1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
4 *
5 * Author: Yu Liu, yu.liu@freescale.com
6 * Scott Wood, scottwood@freescale.com
7 * Ashish Kalra, ashish.kalra@freescale.com
8 * Varun Sethi, varun.sethi@freescale.com
9 * Alexander Graf, agraf@suse.de
10 *
11 * Description:
12 * This file is based on arch/powerpc/kvm/44x_tlb.c,
13 * by Hollis Blanchard <hollisb@us.ibm.com>.
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/uaccess.h>
25 #include <linux/sched/mm.h>
26 #include <linux/rwsem.h>
27 #include <linux/vmalloc.h>
28 #include <linux/hugetlb.h>
29 #include <asm/kvm_ppc.h>
30 #include <asm/pte-walk.h>
31
32 #include "e500.h"
33 #include "timing.h"
34 #include "e500_mmu_host.h"
35
36 #include "trace_booke.h"
37
38 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
39
40 static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
41
tlb1_max_shadow_size(void)42 static inline unsigned int tlb1_max_shadow_size(void)
43 {
44 /* reserve one entry for magic page */
45 return host_tlb_params[1].entries - tlbcam_index - 1;
46 }
47
e500_shadow_mas3_attrib(u32 mas3,int usermode)48 static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
49 {
50 /* Mask off reserved bits. */
51 mas3 &= MAS3_ATTRIB_MASK;
52
53 #ifndef CONFIG_KVM_BOOKE_HV
54 if (!usermode) {
55 /* Guest is in supervisor mode,
56 * so we need to translate guest
57 * supervisor permissions into user permissions. */
58 mas3 &= ~E500_TLB_USER_PERM_MASK;
59 mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
60 }
61 mas3 |= E500_TLB_SUPER_PERM_MASK;
62 #endif
63 return mas3;
64 }
65
66 /*
67 * writing shadow tlb entry to host TLB
68 */
__write_host_tlbe(struct kvm_book3e_206_tlb_entry * stlbe,uint32_t mas0,uint32_t lpid)69 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
70 uint32_t mas0,
71 uint32_t lpid)
72 {
73 unsigned long flags;
74
75 local_irq_save(flags);
76 mtspr(SPRN_MAS0, mas0);
77 mtspr(SPRN_MAS1, stlbe->mas1);
78 mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
79 mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
80 mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
81 #ifdef CONFIG_KVM_BOOKE_HV
82 mtspr(SPRN_MAS8, MAS8_TGS | get_thread_specific_lpid(lpid));
83 #endif
84 asm volatile("isync; tlbwe" : : : "memory");
85
86 #ifdef CONFIG_KVM_BOOKE_HV
87 /* Must clear mas8 for other host tlbwe's */
88 mtspr(SPRN_MAS8, 0);
89 isync();
90 #endif
91 local_irq_restore(flags);
92
93 trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
94 stlbe->mas2, stlbe->mas7_3);
95 }
96
97 /*
98 * Acquire a mas0 with victim hint, as if we just took a TLB miss.
99 *
100 * We don't care about the address we're searching for, other than that it's
101 * in the right set and is not present in the TLB. Using a zero PID and a
102 * userspace address means we don't have to set and then restore MAS5, or
103 * calculate a proper MAS6 value.
104 */
get_host_mas0(unsigned long eaddr)105 static u32 get_host_mas0(unsigned long eaddr)
106 {
107 unsigned long flags;
108 u32 mas0;
109 u32 mas4;
110
111 local_irq_save(flags);
112 mtspr(SPRN_MAS6, 0);
113 mas4 = mfspr(SPRN_MAS4);
114 mtspr(SPRN_MAS4, mas4 & ~MAS4_TLBSEL_MASK);
115 asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
116 mas0 = mfspr(SPRN_MAS0);
117 mtspr(SPRN_MAS4, mas4);
118 local_irq_restore(flags);
119
120 return mas0;
121 }
122
123 /* sesel is for tlb1 only */
write_host_tlbe(struct kvmppc_vcpu_e500 * vcpu_e500,int tlbsel,int sesel,struct kvm_book3e_206_tlb_entry * stlbe)124 static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
125 int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
126 {
127 u32 mas0;
128
129 if (tlbsel == 0) {
130 mas0 = get_host_mas0(stlbe->mas2);
131 __write_host_tlbe(stlbe, mas0, vcpu_e500->vcpu.kvm->arch.lpid);
132 } else {
133 __write_host_tlbe(stlbe,
134 MAS0_TLBSEL(1) |
135 MAS0_ESEL(to_htlb1_esel(sesel)),
136 vcpu_e500->vcpu.kvm->arch.lpid);
137 }
138 }
139
140 /* sesel is for tlb1 only */
write_stlbe(struct kvmppc_vcpu_e500 * vcpu_e500,struct kvm_book3e_206_tlb_entry * gtlbe,struct kvm_book3e_206_tlb_entry * stlbe,int stlbsel,int sesel)141 static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
142 struct kvm_book3e_206_tlb_entry *gtlbe,
143 struct kvm_book3e_206_tlb_entry *stlbe,
144 int stlbsel, int sesel)
145 {
146 int stid;
147
148 preempt_disable();
149 stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
150
151 stlbe->mas1 |= MAS1_TID(stid);
152 write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
153 preempt_enable();
154 }
155
156 #ifdef CONFIG_KVM_E500V2
157 /* XXX should be a hook in the gva2hpa translation */
kvmppc_map_magic(struct kvm_vcpu * vcpu)158 void kvmppc_map_magic(struct kvm_vcpu *vcpu)
159 {
160 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
161 struct kvm_book3e_206_tlb_entry magic;
162 ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
163 unsigned int stid;
164 kvm_pfn_t pfn;
165
166 pfn = (kvm_pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
167 get_page(pfn_to_page(pfn));
168
169 preempt_disable();
170 stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
171
172 magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
173 MAS1_TSIZE(BOOK3E_PAGESZ_4K);
174 magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
175 magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
176 MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
177 magic.mas8 = 0;
178
179 __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index), 0);
180 preempt_enable();
181 }
182 #endif
183
inval_gtlbe_on_host(struct kvmppc_vcpu_e500 * vcpu_e500,int tlbsel,int esel)184 void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
185 int esel)
186 {
187 struct kvm_book3e_206_tlb_entry *gtlbe =
188 get_entry(vcpu_e500, tlbsel, esel);
189 struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref;
190
191 /* Don't bother with unmapped entries */
192 if (!(ref->flags & E500_TLB_VALID)) {
193 WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0),
194 "%s: flags %x\n", __func__, ref->flags);
195 WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]);
196 }
197
198 if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) {
199 u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
200 int hw_tlb_indx;
201 unsigned long flags;
202
203 local_irq_save(flags);
204 while (tmp) {
205 hw_tlb_indx = __ilog2_u64(tmp & -tmp);
206 mtspr(SPRN_MAS0,
207 MAS0_TLBSEL(1) |
208 MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
209 mtspr(SPRN_MAS1, 0);
210 asm volatile("tlbwe");
211 vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
212 tmp &= tmp - 1;
213 }
214 mb();
215 vcpu_e500->g2h_tlb1_map[esel] = 0;
216 ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID);
217 local_irq_restore(flags);
218 }
219
220 if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) {
221 /*
222 * TLB1 entry is backed by 4k pages. This should happen
223 * rarely and is not worth optimizing. Invalidate everything.
224 */
225 kvmppc_e500_tlbil_all(vcpu_e500);
226 ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID);
227 }
228
229 /*
230 * If TLB entry is still valid then it's a TLB0 entry, and thus
231 * backed by at most one host tlbe per shadow pid
232 */
233 if (ref->flags & E500_TLB_VALID)
234 kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
235
236 /* Mark the TLB as not backed by the host anymore */
237 ref->flags = 0;
238 }
239
tlbe_is_writable(struct kvm_book3e_206_tlb_entry * tlbe)240 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
241 {
242 return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
243 }
244
kvmppc_e500_ref_setup(struct tlbe_ref * ref,struct kvm_book3e_206_tlb_entry * gtlbe,kvm_pfn_t pfn,unsigned int wimg)245 static inline bool kvmppc_e500_ref_setup(struct tlbe_ref *ref,
246 struct kvm_book3e_206_tlb_entry *gtlbe,
247 kvm_pfn_t pfn, unsigned int wimg)
248 {
249 ref->pfn = pfn;
250 ref->flags = E500_TLB_VALID;
251
252 /* Use guest supplied MAS2_G and MAS2_E */
253 ref->flags |= (gtlbe->mas2 & MAS2_ATTRIB_MASK) | wimg;
254
255 return tlbe_is_writable(gtlbe);
256 }
257
kvmppc_e500_ref_release(struct tlbe_ref * ref)258 static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
259 {
260 if (ref->flags & E500_TLB_VALID) {
261 /* FIXME: don't log bogus pfn for TLB1 */
262 trace_kvm_booke206_ref_release(ref->pfn, ref->flags);
263 ref->flags = 0;
264 }
265 }
266
clear_tlb1_bitmap(struct kvmppc_vcpu_e500 * vcpu_e500)267 static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
268 {
269 if (vcpu_e500->g2h_tlb1_map)
270 memset(vcpu_e500->g2h_tlb1_map, 0,
271 sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
272 if (vcpu_e500->h2g_tlb1_rmap)
273 memset(vcpu_e500->h2g_tlb1_rmap, 0,
274 sizeof(unsigned int) * host_tlb_params[1].entries);
275 }
276
clear_tlb_privs(struct kvmppc_vcpu_e500 * vcpu_e500)277 static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
278 {
279 int tlbsel;
280 int i;
281
282 for (tlbsel = 0; tlbsel <= 1; tlbsel++) {
283 for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
284 struct tlbe_ref *ref =
285 &vcpu_e500->gtlb_priv[tlbsel][i].ref;
286 kvmppc_e500_ref_release(ref);
287 }
288 }
289 }
290
kvmppc_core_flush_tlb(struct kvm_vcpu * vcpu)291 void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu)
292 {
293 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
294 kvmppc_e500_tlbil_all(vcpu_e500);
295 clear_tlb_privs(vcpu_e500);
296 clear_tlb1_bitmap(vcpu_e500);
297 }
298
299 /* TID must be supplied by the caller */
kvmppc_e500_setup_stlbe(struct kvm_vcpu * vcpu,struct kvm_book3e_206_tlb_entry * gtlbe,int tsize,struct tlbe_ref * ref,u64 gvaddr,struct kvm_book3e_206_tlb_entry * stlbe)300 static void kvmppc_e500_setup_stlbe(
301 struct kvm_vcpu *vcpu,
302 struct kvm_book3e_206_tlb_entry *gtlbe,
303 int tsize, struct tlbe_ref *ref, u64 gvaddr,
304 struct kvm_book3e_206_tlb_entry *stlbe)
305 {
306 kvm_pfn_t pfn = ref->pfn;
307 u32 pr = vcpu->arch.shared->msr & MSR_PR;
308
309 BUG_ON(!(ref->flags & E500_TLB_VALID));
310
311 /* Force IPROT=0 for all guest mappings. */
312 stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
313 stlbe->mas2 = (gvaddr & MAS2_EPN) | (ref->flags & E500_TLB_MAS2_ATTR);
314 stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
315 e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
316 }
317
kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 * vcpu_e500,u64 gvaddr,gfn_t gfn,struct kvm_book3e_206_tlb_entry * gtlbe,int tlbsel,struct kvm_book3e_206_tlb_entry * stlbe,struct tlbe_ref * ref)318 static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
319 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
320 int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
321 struct tlbe_ref *ref)
322 {
323 struct kvm_memory_slot *slot;
324 unsigned long pfn = 0; /* silence GCC warning */
325 struct page *page = NULL;
326 unsigned long hva;
327 int pfnmap = 0;
328 int tsize = BOOK3E_PAGESZ_4K;
329 int ret = 0;
330 unsigned long mmu_seq;
331 struct kvm *kvm = vcpu_e500->vcpu.kvm;
332 unsigned long tsize_pages = 0;
333 pte_t *ptep;
334 unsigned int wimg = 0;
335 pgd_t *pgdir;
336 unsigned long flags;
337 bool writable = false;
338
339 /* used to check for invalidations in progress */
340 mmu_seq = kvm->mmu_invalidate_seq;
341 smp_rmb();
342
343 /*
344 * Translate guest physical to true physical, acquiring
345 * a page reference if it is normal, non-reserved memory.
346 *
347 * gfn_to_memslot() must succeed because otherwise we wouldn't
348 * have gotten this far. Eventually we should just pass the slot
349 * pointer through from the first lookup.
350 */
351 slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
352 hva = gfn_to_hva_memslot(slot, gfn);
353
354 if (tlbsel == 1) {
355 struct vm_area_struct *vma;
356 mmap_read_lock(kvm->mm);
357
358 vma = find_vma(kvm->mm, hva);
359 if (vma && hva >= vma->vm_start &&
360 (vma->vm_flags & VM_PFNMAP)) {
361 /*
362 * This VMA is a physically contiguous region (e.g.
363 * /dev/mem) that bypasses normal Linux page
364 * management. Find the overlap between the
365 * vma and the memslot.
366 */
367
368 unsigned long start, end;
369 unsigned long slot_start, slot_end;
370
371 pfnmap = 1;
372
373 start = vma->vm_pgoff;
374 end = start +
375 vma_pages(vma);
376
377 pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
378
379 slot_start = pfn - (gfn - slot->base_gfn);
380 slot_end = slot_start + slot->npages;
381
382 if (start < slot_start)
383 start = slot_start;
384 if (end > slot_end)
385 end = slot_end;
386
387 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
388 MAS1_TSIZE_SHIFT;
389
390 /*
391 * e500 doesn't implement the lowest tsize bit,
392 * or 1K pages.
393 */
394 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
395
396 /*
397 * Now find the largest tsize (up to what the guest
398 * requested) that will cover gfn, stay within the
399 * range, and for which gfn and pfn are mutually
400 * aligned.
401 */
402
403 for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
404 unsigned long gfn_start, gfn_end;
405 tsize_pages = 1UL << (tsize - 2);
406
407 gfn_start = gfn & ~(tsize_pages - 1);
408 gfn_end = gfn_start + tsize_pages;
409
410 if (gfn_start + pfn - gfn < start)
411 continue;
412 if (gfn_end + pfn - gfn > end)
413 continue;
414 if ((gfn & (tsize_pages - 1)) !=
415 (pfn & (tsize_pages - 1)))
416 continue;
417
418 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
419 pfn &= ~(tsize_pages - 1);
420 break;
421 }
422 } else if (vma && hva >= vma->vm_start &&
423 is_vm_hugetlb_page(vma)) {
424 unsigned long psize = vma_kernel_pagesize(vma);
425
426 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
427 MAS1_TSIZE_SHIFT;
428
429 /*
430 * Take the largest page size that satisfies both host
431 * and guest mapping
432 */
433 tsize = min(__ilog2(psize) - 10, tsize);
434
435 /*
436 * e500 doesn't implement the lowest tsize bit,
437 * or 1K pages.
438 */
439 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
440 }
441
442 mmap_read_unlock(kvm->mm);
443 }
444
445 if (likely(!pfnmap)) {
446 tsize_pages = 1UL << (tsize + 10 - PAGE_SHIFT);
447 pfn = __kvm_faultin_pfn(slot, gfn, FOLL_WRITE, NULL, &page);
448 if (is_error_noslot_pfn(pfn)) {
449 if (printk_ratelimit())
450 pr_err("%s: real page not found for gfn %lx\n",
451 __func__, (long)gfn);
452 return -EINVAL;
453 }
454
455 /* Align guest and physical address to page map boundaries */
456 pfn &= ~(tsize_pages - 1);
457 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
458 }
459
460 spin_lock(&kvm->mmu_lock);
461 if (mmu_invalidate_retry(kvm, mmu_seq)) {
462 ret = -EAGAIN;
463 goto out;
464 }
465
466
467 pgdir = vcpu_e500->vcpu.arch.pgdir;
468 /*
469 * We are just looking at the wimg bits, so we don't
470 * care much about the trans splitting bit.
471 * We are holding kvm->mmu_lock so a notifier invalidate
472 * can't run hence pfn won't change.
473 */
474 local_irq_save(flags);
475 ptep = find_linux_pte(pgdir, hva, NULL, NULL);
476 if (ptep) {
477 pte_t pte = READ_ONCE(*ptep);
478
479 if (pte_present(pte)) {
480 wimg = (pte_val(pte) >> PTE_WIMGE_SHIFT) &
481 MAS2_WIMGE_MASK;
482 } else {
483 local_irq_restore(flags);
484 pr_err_ratelimited("%s: pte not present: gfn %lx,pfn %lx\n",
485 __func__, (long)gfn, pfn);
486 ret = -EINVAL;
487 goto out;
488 }
489 }
490 local_irq_restore(flags);
491
492 writable = kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg);
493 kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
494 ref, gvaddr, stlbe);
495
496 /* Clear i-cache for new pages */
497 kvmppc_mmu_flush_icache(pfn);
498
499 out:
500 kvm_release_faultin_page(kvm, page, !!ret, writable);
501 spin_unlock(&kvm->mmu_lock);
502 return ret;
503 }
504
505 /* XXX only map the one-one case, for now use TLB0 */
kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 * vcpu_e500,int esel,struct kvm_book3e_206_tlb_entry * stlbe)506 static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel,
507 struct kvm_book3e_206_tlb_entry *stlbe)
508 {
509 struct kvm_book3e_206_tlb_entry *gtlbe;
510 struct tlbe_ref *ref;
511 int stlbsel = 0;
512 int sesel = 0;
513 int r;
514
515 gtlbe = get_entry(vcpu_e500, 0, esel);
516 ref = &vcpu_e500->gtlb_priv[0][esel].ref;
517
518 r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
519 get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
520 gtlbe, 0, stlbe, ref);
521 if (r)
522 return r;
523
524 write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel);
525
526 return 0;
527 }
528
kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 * vcpu_e500,struct tlbe_ref * ref,int esel)529 static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500,
530 struct tlbe_ref *ref,
531 int esel)
532 {
533 unsigned int sesel = vcpu_e500->host_tlb1_nv++;
534
535 if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
536 vcpu_e500->host_tlb1_nv = 0;
537
538 if (vcpu_e500->h2g_tlb1_rmap[sesel]) {
539 unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1;
540 vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel);
541 }
542
543 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
544 vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel;
545 vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1;
546 WARN_ON(!(ref->flags & E500_TLB_VALID));
547
548 return sesel;
549 }
550
551 /* Caller must ensure that the specified guest TLB entry is safe to insert into
552 * the shadow TLB. */
553 /* For both one-one and one-to-many */
kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 * vcpu_e500,u64 gvaddr,gfn_t gfn,struct kvm_book3e_206_tlb_entry * gtlbe,struct kvm_book3e_206_tlb_entry * stlbe,int esel)554 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
555 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
556 struct kvm_book3e_206_tlb_entry *stlbe, int esel)
557 {
558 struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref;
559 int sesel;
560 int r;
561
562 r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe,
563 ref);
564 if (r)
565 return r;
566
567 /* Use TLB0 when we can only map a page with 4k */
568 if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) {
569 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0;
570 write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0);
571 return 0;
572 }
573
574 /* Otherwise map into TLB1 */
575 sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel);
576 write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel);
577
578 return 0;
579 }
580
kvmppc_mmu_map(struct kvm_vcpu * vcpu,u64 eaddr,gpa_t gpaddr,unsigned int index)581 void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
582 unsigned int index)
583 {
584 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
585 struct tlbe_priv *priv;
586 struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
587 int tlbsel = tlbsel_of(index);
588 int esel = esel_of(index);
589
590 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
591
592 switch (tlbsel) {
593 case 0:
594 priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
595
596 /* Triggers after clear_tlb_privs or on initial mapping */
597 if (!(priv->ref.flags & E500_TLB_VALID)) {
598 kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
599 } else {
600 kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
601 &priv->ref, eaddr, &stlbe);
602 write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0);
603 }
604 break;
605
606 case 1: {
607 gfn_t gfn = gpaddr >> PAGE_SHIFT;
608 kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe,
609 esel);
610 break;
611 }
612
613 default:
614 BUG();
615 break;
616 }
617 }
618
619 #ifdef CONFIG_KVM_BOOKE_HV
kvmppc_load_last_inst(struct kvm_vcpu * vcpu,enum instruction_fetch_type type,unsigned long * instr)620 int kvmppc_load_last_inst(struct kvm_vcpu *vcpu,
621 enum instruction_fetch_type type, unsigned long *instr)
622 {
623 gva_t geaddr;
624 hpa_t addr;
625 hfn_t pfn;
626 hva_t eaddr;
627 u32 mas1, mas2, mas3;
628 u64 mas7_mas3;
629 struct page *page;
630 unsigned int addr_space, psize_shift;
631 bool pr;
632 unsigned long flags;
633
634 /* Search TLB for guest pc to get the real address */
635 geaddr = kvmppc_get_pc(vcpu);
636
637 addr_space = (vcpu->arch.shared->msr & MSR_IS) >> MSR_IR_LG;
638
639 local_irq_save(flags);
640 mtspr(SPRN_MAS6, (vcpu->arch.pid << MAS6_SPID_SHIFT) | addr_space);
641 mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(vcpu));
642 asm volatile("tlbsx 0, %[geaddr]\n" : :
643 [geaddr] "r" (geaddr));
644 mtspr(SPRN_MAS5, 0);
645 mtspr(SPRN_MAS8, 0);
646 mas1 = mfspr(SPRN_MAS1);
647 mas2 = mfspr(SPRN_MAS2);
648 mas3 = mfspr(SPRN_MAS3);
649 #ifdef CONFIG_64BIT
650 mas7_mas3 = mfspr(SPRN_MAS7_MAS3);
651 #else
652 mas7_mas3 = ((u64)mfspr(SPRN_MAS7) << 32) | mas3;
653 #endif
654 local_irq_restore(flags);
655
656 /*
657 * If the TLB entry for guest pc was evicted, return to the guest.
658 * There are high chances to find a valid TLB entry next time.
659 */
660 if (!(mas1 & MAS1_VALID))
661 return EMULATE_AGAIN;
662
663 /*
664 * Another thread may rewrite the TLB entry in parallel, don't
665 * execute from the address if the execute permission is not set
666 */
667 pr = vcpu->arch.shared->msr & MSR_PR;
668 if (unlikely((pr && !(mas3 & MAS3_UX)) ||
669 (!pr && !(mas3 & MAS3_SX)))) {
670 pr_err_ratelimited(
671 "%s: Instruction emulation from guest address %08lx without execute permission\n",
672 __func__, geaddr);
673 return EMULATE_AGAIN;
674 }
675
676 /*
677 * The real address will be mapped by a cacheable, memory coherent,
678 * write-back page. Check for mismatches when LRAT is used.
679 */
680 if (has_feature(vcpu, VCPU_FTR_MMU_V2) &&
681 unlikely((mas2 & MAS2_I) || (mas2 & MAS2_W) || !(mas2 & MAS2_M))) {
682 pr_err_ratelimited(
683 "%s: Instruction emulation from guest address %08lx mismatches storage attributes\n",
684 __func__, geaddr);
685 return EMULATE_AGAIN;
686 }
687
688 /* Get pfn */
689 psize_shift = MAS1_GET_TSIZE(mas1) + 10;
690 addr = (mas7_mas3 & (~0ULL << psize_shift)) |
691 (geaddr & ((1ULL << psize_shift) - 1ULL));
692 pfn = addr >> PAGE_SHIFT;
693
694 /* Guard against emulation from devices area */
695 if (unlikely(!page_is_ram(pfn))) {
696 pr_err_ratelimited("%s: Instruction emulation from non-RAM host address %08llx is not supported\n",
697 __func__, addr);
698 return EMULATE_AGAIN;
699 }
700
701 /* Map a page and get guest's instruction */
702 page = pfn_to_page(pfn);
703 eaddr = (unsigned long)kmap_atomic(page);
704 *instr = *(u32 *)(eaddr | (unsigned long)(addr & ~PAGE_MASK));
705 kunmap_atomic((u32 *)eaddr);
706
707 return EMULATE_DONE;
708 }
709 #else
kvmppc_load_last_inst(struct kvm_vcpu * vcpu,enum instruction_fetch_type type,unsigned long * instr)710 int kvmppc_load_last_inst(struct kvm_vcpu *vcpu,
711 enum instruction_fetch_type type, unsigned long *instr)
712 {
713 return EMULATE_AGAIN;
714 }
715 #endif
716
717 /************* MMU Notifiers *************/
718
kvm_e500_mmu_unmap_gfn(struct kvm * kvm,struct kvm_gfn_range * range)719 static bool kvm_e500_mmu_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
720 {
721 /*
722 * Flush all shadow tlb entries everywhere. This is slow, but
723 * we are 100% sure that we catch the to be unmapped page
724 */
725 return true;
726 }
727
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)728 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
729 {
730 return kvm_e500_mmu_unmap_gfn(kvm, range);
731 }
732
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)733 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
734 {
735 /* XXX could be more clever ;) */
736 return false;
737 }
738
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)739 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
740 {
741 /* XXX could be more clever ;) */
742 return false;
743 }
744
kvm_set_spte_gfn(struct kvm * kvm,struct kvm_gfn_range * range)745 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
746 {
747 /* The page will get remapped properly on its next fault */
748 return kvm_e500_mmu_unmap_gfn(kvm, range);
749 }
750
751 /*****************************************/
752
e500_mmu_host_init(struct kvmppc_vcpu_e500 * vcpu_e500)753 int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500)
754 {
755 host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
756 host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
757
758 /*
759 * This should never happen on real e500 hardware, but is
760 * architecturally possible -- e.g. in some weird nested
761 * virtualization case.
762 */
763 if (host_tlb_params[0].entries == 0 ||
764 host_tlb_params[1].entries == 0) {
765 pr_err("%s: need to know host tlb size\n", __func__);
766 return -ENODEV;
767 }
768
769 host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
770 TLBnCFG_ASSOC_SHIFT;
771 host_tlb_params[1].ways = host_tlb_params[1].entries;
772
773 if (!is_power_of_2(host_tlb_params[0].entries) ||
774 !is_power_of_2(host_tlb_params[0].ways) ||
775 host_tlb_params[0].entries < host_tlb_params[0].ways ||
776 host_tlb_params[0].ways == 0) {
777 pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
778 __func__, host_tlb_params[0].entries,
779 host_tlb_params[0].ways);
780 return -ENODEV;
781 }
782
783 host_tlb_params[0].sets =
784 host_tlb_params[0].entries / host_tlb_params[0].ways;
785 host_tlb_params[1].sets = 1;
786 vcpu_e500->h2g_tlb1_rmap = kcalloc(host_tlb_params[1].entries,
787 sizeof(*vcpu_e500->h2g_tlb1_rmap),
788 GFP_KERNEL);
789 if (!vcpu_e500->h2g_tlb1_rmap)
790 return -EINVAL;
791
792 return 0;
793 }
794
e500_mmu_host_uninit(struct kvmppc_vcpu_e500 * vcpu_e500)795 void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
796 {
797 kfree(vcpu_e500->h2g_tlb1_rmap);
798 }
799