xref: /openbmc/linux/drivers/media/v4l2-core/v4l2-fwnode.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * V4L2 fwnode binding parsing library
4   *
5   * The origins of the V4L2 fwnode library are in V4L2 OF library that
6   * formerly was located in v4l2-of.c.
7   *
8   * Copyright (c) 2016 Intel Corporation.
9   * Author: Sakari Ailus <sakari.ailus@linux.intel.com>
10   *
11   * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd.
12   * Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
13   *
14   * Copyright (C) 2012 Renesas Electronics Corp.
15   * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
16   */
17  #include <linux/acpi.h>
18  #include <linux/kernel.h>
19  #include <linux/mm.h>
20  #include <linux/module.h>
21  #include <linux/of.h>
22  #include <linux/property.h>
23  #include <linux/slab.h>
24  #include <linux/string.h>
25  #include <linux/types.h>
26  
27  #include <media/v4l2-async.h>
28  #include <media/v4l2-fwnode.h>
29  #include <media/v4l2-subdev.h>
30  
31  #include "v4l2-subdev-priv.h"
32  
33  static const struct v4l2_fwnode_bus_conv {
34  	enum v4l2_fwnode_bus_type fwnode_bus_type;
35  	enum v4l2_mbus_type mbus_type;
36  	const char *name;
37  } buses[] = {
38  	{
39  		V4L2_FWNODE_BUS_TYPE_GUESS,
40  		V4L2_MBUS_UNKNOWN,
41  		"not specified",
42  	}, {
43  		V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
44  		V4L2_MBUS_CSI2_CPHY,
45  		"MIPI CSI-2 C-PHY",
46  	}, {
47  		V4L2_FWNODE_BUS_TYPE_CSI1,
48  		V4L2_MBUS_CSI1,
49  		"MIPI CSI-1",
50  	}, {
51  		V4L2_FWNODE_BUS_TYPE_CCP2,
52  		V4L2_MBUS_CCP2,
53  		"compact camera port 2",
54  	}, {
55  		V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
56  		V4L2_MBUS_CSI2_DPHY,
57  		"MIPI CSI-2 D-PHY",
58  	}, {
59  		V4L2_FWNODE_BUS_TYPE_PARALLEL,
60  		V4L2_MBUS_PARALLEL,
61  		"parallel",
62  	}, {
63  		V4L2_FWNODE_BUS_TYPE_BT656,
64  		V4L2_MBUS_BT656,
65  		"Bt.656",
66  	}, {
67  		V4L2_FWNODE_BUS_TYPE_DPI,
68  		V4L2_MBUS_DPI,
69  		"DPI",
70  	}
71  };
72  
73  static const struct v4l2_fwnode_bus_conv *
get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)74  get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)
75  {
76  	unsigned int i;
77  
78  	for (i = 0; i < ARRAY_SIZE(buses); i++)
79  		if (buses[i].fwnode_bus_type == type)
80  			return &buses[i];
81  
82  	return NULL;
83  }
84  
85  static enum v4l2_mbus_type
v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)86  v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)
87  {
88  	const struct v4l2_fwnode_bus_conv *conv =
89  		get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
90  
91  	return conv ? conv->mbus_type : V4L2_MBUS_INVALID;
92  }
93  
94  static const char *
v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)95  v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)
96  {
97  	const struct v4l2_fwnode_bus_conv *conv =
98  		get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
99  
100  	return conv ? conv->name : "not found";
101  }
102  
103  static const struct v4l2_fwnode_bus_conv *
get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)104  get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)
105  {
106  	unsigned int i;
107  
108  	for (i = 0; i < ARRAY_SIZE(buses); i++)
109  		if (buses[i].mbus_type == type)
110  			return &buses[i];
111  
112  	return NULL;
113  }
114  
115  static const char *
v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)116  v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)
117  {
118  	const struct v4l2_fwnode_bus_conv *conv =
119  		get_v4l2_fwnode_bus_conv_by_mbus(type);
120  
121  	return conv ? conv->name : "not found";
122  }
123  
v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)124  static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode,
125  					       struct v4l2_fwnode_endpoint *vep,
126  					       enum v4l2_mbus_type bus_type)
127  {
128  	struct v4l2_mbus_config_mipi_csi2 *bus = &vep->bus.mipi_csi2;
129  	bool have_clk_lane = false, have_data_lanes = false,
130  		have_lane_polarities = false;
131  	unsigned int flags = 0, lanes_used = 0;
132  	u32 array[1 + V4L2_MBUS_CSI2_MAX_DATA_LANES];
133  	u32 clock_lane = 0;
134  	unsigned int num_data_lanes = 0;
135  	bool use_default_lane_mapping = false;
136  	unsigned int i;
137  	u32 v;
138  	int rval;
139  
140  	if (bus_type == V4L2_MBUS_CSI2_DPHY ||
141  	    bus_type == V4L2_MBUS_CSI2_CPHY) {
142  		use_default_lane_mapping = true;
143  
144  		num_data_lanes = min_t(u32, bus->num_data_lanes,
145  				       V4L2_MBUS_CSI2_MAX_DATA_LANES);
146  
147  		clock_lane = bus->clock_lane;
148  		if (clock_lane)
149  			use_default_lane_mapping = false;
150  
151  		for (i = 0; i < num_data_lanes; i++) {
152  			array[i] = bus->data_lanes[i];
153  			if (array[i])
154  				use_default_lane_mapping = false;
155  		}
156  
157  		if (use_default_lane_mapping)
158  			pr_debug("no lane mapping given, using defaults\n");
159  	}
160  
161  	rval = fwnode_property_count_u32(fwnode, "data-lanes");
162  	if (rval > 0) {
163  		num_data_lanes =
164  			min_t(int, V4L2_MBUS_CSI2_MAX_DATA_LANES, rval);
165  
166  		fwnode_property_read_u32_array(fwnode, "data-lanes", array,
167  					       num_data_lanes);
168  
169  		have_data_lanes = true;
170  		if (use_default_lane_mapping) {
171  			pr_debug("data-lanes property exists; disabling default mapping\n");
172  			use_default_lane_mapping = false;
173  		}
174  	}
175  
176  	for (i = 0; i < num_data_lanes; i++) {
177  		if (lanes_used & BIT(array[i])) {
178  			if (have_data_lanes || !use_default_lane_mapping)
179  				pr_warn("duplicated lane %u in data-lanes, using defaults\n",
180  					array[i]);
181  			use_default_lane_mapping = true;
182  		}
183  		lanes_used |= BIT(array[i]);
184  
185  		if (have_data_lanes)
186  			pr_debug("lane %u position %u\n", i, array[i]);
187  	}
188  
189  	rval = fwnode_property_count_u32(fwnode, "lane-polarities");
190  	if (rval > 0) {
191  		if (rval != 1 + num_data_lanes /* clock+data */) {
192  			pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n",
193  				1 + num_data_lanes, rval);
194  			return -EINVAL;
195  		}
196  
197  		have_lane_polarities = true;
198  	}
199  
200  	if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
201  		clock_lane = v;
202  		pr_debug("clock lane position %u\n", v);
203  		have_clk_lane = true;
204  	}
205  
206  	if (have_clk_lane && lanes_used & BIT(clock_lane) &&
207  	    !use_default_lane_mapping) {
208  		pr_warn("duplicated lane %u in clock-lanes, using defaults\n",
209  			v);
210  		use_default_lane_mapping = true;
211  	}
212  
213  	if (fwnode_property_present(fwnode, "clock-noncontinuous")) {
214  		flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK;
215  		pr_debug("non-continuous clock\n");
216  	}
217  
218  	if (bus_type == V4L2_MBUS_CSI2_DPHY ||
219  	    bus_type == V4L2_MBUS_CSI2_CPHY ||
220  	    lanes_used || have_clk_lane || flags) {
221  		/* Only D-PHY has a clock lane. */
222  		unsigned int dfl_data_lane_index =
223  			bus_type == V4L2_MBUS_CSI2_DPHY;
224  
225  		bus->flags = flags;
226  		if (bus_type == V4L2_MBUS_UNKNOWN)
227  			vep->bus_type = V4L2_MBUS_CSI2_DPHY;
228  		bus->num_data_lanes = num_data_lanes;
229  
230  		if (use_default_lane_mapping) {
231  			bus->clock_lane = 0;
232  			for (i = 0; i < num_data_lanes; i++)
233  				bus->data_lanes[i] = dfl_data_lane_index + i;
234  		} else {
235  			bus->clock_lane = clock_lane;
236  			for (i = 0; i < num_data_lanes; i++)
237  				bus->data_lanes[i] = array[i];
238  		}
239  
240  		if (have_lane_polarities) {
241  			fwnode_property_read_u32_array(fwnode,
242  						       "lane-polarities", array,
243  						       1 + num_data_lanes);
244  
245  			for (i = 0; i < 1 + num_data_lanes; i++) {
246  				bus->lane_polarities[i] = array[i];
247  				pr_debug("lane %u polarity %sinverted",
248  					 i, array[i] ? "" : "not ");
249  			}
250  		} else {
251  			pr_debug("no lane polarities defined, assuming not inverted\n");
252  		}
253  	}
254  
255  	return 0;
256  }
257  
258  #define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH |	\
259  			     V4L2_MBUS_HSYNC_ACTIVE_LOW |	\
260  			     V4L2_MBUS_VSYNC_ACTIVE_HIGH |	\
261  			     V4L2_MBUS_VSYNC_ACTIVE_LOW |	\
262  			     V4L2_MBUS_FIELD_EVEN_HIGH |	\
263  			     V4L2_MBUS_FIELD_EVEN_LOW)
264  
265  static void
v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)266  v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode,
267  					struct v4l2_fwnode_endpoint *vep,
268  					enum v4l2_mbus_type bus_type)
269  {
270  	struct v4l2_mbus_config_parallel *bus = &vep->bus.parallel;
271  	unsigned int flags = 0;
272  	u32 v;
273  
274  	if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656)
275  		flags = bus->flags;
276  
277  	if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) {
278  		flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH |
279  			   V4L2_MBUS_HSYNC_ACTIVE_LOW);
280  		flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH :
281  			V4L2_MBUS_HSYNC_ACTIVE_LOW;
282  		pr_debug("hsync-active %s\n", v ? "high" : "low");
283  	}
284  
285  	if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) {
286  		flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH |
287  			   V4L2_MBUS_VSYNC_ACTIVE_LOW);
288  		flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH :
289  			V4L2_MBUS_VSYNC_ACTIVE_LOW;
290  		pr_debug("vsync-active %s\n", v ? "high" : "low");
291  	}
292  
293  	if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) {
294  		flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH |
295  			   V4L2_MBUS_FIELD_EVEN_LOW);
296  		flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH :
297  			V4L2_MBUS_FIELD_EVEN_LOW;
298  		pr_debug("field-even-active %s\n", v ? "high" : "low");
299  	}
300  
301  	if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) {
302  		flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING |
303  			   V4L2_MBUS_PCLK_SAMPLE_FALLING |
304  			   V4L2_MBUS_PCLK_SAMPLE_DUALEDGE);
305  		switch (v) {
306  		case 0:
307  			flags |= V4L2_MBUS_PCLK_SAMPLE_FALLING;
308  			pr_debug("pclk-sample low\n");
309  			break;
310  		case 1:
311  			flags |= V4L2_MBUS_PCLK_SAMPLE_RISING;
312  			pr_debug("pclk-sample high\n");
313  			break;
314  		case 2:
315  			flags |= V4L2_MBUS_PCLK_SAMPLE_DUALEDGE;
316  			pr_debug("pclk-sample dual edge\n");
317  			break;
318  		default:
319  			pr_warn("invalid argument for pclk-sample");
320  			break;
321  		}
322  	}
323  
324  	if (!fwnode_property_read_u32(fwnode, "data-active", &v)) {
325  		flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH |
326  			   V4L2_MBUS_DATA_ACTIVE_LOW);
327  		flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH :
328  			V4L2_MBUS_DATA_ACTIVE_LOW;
329  		pr_debug("data-active %s\n", v ? "high" : "low");
330  	}
331  
332  	if (fwnode_property_present(fwnode, "slave-mode")) {
333  		pr_debug("slave mode\n");
334  		flags &= ~V4L2_MBUS_MASTER;
335  		flags |= V4L2_MBUS_SLAVE;
336  	} else {
337  		flags &= ~V4L2_MBUS_SLAVE;
338  		flags |= V4L2_MBUS_MASTER;
339  	}
340  
341  	if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) {
342  		bus->bus_width = v;
343  		pr_debug("bus-width %u\n", v);
344  	}
345  
346  	if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) {
347  		bus->data_shift = v;
348  		pr_debug("data-shift %u\n", v);
349  	}
350  
351  	if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) {
352  		flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH |
353  			   V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW);
354  		flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH :
355  			V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW;
356  		pr_debug("sync-on-green-active %s\n", v ? "high" : "low");
357  	}
358  
359  	if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) {
360  		flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH |
361  			   V4L2_MBUS_DATA_ENABLE_LOW);
362  		flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH :
363  			V4L2_MBUS_DATA_ENABLE_LOW;
364  		pr_debug("data-enable-active %s\n", v ? "high" : "low");
365  	}
366  
367  	switch (bus_type) {
368  	default:
369  		bus->flags = flags;
370  		if (flags & PARALLEL_MBUS_FLAGS)
371  			vep->bus_type = V4L2_MBUS_PARALLEL;
372  		else
373  			vep->bus_type = V4L2_MBUS_BT656;
374  		break;
375  	case V4L2_MBUS_PARALLEL:
376  		vep->bus_type = V4L2_MBUS_PARALLEL;
377  		bus->flags = flags;
378  		break;
379  	case V4L2_MBUS_BT656:
380  		vep->bus_type = V4L2_MBUS_BT656;
381  		bus->flags = flags & ~PARALLEL_MBUS_FLAGS;
382  		break;
383  	}
384  }
385  
386  static void
v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)387  v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode,
388  				    struct v4l2_fwnode_endpoint *vep,
389  				    enum v4l2_mbus_type bus_type)
390  {
391  	struct v4l2_mbus_config_mipi_csi1 *bus = &vep->bus.mipi_csi1;
392  	u32 v;
393  
394  	if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) {
395  		bus->clock_inv = v;
396  		pr_debug("clock-inv %u\n", v);
397  	}
398  
399  	if (!fwnode_property_read_u32(fwnode, "strobe", &v)) {
400  		bus->strobe = v;
401  		pr_debug("strobe %u\n", v);
402  	}
403  
404  	if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) {
405  		bus->data_lane = v;
406  		pr_debug("data-lanes %u\n", v);
407  	}
408  
409  	if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
410  		bus->clock_lane = v;
411  		pr_debug("clock-lanes %u\n", v);
412  	}
413  
414  	if (bus_type == V4L2_MBUS_CCP2)
415  		vep->bus_type = V4L2_MBUS_CCP2;
416  	else
417  		vep->bus_type = V4L2_MBUS_CSI1;
418  }
419  
__v4l2_fwnode_endpoint_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)420  static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
421  					struct v4l2_fwnode_endpoint *vep)
422  {
423  	u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS;
424  	enum v4l2_mbus_type mbus_type;
425  	int rval;
426  
427  	pr_debug("===== begin parsing endpoint %pfw\n", fwnode);
428  
429  	fwnode_property_read_u32(fwnode, "bus-type", &bus_type);
430  	pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n",
431  		 v4l2_fwnode_bus_type_to_string(bus_type), bus_type,
432  		 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
433  		 vep->bus_type);
434  	mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type);
435  	if (mbus_type == V4L2_MBUS_INVALID) {
436  		pr_debug("unsupported bus type %u\n", bus_type);
437  		return -EINVAL;
438  	}
439  
440  	if (vep->bus_type != V4L2_MBUS_UNKNOWN) {
441  		if (mbus_type != V4L2_MBUS_UNKNOWN &&
442  		    vep->bus_type != mbus_type) {
443  			pr_debug("expecting bus type %s\n",
444  				 v4l2_fwnode_mbus_type_to_string(vep->bus_type));
445  			return -ENXIO;
446  		}
447  	} else {
448  		vep->bus_type = mbus_type;
449  	}
450  
451  	switch (vep->bus_type) {
452  	case V4L2_MBUS_UNKNOWN:
453  		rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
454  							   V4L2_MBUS_UNKNOWN);
455  		if (rval)
456  			return rval;
457  
458  		if (vep->bus_type == V4L2_MBUS_UNKNOWN)
459  			v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
460  								V4L2_MBUS_UNKNOWN);
461  
462  		pr_debug("assuming media bus type %s (%u)\n",
463  			 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
464  			 vep->bus_type);
465  
466  		break;
467  	case V4L2_MBUS_CCP2:
468  	case V4L2_MBUS_CSI1:
469  		v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type);
470  
471  		break;
472  	case V4L2_MBUS_CSI2_DPHY:
473  	case V4L2_MBUS_CSI2_CPHY:
474  		rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
475  							   vep->bus_type);
476  		if (rval)
477  			return rval;
478  
479  		break;
480  	case V4L2_MBUS_PARALLEL:
481  	case V4L2_MBUS_BT656:
482  		v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
483  							vep->bus_type);
484  
485  		break;
486  	default:
487  		pr_warn("unsupported bus type %u\n", mbus_type);
488  		return -EINVAL;
489  	}
490  
491  	fwnode_graph_parse_endpoint(fwnode, &vep->base);
492  
493  	return 0;
494  }
495  
v4l2_fwnode_endpoint_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)496  int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
497  			       struct v4l2_fwnode_endpoint *vep)
498  {
499  	int ret;
500  
501  	ret = __v4l2_fwnode_endpoint_parse(fwnode, vep);
502  
503  	pr_debug("===== end parsing endpoint %pfw\n", fwnode);
504  
505  	return ret;
506  }
507  EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse);
508  
v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint * vep)509  void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
510  {
511  	if (IS_ERR_OR_NULL(vep))
512  		return;
513  
514  	kfree(vep->link_frequencies);
515  	vep->link_frequencies = NULL;
516  }
517  EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free);
518  
v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)519  int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode,
520  				     struct v4l2_fwnode_endpoint *vep)
521  {
522  	int rval;
523  
524  	rval = __v4l2_fwnode_endpoint_parse(fwnode, vep);
525  	if (rval < 0)
526  		return rval;
527  
528  	rval = fwnode_property_count_u64(fwnode, "link-frequencies");
529  	if (rval > 0) {
530  		unsigned int i;
531  
532  		vep->link_frequencies =
533  			kmalloc_array(rval, sizeof(*vep->link_frequencies),
534  				      GFP_KERNEL);
535  		if (!vep->link_frequencies)
536  			return -ENOMEM;
537  
538  		vep->nr_of_link_frequencies = rval;
539  
540  		rval = fwnode_property_read_u64_array(fwnode,
541  						      "link-frequencies",
542  						      vep->link_frequencies,
543  						      vep->nr_of_link_frequencies);
544  		if (rval < 0) {
545  			v4l2_fwnode_endpoint_free(vep);
546  			return rval;
547  		}
548  
549  		for (i = 0; i < vep->nr_of_link_frequencies; i++)
550  			pr_debug("link-frequencies %u value %llu\n", i,
551  				 vep->link_frequencies[i]);
552  	}
553  
554  	pr_debug("===== end parsing endpoint %pfw\n", fwnode);
555  
556  	return 0;
557  }
558  EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse);
559  
v4l2_fwnode_parse_link(struct fwnode_handle * fwnode,struct v4l2_fwnode_link * link)560  int v4l2_fwnode_parse_link(struct fwnode_handle *fwnode,
561  			   struct v4l2_fwnode_link *link)
562  {
563  	struct fwnode_endpoint fwep;
564  
565  	memset(link, 0, sizeof(*link));
566  
567  	fwnode_graph_parse_endpoint(fwnode, &fwep);
568  	link->local_id = fwep.id;
569  	link->local_port = fwep.port;
570  	link->local_node = fwnode_graph_get_port_parent(fwnode);
571  	if (!link->local_node)
572  		return -ENOLINK;
573  
574  	fwnode = fwnode_graph_get_remote_endpoint(fwnode);
575  	if (!fwnode)
576  		goto err_put_local_node;
577  
578  	fwnode_graph_parse_endpoint(fwnode, &fwep);
579  	link->remote_id = fwep.id;
580  	link->remote_port = fwep.port;
581  	link->remote_node = fwnode_graph_get_port_parent(fwnode);
582  	if (!link->remote_node)
583  		goto err_put_remote_endpoint;
584  
585  	return 0;
586  
587  err_put_remote_endpoint:
588  	fwnode_handle_put(fwnode);
589  
590  err_put_local_node:
591  	fwnode_handle_put(link->local_node);
592  
593  	return -ENOLINK;
594  }
595  EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link);
596  
v4l2_fwnode_put_link(struct v4l2_fwnode_link * link)597  void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
598  {
599  	fwnode_handle_put(link->local_node);
600  	fwnode_handle_put(link->remote_node);
601  }
602  EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link);
603  
604  static const struct v4l2_fwnode_connector_conv {
605  	enum v4l2_connector_type type;
606  	const char *compatible;
607  } connectors[] = {
608  	{
609  		.type = V4L2_CONN_COMPOSITE,
610  		.compatible = "composite-video-connector",
611  	}, {
612  		.type = V4L2_CONN_SVIDEO,
613  		.compatible = "svideo-connector",
614  	},
615  };
616  
617  static enum v4l2_connector_type
v4l2_fwnode_string_to_connector_type(const char * con_str)618  v4l2_fwnode_string_to_connector_type(const char *con_str)
619  {
620  	unsigned int i;
621  
622  	for (i = 0; i < ARRAY_SIZE(connectors); i++)
623  		if (!strcmp(con_str, connectors[i].compatible))
624  			return connectors[i].type;
625  
626  	return V4L2_CONN_UNKNOWN;
627  }
628  
629  static void
v4l2_fwnode_connector_parse_analog(struct fwnode_handle * fwnode,struct v4l2_fwnode_connector * vc)630  v4l2_fwnode_connector_parse_analog(struct fwnode_handle *fwnode,
631  				   struct v4l2_fwnode_connector *vc)
632  {
633  	u32 stds;
634  	int ret;
635  
636  	ret = fwnode_property_read_u32(fwnode, "sdtv-standards", &stds);
637  
638  	/* The property is optional. */
639  	vc->connector.analog.sdtv_stds = ret ? V4L2_STD_ALL : stds;
640  }
641  
v4l2_fwnode_connector_free(struct v4l2_fwnode_connector * connector)642  void v4l2_fwnode_connector_free(struct v4l2_fwnode_connector *connector)
643  {
644  	struct v4l2_connector_link *link, *tmp;
645  
646  	if (IS_ERR_OR_NULL(connector) || connector->type == V4L2_CONN_UNKNOWN)
647  		return;
648  
649  	list_for_each_entry_safe(link, tmp, &connector->links, head) {
650  		v4l2_fwnode_put_link(&link->fwnode_link);
651  		list_del(&link->head);
652  		kfree(link);
653  	}
654  
655  	kfree(connector->label);
656  	connector->label = NULL;
657  	connector->type = V4L2_CONN_UNKNOWN;
658  }
659  EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_free);
660  
661  static enum v4l2_connector_type
v4l2_fwnode_get_connector_type(struct fwnode_handle * fwnode)662  v4l2_fwnode_get_connector_type(struct fwnode_handle *fwnode)
663  {
664  	const char *type_name;
665  	int err;
666  
667  	if (!fwnode)
668  		return V4L2_CONN_UNKNOWN;
669  
670  	/* The connector-type is stored within the compatible string. */
671  	err = fwnode_property_read_string(fwnode, "compatible", &type_name);
672  	if (err)
673  		return V4L2_CONN_UNKNOWN;
674  
675  	return v4l2_fwnode_string_to_connector_type(type_name);
676  }
677  
v4l2_fwnode_connector_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_connector * connector)678  int v4l2_fwnode_connector_parse(struct fwnode_handle *fwnode,
679  				struct v4l2_fwnode_connector *connector)
680  {
681  	struct fwnode_handle *connector_node;
682  	enum v4l2_connector_type connector_type;
683  	const char *label;
684  	int err;
685  
686  	if (!fwnode)
687  		return -EINVAL;
688  
689  	memset(connector, 0, sizeof(*connector));
690  
691  	INIT_LIST_HEAD(&connector->links);
692  
693  	connector_node = fwnode_graph_get_port_parent(fwnode);
694  	connector_type = v4l2_fwnode_get_connector_type(connector_node);
695  	if (connector_type == V4L2_CONN_UNKNOWN) {
696  		fwnode_handle_put(connector_node);
697  		connector_node = fwnode_graph_get_remote_port_parent(fwnode);
698  		connector_type = v4l2_fwnode_get_connector_type(connector_node);
699  	}
700  
701  	if (connector_type == V4L2_CONN_UNKNOWN) {
702  		pr_err("Unknown connector type\n");
703  		err = -ENOTCONN;
704  		goto out;
705  	}
706  
707  	connector->type = connector_type;
708  	connector->name = fwnode_get_name(connector_node);
709  	err = fwnode_property_read_string(connector_node, "label", &label);
710  	connector->label = err ? NULL : kstrdup_const(label, GFP_KERNEL);
711  
712  	/* Parse the connector specific properties. */
713  	switch (connector->type) {
714  	case V4L2_CONN_COMPOSITE:
715  	case V4L2_CONN_SVIDEO:
716  		v4l2_fwnode_connector_parse_analog(connector_node, connector);
717  		break;
718  	/* Avoid compiler warnings */
719  	case V4L2_CONN_UNKNOWN:
720  		break;
721  	}
722  
723  out:
724  	fwnode_handle_put(connector_node);
725  
726  	return err;
727  }
728  EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_parse);
729  
v4l2_fwnode_connector_add_link(struct fwnode_handle * fwnode,struct v4l2_fwnode_connector * connector)730  int v4l2_fwnode_connector_add_link(struct fwnode_handle *fwnode,
731  				   struct v4l2_fwnode_connector *connector)
732  {
733  	struct fwnode_handle *connector_ep;
734  	struct v4l2_connector_link *link;
735  	int err;
736  
737  	if (!fwnode || !connector || connector->type == V4L2_CONN_UNKNOWN)
738  		return -EINVAL;
739  
740  	connector_ep = fwnode_graph_get_remote_endpoint(fwnode);
741  	if (!connector_ep)
742  		return -ENOTCONN;
743  
744  	link = kzalloc(sizeof(*link), GFP_KERNEL);
745  	if (!link) {
746  		err = -ENOMEM;
747  		goto err;
748  	}
749  
750  	err = v4l2_fwnode_parse_link(connector_ep, &link->fwnode_link);
751  	if (err)
752  		goto err;
753  
754  	fwnode_handle_put(connector_ep);
755  
756  	list_add(&link->head, &connector->links);
757  	connector->nr_of_links++;
758  
759  	return 0;
760  
761  err:
762  	kfree(link);
763  	fwnode_handle_put(connector_ep);
764  
765  	return err;
766  }
767  EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_add_link);
768  
v4l2_fwnode_device_parse(struct device * dev,struct v4l2_fwnode_device_properties * props)769  int v4l2_fwnode_device_parse(struct device *dev,
770  			     struct v4l2_fwnode_device_properties *props)
771  {
772  	struct fwnode_handle *fwnode = dev_fwnode(dev);
773  	u32 val;
774  	int ret;
775  
776  	memset(props, 0, sizeof(*props));
777  
778  	props->orientation = V4L2_FWNODE_PROPERTY_UNSET;
779  	ret = fwnode_property_read_u32(fwnode, "orientation", &val);
780  	if (!ret) {
781  		switch (val) {
782  		case V4L2_FWNODE_ORIENTATION_FRONT:
783  		case V4L2_FWNODE_ORIENTATION_BACK:
784  		case V4L2_FWNODE_ORIENTATION_EXTERNAL:
785  			break;
786  		default:
787  			dev_warn(dev, "Unsupported device orientation: %u\n", val);
788  			return -EINVAL;
789  		}
790  
791  		props->orientation = val;
792  		dev_dbg(dev, "device orientation: %u\n", val);
793  	}
794  
795  	props->rotation = V4L2_FWNODE_PROPERTY_UNSET;
796  	ret = fwnode_property_read_u32(fwnode, "rotation", &val);
797  	if (!ret) {
798  		if (val >= 360) {
799  			dev_warn(dev, "Unsupported device rotation: %u\n", val);
800  			return -EINVAL;
801  		}
802  
803  		props->rotation = val;
804  		dev_dbg(dev, "device rotation: %u\n", val);
805  	}
806  
807  	return 0;
808  }
809  EXPORT_SYMBOL_GPL(v4l2_fwnode_device_parse);
810  
811  /*
812   * v4l2_fwnode_reference_parse - parse references for async sub-devices
813   * @dev: the device node the properties of which are parsed for references
814   * @notifier: the async notifier where the async subdevs will be added
815   * @prop: the name of the property
816   *
817   * Return: 0 on success
818   *	   -ENOENT if no entries were found
819   *	   -ENOMEM if memory allocation failed
820   *	   -EINVAL if property parsing failed
821   */
v4l2_fwnode_reference_parse(struct device * dev,struct v4l2_async_notifier * notifier,const char * prop)822  static int v4l2_fwnode_reference_parse(struct device *dev,
823  				       struct v4l2_async_notifier *notifier,
824  				       const char *prop)
825  {
826  	struct fwnode_reference_args args;
827  	unsigned int index;
828  	int ret;
829  
830  	for (index = 0;
831  	     !(ret = fwnode_property_get_reference_args(dev_fwnode(dev), prop,
832  							NULL, 0, index, &args));
833  	     index++) {
834  		struct v4l2_async_connection *asd;
835  
836  		asd = v4l2_async_nf_add_fwnode(notifier, args.fwnode,
837  					       struct v4l2_async_connection);
838  		fwnode_handle_put(args.fwnode);
839  		if (IS_ERR(asd)) {
840  			/* not an error if asd already exists */
841  			if (PTR_ERR(asd) == -EEXIST)
842  				continue;
843  
844  			return PTR_ERR(asd);
845  		}
846  	}
847  
848  	/* -ENOENT here means successful parsing */
849  	if (ret != -ENOENT)
850  		return ret;
851  
852  	/* Return -ENOENT if no references were found */
853  	return index ? 0 : -ENOENT;
854  }
855  
856  /*
857   * v4l2_fwnode_reference_get_int_prop - parse a reference with integer
858   *					arguments
859   * @fwnode: fwnode to read @prop from
860   * @notifier: notifier for @dev
861   * @prop: the name of the property
862   * @index: the index of the reference to get
863   * @props: the array of integer property names
864   * @nprops: the number of integer property names in @nprops
865   *
866   * First find an fwnode referred to by the reference at @index in @prop.
867   *
868   * Then under that fwnode, @nprops times, for each property in @props,
869   * iteratively follow child nodes starting from fwnode such that they have the
870   * property in @props array at the index of the child node distance from the
871   * root node and the value of that property matching with the integer argument
872   * of the reference, at the same index.
873   *
874   * The child fwnode reached at the end of the iteration is then returned to the
875   * caller.
876   *
877   * The core reason for this is that you cannot refer to just any node in ACPI.
878   * So to refer to an endpoint (easy in DT) you need to refer to a device, then
879   * provide a list of (property name, property value) tuples where each tuple
880   * uniquely identifies a child node. The first tuple identifies a child directly
881   * underneath the device fwnode, the next tuple identifies a child node
882   * underneath the fwnode identified by the previous tuple, etc. until you
883   * reached the fwnode you need.
884   *
885   * THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A
886   * REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under
887   * Documentation/firmware-guide/acpi/dsd/ instead and especially graph.txt,
888   * data-node-references.txt and leds.txt .
889   *
890   *	Scope (\_SB.PCI0.I2C2)
891   *	{
892   *		Device (CAM0)
893   *		{
894   *			Name (_DSD, Package () {
895   *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
896   *				Package () {
897   *					Package () {
898   *						"compatible",
899   *						Package () { "nokia,smia" }
900   *					},
901   *				},
902   *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
903   *				Package () {
904   *					Package () { "port0", "PRT0" },
905   *				}
906   *			})
907   *			Name (PRT0, Package() {
908   *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
909   *				Package () {
910   *					Package () { "port", 0 },
911   *				},
912   *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
913   *				Package () {
914   *					Package () { "endpoint0", "EP00" },
915   *				}
916   *			})
917   *			Name (EP00, Package() {
918   *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
919   *				Package () {
920   *					Package () { "endpoint", 0 },
921   *					Package () {
922   *						"remote-endpoint",
923   *						Package() {
924   *							\_SB.PCI0.ISP, 4, 0
925   *						}
926   *					},
927   *				}
928   *			})
929   *		}
930   *	}
931   *
932   *	Scope (\_SB.PCI0)
933   *	{
934   *		Device (ISP)
935   *		{
936   *			Name (_DSD, Package () {
937   *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
938   *				Package () {
939   *					Package () { "port4", "PRT4" },
940   *				}
941   *			})
942   *
943   *			Name (PRT4, Package() {
944   *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
945   *				Package () {
946   *					Package () { "port", 4 },
947   *				},
948   *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
949   *				Package () {
950   *					Package () { "endpoint0", "EP40" },
951   *				}
952   *			})
953   *
954   *			Name (EP40, Package() {
955   *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
956   *				Package () {
957   *					Package () { "endpoint", 0 },
958   *					Package () {
959   *						"remote-endpoint",
960   *						Package () {
961   *							\_SB.PCI0.I2C2.CAM0,
962   *							0, 0
963   *						}
964   *					},
965   *				}
966   *			})
967   *		}
968   *	}
969   *
970   * From the EP40 node under ISP device, you could parse the graph remote
971   * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments:
972   *
973   *  @fwnode: fwnode referring to EP40 under ISP.
974   *  @prop: "remote-endpoint"
975   *  @index: 0
976   *  @props: "port", "endpoint"
977   *  @nprops: 2
978   *
979   * And you'd get back fwnode referring to EP00 under CAM0.
980   *
981   * The same works the other way around: if you use EP00 under CAM0 as the
982   * fwnode, you'll get fwnode referring to EP40 under ISP.
983   *
984   * The same example in DT syntax would look like this:
985   *
986   * cam: cam0 {
987   *	compatible = "nokia,smia";
988   *
989   *	port {
990   *		port = <0>;
991   *		endpoint {
992   *			endpoint = <0>;
993   *			remote-endpoint = <&isp 4 0>;
994   *		};
995   *	};
996   * };
997   *
998   * isp: isp {
999   *	ports {
1000   *		port@4 {
1001   *			port = <4>;
1002   *			endpoint {
1003   *				endpoint = <0>;
1004   *				remote-endpoint = <&cam 0 0>;
1005   *			};
1006   *		};
1007   *	};
1008   * };
1009   *
1010   * Return: 0 on success
1011   *	   -ENOENT if no entries (or the property itself) were found
1012   *	   -EINVAL if property parsing otherwise failed
1013   *	   -ENOMEM if memory allocation failed
1014   */
1015  static struct fwnode_handle *
v4l2_fwnode_reference_get_int_prop(struct fwnode_handle * fwnode,const char * prop,unsigned int index,const char * const * props,unsigned int nprops)1016  v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode,
1017  				   const char *prop,
1018  				   unsigned int index,
1019  				   const char * const *props,
1020  				   unsigned int nprops)
1021  {
1022  	struct fwnode_reference_args fwnode_args;
1023  	u64 *args = fwnode_args.args;
1024  	struct fwnode_handle *child;
1025  	int ret;
1026  
1027  	/*
1028  	 * Obtain remote fwnode as well as the integer arguments.
1029  	 *
1030  	 * Note that right now both -ENODATA and -ENOENT may signal
1031  	 * out-of-bounds access. Return -ENOENT in that case.
1032  	 */
1033  	ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops,
1034  						 index, &fwnode_args);
1035  	if (ret)
1036  		return ERR_PTR(ret == -ENODATA ? -ENOENT : ret);
1037  
1038  	/*
1039  	 * Find a node in the tree under the referred fwnode corresponding to
1040  	 * the integer arguments.
1041  	 */
1042  	fwnode = fwnode_args.fwnode;
1043  	while (nprops--) {
1044  		u32 val;
1045  
1046  		/* Loop over all child nodes under fwnode. */
1047  		fwnode_for_each_child_node(fwnode, child) {
1048  			if (fwnode_property_read_u32(child, *props, &val))
1049  				continue;
1050  
1051  			/* Found property, see if its value matches. */
1052  			if (val == *args)
1053  				break;
1054  		}
1055  
1056  		fwnode_handle_put(fwnode);
1057  
1058  		/* No property found; return an error here. */
1059  		if (!child) {
1060  			fwnode = ERR_PTR(-ENOENT);
1061  			break;
1062  		}
1063  
1064  		props++;
1065  		args++;
1066  		fwnode = child;
1067  	}
1068  
1069  	return fwnode;
1070  }
1071  
1072  struct v4l2_fwnode_int_props {
1073  	const char *name;
1074  	const char * const *props;
1075  	unsigned int nprops;
1076  };
1077  
1078  /*
1079   * v4l2_fwnode_reference_parse_int_props - parse references for async
1080   *					   sub-devices
1081   * @dev: struct device pointer
1082   * @notifier: notifier for @dev
1083   * @prop: the name of the property
1084   * @props: the array of integer property names
1085   * @nprops: the number of integer properties
1086   *
1087   * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in
1088   * property @prop with integer arguments with child nodes matching in properties
1089   * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier
1090   * accordingly.
1091   *
1092   * While it is technically possible to use this function on DT, it is only
1093   * meaningful on ACPI. On Device tree you can refer to any node in the tree but
1094   * on ACPI the references are limited to devices.
1095   *
1096   * Return: 0 on success
1097   *	   -ENOENT if no entries (or the property itself) were found
1098   *	   -EINVAL if property parsing otherwisefailed
1099   *	   -ENOMEM if memory allocation failed
1100   */
1101  static int
v4l2_fwnode_reference_parse_int_props(struct device * dev,struct v4l2_async_notifier * notifier,const struct v4l2_fwnode_int_props * p)1102  v4l2_fwnode_reference_parse_int_props(struct device *dev,
1103  				      struct v4l2_async_notifier *notifier,
1104  				      const struct v4l2_fwnode_int_props *p)
1105  {
1106  	struct fwnode_handle *fwnode;
1107  	unsigned int index;
1108  	int ret;
1109  	const char *prop = p->name;
1110  	const char * const *props = p->props;
1111  	unsigned int nprops = p->nprops;
1112  
1113  	index = 0;
1114  	do {
1115  		fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1116  							    prop, index,
1117  							    props, nprops);
1118  		if (IS_ERR(fwnode)) {
1119  			/*
1120  			 * Note that right now both -ENODATA and -ENOENT may
1121  			 * signal out-of-bounds access. Return the error in
1122  			 * cases other than that.
1123  			 */
1124  			if (PTR_ERR(fwnode) != -ENOENT &&
1125  			    PTR_ERR(fwnode) != -ENODATA)
1126  				return PTR_ERR(fwnode);
1127  			break;
1128  		}
1129  		fwnode_handle_put(fwnode);
1130  		index++;
1131  	} while (1);
1132  
1133  	for (index = 0;
1134  	     !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1135  								  prop, index,
1136  								  props,
1137  								  nprops)));
1138  	     index++) {
1139  		struct v4l2_async_connection *asd;
1140  
1141  		asd = v4l2_async_nf_add_fwnode(notifier, fwnode,
1142  					       struct v4l2_async_connection);
1143  		fwnode_handle_put(fwnode);
1144  		if (IS_ERR(asd)) {
1145  			ret = PTR_ERR(asd);
1146  			/* not an error if asd already exists */
1147  			if (ret == -EEXIST)
1148  				continue;
1149  
1150  			return PTR_ERR(asd);
1151  		}
1152  	}
1153  
1154  	return !fwnode || PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode);
1155  }
1156  
1157  /**
1158   * v4l2_async_nf_parse_fwnode_sensor - parse common references on
1159   *					     sensors for async sub-devices
1160   * @dev: the device node the properties of which are parsed for references
1161   * @notifier: the async notifier where the async subdevs will be added
1162   *
1163   * Parse common sensor properties for remote devices related to the
1164   * sensor and set up async sub-devices for them.
1165   *
1166   * Any notifier populated using this function must be released with a call to
1167   * v4l2_async_nf_release() after it has been unregistered and the async
1168   * sub-devices are no longer in use, even in the case the function returned an
1169   * error.
1170   *
1171   * Return: 0 on success
1172   *	   -ENOMEM if memory allocation failed
1173   *	   -EINVAL if property parsing failed
1174   */
1175  static int
v4l2_async_nf_parse_fwnode_sensor(struct device * dev,struct v4l2_async_notifier * notifier)1176  v4l2_async_nf_parse_fwnode_sensor(struct device *dev,
1177  				  struct v4l2_async_notifier *notifier)
1178  {
1179  	static const char * const led_props[] = { "led" };
1180  	static const struct v4l2_fwnode_int_props props[] = {
1181  		{ "flash-leds", led_props, ARRAY_SIZE(led_props) },
1182  		{ "lens-focus", NULL, 0 },
1183  	};
1184  	unsigned int i;
1185  
1186  	for (i = 0; i < ARRAY_SIZE(props); i++) {
1187  		int ret;
1188  
1189  		if (props[i].props && is_acpi_node(dev_fwnode(dev)))
1190  			ret = v4l2_fwnode_reference_parse_int_props(dev,
1191  								    notifier,
1192  								    &props[i]);
1193  		else
1194  			ret = v4l2_fwnode_reference_parse(dev, notifier,
1195  							  props[i].name);
1196  		if (ret && ret != -ENOENT) {
1197  			dev_warn(dev, "parsing property \"%s\" failed (%d)\n",
1198  				 props[i].name, ret);
1199  			return ret;
1200  		}
1201  	}
1202  
1203  	return 0;
1204  }
1205  
v4l2_async_register_subdev_sensor(struct v4l2_subdev * sd)1206  int v4l2_async_register_subdev_sensor(struct v4l2_subdev *sd)
1207  {
1208  	struct v4l2_async_notifier *notifier;
1209  	int ret;
1210  
1211  	if (WARN_ON(!sd->dev))
1212  		return -ENODEV;
1213  
1214  	notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
1215  	if (!notifier)
1216  		return -ENOMEM;
1217  
1218  	v4l2_async_subdev_nf_init(notifier, sd);
1219  
1220  	ret = v4l2_subdev_get_privacy_led(sd);
1221  	if (ret < 0)
1222  		goto out_cleanup;
1223  
1224  	ret = v4l2_async_nf_parse_fwnode_sensor(sd->dev, notifier);
1225  	if (ret < 0)
1226  		goto out_cleanup;
1227  
1228  	ret = v4l2_async_nf_register(notifier);
1229  	if (ret < 0)
1230  		goto out_cleanup;
1231  
1232  	ret = v4l2_async_register_subdev(sd);
1233  	if (ret < 0)
1234  		goto out_unregister;
1235  
1236  	sd->subdev_notifier = notifier;
1237  
1238  	return 0;
1239  
1240  out_unregister:
1241  	v4l2_async_nf_unregister(notifier);
1242  
1243  out_cleanup:
1244  	v4l2_subdev_put_privacy_led(sd);
1245  	v4l2_async_nf_cleanup(notifier);
1246  	kfree(notifier);
1247  
1248  	return ret;
1249  }
1250  EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor);
1251  
1252  MODULE_LICENSE("GPL");
1253  MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
1254  MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>");
1255  MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1256