1 /*
2 * ARM VFP floating-point operations
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "internals.h"
24 #include "cpu-features.h"
25 #ifdef CONFIG_TCG
26 #include "qemu/log.h"
27 #include "fpu/softfloat.h"
28 #endif
29
30 /* VFP support. We follow the convention used for VFP instructions:
31 Single precision routines have a "s" suffix, double precision a
32 "d" suffix. */
33
34 #ifdef CONFIG_TCG
35
36 /* Convert host exception flags to vfp form. */
vfp_exceptbits_from_host(int host_bits)37 static inline int vfp_exceptbits_from_host(int host_bits)
38 {
39 int target_bits = 0;
40
41 if (host_bits & float_flag_invalid) {
42 target_bits |= 1;
43 }
44 if (host_bits & float_flag_divbyzero) {
45 target_bits |= 2;
46 }
47 if (host_bits & float_flag_overflow) {
48 target_bits |= 4;
49 }
50 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) {
51 target_bits |= 8;
52 }
53 if (host_bits & float_flag_inexact) {
54 target_bits |= 0x10;
55 }
56 if (host_bits & float_flag_input_denormal) {
57 target_bits |= 0x80;
58 }
59 return target_bits;
60 }
61
vfp_get_fpsr_from_host(CPUARMState * env)62 static uint32_t vfp_get_fpsr_from_host(CPUARMState *env)
63 {
64 uint32_t i;
65
66 i = get_float_exception_flags(&env->vfp.fp_status);
67 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
68 /* FZ16 does not generate an input denormal exception. */
69 i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
70 & ~float_flag_input_denormal);
71 i |= (get_float_exception_flags(&env->vfp.standard_fp_status_f16)
72 & ~float_flag_input_denormal);
73 return vfp_exceptbits_from_host(i);
74 }
75
vfp_clear_float_status_exc_flags(CPUARMState * env)76 static void vfp_clear_float_status_exc_flags(CPUARMState *env)
77 {
78 /*
79 * Clear out all the exception-flag information in the float_status
80 * values. The caller should have arranged for env->vfp.fpsr to
81 * be the architecturally up-to-date exception flag information first.
82 */
83 set_float_exception_flags(0, &env->vfp.fp_status);
84 set_float_exception_flags(0, &env->vfp.fp_status_f16);
85 set_float_exception_flags(0, &env->vfp.standard_fp_status);
86 set_float_exception_flags(0, &env->vfp.standard_fp_status_f16);
87 }
88
vfp_set_fpcr_to_host(CPUARMState * env,uint32_t val,uint32_t mask)89 static void vfp_set_fpcr_to_host(CPUARMState *env, uint32_t val, uint32_t mask)
90 {
91 uint64_t changed = env->vfp.fpcr;
92
93 changed ^= val;
94 changed &= mask;
95 if (changed & (3 << 22)) {
96 int i = (val >> 22) & 3;
97 switch (i) {
98 case FPROUNDING_TIEEVEN:
99 i = float_round_nearest_even;
100 break;
101 case FPROUNDING_POSINF:
102 i = float_round_up;
103 break;
104 case FPROUNDING_NEGINF:
105 i = float_round_down;
106 break;
107 case FPROUNDING_ZERO:
108 i = float_round_to_zero;
109 break;
110 }
111 set_float_rounding_mode(i, &env->vfp.fp_status);
112 set_float_rounding_mode(i, &env->vfp.fp_status_f16);
113 }
114 if (changed & FPCR_FZ16) {
115 bool ftz_enabled = val & FPCR_FZ16;
116 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
117 set_flush_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
118 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
119 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
120 }
121 if (changed & FPCR_FZ) {
122 bool ftz_enabled = val & FPCR_FZ;
123 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
124 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
125 }
126 if (changed & FPCR_DN) {
127 bool dnan_enabled = val & FPCR_DN;
128 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
129 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
130 }
131 }
132
133 #else
134
vfp_get_fpsr_from_host(CPUARMState * env)135 static uint32_t vfp_get_fpsr_from_host(CPUARMState *env)
136 {
137 return 0;
138 }
139
vfp_clear_float_status_exc_flags(CPUARMState * env)140 static void vfp_clear_float_status_exc_flags(CPUARMState *env)
141 {
142 }
143
vfp_set_fpcr_to_host(CPUARMState * env,uint32_t val,uint32_t mask)144 static void vfp_set_fpcr_to_host(CPUARMState *env, uint32_t val, uint32_t mask)
145 {
146 }
147
148 #endif
149
vfp_get_fpcr(CPUARMState * env)150 uint32_t vfp_get_fpcr(CPUARMState *env)
151 {
152 uint32_t fpcr = env->vfp.fpcr
153 | (env->vfp.vec_len << 16)
154 | (env->vfp.vec_stride << 20);
155
156 /*
157 * M-profile LTPSIZE is the same bits [18:16] as A-profile Len; whichever
158 * of the two is not applicable to this CPU will always be zero.
159 */
160 fpcr |= env->v7m.ltpsize << 16;
161
162 return fpcr;
163 }
164
vfp_get_fpsr(CPUARMState * env)165 uint32_t vfp_get_fpsr(CPUARMState *env)
166 {
167 uint32_t fpsr = env->vfp.fpsr;
168 uint32_t i;
169
170 fpsr |= vfp_get_fpsr_from_host(env);
171
172 i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
173 fpsr |= i ? FPSR_QC : 0;
174 return fpsr;
175 }
176
HELPER(vfp_get_fpscr)177 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
178 {
179 return (vfp_get_fpcr(env) & FPSCR_FPCR_MASK) |
180 (vfp_get_fpsr(env) & FPSCR_FPSR_MASK);
181 }
182
vfp_get_fpscr(CPUARMState * env)183 uint32_t vfp_get_fpscr(CPUARMState *env)
184 {
185 return HELPER(vfp_get_fpscr)(env);
186 }
187
vfp_set_fpsr(CPUARMState * env,uint32_t val)188 void vfp_set_fpsr(CPUARMState *env, uint32_t val)
189 {
190 ARMCPU *cpu = env_archcpu(env);
191
192 if (arm_feature(env, ARM_FEATURE_NEON) ||
193 cpu_isar_feature(aa32_mve, cpu)) {
194 /*
195 * The bit we set within vfp.qc[] is arbitrary; the array as a
196 * whole being zero/non-zero is what counts.
197 */
198 env->vfp.qc[0] = val & FPSR_QC;
199 env->vfp.qc[1] = 0;
200 env->vfp.qc[2] = 0;
201 env->vfp.qc[3] = 0;
202 }
203
204 /*
205 * NZCV lives only in env->vfp.fpsr. The cumulative exception flags
206 * IOC|DZC|OFC|UFC|IXC|IDC also live in env->vfp.fpsr, with possible
207 * extra pending exception information that hasn't yet been folded in
208 * living in the float_status values (for TCG).
209 * Since this FPSR write gives us the up to date values of the exception
210 * flags, we want to store into vfp.fpsr the NZCV and CEXC bits, zeroing
211 * anything else. We also need to clear out the float_status exception
212 * information so that the next vfp_get_fpsr does not fold in stale data.
213 */
214 val &= FPSR_NZCV_MASK | FPSR_CEXC_MASK;
215 env->vfp.fpsr = val;
216 vfp_clear_float_status_exc_flags(env);
217 }
218
vfp_set_fpcr_masked(CPUARMState * env,uint32_t val,uint32_t mask)219 static void vfp_set_fpcr_masked(CPUARMState *env, uint32_t val, uint32_t mask)
220 {
221 /*
222 * We only set FPCR bits defined by mask, and leave the others alone.
223 * We assume the mask is sensible (e.g. doesn't try to set only
224 * part of a field)
225 */
226 ARMCPU *cpu = env_archcpu(env);
227
228 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */
229 if (!cpu_isar_feature(any_fp16, cpu)) {
230 val &= ~FPCR_FZ16;
231 }
232
233 if (!cpu_isar_feature(aa64_ebf16, cpu)) {
234 val &= ~FPCR_EBF;
235 }
236
237 vfp_set_fpcr_to_host(env, val, mask);
238
239 if (mask & (FPCR_LEN_MASK | FPCR_STRIDE_MASK)) {
240 if (!arm_feature(env, ARM_FEATURE_M)) {
241 /*
242 * Short-vector length and stride; on M-profile these bits
243 * are used for different purposes.
244 * We can't make this conditional be "if MVFR0.FPShVec != 0",
245 * because in v7A no-short-vector-support cores still had to
246 * allow Stride/Len to be written with the only effect that
247 * some insns are required to UNDEF if the guest sets them.
248 */
249 env->vfp.vec_len = extract32(val, 16, 3);
250 env->vfp.vec_stride = extract32(val, 20, 2);
251 } else if (cpu_isar_feature(aa32_mve, cpu)) {
252 env->v7m.ltpsize = extract32(val, FPCR_LTPSIZE_SHIFT,
253 FPCR_LTPSIZE_LENGTH);
254 }
255 }
256
257 /*
258 * We don't implement trapped exception handling, so the
259 * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
260 *
261 * The FPCR bits we keep in vfp.fpcr are AHP, DN, FZ, RMode, EBF
262 * and FZ16. Len, Stride and LTPSIZE we just handled. Store those bits
263 * there, and zero any of the other FPCR bits and the RES0 and RAZ/WI
264 * bits.
265 */
266 val &= FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK | FPCR_FZ16 | FPCR_EBF;
267 env->vfp.fpcr &= ~mask;
268 env->vfp.fpcr |= val;
269 }
270
vfp_set_fpcr(CPUARMState * env,uint32_t val)271 void vfp_set_fpcr(CPUARMState *env, uint32_t val)
272 {
273 vfp_set_fpcr_masked(env, val, MAKE_64BIT_MASK(0, 32));
274 }
275
HELPER(vfp_set_fpscr)276 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
277 {
278 vfp_set_fpcr_masked(env, val, FPSCR_FPCR_MASK);
279 vfp_set_fpsr(env, val & FPSCR_FPSR_MASK);
280 }
281
vfp_set_fpscr(CPUARMState * env,uint32_t val)282 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
283 {
284 HELPER(vfp_set_fpscr)(env, val);
285 }
286
287 #ifdef CONFIG_TCG
288
289 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
290
291 #define VFP_BINOP(name) \
292 dh_ctype_f16 VFP_HELPER(name, h)(dh_ctype_f16 a, dh_ctype_f16 b, void *fpstp) \
293 { \
294 float_status *fpst = fpstp; \
295 return float16_ ## name(a, b, fpst); \
296 } \
297 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
298 { \
299 float_status *fpst = fpstp; \
300 return float32_ ## name(a, b, fpst); \
301 } \
302 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
303 { \
304 float_status *fpst = fpstp; \
305 return float64_ ## name(a, b, fpst); \
306 }
307 VFP_BINOP(add)
VFP_BINOP(sub)308 VFP_BINOP(sub)
309 VFP_BINOP(mul)
310 VFP_BINOP(div)
311 VFP_BINOP(min)
312 VFP_BINOP(max)
313 VFP_BINOP(minnum)
314 VFP_BINOP(maxnum)
315 #undef VFP_BINOP
316
317 dh_ctype_f16 VFP_HELPER(sqrt, h)(dh_ctype_f16 a, CPUARMState *env)
318 {
319 return float16_sqrt(a, &env->vfp.fp_status_f16);
320 }
321
VFP_HELPER(sqrt,s)322 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
323 {
324 return float32_sqrt(a, &env->vfp.fp_status);
325 }
326
VFP_HELPER(sqrt,d)327 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
328 {
329 return float64_sqrt(a, &env->vfp.fp_status);
330 }
331
softfloat_to_vfp_compare(CPUARMState * env,FloatRelation cmp)332 static void softfloat_to_vfp_compare(CPUARMState *env, FloatRelation cmp)
333 {
334 uint32_t flags;
335 switch (cmp) {
336 case float_relation_equal:
337 flags = 0x6;
338 break;
339 case float_relation_less:
340 flags = 0x8;
341 break;
342 case float_relation_greater:
343 flags = 0x2;
344 break;
345 case float_relation_unordered:
346 flags = 0x3;
347 break;
348 default:
349 g_assert_not_reached();
350 }
351 env->vfp.fpsr = deposit64(env->vfp.fpsr, 28, 4, flags); /* NZCV */
352 }
353
354 /* XXX: check quiet/signaling case */
355 #define DO_VFP_cmp(P, FLOATTYPE, ARGTYPE, FPST) \
356 void VFP_HELPER(cmp, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
357 { \
358 softfloat_to_vfp_compare(env, \
359 FLOATTYPE ## _compare_quiet(a, b, &env->vfp.FPST)); \
360 } \
361 void VFP_HELPER(cmpe, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
362 { \
363 softfloat_to_vfp_compare(env, \
364 FLOATTYPE ## _compare(a, b, &env->vfp.FPST)); \
365 }
DO_VFP_cmp(h,float16,dh_ctype_f16,fp_status_f16)366 DO_VFP_cmp(h, float16, dh_ctype_f16, fp_status_f16)
367 DO_VFP_cmp(s, float32, float32, fp_status)
368 DO_VFP_cmp(d, float64, float64, fp_status)
369 #undef DO_VFP_cmp
370
371 /* Integer to float and float to integer conversions */
372
373 #define CONV_ITOF(name, ftype, fsz, sign) \
374 ftype HELPER(name)(uint32_t x, void *fpstp) \
375 { \
376 float_status *fpst = fpstp; \
377 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
378 }
379
380 #define CONV_FTOI(name, ftype, fsz, sign, round) \
381 sign##int32_t HELPER(name)(ftype x, void *fpstp) \
382 { \
383 float_status *fpst = fpstp; \
384 if (float##fsz##_is_any_nan(x)) { \
385 float_raise(float_flag_invalid, fpst); \
386 return 0; \
387 } \
388 return float##fsz##_to_##sign##int32##round(x, fpst); \
389 }
390
391 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \
392 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
393 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
394 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
395
396 FLOAT_CONVS(si, h, uint32_t, 16, )
397 FLOAT_CONVS(si, s, float32, 32, )
398 FLOAT_CONVS(si, d, float64, 64, )
399 FLOAT_CONVS(ui, h, uint32_t, 16, u)
400 FLOAT_CONVS(ui, s, float32, 32, u)
401 FLOAT_CONVS(ui, d, float64, 64, u)
402
403 #undef CONV_ITOF
404 #undef CONV_FTOI
405 #undef FLOAT_CONVS
406
407 /* floating point conversion */
408 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
409 {
410 return float32_to_float64(x, &env->vfp.fp_status);
411 }
412
VFP_HELPER(fcvts,d)413 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
414 {
415 return float64_to_float32(x, &env->vfp.fp_status);
416 }
417
HELPER(bfcvt)418 uint32_t HELPER(bfcvt)(float32 x, void *status)
419 {
420 return float32_to_bfloat16(x, status);
421 }
422
HELPER(bfcvt_pair)423 uint32_t HELPER(bfcvt_pair)(uint64_t pair, void *status)
424 {
425 bfloat16 lo = float32_to_bfloat16(extract64(pair, 0, 32), status);
426 bfloat16 hi = float32_to_bfloat16(extract64(pair, 32, 32), status);
427 return deposit32(lo, 16, 16, hi);
428 }
429
430 /*
431 * VFP3 fixed point conversion. The AArch32 versions of fix-to-float
432 * must always round-to-nearest; the AArch64 ones honour the FPSCR
433 * rounding mode. (For AArch32 Neon the standard-FPSCR is set to
434 * round-to-nearest so either helper will work.) AArch32 float-to-fix
435 * must round-to-zero.
436 */
437 #define VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
438 ftype HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
439 void *fpstp) \
440 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
441
442 #define VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \
443 ftype HELPER(vfp_##name##to##p##_round_to_nearest)(uint##isz##_t x, \
444 uint32_t shift, \
445 void *fpstp) \
446 { \
447 ftype ret; \
448 float_status *fpst = fpstp; \
449 FloatRoundMode oldmode = fpst->float_rounding_mode; \
450 fpst->float_rounding_mode = float_round_nearest_even; \
451 ret = itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); \
452 fpst->float_rounding_mode = oldmode; \
453 return ret; \
454 }
455
456 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, ROUND, suff) \
457 uint##isz##_t HELPER(vfp_to##name##p##suff)(ftype x, uint32_t shift, \
458 void *fpst) \
459 { \
460 if (unlikely(float##fsz##_is_any_nan(x))) { \
461 float_raise(float_flag_invalid, fpst); \
462 return 0; \
463 } \
464 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \
465 }
466
467 #define VFP_CONV_FIX(name, p, fsz, ftype, isz, itype) \
468 VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
469 VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \
470 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
471 float_round_to_zero, _round_to_zero) \
472 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
473 get_float_rounding_mode(fpst), )
474
475 #define VFP_CONV_FIX_A64(name, p, fsz, ftype, isz, itype) \
476 VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
477 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
478 get_float_rounding_mode(fpst), )
479
480 VFP_CONV_FIX(sh, d, 64, float64, 64, int16)
481 VFP_CONV_FIX(sl, d, 64, float64, 64, int32)
482 VFP_CONV_FIX_A64(sq, d, 64, float64, 64, int64)
483 VFP_CONV_FIX(uh, d, 64, float64, 64, uint16)
484 VFP_CONV_FIX(ul, d, 64, float64, 64, uint32)
485 VFP_CONV_FIX_A64(uq, d, 64, float64, 64, uint64)
486 VFP_CONV_FIX(sh, s, 32, float32, 32, int16)
487 VFP_CONV_FIX(sl, s, 32, float32, 32, int32)
488 VFP_CONV_FIX_A64(sq, s, 32, float32, 64, int64)
489 VFP_CONV_FIX(uh, s, 32, float32, 32, uint16)
490 VFP_CONV_FIX(ul, s, 32, float32, 32, uint32)
491 VFP_CONV_FIX_A64(uq, s, 32, float32, 64, uint64)
492 VFP_CONV_FIX(sh, h, 16, dh_ctype_f16, 32, int16)
493 VFP_CONV_FIX(sl, h, 16, dh_ctype_f16, 32, int32)
494 VFP_CONV_FIX_A64(sq, h, 16, dh_ctype_f16, 64, int64)
495 VFP_CONV_FIX(uh, h, 16, dh_ctype_f16, 32, uint16)
496 VFP_CONV_FIX(ul, h, 16, dh_ctype_f16, 32, uint32)
497 VFP_CONV_FIX_A64(uq, h, 16, dh_ctype_f16, 64, uint64)
498
499 #undef VFP_CONV_FIX
500 #undef VFP_CONV_FIX_FLOAT
501 #undef VFP_CONV_FLOAT_FIX_ROUND
502 #undef VFP_CONV_FIX_A64
503
504 /* Set the current fp rounding mode and return the old one.
505 * The argument is a softfloat float_round_ value.
506 */
HELPER(set_rmode)507 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
508 {
509 float_status *fp_status = fpstp;
510
511 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
512 set_float_rounding_mode(rmode, fp_status);
513
514 return prev_rmode;
515 }
516
517 /* Half precision conversions. */
HELPER(vfp_fcvt_f16_to_f32)518 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
519 {
520 /* Squash FZ16 to 0 for the duration of conversion. In this case,
521 * it would affect flushing input denormals.
522 */
523 float_status *fpst = fpstp;
524 bool save = get_flush_inputs_to_zero(fpst);
525 set_flush_inputs_to_zero(false, fpst);
526 float32 r = float16_to_float32(a, !ahp_mode, fpst);
527 set_flush_inputs_to_zero(save, fpst);
528 return r;
529 }
530
HELPER(vfp_fcvt_f32_to_f16)531 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
532 {
533 /* Squash FZ16 to 0 for the duration of conversion. In this case,
534 * it would affect flushing output denormals.
535 */
536 float_status *fpst = fpstp;
537 bool save = get_flush_to_zero(fpst);
538 set_flush_to_zero(false, fpst);
539 float16 r = float32_to_float16(a, !ahp_mode, fpst);
540 set_flush_to_zero(save, fpst);
541 return r;
542 }
543
HELPER(vfp_fcvt_f16_to_f64)544 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
545 {
546 /* Squash FZ16 to 0 for the duration of conversion. In this case,
547 * it would affect flushing input denormals.
548 */
549 float_status *fpst = fpstp;
550 bool save = get_flush_inputs_to_zero(fpst);
551 set_flush_inputs_to_zero(false, fpst);
552 float64 r = float16_to_float64(a, !ahp_mode, fpst);
553 set_flush_inputs_to_zero(save, fpst);
554 return r;
555 }
556
HELPER(vfp_fcvt_f64_to_f16)557 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
558 {
559 /* Squash FZ16 to 0 for the duration of conversion. In this case,
560 * it would affect flushing output denormals.
561 */
562 float_status *fpst = fpstp;
563 bool save = get_flush_to_zero(fpst);
564 set_flush_to_zero(false, fpst);
565 float16 r = float64_to_float16(a, !ahp_mode, fpst);
566 set_flush_to_zero(save, fpst);
567 return r;
568 }
569
570 /* NEON helpers. */
571
572 /* Constants 256 and 512 are used in some helpers; we avoid relying on
573 * int->float conversions at run-time. */
574 #define float64_256 make_float64(0x4070000000000000LL)
575 #define float64_512 make_float64(0x4080000000000000LL)
576 #define float16_maxnorm make_float16(0x7bff)
577 #define float32_maxnorm make_float32(0x7f7fffff)
578 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
579
580 /* Reciprocal functions
581 *
582 * The algorithm that must be used to calculate the estimate
583 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
584 */
585
586 /* See RecipEstimate()
587 *
588 * input is a 9 bit fixed point number
589 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
590 * result range 256 .. 511 for a number from 1.0 to 511/256.
591 */
592
recip_estimate(int input)593 static int recip_estimate(int input)
594 {
595 int a, b, r;
596 assert(256 <= input && input < 512);
597 a = (input * 2) + 1;
598 b = (1 << 19) / a;
599 r = (b + 1) >> 1;
600 assert(256 <= r && r < 512);
601 return r;
602 }
603
604 /*
605 * Common wrapper to call recip_estimate
606 *
607 * The parameters are exponent and 64 bit fraction (without implicit
608 * bit) where the binary point is nominally at bit 52. Returns a
609 * float64 which can then be rounded to the appropriate size by the
610 * callee.
611 */
612
call_recip_estimate(int * exp,int exp_off,uint64_t frac)613 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
614 {
615 uint32_t scaled, estimate;
616 uint64_t result_frac;
617 int result_exp;
618
619 /* Handle sub-normals */
620 if (*exp == 0) {
621 if (extract64(frac, 51, 1) == 0) {
622 *exp = -1;
623 frac <<= 2;
624 } else {
625 frac <<= 1;
626 }
627 }
628
629 /* scaled = UInt('1':fraction<51:44>) */
630 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
631 estimate = recip_estimate(scaled);
632
633 result_exp = exp_off - *exp;
634 result_frac = deposit64(0, 44, 8, estimate);
635 if (result_exp == 0) {
636 result_frac = deposit64(result_frac >> 1, 51, 1, 1);
637 } else if (result_exp == -1) {
638 result_frac = deposit64(result_frac >> 2, 50, 2, 1);
639 result_exp = 0;
640 }
641
642 *exp = result_exp;
643
644 return result_frac;
645 }
646
round_to_inf(float_status * fpst,bool sign_bit)647 static bool round_to_inf(float_status *fpst, bool sign_bit)
648 {
649 switch (fpst->float_rounding_mode) {
650 case float_round_nearest_even: /* Round to Nearest */
651 return true;
652 case float_round_up: /* Round to +Inf */
653 return !sign_bit;
654 case float_round_down: /* Round to -Inf */
655 return sign_bit;
656 case float_round_to_zero: /* Round to Zero */
657 return false;
658 default:
659 g_assert_not_reached();
660 }
661 }
662
HELPER(recpe_f16)663 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
664 {
665 float_status *fpst = fpstp;
666 float16 f16 = float16_squash_input_denormal(input, fpst);
667 uint32_t f16_val = float16_val(f16);
668 uint32_t f16_sign = float16_is_neg(f16);
669 int f16_exp = extract32(f16_val, 10, 5);
670 uint32_t f16_frac = extract32(f16_val, 0, 10);
671 uint64_t f64_frac;
672
673 if (float16_is_any_nan(f16)) {
674 float16 nan = f16;
675 if (float16_is_signaling_nan(f16, fpst)) {
676 float_raise(float_flag_invalid, fpst);
677 if (!fpst->default_nan_mode) {
678 nan = float16_silence_nan(f16, fpst);
679 }
680 }
681 if (fpst->default_nan_mode) {
682 nan = float16_default_nan(fpst);
683 }
684 return nan;
685 } else if (float16_is_infinity(f16)) {
686 return float16_set_sign(float16_zero, float16_is_neg(f16));
687 } else if (float16_is_zero(f16)) {
688 float_raise(float_flag_divbyzero, fpst);
689 return float16_set_sign(float16_infinity, float16_is_neg(f16));
690 } else if (float16_abs(f16) < (1 << 8)) {
691 /* Abs(value) < 2.0^-16 */
692 float_raise(float_flag_overflow | float_flag_inexact, fpst);
693 if (round_to_inf(fpst, f16_sign)) {
694 return float16_set_sign(float16_infinity, f16_sign);
695 } else {
696 return float16_set_sign(float16_maxnorm, f16_sign);
697 }
698 } else if (f16_exp >= 29 && fpst->flush_to_zero) {
699 float_raise(float_flag_underflow, fpst);
700 return float16_set_sign(float16_zero, float16_is_neg(f16));
701 }
702
703 f64_frac = call_recip_estimate(&f16_exp, 29,
704 ((uint64_t) f16_frac) << (52 - 10));
705
706 /* result = sign : result_exp<4:0> : fraction<51:42> */
707 f16_val = deposit32(0, 15, 1, f16_sign);
708 f16_val = deposit32(f16_val, 10, 5, f16_exp);
709 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
710 return make_float16(f16_val);
711 }
712
HELPER(recpe_f32)713 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
714 {
715 float_status *fpst = fpstp;
716 float32 f32 = float32_squash_input_denormal(input, fpst);
717 uint32_t f32_val = float32_val(f32);
718 bool f32_sign = float32_is_neg(f32);
719 int f32_exp = extract32(f32_val, 23, 8);
720 uint32_t f32_frac = extract32(f32_val, 0, 23);
721 uint64_t f64_frac;
722
723 if (float32_is_any_nan(f32)) {
724 float32 nan = f32;
725 if (float32_is_signaling_nan(f32, fpst)) {
726 float_raise(float_flag_invalid, fpst);
727 if (!fpst->default_nan_mode) {
728 nan = float32_silence_nan(f32, fpst);
729 }
730 }
731 if (fpst->default_nan_mode) {
732 nan = float32_default_nan(fpst);
733 }
734 return nan;
735 } else if (float32_is_infinity(f32)) {
736 return float32_set_sign(float32_zero, float32_is_neg(f32));
737 } else if (float32_is_zero(f32)) {
738 float_raise(float_flag_divbyzero, fpst);
739 return float32_set_sign(float32_infinity, float32_is_neg(f32));
740 } else if (float32_abs(f32) < (1ULL << 21)) {
741 /* Abs(value) < 2.0^-128 */
742 float_raise(float_flag_overflow | float_flag_inexact, fpst);
743 if (round_to_inf(fpst, f32_sign)) {
744 return float32_set_sign(float32_infinity, f32_sign);
745 } else {
746 return float32_set_sign(float32_maxnorm, f32_sign);
747 }
748 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
749 float_raise(float_flag_underflow, fpst);
750 return float32_set_sign(float32_zero, float32_is_neg(f32));
751 }
752
753 f64_frac = call_recip_estimate(&f32_exp, 253,
754 ((uint64_t) f32_frac) << (52 - 23));
755
756 /* result = sign : result_exp<7:0> : fraction<51:29> */
757 f32_val = deposit32(0, 31, 1, f32_sign);
758 f32_val = deposit32(f32_val, 23, 8, f32_exp);
759 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
760 return make_float32(f32_val);
761 }
762
HELPER(recpe_f64)763 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
764 {
765 float_status *fpst = fpstp;
766 float64 f64 = float64_squash_input_denormal(input, fpst);
767 uint64_t f64_val = float64_val(f64);
768 bool f64_sign = float64_is_neg(f64);
769 int f64_exp = extract64(f64_val, 52, 11);
770 uint64_t f64_frac = extract64(f64_val, 0, 52);
771
772 /* Deal with any special cases */
773 if (float64_is_any_nan(f64)) {
774 float64 nan = f64;
775 if (float64_is_signaling_nan(f64, fpst)) {
776 float_raise(float_flag_invalid, fpst);
777 if (!fpst->default_nan_mode) {
778 nan = float64_silence_nan(f64, fpst);
779 }
780 }
781 if (fpst->default_nan_mode) {
782 nan = float64_default_nan(fpst);
783 }
784 return nan;
785 } else if (float64_is_infinity(f64)) {
786 return float64_set_sign(float64_zero, float64_is_neg(f64));
787 } else if (float64_is_zero(f64)) {
788 float_raise(float_flag_divbyzero, fpst);
789 return float64_set_sign(float64_infinity, float64_is_neg(f64));
790 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
791 /* Abs(value) < 2.0^-1024 */
792 float_raise(float_flag_overflow | float_flag_inexact, fpst);
793 if (round_to_inf(fpst, f64_sign)) {
794 return float64_set_sign(float64_infinity, f64_sign);
795 } else {
796 return float64_set_sign(float64_maxnorm, f64_sign);
797 }
798 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
799 float_raise(float_flag_underflow, fpst);
800 return float64_set_sign(float64_zero, float64_is_neg(f64));
801 }
802
803 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
804
805 /* result = sign : result_exp<10:0> : fraction<51:0>; */
806 f64_val = deposit64(0, 63, 1, f64_sign);
807 f64_val = deposit64(f64_val, 52, 11, f64_exp);
808 f64_val = deposit64(f64_val, 0, 52, f64_frac);
809 return make_float64(f64_val);
810 }
811
812 /* The algorithm that must be used to calculate the estimate
813 * is specified by the ARM ARM.
814 */
815
do_recip_sqrt_estimate(int a)816 static int do_recip_sqrt_estimate(int a)
817 {
818 int b, estimate;
819
820 assert(128 <= a && a < 512);
821 if (a < 256) {
822 a = a * 2 + 1;
823 } else {
824 a = (a >> 1) << 1;
825 a = (a + 1) * 2;
826 }
827 b = 512;
828 while (a * (b + 1) * (b + 1) < (1 << 28)) {
829 b += 1;
830 }
831 estimate = (b + 1) / 2;
832 assert(256 <= estimate && estimate < 512);
833
834 return estimate;
835 }
836
837
recip_sqrt_estimate(int * exp,int exp_off,uint64_t frac)838 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
839 {
840 int estimate;
841 uint32_t scaled;
842
843 if (*exp == 0) {
844 while (extract64(frac, 51, 1) == 0) {
845 frac = frac << 1;
846 *exp -= 1;
847 }
848 frac = extract64(frac, 0, 51) << 1;
849 }
850
851 if (*exp & 1) {
852 /* scaled = UInt('01':fraction<51:45>) */
853 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
854 } else {
855 /* scaled = UInt('1':fraction<51:44>) */
856 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
857 }
858 estimate = do_recip_sqrt_estimate(scaled);
859
860 *exp = (exp_off - *exp) / 2;
861 return extract64(estimate, 0, 8) << 44;
862 }
863
HELPER(rsqrte_f16)864 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
865 {
866 float_status *s = fpstp;
867 float16 f16 = float16_squash_input_denormal(input, s);
868 uint16_t val = float16_val(f16);
869 bool f16_sign = float16_is_neg(f16);
870 int f16_exp = extract32(val, 10, 5);
871 uint16_t f16_frac = extract32(val, 0, 10);
872 uint64_t f64_frac;
873
874 if (float16_is_any_nan(f16)) {
875 float16 nan = f16;
876 if (float16_is_signaling_nan(f16, s)) {
877 float_raise(float_flag_invalid, s);
878 if (!s->default_nan_mode) {
879 nan = float16_silence_nan(f16, fpstp);
880 }
881 }
882 if (s->default_nan_mode) {
883 nan = float16_default_nan(s);
884 }
885 return nan;
886 } else if (float16_is_zero(f16)) {
887 float_raise(float_flag_divbyzero, s);
888 return float16_set_sign(float16_infinity, f16_sign);
889 } else if (f16_sign) {
890 float_raise(float_flag_invalid, s);
891 return float16_default_nan(s);
892 } else if (float16_is_infinity(f16)) {
893 return float16_zero;
894 }
895
896 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
897 * preserving the parity of the exponent. */
898
899 f64_frac = ((uint64_t) f16_frac) << (52 - 10);
900
901 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
902
903 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
904 val = deposit32(0, 15, 1, f16_sign);
905 val = deposit32(val, 10, 5, f16_exp);
906 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
907 return make_float16(val);
908 }
909
HELPER(rsqrte_f32)910 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
911 {
912 float_status *s = fpstp;
913 float32 f32 = float32_squash_input_denormal(input, s);
914 uint32_t val = float32_val(f32);
915 uint32_t f32_sign = float32_is_neg(f32);
916 int f32_exp = extract32(val, 23, 8);
917 uint32_t f32_frac = extract32(val, 0, 23);
918 uint64_t f64_frac;
919
920 if (float32_is_any_nan(f32)) {
921 float32 nan = f32;
922 if (float32_is_signaling_nan(f32, s)) {
923 float_raise(float_flag_invalid, s);
924 if (!s->default_nan_mode) {
925 nan = float32_silence_nan(f32, fpstp);
926 }
927 }
928 if (s->default_nan_mode) {
929 nan = float32_default_nan(s);
930 }
931 return nan;
932 } else if (float32_is_zero(f32)) {
933 float_raise(float_flag_divbyzero, s);
934 return float32_set_sign(float32_infinity, float32_is_neg(f32));
935 } else if (float32_is_neg(f32)) {
936 float_raise(float_flag_invalid, s);
937 return float32_default_nan(s);
938 } else if (float32_is_infinity(f32)) {
939 return float32_zero;
940 }
941
942 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
943 * preserving the parity of the exponent. */
944
945 f64_frac = ((uint64_t) f32_frac) << 29;
946
947 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
948
949 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
950 val = deposit32(0, 31, 1, f32_sign);
951 val = deposit32(val, 23, 8, f32_exp);
952 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
953 return make_float32(val);
954 }
955
HELPER(rsqrte_f64)956 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
957 {
958 float_status *s = fpstp;
959 float64 f64 = float64_squash_input_denormal(input, s);
960 uint64_t val = float64_val(f64);
961 bool f64_sign = float64_is_neg(f64);
962 int f64_exp = extract64(val, 52, 11);
963 uint64_t f64_frac = extract64(val, 0, 52);
964
965 if (float64_is_any_nan(f64)) {
966 float64 nan = f64;
967 if (float64_is_signaling_nan(f64, s)) {
968 float_raise(float_flag_invalid, s);
969 if (!s->default_nan_mode) {
970 nan = float64_silence_nan(f64, fpstp);
971 }
972 }
973 if (s->default_nan_mode) {
974 nan = float64_default_nan(s);
975 }
976 return nan;
977 } else if (float64_is_zero(f64)) {
978 float_raise(float_flag_divbyzero, s);
979 return float64_set_sign(float64_infinity, float64_is_neg(f64));
980 } else if (float64_is_neg(f64)) {
981 float_raise(float_flag_invalid, s);
982 return float64_default_nan(s);
983 } else if (float64_is_infinity(f64)) {
984 return float64_zero;
985 }
986
987 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
988
989 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
990 val = deposit64(0, 61, 1, f64_sign);
991 val = deposit64(val, 52, 11, f64_exp);
992 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
993 return make_float64(val);
994 }
995
HELPER(recpe_u32)996 uint32_t HELPER(recpe_u32)(uint32_t a)
997 {
998 int input, estimate;
999
1000 if ((a & 0x80000000) == 0) {
1001 return 0xffffffff;
1002 }
1003
1004 input = extract32(a, 23, 9);
1005 estimate = recip_estimate(input);
1006
1007 return deposit32(0, (32 - 9), 9, estimate);
1008 }
1009
HELPER(rsqrte_u32)1010 uint32_t HELPER(rsqrte_u32)(uint32_t a)
1011 {
1012 int estimate;
1013
1014 if ((a & 0xc0000000) == 0) {
1015 return 0xffffffff;
1016 }
1017
1018 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
1019
1020 return deposit32(0, 23, 9, estimate);
1021 }
1022
1023 /* VFPv4 fused multiply-accumulate */
VFP_HELPER(muladd,h)1024 dh_ctype_f16 VFP_HELPER(muladd, h)(dh_ctype_f16 a, dh_ctype_f16 b,
1025 dh_ctype_f16 c, void *fpstp)
1026 {
1027 float_status *fpst = fpstp;
1028 return float16_muladd(a, b, c, 0, fpst);
1029 }
1030
VFP_HELPER(muladd,s)1031 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
1032 {
1033 float_status *fpst = fpstp;
1034 return float32_muladd(a, b, c, 0, fpst);
1035 }
1036
VFP_HELPER(muladd,d)1037 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
1038 {
1039 float_status *fpst = fpstp;
1040 return float64_muladd(a, b, c, 0, fpst);
1041 }
1042
1043 /* ARMv8 round to integral */
HELPER(rinth_exact)1044 dh_ctype_f16 HELPER(rinth_exact)(dh_ctype_f16 x, void *fp_status)
1045 {
1046 return float16_round_to_int(x, fp_status);
1047 }
1048
HELPER(rints_exact)1049 float32 HELPER(rints_exact)(float32 x, void *fp_status)
1050 {
1051 return float32_round_to_int(x, fp_status);
1052 }
1053
HELPER(rintd_exact)1054 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
1055 {
1056 return float64_round_to_int(x, fp_status);
1057 }
1058
HELPER(rinth)1059 dh_ctype_f16 HELPER(rinth)(dh_ctype_f16 x, void *fp_status)
1060 {
1061 int old_flags = get_float_exception_flags(fp_status), new_flags;
1062 float16 ret;
1063
1064 ret = float16_round_to_int(x, fp_status);
1065
1066 /* Suppress any inexact exceptions the conversion produced */
1067 if (!(old_flags & float_flag_inexact)) {
1068 new_flags = get_float_exception_flags(fp_status);
1069 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1070 }
1071
1072 return ret;
1073 }
1074
HELPER(rints)1075 float32 HELPER(rints)(float32 x, void *fp_status)
1076 {
1077 int old_flags = get_float_exception_flags(fp_status), new_flags;
1078 float32 ret;
1079
1080 ret = float32_round_to_int(x, fp_status);
1081
1082 /* Suppress any inexact exceptions the conversion produced */
1083 if (!(old_flags & float_flag_inexact)) {
1084 new_flags = get_float_exception_flags(fp_status);
1085 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1086 }
1087
1088 return ret;
1089 }
1090
HELPER(rintd)1091 float64 HELPER(rintd)(float64 x, void *fp_status)
1092 {
1093 int old_flags = get_float_exception_flags(fp_status), new_flags;
1094 float64 ret;
1095
1096 ret = float64_round_to_int(x, fp_status);
1097
1098 new_flags = get_float_exception_flags(fp_status);
1099
1100 /* Suppress any inexact exceptions the conversion produced */
1101 if (!(old_flags & float_flag_inexact)) {
1102 new_flags = get_float_exception_flags(fp_status);
1103 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1104 }
1105
1106 return ret;
1107 }
1108
1109 /* Convert ARM rounding mode to softfloat */
1110 const FloatRoundMode arm_rmode_to_sf_map[] = {
1111 [FPROUNDING_TIEEVEN] = float_round_nearest_even,
1112 [FPROUNDING_POSINF] = float_round_up,
1113 [FPROUNDING_NEGINF] = float_round_down,
1114 [FPROUNDING_ZERO] = float_round_to_zero,
1115 [FPROUNDING_TIEAWAY] = float_round_ties_away,
1116 [FPROUNDING_ODD] = float_round_to_odd,
1117 };
1118
1119 /*
1120 * Implement float64 to int32_t conversion without saturation;
1121 * the result is supplied modulo 2^32.
1122 */
HELPER(fjcvtzs)1123 uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus)
1124 {
1125 float_status *status = vstatus;
1126 uint32_t frac, e_old, e_new;
1127 bool inexact;
1128
1129 e_old = get_float_exception_flags(status);
1130 set_float_exception_flags(0, status);
1131 frac = float64_to_int32_modulo(value, float_round_to_zero, status);
1132 e_new = get_float_exception_flags(status);
1133 set_float_exception_flags(e_old | e_new, status);
1134
1135 /* Normal inexact, denormal with flush-to-zero, or overflow or NaN */
1136 inexact = e_new & (float_flag_inexact |
1137 float_flag_input_denormal |
1138 float_flag_invalid);
1139
1140 /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript. */
1141 inexact |= value == float64_chs(float64_zero);
1142
1143 /* Pack the result and the env->ZF representation of Z together. */
1144 return deposit64(frac, 32, 32, inexact);
1145 }
1146
HELPER(vjcvt)1147 uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
1148 {
1149 uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status);
1150 uint32_t result = pair;
1151 uint32_t z = (pair >> 32) == 0;
1152
1153 /* Store Z, clear NCV, in FPSCR.NZCV. */
1154 env->vfp.fpsr = (env->vfp.fpsr & ~FPSR_NZCV_MASK) | (z * FPSR_Z);
1155
1156 return result;
1157 }
1158
1159 /* Round a float32 to an integer that fits in int32_t or int64_t. */
frint_s(float32 f,float_status * fpst,int intsize)1160 static float32 frint_s(float32 f, float_status *fpst, int intsize)
1161 {
1162 int old_flags = get_float_exception_flags(fpst);
1163 uint32_t exp = extract32(f, 23, 8);
1164
1165 if (unlikely(exp == 0xff)) {
1166 /* NaN or Inf. */
1167 goto overflow;
1168 }
1169
1170 /* Round and re-extract the exponent. */
1171 f = float32_round_to_int(f, fpst);
1172 exp = extract32(f, 23, 8);
1173
1174 /* Validate the range of the result. */
1175 if (exp < 126 + intsize) {
1176 /* abs(F) <= INT{N}_MAX */
1177 return f;
1178 }
1179 if (exp == 126 + intsize) {
1180 uint32_t sign = extract32(f, 31, 1);
1181 uint32_t frac = extract32(f, 0, 23);
1182 if (sign && frac == 0) {
1183 /* F == INT{N}_MIN */
1184 return f;
1185 }
1186 }
1187
1188 overflow:
1189 /*
1190 * Raise Invalid and return INT{N}_MIN as a float. Revert any
1191 * inexact exception float32_round_to_int may have raised.
1192 */
1193 set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1194 return (0x100u + 126u + intsize) << 23;
1195 }
1196
HELPER(frint32_s)1197 float32 HELPER(frint32_s)(float32 f, void *fpst)
1198 {
1199 return frint_s(f, fpst, 32);
1200 }
1201
HELPER(frint64_s)1202 float32 HELPER(frint64_s)(float32 f, void *fpst)
1203 {
1204 return frint_s(f, fpst, 64);
1205 }
1206
1207 /* Round a float64 to an integer that fits in int32_t or int64_t. */
frint_d(float64 f,float_status * fpst,int intsize)1208 static float64 frint_d(float64 f, float_status *fpst, int intsize)
1209 {
1210 int old_flags = get_float_exception_flags(fpst);
1211 uint32_t exp = extract64(f, 52, 11);
1212
1213 if (unlikely(exp == 0x7ff)) {
1214 /* NaN or Inf. */
1215 goto overflow;
1216 }
1217
1218 /* Round and re-extract the exponent. */
1219 f = float64_round_to_int(f, fpst);
1220 exp = extract64(f, 52, 11);
1221
1222 /* Validate the range of the result. */
1223 if (exp < 1022 + intsize) {
1224 /* abs(F) <= INT{N}_MAX */
1225 return f;
1226 }
1227 if (exp == 1022 + intsize) {
1228 uint64_t sign = extract64(f, 63, 1);
1229 uint64_t frac = extract64(f, 0, 52);
1230 if (sign && frac == 0) {
1231 /* F == INT{N}_MIN */
1232 return f;
1233 }
1234 }
1235
1236 overflow:
1237 /*
1238 * Raise Invalid and return INT{N}_MIN as a float. Revert any
1239 * inexact exception float64_round_to_int may have raised.
1240 */
1241 set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1242 return (uint64_t)(0x800 + 1022 + intsize) << 52;
1243 }
1244
HELPER(frint32_d)1245 float64 HELPER(frint32_d)(float64 f, void *fpst)
1246 {
1247 return frint_d(f, fpst, 32);
1248 }
1249
HELPER(frint64_d)1250 float64 HELPER(frint64_d)(float64 f, void *fpst)
1251 {
1252 return frint_d(f, fpst, 64);
1253 }
1254
HELPER(check_hcr_el2_trap)1255 void HELPER(check_hcr_el2_trap)(CPUARMState *env, uint32_t rt, uint32_t reg)
1256 {
1257 uint32_t syndrome;
1258
1259 switch (reg) {
1260 case ARM_VFP_MVFR0:
1261 case ARM_VFP_MVFR1:
1262 case ARM_VFP_MVFR2:
1263 if (!(arm_hcr_el2_eff(env) & HCR_TID3)) {
1264 return;
1265 }
1266 break;
1267 case ARM_VFP_FPSID:
1268 if (!(arm_hcr_el2_eff(env) & HCR_TID0)) {
1269 return;
1270 }
1271 break;
1272 default:
1273 g_assert_not_reached();
1274 }
1275
1276 syndrome = ((EC_FPIDTRAP << ARM_EL_EC_SHIFT)
1277 | ARM_EL_IL
1278 | (1 << 24) | (0xe << 20) | (7 << 14)
1279 | (reg << 10) | (rt << 5) | 1);
1280
1281 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
1282 }
1283
1284 #endif
1285