619 case 0x3: /* UCVTF */
8620 itof = true;
8621 break;
8622 case 0x18: /* FCVTZS */
8623 case 0x19: /* FCVTZU */
8624 itof = false;
8625 break;
8626 default:
8627 unallocated_encoding(s);
8628 return;
8629 }
8630
8631 if (!fp_access_check(s)) {
8632 return;
8633 }
8634
8635 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
8636 }
8637
handle_fmov(DisasContext * s,int rd,int rn,int type,bool itof)8638 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
8639 {
8640 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
8641 * without conversion.
8642 */
8643
8644 if (itof) {
8645 TCGv_i64 tcg_rn = cpu_reg(s, rn);
8646 TCGv_i64 tmp;
8647
8648 switch (type) {
8649 case 0:
8650 /* 32 bit */
8651 tmp = tcg_temp_new_i64();
8652 tcg_gen_ext32u_i64(tmp, tcg_rn);
8653 write_fp_dreg(s, rd, tmp);
8654 break;
8655 case 1:
8656 /* 64 bit */
8657 write_fp_dreg(s, rd, tcg_rn);
8658 break;
8659 case 2:
8660 /* 64 bit to top half. */
8661 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
8662 clear_vec_high(s, true, rd);
8663 break;
8664 case 3:
8665 /* 16 bit */
8666 tmp = tcg_temp_new_i64();
8667 tcg_gen_ext16u_i64(tmp, tcg_rn);
8668 write_fp_dreg(s, rd, tmp);
8669 break;
8670 default:
8671 g_assert_not_reached();
8672 }
8673 } else {
8674 TCGv_i64 tcg_rd = cpu_reg(s, rd);
8675
8676 switch (type) {
8677 case 0:
8678 /* 32 bit */
8679 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
8680 break;
8681 case 1:
8682 /* 64 bit */
8683 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
8684 break;
8685 case 2:
8686 /* 64 bits from top half */
8687 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
8688 break;
8689 case 3:
8690 /* 16 bit */
8691 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
8692 break;
8693 default:
8694 g_assert_not_reached();
8695 }
8696 }
8697 }
8698
handle_fjcvtzs(DisasContext * s,int rd,int rn)8699 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
8700 {
8701 TCGv_i64 t = read_fp_dreg(s, rn);
8702 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
8703
8704 gen_helper_fjcvtzs(t, t, fpstatus);
8705
8706 tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
8707 tcg_gen_extrh_i64_i32(cpu_ZF, t);
8708 tcg_gen_movi_i32(cpu_CF, 0);
8709 tcg_gen_movi_i32(cpu_NF, 0);
8710 tcg_gen_movi_i32(cpu_VF, 0);
8711 }
8712
8713 /* Floating point <-> integer conversions
8714 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
8715 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8716 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
8717 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
8718 */
disas_fp_int_conv(DisasContext * s,uint32_t insn)8719 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
8720 {
8721 int rd = extract32(insn, 0, 5);
8722 int rn = extract32(insn, 5, 5);
8723 int opcode = extract32(insn, 16, 3);
8724 int rmode = extract32(insn, 19, 2);
8725 int type = extract32(insn, 22, 2);
8726 bool sbit = extract32(insn, 29, 1);
8727 bool sf = extract32(insn, 31, 1);
8728 bool itof = false;
8729
8730 if (sbit) {
8731 goto do_unallocated;
8732 }
8733
8734 switch (opcode) {
8735 case 2: /* SCVTF */
8736 case 3: /* UCVTF */
8737 itof = true;
8738 /* fallthru */
8739 case 4: /* FCVTAS */
8740 case 5: /* FCVTAU */
8741 if (rmode != 0) {
8742 goto do_unallocated;
8743 }
8744 /* fallthru */
8745 case 0: /* FCVT[NPMZ]S */
8746 case 1: /* FCVT[NPMZ]U */
8747 switch (type) {
8748 case 0: /* float32 */
8749 case 1: /* float64 */
8750 break;
8751 case 3: /* float16 */
8752 if (!dc_isar_feature(aa64_fp16, s)) {
8753 goto do_unallocated;
8754 }
8755 break;
8756 default:
8757 goto do_unallocated;
8758 }
8759 if (!fp_access_check(s)) {
8760 return;
8761 }
8762 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
8763 break;
8764
8765 default:
8766 switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
8767 case 0b01100110: /* FMOV half <-> 32-bit int */
8768 case 0b01100111:
8769 case 0b11100110: /* FMOV half <-> 64-bit int */
8770 case 0b11100111:
8771 if (!dc_isar_feature(aa64_fp16, s)) {
8772 goto do_unallocated;
8773 }
8774 /* fallthru */
8775 case 0b00000110: /* FMOV 32-bit */
8776 case 0b00000111:
8777 case 0b10100110: /* FMOV 64-bit */
8778 case 0b10100111:
8779 case 0b11001110: /* FMOV top half of 128-bit */
8780 case 0b11001111:
8781 if (!fp_access_check(s)) {
8782 return;
8783 }
8784 itof = opcode & 1;
8785 handle_fmov(s, rd, rn, type, itof);
8786 break;
8787
8788 case 0b00111110: /* FJCVTZS */
8789 if (!dc_isar_feature(aa64_jscvt, s)) {
8790 goto do_unallocated;
8791 } else if (fp_access_check(s)) {
8792 handle_fjcvtzs(s, rd, rn);
8793 }
8794 break;
8795
8796 default:
8797 do_unallocated:
8798 unallocated_encoding(s);
8799 return;
8800 }
8801 break;
8802 }
8803 }
8804
8805 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
8806 * 31 30 29 28 25 24 0
8807 * +---+---+---+---------+-----------------------------+
8808 * | | 0 | | 1 1 1 1 | |
8809 * +---+---+---+---------+-----------------------------+
8810 */
disas_data_proc_fp(DisasContext * s,uint32_t insn)8811 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
8812 {
8813 if (extract32(insn, 24, 1)) {
8814 unallocated_encoding(s); /* in decodetree */
8815 } else if (extract32(insn, 21, 1) == 0) {
8816 /* Floating point to fixed point conversions */
8817 disas_fp_fixed_conv(s, insn);
8818 } else {
8819 switch (extract32(insn, 10, 2)) {
8820 case 1:
8821 /* Floating point conditional compare */
8822 disas_fp_ccomp(s, insn);
8823 break;
8824 case 2:
8825 /* Floating point data-processing (2 source) */
8826 unallocated_encoding(s); /* in decodetree */
8827 break;
8828 case 3:
8829 /* Floating point conditional select */
8830 unallocated_encoding(s); /* in decodetree */
8831 break;
8832 case 0:
8833 switch (ctz32(extract32(insn, 12, 4))) {
8834 case 0: /* [15:12] == xxx1 */
8835 /* Floating point immediate */
8836 disas_fp_imm(s, insn);
8837 break;
8838 case 1: /* [15:12] == xx10 */
8839 /* Floating point compare */
8840 disas_fp_compare(s, insn);
8841 break;
8842 case 2: /* [15:12] == x100 */
8843 /* Floating point data-processing (1 source) */
8844 disas_fp_1src(s, insn);
8845 break;
8846 case 3: /* [15:12] == 1000 */
8847 unallocated_encoding(s);
8848 break;
8849 default: /* [15:12] == 0000 */
8850 /* Floating point <-> integer conversions */
8851 disas_fp_int_conv(s, insn);
8852 break;
8853 }
8854 break;
8855 }
8856 }
8857 }
8858
do_ext64(DisasContext * s,TCGv_i64 tcg_left,TCGv_i64 tcg_right,int pos)8859 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
8860 int pos)
8861 {
8862 /* Extract 64 bits from the middle of two concatenated 64 bit
8863 * vector register slices left:right. The extracted bits start
8864 * at 'pos' bits into the right (least significant) side.
8865 * We return the result in tcg_right, and guarantee not to
8866 * trash tcg_left.
8867 */
8868 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8869 assert(pos > 0 && pos < 64);
8870
8871 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
8872 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
8873 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
8874 }
8875
8876 /* EXT
8877 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
8878 * +---+---+-------------+-----+---+------+---+------+---+------+------+
8879 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
8880 * +---+---+-------------+-----+---+------+---+------+---+------+------+
8881 */
disas_simd_ext(DisasContext * s,uint32_t insn)8882 static void disas_simd_ext(DisasContext *s, uint32_t insn)
8883 {
8884 int is_q = extract32(insn, 30, 1);
8885 int op2 = extract32(insn, 22, 2);
8886 int imm4 = extract32(insn, 11, 4);
8887 int rm = extract32(insn, 16, 5);
8888 int rn = extract32(insn, 5, 5);
8889 int rd = extract32(insn, 0, 5);
8890 int pos = imm4 << 3;
8891 TCGv_i64 tcg_resl, tcg_resh;
8892
8893 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
8894 unallocated_encoding(s);
8895 return;
8896 }
8897
8898 if (!fp_access_check(s)) {
8899 return;
8900 }
8901
8902 tcg_resh = tcg_temp_new_i64();
8903 tcg_resl = tcg_temp_new_i64();
8904
8905 /* Vd gets bits starting at pos bits into Vm:Vn. This is
8906 * either extracting 128 bits from a 128:128 concatenation, or
8907 * extracting 64 bits from a 64:64 concatenation.
8908 */
8909 if (!is_q) {
8910 read_vec_element(s, tcg_resl, rn, 0, MO_64);
8911 if (pos != 0) {
8912 read_vec_element(s, tcg_resh, rm, 0, MO_64);
8913 do_ext64(s, tcg_resh, tcg_resl, pos);
8914 }
8915 } else {
8916 TCGv_i64 tcg_hh;
8917 typedef struct {
8918 int reg;
8919 int elt;
8920 } EltPosns;
8921 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
8922 EltPosns *elt = eltposns;
8923
8924 if (pos >= 64) {
8925 elt++;
8926 pos -= 64;
8927 }
8928
8929 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
8930 elt++;
8931 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
8932 elt++;
8933 if (pos != 0) {
8934 do_ext64(s, tcg_resh, tcg_resl, pos);
8935 tcg_hh = tcg_temp_new_i64();
8936 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
8937 do_ext64(s, tcg_hh, tcg_resh, pos);
8938 }
8939 }
8940
8941 write_vec_element(s, tcg_resl, rd, 0, MO_64);
8942 if (is_q) {
8943 write_vec_element(s, tcg_resh, rd, 1, MO_64);
8944 }
8945 clear_vec_high(s, is_q, rd);
8946 }
8947
8948 /* TBL/TBX
8949 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
8950 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8951 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
8952 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
8953 */
disas_simd_tb(DisasContext * s,uint32_t insn)8954 static void disas_simd_tb(DisasContext *s, uint32_t insn)
8955 {
8956 int op2 = extract32(insn, 22, 2);
8957 int is_q = extract32(insn, 30, 1);
8958 int rm = extract32(insn, 16, 5);
8959 int rn = extract32(insn, 5, 5);
8960 int rd = extract32(insn, 0, 5);
8961 int is_tbx = extract32(insn, 12, 1);
8962 int len = (extract32(insn, 13, 2) + 1) * 16;
8963
8964 if (op2 != 0) {
8965 unallocated_encoding(s);
8966 return;
8967 }
8968
8969 if (!fp_access_check(s)) {
8970 return;
8971 }
8972
8973 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
8974 vec_full_reg_offset(s, rm), tcg_env,
8975 is_q ? 16 : 8, vec_full_reg_size(s),
8976 (len << 6) | (is_tbx << 5) | rn,
8977 gen_helper_simd_tblx);
8978 }
8979
8980 /* ZIP/UZP/TRN
8981 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
8982 * +---+---+-------------+------+---+------+---+------------------+------+
8983 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
8984 * +---+---+-------------+------+---+------+---+------------------+------+
8985 */
disas_simd_zip_trn(DisasContext * s,uint32_t insn)8986 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
8987 {
8988 int rd = extract32(insn, 0, 5);
8989 int rn = extract32(insn, 5, 5);
8990 int rm = extract32(insn, 16, 5);
8991 int size = extract32(insn, 22, 2);
8992 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
8993 * bit 2 indicates 1 vs 2 variant of the insn.
8994 */
8995 int opcode = extract32(insn, 12, 2);
8996 bool part = extract32(insn, 14, 1);
8997 bool is_q = extract32(insn, 30, 1);
8998 int esize = 8 << size;
8999 int i;
9000 int datasize = is_q ? 128 : 64;
9001 int elements = datasize / esize;
9002 TCGv_i64 tcg_res[2], tcg_ele;
9003
9004 if (opcode == 0 || (size == 3 && !is_q)) {
9005 unallocated_encoding(s);
9006 return;
9007 }
9008
9009 if (!fp_access_check(s)) {
9010 return;
9011 }
9012
9013 tcg_res[0] = tcg_temp_new_i64();
9014 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
9015 tcg_ele = tcg_temp_new_i64();
9016
9017 for (i = 0; i < elements; i++) {
9018 int o, w;
9019
9020 switch (opcode) {
9021 case 1: /* UZP1/2 */
9022 {
9023 int midpoint = elements / 2;
9024 if (i < midpoint) {
9025 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
9026 } else {
9027 read_vec_element(s, tcg_ele, rm,
9028 2 * (i - midpoint) + part, size);
9029 }
9030 break;
9031 }
9032 case 2: /* TRN1/2 */
9033 if (i & 1) {
9034 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
9035 } else {
9036 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
9037 }
9038 break;
9039 case 3: /* ZIP1/2 */
9040 {
9041 int base = part * elements / 2;
9042 if (i & 1) {
9043 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
9044 } else {
9045 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
9046 }
9047 break;
9048 }
9049 default:
9050 g_assert_not_reached();
9051 }
9052
9053 w = (i * esize) / 64;
9054 o = (i * esize) % 64;
9055 if (o == 0) {
9056 tcg_gen_mov_i64(tcg_res[w], tcg_ele);
9057 } else {
9058 tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
9059 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
9060 }
9061 }
9062
9063 for (i = 0; i <= is_q; ++i) {
9064 write_vec_element(s, tcg_res[i], rd, i, MO_64);
9065 }
9066 clear_vec_high(s, is_q, rd);
9067 }
9068
9069 /*
9070 * do_reduction_op helper
9071 *
9072 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
9073 * important for correct NaN propagation that we do these
9074 * operations in exactly the order specified by the pseudocode.
9075 *
9076 * This is a recursive function, TCG temps should be freed by the
9077 * calling function once it is done with the values.
9078 */
do_reduction_op(DisasContext * s,int fpopcode,int rn,int esize,int size,int vmap,TCGv_ptr fpst)9079 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
9080 int esize, int size, int vmap, TCGv_ptr fpst)
9081 {
9082 if (esize == size) {
9083 int element;
9084 MemOp msize = esize == 16 ? MO_16 : MO_32;
9085 TCGv_i32 tcg_elem;
9086
9087 /* We should have one register left here */
9088 assert(ctpop8(vmap) == 1);
9089 element = ctz32(vmap);
9090 assert(element < 8);
9091
9092 tcg_elem = tcg_temp_new_i32();
9093 read_vec_element_i32(s, tcg_elem, rn, element, msize);
9094 return tcg_elem;
9095 } else {
9096 int bits = size / 2;
9097 int shift = ctpop8(vmap) / 2;
9098 int vmap_lo = (vmap >> shift) & vmap;
9099 int vmap_hi = (vmap & ~vmap_lo);
9100 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
9101
9102 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
9103 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
9104 tcg_res = tcg_temp_new_i32();
9105
9106 switch (fpopcode) {
9107 case 0x0c: /* fmaxnmv half-precision */
9108 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
9109 break;
9110 case 0x0f: /* fmaxv half-precision */
9111 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
9112 break;
9113 case 0x1c: /* fminnmv half-precision */
9114 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
9115 break;
9116 case 0x1f: /* fminv half-precision */
9117 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
9118 break;
9119 case 0x2c: /* fmaxnmv */
9120 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
9121 break;
9122 case 0x2f: /* fmaxv */
9123 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
9124 break;
9125 case 0x3c: /* fminnmv */
9126 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
9127 break;
9128 case 0x3f: /* fminv */
9129 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
9130 break;
9131 default:
9132 g_assert_not_reached();
9133 }
9134 return tcg_res;
9135 }
9136 }
9137
9138 /* AdvSIMD across lanes
9139 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9140 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9141 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
9142 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9143 */
disas_simd_across_lanes(DisasContext * s,uint32_t insn)9144 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
9145 {
9146 int rd = extract32(insn, 0, 5);
9147 int rn = extract32(insn, 5, 5);
9148 int size = extract32(insn, 22, 2);
9149 int opcode = extract32(insn, 12, 5);
9150 bool is_q = extract32(insn, 30, 1);
9151 bool is_u = extract32(insn, 29, 1);
9152 bool is_fp = false;
9153 bool is_min = false;
9154 int esize;
9155 int elements;
9156 int i;
9157 TCGv_i64 tcg_res, tcg_elt;
9158
9159 switch (opcode) {
9160 case 0x1b: /* ADDV */
9161 if (is_u) {
9162 unallocated_encoding(s);
9163 return;
9164 }
9165 /* fall through */
9166 case 0x3: /* SADDLV, UADDLV */
9167 case 0xa: /* SMAXV, UMAXV */
9168 case 0x1a: /* SMINV, UMINV */
9169 if (size == 3 || (size == 2 && !is_q)) {
9170 unallocated_encoding(s);
9171 return;
9172 }
9173 break;
9174 case 0xc: /* FMAXNMV, FMINNMV */
9175 case 0xf: /* FMAXV, FMINV */
9176 /* Bit 1 of size field encodes min vs max and the actual size
9177 * depends on the encoding of the U bit. If not set (and FP16
9178 * enabled) then we do half-precision float instead of single
9179 * precision.
9180 */
9181 is_min = extract32(size, 1, 1);
9182 is_fp = true;
9183 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
9184 size = 1;
9185 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
9186 unallocated_encoding(s);
9187 return;
9188 } else {
9189 size = 2;
9190 }
9191 break;
9192 default:
9193 unallocated_encoding(s);
9194 return;
9195 }
9196
9197 if (!fp_access_check(s)) {
9198 return;
9199 }
9200
9201 esize = 8 << size;
9202 elements = (is_q ? 128 : 64) / esize;
9203
9204 tcg_res = tcg_temp_new_i64();
9205 tcg_elt = tcg_temp_new_i64();
9206
9207 /* These instructions operate across all lanes of a vector
9208 * to produce a single result. We can guarantee that a 64
9209 * bit intermediate is sufficient:
9210 * + for [US]ADDLV the maximum element size is 32 bits, and
9211 * the result type is 64 bits
9212 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
9213 * same as the element size, which is 32 bits at most
9214 * For the integer operations we can choose to work at 64
9215 * or 32 bits and truncate at the end; for simplicity
9216 * we use 64 bits always. The floating point
9217 * ops do require 32 bit intermediates, though.
9218 */
9219 if (!is_fp) {
9220 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
9221
9222 for (i = 1; i < elements; i++) {
9223 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
9224
9225 switch (opcode) {
9226 case 0x03: /* SADDLV / UADDLV */
9227 case 0x1b: /* ADDV */
9228 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
9229 break;
9230 case 0x0a: /* SMAXV / UMAXV */
9231 if (is_u) {
9232 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
9233 } else {
9234 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
9235 }
9236 break;
9237 case 0x1a: /* SMINV / UMINV */
9238 if (is_u) {
9239 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
9240 } else {
9241 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
9242 }
9243 break;
9244 default:
9245 g_assert_not_reached();
9246 }
9247
9248 }
9249 } else {
9250 /* Floating point vector reduction ops which work across 32
9251 * bit (single) or 16 bit (half-precision) intermediates.
9252 * Note that correct NaN propagation requires that we do these
9253 * operations in exactly the order specified by the pseudocode.
9254 */
9255 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9256 int fpopcode = opcode | is_min << 4 | is_u << 5;
9257 int vmap = (1 << elements) - 1;
9258 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
9259 (is_q ? 128 : 64), vmap, fpst);
9260 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
9261 }
9262
9263 /* Now truncate the result to the width required for the final output */
9264 if (opcode == 0x03) {
9265 /* SADDLV, UADDLV: result is 2*esize */
9266 size++;
9267 }
9268
9269 switch (size) {
9270 case 0:
9271 tcg_gen_ext8u_i64(tcg_res, tcg_res);
9272 break;
9273 case 1:
9274 tcg_gen_ext16u_i64(tcg_res, tcg_res);
9275 break;
9276 case 2:
9277 tcg_gen_ext32u_i64(tcg_res, tcg_res);
9278 break;
9279 case 3:
9280 break;
9281 default:
9282 g_assert_not_reached();
9283 }
9284
9285 write_fp_dreg(s, rd, tcg_res);
9286 }
9287
9288 /* AdvSIMD modified immediate
9289 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
9290 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
9291 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
9292 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
9293 *
9294 * There are a number of operations that can be carried out here:
9295 * MOVI - move (shifted) imm into register
9296 * MVNI - move inverted (shifted) imm into register
9297 * ORR - bitwise OR of (shifted) imm with register
9298 * BIC - bitwise clear of (shifted) imm with register
9299 * With ARMv8.2 we also have:
9300 * FMOV half-precision
9301 */
disas_simd_mod_imm(DisasContext * s,uint32_t insn)9302 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
9303 {
9304 int rd = extract32(insn, 0, 5);
9305 int cmode = extract32(insn, 12, 4);
9306 int o2 = extract32(insn, 11, 1);
9307 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
9308 bool is_neg = extract32(insn, 29, 1);
9309 bool is_q = extract32(insn, 30, 1);
9310 uint64_t imm = 0;
9311
9312 if (o2) {
9313 if (cmode != 0xf || is_neg) {
9314 unallocated_encoding(s);
9315 return;
9316 }
9317 /* FMOV (vector, immediate) - half-precision */
9318 if (!dc_isar_feature(aa64_fp16, s)) {
9319 unallocated_encoding(s);
9320 return;
9321 }
9322 imm = vfp_expand_imm(MO_16, abcdefgh);
9323 /* now duplicate across the lanes */
9324 imm = dup_const(MO_16, imm);
9325 } else {
9326 if (cmode == 0xf && is_neg && !is_q) {
9327 unallocated_encoding(s);
9328 return;
9329 }
9330 imm = asimd_imm_const(abcdefgh, cmode, is_neg);
9331 }
9332
9333 if (!fp_access_check(s)) {
9334 return;
9335 }
9336
9337 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
9338 /* MOVI or MVNI, with MVNI negation handled above. */
9339 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
9340 vec_full_reg_size(s), imm);
9341 } else {
9342 /* ORR or BIC, with BIC negation to AND handled above. */
9343 if (is_neg) {
9344 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
9345 } else {
9346 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
9347 }
9348 }
9349 }
9350
9351 /*
9352 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
9353 *
9354 * This code is handles the common shifting code and is used by both
9355 * the vector and scalar code.
9356 */
handle_shri_with_rndacc(TCGv_i64 tcg_res,TCGv_i64 tcg_src,TCGv_i64 tcg_rnd,bool accumulate,bool is_u,int size,int shift)9357 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
9358 TCGv_i64 tcg_rnd, bool accumulate,
9359 bool is_u, int size, int shift)
9360 {
9361 bool extended_result = false;
9362 bool round = tcg_rnd != NULL;
9363 int ext_lshift = 0;
9364 TCGv_i64 tcg_src_hi;
9365
9366 if (round && size == 3) {
9367 extended_result = true;
9368 ext_lshift = 64 - shift;
9369 tcg_src_hi = tcg_temp_new_i64();
9370 } else if (shift == 64) {
9371 if (!accumulate && is_u) {
9372 /* result is zero */
9373 tcg_gen_movi_i64(tcg_res, 0);
9374 return;
9375 }
9376 }
9377
9378 /* Deal with the rounding step */
9379 if (round) {
9380 if (extended_result) {
9381 TCGv_i64 tcg_zero = tcg_constant_i64(0);
9382 if (!is_u) {
9383 /* take care of sign extending tcg_res */
9384 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
9385 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
9386 tcg_src, tcg_src_hi,
9387 tcg_rnd, tcg_zero);
9388 } else {
9389 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
9390 tcg_src, tcg_zero,
9391 tcg_rnd, tcg_zero);
9392 }
9393 } else {
9394 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
9395 }
9396 }
9397
9398 /* Now do the shift right */
9399 if (round && extended_result) {
9400 /* extended case, >64 bit precision required */
9401 if (ext_lshift == 0) {
9402 /* special case, only high bits matter */
9403 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
9404 } else {
9405 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
9406 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
9407 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
9408 }
9409 } else {
9410 if (is_u) {
9411 if (shift == 64) {
9412 /* essentially shifting in 64 zeros */
9413 tcg_gen_movi_i64(tcg_src, 0);
9414 } else {
9415 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
9416 }
9417 } else {
9418 if (shift == 64) {
9419 /* effectively extending the sign-bit */
9420 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
9421 } else {
9422 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
9423 }
9424 }
9425 }
9426
9427 if (accumulate) {
9428 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
9429 } else {
9430 tcg_gen_mov_i64(tcg_res, tcg_src);
9431 }
9432 }
9433
9434 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
handle_scalar_simd_shri(DisasContext * s,bool is_u,int immh,int immb,int opcode,int rn,int rd)9435 static void handle_scalar_simd_shri(DisasContext *s,
9436 bool is_u, int immh, int immb,
9437 int opcode, int rn, int rd)
9438 {
9439 const int size = 3;
9440 int immhb = immh << 3 | immb;
9441 int shift = 2 * (8 << size) - immhb;
9442 bool accumulate = false;
9443 bool round = false;
9444 bool insert = false;
9445 TCGv_i64 tcg_rn;
9446 TCGv_i64 tcg_rd;
9447 TCGv_i64 tcg_round;
9448
9449 if (!extract32(immh, 3, 1)) {
9450 unallocated_encoding(s);
9451 return;
9452 }
9453
9454 if (!fp_access_check(s)) {
9455 return;
9456 }
9457
9458 switch (opcode) {
9459 case 0x02: /* SSRA / USRA (accumulate) */
9460 accumulate = true;
9461 break;
9462 case 0x04: /* SRSHR / URSHR (rounding) */
9463 round = true;
9464 break;
9465 case 0x06: /* SRSRA / URSRA (accum + rounding) */
9466 accumulate = round = true;
9467 break;
9468 case 0x08: /* SRI */
9469 insert = true;
9470 break;
9471 }
9472
9473 if (round) {
9474 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
9475 } else {
9476 tcg_round = NULL;
9477 }
9478
9479 tcg_rn = read_fp_dreg(s, rn);
9480 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
9481
9482 if (insert) {
9483 /* shift count same as element size is valid but does nothing;
9484 * special case to avoid potential shift by 64.
9485 */
9486 int esize = 8 << size;
9487 if (shift != esize) {
9488 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
9489 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
9490 }
9491 } else {
9492 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9493 accumulate, is_u, size, shift);
9494 }
9495
9496 write_fp_dreg(s, rd, tcg_rd);
9497 }
9498
9499 /* SHL/SLI - Scalar shift left */
handle_scalar_simd_shli(DisasContext * s,bool insert,int immh,int immb,int opcode,int rn,int rd)9500 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
9501 int immh, int immb, int opcode,
9502 int rn, int rd)
9503 {
9504 int size = 32 - clz32(immh) - 1;
9505 int immhb = immh << 3 | immb;
9506 int shift = immhb - (8 << size);
9507 TCGv_i64 tcg_rn;
9508 TCGv_i64 tcg_rd;
9509
9510 if (!extract32(immh, 3, 1)) {
9511 unallocated_encoding(s);
9512 return;
9513 }
9514
9515 if (!fp_access_check(s)) {
9516 return;
9517 }
9518
9519 tcg_rn = read_fp_dreg(s, rn);
9520 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
9521
9522 if (insert) {
9523 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
9524 } else {
9525 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
9526 }
9527
9528 write_fp_dreg(s, rd, tcg_rd);
9529 }
9530
9531 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
9532 * (signed/unsigned) narrowing */
handle_vec_simd_sqshrn(DisasContext * s,bool is_scalar,bool is_q,bool is_u_shift,bool is_u_narrow,int immh,int immb,int opcode,int rn,int rd)9533 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
9534 bool is_u_shift, bool is_u_narrow,
9535 int immh, int immb, int opcode,
9536 int rn, int rd)
9537 {
9538 int immhb = immh << 3 | immb;
9539 int size = 32 - clz32(immh) - 1;
9540 int esize = 8 << size;
9541 int shift = (2 * esize) - immhb;
9542 int elements = is_scalar ? 1 : (64 / esize);
9543 bool round = extract32(opcode, 0, 1);
9544 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
9545 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
9546 TCGv_i32 tcg_rd_narrowed;
9547 TCGv_i64 tcg_final;
9548
9549 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
9550 { gen_helper_neon_narrow_sat_s8,
9551 gen_helper_neon_unarrow_sat8 },
9552 { gen_helper_neon_narrow_sat_s16,
9553 gen_helper_neon_unarrow_sat16 },
9554 { gen_helper_neon_narrow_sat_s32,
9555 gen_helper_neon_unarrow_sat32 },
9556 { NULL, NULL },
9557 };
9558 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
9559 gen_helper_neon_narrow_sat_u8,
9560 gen_helper_neon_narrow_sat_u16,
9561 gen_helper_neon_narrow_sat_u32,
9562 NULL
9563 };
9564 NeonGenNarrowEnvFn *narrowfn;
9565
9566 int i;
9567
9568 assert(size < 4);
9569
9570 if (extract32(immh, 3, 1)) {
9571 unallocated_encoding(s);
9572 return;
9573 }
9574
9575 if (!fp_access_check(s)) {
9576 return;
9577 }
9578
9579 if (is_u_shift) {
9580 narrowfn = unsigned_narrow_fns[size];
9581 } else {
9582 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
9583 }
9584
9585 tcg_rn = tcg_temp_new_i64();
9586 tcg_rd = tcg_temp_new_i64();
9587 tcg_rd_narrowed = tcg_temp_new_i32();
9588 tcg_final = tcg_temp_new_i64();
9589
9590 if (round) {
9591 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
9592 } else {
9593 tcg_round = NULL;
9594 }
9595
9596 for (i = 0; i < elements; i++) {
9597 read_vec_element(s, tcg_rn, rn, i, ldop);
9598 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
9599 false, is_u_shift, size+1, shift);
9600 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
9601 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
9602 if (i == 0) {
9603 tcg_gen_extract_i64(tcg_final, tcg_rd, 0, esize);
9604 } else {
9605 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
9606 }
9607 }
9608
9609 if (!is_q) {
9610 write_vec_element(s, tcg_final, rd, 0, MO_64);
9611 } else {
9612 write_vec_element(s, tcg_final, rd, 1, MO_64);
9613 }
9614 clear_vec_high(s, is_q, rd);
9615 }
9616
9617 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
handle_simd_qshl(DisasContext * s,bool scalar,bool is_q,bool src_unsigned,bool dst_unsigned,int immh,int immb,int rn,int rd)9618 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
9619 bool src_unsigned, bool dst_unsigned,
9620 int immh, int immb, int rn, int rd)
9621 {
9622 int immhb = immh << 3 | immb;
9623 int size = 32 - clz32(immh) - 1;
9624 int shift = immhb - (8 << size);
9625 int pass;
9626
9627 assert(immh != 0);
9628 assert(!(scalar && is_q));
9629
9630 if (!scalar) {
9631 if (!is_q && extract32(immh, 3, 1)) {
9632 unallocated_encoding(s);
9633 return;
9634 }
9635
9636 /* Since we use the variable-shift helpers we must
9637 * replicate the shift count into each element of
9638 * the tcg_shift value.
9639 */
9640 switch (size) {
9641 case 0:
9642 shift |= shift << 8;
9643 /* fall through */
9644 case 1:
9645 shift |= shift << 16;
9646 break;
9647 case 2:
9648 case 3:
9649 break;
9650 default:
9651 g_assert_not_reached();
9652 }
9653 }
9654
9655 if (!fp_access_check(s)) {
9656 return;
9657 }
9658
9659 if (size == 3) {
9660 TCGv_i64 tcg_shift = tcg_constant_i64(shift);
9661 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
9662 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
9663 { NULL, gen_helper_neon_qshl_u64 },
9664 };
9665 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
9666 int maxpass = is_q ? 2 : 1;
9667
9668 for (pass = 0; pass < maxpass; pass++) {
9669 TCGv_i64 tcg_op = tcg_temp_new_i64();
9670
9671 read_vec_element(s, tcg_op, rn, pass, MO_64);
9672 genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9673 write_vec_element(s, tcg_op, rd, pass, MO_64);
9674 }
9675 clear_vec_high(s, is_q, rd);
9676 } else {
9677 TCGv_i32 tcg_shift = tcg_constant_i32(shift);
9678 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
9679 {
9680 { gen_helper_neon_qshl_s8,
9681 gen_helper_neon_qshl_s16,
9682 gen_helper_neon_qshl_s32 },
9683 { gen_helper_neon_qshlu_s8,
9684 gen_helper_neon_qshlu_s16,
9685 gen_helper_neon_qshlu_s32 }
9686 }, {
9687 { NULL, NULL, NULL },
9688 { gen_helper_neon_qshl_u8,
9689 gen_helper_neon_qshl_u16,
9690 gen_helper_neon_qshl_u32 }
9691 }
9692 };
9693 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
9694 MemOp memop = scalar ? size : MO_32;
9695 int maxpass = scalar ? 1 : is_q ? 4 : 2;
9696
9697 for (pass = 0; pass < maxpass; pass++) {
9698 TCGv_i32 tcg_op = tcg_temp_new_i32();
9699
9700 read_vec_element_i32(s, tcg_op, rn, pass, memop);
9701 genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
9702 if (scalar) {
9703 switch (size) {
9704 case 0:
9705 tcg_gen_ext8u_i32(tcg_op, tcg_op);
9706 break;
9707 case 1:
9708 tcg_gen_ext16u_i32(tcg_op, tcg_op);
9709 break;
9710 case 2:
9711 break;
9712 default:
9713 g_assert_not_reached();
9714 }
9715 write_fp_sreg(s, rd, tcg_op);
9716 } else {
9717 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
9718 }
9719 }
9720
9721 if (!scalar) {
9722 clear_vec_high(s, is_q, rd);
9723 }
9724 }
9725 }
9726
9727 /* Common vector code for handling integer to FP conversion */
handle_simd_intfp_conv(DisasContext * s,int rd,int rn,int elements,int is_signed,int fracbits,int size)9728 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
9729 int elements, int is_signed,
9730 int fracbits, int size)
9731 {
9732 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9733 TCGv_i32 tcg_shift = NULL;
9734
9735 MemOp mop = size | (is_signed ? MO_SIGN : 0);
9736 int pass;
9737
9738 if (fracbits || size == MO_64) {
9739 tcg_shift = tcg_constant_i32(fracbits);
9740 }
9741
9742 if (size == MO_64) {
9743 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
9744 TCGv_i64 tcg_double = tcg_temp_new_i64();
9745
9746 for (pass = 0; pass < elements; pass++) {
9747 read_vec_element(s, tcg_int64, rn, pass, mop);
9748
9749 if (is_signed) {
9750 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
9751 tcg_shift, tcg_fpst);
9752 } else {
9753 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
9754 tcg_shift, tcg_fpst);
9755 }
9756 if (elements == 1) {
9757 write_fp_dreg(s, rd, tcg_double);
9758 } else {
9759 write_vec_element(s, tcg_double, rd, pass, MO_64);
9760 }
9761 }
9762 } else {
9763 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
9764 TCGv_i32 tcg_float = tcg_temp_new_i32();
9765
9766 for (pass = 0; pass < elements; pass++) {
9767 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
9768
9769 switch (size) {
9770 case MO_32:
9771 if (fracbits) {
9772 if (is_signed) {
9773 gen_helper_vfp_sltos(tcg_float, tcg_int32,
9774 tcg_shift, tcg_fpst);
9775 } else {
9776 gen_helper_vfp_ultos(tcg_float, tcg_int32,
9777 tcg_shift, tcg_fpst);
9778 }
9779 } else {
9780 if (is_signed) {
9781 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
9782 } else {
9783 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
9784 }
9785 }
9786 break;
9787 case MO_16:
9788 if (fracbits) {
9789 if (is_signed) {
9790 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
9791 tcg_shift, tcg_fpst);
9792 } else {
9793 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
9794 tcg_shift, tcg_fpst);
9795 }
9796 } else {
9797 if (is_signed) {
9798 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
9799 } else {
9800 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
9801 }
9802 }
9803 break;
9804 default:
9805 g_assert_not_reached();
9806 }
9807
9808 if (elements == 1) {
9809 write_fp_sreg(s, rd, tcg_float);
9810 } else {
9811 write_vec_element_i32(s, tcg_float, rd, pass, size);
9812 }
9813 }
9814 }
9815
9816 clear_vec_high(s, elements << size == 16, rd);
9817 }
9818
9819 /* UCVTF/SCVTF - Integer to FP conversion */
handle_simd_shift_intfp_conv(DisasContext * s,bool is_scalar,bool is_q,bool is_u,int immh,int immb,int opcode,int rn,int rd)9820 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
9821 bool is_q, bool is_u,
9822 int immh, int immb, int opcode,
9823 int rn, int rd)
9824 {
9825 int size, elements, fracbits;
9826 int immhb = immh << 3 | immb;
9827
9828 if (immh & 8) {
9829 size = MO_64;
9830 if (!is_scalar && !is_q) {
9831 unallocated_encoding(s);
9832 return;
9833 }
9834 } else if (immh & 4) {
9835 size = MO_32;
9836 } else if (immh & 2) {
9837 size = MO_16;
9838 if (!dc_isar_feature(aa64_fp16, s)) {
9839 unallocated_encoding(s);
9840 return;
9841 }
9842 } else {
9843 /* immh == 0 would be a failure of the decode logic */
9844 g_assert(immh == 1);
9845 unallocated_encoding(s);
9846 return;
9847 }
9848
9849 if (is_scalar) {
9850 elements = 1;
9851 } else {
9852 elements = (8 << is_q) >> size;
9853 }
9854 fracbits = (16 << size) - immhb;
9855
9856 if (!fp_access_check(s)) {
9857 return;
9858 }
9859
9860 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
9861 }
9862
9863 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
handle_simd_shift_fpint_conv(DisasContext * s,bool is_scalar,bool is_q,bool is_u,int immh,int immb,int rn,int rd)9864 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
9865 bool is_q, bool is_u,
9866 int immh, int immb, int rn, int rd)
9867 {
9868 int immhb = immh << 3 | immb;
9869 int pass, size, fracbits;
9870 TCGv_ptr tcg_fpstatus;
9871 TCGv_i32 tcg_rmode, tcg_shift;
9872
9873 if (immh & 0x8) {
9874 size = MO_64;
9875 if (!is_scalar && !is_q) {
9876 unallocated_encoding(s);
9877 return;
9878 }
9879 } else if (immh & 0x4) {
9880 size = MO_32;
9881 } else if (immh & 0x2) {
9882 size = MO_16;
9883 if (!dc_isar_feature(aa64_fp16, s)) {
9884 unallocated_encoding(s);
9885 return;
9886 }
9887 } else {
9888 /* Should have split out AdvSIMD modified immediate earlier. */
9889 assert(immh == 1);
9890 unallocated_encoding(s);
9891 return;
9892 }
9893
9894 if (!fp_access_check(s)) {
9895 return;
9896 }
9897
9898 assert(!(is_scalar && is_q));
9899
9900 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9901 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
9902 fracbits = (16 << size) - immhb;
9903 tcg_shift = tcg_constant_i32(fracbits);
9904
9905 if (size == MO_64) {
9906 int maxpass = is_scalar ? 1 : 2;
9907
9908 for (pass = 0; pass < maxpass; pass++) {
9909 TCGv_i64 tcg_op = tcg_temp_new_i64();
9910
9911 read_vec_element(s, tcg_op, rn, pass, MO_64);
9912 if (is_u) {
9913 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9914 } else {
9915 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9916 }
9917 write_vec_element(s, tcg_op, rd, pass, MO_64);
9918 }
9919 clear_vec_high(s, is_q, rd);
9920 } else {
9921 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9922 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9923
9924 switch (size) {
9925 case MO_16:
9926 if (is_u) {
9927 fn = gen_helper_vfp_touhh;
9928 } else {
9929 fn = gen_helper_vfp_toshh;
9930 }
9931 break;
9932 case MO_32:
9933 if (is_u) {
9934 fn = gen_helper_vfp_touls;
9935 } else {
9936 fn = gen_helper_vfp_tosls;
9937 }
9938 break;
9939 default:
9940 g_assert_not_reached();
9941 }
9942
9943 for (pass = 0; pass < maxpass; pass++) {
9944 TCGv_i32 tcg_op = tcg_temp_new_i32();
9945
9946 read_vec_element_i32(s, tcg_op, rn, pass, size);
9947 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9948 if (is_scalar) {
9949 if (size == MO_16 && !is_u) {
9950 tcg_gen_ext16u_i32(tcg_op, tcg_op);
9951 }
9952 write_fp_sreg(s, rd, tcg_op);
9953 } else {
9954 write_vec_element_i32(s, tcg_op, rd, pass, size);
9955 }
9956 }
9957 if (!is_scalar) {
9958 clear_vec_high(s, is_q, rd);
9959 }
9960 }
9961
9962 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9963 }
9964
9965 /* AdvSIMD scalar shift by immediate
9966 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
9967 * +-----+---+-------------+------+------+--------+---+------+------+
9968 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
9969 * +-----+---+-------------+------+------+--------+---+------+------+
9970 *
9971 * This is the scalar version so it works on a fixed sized registers
9972 */
disas_simd_scalar_shift_imm(DisasContext * s,uint32_t insn)9973 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9974 {
9975 int rd = extract32(insn, 0, 5);
9976 int rn = extract32(insn, 5, 5);
9977 int opcode = extract32(insn, 11, 5);
9978 int immb = extract32(insn, 16, 3);
9979 int immh = extract32(insn, 19, 4);
9980 bool is_u = extract32(insn, 29, 1);
9981
9982 if (immh == 0) {
9983 unallocated_encoding(s);
9984 return;
9985 }
9986
9987 switch (opcode) {
9988 case 0x08: /* SRI */
9989 if (!is_u) {
9990 unallocated_encoding(s);
9991 return;
9992 }
9993 /* fall through */
9994 case 0x00: /* SSHR / USHR */
9995 case 0x02: /* SSRA / USRA */
9996 case 0x04: /* SRSHR / URSHR */
9997 case 0x06: /* SRSRA / URSRA */
9998 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9999 break;
10000 case 0x0a: /* SHL / SLI */
10001 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
10002 break;
10003 case 0x1c: /* SCVTF, UCVTF */
10004 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
10005 opcode, rn, rd);
10006 break;
10007 case 0x10: /* SQSHRUN, SQSHRUN2 */
10008 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
10009 if (!is_u) {
10010 unallocated_encoding(s);
10011 return;
10012 }
10013 handle_vec_simd_sqshrn(s, true, false, false, true,
10014 immh, immb, opcode, rn, rd);
10015 break;
10016 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
10017 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
10018 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
10019 immh, immb, opcode, rn, rd);
10020 break;
10021 case 0xc: /* SQSHLU */
10022 if (!is_u) {
10023 unallocated_encoding(s);
10024 return;
10025 }
10026 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
10027 break;
10028 case 0xe: /* SQSHL, UQSHL */
10029 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
10030 break;
10031 case 0x1f: /* FCVTZS, FCVTZU */
10032 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
10033 break;
10034 default:
10035 unallocated_encoding(s);
10036 break;
10037 }
10038 }
10039
handle_2misc_64(DisasContext * s,int opcode,bool u,TCGv_i64 tcg_rd,TCGv_i64 tcg_rn,TCGv_i32 tcg_rmode,TCGv_ptr tcg_fpstatus)10040 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
10041 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
10042 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
10043 {
10044 /* Handle 64->64 opcodes which are shared between the scalar and
10045 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
10046 * is valid in either group and also the double-precision fp ops.
10047 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
10048 * requires them.
10049 */
10050 TCGCond cond;
10051
10052 switch (opcode) {
10053 case 0x4: /* CLS, CLZ */
10054 if (u) {
10055 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
10056 } else {
10057 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
10058 }
10059 break;
10060 case 0x5: /* NOT */
10061 /* This opcode is shared with CNT and RBIT but we have earlier
10062 * enforced that size == 3 if and only if this is the NOT insn.
10063 */
10064 tcg_gen_not_i64(tcg_rd, tcg_rn);
10065 break;
10066 case 0x7: /* SQABS, SQNEG */
10067 if (u) {
10068 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
10069 } else {
10070 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
10071 }
10072 break;
10073 case 0xa: /* CMLT */
10074 cond = TCG_COND_LT;
10075 do_cmop:
10076 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
10077 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
10078 break;
10079 case 0x8: /* CMGT, CMGE */
10080 cond = u ? TCG_COND_GE : TCG_COND_GT;
10081 goto do_cmop;
10082 case 0x9: /* CMEQ, CMLE */
10083 cond = u ? TCG_COND_LE : TCG_COND_EQ;
10084 goto do_cmop;
10085 case 0xb: /* ABS, NEG */
10086 if (u) {
10087 tcg_gen_neg_i64(tcg_rd, tcg_rn);
10088 } else {
10089 tcg_gen_abs_i64(tcg_rd, tcg_rn);
10090 }
10091 break;
10092 case 0x2f: /* FABS */
10093 gen_vfp_absd(tcg_rd, tcg_rn);
10094 break;
10095 case 0x6f: /* FNEG */
10096 gen_vfp_negd(tcg_rd, tcg_rn);
10097 break;
10098 case 0x7f: /* FSQRT */
10099 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
10100 break;
10101 case 0x1a: /* FCVTNS */
10102 case 0x1b: /* FCVTMS */
10103 case 0x1c: /* FCVTAS */
10104 case 0x3a: /* FCVTPS */
10105 case 0x3b: /* FCVTZS */
10106 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
10107 break;
10108 case 0x5a: /* FCVTNU */
10109 case 0x5b: /* FCVTMU */
10110 case 0x5c: /* FCVTAU */
10111 case 0x7a: /* FCVTPU */
10112 case 0x7b: /* FCVTZU */
10113 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
10114 break;
10115 case 0x18: /* FRINTN */
10116 case 0x19: /* FRINTM */
10117 case 0x38: /* FRINTP */
10118 case 0x39: /* FRINTZ */
10119 case 0x58: /* FRINTA */
10120 case 0x79: /* FRINTI */
10121 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
10122 break;
10123 case 0x59: /* FRINTX */
10124 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
10125 break;
10126 case 0x1e: /* FRINT32Z */
10127 case 0x5e: /* FRINT32X */
10128 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
10129 break;
10130 case 0x1f: /* FRINT64Z */
10131 case 0x5f: /* FRINT64X */
10132 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
10133 break;
10134 default:
10135 g_assert_not_reached();
10136 }
10137 }
10138
handle_2misc_fcmp_zero(DisasContext * s,int opcode,bool is_scalar,bool is_u,bool is_q,int size,int rn,int rd)10139 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
10140 bool is_scalar, bool is_u, bool is_q,
10141 int size, int rn, int rd)
10142 {
10143 bool is_double = (size == MO_64);
10144 TCGv_ptr fpst;
10145
10146 if (!fp_access_check(s)) {
10147 return;
10148 }
10149
10150 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
10151
10152 if (is_double) {
10153 TCGv_i64 tcg_op = tcg_temp_new_i64();
10154 TCGv_i64 tcg_zero = tcg_constant_i64(0);
10155 TCGv_i64 tcg_res = tcg_temp_new_i64();
10156 NeonGenTwoDoubleOpFn *genfn;
10157 bool swap = false;
10158 int pass;
10159
10160 switch (opcode) {
10161 case 0x2e: /* FCMLT (zero) */
10162 swap = true;
10163 /* fallthrough */
10164 case 0x2c: /* FCMGT (zero) */
10165 genfn = gen_helper_neon_cgt_f64;
10166 break;
10167 case 0x2d: /* FCMEQ (zero) */
10168 genfn = gen_helper_neon_ceq_f64;
10169 break;
10170 case 0x6d: /* FCMLE (zero) */
10171 swap = true;
10172 /* fall through */
10173 case 0x6c: /* FCMGE (zero) */
10174 genfn = gen_helper_neon_cge_f64;
10175 break;
10176 default:
10177 g_assert_not_reached();
10178 }
10179
10180 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10181 read_vec_element(s, tcg_op, rn, pass, MO_64);
10182 if (swap) {
10183 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10184 } else {
10185 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10186 }
10187 write_vec_element(s, tcg_res, rd, pass, MO_64);
10188 }
10189
10190 clear_vec_high(s, !is_scalar, rd);
10191 } else {
10192 TCGv_i32 tcg_op = tcg_temp_new_i32();
10193 TCGv_i32 tcg_zero = tcg_constant_i32(0);
10194 TCGv_i32 tcg_res = tcg_temp_new_i32();
10195 NeonGenTwoSingleOpFn *genfn;
10196 bool swap = false;
10197 int pass, maxpasses;
10198
10199 if (size == MO_16) {
10200 switch (opcode) {
10201 case 0x2e: /* FCMLT (zero) */
10202 swap = true;
10203 /* fall through */
10204 case 0x2c: /* FCMGT (zero) */
10205 genfn = gen_helper_advsimd_cgt_f16;
10206 break;
10207 case 0x2d: /* FCMEQ (zero) */
10208 genfn = gen_helper_advsimd_ceq_f16;
10209 break;
10210 case 0x6d: /* FCMLE (zero) */
10211 swap = true;
10212 /* fall through */
10213 case 0x6c: /* FCMGE (zero) */
10214 genfn = gen_helper_advsimd_cge_f16;
10215 break;
10216 default:
10217 g_assert_not_reached();
10218 }
10219 } else {
10220 switch (opcode) {
10221 case 0x2e: /* FCMLT (zero) */
10222 swap = true;
10223 /* fall through */
10224 case 0x2c: /* FCMGT (zero) */
10225 genfn = gen_helper_neon_cgt_f32;
10226 break;
10227 case 0x2d: /* FCMEQ (zero) */
10228 genfn = gen_helper_neon_ceq_f32;
10229 break;
10230 case 0x6d: /* FCMLE (zero) */
10231 swap = true;
10232 /* fall through */
10233 case 0x6c: /* FCMGE (zero) */
10234 genfn = gen_helper_neon_cge_f32;
10235 break;
10236 default:
10237 g_assert_not_reached();
10238 }
10239 }
10240
10241 if (is_scalar) {
10242 maxpasses = 1;
10243 } else {
10244 int vector_size = 8 << is_q;
10245 maxpasses = vector_size >> size;
10246 }
10247
10248 for (pass = 0; pass < maxpasses; pass++) {
10249 read_vec_element_i32(s, tcg_op, rn, pass, size);
10250 if (swap) {
10251 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10252 } else {
10253 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10254 }
10255 if (is_scalar) {
10256 write_fp_sreg(s, rd, tcg_res);
10257 } else {
10258 write_vec_element_i32(s, tcg_res, rd, pass, size);
10259 }
10260 }
10261
10262 if (!is_scalar) {
10263 clear_vec_high(s, is_q, rd);
10264 }
10265 }
10266 }
10267
handle_2misc_reciprocal(DisasContext * s,int opcode,bool is_scalar,bool is_u,bool is_q,int size,int rn,int rd)10268 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
10269 bool is_scalar, bool is_u, bool is_q,
10270 int size, int rn, int rd)
10271 {
10272 bool is_double = (size == 3);
10273 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10274
10275 if (is_double) {
10276 TCGv_i64 tcg_op = tcg_temp_new_i64();
10277 TCGv_i64 tcg_res = tcg_temp_new_i64();
10278 int pass;
10279
10280 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10281 read_vec_element(s, tcg_op, rn, pass, MO_64);
10282 switch (opcode) {
10283 case 0x3d: /* FRECPE */
10284 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
10285 break;
10286 case 0x3f: /* FRECPX */
10287 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
10288 break;
10289 case 0x7d: /* FRSQRTE */
10290 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
10291 break;
10292 default:
10293 g_assert_not_reached();
10294 }
10295 write_vec_element(s, tcg_res, rd, pass, MO_64);
10296 }
10297 clear_vec_high(s, !is_scalar, rd);
10298 } else {
10299 TCGv_i32 tcg_op = tcg_temp_new_i32();
10300 TCGv_i32 tcg_res = tcg_temp_new_i32();
10301 int pass, maxpasses;
10302
10303 if (is_scalar) {
10304 maxpasses = 1;
10305 } else {
10306 maxpasses = is_q ? 4 : 2;
10307 }
10308
10309 for (pass = 0; pass < maxpasses; pass++) {
10310 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
10311
10312 switch (opcode) {
10313 case 0x3c: /* URECPE */
10314 gen_helper_recpe_u32(tcg_res, tcg_op);
10315 break;
10316 case 0x3d: /* FRECPE */
10317 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
10318 break;
10319 case 0x3f: /* FRECPX */
10320 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
10321 break;
10322 case 0x7d: /* FRSQRTE */
10323 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
10324 break;
10325 default:
10326 g_assert_not_reached();
10327 }
10328
10329 if (is_scalar) {
10330 write_fp_sreg(s, rd, tcg_res);
10331 } else {
10332 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10333 }
10334 }
10335 if (!is_scalar) {
10336 clear_vec_high(s, is_q, rd);
10337 }
10338 }
10339 }
10340
handle_2misc_narrow(DisasContext * s,bool scalar,int opcode,bool u,bool is_q,int size,int rn,int rd)10341 static void handle_2misc_narrow(DisasContext *s, bool scalar,
10342 int opcode, bool u, bool is_q,
10343 int size, int rn, int rd)
10344 {
10345 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
10346 * in the source becomes a size element in the destination).
10347 */
10348 int pass;
10349 TCGv_i32 tcg_res[2];
10350 int destelt = is_q ? 2 : 0;
10351 int passes = scalar ? 1 : 2;
10352
10353 if (scalar) {
10354 tcg_res[1] = tcg_constant_i32(0);
10355 }
10356
10357 for (pass = 0; pass < passes; pass++) {
10358 TCGv_i64 tcg_op = tcg_temp_new_i64();
10359 NeonGenNarrowFn *genfn = NULL;
10360 NeonGenNarrowEnvFn *genenvfn = NULL;
10361
10362 if (scalar) {
10363 read_vec_element(s, tcg_op, rn, pass, size + 1);
10364 } else {
10365 read_vec_element(s, tcg_op, rn, pass, MO_64);
10366 }
10367 tcg_res[pass] = tcg_temp_new_i32();
10368
10369 switch (opcode) {
10370 case 0x12: /* XTN, SQXTUN */
10371 {
10372 static NeonGenNarrowFn * const xtnfns[3] = {
10373 gen_helper_neon_narrow_u8,
10374 gen_helper_neon_narrow_u16,
10375 tcg_gen_extrl_i64_i32,
10376 };
10377 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
10378 gen_helper_neon_unarrow_sat8,
10379 gen_helper_neon_unarrow_sat16,
10380 gen_helper_neon_unarrow_sat32,
10381 };
10382 if (u) {
10383 genenvfn = sqxtunfns[size];
10384 } else {
10385 genfn = xtnfns[size];
10386 }
10387 break;
10388 }
10389 case 0x14: /* SQXTN, UQXTN */
10390 {
10391 static NeonGenNarrowEnvFn * const fns[3][2] = {
10392 { gen_helper_neon_narrow_sat_s8,
10393 gen_helper_neon_narrow_sat_u8 },
10394 { gen_helper_neon_narrow_sat_s16,
10395 gen_helper_neon_narrow_sat_u16 },
10396 { gen_helper_neon_narrow_sat_s32,
10397 gen_helper_neon_narrow_sat_u32 },
10398 };
10399 genenvfn = fns[size][u];
10400 break;
10401 }
10402 case 0x16: /* FCVTN, FCVTN2 */
10403 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10404 if (size == 2) {
10405 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
10406 } else {
10407 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10408 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10409 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10410 TCGv_i32 ahp = get_ahp_flag();
10411
10412 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10413 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10414 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10415 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10416 }
10417 break;
10418 case 0x36: /* BFCVTN, BFCVTN2 */
10419 {
10420 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10421 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
10422 }
10423 break;
10424 case 0x56: /* FCVTXN, FCVTXN2 */
10425 /* 64 bit to 32 bit float conversion
10426 * with von Neumann rounding (round to odd)
10427 */
10428 assert(size == 2);
10429 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
10430 break;
10431 default:
10432 g_assert_not_reached();
10433 }
10434
10435 if (genfn) {
10436 genfn(tcg_res[pass], tcg_op);
10437 } else if (genenvfn) {
10438 genenvfn(tcg_res[pass], tcg_env, tcg_op);
10439 }
10440 }
10441
10442 for (pass = 0; pass < 2; pass++) {
10443 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10444 }
10445 clear_vec_high(s, is_q, rd);
10446 }
10447
10448 /* AdvSIMD scalar two reg misc
10449 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
10450 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10451 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
10452 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10453 */
disas_simd_scalar_two_reg_misc(DisasContext * s,uint32_t insn)10454 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10455 {
10456 int rd = extract32(insn, 0, 5);
10457 int rn = extract32(insn, 5, 5);
10458 int opcode = extract32(insn, 12, 5);
10459 int size = extract32(insn, 22, 2);
10460 bool u = extract32(insn, 29, 1);
10461 bool is_fcvt = false;
10462 int rmode;
10463 TCGv_i32 tcg_rmode;
10464 TCGv_ptr tcg_fpstatus;
10465
10466 switch (opcode) {
10467 case 0x7: /* SQABS / SQNEG */
10468 break;
10469 case 0xa: /* CMLT */
10470 if (u) {
10471 unallocated_encoding(s);
10472 return;
10473 }
10474 /* fall through */
10475 case 0x8: /* CMGT, CMGE */
10476 case 0x9: /* CMEQ, CMLE */
10477 case 0xb: /* ABS, NEG */
10478 if (size != 3) {
10479 unallocated_encoding(s);
10480 return;
10481 }
10482 break;
10483 case 0x12: /* SQXTUN */
10484 if (!u) {
10485 unallocated_encoding(s);
10486 return;
10487 }
10488 /* fall through */
10489 case 0x14: /* SQXTN, UQXTN */
10490 if (size == 3) {
10491 unallocated_encoding(s);
10492 return;
10493 }
10494 if (!fp_access_check(s)) {
10495 return;
10496 }
10497 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10498 return;
10499 case 0xc ... 0xf:
10500 case 0x16 ... 0x1d:
10501 case 0x1f:
10502 /* Floating point: U, size[1] and opcode indicate operation;
10503 * size[0] indicates single or double precision.
10504 */
10505 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10506 size = extract32(size, 0, 1) ? 3 : 2;
10507 switch (opcode) {
10508 case 0x2c: /* FCMGT (zero) */
10509 case 0x2d: /* FCMEQ (zero) */
10510 case 0x2e: /* FCMLT (zero) */
10511 case 0x6c: /* FCMGE (zero) */
10512 case 0x6d: /* FCMLE (zero) */
10513 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10514 return;
10515 case 0x1d: /* SCVTF */
10516 case 0x5d: /* UCVTF */
10517 {
10518 bool is_signed = (opcode == 0x1d);
10519 if (!fp_access_check(s)) {
10520 return;
10521 }
10522 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10523 return;
10524 }
10525 case 0x3d: /* FRECPE */
10526 case 0x3f: /* FRECPX */
10527 case 0x7d: /* FRSQRTE */
10528 if (!fp_access_check(s)) {
10529 return;
10530 }
10531 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10532 return;
10533 case 0x1a: /* FCVTNS */
10534 case 0x1b: /* FCVTMS */
10535 case 0x3a: /* FCVTPS */
10536 case 0x3b: /* FCVTZS */
10537 case 0x5a: /* FCVTNU */
10538 case 0x5b: /* FCVTMU */
10539 case 0x7a: /* FCVTPU */
10540 case 0x7b: /* FCVTZU */
10541 is_fcvt = true;
10542 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10543 break;
10544 case 0x1c: /* FCVTAS */
10545 case 0x5c: /* FCVTAU */
10546 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10547 is_fcvt = true;
10548 rmode = FPROUNDING_TIEAWAY;
10549 break;
10550 case 0x56: /* FCVTXN, FCVTXN2 */
10551 if (size == 2) {
10552 unallocated_encoding(s);
10553 return;
10554 }
10555 if (!fp_access_check(s)) {
10556 return;
10557 }
10558 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10559 return;
10560 default:
10561 unallocated_encoding(s);
10562 return;
10563 }
10564 break;
10565 default:
10566 case 0x3: /* USQADD / SUQADD */
10567 unallocated_encoding(s);
10568 return;
10569 }
10570
10571 if (!fp_access_check(s)) {
10572 return;
10573 }
10574
10575 if (is_fcvt) {
10576 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10577 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
10578 } else {
10579 tcg_fpstatus = NULL;
10580 tcg_rmode = NULL;
10581 }
10582
10583 if (size == 3) {
10584 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10585 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10586
10587 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10588 write_fp_dreg(s, rd, tcg_rd);
10589 } else {
10590 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10591 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10592
10593 read_vec_element_i32(s, tcg_rn, rn, 0, size);
10594
10595 switch (opcode) {
10596 case 0x7: /* SQABS, SQNEG */
10597 {
10598 NeonGenOneOpEnvFn *genfn;
10599 static NeonGenOneOpEnvFn * const fns[3][2] = {
10600 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10601 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10602 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10603 };
10604 genfn = fns[size][u];
10605 genfn(tcg_rd, tcg_env, tcg_rn);
10606 break;
10607 }
10608 case 0x1a: /* FCVTNS */
10609 case 0x1b: /* FCVTMS */
10610 case 0x1c: /* FCVTAS */
10611 case 0x3a: /* FCVTPS */
10612 case 0x3b: /* FCVTZS */
10613 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10614 tcg_fpstatus);
10615 break;
10616 case 0x5a: /* FCVTNU */
10617 case 0x5b: /* FCVTMU */
10618 case 0x5c: /* FCVTAU */
10619 case 0x7a: /* FCVTPU */
10620 case 0x7b: /* FCVTZU */
10621 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10622 tcg_fpstatus);
10623 break;
10624 default:
10625 g_assert_not_reached();
10626 }
10627
10628 write_fp_sreg(s, rd, tcg_rd);
10629 }
10630
10631 if (is_fcvt) {
10632 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10633 }
10634 }
10635
10636 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
handle_vec_simd_shri(DisasContext * s,bool is_q,bool is_u,int immh,int immb,int opcode,int rn,int rd)10637 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10638 int immh, int immb, int opcode, int rn, int rd)
10639 {
10640 int size = 32 - clz32(immh) - 1;
10641 int immhb = immh << 3 | immb;
10642 int shift = 2 * (8 << size) - immhb;
10643 GVecGen2iFn *gvec_fn;
10644
10645 if (extract32(immh, 3, 1) && !is_q) {
10646 unallocated_encoding(s);
10647 return;
10648 }
10649 tcg_debug_assert(size <= 3);
10650
10651 if (!fp_access_check(s)) {
10652 return;
10653 }
10654
10655 switch (opcode) {
10656 case 0x02: /* SSRA / USRA (accumulate) */
10657 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10658 break;
10659
10660 case 0x08: /* SRI */
10661 gvec_fn = gen_gvec_sri;
10662 break;
10663
10664 case 0x00: /* SSHR / USHR */
10665 if (is_u) {
10666 if (shift == 8 << size) {
10667 /* Shift count the same size as element size produces zero. */
10668 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10669 is_q ? 16 : 8, vec_full_reg_size(s), 0);
10670 return;
10671 }
10672 gvec_fn = tcg_gen_gvec_shri;
10673 } else {
10674 /* Shift count the same size as element size produces all sign. */
10675 if (shift == 8 << size) {
10676 shift -= 1;
10677 }
10678 gvec_fn = tcg_gen_gvec_sari;
10679 }
10680 break;
10681
10682 case 0x04: /* SRSHR / URSHR (rounding) */
10683 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10684 break;
10685
10686 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10687 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10688 break;
10689
10690 default:
10691 g_assert_not_reached();
10692 }
10693
10694 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10695 }
10696
10697 /* SHL/SLI - Vector shift left */
handle_vec_simd_shli(DisasContext * s,bool is_q,bool insert,int immh,int immb,int opcode,int rn,int rd)10698 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10699 int immh, int immb, int opcode, int rn, int rd)
10700 {
10701 int size = 32 - clz32(immh) - 1;
10702 int immhb = immh << 3 | immb;
10703 int shift = immhb - (8 << size);
10704
10705 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10706 assert(size >= 0 && size <= 3);
10707
10708 if (extract32(immh, 3, 1) && !is_q) {
10709 unallocated_encoding(s);
10710 return;
10711 }
10712
10713 if (!fp_access_check(s)) {
10714 return;
10715 }
10716
10717 if (insert) {
10718 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10719 } else {
10720 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10721 }
10722 }
10723
10724 /* USHLL/SHLL - Vector shift left with widening */
handle_vec_simd_wshli(DisasContext * s,bool is_q,bool is_u,int immh,int immb,int opcode,int rn,int rd)10725 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10726 int immh, int immb, int opcode, int rn, int rd)
10727 {
10728 int size = 32 - clz32(immh) - 1;
10729 int immhb = immh << 3 | immb;
10730 int shift = immhb - (8 << size);
10731 int dsize = 64;
10732 int esize = 8 << size;
10733 int elements = dsize/esize;
10734 TCGv_i64 tcg_rn = tcg_temp_new_i64();
10735 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10736 int i;
10737
10738 if (size >= 3) {
10739 unallocated_encoding(s);
10740 return;
10741 }
10742
10743 if (!fp_access_check(s)) {
10744 return;
10745 }
10746
10747 /* For the LL variants the store is larger than the load,
10748 * so if rd == rn we would overwrite parts of our input.
10749 * So load everything right now and use shifts in the main loop.
10750 */
10751 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10752
10753 for (i = 0; i < elements; i++) {
10754 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10755 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10756 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10757 write_vec_element(s, tcg_rd, rd, i, size + 1);
10758 }
10759 clear_vec_high(s, true, rd);
10760 }
10761
10762 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
handle_vec_simd_shrn(DisasContext * s,bool is_q,int immh,int immb,int opcode,int rn,int rd)10763 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10764 int immh, int immb, int opcode, int rn, int rd)
10765 {
10766 int immhb = immh << 3 | immb;
10767 int size = 32 - clz32(immh) - 1;
10768 int dsize = 64;
10769 int esize = 8 << size;
10770 int elements = dsize/esize;
10771 int shift = (2 * esize) - immhb;
10772 bool round = extract32(opcode, 0, 1);
10773 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10774 TCGv_i64 tcg_round;
10775 int i;
10776
10777 if (extract32(immh, 3, 1)) {
10778 unallocated_encoding(s);
10779 return;
10780 }
10781
10782 if (!fp_access_check(s)) {
10783 return;
10784 }
10785
10786 tcg_rn = tcg_temp_new_i64();
10787 tcg_rd = tcg_temp_new_i64();
10788 tcg_final = tcg_temp_new_i64();
10789 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10790
10791 if (round) {
10792 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10793 } else {
10794 tcg_round = NULL;
10795 }
10796
10797 for (i = 0; i < elements; i++) {
10798 read_vec_element(s, tcg_rn, rn, i, size+1);
10799 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10800 false, true, size+1, shift);
10801
10802 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10803 }
10804
10805 if (!is_q) {
10806 write_vec_element(s, tcg_final, rd, 0, MO_64);
10807 } else {
10808 write_vec_element(s, tcg_final, rd, 1, MO_64);
10809 }
10810
10811 clear_vec_high(s, is_q, rd);
10812 }
10813
10814
10815 /* AdvSIMD shift by immediate
10816 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10817 * +---+---+---+-------------+------+------+--------+---+------+------+
10818 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10819 * +---+---+---+-------------+------+------+--------+---+------+------+
10820 */
disas_simd_shift_imm(DisasContext * s,uint32_t insn)10821 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10822 {
10823 int rd = extract32(insn, 0, 5);
10824 int rn = extract32(insn, 5, 5);
10825 int opcode = extract32(insn, 11, 5);
10826 int immb = extract32(insn, 16, 3);
10827 int immh = extract32(insn, 19, 4);
10828 bool is_u = extract32(insn, 29, 1);
10829 bool is_q = extract32(insn, 30, 1);
10830
10831 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10832 assert(immh != 0);
10833
10834 switch (opcode) {
10835 case 0x08: /* SRI */
10836 if (!is_u) {
10837 unallocated_encoding(s);
10838 return;
10839 }
10840 /* fall through */
10841 case 0x00: /* SSHR / USHR */
10842 case 0x02: /* SSRA / USRA (accumulate) */
10843 case 0x04: /* SRSHR / URSHR (rounding) */
10844 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10845 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10846 break;
10847 case 0x0a: /* SHL / SLI */
10848 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10849 break;
10850 case 0x10: /* SHRN */
10851 case 0x11: /* RSHRN / SQRSHRUN */
10852 if (is_u) {
10853 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10854 opcode, rn, rd);
10855 } else {
10856 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10857 }
10858 break;
10859 case 0x12: /* SQSHRN / UQSHRN */
10860 case 0x13: /* SQRSHRN / UQRSHRN */
10861 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10862 opcode, rn, rd);
10863 break;
10864 case 0x14: /* SSHLL / USHLL */
10865 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10866 break;
10867 case 0x1c: /* SCVTF / UCVTF */
10868 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10869 opcode, rn, rd);
10870 break;
10871 case 0xc: /* SQSHLU */
10872 if (!is_u) {
10873 unallocated_encoding(s);
10874 return;
10875 }
10876 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10877 break;
10878 case 0xe: /* SQSHL, UQSHL */
10879 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10880 break;
10881 case 0x1f: /* FCVTZS/ FCVTZU */
10882 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10883 return;
10884 default:
10885 unallocated_encoding(s);
10886 return;
10887 }
10888 }
10889
handle_2misc_widening(DisasContext * s,int opcode,bool is_q,int size,int rn,int rd)10890 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
10891 int size, int rn, int rd)
10892 {
10893 /* Handle 2-reg-misc ops which are widening (so each size element
10894 * in the source becomes a 2*size element in the destination.
10895 * The only instruction like this is FCVTL.
10896 */
10897 int pass;
10898
10899 if (size == 3) {
10900 /* 32 -> 64 bit fp conversion */
10901 TCGv_i64 tcg_res[2];
10902 int srcelt = is_q ? 2 : 0;
10903
10904 for (pass = 0; pass < 2; pass++) {
10905 TCGv_i32 tcg_op = tcg_temp_new_i32();
10906 tcg_res[pass] = tcg_temp_new_i64();
10907
10908 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
10909 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
10910 }
10911 for (pass = 0; pass < 2; pass++) {
10912 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10913 }
10914 } else {
10915 /* 16 -> 32 bit fp conversion */
10916 int srcelt = is_q ? 4 : 0;
10917 TCGv_i32 tcg_res[4];
10918 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10919 TCGv_i32 ahp = get_ahp_flag();
10920
10921 for (pass = 0; pass < 4; pass++) {
10922 tcg_res[pass] = tcg_temp_new_i32();
10923
10924 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
10925 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
10926 fpst, ahp);
10927 }
10928 for (pass = 0; pass < 4; pass++) {
10929 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10930 }
10931 }
10932 }
10933
handle_rev(DisasContext * s,int opcode,bool u,bool is_q,int size,int rn,int rd)10934 static void handle_rev(DisasContext *s, int opcode, bool u,
10935 bool is_q, int size, int rn, int rd)
10936 {
10937 int op = (opcode << 1) | u;
10938 int opsz = op + size;
10939 int grp_size = 3 - opsz;
10940 int dsize = is_q ? 128 : 64;
10941 int i;
10942
10943 if (opsz >= 3) {
10944 unallocated_encoding(s);
10945 return;
10946 }
10947
10948 if (!fp_access_check(s)) {
10949 return;
10950 }
10951
10952 if (size == 0) {
10953 /* Special case bytes, use bswap op on each group of elements */
10954 int groups = dsize / (8 << grp_size);
10955
10956 for (i = 0; i < groups; i++) {
10957 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
10958
10959 read_vec_element(s, tcg_tmp, rn, i, grp_size);
10960 switch (grp_size) {
10961 case MO_16:
10962 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
10963 break;
10964 case MO_32:
10965 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
10966 break;
10967 case MO_64:
10968 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
10969 break;
10970 default:
10971 g_assert_not_reached();
10972 }
10973 write_vec_element(s, tcg_tmp, rd, i, grp_size);
10974 }
10975 clear_vec_high(s, is_q, rd);
10976 } else {
10977 int revmask = (1 << grp_size) - 1;
10978 int esize = 8 << size;
10979 int elements = dsize / esize;
10980 TCGv_i64 tcg_rn = tcg_temp_new_i64();
10981 TCGv_i64 tcg_rd[2];
10982
10983 for (i = 0; i < 2; i++) {
10984 tcg_rd[i] = tcg_temp_new_i64();
10985 tcg_gen_movi_i64(tcg_rd[i], 0);
10986 }
10987
10988 for (i = 0; i < elements; i++) {
10989 int e_rev = (i & 0xf) ^ revmask;
10990 int w = (e_rev * esize) / 64;
10991 int o = (e_rev * esize) % 64;
10992
10993 read_vec_element(s, tcg_rn, rn, i, size);
10994 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
10995 }
10996
10997 for (i = 0; i < 2; i++) {
10998 write_vec_element(s, tcg_rd[i], rd, i, MO_64);
10999 }
11000 clear_vec_high(s, true, rd);
11001 }
11002 }
11003
handle_2misc_pairwise(DisasContext * s,int opcode,bool u,bool is_q,int size,int rn,int rd)11004 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11005 bool is_q, int size, int rn, int rd)
11006 {
11007 /* Implement the pairwise operations from 2-misc:
11008 * SADDLP, UADDLP, SADALP, UADALP.
11009 * These all add pairs of elements in the input to produce a
11010 * double-width result element in the output (possibly accumulating).
11011 */
11012 bool accum = (opcode == 0x6);
11013 int maxpass = is_q ? 2 : 1;
11014 int pass;
11015 TCGv_i64 tcg_res[2];
11016
11017 if (size == 2) {
11018 /* 32 + 32 -> 64 op */
11019 MemOp memop = size + (u ? 0 : MO_SIGN);
11020
11021 for (pass = 0; pass < maxpass; pass++) {
11022 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11023 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11024
11025 tcg_res[pass] = tcg_temp_new_i64();
11026
11027 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11028 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11029 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11030 if (accum) {
11031 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11032 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11033 }
11034 }
11035 } else {
11036 for (pass = 0; pass < maxpass; pass++) {
11037 TCGv_i64 tcg_op = tcg_temp_new_i64();
11038 NeonGenOne64OpFn *genfn;
11039 static NeonGenOne64OpFn * const fns[2][2] = {
11040 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
11041 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
11042 };
11043
11044 genfn = fns[size][u];
11045
11046 tcg_res[pass] = tcg_temp_new_i64();
11047
11048 read_vec_element(s, tcg_op, rn, pass, MO_64);
11049 genfn(tcg_res[pass], tcg_op);
11050
11051 if (accum) {
11052 read_vec_element(s, tcg_op, rd, pass, MO_64);
11053 if (size == 0) {
11054 gen_helper_neon_addl_u16(tcg_res[pass],
11055 tcg_res[pass], tcg_op);
11056 } else {
11057 gen_helper_neon_addl_u32(tcg_res[pass],
11058 tcg_res[pass], tcg_op);
11059 }
11060 }
11061 }
11062 }
11063 if (!is_q) {
11064 tcg_res[1] = tcg_constant_i64(0);
11065 }
11066 for (pass = 0; pass < 2; pass++) {
11067 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11068 }
11069 }
11070
handle_shll(DisasContext * s,bool is_q,int size,int rn,int rd)11071 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11072 {
11073 /* Implement SHLL and SHLL2 */
11074 int pass;
11075 int part = is_q ? 2 : 0;
11076 TCGv_i64 tcg_res[2];
11077
11078 for (pass = 0; pass < 2; pass++) {
11079 static NeonGenWidenFn * const widenfns[3] = {
11080 gen_helper_neon_widen_u8,
11081 gen_helper_neon_widen_u16,
11082 tcg_gen_extu_i32_i64,
11083 };
11084 NeonGenWidenFn *widenfn = widenfns[size];
11085 TCGv_i32 tcg_op = tcg_temp_new_i32();
11086
11087 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11088 tcg_res[pass] = tcg_temp_new_i64();
11089 widenfn(tcg_res[pass], tcg_op);
11090 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11091 }
11092
11093 for (pass = 0; pass < 2; pass++) {
11094 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11095 }
11096 }
11097
11098 /* AdvSIMD two reg misc
11099 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
11100 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11101 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
11102 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11103 */
disas_simd_two_reg_misc(DisasContext * s,uint32_t insn)11104 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11105 {
11106 int size = extract32(insn, 22, 2);
11107 int opcode = extract32(insn, 12, 5);
11108 bool u = extract32(insn, 29, 1);
11109 bool is_q = extract32(insn, 30, 1);
11110 int rn = extract32(insn, 5, 5);
11111 int rd = extract32(insn, 0, 5);
11112 bool need_fpstatus = false;
11113 int rmode = -1;
11114 TCGv_i32 tcg_rmode;
11115 TCGv_ptr tcg_fpstatus;
11116
11117 switch (opcode) {
11118 case 0x0: /* REV64, REV32 */
11119 case 0x1: /* REV16 */
11120 handle_rev(s, opcode, u, is_q, size, rn, rd);
11121 return;
11122 case 0x5: /* CNT, NOT, RBIT */
11123 if (u && size == 0) {
11124 /* NOT */
11125 break;
11126 } else if (u && size == 1) {
11127 /* RBIT */
11128 break;
11129 } else if (!u && size == 0) {
11130 /* CNT */
11131 break;
11132 }
11133 unallocated_encoding(s);
11134 return;
11135 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11136 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11137 if (size == 3) {
11138 unallocated_encoding(s);
11139 return;
11140 }
11141 if (!fp_access_check(s)) {
11142 return;
11143 }
11144
11145 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11146 return;
11147 case 0x4: /* CLS, CLZ */
11148 if (size == 3) {
11149 unallocated_encoding(s);
11150 return;
11151 }
11152 break;
11153 case 0x2: /* SADDLP, UADDLP */
11154 case 0x6: /* SADALP, UADALP */
11155 if (size == 3) {
11156 unallocated_encoding(s);
11157 return;
11158 }
11159 if (!fp_access_check(s)) {
11160 return;
11161 }
11162 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11163 return;
11164 case 0x13: /* SHLL, SHLL2 */
11165 if (u == 0 || size == 3) {
11166 unallocated_encoding(s);
11167 return;
11168 }
11169 if (!fp_access_check(s)) {
11170 return;
11171 }
11172 handle_shll(s, is_q, size, rn, rd);
11173 return;
11174 case 0xa: /* CMLT */
11175 if (u == 1) {
11176 unallocated_encoding(s);
11177 return;
11178 }
11179 /* fall through */
11180 case 0x8: /* CMGT, CMGE */
11181 case 0x9: /* CMEQ, CMLE */
11182 case 0xb: /* ABS, NEG */
11183 if (size == 3 && !is_q) {
11184 unallocated_encoding(s);
11185 return;
11186 }
11187 break;
11188 case 0x7: /* SQABS, SQNEG */
11189 if (size == 3 && !is_q) {
11190 unallocated_encoding(s);
11191 return;
11192 }
11193 break;
11194 case 0xc ... 0xf:
11195 case 0x16 ... 0x1f:
11196 {
11197 /* Floating point: U, size[1] and opcode indicate operation;
11198 * size[0] indicates single or double precision.
11199 */
11200 int is_double = extract32(size, 0, 1);
11201 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
11202 size = is_double ? 3 : 2;
11203 switch (opcode) {
11204 case 0x2f: /* FABS */
11205 case 0x6f: /* FNEG */
11206 if (size == 3 && !is_q) {
11207 unallocated_encoding(s);
11208 return;
11209 }
11210 break;
11211 case 0x1d: /* SCVTF */
11212 case 0x5d: /* UCVTF */
11213 {
11214 bool is_signed = (opcode == 0x1d) ? true : false;
11215 int elements = is_double ? 2 : is_q ? 4 : 2;
11216 if (is_double && !is_q) {
11217 unallocated_encoding(s);
11218 return;
11219 }
11220 if (!fp_access_check(s)) {
11221 return;
11222 }
11223 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
11224 return;
11225 }
11226 case 0x2c: /* FCMGT (zero) */
11227 case 0x2d: /* FCMEQ (zero) */
11228 case 0x2e: /* FCMLT (zero) */
11229 case 0x6c: /* FCMGE (zero) */
11230 case 0x6d: /* FCMLE (zero) */
11231 if (size == 3 && !is_q) {
11232 unallocated_encoding(s);
11233 return;
11234 }
11235 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
11236 return;
11237 case 0x7f: /* FSQRT */
11238 if (size == 3 && !is_q) {
11239 unallocated_encoding(s);
11240 return;
11241 }
11242 break;
11243 case 0x1a: /* FCVTNS */
11244 case 0x1b: /* FCVTMS */
11245 case 0x3a: /* FCVTPS */
11246 case 0x3b: /* FCVTZS */
11247 case 0x5a: /* FCVTNU */
11248 case 0x5b: /* FCVTMU */
11249 case 0x7a: /* FCVTPU */
11250 case 0x7b: /* FCVTZU */
11251 need_fpstatus = true;
11252 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11253 if (size == 3 && !is_q) {
11254 unallocated_encoding(s);
11255 return;
11256 }
11257 break;
11258 case 0x5c: /* FCVTAU */
11259 case 0x1c: /* FCVTAS */
11260 need_fpstatus = true;
11261 rmode = FPROUNDING_TIEAWAY;
11262 if (size == 3 && !is_q) {
11263 unallocated_encoding(s);
11264 return;
11265 }
11266 break;
11267 case 0x3c: /* URECPE */
11268 if (size == 3) {
11269 unallocated_encoding(s);
11270 return;
11271 }
11272 /* fall through */
11273 case 0x3d: /* FRECPE */
11274 case 0x7d: /* FRSQRTE */
11275 if (size == 3 && !is_q) {
11276 unallocated_encoding(s);
11277 return;
11278 }
11279 if (!fp_access_check(s)) {
11280 return;
11281 }
11282 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
11283 return;
11284 case 0x56: /* FCVTXN, FCVTXN2 */
11285 if (size == 2) {
11286 unallocated_encoding(s);
11287 return;
11288 }
11289 /* fall through */
11290 case 0x16: /* FCVTN, FCVTN2 */
11291 /* handle_2misc_narrow does a 2*size -> size operation, but these
11292 * instructions encode the source size rather than dest size.
11293 */
11294 if (!fp_access_check(s)) {
11295 return;
11296 }
11297 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11298 return;
11299 case 0x36: /* BFCVTN, BFCVTN2 */
11300 if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
11301 unallocated_encoding(s);
11302 return;
11303 }
11304 if (!fp_access_check(s)) {
11305 return;
11306 }
11307 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
11308 return;
11309 case 0x17: /* FCVTL, FCVTL2 */
11310 if (!fp_access_check(s)) {
11311 return;
11312 }
11313 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
11314 return;
11315 case 0x18: /* FRINTN */
11316 case 0x19: /* FRINTM */
11317 case 0x38: /* FRINTP */
11318 case 0x39: /* FRINTZ */
11319 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
11320 /* fall through */
11321 case 0x59: /* FRINTX */
11322 case 0x79: /* FRINTI */
11323 need_fpstatus = true;
11324 if (size == 3 && !is_q) {
11325 unallocated_encoding(s);
11326 return;
11327 }
11328 break;
11329 case 0x58: /* FRINTA */
11330 rmode = FPROUNDING_TIEAWAY;
11331 need_fpstatus = true;
11332 if (size == 3 && !is_q) {
11333 unallocated_encoding(s);
11334 return;
11335 }
11336 break;
11337 case 0x7c: /* URSQRTE */
11338 if (size == 3) {
11339 unallocated_encoding(s);
11340 return;
11341 }
11342 break;
11343 case 0x1e: /* FRINT32Z */
11344 case 0x1f: /* FRINT64Z */
11345 rmode = FPROUNDING_ZERO;
11346 /* fall through */
11347 case 0x5e: /* FRINT32X */
11348 case 0x5f: /* FRINT64X */
11349 need_fpstatus = true;
11350 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
11351 unallocated_encoding(s);
11352 return;
11353 }
11354 break;
11355 default:
11356 unallocated_encoding(s);
11357 return;
11358 }
11359 break;
11360 }
11361 default:
11362 case 0x3: /* SUQADD, USQADD */
11363 unallocated_encoding(s);
11364 return;
11365 }
11366
11367 if (!fp_access_check(s)) {
11368 return;
11369 }
11370
11371 if (need_fpstatus || rmode >= 0) {
11372 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
11373 } else {
11374 tcg_fpstatus = NULL;
11375 }
11376 if (rmode >= 0) {
11377 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11378 } else {
11379 tcg_rmode = NULL;
11380 }
11381
11382 switch (opcode) {
11383 case 0x5:
11384 if (u && size == 0) { /* NOT */
11385 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
11386 return;
11387 }
11388 break;
11389 case 0x8: /* CMGT, CMGE */
11390 if (u) {
11391 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
11392 } else {
11393 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
11394 }
11395 return;
11396 case 0x9: /* CMEQ, CMLE */
11397 if (u) {
11398 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
11399 } else {
11400 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
11401 }
11402 return;
11403 case 0xa: /* CMLT */
11404 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
11405 return;
11406 case 0xb:
11407 if (u) { /* ABS, NEG */
11408 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
11409 } else {
11410 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
11411 }
11412 return;
11413 }
11414
11415 if (size == 3) {
11416 /* All 64-bit element operations can be shared with scalar 2misc */
11417 int pass;
11418
11419 /* Coverity claims (size == 3 && !is_q) has been eliminated
11420 * from all paths leading to here.
11421 */
11422 tcg_debug_assert(is_q);
11423 for (pass = 0; pass < 2; pass++) {
11424 TCGv_i64 tcg_op = tcg_temp_new_i64();
11425 TCGv_i64 tcg_res = tcg_temp_new_i64();
11426
11427 read_vec_element(s, tcg_op, rn, pass, MO_64);
11428
11429 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
11430 tcg_rmode, tcg_fpstatus);
11431
11432 write_vec_element(s, tcg_res, rd, pass, MO_64);
11433 }
11434 } else {
11435 int pass;
11436
11437 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11438 TCGv_i32 tcg_op = tcg_temp_new_i32();
11439 TCGv_i32 tcg_res = tcg_temp_new_i32();
11440
11441 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
11442
11443 if (size == 2) {
11444 /* Special cases for 32 bit elements */
11445 switch (opcode) {
11446 case 0x4: /* CLS */
11447 if (u) {
11448 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
11449 } else {
11450 tcg_gen_clrsb_i32(tcg_res, tcg_op);
11451 }
11452 break;
11453 case 0x7: /* SQABS, SQNEG */
11454 if (u) {
11455 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
11456 } else {
11457 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
11458 }
11459 break;
11460 case 0x2f: /* FABS */
11461 gen_vfp_abss(tcg_res, tcg_op);
11462 break;
11463 case 0x6f: /* FNEG */
11464 gen_vfp_negs(tcg_res, tcg_op);
11465 break;
11466 case 0x7f: /* FSQRT */
11467 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
11468 break;
11469 case 0x1a: /* FCVTNS */
11470 case 0x1b: /* FCVTMS */
11471 case 0x1c: /* FCVTAS */
11472 case 0x3a: /* FCVTPS */
11473 case 0x3b: /* FCVTZS */
11474 gen_helper_vfp_tosls(tcg_res, tcg_op,
11475 tcg_constant_i32(0), tcg_fpstatus);
11476 break;
11477 case 0x5a: /* FCVTNU */
11478 case 0x5b: /* FCVTMU */
11479 case 0x5c: /* FCVTAU */
11480 case 0x7a: /* FCVTPU */
11481 case 0x7b: /* FCVTZU */
11482 gen_helper_vfp_touls(tcg_res, tcg_op,
11483 tcg_constant_i32(0), tcg_fpstatus);
11484 break;
11485 case 0x18: /* FRINTN */
11486 case 0x19: /* FRINTM */
11487 case 0x38: /* FRINTP */
11488 case 0x39: /* FRINTZ */
11489 case 0x58: /* FRINTA */
11490 case 0x79: /* FRINTI */
11491 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
11492 break;
11493 case 0x59: /* FRINTX */
11494 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
11495 break;
11496 case 0x7c: /* URSQRTE */
11497 gen_helper_rsqrte_u32(tcg_res, tcg_op);
11498 break;
11499 case 0x1e: /* FRINT32Z */
11500 case 0x5e: /* FRINT32X */
11501 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
11502 break;
11503 case 0x1f: /* FRINT64Z */
11504 case 0x5f: /* FRINT64X */
11505 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
11506 break;
11507 default:
11508 g_assert_not_reached();
11509 }
11510 } else {
11511 /* Use helpers for 8 and 16 bit elements */
11512 switch (opcode) {
11513 case 0x5: /* CNT, RBIT */
11514 /* For these two insns size is part of the opcode specifier
11515 * (handled earlier); they always operate on byte elements.
11516 */
11517 if (u) {
11518 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
11519 } else {
11520 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
11521 }
11522 break;
11523 case 0x7: /* SQABS, SQNEG */
11524 {
11525 NeonGenOneOpEnvFn *genfn;
11526 static NeonGenOneOpEnvFn * const fns[2][2] = {
11527 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
11528 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
11529 };
11530 genfn = fns[size][u];
11531 genfn(tcg_res, tcg_env, tcg_op);
11532 break;
11533 }
11534 case 0x4: /* CLS, CLZ */
11535 if (u) {
11536 if (size == 0) {
11537 gen_helper_neon_clz_u8(tcg_res, tcg_op);
11538 } else {
11539 gen_helper_neon_clz_u16(tcg_res, tcg_op);
11540 }
11541 } else {
11542 if (size == 0) {
11543 gen_helper_neon_cls_s8(tcg_res, tcg_op);
11544 } else {
11545 gen_helper_neon_cls_s16(tcg_res, tcg_op);
11546 }
11547 }
11548 break;
11549 default:
11550 g_assert_not_reached();
11551 }
11552 }
11553
11554 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11555 }
11556 }
11557 clear_vec_high(s, is_q, rd);
11558
11559 if (tcg_rmode) {
11560 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
11561 }
11562 }
11563
11564 /* AdvSIMD [scalar] two register miscellaneous (FP16)
11565 *
11566 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
11567 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11568 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
11569 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
11570 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
11571 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
11572 *
11573 * This actually covers two groups where scalar access is governed by
11574 * bit 28. A bunch of the instructions (float to integral) only exist
11575 * in the vector form and are un-allocated for the scalar decode. Also
11576 * in the scalar decode Q is always 1.
11577 */
disas_simd_two_reg_misc_fp16(DisasContext * s,uint32_t insn)11578 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
11579 {
11580 int fpop, opcode, a, u;
11581 int rn, rd;
11582 bool is_q;
11583 bool is_scalar;
11584 bool only_in_vector = false;
11585
11586 int pass;
11587 TCGv_i32 tcg_rmode = NULL;
11588 TCGv_ptr tcg_fpstatus = NULL;
11589 bool need_fpst = true;
11590 int rmode = -1;
11591
11592 if (!dc_isar_feature(aa64_fp16, s)) {
11593 unallocated_encoding(s);
11594 return;
11595 }
11596
11597 rd = extract32(insn, 0, 5);
11598 rn = extract32(insn, 5, 5);
11599
11600 a = extract32(insn, 23, 1);
11601 u = extract32(insn, 29, 1);
11602 is_scalar = extract32(insn, 28, 1);
11603 is_q = extract32(insn, 30, 1);
11604
11605 opcode = extract32(insn, 12, 5);
11606 fpop = deposit32(opcode, 5, 1, a);
11607 fpop = deposit32(fpop, 6, 1, u);
11608
11609 switch (fpop) {
11610 case 0x1d: /* SCVTF */
11611 case 0x5d: /* UCVTF */
11612 {
11613 int elements;
11614
11615 if (is_scalar) {
11616 elements = 1;
11617 } else {
11618 elements = (is_q ? 8 : 4);
11619 }
11620
11621 if (!fp_access_check(s)) {
11622 return;
11623 }
11624 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
11625 return;
11626 }
11627 break;
11628 case 0x2c: /* FCMGT (zero) */
11629 case 0x2d: /* FCMEQ (zero) */
11630 case 0x2e: /* FCMLT (zero) */
11631 case 0x6c: /* FCMGE (zero) */
11632 case 0x6d: /* FCMLE (zero) */
11633 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
11634 return;
11635 case 0x3d: /* FRECPE */
11636 case 0x3f: /* FRECPX */
11637 break;
11638 case 0x18: /* FRINTN */
11639 only_in_vector = true;
11640 rmode = FPROUNDING_TIEEVEN;
11641 break;
11642 case 0x19: /* FRINTM */
11643 only_in_vector = true;
11644 rmode = FPROUNDING_NEGINF;
11645 break;
11646 case 0x38: /* FRINTP */
11647 only_in_vector = true;
11648 rmode = FPROUNDING_POSINF;
11649 break;
11650 case 0x39: /* FRINTZ */
11651 only_in_vector = true;
11652 rmode = FPROUNDING_ZERO;
11653 break;
11654 case 0x58: /* FRINTA */
11655 only_in_vector = true;
11656 rmode = FPROUNDING_TIEAWAY;
11657 break;
11658 case 0x59: /* FRINTX */
11659 case 0x79: /* FRINTI */
11660 only_in_vector = true;
11661 /* current rounding mode */
11662 break;
11663 case 0x1a: /* FCVTNS */
11664 rmode = FPROUNDING_TIEEVEN;
11665 break;
11666 case 0x1b: /* FCVTMS */
11667 rmode = FPROUNDING_NEGINF;
11668 break;
11669 case 0x1c: /* FCVTAS */
11670 rmode = FPROUNDING_TIEAWAY;
11671 break;
11672 case 0x3a: /* FCVTPS */
11673 rmode = FPROUNDING_POSINF;
11674 break;
11675 case 0x3b: /* FCVTZS */
11676 rmode = FPROUNDING_ZERO;
11677 break;
11678 case 0x5a: /* FCVTNU */
11679 rmode = FPROUNDING_TIEEVEN;
11680 break;
11681 case 0x5b: /* FCVTMU */
11682 rmode = FPROUNDING_NEGINF;
11683 break;
11684 case 0x5c: /* FCVTAU */
11685 rmode = FPROUNDING_TIEAWAY;
11686 break;
11687 case 0x7a: /* FCVTPU */
11688 rmode = FPROUNDING_POSINF;
11689 break;
11690 case 0x7b: /* FCVTZU */
11691 rmode = FPROUNDING_ZERO;
11692 break;
11693 case 0x2f: /* FABS */
11694 case 0x6f: /* FNEG */
11695 need_fpst = false;
11696 break;
11697 case 0x7d: /* FRSQRTE */
11698 case 0x7f: /* FSQRT (vector) */
11699 break;
11700 default:
11701 unallocated_encoding(s);
11702 return;
11703 }
11704
11705
11706 /* Check additional constraints for the scalar encoding */
11707 if (is_scalar) {
11708 if (!is_q) {
11709 unallocated_encoding(s);
11710 return;
11711 }
11712 /* FRINTxx is only in the vector form */
11713 if (only_in_vector) {
11714 unallocated_encoding(s);
11715 return;
11716 }
11717 }
11718
11719 if (!fp_access_check(s)) {
11720 return;
11721 }
11722
11723 if (rmode >= 0 || need_fpst) {
11724 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
11725 }
11726
11727 if (rmode >= 0) {
11728 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
11729 }
11730
11731 if (is_scalar) {
11732 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
11733 TCGv_i32 tcg_res = tcg_temp_new_i32();
11734
11735 switch (fpop) {
11736 case 0x1a: /* FCVTNS */
11737 case 0x1b: /* FCVTMS */
11738 case 0x1c: /* FCVTAS */
11739 case 0x3a: /* FCVTPS */
11740 case 0x3b: /* FCVTZS */
11741 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11742 break;
11743 case 0x3d: /* FRECPE */
11744 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11745 break;
11746 case 0x3f: /* FRECPX */
11747 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
11748 break;
11749 case 0x5a: /* FCVTNU */
11750 case 0x5b: /* FCVTMU */
11751 case 0x5c: /* FCVTAU */
11752 case 0x7a: /* FCVTPU */
11753 case 0x7b: /* FCVTZU */
11754 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11755 break;
11756 case 0x6f: /* FNEG */
11757 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11758 break;
11759 case 0x7d: /* FRSQRTE */
11760 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11761 break;
11762 default:
11763 g_assert_not_reached();
11764 }
11765
11766 /* limit any sign extension going on */
11767 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
11768 write_fp_sreg(s, rd, tcg_res);
11769 } else {
11770 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
11771 TCGv_i32 tcg_op = tcg_temp_new_i32();
11772 TCGv_i32 tcg_res = tcg_temp_new_i32();
11773
11774 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
11775
11776 switch (fpop) {
11777 case 0x1a: /* FCVTNS */
11778 case 0x1b: /* FCVTMS */
11779 case 0x1c: /* FCVTAS */
11780 case 0x3a: /* FCVTPS */
11781 case 0x3b: /* FCVTZS */
11782 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
11783 break;
11784 case 0x3d: /* FRECPE */
11785 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
11786 break;
11787 case 0x5a: /* FCVTNU */
11788 case 0x5b: /* FCVTMU */
11789 case 0x5c: /* FCVTAU */
11790 case 0x7a: /* FCVTPU */
11791 case 0x7b: /* FCVTZU */
11792 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
11793 break;
11794 case 0x18: /* FRINTN */
11795 case 0x19: /* FRINTM */
11796 case 0x38: /* FRINTP */
11797 case 0x39: /* FRINTZ */
11798 case 0x58: /* FRINTA */
11799 case 0x79: /* FRINTI */
11800 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
11801 break;
11802 case 0x59: /* FRINTX */
11803 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
11804 break;
11805 case 0x2f: /* FABS */
11806 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
11807 break;
11808 case 0x6f: /* FNEG */
11809 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
11810 break;
11811 case 0x7d: /* FRSQRTE */
11812 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
11813 break;
11814 case 0x7f: /* FSQRT */
11815 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
11816 break;
11817 default:
11818 g_assert_not_reached();
11819 }
11820
11821 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11822 }
11823
11824 clear_vec_high(s, is_q, rd);
11825 }
11826
11827 if (tcg_rmode) {
11828 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
11829 }
11830 }
11831
11832 /* C3.6 Data processing - SIMD, inc Crypto
11833 *
11834 * As the decode gets a little complex we are using a table based
11835 * approach for this part of the decode.
11836 */
11837 static const AArch64DecodeTable data_proc_simd[] = {
11838 /* pattern , mask , fn */
11839 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
11840 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
11841 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
11842 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
11843 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
11844 { 0x0e000000, 0xbf208c00, disas_simd_tb },
11845 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
11846 { 0x2e000000, 0xbf208400, disas_simd_ext },
11847 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
11848 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
11849 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
11850 { 0x00000000, 0x00000000, NULL }
11851 };
11852
disas_data_proc_simd(DisasContext * s,uint32_t insn)11853 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
11854 {
11855 /* Note that this is called with all non-FP cases from
11856 * table C3-6 so it must UNDEF for entries not specifically
11857 * allocated to instructions in that table.
11858 */
11859 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
11860 if (fn) {
11861 fn(s, insn);
11862 } else {
11863 unallocated_encoding(s);
11864 }
11865 }
11866
11867 /* C3.6 Data processing - SIMD and floating point */
disas_data_proc_simd_fp(DisasContext * s,uint32_t insn)11868 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
11869 {
11870 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
11871 disas_data_proc_fp(s, insn);
11872 } else {
11873 /* SIMD, including crypto */
11874 disas_data_proc_simd(s, insn);
11875 }
11876 }
11877
trans_OK(DisasContext * s,arg_OK * a)11878 static bool trans_OK(DisasContext *s, arg_OK *a)
11879 {
11880 return true;
11881 }
11882
trans_FAIL(DisasContext * s,arg_OK * a)11883 static bool trans_FAIL(DisasContext *s, arg_OK *a)
11884 {
11885 s->is_nonstreaming = true;
11886 return true;
11887 }
11888
11889 /**
11890 * btype_destination_ok:
11891 * @insn: The instruction at the branch destination
11892 * @bt: SCTLR_ELx.BT
11893 * @btype: PSTATE.BTYPE, and is non-zero
11894 *
11895 * On a guarded page, there are a limited number of insns
11896 * that may be present at the branch target:
11897 * - branch target identifiers,
11898 * - paciasp, pacibsp,
11899 * - BRK insn
11900 * - HLT insn
11901 * Anything else causes a Branch Target Exception.
11902 *
11903 * Return true if the branch is compatible, false to raise BTITRAP.
11904 */
btype_destination_ok(uint32_t insn,bool bt,int btype)11905 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
11906 {
11907 if ((insn & 0xfffff01fu) == 0xd503201fu) {
11908 /* HINT space */
11909 switch (extract32(insn, 5, 7)) {
11910 case 0b011001: /* PACIASP */
11911 case 0b011011: /* PACIBSP */
11912 /*
11913 * If SCTLR_ELx.BT, then PACI*SP are not compatible
11914 * with btype == 3. Otherwise all btype are ok.
11915 */
11916 return !bt || btype != 3;
11917 case 0b100000: /* BTI */
11918 /* Not compatible with any btype. */
11919 return false;
11920 case 0b100010: /* BTI c */
11921 /* Not compatible with btype == 3 */
11922 return btype != 3;
11923 case 0b100100: /* BTI j */
11924 /* Not compatible with btype == 2 */
11925 return btype != 2;
11926 case 0b100110: /* BTI jc */
11927 /* Compatible with any btype. */
11928 return true;
11929 }
11930 } else {
11931 switch (insn & 0xffe0001fu) {
11932 case 0xd4200000u: /* BRK */
11933 case 0xd4400000u: /* HLT */
11934 /* Give priority to the breakpoint exception. */
11935 return true;
11936 }
11937 }
11938 return false;
11939 }
11940
11941 /* C3.1 A64 instruction index by encoding */
disas_a64_legacy(DisasContext * s,uint32_t insn)11942 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
11943 {
11944 switch (extract32(insn, 25, 4)) {
11945 case 0x5:
11946 case 0xd: /* Data processing - register */
11947 disas_data_proc_reg(s, insn);
11948 break;
11949 case 0x7:
11950 case 0xf: /* Data processing - SIMD and floating point */
11951 disas_data_proc_simd_fp(s, insn);
11952 break;
11953 default:
11954 unallocated_encoding(s);
11955 break;
11956 }
11957 }
11958
aarch64_tr_init_disas_context(DisasContextBase * dcbase,CPUState * cpu)11959 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
11960 CPUState *cpu)
11961 {
11962 DisasContext *dc = container_of(dcbase, DisasContext, base);
11963 CPUARMState *env = cpu_env(cpu);
11964 ARMCPU *arm_cpu = env_archcpu(env);
11965 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
11966 int bound, core_mmu_idx;
11967
11968 dc->isar = &arm_cpu->isar;
11969 dc->condjmp = 0;
11970 dc->pc_save = dc->base.pc_first;
11971 dc->aarch64 = true;
11972 dc->thumb = false;
11973 dc->sctlr_b = 0;
11974 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
11975 dc->condexec_mask = 0;
11976 dc->condexec_cond = 0;
11977 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
11978 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
11979 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
11980 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
11981 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
11982 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx, false);
11983 #if !defined(CONFIG_USER_ONLY)
11984 dc->user = (dc->current_el == 0);
11985 #endif
11986 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
11987 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
11988 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
11989 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
11990 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
11991 dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
11992 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
11993 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
11994 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
11995 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
11996 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
11997 dc->bt = EX_TBFLAG_A64(tb_flags, BT);
11998 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
11999 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
12000 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
12001 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
12002 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
12003 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
12004 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
12005 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
12006 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
12007 dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
12008 dc->nv = EX_TBFLAG_A64(tb_flags, NV);
12009 dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
12010 dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
12011 dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
12012 dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
12013 dc->vec_len = 0;
12014 dc->vec_stride = 0;
12015 dc->cp_regs = arm_cpu->cp_regs;
12016 dc->features = env->features;
12017 dc->dcz_blocksize = arm_cpu->dcz_blocksize;
12018 dc->gm_blocksize = arm_cpu->gm_blocksize;
12019
12020 #ifdef CONFIG_USER_ONLY
12021 /* In sve_probe_page, we assume TBI is enabled. */
12022 tcg_debug_assert(dc->tbid & 1);
12023 #endif
12024
12025 dc->lse2 = dc_isar_feature(aa64_lse2, dc);
12026
12027 /* Single step state. The code-generation logic here is:
12028 * SS_ACTIVE == 0:
12029 * generate code with no special handling for single-stepping (except
12030 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
12031 * this happens anyway because those changes are all system register or
12032 * PSTATE writes).
12033 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
12034 * emit code for one insn
12035 * emit code to clear PSTATE.SS
12036 * emit code to generate software step exception for completed step
12037 * end TB (as usual for having generated an exception)
12038 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
12039 * emit code to generate a software step exception
12040 * end the TB
12041 */
12042 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
12043 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
12044 dc->is_ldex = false;
12045
12046 /* Bound the number of insns to execute to those left on the page. */
12047 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
12048
12049 /* If architectural single step active, limit to 1. */
12050 if (dc->ss_active) {
12051 bound = 1;
12052 }
12053 dc->base.max_insns = MIN(dc->base.max_insns, bound);
12054 }
12055
aarch64_tr_tb_start(DisasContextBase * db,CPUState * cpu)12056 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
12057 {
12058 }
12059
aarch64_tr_insn_start(DisasContextBase * dcbase,CPUState * cpu)12060 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
12061 {
12062 DisasContext *dc = container_of(dcbase, DisasContext, base);
12063 target_ulong pc_arg = dc->base.pc_next;
12064
12065 if (tb_cflags(dcbase->tb) & CF_PCREL) {
12066 pc_arg &= ~TARGET_PAGE_MASK;
12067 }
12068 tcg_gen_insn_start(pc_arg, 0, 0);
12069 dc->insn_start_updated = false;
12070 }
12071
aarch64_tr_translate_insn(DisasContextBase * dcbase,CPUState * cpu)12072 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
12073 {
12074 DisasContext *s = container_of(dcbase, DisasContext, base);
12075 CPUARMState *env = cpu_env(cpu);
12076 uint64_t pc = s->base.pc_next;
12077 uint32_t insn;
12078
12079 /* Singlestep exceptions have the highest priority. */
12080 if (s->ss_active && !s->pstate_ss) {
12081 /* Singlestep state is Active-pending.
12082 * If we're in this state at the start of a TB then either
12083 * a) we just took an exception to an EL which is being debugged
12084 * and this is the first insn in the exception handler
12085 * b) debug exceptions were masked and we just unmasked them
12086 * without changing EL (eg by clearing PSTATE.D)
12087 * In either case we're going to take a swstep exception in the
12088 * "did not step an insn" case, and so the syndrome ISV and EX
12089 * bits should be zero.
12090 */
12091 assert(s->base.num_insns == 1);
12092 gen_swstep_exception(s, 0, 0);
12093 s->base.is_jmp = DISAS_NORETURN;
12094 s->base.pc_next = pc + 4;
12095 return;
12096 }
12097
12098 if (pc & 3) {
12099 /*
12100 * PC alignment fault. This has priority over the instruction abort
12101 * that we would receive from a translation fault via arm_ldl_code.
12102 * This should only be possible after an indirect branch, at the
12103 * start of the TB.
12104 */
12105 assert(s->base.num_insns == 1);
12106 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
12107 s->base.is_jmp = DISAS_NORETURN;
12108 s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
12109 return;
12110 }
12111
12112 s->pc_curr = pc;
12113 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
12114 s->insn = insn;
12115 s->base.pc_next = pc + 4;
12116
12117 s->fp_access_checked = false;
12118 s->sve_access_checked = false;
12119
12120 if (s->pstate_il) {
12121 /*
12122 * Illegal execution state. This has priority over BTI
12123 * exceptions, but comes after instruction abort exceptions.
12124 */
12125 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
12126 return;
12127 }
12128
12129 if (dc_isar_feature(aa64_bti, s)) {
12130 if (s->base.num_insns == 1) {
12131 /* First insn can have btype set to non-zero. */
12132 tcg_debug_assert(s->btype >= 0);
12133
12134 /*
12135 * Note that the Branch Target Exception has fairly high
12136 * priority -- below debugging exceptions but above most
12137 * everything else. This allows us to handle this now
12138 * instead of waiting until the insn is otherwise decoded.
12139 *
12140 * We can check all but the guarded page check here;
12141 * defer the latter to a helper.
12142 */
12143 if (s->btype != 0
12144 && !btype_destination_ok(insn, s->bt, s->btype)) {
12145 gen_helper_guarded_page_check(tcg_env);
12146 }
12147 } else {
12148 /* Not the first insn: btype must be 0. */
12149 tcg_debug_assert(s->btype == 0);
12150 }
12151 }
12152
12153 s->is_nonstreaming = false;
12154 if (s->sme_trap_nonstreaming) {
12155 disas_sme_fa64(s, insn);
12156 }
12157
12158 if (!disas_a64(s, insn) &&
12159 !disas_sme(s, insn) &&
12160 !disas_sve(s, insn)) {
12161 disas_a64_legacy(s, insn);
12162 }
12163
12164 /*
12165 * After execution of most insns, btype is reset to 0.
12166 * Note that we set btype == -1 when the insn sets btype.
12167 */
12168 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
12169 reset_btype(s);
12170 }
12171 }
12172
aarch64_tr_tb_stop(DisasContextBase * dcbase,CPUState * cpu)12173 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
12174 {
12175 DisasContext *dc = container_of(dcbase, DisasContext, base);
12176
12177 if (unlikely(dc->ss_active)) {
12178 /* Note that this means single stepping WFI doesn't halt the CPU.
12179 * For conditional branch insns this is harmless unreachable code as
12180 * gen_goto_tb() has already handled emitting the debug exception
12181 * (and thus a tb-jump is not possible when singlestepping).
12182 */
12183 switch (dc->base.is_jmp) {
12184 default:
12185 gen_a64_update_pc(dc, 4);
12186 /* fall through */
12187 case DISAS_EXIT:
12188 case DISAS_JUMP:
12189 gen_step_complete_exception(dc);
12190 break;
12191 case DISAS_NORETURN:
12192 break;
12193 }
12194 } else {
12195 switch (dc->base.is_jmp) {
12196 case DISAS_NEXT:
12197 case DISAS_TOO_MANY:
12198 gen_goto_tb(dc, 1, 4);
12199 break;
12200 default:
12201 case DISAS_UPDATE_EXIT:
12202 gen_a64_update_pc(dc, 4);
12203 /* fall through */
12204 case DISAS_EXIT:
12205 tcg_gen_exit_tb(NULL, 0);
12206 break;
12207 case DISAS_UPDATE_NOCHAIN:
12208 gen_a64_update_pc(dc, 4);
12209 /* fall through */
12210 case DISAS_JUMP:
12211 tcg_gen_lookup_and_goto_ptr();
12212 break;
12213 case DISAS_NORETURN:
12214 case DISAS_SWI:
12215 break;
12216 case DISAS_WFE:
12217 gen_a64_update_pc(dc, 4);
12218 gen_helper_wfe(tcg_env);
12219 break;
12220 case DISAS_YIELD:
12221 gen_a64_update_pc(dc, 4);
12222 gen_helper_yield(tcg_env);
12223 break;
12224 case DISAS_WFI:
12225 /*
12226 * This is a special case because we don't want to just halt
12227 * the CPU if trying to debug across a WFI.
12228 */
12229 gen_a64_update_pc(dc, 4);
12230 gen_helper_wfi(tcg_env, tcg_constant_i32(4));
12231 /*
12232 * The helper doesn't necessarily throw an exception, but we
12233 * must go back to the main loop to check for interrupts anyway.
12234 */
12235 tcg_gen_exit_tb(NULL, 0);
12236 break;
12237 }
12238 }
12239 }
12240
12241 const TranslatorOps aarch64_translator_ops = {
12242 .init_disas_context = aarch64_tr_init_disas_context,
12243 .tb_start = aarch64_tr_tb_start,
12244 .insn_start = aarch64_tr_insn_start,
12245 .translate_insn = aarch64_tr_translate_insn,
12246 .tb_stop = aarch64_tr_tb_stop,
12247 };
12248