1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * FM Driver for Connectivity chip of Texas Instruments.
4 *
5 * This sub-module of FM driver is common for FM RX and TX
6 * functionality. This module is responsible for:
7 * 1) Forming group of Channel-8 commands to perform particular
8 * functionality (eg., frequency set require more than
9 * one Channel-8 command to be sent to the chip).
10 * 2) Sending each Channel-8 command to the chip and reading
11 * response back over Shared Transport.
12 * 3) Managing TX and RX Queues and Tasklets.
13 * 4) Handling FM Interrupt packet and taking appropriate action.
14 * 5) Loading FM firmware to the chip (common, FM TX, and FM RX
15 * firmware files based on mode selection)
16 *
17 * Copyright (C) 2011 Texas Instruments
18 * Author: Raja Mani <raja_mani@ti.com>
19 * Author: Manjunatha Halli <manjunatha_halli@ti.com>
20 */
21
22 #include <linux/delay.h>
23 #include <linux/firmware.h>
24 #include <linux/module.h>
25 #include <linux/nospec.h>
26 #include <linux/jiffies.h>
27
28 #include "fmdrv.h"
29 #include "fmdrv_v4l2.h"
30 #include "fmdrv_common.h"
31 #include <linux/ti_wilink_st.h>
32 #include "fmdrv_rx.h"
33 #include "fmdrv_tx.h"
34
35 /* Region info */
36 static struct region_info region_configs[] = {
37 /* Europe/US */
38 {
39 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
40 .bot_freq = 87500, /* 87.5 MHz */
41 .top_freq = 108000, /* 108 MHz */
42 .fm_band = 0,
43 },
44 /* Japan */
45 {
46 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
47 .bot_freq = 76000, /* 76 MHz */
48 .top_freq = 90000, /* 90 MHz */
49 .fm_band = 1,
50 },
51 };
52
53 /* Band selection */
54 static u8 default_radio_region; /* Europe/US */
55 module_param(default_radio_region, byte, 0);
56 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
57
58 /* RDS buffer blocks */
59 static u32 default_rds_buf = 300;
60 module_param(default_rds_buf, uint, 0444);
61 MODULE_PARM_DESC(default_rds_buf, "RDS buffer entries");
62
63 /* Radio Nr */
64 static u32 radio_nr = -1;
65 module_param(radio_nr, int, 0444);
66 MODULE_PARM_DESC(radio_nr, "Radio Nr");
67
68 /* FM irq handlers forward declaration */
69 static void fm_irq_send_flag_getcmd(struct fmdev *);
70 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
71 static void fm_irq_handle_hw_malfunction(struct fmdev *);
72 static void fm_irq_handle_rds_start(struct fmdev *);
73 static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
74 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
75 static void fm_irq_handle_rds_finish(struct fmdev *);
76 static void fm_irq_handle_tune_op_ended(struct fmdev *);
77 static void fm_irq_handle_power_enb(struct fmdev *);
78 static void fm_irq_handle_low_rssi_start(struct fmdev *);
79 static void fm_irq_afjump_set_pi(struct fmdev *);
80 static void fm_irq_handle_set_pi_resp(struct fmdev *);
81 static void fm_irq_afjump_set_pimask(struct fmdev *);
82 static void fm_irq_handle_set_pimask_resp(struct fmdev *);
83 static void fm_irq_afjump_setfreq(struct fmdev *);
84 static void fm_irq_handle_setfreq_resp(struct fmdev *);
85 static void fm_irq_afjump_enableint(struct fmdev *);
86 static void fm_irq_afjump_enableint_resp(struct fmdev *);
87 static void fm_irq_start_afjump(struct fmdev *);
88 static void fm_irq_handle_start_afjump_resp(struct fmdev *);
89 static void fm_irq_afjump_rd_freq(struct fmdev *);
90 static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
91 static void fm_irq_handle_low_rssi_finish(struct fmdev *);
92 static void fm_irq_send_intmsk_cmd(struct fmdev *);
93 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
94
95 /*
96 * When FM common module receives interrupt packet, following handlers
97 * will be executed one after another to service the interrupt(s)
98 */
99 enum fmc_irq_handler_index {
100 FM_SEND_FLAG_GETCMD_IDX,
101 FM_HANDLE_FLAG_GETCMD_RESP_IDX,
102
103 /* HW malfunction irq handler */
104 FM_HW_MAL_FUNC_IDX,
105
106 /* RDS threshold reached irq handler */
107 FM_RDS_START_IDX,
108 FM_RDS_SEND_RDS_GETCMD_IDX,
109 FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
110 FM_RDS_FINISH_IDX,
111
112 /* Tune operation ended irq handler */
113 FM_HW_TUNE_OP_ENDED_IDX,
114
115 /* TX power enable irq handler */
116 FM_HW_POWER_ENB_IDX,
117
118 /* Low RSSI irq handler */
119 FM_LOW_RSSI_START_IDX,
120 FM_AF_JUMP_SETPI_IDX,
121 FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
122 FM_AF_JUMP_SETPI_MASK_IDX,
123 FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
124 FM_AF_JUMP_SET_AF_FREQ_IDX,
125 FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
126 FM_AF_JUMP_ENABLE_INT_IDX,
127 FM_AF_JUMP_ENABLE_INT_RESP_IDX,
128 FM_AF_JUMP_START_AFJUMP_IDX,
129 FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
130 FM_AF_JUMP_RD_FREQ_IDX,
131 FM_AF_JUMP_RD_FREQ_RESP_IDX,
132 FM_LOW_RSSI_FINISH_IDX,
133
134 /* Interrupt process post action */
135 FM_SEND_INTMSK_CMD_IDX,
136 FM_HANDLE_INTMSK_CMD_RESP_IDX,
137 };
138
139 /* FM interrupt handler table */
140 static int_handler_prototype int_handler_table[] = {
141 fm_irq_send_flag_getcmd,
142 fm_irq_handle_flag_getcmd_resp,
143 fm_irq_handle_hw_malfunction,
144 fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
145 fm_irq_send_rdsdata_getcmd,
146 fm_irq_handle_rdsdata_getcmd_resp,
147 fm_irq_handle_rds_finish,
148 fm_irq_handle_tune_op_ended,
149 fm_irq_handle_power_enb, /* TX power enable irq handler */
150 fm_irq_handle_low_rssi_start,
151 fm_irq_afjump_set_pi,
152 fm_irq_handle_set_pi_resp,
153 fm_irq_afjump_set_pimask,
154 fm_irq_handle_set_pimask_resp,
155 fm_irq_afjump_setfreq,
156 fm_irq_handle_setfreq_resp,
157 fm_irq_afjump_enableint,
158 fm_irq_afjump_enableint_resp,
159 fm_irq_start_afjump,
160 fm_irq_handle_start_afjump_resp,
161 fm_irq_afjump_rd_freq,
162 fm_irq_afjump_rd_freq_resp,
163 fm_irq_handle_low_rssi_finish,
164 fm_irq_send_intmsk_cmd, /* Interrupt process post action */
165 fm_irq_handle_intmsk_cmd_resp
166 };
167
168 static long (*g_st_write) (struct sk_buff *skb);
169 static struct completion wait_for_fmdrv_reg_comp;
170
fm_irq_call(struct fmdev * fmdev)171 static inline void fm_irq_call(struct fmdev *fmdev)
172 {
173 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
174 }
175
176 /* Continue next function in interrupt handler table */
fm_irq_call_stage(struct fmdev * fmdev,u8 stage)177 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
178 {
179 fmdev->irq_info.stage = stage;
180 fm_irq_call(fmdev);
181 }
182
fm_irq_timeout_stage(struct fmdev * fmdev,u8 stage)183 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
184 {
185 fmdev->irq_info.stage = stage;
186 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
187 }
188
189 #ifdef FM_DUMP_TXRX_PKT
190 /* To dump outgoing FM Channel-8 packets */
dump_tx_skb_data(struct sk_buff * skb)191 inline void dump_tx_skb_data(struct sk_buff *skb)
192 {
193 int len, len_org;
194 u8 index;
195 struct fm_cmd_msg_hdr *cmd_hdr;
196
197 cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
198 printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
199 fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
200 cmd_hdr->len, cmd_hdr->op,
201 cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
202
203 len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
204 if (len_org > 0) {
205 printk(KERN_CONT "\n data(%d): ", cmd_hdr->dlen);
206 len = min(len_org, 14);
207 for (index = 0; index < len; index++)
208 printk(KERN_CONT "%x ",
209 skb->data[FM_CMD_MSG_HDR_SIZE + index]);
210 printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
211 }
212 printk(KERN_CONT "\n");
213 }
214
215 /* To dump incoming FM Channel-8 packets */
dump_rx_skb_data(struct sk_buff * skb)216 inline void dump_rx_skb_data(struct sk_buff *skb)
217 {
218 int len, len_org;
219 u8 index;
220 struct fm_event_msg_hdr *evt_hdr;
221
222 evt_hdr = (struct fm_event_msg_hdr *)skb->data;
223 printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x opcode:%02x type:%s dlen:%02x",
224 evt_hdr->hdr, evt_hdr->len,
225 evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
226 (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
227
228 len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
229 if (len_org > 0) {
230 printk(KERN_CONT "\n data(%d): ", evt_hdr->dlen);
231 len = min(len_org, 14);
232 for (index = 0; index < len; index++)
233 printk(KERN_CONT "%x ",
234 skb->data[FM_EVT_MSG_HDR_SIZE + index]);
235 printk(KERN_CONT "%s", (len_org > 14) ? ".." : "");
236 }
237 printk(KERN_CONT "\n");
238 }
239 #endif
240
fmc_update_region_info(struct fmdev * fmdev,u8 region_to_set)241 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
242 {
243 fmdev->rx.region = region_configs[region_to_set];
244 }
245
246 /*
247 * FM common sub-module will schedule this tasklet whenever it receives
248 * FM packet from ST driver.
249 */
recv_tasklet(struct tasklet_struct * t)250 static void recv_tasklet(struct tasklet_struct *t)
251 {
252 struct fmdev *fmdev;
253 struct fm_irq *irq_info;
254 struct fm_event_msg_hdr *evt_hdr;
255 struct sk_buff *skb;
256 u8 num_fm_hci_cmds;
257 unsigned long flags;
258
259 fmdev = from_tasklet(fmdev, t, tx_task);
260 irq_info = &fmdev->irq_info;
261 /* Process all packets in the RX queue */
262 while ((skb = skb_dequeue(&fmdev->rx_q))) {
263 if (skb->len < sizeof(struct fm_event_msg_hdr)) {
264 fmerr("skb(%p) has only %d bytes, at least need %zu bytes to decode\n",
265 skb,
266 skb->len, sizeof(struct fm_event_msg_hdr));
267 kfree_skb(skb);
268 continue;
269 }
270
271 evt_hdr = (void *)skb->data;
272 num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
273
274 /* FM interrupt packet? */
275 if (evt_hdr->op == FM_INTERRUPT) {
276 /* FM interrupt handler started already? */
277 if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
278 set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
279 if (irq_info->stage != 0) {
280 fmerr("Inval stage resetting to zero\n");
281 irq_info->stage = 0;
282 }
283
284 /*
285 * Execute first function in interrupt handler
286 * table.
287 */
288 irq_info->handlers[irq_info->stage](fmdev);
289 } else {
290 set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
291 }
292 kfree_skb(skb);
293 }
294 /* Anyone waiting for this with completion handler? */
295 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
296
297 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
298 fmdev->resp_skb = skb;
299 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
300 complete(fmdev->resp_comp);
301
302 fmdev->resp_comp = NULL;
303 atomic_set(&fmdev->tx_cnt, 1);
304 }
305 /* Is this for interrupt handler? */
306 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
307 if (fmdev->resp_skb != NULL)
308 fmerr("Response SKB ptr not NULL\n");
309
310 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
311 fmdev->resp_skb = skb;
312 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
313
314 /* Execute interrupt handler where state index points */
315 irq_info->handlers[irq_info->stage](fmdev);
316
317 kfree_skb(skb);
318 atomic_set(&fmdev->tx_cnt, 1);
319 } else {
320 fmerr("Nobody claimed SKB(%p),purging\n", skb);
321 }
322
323 /*
324 * Check flow control field. If Num_FM_HCI_Commands field is
325 * not zero, schedule FM TX tasklet.
326 */
327 if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
328 if (!skb_queue_empty(&fmdev->tx_q))
329 tasklet_schedule(&fmdev->tx_task);
330 }
331 }
332
333 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */
send_tasklet(struct tasklet_struct * t)334 static void send_tasklet(struct tasklet_struct *t)
335 {
336 struct fmdev *fmdev;
337 struct sk_buff *skb;
338 int len;
339
340 fmdev = from_tasklet(fmdev, t, tx_task);
341
342 if (!atomic_read(&fmdev->tx_cnt))
343 return;
344
345 /* Check, is there any timeout happened to last transmitted packet */
346 if (time_is_before_jiffies(fmdev->last_tx_jiffies + FM_DRV_TX_TIMEOUT)) {
347 fmerr("TX timeout occurred\n");
348 atomic_set(&fmdev->tx_cnt, 1);
349 }
350
351 /* Send queued FM TX packets */
352 skb = skb_dequeue(&fmdev->tx_q);
353 if (!skb)
354 return;
355
356 atomic_dec(&fmdev->tx_cnt);
357 fmdev->pre_op = fm_cb(skb)->fm_op;
358
359 if (fmdev->resp_comp != NULL)
360 fmerr("Response completion handler is not NULL\n");
361
362 fmdev->resp_comp = fm_cb(skb)->completion;
363
364 /* Write FM packet to ST driver */
365 len = g_st_write(skb);
366 if (len < 0) {
367 kfree_skb(skb);
368 fmdev->resp_comp = NULL;
369 fmerr("TX tasklet failed to send skb(%p)\n", skb);
370 atomic_set(&fmdev->tx_cnt, 1);
371 } else {
372 fmdev->last_tx_jiffies = jiffies;
373 }
374 }
375
376 /*
377 * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
378 * transmission
379 */
fm_send_cmd(struct fmdev * fmdev,u8 fm_op,u16 type,void * payload,int payload_len,struct completion * wait_completion)380 static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
381 int payload_len, struct completion *wait_completion)
382 {
383 struct sk_buff *skb;
384 struct fm_cmd_msg_hdr *hdr;
385 int size;
386
387 if (fm_op >= FM_INTERRUPT) {
388 fmerr("Invalid fm opcode - %d\n", fm_op);
389 return -EINVAL;
390 }
391 if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
392 fmerr("Payload data is NULL during fw download\n");
393 return -EINVAL;
394 }
395 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
396 size =
397 FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
398 else
399 size = payload_len;
400
401 skb = alloc_skb(size, GFP_ATOMIC);
402 if (!skb) {
403 fmerr("No memory to create new SKB\n");
404 return -ENOMEM;
405 }
406 /*
407 * Don't fill FM header info for the commands which come from
408 * FM firmware file.
409 */
410 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
411 test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
412 /* Fill command header info */
413 hdr = skb_put(skb, FM_CMD_MSG_HDR_SIZE);
414 hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER; /* 0x08 */
415
416 /* 3 (fm_opcode,rd_wr,dlen) + payload len) */
417 hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
418
419 /* FM opcode */
420 hdr->op = fm_op;
421
422 /* read/write type */
423 hdr->rd_wr = type;
424 hdr->dlen = payload_len;
425 fm_cb(skb)->fm_op = fm_op;
426
427 /*
428 * If firmware download has finished and the command is
429 * not a read command then payload is != NULL - a write
430 * command with u16 payload - convert to be16
431 */
432 if (payload != NULL)
433 *(__be16 *)payload = cpu_to_be16(*(u16 *)payload);
434
435 } else if (payload != NULL) {
436 fm_cb(skb)->fm_op = *((u8 *)payload + 2);
437 }
438 if (payload != NULL)
439 skb_put_data(skb, payload, payload_len);
440
441 fm_cb(skb)->completion = wait_completion;
442 skb_queue_tail(&fmdev->tx_q, skb);
443 tasklet_schedule(&fmdev->tx_task);
444
445 return 0;
446 }
447
448 /* Sends FM Channel-8 command to the chip and waits for the response */
fmc_send_cmd(struct fmdev * fmdev,u8 fm_op,u16 type,void * payload,unsigned int payload_len,void * response,int * response_len)449 int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
450 unsigned int payload_len, void *response, int *response_len)
451 {
452 struct sk_buff *skb;
453 struct fm_event_msg_hdr *evt_hdr;
454 unsigned long flags;
455 int ret;
456
457 init_completion(&fmdev->maintask_comp);
458 ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
459 &fmdev->maintask_comp);
460 if (ret)
461 return ret;
462
463 if (!wait_for_completion_timeout(&fmdev->maintask_comp,
464 FM_DRV_TX_TIMEOUT)) {
465 fmerr("Timeout(%d sec),didn't get regcompletion signal from RX tasklet\n",
466 jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
467 return -ETIMEDOUT;
468 }
469 if (!fmdev->resp_skb) {
470 fmerr("Response SKB is missing\n");
471 return -EFAULT;
472 }
473 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
474 skb = fmdev->resp_skb;
475 fmdev->resp_skb = NULL;
476 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
477
478 evt_hdr = (void *)skb->data;
479 if (evt_hdr->status != 0) {
480 fmerr("Received event pkt status(%d) is not zero\n",
481 evt_hdr->status);
482 kfree_skb(skb);
483 return -EIO;
484 }
485 /* Send response data to caller */
486 if (response != NULL && response_len != NULL && evt_hdr->dlen &&
487 evt_hdr->dlen <= payload_len) {
488 /* Skip header info and copy only response data */
489 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
490 memcpy(response, skb->data, evt_hdr->dlen);
491 *response_len = evt_hdr->dlen;
492 } else if (response_len != NULL && evt_hdr->dlen == 0) {
493 *response_len = 0;
494 }
495 kfree_skb(skb);
496
497 return 0;
498 }
499
500 /* --- Helper functions used in FM interrupt handlers ---*/
check_cmdresp_status(struct fmdev * fmdev,struct sk_buff ** skb)501 static inline int check_cmdresp_status(struct fmdev *fmdev,
502 struct sk_buff **skb)
503 {
504 struct fm_event_msg_hdr *fm_evt_hdr;
505 unsigned long flags;
506
507 del_timer(&fmdev->irq_info.timer);
508
509 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
510 *skb = fmdev->resp_skb;
511 fmdev->resp_skb = NULL;
512 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
513
514 fm_evt_hdr = (void *)(*skb)->data;
515 if (fm_evt_hdr->status != 0) {
516 fmerr("irq: opcode %x response status is not zero Initiating irq recovery process\n",
517 fm_evt_hdr->op);
518
519 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
520 return -1;
521 }
522
523 return 0;
524 }
525
fm_irq_common_cmd_resp_helper(struct fmdev * fmdev,u8 stage)526 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
527 {
528 struct sk_buff *skb;
529
530 if (!check_cmdresp_status(fmdev, &skb))
531 fm_irq_call_stage(fmdev, stage);
532 }
533
534 /*
535 * Interrupt process timeout handler.
536 * One of the irq handler did not get proper response from the chip. So take
537 * recovery action here. FM interrupts are disabled in the beginning of
538 * interrupt process. Therefore reset stage index to re-enable default
539 * interrupts. So that next interrupt will be processed as usual.
540 */
int_timeout_handler(struct timer_list * t)541 static void int_timeout_handler(struct timer_list *t)
542 {
543 struct fmdev *fmdev;
544 struct fm_irq *fmirq;
545
546 fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
547 fmdev = from_timer(fmdev, t, irq_info.timer);
548 fmirq = &fmdev->irq_info;
549 fmirq->retry++;
550
551 if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
552 /* Stop recovery action (interrupt reenable process) and
553 * reset stage index & retry count values */
554 fmirq->stage = 0;
555 fmirq->retry = 0;
556 fmerr("Recovery action failed duringirq processing, max retry reached\n");
557 return;
558 }
559 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
560 }
561
562 /* --------- FM interrupt handlers ------------*/
fm_irq_send_flag_getcmd(struct fmdev * fmdev)563 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
564 {
565 u16 flag;
566
567 /* Send FLAG_GET command , to know the source of interrupt */
568 if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
569 fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
570 }
571
fm_irq_handle_flag_getcmd_resp(struct fmdev * fmdev)572 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
573 {
574 struct sk_buff *skb;
575 struct fm_event_msg_hdr *fm_evt_hdr;
576
577 if (check_cmdresp_status(fmdev, &skb))
578 return;
579
580 fm_evt_hdr = (void *)skb->data;
581 if (fm_evt_hdr->dlen > sizeof(fmdev->irq_info.flag))
582 return;
583
584 /* Skip header info and copy only response data */
585 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
586 memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
587
588 fmdev->irq_info.flag = be16_to_cpu((__force __be16)fmdev->irq_info.flag);
589 fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
590
591 /* Continue next function in interrupt handler table */
592 fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
593 }
594
fm_irq_handle_hw_malfunction(struct fmdev * fmdev)595 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
596 {
597 if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
598 fmerr("irq: HW MAL int received - do nothing\n");
599
600 /* Continue next function in interrupt handler table */
601 fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
602 }
603
fm_irq_handle_rds_start(struct fmdev * fmdev)604 static void fm_irq_handle_rds_start(struct fmdev *fmdev)
605 {
606 if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
607 fmdbg("irq: rds threshold reached\n");
608 fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
609 } else {
610 /* Continue next function in interrupt handler table */
611 fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
612 }
613
614 fm_irq_call(fmdev);
615 }
616
fm_irq_send_rdsdata_getcmd(struct fmdev * fmdev)617 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
618 {
619 /* Send the command to read RDS data from the chip */
620 if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
621 (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
622 fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
623 }
624
625 /* Keeps track of current RX channel AF (Alternate Frequency) */
fm_rx_update_af_cache(struct fmdev * fmdev,u8 af)626 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
627 {
628 struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
629 u8 reg_idx = fmdev->rx.region.fm_band;
630 u8 index;
631 u32 freq;
632
633 /* First AF indicates the number of AF follows. Reset the list */
634 if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
635 fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
636 fmdev->rx.stat_info.afcache_size = 0;
637 fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
638 return;
639 }
640
641 if (af < FM_RDS_MIN_AF)
642 return;
643 if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
644 return;
645 if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
646 return;
647
648 freq = fmdev->rx.region.bot_freq + (af * 100);
649 if (freq == fmdev->rx.freq) {
650 fmdbg("Current freq(%d) is matching with received AF(%d)\n",
651 fmdev->rx.freq, freq);
652 return;
653 }
654 /* Do check in AF cache */
655 for (index = 0; index < stat_info->afcache_size; index++) {
656 if (stat_info->af_cache[index] == freq)
657 break;
658 }
659 /* Reached the limit of the list - ignore the next AF */
660 if (index == stat_info->af_list_max) {
661 fmdbg("AF cache is full\n");
662 return;
663 }
664 /*
665 * If we reached the end of the list then this AF is not
666 * in the list - add it.
667 */
668 if (index == stat_info->afcache_size) {
669 fmdbg("Storing AF %d to cache index %d\n", freq, index);
670 stat_info->af_cache[index] = freq;
671 stat_info->afcache_size++;
672 }
673 }
674
675 /*
676 * Converts RDS buffer data from big endian format
677 * to little endian format.
678 */
fm_rdsparse_swapbytes(struct fmdev * fmdev,struct fm_rdsdata_format * rds_format)679 static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
680 struct fm_rdsdata_format *rds_format)
681 {
682 u8 index = 0;
683 u8 *rds_buff;
684
685 /*
686 * Since in Orca the 2 RDS Data bytes are in little endian and
687 * in Dolphin they are in big endian, the parsing of the RDS data
688 * is chip dependent
689 */
690 if (fmdev->asci_id != 0x6350) {
691 rds_buff = &rds_format->data.groupdatabuff.buff[0];
692 while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
693 swap(rds_buff[index], rds_buff[index + 1]);
694 index += 2;
695 }
696 }
697 }
698
fm_irq_handle_rdsdata_getcmd_resp(struct fmdev * fmdev)699 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
700 {
701 struct sk_buff *skb;
702 struct fm_rdsdata_format rds_fmt;
703 struct fm_rds *rds = &fmdev->rx.rds;
704 unsigned long group_idx, flags;
705 u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE];
706 u8 type, blk_idx, idx;
707 u16 cur_picode;
708 u32 rds_len;
709
710 if (check_cmdresp_status(fmdev, &skb))
711 return;
712
713 /* Skip header info */
714 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
715 rds_data = skb->data;
716 rds_len = skb->len;
717
718 /* Parse the RDS data */
719 while (rds_len >= FM_RDS_BLK_SIZE) {
720 meta_data = rds_data[2];
721 /* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
722 type = (meta_data & 0x07);
723
724 /* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
725 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
726 fmdbg("Block index:%d(%s)\n", blk_idx,
727 (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
728
729 if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
730 break;
731
732 if (blk_idx > FM_RDS_BLK_IDX_D) {
733 fmdbg("Block sequence mismatch\n");
734 rds->last_blk_idx = -1;
735 break;
736 }
737
738 /* Skip checkword (control) byte and copy only data byte */
739 idx = array_index_nospec(blk_idx * (FM_RDS_BLK_SIZE - 1),
740 FM_RX_RDS_INFO_FIELD_MAX - (FM_RDS_BLK_SIZE - 1));
741
742 memcpy(&rds_fmt.data.groupdatabuff.buff[idx], rds_data,
743 FM_RDS_BLK_SIZE - 1);
744
745 rds->last_blk_idx = blk_idx;
746
747 /* If completed a whole group then handle it */
748 if (blk_idx == FM_RDS_BLK_IDX_D) {
749 fmdbg("Good block received\n");
750 fm_rdsparse_swapbytes(fmdev, &rds_fmt);
751
752 /*
753 * Extract PI code and store in local cache.
754 * We need this during AF switch processing.
755 */
756 cur_picode = be16_to_cpu((__force __be16)rds_fmt.data.groupgeneral.pidata);
757 if (fmdev->rx.stat_info.picode != cur_picode)
758 fmdev->rx.stat_info.picode = cur_picode;
759
760 fmdbg("picode:%d\n", cur_picode);
761
762 group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
763 fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
764 (group_idx % 2) ? "B" : "A");
765
766 group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
767 if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
768 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
769 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
770 }
771 }
772 rds_len -= FM_RDS_BLK_SIZE;
773 rds_data += FM_RDS_BLK_SIZE;
774 }
775
776 /* Copy raw rds data to internal rds buffer */
777 rds_data = skb->data;
778 rds_len = skb->len;
779
780 spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
781 while (rds_len > 0) {
782 /*
783 * Fill RDS buffer as per V4L2 specification.
784 * Store control byte
785 */
786 type = (rds_data[2] & 0x07);
787 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
788 tmpbuf[2] = blk_idx; /* Offset name */
789 tmpbuf[2] |= blk_idx << 3; /* Received offset */
790
791 /* Store data byte */
792 tmpbuf[0] = rds_data[0];
793 tmpbuf[1] = rds_data[1];
794
795 memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
796 rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
797
798 /* Check for overflow & start over */
799 if (rds->wr_idx == rds->rd_idx) {
800 fmdbg("RDS buffer overflow\n");
801 rds->wr_idx = 0;
802 rds->rd_idx = 0;
803 break;
804 }
805 rds_len -= FM_RDS_BLK_SIZE;
806 rds_data += FM_RDS_BLK_SIZE;
807 }
808 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
809
810 /* Wakeup read queue */
811 if (rds->wr_idx != rds->rd_idx)
812 wake_up_interruptible(&rds->read_queue);
813
814 fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
815 }
816
fm_irq_handle_rds_finish(struct fmdev * fmdev)817 static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
818 {
819 fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
820 }
821
fm_irq_handle_tune_op_ended(struct fmdev * fmdev)822 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
823 {
824 if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
825 irq_info.mask) {
826 fmdbg("irq: tune ended/bandlimit reached\n");
827 if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
828 fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
829 } else {
830 complete(&fmdev->maintask_comp);
831 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
832 }
833 } else
834 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
835
836 fm_irq_call(fmdev);
837 }
838
fm_irq_handle_power_enb(struct fmdev * fmdev)839 static void fm_irq_handle_power_enb(struct fmdev *fmdev)
840 {
841 if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
842 fmdbg("irq: Power Enabled/Disabled\n");
843 complete(&fmdev->maintask_comp);
844 }
845
846 fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
847 }
848
fm_irq_handle_low_rssi_start(struct fmdev * fmdev)849 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
850 {
851 if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
852 (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
853 (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
854 (fmdev->rx.stat_info.afcache_size != 0)) {
855 fmdbg("irq: rssi level has fallen below threshold level\n");
856
857 /* Disable further low RSSI interrupts */
858 fmdev->irq_info.mask &= ~FM_LEV_EVENT;
859
860 fmdev->rx.afjump_idx = 0;
861 fmdev->rx.freq_before_jump = fmdev->rx.freq;
862 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
863 } else {
864 /* Continue next function in interrupt handler table */
865 fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
866 }
867
868 fm_irq_call(fmdev);
869 }
870
fm_irq_afjump_set_pi(struct fmdev * fmdev)871 static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
872 {
873 u16 payload;
874
875 /* Set PI code - must be updated if the AF list is not empty */
876 payload = fmdev->rx.stat_info.picode;
877 if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
878 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
879 }
880
fm_irq_handle_set_pi_resp(struct fmdev * fmdev)881 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
882 {
883 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
884 }
885
886 /*
887 * Set PI mask.
888 * 0xFFFF = Enable PI code matching
889 * 0x0000 = Disable PI code matching
890 */
fm_irq_afjump_set_pimask(struct fmdev * fmdev)891 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
892 {
893 u16 payload;
894
895 payload = 0x0000;
896 if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
897 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
898 }
899
fm_irq_handle_set_pimask_resp(struct fmdev * fmdev)900 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
901 {
902 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
903 }
904
fm_irq_afjump_setfreq(struct fmdev * fmdev)905 static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
906 {
907 u16 frq_index;
908 u16 payload;
909
910 fmdbg("Switch to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
911 frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
912 fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
913
914 payload = frq_index;
915 if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
916 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
917 }
918
fm_irq_handle_setfreq_resp(struct fmdev * fmdev)919 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
920 {
921 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
922 }
923
fm_irq_afjump_enableint(struct fmdev * fmdev)924 static void fm_irq_afjump_enableint(struct fmdev *fmdev)
925 {
926 u16 payload;
927
928 /* Enable FR (tuning operation ended) interrupt */
929 payload = FM_FR_EVENT;
930 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
931 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
932 }
933
fm_irq_afjump_enableint_resp(struct fmdev * fmdev)934 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
935 {
936 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
937 }
938
fm_irq_start_afjump(struct fmdev * fmdev)939 static void fm_irq_start_afjump(struct fmdev *fmdev)
940 {
941 u16 payload;
942
943 payload = FM_TUNER_AF_JUMP_MODE;
944 if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
945 sizeof(payload), NULL))
946 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
947 }
948
fm_irq_handle_start_afjump_resp(struct fmdev * fmdev)949 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
950 {
951 struct sk_buff *skb;
952
953 if (check_cmdresp_status(fmdev, &skb))
954 return;
955
956 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
957 set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
958 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
959 }
960
fm_irq_afjump_rd_freq(struct fmdev * fmdev)961 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
962 {
963 u16 payload;
964
965 if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
966 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
967 }
968
fm_irq_afjump_rd_freq_resp(struct fmdev * fmdev)969 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
970 {
971 struct sk_buff *skb;
972 u16 read_freq;
973 u32 curr_freq, jumped_freq;
974
975 if (check_cmdresp_status(fmdev, &skb))
976 return;
977
978 /* Skip header info and copy only response data */
979 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
980 memcpy(&read_freq, skb->data, sizeof(read_freq));
981 read_freq = be16_to_cpu((__force __be16)read_freq);
982 curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
983
984 jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
985
986 /* If the frequency was changed the jump succeeded */
987 if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
988 fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
989 fmdev->rx.freq = curr_freq;
990 fm_rx_reset_rds_cache(fmdev);
991
992 /* AF feature is on, enable low level RSSI interrupt */
993 if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
994 fmdev->irq_info.mask |= FM_LEV_EVENT;
995
996 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
997 } else { /* jump to the next freq in the AF list */
998 fmdev->rx.afjump_idx++;
999
1000 /* If we reached the end of the list - stop searching */
1001 if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
1002 fmdbg("AF switch processing failed\n");
1003 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1004 } else { /* AF List is not over - try next one */
1005
1006 fmdbg("Trying next freq in AF cache\n");
1007 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1008 }
1009 }
1010 fm_irq_call(fmdev);
1011 }
1012
fm_irq_handle_low_rssi_finish(struct fmdev * fmdev)1013 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1014 {
1015 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1016 }
1017
fm_irq_send_intmsk_cmd(struct fmdev * fmdev)1018 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1019 {
1020 u16 payload;
1021
1022 /* Re-enable FM interrupts */
1023 payload = fmdev->irq_info.mask;
1024
1025 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1026 sizeof(payload), NULL))
1027 fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1028 }
1029
fm_irq_handle_intmsk_cmd_resp(struct fmdev * fmdev)1030 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1031 {
1032 struct sk_buff *skb;
1033
1034 if (check_cmdresp_status(fmdev, &skb))
1035 return;
1036 /*
1037 * This is last function in interrupt table to be executed.
1038 * So, reset stage index to 0.
1039 */
1040 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1041
1042 /* Start processing any pending interrupt */
1043 if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
1044 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1045 else
1046 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1047 }
1048
1049 /* Returns availability of RDS data in internal buffer */
fmc_is_rds_data_available(struct fmdev * fmdev,struct file * file,struct poll_table_struct * pts)1050 int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1051 struct poll_table_struct *pts)
1052 {
1053 poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1054 if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1055 return 0;
1056
1057 return -EAGAIN;
1058 }
1059
1060 /* Copies RDS data from internal buffer to user buffer */
fmc_transfer_rds_from_internal_buff(struct fmdev * fmdev,struct file * file,u8 __user * buf,size_t count)1061 int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1062 u8 __user *buf, size_t count)
1063 {
1064 u32 block_count;
1065 u8 tmpbuf[FM_RDS_BLK_SIZE];
1066 unsigned long flags;
1067 int ret;
1068
1069 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1070 if (file->f_flags & O_NONBLOCK)
1071 return -EWOULDBLOCK;
1072
1073 ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1074 (fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1075 if (ret)
1076 return -EINTR;
1077 }
1078
1079 /* Calculate block count from byte count */
1080 count /= FM_RDS_BLK_SIZE;
1081 block_count = 0;
1082 ret = 0;
1083
1084 while (block_count < count) {
1085 spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1086
1087 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1088 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1089 break;
1090 }
1091 memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1092 FM_RDS_BLK_SIZE);
1093 fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1094 if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1095 fmdev->rx.rds.rd_idx = 0;
1096
1097 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1098
1099 if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE))
1100 break;
1101
1102 block_count++;
1103 buf += FM_RDS_BLK_SIZE;
1104 ret += FM_RDS_BLK_SIZE;
1105 }
1106 return ret;
1107 }
1108
fmc_set_freq(struct fmdev * fmdev,u32 freq_to_set)1109 int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1110 {
1111 switch (fmdev->curr_fmmode) {
1112 case FM_MODE_RX:
1113 return fm_rx_set_freq(fmdev, freq_to_set);
1114
1115 case FM_MODE_TX:
1116 return fm_tx_set_freq(fmdev, freq_to_set);
1117
1118 default:
1119 return -EINVAL;
1120 }
1121 }
1122
fmc_get_freq(struct fmdev * fmdev,u32 * cur_tuned_frq)1123 int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1124 {
1125 if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1126 fmerr("RX frequency is not set\n");
1127 return -EPERM;
1128 }
1129 if (cur_tuned_frq == NULL) {
1130 fmerr("Invalid memory\n");
1131 return -ENOMEM;
1132 }
1133
1134 switch (fmdev->curr_fmmode) {
1135 case FM_MODE_RX:
1136 *cur_tuned_frq = fmdev->rx.freq;
1137 return 0;
1138
1139 case FM_MODE_TX:
1140 *cur_tuned_frq = 0; /* TODO : Change this later */
1141 return 0;
1142
1143 default:
1144 return -EINVAL;
1145 }
1146
1147 }
1148
fmc_set_region(struct fmdev * fmdev,u8 region_to_set)1149 int fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1150 {
1151 switch (fmdev->curr_fmmode) {
1152 case FM_MODE_RX:
1153 return fm_rx_set_region(fmdev, region_to_set);
1154
1155 case FM_MODE_TX:
1156 return fm_tx_set_region(fmdev, region_to_set);
1157
1158 default:
1159 return -EINVAL;
1160 }
1161 }
1162
fmc_set_mute_mode(struct fmdev * fmdev,u8 mute_mode_toset)1163 int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1164 {
1165 switch (fmdev->curr_fmmode) {
1166 case FM_MODE_RX:
1167 return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1168
1169 case FM_MODE_TX:
1170 return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1171
1172 default:
1173 return -EINVAL;
1174 }
1175 }
1176
fmc_set_stereo_mono(struct fmdev * fmdev,u16 mode)1177 int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1178 {
1179 switch (fmdev->curr_fmmode) {
1180 case FM_MODE_RX:
1181 return fm_rx_set_stereo_mono(fmdev, mode);
1182
1183 case FM_MODE_TX:
1184 return fm_tx_set_stereo_mono(fmdev, mode);
1185
1186 default:
1187 return -EINVAL;
1188 }
1189 }
1190
fmc_set_rds_mode(struct fmdev * fmdev,u8 rds_en_dis)1191 int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1192 {
1193 switch (fmdev->curr_fmmode) {
1194 case FM_MODE_RX:
1195 return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1196
1197 case FM_MODE_TX:
1198 return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1199
1200 default:
1201 return -EINVAL;
1202 }
1203 }
1204
1205 /* Sends power off command to the chip */
fm_power_down(struct fmdev * fmdev)1206 static int fm_power_down(struct fmdev *fmdev)
1207 {
1208 u16 payload;
1209 int ret;
1210
1211 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1212 fmerr("FM core is not ready\n");
1213 return -EPERM;
1214 }
1215 if (fmdev->curr_fmmode == FM_MODE_OFF) {
1216 fmdbg("FM chip is already in OFF state\n");
1217 return 0;
1218 }
1219
1220 payload = 0x0;
1221 ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1222 sizeof(payload), NULL, NULL);
1223 if (ret < 0)
1224 return ret;
1225
1226 return fmc_release(fmdev);
1227 }
1228
1229 /* Reads init command from FM firmware file and loads to the chip */
fm_download_firmware(struct fmdev * fmdev,const u8 * fw_name)1230 static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1231 {
1232 const struct firmware *fw_entry;
1233 struct bts_header *fw_header;
1234 struct bts_action *action;
1235 struct bts_action_delay *delay;
1236 u8 *fw_data;
1237 int ret, fw_len;
1238
1239 set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1240
1241 ret = request_firmware(&fw_entry, fw_name,
1242 &fmdev->radio_dev->dev);
1243 if (ret < 0) {
1244 fmerr("Unable to read firmware(%s) content\n", fw_name);
1245 return ret;
1246 }
1247 fmdbg("Firmware(%s) length : %zu bytes\n", fw_name, fw_entry->size);
1248
1249 fw_data = (void *)fw_entry->data;
1250 fw_len = fw_entry->size;
1251
1252 fw_header = (struct bts_header *)fw_data;
1253 if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1254 fmerr("%s not a legal TI firmware file\n", fw_name);
1255 ret = -EINVAL;
1256 goto rel_fw;
1257 }
1258 fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1259
1260 /* Skip file header info , we already verified it */
1261 fw_data += sizeof(struct bts_header);
1262 fw_len -= sizeof(struct bts_header);
1263
1264 while (fw_data && fw_len > 0) {
1265 action = (struct bts_action *)fw_data;
1266
1267 switch (action->type) {
1268 case ACTION_SEND_COMMAND: /* Send */
1269 ret = fmc_send_cmd(fmdev, 0, 0, action->data,
1270 action->size, NULL, NULL);
1271 if (ret)
1272 goto rel_fw;
1273
1274 break;
1275
1276 case ACTION_DELAY: /* Delay */
1277 delay = (struct bts_action_delay *)action->data;
1278 mdelay(delay->msec);
1279 break;
1280 }
1281
1282 fw_data += (sizeof(struct bts_action) + (action->size));
1283 fw_len -= (sizeof(struct bts_action) + (action->size));
1284 }
1285 fmdbg("Transferred only %d of %d bytes of the firmware to chip\n",
1286 fw_entry->size - fw_len, fw_entry->size);
1287 rel_fw:
1288 release_firmware(fw_entry);
1289 clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1290
1291 return ret;
1292 }
1293
1294 /* Loads default RX configuration to the chip */
load_default_rx_configuration(struct fmdev * fmdev)1295 static int load_default_rx_configuration(struct fmdev *fmdev)
1296 {
1297 int ret;
1298
1299 ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1300 if (ret < 0)
1301 return ret;
1302
1303 return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
1304 }
1305
1306 /* Does FM power on sequence */
fm_power_up(struct fmdev * fmdev,u8 mode)1307 static int fm_power_up(struct fmdev *fmdev, u8 mode)
1308 {
1309 u16 payload;
1310 __be16 asic_id = 0, asic_ver = 0;
1311 int resp_len, ret;
1312 u8 fw_name[50];
1313
1314 if (mode >= FM_MODE_ENTRY_MAX) {
1315 fmerr("Invalid firmware download option\n");
1316 return -EINVAL;
1317 }
1318
1319 /*
1320 * Initialize FM common module. FM GPIO toggling is
1321 * taken care in Shared Transport driver.
1322 */
1323 ret = fmc_prepare(fmdev);
1324 if (ret < 0) {
1325 fmerr("Unable to prepare FM Common\n");
1326 return ret;
1327 }
1328
1329 payload = FM_ENABLE;
1330 if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1331 sizeof(payload), NULL, NULL))
1332 goto rel;
1333
1334 /* Allow the chip to settle down in Channel-8 mode */
1335 msleep(20);
1336
1337 if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1338 sizeof(asic_id), &asic_id, &resp_len))
1339 goto rel;
1340
1341 if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1342 sizeof(asic_ver), &asic_ver, &resp_len))
1343 goto rel;
1344
1345 fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1346 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1347
1348 sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
1349 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1350
1351 ret = fm_download_firmware(fmdev, fw_name);
1352 if (ret < 0) {
1353 fmdbg("Failed to download firmware file %s\n", fw_name);
1354 goto rel;
1355 }
1356 sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
1357 FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
1358 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1359
1360 ret = fm_download_firmware(fmdev, fw_name);
1361 if (ret < 0) {
1362 fmdbg("Failed to download firmware file %s\n", fw_name);
1363 goto rel;
1364 } else
1365 return ret;
1366 rel:
1367 return fmc_release(fmdev);
1368 }
1369
1370 /* Set FM Modes(TX, RX, OFF) */
fmc_set_mode(struct fmdev * fmdev,u8 fm_mode)1371 int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1372 {
1373 int ret = 0;
1374
1375 if (fm_mode >= FM_MODE_ENTRY_MAX) {
1376 fmerr("Invalid FM mode\n");
1377 return -EINVAL;
1378 }
1379 if (fmdev->curr_fmmode == fm_mode) {
1380 fmdbg("Already fm is in mode(%d)\n", fm_mode);
1381 return ret;
1382 }
1383
1384 switch (fm_mode) {
1385 case FM_MODE_OFF: /* OFF Mode */
1386 ret = fm_power_down(fmdev);
1387 if (ret < 0) {
1388 fmerr("Failed to set OFF mode\n");
1389 return ret;
1390 }
1391 break;
1392
1393 case FM_MODE_TX: /* TX Mode */
1394 case FM_MODE_RX: /* RX Mode */
1395 /* Power down before switching to TX or RX mode */
1396 if (fmdev->curr_fmmode != FM_MODE_OFF) {
1397 ret = fm_power_down(fmdev);
1398 if (ret < 0) {
1399 fmerr("Failed to set OFF mode\n");
1400 return ret;
1401 }
1402 msleep(30);
1403 }
1404 ret = fm_power_up(fmdev, fm_mode);
1405 if (ret < 0) {
1406 fmerr("Failed to load firmware\n");
1407 return ret;
1408 }
1409 }
1410 fmdev->curr_fmmode = fm_mode;
1411
1412 /* Set default configuration */
1413 if (fmdev->curr_fmmode == FM_MODE_RX) {
1414 fmdbg("Loading default rx configuration..\n");
1415 ret = load_default_rx_configuration(fmdev);
1416 if (ret < 0)
1417 fmerr("Failed to load default values\n");
1418 }
1419
1420 return ret;
1421 }
1422
1423 /* Returns current FM mode (TX, RX, OFF) */
fmc_get_mode(struct fmdev * fmdev,u8 * fmmode)1424 int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1425 {
1426 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1427 fmerr("FM core is not ready\n");
1428 return -EPERM;
1429 }
1430 if (fmmode == NULL) {
1431 fmerr("Invalid memory\n");
1432 return -ENOMEM;
1433 }
1434
1435 *fmmode = fmdev->curr_fmmode;
1436 return 0;
1437 }
1438
1439 /* Called by ST layer when FM packet is available */
fm_st_receive(void * arg,struct sk_buff * skb)1440 static long fm_st_receive(void *arg, struct sk_buff *skb)
1441 {
1442 struct fmdev *fmdev;
1443
1444 fmdev = arg;
1445
1446 if (skb == NULL) {
1447 fmerr("Invalid SKB received from ST\n");
1448 return -EFAULT;
1449 }
1450
1451 if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1452 fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1453 return -EINVAL;
1454 }
1455
1456 memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1457 skb_queue_tail(&fmdev->rx_q, skb);
1458 tasklet_schedule(&fmdev->rx_task);
1459
1460 return 0;
1461 }
1462
1463 /*
1464 * Called by ST layer to indicate protocol registration completion
1465 * status.
1466 */
fm_st_reg_comp_cb(void * arg,int data)1467 static void fm_st_reg_comp_cb(void *arg, int data)
1468 {
1469 struct fmdev *fmdev;
1470
1471 fmdev = (struct fmdev *)arg;
1472 fmdev->streg_cbdata = data;
1473 complete(&wait_for_fmdrv_reg_comp);
1474 }
1475
1476 /*
1477 * This function will be called from FM V4L2 open function.
1478 * Register with ST driver and initialize driver data.
1479 */
fmc_prepare(struct fmdev * fmdev)1480 int fmc_prepare(struct fmdev *fmdev)
1481 {
1482 static struct st_proto_s fm_st_proto;
1483 int ret;
1484
1485 if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1486 fmdbg("FM Core is already up\n");
1487 return 0;
1488 }
1489
1490 memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1491 fm_st_proto.recv = fm_st_receive;
1492 fm_st_proto.match_packet = NULL;
1493 fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1494 fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1495 fm_st_proto.priv_data = fmdev;
1496 fm_st_proto.chnl_id = 0x08;
1497 fm_st_proto.max_frame_size = 0xff;
1498 fm_st_proto.hdr_len = 1;
1499 fm_st_proto.offset_len_in_hdr = 0;
1500 fm_st_proto.len_size = 1;
1501 fm_st_proto.reserve = 1;
1502
1503 ret = st_register(&fm_st_proto);
1504 if (ret == -EINPROGRESS) {
1505 init_completion(&wait_for_fmdrv_reg_comp);
1506 fmdev->streg_cbdata = -EINPROGRESS;
1507 fmdbg("%s waiting for ST reg completion signal\n", __func__);
1508
1509 if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1510 FM_ST_REG_TIMEOUT)) {
1511 fmerr("Timeout(%d sec), didn't get reg completion signal from ST\n",
1512 jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
1513 return -ETIMEDOUT;
1514 }
1515 if (fmdev->streg_cbdata != 0) {
1516 fmerr("ST reg comp CB called with error status %d\n",
1517 fmdev->streg_cbdata);
1518 return -EAGAIN;
1519 }
1520
1521 ret = 0;
1522 } else if (ret < 0) {
1523 fmerr("st_register failed %d\n", ret);
1524 return -EAGAIN;
1525 }
1526
1527 if (fm_st_proto.write != NULL) {
1528 g_st_write = fm_st_proto.write;
1529 } else {
1530 fmerr("Failed to get ST write func pointer\n");
1531 ret = st_unregister(&fm_st_proto);
1532 if (ret < 0)
1533 fmerr("st_unregister failed %d\n", ret);
1534 return -EAGAIN;
1535 }
1536
1537 spin_lock_init(&fmdev->rds_buff_lock);
1538 spin_lock_init(&fmdev->resp_skb_lock);
1539
1540 /* Initialize TX queue and TX tasklet */
1541 skb_queue_head_init(&fmdev->tx_q);
1542 tasklet_setup(&fmdev->tx_task, send_tasklet);
1543
1544 /* Initialize RX Queue and RX tasklet */
1545 skb_queue_head_init(&fmdev->rx_q);
1546 tasklet_setup(&fmdev->rx_task, recv_tasklet);
1547
1548 fmdev->irq_info.stage = 0;
1549 atomic_set(&fmdev->tx_cnt, 1);
1550 fmdev->resp_comp = NULL;
1551
1552 timer_setup(&fmdev->irq_info.timer, int_timeout_handler, 0);
1553 /*TODO: add FM_STIC_EVENT later */
1554 fmdev->irq_info.mask = FM_MAL_EVENT;
1555
1556 /* Region info */
1557 fmdev->rx.region = region_configs[default_radio_region];
1558
1559 fmdev->rx.mute_mode = FM_MUTE_OFF;
1560 fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1561 fmdev->rx.rds.flag = FM_RDS_DISABLE;
1562 fmdev->rx.freq = FM_UNDEFINED_FREQ;
1563 fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1564 fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1565 fmdev->irq_info.retry = 0;
1566
1567 fm_rx_reset_rds_cache(fmdev);
1568 init_waitqueue_head(&fmdev->rx.rds.read_queue);
1569
1570 fm_rx_reset_station_info(fmdev);
1571 set_bit(FM_CORE_READY, &fmdev->flag);
1572
1573 return ret;
1574 }
1575
1576 /*
1577 * This function will be called from FM V4L2 release function.
1578 * Unregister from ST driver.
1579 */
fmc_release(struct fmdev * fmdev)1580 int fmc_release(struct fmdev *fmdev)
1581 {
1582 static struct st_proto_s fm_st_proto;
1583 int ret;
1584
1585 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1586 fmdbg("FM Core is already down\n");
1587 return 0;
1588 }
1589 /* Service pending read */
1590 wake_up_interruptible(&fmdev->rx.rds.read_queue);
1591
1592 tasklet_kill(&fmdev->tx_task);
1593 tasklet_kill(&fmdev->rx_task);
1594
1595 skb_queue_purge(&fmdev->tx_q);
1596 skb_queue_purge(&fmdev->rx_q);
1597
1598 fmdev->resp_comp = NULL;
1599 fmdev->rx.freq = 0;
1600
1601 memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1602 fm_st_proto.chnl_id = 0x08;
1603
1604 ret = st_unregister(&fm_st_proto);
1605
1606 if (ret < 0)
1607 fmerr("Failed to de-register FM from ST %d\n", ret);
1608 else
1609 fmdbg("Successfully unregistered from ST\n");
1610
1611 clear_bit(FM_CORE_READY, &fmdev->flag);
1612 return ret;
1613 }
1614
1615 /*
1616 * Module init function. Ask FM V4L module to register video device.
1617 * Allocate memory for FM driver context and RX RDS buffer.
1618 */
fm_drv_init(void)1619 static int __init fm_drv_init(void)
1620 {
1621 struct fmdev *fmdev = NULL;
1622 int ret = -ENOMEM;
1623
1624 fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1625
1626 fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1627 if (NULL == fmdev) {
1628 fmerr("Can't allocate operation structure memory\n");
1629 return ret;
1630 }
1631 fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1632 fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1633 if (NULL == fmdev->rx.rds.buff) {
1634 fmerr("Can't allocate rds ring buffer\n");
1635 goto rel_dev;
1636 }
1637
1638 ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1639 if (ret < 0)
1640 goto rel_rdsbuf;
1641
1642 fmdev->irq_info.handlers = int_handler_table;
1643 fmdev->curr_fmmode = FM_MODE_OFF;
1644 fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1645 fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1646 return ret;
1647
1648 rel_rdsbuf:
1649 kfree(fmdev->rx.rds.buff);
1650 rel_dev:
1651 kfree(fmdev);
1652
1653 return ret;
1654 }
1655
1656 /* Module exit function. Ask FM V4L module to unregister video device */
fm_drv_exit(void)1657 static void __exit fm_drv_exit(void)
1658 {
1659 struct fmdev *fmdev = NULL;
1660
1661 fmdev = fm_v4l2_deinit_video_device();
1662 if (fmdev != NULL) {
1663 kfree(fmdev->rx.rds.buff);
1664 kfree(fmdev);
1665 }
1666 }
1667
1668 module_init(fm_drv_init);
1669 module_exit(fm_drv_exit);
1670
1671 /* ------------- Module Info ------------- */
1672 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
1673 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1674 MODULE_VERSION(FM_DRV_VERSION);
1675 MODULE_LICENSE("GPL");
1676