1 /*
2 * RISC-V emulation for qemu: main translation routines.
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #include "qemu/osdep.h"
20 #include "qemu/log.h"
21 #include "cpu.h"
22 #include "tcg/tcg-op.h"
23 #include "exec/exec-all.h"
24 #include "exec/helper-proto.h"
25 #include "exec/helper-gen.h"
26
27 #include "exec/translator.h"
28 #include "exec/log.h"
29 #include "semihosting/semihost.h"
30
31 #include "internals.h"
32
33 #define HELPER_H "helper.h"
34 #include "exec/helper-info.c.inc"
35 #undef HELPER_H
36
37 #include "tcg/tcg-cpu.h"
38
39 /* global register indices */
40 static TCGv cpu_gpr[32], cpu_gprh[32], cpu_pc, cpu_vl, cpu_vstart;
41 static TCGv_i64 cpu_fpr[32]; /* assume F and D extensions */
42 static TCGv load_res;
43 static TCGv load_val;
44 /* globals for PM CSRs */
45 static TCGv pm_mask;
46 static TCGv pm_base;
47
48 /*
49 * If an operation is being performed on less than TARGET_LONG_BITS,
50 * it may require the inputs to be sign- or zero-extended; which will
51 * depend on the exact operation being performed.
52 */
53 typedef enum {
54 EXT_NONE,
55 EXT_SIGN,
56 EXT_ZERO,
57 } DisasExtend;
58
59 typedef struct DisasContext {
60 DisasContextBase base;
61 target_ulong cur_insn_len;
62 target_ulong pc_save;
63 target_ulong priv_ver;
64 RISCVMXL misa_mxl_max;
65 RISCVMXL xl;
66 RISCVMXL address_xl;
67 uint32_t misa_ext;
68 uint32_t opcode;
69 RISCVExtStatus mstatus_fs;
70 RISCVExtStatus mstatus_vs;
71 uint32_t mem_idx;
72 uint32_t priv;
73 /*
74 * Remember the rounding mode encoded in the previous fp instruction,
75 * which we have already installed into env->fp_status. Or -1 for
76 * no previous fp instruction. Note that we exit the TB when writing
77 * to any system register, which includes CSR_FRM, so we do not have
78 * to reset this known value.
79 */
80 int frm;
81 RISCVMXL ol;
82 bool virt_inst_excp;
83 bool virt_enabled;
84 const RISCVCPUConfig *cfg_ptr;
85 /* vector extension */
86 bool vill;
87 /*
88 * Encode LMUL to lmul as follows:
89 * LMUL vlmul lmul
90 * 1 000 0
91 * 2 001 1
92 * 4 010 2
93 * 8 011 3
94 * - 100 -
95 * 1/8 101 -3
96 * 1/4 110 -2
97 * 1/2 111 -1
98 */
99 int8_t lmul;
100 uint8_t sew;
101 uint8_t vta;
102 uint8_t vma;
103 bool cfg_vta_all_1s;
104 bool vstart_eq_zero;
105 bool vl_eq_vlmax;
106 CPUState *cs;
107 TCGv zero;
108 /* PointerMasking extension */
109 bool pm_mask_enabled;
110 bool pm_base_enabled;
111 /* Ztso */
112 bool ztso;
113 /* Use icount trigger for native debug */
114 bool itrigger;
115 /* FRM is known to contain a valid value. */
116 bool frm_valid;
117 bool insn_start_updated;
118 const GPtrArray *decoders;
119 } DisasContext;
120
has_ext(DisasContext * ctx,uint32_t ext)121 static inline bool has_ext(DisasContext *ctx, uint32_t ext)
122 {
123 return ctx->misa_ext & ext;
124 }
125
126 #ifdef TARGET_RISCV32
127 #define get_xl(ctx) MXL_RV32
128 #elif defined(CONFIG_USER_ONLY)
129 #define get_xl(ctx) MXL_RV64
130 #else
131 #define get_xl(ctx) ((ctx)->xl)
132 #endif
133
134 #ifdef TARGET_RISCV32
135 #define get_address_xl(ctx) MXL_RV32
136 #elif defined(CONFIG_USER_ONLY)
137 #define get_address_xl(ctx) MXL_RV64
138 #else
139 #define get_address_xl(ctx) ((ctx)->address_xl)
140 #endif
141
142 /* The word size for this machine mode. */
get_xlen(DisasContext * ctx)143 static inline int __attribute__((unused)) get_xlen(DisasContext *ctx)
144 {
145 return 16 << get_xl(ctx);
146 }
147
148 /* The operation length, as opposed to the xlen. */
149 #ifdef TARGET_RISCV32
150 #define get_ol(ctx) MXL_RV32
151 #else
152 #define get_ol(ctx) ((ctx)->ol)
153 #endif
154
get_olen(DisasContext * ctx)155 static inline int get_olen(DisasContext *ctx)
156 {
157 return 16 << get_ol(ctx);
158 }
159
160 /* The maximum register length */
161 #ifdef TARGET_RISCV32
162 #define get_xl_max(ctx) MXL_RV32
163 #else
164 #define get_xl_max(ctx) ((ctx)->misa_mxl_max)
165 #endif
166
167 /*
168 * RISC-V requires NaN-boxing of narrower width floating point values.
169 * This applies when a 32-bit value is assigned to a 64-bit FP register.
170 * For consistency and simplicity, we nanbox results even when the RVD
171 * extension is not present.
172 */
gen_nanbox_s(TCGv_i64 out,TCGv_i64 in)173 static void gen_nanbox_s(TCGv_i64 out, TCGv_i64 in)
174 {
175 tcg_gen_ori_i64(out, in, MAKE_64BIT_MASK(32, 32));
176 }
177
gen_nanbox_h(TCGv_i64 out,TCGv_i64 in)178 static void gen_nanbox_h(TCGv_i64 out, TCGv_i64 in)
179 {
180 tcg_gen_ori_i64(out, in, MAKE_64BIT_MASK(16, 48));
181 }
182
183 /*
184 * A narrow n-bit operation, where n < FLEN, checks that input operands
185 * are correctly Nan-boxed, i.e., all upper FLEN - n bits are 1.
186 * If so, the least-significant bits of the input are used, otherwise the
187 * input value is treated as an n-bit canonical NaN (v2.2 section 9.2).
188 *
189 * Here, the result is always nan-boxed, even the canonical nan.
190 */
gen_check_nanbox_h(TCGv_i64 out,TCGv_i64 in)191 static void gen_check_nanbox_h(TCGv_i64 out, TCGv_i64 in)
192 {
193 TCGv_i64 t_max = tcg_constant_i64(0xffffffffffff0000ull);
194 TCGv_i64 t_nan = tcg_constant_i64(0xffffffffffff7e00ull);
195
196 tcg_gen_movcond_i64(TCG_COND_GEU, out, in, t_max, in, t_nan);
197 }
198
gen_check_nanbox_s(TCGv_i64 out,TCGv_i64 in)199 static void gen_check_nanbox_s(TCGv_i64 out, TCGv_i64 in)
200 {
201 TCGv_i64 t_max = tcg_constant_i64(0xffffffff00000000ull);
202 TCGv_i64 t_nan = tcg_constant_i64(0xffffffff7fc00000ull);
203
204 tcg_gen_movcond_i64(TCG_COND_GEU, out, in, t_max, in, t_nan);
205 }
206
decode_save_opc(DisasContext * ctx)207 static void decode_save_opc(DisasContext *ctx)
208 {
209 assert(!ctx->insn_start_updated);
210 ctx->insn_start_updated = true;
211 tcg_set_insn_start_param(ctx->base.insn_start, 1, ctx->opcode);
212 }
213
gen_pc_plus_diff(TCGv target,DisasContext * ctx,target_long diff)214 static void gen_pc_plus_diff(TCGv target, DisasContext *ctx,
215 target_long diff)
216 {
217 target_ulong dest = ctx->base.pc_next + diff;
218
219 assert(ctx->pc_save != -1);
220 if (tb_cflags(ctx->base.tb) & CF_PCREL) {
221 tcg_gen_addi_tl(target, cpu_pc, dest - ctx->pc_save);
222 if (get_xl(ctx) == MXL_RV32) {
223 tcg_gen_ext32s_tl(target, target);
224 }
225 } else {
226 if (get_xl(ctx) == MXL_RV32) {
227 dest = (int32_t)dest;
228 }
229 tcg_gen_movi_tl(target, dest);
230 }
231 }
232
gen_update_pc(DisasContext * ctx,target_long diff)233 static void gen_update_pc(DisasContext *ctx, target_long diff)
234 {
235 gen_pc_plus_diff(cpu_pc, ctx, diff);
236 ctx->pc_save = ctx->base.pc_next + diff;
237 }
238
generate_exception(DisasContext * ctx,int excp)239 static void generate_exception(DisasContext *ctx, int excp)
240 {
241 gen_update_pc(ctx, 0);
242 gen_helper_raise_exception(tcg_env, tcg_constant_i32(excp));
243 ctx->base.is_jmp = DISAS_NORETURN;
244 }
245
gen_exception_illegal(DisasContext * ctx)246 static void gen_exception_illegal(DisasContext *ctx)
247 {
248 tcg_gen_st_i32(tcg_constant_i32(ctx->opcode), tcg_env,
249 offsetof(CPURISCVState, bins));
250 if (ctx->virt_inst_excp) {
251 generate_exception(ctx, RISCV_EXCP_VIRT_INSTRUCTION_FAULT);
252 } else {
253 generate_exception(ctx, RISCV_EXCP_ILLEGAL_INST);
254 }
255 }
256
gen_exception_inst_addr_mis(DisasContext * ctx,TCGv target)257 static void gen_exception_inst_addr_mis(DisasContext *ctx, TCGv target)
258 {
259 tcg_gen_st_tl(target, tcg_env, offsetof(CPURISCVState, badaddr));
260 generate_exception(ctx, RISCV_EXCP_INST_ADDR_MIS);
261 }
262
lookup_and_goto_ptr(DisasContext * ctx)263 static void lookup_and_goto_ptr(DisasContext *ctx)
264 {
265 #ifndef CONFIG_USER_ONLY
266 if (ctx->itrigger) {
267 gen_helper_itrigger_match(tcg_env);
268 }
269 #endif
270 tcg_gen_lookup_and_goto_ptr();
271 }
272
exit_tb(DisasContext * ctx)273 static void exit_tb(DisasContext *ctx)
274 {
275 #ifndef CONFIG_USER_ONLY
276 if (ctx->itrigger) {
277 gen_helper_itrigger_match(tcg_env);
278 }
279 #endif
280 tcg_gen_exit_tb(NULL, 0);
281 }
282
gen_goto_tb(DisasContext * ctx,int n,target_long diff)283 static void gen_goto_tb(DisasContext *ctx, int n, target_long diff)
284 {
285 target_ulong dest = ctx->base.pc_next + diff;
286
287 /*
288 * Under itrigger, instruction executes one by one like singlestep,
289 * direct block chain benefits will be small.
290 */
291 if (translator_use_goto_tb(&ctx->base, dest) && !ctx->itrigger) {
292 /*
293 * For pcrel, the pc must always be up-to-date on entry to
294 * the linked TB, so that it can use simple additions for all
295 * further adjustments. For !pcrel, the linked TB is compiled
296 * to know its full virtual address, so we can delay the
297 * update to pc to the unlinked path. A long chain of links
298 * can thus avoid many updates to the PC.
299 */
300 if (tb_cflags(ctx->base.tb) & CF_PCREL) {
301 gen_update_pc(ctx, diff);
302 tcg_gen_goto_tb(n);
303 } else {
304 tcg_gen_goto_tb(n);
305 gen_update_pc(ctx, diff);
306 }
307 tcg_gen_exit_tb(ctx->base.tb, n);
308 } else {
309 gen_update_pc(ctx, diff);
310 lookup_and_goto_ptr(ctx);
311 }
312 }
313
314 /*
315 * Wrappers for getting reg values.
316 *
317 * The $zero register does not have cpu_gpr[0] allocated -- we supply the
318 * constant zero as a source, and an uninitialized sink as destination.
319 *
320 * Further, we may provide an extension for word operations.
321 */
get_gpr(DisasContext * ctx,int reg_num,DisasExtend ext)322 static TCGv get_gpr(DisasContext *ctx, int reg_num, DisasExtend ext)
323 {
324 TCGv t;
325
326 if (reg_num == 0) {
327 return ctx->zero;
328 }
329
330 switch (get_ol(ctx)) {
331 case MXL_RV32:
332 switch (ext) {
333 case EXT_NONE:
334 break;
335 case EXT_SIGN:
336 t = tcg_temp_new();
337 tcg_gen_ext32s_tl(t, cpu_gpr[reg_num]);
338 return t;
339 case EXT_ZERO:
340 t = tcg_temp_new();
341 tcg_gen_ext32u_tl(t, cpu_gpr[reg_num]);
342 return t;
343 default:
344 g_assert_not_reached();
345 }
346 break;
347 case MXL_RV64:
348 case MXL_RV128:
349 break;
350 default:
351 g_assert_not_reached();
352 }
353 return cpu_gpr[reg_num];
354 }
355
get_gprh(DisasContext * ctx,int reg_num)356 static TCGv get_gprh(DisasContext *ctx, int reg_num)
357 {
358 assert(get_xl(ctx) == MXL_RV128);
359 if (reg_num == 0) {
360 return ctx->zero;
361 }
362 return cpu_gprh[reg_num];
363 }
364
dest_gpr(DisasContext * ctx,int reg_num)365 static TCGv dest_gpr(DisasContext *ctx, int reg_num)
366 {
367 if (reg_num == 0 || get_olen(ctx) < TARGET_LONG_BITS) {
368 return tcg_temp_new();
369 }
370 return cpu_gpr[reg_num];
371 }
372
dest_gprh(DisasContext * ctx,int reg_num)373 static TCGv dest_gprh(DisasContext *ctx, int reg_num)
374 {
375 if (reg_num == 0) {
376 return tcg_temp_new();
377 }
378 return cpu_gprh[reg_num];
379 }
380
gen_set_gpr(DisasContext * ctx,int reg_num,TCGv t)381 static void gen_set_gpr(DisasContext *ctx, int reg_num, TCGv t)
382 {
383 if (reg_num != 0) {
384 switch (get_ol(ctx)) {
385 case MXL_RV32:
386 tcg_gen_ext32s_tl(cpu_gpr[reg_num], t);
387 break;
388 case MXL_RV64:
389 case MXL_RV128:
390 tcg_gen_mov_tl(cpu_gpr[reg_num], t);
391 break;
392 default:
393 g_assert_not_reached();
394 }
395
396 if (get_xl_max(ctx) == MXL_RV128) {
397 tcg_gen_sari_tl(cpu_gprh[reg_num], cpu_gpr[reg_num], 63);
398 }
399 }
400 }
401
gen_set_gpri(DisasContext * ctx,int reg_num,target_long imm)402 static void gen_set_gpri(DisasContext *ctx, int reg_num, target_long imm)
403 {
404 if (reg_num != 0) {
405 switch (get_ol(ctx)) {
406 case MXL_RV32:
407 tcg_gen_movi_tl(cpu_gpr[reg_num], (int32_t)imm);
408 break;
409 case MXL_RV64:
410 case MXL_RV128:
411 tcg_gen_movi_tl(cpu_gpr[reg_num], imm);
412 break;
413 default:
414 g_assert_not_reached();
415 }
416
417 if (get_xl_max(ctx) == MXL_RV128) {
418 tcg_gen_movi_tl(cpu_gprh[reg_num], -(imm < 0));
419 }
420 }
421 }
422
gen_set_gpr128(DisasContext * ctx,int reg_num,TCGv rl,TCGv rh)423 static void gen_set_gpr128(DisasContext *ctx, int reg_num, TCGv rl, TCGv rh)
424 {
425 assert(get_ol(ctx) == MXL_RV128);
426 if (reg_num != 0) {
427 tcg_gen_mov_tl(cpu_gpr[reg_num], rl);
428 tcg_gen_mov_tl(cpu_gprh[reg_num], rh);
429 }
430 }
431
get_fpr_hs(DisasContext * ctx,int reg_num)432 static TCGv_i64 get_fpr_hs(DisasContext *ctx, int reg_num)
433 {
434 if (!ctx->cfg_ptr->ext_zfinx) {
435 return cpu_fpr[reg_num];
436 }
437
438 if (reg_num == 0) {
439 return tcg_constant_i64(0);
440 }
441 switch (get_xl(ctx)) {
442 case MXL_RV32:
443 #ifdef TARGET_RISCV32
444 {
445 TCGv_i64 t = tcg_temp_new_i64();
446 tcg_gen_ext_i32_i64(t, cpu_gpr[reg_num]);
447 return t;
448 }
449 #else
450 /* fall through */
451 case MXL_RV64:
452 return cpu_gpr[reg_num];
453 #endif
454 default:
455 g_assert_not_reached();
456 }
457 }
458
get_fpr_d(DisasContext * ctx,int reg_num)459 static TCGv_i64 get_fpr_d(DisasContext *ctx, int reg_num)
460 {
461 if (!ctx->cfg_ptr->ext_zfinx) {
462 return cpu_fpr[reg_num];
463 }
464
465 if (reg_num == 0) {
466 return tcg_constant_i64(0);
467 }
468 switch (get_xl(ctx)) {
469 case MXL_RV32:
470 {
471 TCGv_i64 t = tcg_temp_new_i64();
472 tcg_gen_concat_tl_i64(t, cpu_gpr[reg_num], cpu_gpr[reg_num + 1]);
473 return t;
474 }
475 #ifdef TARGET_RISCV64
476 case MXL_RV64:
477 return cpu_gpr[reg_num];
478 #endif
479 default:
480 g_assert_not_reached();
481 }
482 }
483
dest_fpr(DisasContext * ctx,int reg_num)484 static TCGv_i64 dest_fpr(DisasContext *ctx, int reg_num)
485 {
486 if (!ctx->cfg_ptr->ext_zfinx) {
487 return cpu_fpr[reg_num];
488 }
489
490 if (reg_num == 0) {
491 return tcg_temp_new_i64();
492 }
493
494 switch (get_xl(ctx)) {
495 case MXL_RV32:
496 return tcg_temp_new_i64();
497 #ifdef TARGET_RISCV64
498 case MXL_RV64:
499 return cpu_gpr[reg_num];
500 #endif
501 default:
502 g_assert_not_reached();
503 }
504 }
505
506 /* assume it is nanboxing (for normal) or sign-extended (for zfinx) */
gen_set_fpr_hs(DisasContext * ctx,int reg_num,TCGv_i64 t)507 static void gen_set_fpr_hs(DisasContext *ctx, int reg_num, TCGv_i64 t)
508 {
509 if (!ctx->cfg_ptr->ext_zfinx) {
510 tcg_gen_mov_i64(cpu_fpr[reg_num], t);
511 return;
512 }
513 if (reg_num != 0) {
514 switch (get_xl(ctx)) {
515 case MXL_RV32:
516 #ifdef TARGET_RISCV32
517 tcg_gen_extrl_i64_i32(cpu_gpr[reg_num], t);
518 break;
519 #else
520 /* fall through */
521 case MXL_RV64:
522 tcg_gen_mov_i64(cpu_gpr[reg_num], t);
523 break;
524 #endif
525 default:
526 g_assert_not_reached();
527 }
528 }
529 }
530
gen_set_fpr_d(DisasContext * ctx,int reg_num,TCGv_i64 t)531 static void gen_set_fpr_d(DisasContext *ctx, int reg_num, TCGv_i64 t)
532 {
533 if (!ctx->cfg_ptr->ext_zfinx) {
534 tcg_gen_mov_i64(cpu_fpr[reg_num], t);
535 return;
536 }
537
538 if (reg_num != 0) {
539 switch (get_xl(ctx)) {
540 case MXL_RV32:
541 #ifdef TARGET_RISCV32
542 tcg_gen_extr_i64_i32(cpu_gpr[reg_num], cpu_gpr[reg_num + 1], t);
543 break;
544 #else
545 tcg_gen_ext32s_i64(cpu_gpr[reg_num], t);
546 tcg_gen_sari_i64(cpu_gpr[reg_num + 1], t, 32);
547 break;
548 case MXL_RV64:
549 tcg_gen_mov_i64(cpu_gpr[reg_num], t);
550 break;
551 #endif
552 default:
553 g_assert_not_reached();
554 }
555 }
556 }
557
gen_jal(DisasContext * ctx,int rd,target_ulong imm)558 static void gen_jal(DisasContext *ctx, int rd, target_ulong imm)
559 {
560 TCGv succ_pc = dest_gpr(ctx, rd);
561
562 /* check misaligned: */
563 if (!has_ext(ctx, RVC) && !ctx->cfg_ptr->ext_zca) {
564 if ((imm & 0x3) != 0) {
565 TCGv target_pc = tcg_temp_new();
566 gen_pc_plus_diff(target_pc, ctx, imm);
567 gen_exception_inst_addr_mis(ctx, target_pc);
568 return;
569 }
570 }
571
572 gen_pc_plus_diff(succ_pc, ctx, ctx->cur_insn_len);
573 gen_set_gpr(ctx, rd, succ_pc);
574
575 gen_goto_tb(ctx, 0, imm); /* must use this for safety */
576 ctx->base.is_jmp = DISAS_NORETURN;
577 }
578
579 /* Compute a canonical address from a register plus offset. */
get_address(DisasContext * ctx,int rs1,int imm)580 static TCGv get_address(DisasContext *ctx, int rs1, int imm)
581 {
582 TCGv addr = tcg_temp_new();
583 TCGv src1 = get_gpr(ctx, rs1, EXT_NONE);
584
585 tcg_gen_addi_tl(addr, src1, imm);
586 if (ctx->pm_mask_enabled) {
587 tcg_gen_andc_tl(addr, addr, pm_mask);
588 } else if (get_address_xl(ctx) == MXL_RV32) {
589 tcg_gen_ext32u_tl(addr, addr);
590 }
591 if (ctx->pm_base_enabled) {
592 tcg_gen_or_tl(addr, addr, pm_base);
593 }
594
595 return addr;
596 }
597
598 /* Compute a canonical address from a register plus reg offset. */
get_address_indexed(DisasContext * ctx,int rs1,TCGv offs)599 static TCGv get_address_indexed(DisasContext *ctx, int rs1, TCGv offs)
600 {
601 TCGv addr = tcg_temp_new();
602 TCGv src1 = get_gpr(ctx, rs1, EXT_NONE);
603
604 tcg_gen_add_tl(addr, src1, offs);
605 if (ctx->pm_mask_enabled) {
606 tcg_gen_andc_tl(addr, addr, pm_mask);
607 } else if (get_xl(ctx) == MXL_RV32) {
608 tcg_gen_ext32u_tl(addr, addr);
609 }
610 if (ctx->pm_base_enabled) {
611 tcg_gen_or_tl(addr, addr, pm_base);
612 }
613 return addr;
614 }
615
616 #ifndef CONFIG_USER_ONLY
617 /*
618 * We will have already diagnosed disabled state,
619 * and need to turn initial/clean into dirty.
620 */
mark_fs_dirty(DisasContext * ctx)621 static void mark_fs_dirty(DisasContext *ctx)
622 {
623 TCGv tmp;
624
625 if (!has_ext(ctx, RVF)) {
626 return;
627 }
628
629 if (ctx->mstatus_fs != EXT_STATUS_DIRTY) {
630 /* Remember the state change for the rest of the TB. */
631 ctx->mstatus_fs = EXT_STATUS_DIRTY;
632
633 tmp = tcg_temp_new();
634 tcg_gen_ld_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus));
635 tcg_gen_ori_tl(tmp, tmp, MSTATUS_FS);
636 tcg_gen_st_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus));
637
638 if (ctx->virt_enabled) {
639 tcg_gen_ld_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus_hs));
640 tcg_gen_ori_tl(tmp, tmp, MSTATUS_FS);
641 tcg_gen_st_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus_hs));
642 }
643 }
644 }
645 #else
mark_fs_dirty(DisasContext * ctx)646 static inline void mark_fs_dirty(DisasContext *ctx) { }
647 #endif
648
649 #ifndef CONFIG_USER_ONLY
650 /*
651 * We will have already diagnosed disabled state,
652 * and need to turn initial/clean into dirty.
653 */
mark_vs_dirty(DisasContext * ctx)654 static void mark_vs_dirty(DisasContext *ctx)
655 {
656 TCGv tmp;
657
658 if (ctx->mstatus_vs != EXT_STATUS_DIRTY) {
659 /* Remember the state change for the rest of the TB. */
660 ctx->mstatus_vs = EXT_STATUS_DIRTY;
661
662 tmp = tcg_temp_new();
663 tcg_gen_ld_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus));
664 tcg_gen_ori_tl(tmp, tmp, MSTATUS_VS);
665 tcg_gen_st_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus));
666
667 if (ctx->virt_enabled) {
668 tcg_gen_ld_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus_hs));
669 tcg_gen_ori_tl(tmp, tmp, MSTATUS_VS);
670 tcg_gen_st_tl(tmp, tcg_env, offsetof(CPURISCVState, mstatus_hs));
671 }
672 }
673 }
674 #else
mark_vs_dirty(DisasContext * ctx)675 static inline void mark_vs_dirty(DisasContext *ctx) { }
676 #endif
677
finalize_rvv_inst(DisasContext * ctx)678 static void finalize_rvv_inst(DisasContext *ctx)
679 {
680 mark_vs_dirty(ctx);
681 ctx->vstart_eq_zero = true;
682 }
683
gen_set_rm(DisasContext * ctx,int rm)684 static void gen_set_rm(DisasContext *ctx, int rm)
685 {
686 if (ctx->frm == rm) {
687 return;
688 }
689 ctx->frm = rm;
690
691 if (rm == RISCV_FRM_DYN) {
692 /* The helper will return only if frm valid. */
693 ctx->frm_valid = true;
694 }
695
696 /* The helper may raise ILLEGAL_INSN -- record binv for unwind. */
697 decode_save_opc(ctx);
698 gen_helper_set_rounding_mode(tcg_env, tcg_constant_i32(rm));
699 }
700
gen_set_rm_chkfrm(DisasContext * ctx,int rm)701 static void gen_set_rm_chkfrm(DisasContext *ctx, int rm)
702 {
703 if (ctx->frm == rm && ctx->frm_valid) {
704 return;
705 }
706 ctx->frm = rm;
707 ctx->frm_valid = true;
708
709 /* The helper may raise ILLEGAL_INSN -- record binv for unwind. */
710 decode_save_opc(ctx);
711 gen_helper_set_rounding_mode_chkfrm(tcg_env, tcg_constant_i32(rm));
712 }
713
ex_plus_1(DisasContext * ctx,int nf)714 static int ex_plus_1(DisasContext *ctx, int nf)
715 {
716 return nf + 1;
717 }
718
719 #define EX_SH(amount) \
720 static int ex_shift_##amount(DisasContext *ctx, int imm) \
721 { \
722 return imm << amount; \
723 }
724 EX_SH(1)
725 EX_SH(2)
726 EX_SH(3)
727 EX_SH(4)
728 EX_SH(12)
729
730 #define REQUIRE_EXT(ctx, ext) do { \
731 if (!has_ext(ctx, ext)) { \
732 return false; \
733 } \
734 } while (0)
735
736 #define REQUIRE_32BIT(ctx) do { \
737 if (get_xl(ctx) != MXL_RV32) { \
738 return false; \
739 } \
740 } while (0)
741
742 #define REQUIRE_64BIT(ctx) do { \
743 if (get_xl(ctx) != MXL_RV64) { \
744 return false; \
745 } \
746 } while (0)
747
748 #define REQUIRE_128BIT(ctx) do { \
749 if (get_xl(ctx) != MXL_RV128) { \
750 return false; \
751 } \
752 } while (0)
753
754 #define REQUIRE_64_OR_128BIT(ctx) do { \
755 if (get_xl(ctx) == MXL_RV32) { \
756 return false; \
757 } \
758 } while (0)
759
760 #define REQUIRE_EITHER_EXT(ctx, A, B) do { \
761 if (!ctx->cfg_ptr->ext_##A && \
762 !ctx->cfg_ptr->ext_##B) { \
763 return false; \
764 } \
765 } while (0)
766
ex_rvc_register(DisasContext * ctx,int reg)767 static int ex_rvc_register(DisasContext *ctx, int reg)
768 {
769 return 8 + reg;
770 }
771
ex_sreg_register(DisasContext * ctx,int reg)772 static int ex_sreg_register(DisasContext *ctx, int reg)
773 {
774 return reg < 2 ? reg + 8 : reg + 16;
775 }
776
ex_rvc_shiftli(DisasContext * ctx,int imm)777 static int ex_rvc_shiftli(DisasContext *ctx, int imm)
778 {
779 /* For RV128 a shamt of 0 means a shift by 64. */
780 if (get_ol(ctx) == MXL_RV128) {
781 imm = imm ? imm : 64;
782 }
783 return imm;
784 }
785
ex_rvc_shiftri(DisasContext * ctx,int imm)786 static int ex_rvc_shiftri(DisasContext *ctx, int imm)
787 {
788 /*
789 * For RV128 a shamt of 0 means a shift by 64, furthermore, for right
790 * shifts, the shamt is sign-extended.
791 */
792 if (get_ol(ctx) == MXL_RV128) {
793 imm = imm | (imm & 32) << 1;
794 imm = imm ? imm : 64;
795 }
796 return imm;
797 }
798
799 /* Include the auto-generated decoder for 32 bit insn */
800 #include "decode-insn32.c.inc"
801
gen_logic_imm_fn(DisasContext * ctx,arg_i * a,void (* func)(TCGv,TCGv,target_long))802 static bool gen_logic_imm_fn(DisasContext *ctx, arg_i *a,
803 void (*func)(TCGv, TCGv, target_long))
804 {
805 TCGv dest = dest_gpr(ctx, a->rd);
806 TCGv src1 = get_gpr(ctx, a->rs1, EXT_NONE);
807
808 func(dest, src1, a->imm);
809
810 if (get_xl(ctx) == MXL_RV128) {
811 TCGv src1h = get_gprh(ctx, a->rs1);
812 TCGv desth = dest_gprh(ctx, a->rd);
813
814 func(desth, src1h, -(a->imm < 0));
815 gen_set_gpr128(ctx, a->rd, dest, desth);
816 } else {
817 gen_set_gpr(ctx, a->rd, dest);
818 }
819
820 return true;
821 }
822
gen_logic(DisasContext * ctx,arg_r * a,void (* func)(TCGv,TCGv,TCGv))823 static bool gen_logic(DisasContext *ctx, arg_r *a,
824 void (*func)(TCGv, TCGv, TCGv))
825 {
826 TCGv dest = dest_gpr(ctx, a->rd);
827 TCGv src1 = get_gpr(ctx, a->rs1, EXT_NONE);
828 TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE);
829
830 func(dest, src1, src2);
831
832 if (get_xl(ctx) == MXL_RV128) {
833 TCGv src1h = get_gprh(ctx, a->rs1);
834 TCGv src2h = get_gprh(ctx, a->rs2);
835 TCGv desth = dest_gprh(ctx, a->rd);
836
837 func(desth, src1h, src2h);
838 gen_set_gpr128(ctx, a->rd, dest, desth);
839 } else {
840 gen_set_gpr(ctx, a->rd, dest);
841 }
842
843 return true;
844 }
845
gen_arith_imm_fn(DisasContext * ctx,arg_i * a,DisasExtend ext,void (* func)(TCGv,TCGv,target_long),void (* f128)(TCGv,TCGv,TCGv,TCGv,target_long))846 static bool gen_arith_imm_fn(DisasContext *ctx, arg_i *a, DisasExtend ext,
847 void (*func)(TCGv, TCGv, target_long),
848 void (*f128)(TCGv, TCGv, TCGv, TCGv, target_long))
849 {
850 TCGv dest = dest_gpr(ctx, a->rd);
851 TCGv src1 = get_gpr(ctx, a->rs1, ext);
852
853 if (get_ol(ctx) < MXL_RV128) {
854 func(dest, src1, a->imm);
855 gen_set_gpr(ctx, a->rd, dest);
856 } else {
857 if (f128 == NULL) {
858 return false;
859 }
860
861 TCGv src1h = get_gprh(ctx, a->rs1);
862 TCGv desth = dest_gprh(ctx, a->rd);
863
864 f128(dest, desth, src1, src1h, a->imm);
865 gen_set_gpr128(ctx, a->rd, dest, desth);
866 }
867 return true;
868 }
869
gen_arith_imm_tl(DisasContext * ctx,arg_i * a,DisasExtend ext,void (* func)(TCGv,TCGv,TCGv),void (* f128)(TCGv,TCGv,TCGv,TCGv,TCGv,TCGv))870 static bool gen_arith_imm_tl(DisasContext *ctx, arg_i *a, DisasExtend ext,
871 void (*func)(TCGv, TCGv, TCGv),
872 void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv))
873 {
874 TCGv dest = dest_gpr(ctx, a->rd);
875 TCGv src1 = get_gpr(ctx, a->rs1, ext);
876 TCGv src2 = tcg_constant_tl(a->imm);
877
878 if (get_ol(ctx) < MXL_RV128) {
879 func(dest, src1, src2);
880 gen_set_gpr(ctx, a->rd, dest);
881 } else {
882 if (f128 == NULL) {
883 return false;
884 }
885
886 TCGv src1h = get_gprh(ctx, a->rs1);
887 TCGv src2h = tcg_constant_tl(-(a->imm < 0));
888 TCGv desth = dest_gprh(ctx, a->rd);
889
890 f128(dest, desth, src1, src1h, src2, src2h);
891 gen_set_gpr128(ctx, a->rd, dest, desth);
892 }
893 return true;
894 }
895
gen_arith(DisasContext * ctx,arg_r * a,DisasExtend ext,void (* func)(TCGv,TCGv,TCGv),void (* f128)(TCGv,TCGv,TCGv,TCGv,TCGv,TCGv))896 static bool gen_arith(DisasContext *ctx, arg_r *a, DisasExtend ext,
897 void (*func)(TCGv, TCGv, TCGv),
898 void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv))
899 {
900 TCGv dest = dest_gpr(ctx, a->rd);
901 TCGv src1 = get_gpr(ctx, a->rs1, ext);
902 TCGv src2 = get_gpr(ctx, a->rs2, ext);
903
904 if (get_ol(ctx) < MXL_RV128) {
905 func(dest, src1, src2);
906 gen_set_gpr(ctx, a->rd, dest);
907 } else {
908 if (f128 == NULL) {
909 return false;
910 }
911
912 TCGv src1h = get_gprh(ctx, a->rs1);
913 TCGv src2h = get_gprh(ctx, a->rs2);
914 TCGv desth = dest_gprh(ctx, a->rd);
915
916 f128(dest, desth, src1, src1h, src2, src2h);
917 gen_set_gpr128(ctx, a->rd, dest, desth);
918 }
919 return true;
920 }
921
gen_arith_per_ol(DisasContext * ctx,arg_r * a,DisasExtend ext,void (* f_tl)(TCGv,TCGv,TCGv),void (* f_32)(TCGv,TCGv,TCGv),void (* f_128)(TCGv,TCGv,TCGv,TCGv,TCGv,TCGv))922 static bool gen_arith_per_ol(DisasContext *ctx, arg_r *a, DisasExtend ext,
923 void (*f_tl)(TCGv, TCGv, TCGv),
924 void (*f_32)(TCGv, TCGv, TCGv),
925 void (*f_128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv))
926 {
927 int olen = get_olen(ctx);
928
929 if (olen != TARGET_LONG_BITS) {
930 if (olen == 32) {
931 f_tl = f_32;
932 } else if (olen != 128) {
933 g_assert_not_reached();
934 }
935 }
936 return gen_arith(ctx, a, ext, f_tl, f_128);
937 }
938
gen_shift_imm_fn(DisasContext * ctx,arg_shift * a,DisasExtend ext,void (* func)(TCGv,TCGv,target_long),void (* f128)(TCGv,TCGv,TCGv,TCGv,target_long))939 static bool gen_shift_imm_fn(DisasContext *ctx, arg_shift *a, DisasExtend ext,
940 void (*func)(TCGv, TCGv, target_long),
941 void (*f128)(TCGv, TCGv, TCGv, TCGv, target_long))
942 {
943 TCGv dest, src1;
944 int max_len = get_olen(ctx);
945
946 if (a->shamt >= max_len) {
947 return false;
948 }
949
950 dest = dest_gpr(ctx, a->rd);
951 src1 = get_gpr(ctx, a->rs1, ext);
952
953 if (max_len < 128) {
954 func(dest, src1, a->shamt);
955 gen_set_gpr(ctx, a->rd, dest);
956 } else {
957 TCGv src1h = get_gprh(ctx, a->rs1);
958 TCGv desth = dest_gprh(ctx, a->rd);
959
960 if (f128 == NULL) {
961 return false;
962 }
963 f128(dest, desth, src1, src1h, a->shamt);
964 gen_set_gpr128(ctx, a->rd, dest, desth);
965 }
966 return true;
967 }
968
gen_shift_imm_fn_per_ol(DisasContext * ctx,arg_shift * a,DisasExtend ext,void (* f_tl)(TCGv,TCGv,target_long),void (* f_32)(TCGv,TCGv,target_long),void (* f_128)(TCGv,TCGv,TCGv,TCGv,target_long))969 static bool gen_shift_imm_fn_per_ol(DisasContext *ctx, arg_shift *a,
970 DisasExtend ext,
971 void (*f_tl)(TCGv, TCGv, target_long),
972 void (*f_32)(TCGv, TCGv, target_long),
973 void (*f_128)(TCGv, TCGv, TCGv, TCGv,
974 target_long))
975 {
976 int olen = get_olen(ctx);
977 if (olen != TARGET_LONG_BITS) {
978 if (olen == 32) {
979 f_tl = f_32;
980 } else if (olen != 128) {
981 g_assert_not_reached();
982 }
983 }
984 return gen_shift_imm_fn(ctx, a, ext, f_tl, f_128);
985 }
986
gen_shift_imm_tl(DisasContext * ctx,arg_shift * a,DisasExtend ext,void (* func)(TCGv,TCGv,TCGv))987 static bool gen_shift_imm_tl(DisasContext *ctx, arg_shift *a, DisasExtend ext,
988 void (*func)(TCGv, TCGv, TCGv))
989 {
990 TCGv dest, src1, src2;
991 int max_len = get_olen(ctx);
992
993 if (a->shamt >= max_len) {
994 return false;
995 }
996
997 dest = dest_gpr(ctx, a->rd);
998 src1 = get_gpr(ctx, a->rs1, ext);
999 src2 = tcg_constant_tl(a->shamt);
1000
1001 func(dest, src1, src2);
1002
1003 gen_set_gpr(ctx, a->rd, dest);
1004 return true;
1005 }
1006
gen_shift(DisasContext * ctx,arg_r * a,DisasExtend ext,void (* func)(TCGv,TCGv,TCGv),void (* f128)(TCGv,TCGv,TCGv,TCGv,TCGv))1007 static bool gen_shift(DisasContext *ctx, arg_r *a, DisasExtend ext,
1008 void (*func)(TCGv, TCGv, TCGv),
1009 void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv))
1010 {
1011 TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE);
1012 TCGv ext2 = tcg_temp_new();
1013 int max_len = get_olen(ctx);
1014
1015 tcg_gen_andi_tl(ext2, src2, max_len - 1);
1016
1017 TCGv dest = dest_gpr(ctx, a->rd);
1018 TCGv src1 = get_gpr(ctx, a->rs1, ext);
1019
1020 if (max_len < 128) {
1021 func(dest, src1, ext2);
1022 gen_set_gpr(ctx, a->rd, dest);
1023 } else {
1024 TCGv src1h = get_gprh(ctx, a->rs1);
1025 TCGv desth = dest_gprh(ctx, a->rd);
1026
1027 if (f128 == NULL) {
1028 return false;
1029 }
1030 f128(dest, desth, src1, src1h, ext2);
1031 gen_set_gpr128(ctx, a->rd, dest, desth);
1032 }
1033 return true;
1034 }
1035
gen_shift_per_ol(DisasContext * ctx,arg_r * a,DisasExtend ext,void (* f_tl)(TCGv,TCGv,TCGv),void (* f_32)(TCGv,TCGv,TCGv),void (* f_128)(TCGv,TCGv,TCGv,TCGv,TCGv))1036 static bool gen_shift_per_ol(DisasContext *ctx, arg_r *a, DisasExtend ext,
1037 void (*f_tl)(TCGv, TCGv, TCGv),
1038 void (*f_32)(TCGv, TCGv, TCGv),
1039 void (*f_128)(TCGv, TCGv, TCGv, TCGv, TCGv))
1040 {
1041 int olen = get_olen(ctx);
1042 if (olen != TARGET_LONG_BITS) {
1043 if (olen == 32) {
1044 f_tl = f_32;
1045 } else if (olen != 128) {
1046 g_assert_not_reached();
1047 }
1048 }
1049 return gen_shift(ctx, a, ext, f_tl, f_128);
1050 }
1051
gen_unary(DisasContext * ctx,arg_r2 * a,DisasExtend ext,void (* func)(TCGv,TCGv))1052 static bool gen_unary(DisasContext *ctx, arg_r2 *a, DisasExtend ext,
1053 void (*func)(TCGv, TCGv))
1054 {
1055 TCGv dest = dest_gpr(ctx, a->rd);
1056 TCGv src1 = get_gpr(ctx, a->rs1, ext);
1057
1058 func(dest, src1);
1059
1060 gen_set_gpr(ctx, a->rd, dest);
1061 return true;
1062 }
1063
gen_unary_per_ol(DisasContext * ctx,arg_r2 * a,DisasExtend ext,void (* f_tl)(TCGv,TCGv),void (* f_32)(TCGv,TCGv))1064 static bool gen_unary_per_ol(DisasContext *ctx, arg_r2 *a, DisasExtend ext,
1065 void (*f_tl)(TCGv, TCGv),
1066 void (*f_32)(TCGv, TCGv))
1067 {
1068 int olen = get_olen(ctx);
1069
1070 if (olen != TARGET_LONG_BITS) {
1071 if (olen == 32) {
1072 f_tl = f_32;
1073 } else {
1074 g_assert_not_reached();
1075 }
1076 }
1077 return gen_unary(ctx, a, ext, f_tl);
1078 }
1079
gen_amo(DisasContext * ctx,arg_atomic * a,void (* func)(TCGv,TCGv,TCGv,TCGArg,MemOp),MemOp mop)1080 static bool gen_amo(DisasContext *ctx, arg_atomic *a,
1081 void(*func)(TCGv, TCGv, TCGv, TCGArg, MemOp),
1082 MemOp mop)
1083 {
1084 TCGv dest = dest_gpr(ctx, a->rd);
1085 TCGv src1, src2 = get_gpr(ctx, a->rs2, EXT_NONE);
1086 MemOp size = mop & MO_SIZE;
1087
1088 if (ctx->cfg_ptr->ext_zama16b && size >= MO_32) {
1089 mop |= MO_ATOM_WITHIN16;
1090 } else {
1091 mop |= MO_ALIGN;
1092 }
1093
1094 decode_save_opc(ctx);
1095 src1 = get_address(ctx, a->rs1, 0);
1096 func(dest, src1, src2, ctx->mem_idx, mop);
1097
1098 gen_set_gpr(ctx, a->rd, dest);
1099 return true;
1100 }
1101
gen_cmpxchg(DisasContext * ctx,arg_atomic * a,MemOp mop)1102 static bool gen_cmpxchg(DisasContext *ctx, arg_atomic *a, MemOp mop)
1103 {
1104 TCGv dest = get_gpr(ctx, a->rd, EXT_NONE);
1105 TCGv src1 = get_address(ctx, a->rs1, 0);
1106 TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE);
1107
1108 decode_save_opc(ctx);
1109 tcg_gen_atomic_cmpxchg_tl(dest, src1, dest, src2, ctx->mem_idx, mop);
1110
1111 gen_set_gpr(ctx, a->rd, dest);
1112 return true;
1113 }
1114
opcode_at(DisasContextBase * dcbase,target_ulong pc)1115 static uint32_t opcode_at(DisasContextBase *dcbase, target_ulong pc)
1116 {
1117 DisasContext *ctx = container_of(dcbase, DisasContext, base);
1118 CPUState *cpu = ctx->cs;
1119 CPURISCVState *env = cpu_env(cpu);
1120
1121 return translator_ldl(env, &ctx->base, pc);
1122 }
1123
1124 /* Include insn module translation function */
1125 #include "insn_trans/trans_rvi.c.inc"
1126 #include "insn_trans/trans_rvm.c.inc"
1127 #include "insn_trans/trans_rva.c.inc"
1128 #include "insn_trans/trans_rvf.c.inc"
1129 #include "insn_trans/trans_rvd.c.inc"
1130 #include "insn_trans/trans_rvh.c.inc"
1131 #include "insn_trans/trans_rvv.c.inc"
1132 #include "insn_trans/trans_rvb.c.inc"
1133 #include "insn_trans/trans_rvzicond.c.inc"
1134 #include "insn_trans/trans_rvzacas.c.inc"
1135 #include "insn_trans/trans_rvzabha.c.inc"
1136 #include "insn_trans/trans_rvzawrs.c.inc"
1137 #include "insn_trans/trans_rvzicbo.c.inc"
1138 #include "insn_trans/trans_rvzimop.c.inc"
1139 #include "insn_trans/trans_rvzfa.c.inc"
1140 #include "insn_trans/trans_rvzfh.c.inc"
1141 #include "insn_trans/trans_rvk.c.inc"
1142 #include "insn_trans/trans_rvvk.c.inc"
1143 #include "insn_trans/trans_privileged.c.inc"
1144 #include "insn_trans/trans_svinval.c.inc"
1145 #include "insn_trans/trans_rvbf16.c.inc"
1146 #include "decode-xthead.c.inc"
1147 #include "insn_trans/trans_xthead.c.inc"
1148 #include "insn_trans/trans_xventanacondops.c.inc"
1149
1150 /* Include the auto-generated decoder for 16 bit insn */
1151 #include "decode-insn16.c.inc"
1152 #include "insn_trans/trans_rvzce.c.inc"
1153 #include "insn_trans/trans_rvzcmop.c.inc"
1154
1155 /* Include decoders for factored-out extensions */
1156 #include "decode-XVentanaCondOps.c.inc"
1157
1158 /* The specification allows for longer insns, but not supported by qemu. */
1159 #define MAX_INSN_LEN 4
1160
insn_len(uint16_t first_word)1161 static inline int insn_len(uint16_t first_word)
1162 {
1163 return (first_word & 3) == 3 ? 4 : 2;
1164 }
1165
1166 const RISCVDecoder decoder_table[] = {
1167 { always_true_p, decode_insn32 },
1168 { has_xthead_p, decode_xthead},
1169 { has_XVentanaCondOps_p, decode_XVentanaCodeOps},
1170 };
1171
1172 const size_t decoder_table_size = ARRAY_SIZE(decoder_table);
1173
decode_opc(CPURISCVState * env,DisasContext * ctx,uint16_t opcode)1174 static void decode_opc(CPURISCVState *env, DisasContext *ctx, uint16_t opcode)
1175 {
1176 ctx->virt_inst_excp = false;
1177 ctx->cur_insn_len = insn_len(opcode);
1178 /* Check for compressed insn */
1179 if (ctx->cur_insn_len == 2) {
1180 ctx->opcode = opcode;
1181 /*
1182 * The Zca extension is added as way to refer to instructions in the C
1183 * extension that do not include the floating-point loads and stores
1184 */
1185 if ((has_ext(ctx, RVC) || ctx->cfg_ptr->ext_zca) &&
1186 decode_insn16(ctx, opcode)) {
1187 return;
1188 }
1189 } else {
1190 uint32_t opcode32 = opcode;
1191 opcode32 = deposit32(opcode32, 16, 16,
1192 translator_lduw(env, &ctx->base,
1193 ctx->base.pc_next + 2));
1194 ctx->opcode = opcode32;
1195
1196 for (guint i = 0; i < ctx->decoders->len; ++i) {
1197 riscv_cpu_decode_fn func = g_ptr_array_index(ctx->decoders, i);
1198 if (func(ctx, opcode32)) {
1199 return;
1200 }
1201 }
1202 }
1203
1204 gen_exception_illegal(ctx);
1205 }
1206
riscv_tr_init_disas_context(DisasContextBase * dcbase,CPUState * cs)1207 static void riscv_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs)
1208 {
1209 DisasContext *ctx = container_of(dcbase, DisasContext, base);
1210 CPURISCVState *env = cpu_env(cs);
1211 RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(cs);
1212 RISCVCPU *cpu = RISCV_CPU(cs);
1213 uint32_t tb_flags = ctx->base.tb->flags;
1214
1215 ctx->pc_save = ctx->base.pc_first;
1216 ctx->priv = FIELD_EX32(tb_flags, TB_FLAGS, PRIV);
1217 ctx->mem_idx = FIELD_EX32(tb_flags, TB_FLAGS, MEM_IDX);
1218 ctx->mstatus_fs = FIELD_EX32(tb_flags, TB_FLAGS, FS);
1219 ctx->mstatus_vs = FIELD_EX32(tb_flags, TB_FLAGS, VS);
1220 ctx->priv_ver = env->priv_ver;
1221 ctx->virt_enabled = FIELD_EX32(tb_flags, TB_FLAGS, VIRT_ENABLED);
1222 ctx->misa_ext = env->misa_ext;
1223 ctx->frm = -1; /* unknown rounding mode */
1224 ctx->cfg_ptr = &(cpu->cfg);
1225 ctx->vill = FIELD_EX32(tb_flags, TB_FLAGS, VILL);
1226 ctx->sew = FIELD_EX32(tb_flags, TB_FLAGS, SEW);
1227 ctx->lmul = sextract32(FIELD_EX32(tb_flags, TB_FLAGS, LMUL), 0, 3);
1228 ctx->vta = FIELD_EX32(tb_flags, TB_FLAGS, VTA) && cpu->cfg.rvv_ta_all_1s;
1229 ctx->vma = FIELD_EX32(tb_flags, TB_FLAGS, VMA) && cpu->cfg.rvv_ma_all_1s;
1230 ctx->cfg_vta_all_1s = cpu->cfg.rvv_ta_all_1s;
1231 ctx->vstart_eq_zero = FIELD_EX32(tb_flags, TB_FLAGS, VSTART_EQ_ZERO);
1232 ctx->vl_eq_vlmax = FIELD_EX32(tb_flags, TB_FLAGS, VL_EQ_VLMAX);
1233 ctx->misa_mxl_max = mcc->misa_mxl_max;
1234 ctx->xl = FIELD_EX32(tb_flags, TB_FLAGS, XL);
1235 ctx->address_xl = FIELD_EX32(tb_flags, TB_FLAGS, AXL);
1236 ctx->cs = cs;
1237 ctx->pm_mask_enabled = FIELD_EX32(tb_flags, TB_FLAGS, PM_MASK_ENABLED);
1238 ctx->pm_base_enabled = FIELD_EX32(tb_flags, TB_FLAGS, PM_BASE_ENABLED);
1239 ctx->ztso = cpu->cfg.ext_ztso;
1240 ctx->itrigger = FIELD_EX32(tb_flags, TB_FLAGS, ITRIGGER);
1241 ctx->zero = tcg_constant_tl(0);
1242 ctx->virt_inst_excp = false;
1243 ctx->decoders = cpu->decoders;
1244 }
1245
riscv_tr_tb_start(DisasContextBase * db,CPUState * cpu)1246 static void riscv_tr_tb_start(DisasContextBase *db, CPUState *cpu)
1247 {
1248 }
1249
riscv_tr_insn_start(DisasContextBase * dcbase,CPUState * cpu)1250 static void riscv_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
1251 {
1252 DisasContext *ctx = container_of(dcbase, DisasContext, base);
1253 target_ulong pc_next = ctx->base.pc_next;
1254
1255 if (tb_cflags(dcbase->tb) & CF_PCREL) {
1256 pc_next &= ~TARGET_PAGE_MASK;
1257 }
1258
1259 tcg_gen_insn_start(pc_next, 0);
1260 ctx->insn_start_updated = false;
1261 }
1262
riscv_tr_translate_insn(DisasContextBase * dcbase,CPUState * cpu)1263 static void riscv_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
1264 {
1265 DisasContext *ctx = container_of(dcbase, DisasContext, base);
1266 CPURISCVState *env = cpu_env(cpu);
1267 uint16_t opcode16 = translator_lduw(env, &ctx->base, ctx->base.pc_next);
1268
1269 ctx->ol = ctx->xl;
1270 decode_opc(env, ctx, opcode16);
1271 ctx->base.pc_next += ctx->cur_insn_len;
1272
1273 /* Only the first insn within a TB is allowed to cross a page boundary. */
1274 if (ctx->base.is_jmp == DISAS_NEXT) {
1275 if (ctx->itrigger || !is_same_page(&ctx->base, ctx->base.pc_next)) {
1276 ctx->base.is_jmp = DISAS_TOO_MANY;
1277 } else {
1278 unsigned page_ofs = ctx->base.pc_next & ~TARGET_PAGE_MASK;
1279
1280 if (page_ofs > TARGET_PAGE_SIZE - MAX_INSN_LEN) {
1281 uint16_t next_insn =
1282 translator_lduw(env, &ctx->base, ctx->base.pc_next);
1283 int len = insn_len(next_insn);
1284
1285 if (!is_same_page(&ctx->base, ctx->base.pc_next + len - 1)) {
1286 ctx->base.is_jmp = DISAS_TOO_MANY;
1287 }
1288 }
1289 }
1290 }
1291 }
1292
riscv_tr_tb_stop(DisasContextBase * dcbase,CPUState * cpu)1293 static void riscv_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
1294 {
1295 DisasContext *ctx = container_of(dcbase, DisasContext, base);
1296
1297 switch (ctx->base.is_jmp) {
1298 case DISAS_TOO_MANY:
1299 gen_goto_tb(ctx, 0, 0);
1300 break;
1301 case DISAS_NORETURN:
1302 break;
1303 default:
1304 g_assert_not_reached();
1305 }
1306 }
1307
1308 static const TranslatorOps riscv_tr_ops = {
1309 .init_disas_context = riscv_tr_init_disas_context,
1310 .tb_start = riscv_tr_tb_start,
1311 .insn_start = riscv_tr_insn_start,
1312 .translate_insn = riscv_tr_translate_insn,
1313 .tb_stop = riscv_tr_tb_stop,
1314 };
1315
gen_intermediate_code(CPUState * cs,TranslationBlock * tb,int * max_insns,vaddr pc,void * host_pc)1316 void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns,
1317 vaddr pc, void *host_pc)
1318 {
1319 DisasContext ctx;
1320
1321 translator_loop(cs, tb, max_insns, pc, host_pc, &riscv_tr_ops, &ctx.base);
1322 }
1323
riscv_translate_init(void)1324 void riscv_translate_init(void)
1325 {
1326 int i;
1327
1328 /*
1329 * cpu_gpr[0] is a placeholder for the zero register. Do not use it.
1330 * Use the gen_set_gpr and get_gpr helper functions when accessing regs,
1331 * unless you specifically block reads/writes to reg 0.
1332 */
1333 cpu_gpr[0] = NULL;
1334 cpu_gprh[0] = NULL;
1335
1336 for (i = 1; i < 32; i++) {
1337 cpu_gpr[i] = tcg_global_mem_new(tcg_env,
1338 offsetof(CPURISCVState, gpr[i]), riscv_int_regnames[i]);
1339 cpu_gprh[i] = tcg_global_mem_new(tcg_env,
1340 offsetof(CPURISCVState, gprh[i]), riscv_int_regnamesh[i]);
1341 }
1342
1343 for (i = 0; i < 32; i++) {
1344 cpu_fpr[i] = tcg_global_mem_new_i64(tcg_env,
1345 offsetof(CPURISCVState, fpr[i]), riscv_fpr_regnames[i]);
1346 }
1347
1348 cpu_pc = tcg_global_mem_new(tcg_env, offsetof(CPURISCVState, pc), "pc");
1349 cpu_vl = tcg_global_mem_new(tcg_env, offsetof(CPURISCVState, vl), "vl");
1350 cpu_vstart = tcg_global_mem_new(tcg_env, offsetof(CPURISCVState, vstart),
1351 "vstart");
1352 load_res = tcg_global_mem_new(tcg_env, offsetof(CPURISCVState, load_res),
1353 "load_res");
1354 load_val = tcg_global_mem_new(tcg_env, offsetof(CPURISCVState, load_val),
1355 "load_val");
1356 /* Assign PM CSRs to tcg globals */
1357 pm_mask = tcg_global_mem_new(tcg_env, offsetof(CPURISCVState, cur_pmmask),
1358 "pmmask");
1359 pm_base = tcg_global_mem_new(tcg_env, offsetof(CPURISCVState, cur_pmbase),
1360 "pmbase");
1361 }
1362