1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/rwsem.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/ethtool.h> 93 #include <linux/skbuff.h> 94 #include <linux/kthread.h> 95 #include <linux/bpf.h> 96 #include <linux/bpf_trace.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <net/busy_poll.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/stat.h> 102 #include <net/dsa.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/gro.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <net/tcx.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <trace/events/qdisc.h> 136 #include <trace/events/xdp.h> 137 #include <linux/inetdevice.h> 138 #include <linux/cpu_rmap.h> 139 #include <linux/static_key.h> 140 #include <linux/hashtable.h> 141 #include <linux/vmalloc.h> 142 #include <linux/if_macvlan.h> 143 #include <linux/errqueue.h> 144 #include <linux/hrtimer.h> 145 #include <linux/netfilter_netdev.h> 146 #include <linux/crash_dump.h> 147 #include <linux/sctp.h> 148 #include <net/udp_tunnel.h> 149 #include <linux/net_namespace.h> 150 #include <linux/indirect_call_wrapper.h> 151 #include <net/devlink.h> 152 #include <linux/pm_runtime.h> 153 #include <linux/prandom.h> 154 #include <linux/once_lite.h> 155 #include <net/netdev_rx_queue.h> 156 157 #include "dev.h" 158 #include "net-sysfs.h" 159 160 static DEFINE_SPINLOCK(ptype_lock); 161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 162 struct list_head ptype_all __read_mostly; /* Taps */ 163 164 static int netif_rx_internal(struct sk_buff *skb); 165 static int call_netdevice_notifiers_extack(unsigned long val, 166 struct net_device *dev, 167 struct netlink_ext_ack *extack); 168 static struct napi_struct *napi_by_id(unsigned int napi_id); 169 170 /* 171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 172 * semaphore. 173 * 174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 175 * 176 * Writers must hold the rtnl semaphore while they loop through the 177 * dev_base_head list, and hold dev_base_lock for writing when they do the 178 * actual updates. This allows pure readers to access the list even 179 * while a writer is preparing to update it. 180 * 181 * To put it another way, dev_base_lock is held for writing only to 182 * protect against pure readers; the rtnl semaphore provides the 183 * protection against other writers. 184 * 185 * See, for example usages, register_netdevice() and 186 * unregister_netdevice(), which must be called with the rtnl 187 * semaphore held. 188 */ 189 DEFINE_RWLOCK(dev_base_lock); 190 EXPORT_SYMBOL(dev_base_lock); 191 192 static DEFINE_MUTEX(ifalias_mutex); 193 194 /* protects napi_hash addition/deletion and napi_gen_id */ 195 static DEFINE_SPINLOCK(napi_hash_lock); 196 197 static unsigned int napi_gen_id = NR_CPUS; 198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 199 200 static DECLARE_RWSEM(devnet_rename_sem); 201 dev_base_seq_inc(struct net * net)202 static inline void dev_base_seq_inc(struct net *net) 203 { 204 while (++net->dev_base_seq == 0) 205 ; 206 } 207 dev_name_hash(struct net * net,const char * name)208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 209 { 210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 211 212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 213 } 214 dev_index_hash(struct net * net,int ifindex)215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 216 { 217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 218 } 219 rps_lock_irqsave(struct softnet_data * sd,unsigned long * flags)220 static inline void rps_lock_irqsave(struct softnet_data *sd, 221 unsigned long *flags) 222 { 223 if (IS_ENABLED(CONFIG_RPS)) 224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 226 local_irq_save(*flags); 227 } 228 rps_lock_irq_disable(struct softnet_data * sd)229 static inline void rps_lock_irq_disable(struct softnet_data *sd) 230 { 231 if (IS_ENABLED(CONFIG_RPS)) 232 spin_lock_irq(&sd->input_pkt_queue.lock); 233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 234 local_irq_disable(); 235 } 236 rps_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)237 static inline void rps_unlock_irq_restore(struct softnet_data *sd, 238 unsigned long *flags) 239 { 240 if (IS_ENABLED(CONFIG_RPS)) 241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 243 local_irq_restore(*flags); 244 } 245 rps_unlock_irq_enable(struct softnet_data * sd)246 static inline void rps_unlock_irq_enable(struct softnet_data *sd) 247 { 248 if (IS_ENABLED(CONFIG_RPS)) 249 spin_unlock_irq(&sd->input_pkt_queue.lock); 250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 251 local_irq_enable(); 252 } 253 netdev_name_node_alloc(struct net_device * dev,const char * name)254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 255 const char *name) 256 { 257 struct netdev_name_node *name_node; 258 259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 260 if (!name_node) 261 return NULL; 262 INIT_HLIST_NODE(&name_node->hlist); 263 name_node->dev = dev; 264 name_node->name = name; 265 return name_node; 266 } 267 268 static struct netdev_name_node * netdev_name_node_head_alloc(struct net_device * dev)269 netdev_name_node_head_alloc(struct net_device *dev) 270 { 271 struct netdev_name_node *name_node; 272 273 name_node = netdev_name_node_alloc(dev, dev->name); 274 if (!name_node) 275 return NULL; 276 INIT_LIST_HEAD(&name_node->list); 277 return name_node; 278 } 279 netdev_name_node_free(struct netdev_name_node * name_node)280 static void netdev_name_node_free(struct netdev_name_node *name_node) 281 { 282 kfree(name_node); 283 } 284 netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)285 static void netdev_name_node_add(struct net *net, 286 struct netdev_name_node *name_node) 287 { 288 hlist_add_head_rcu(&name_node->hlist, 289 dev_name_hash(net, name_node->name)); 290 } 291 netdev_name_node_del(struct netdev_name_node * name_node)292 static void netdev_name_node_del(struct netdev_name_node *name_node) 293 { 294 hlist_del_rcu(&name_node->hlist); 295 } 296 netdev_name_node_lookup(struct net * net,const char * name)297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 298 const char *name) 299 { 300 struct hlist_head *head = dev_name_hash(net, name); 301 struct netdev_name_node *name_node; 302 303 hlist_for_each_entry(name_node, head, hlist) 304 if (!strcmp(name_node->name, name)) 305 return name_node; 306 return NULL; 307 } 308 netdev_name_node_lookup_rcu(struct net * net,const char * name)309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 310 const char *name) 311 { 312 struct hlist_head *head = dev_name_hash(net, name); 313 struct netdev_name_node *name_node; 314 315 hlist_for_each_entry_rcu(name_node, head, hlist) 316 if (!strcmp(name_node->name, name)) 317 return name_node; 318 return NULL; 319 } 320 netdev_name_in_use(struct net * net,const char * name)321 bool netdev_name_in_use(struct net *net, const char *name) 322 { 323 return netdev_name_node_lookup(net, name); 324 } 325 EXPORT_SYMBOL(netdev_name_in_use); 326 netdev_name_node_alt_create(struct net_device * dev,const char * name)327 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 328 { 329 struct netdev_name_node *name_node; 330 struct net *net = dev_net(dev); 331 332 name_node = netdev_name_node_lookup(net, name); 333 if (name_node) 334 return -EEXIST; 335 name_node = netdev_name_node_alloc(dev, name); 336 if (!name_node) 337 return -ENOMEM; 338 netdev_name_node_add(net, name_node); 339 /* The node that holds dev->name acts as a head of per-device list. */ 340 list_add_tail(&name_node->list, &dev->name_node->list); 341 342 return 0; 343 } 344 __netdev_name_node_alt_destroy(struct netdev_name_node * name_node)345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 346 { 347 list_del(&name_node->list); 348 kfree(name_node->name); 349 netdev_name_node_free(name_node); 350 } 351 netdev_name_node_alt_destroy(struct net_device * dev,const char * name)352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 353 { 354 struct netdev_name_node *name_node; 355 struct net *net = dev_net(dev); 356 357 name_node = netdev_name_node_lookup(net, name); 358 if (!name_node) 359 return -ENOENT; 360 /* lookup might have found our primary name or a name belonging 361 * to another device. 362 */ 363 if (name_node == dev->name_node || name_node->dev != dev) 364 return -EINVAL; 365 366 netdev_name_node_del(name_node); 367 synchronize_rcu(); 368 __netdev_name_node_alt_destroy(name_node); 369 370 return 0; 371 } 372 netdev_name_node_alt_flush(struct net_device * dev)373 static void netdev_name_node_alt_flush(struct net_device *dev) 374 { 375 struct netdev_name_node *name_node, *tmp; 376 377 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 378 __netdev_name_node_alt_destroy(name_node); 379 } 380 381 /* Device list insertion */ list_netdevice(struct net_device * dev)382 static void list_netdevice(struct net_device *dev) 383 { 384 struct netdev_name_node *name_node; 385 struct net *net = dev_net(dev); 386 387 ASSERT_RTNL(); 388 389 write_lock(&dev_base_lock); 390 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 391 netdev_name_node_add(net, dev->name_node); 392 hlist_add_head_rcu(&dev->index_hlist, 393 dev_index_hash(net, dev->ifindex)); 394 write_unlock(&dev_base_lock); 395 396 netdev_for_each_altname(dev, name_node) 397 netdev_name_node_add(net, name_node); 398 399 /* We reserved the ifindex, this can't fail */ 400 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 401 402 dev_base_seq_inc(net); 403 } 404 405 /* Device list removal 406 * caller must respect a RCU grace period before freeing/reusing dev 407 */ unlist_netdevice(struct net_device * dev,bool lock)408 static void unlist_netdevice(struct net_device *dev, bool lock) 409 { 410 struct netdev_name_node *name_node; 411 struct net *net = dev_net(dev); 412 413 ASSERT_RTNL(); 414 415 xa_erase(&net->dev_by_index, dev->ifindex); 416 417 netdev_for_each_altname(dev, name_node) 418 netdev_name_node_del(name_node); 419 420 /* Unlink dev from the device chain */ 421 if (lock) 422 write_lock(&dev_base_lock); 423 list_del_rcu(&dev->dev_list); 424 netdev_name_node_del(dev->name_node); 425 hlist_del_rcu(&dev->index_hlist); 426 if (lock) 427 write_unlock(&dev_base_lock); 428 429 dev_base_seq_inc(dev_net(dev)); 430 } 431 432 /* 433 * Our notifier list 434 */ 435 436 static RAW_NOTIFIER_HEAD(netdev_chain); 437 438 /* 439 * Device drivers call our routines to queue packets here. We empty the 440 * queue in the local softnet handler. 441 */ 442 443 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 444 EXPORT_PER_CPU_SYMBOL(softnet_data); 445 446 #ifdef CONFIG_LOCKDEP 447 /* 448 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 449 * according to dev->type 450 */ 451 static const unsigned short netdev_lock_type[] = { 452 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 453 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 454 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 455 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 456 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 457 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 458 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 459 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 460 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 461 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 462 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 463 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 464 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 465 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 466 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 467 468 static const char *const netdev_lock_name[] = { 469 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 470 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 471 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 472 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 473 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 474 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 475 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 476 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 477 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 478 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 479 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 480 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 481 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 482 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 483 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 484 485 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 486 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 487 netdev_lock_pos(unsigned short dev_type)488 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 489 { 490 int i; 491 492 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 493 if (netdev_lock_type[i] == dev_type) 494 return i; 495 /* the last key is used by default */ 496 return ARRAY_SIZE(netdev_lock_type) - 1; 497 } 498 netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)499 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 500 unsigned short dev_type) 501 { 502 int i; 503 504 i = netdev_lock_pos(dev_type); 505 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 506 netdev_lock_name[i]); 507 } 508 netdev_set_addr_lockdep_class(struct net_device * dev)509 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 510 { 511 int i; 512 513 i = netdev_lock_pos(dev->type); 514 lockdep_set_class_and_name(&dev->addr_list_lock, 515 &netdev_addr_lock_key[i], 516 netdev_lock_name[i]); 517 } 518 #else netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 520 unsigned short dev_type) 521 { 522 } 523 netdev_set_addr_lockdep_class(struct net_device * dev)524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 525 { 526 } 527 #endif 528 529 /******************************************************************************* 530 * 531 * Protocol management and registration routines 532 * 533 *******************************************************************************/ 534 535 536 /* 537 * Add a protocol ID to the list. Now that the input handler is 538 * smarter we can dispense with all the messy stuff that used to be 539 * here. 540 * 541 * BEWARE!!! Protocol handlers, mangling input packets, 542 * MUST BE last in hash buckets and checking protocol handlers 543 * MUST start from promiscuous ptype_all chain in net_bh. 544 * It is true now, do not change it. 545 * Explanation follows: if protocol handler, mangling packet, will 546 * be the first on list, it is not able to sense, that packet 547 * is cloned and should be copied-on-write, so that it will 548 * change it and subsequent readers will get broken packet. 549 * --ANK (980803) 550 */ 551 ptype_head(const struct packet_type * pt)552 static inline struct list_head *ptype_head(const struct packet_type *pt) 553 { 554 if (pt->type == htons(ETH_P_ALL)) 555 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 556 else 557 return pt->dev ? &pt->dev->ptype_specific : 558 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 559 } 560 561 /** 562 * dev_add_pack - add packet handler 563 * @pt: packet type declaration 564 * 565 * Add a protocol handler to the networking stack. The passed &packet_type 566 * is linked into kernel lists and may not be freed until it has been 567 * removed from the kernel lists. 568 * 569 * This call does not sleep therefore it can not 570 * guarantee all CPU's that are in middle of receiving packets 571 * will see the new packet type (until the next received packet). 572 */ 573 dev_add_pack(struct packet_type * pt)574 void dev_add_pack(struct packet_type *pt) 575 { 576 struct list_head *head = ptype_head(pt); 577 578 spin_lock(&ptype_lock); 579 list_add_rcu(&pt->list, head); 580 spin_unlock(&ptype_lock); 581 } 582 EXPORT_SYMBOL(dev_add_pack); 583 584 /** 585 * __dev_remove_pack - remove packet handler 586 * @pt: packet type declaration 587 * 588 * Remove a protocol handler that was previously added to the kernel 589 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 590 * from the kernel lists and can be freed or reused once this function 591 * returns. 592 * 593 * The packet type might still be in use by receivers 594 * and must not be freed until after all the CPU's have gone 595 * through a quiescent state. 596 */ __dev_remove_pack(struct packet_type * pt)597 void __dev_remove_pack(struct packet_type *pt) 598 { 599 struct list_head *head = ptype_head(pt); 600 struct packet_type *pt1; 601 602 spin_lock(&ptype_lock); 603 604 list_for_each_entry(pt1, head, list) { 605 if (pt == pt1) { 606 list_del_rcu(&pt->list); 607 goto out; 608 } 609 } 610 611 pr_warn("dev_remove_pack: %p not found\n", pt); 612 out: 613 spin_unlock(&ptype_lock); 614 } 615 EXPORT_SYMBOL(__dev_remove_pack); 616 617 /** 618 * dev_remove_pack - remove packet handler 619 * @pt: packet type declaration 620 * 621 * Remove a protocol handler that was previously added to the kernel 622 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 623 * from the kernel lists and can be freed or reused once this function 624 * returns. 625 * 626 * This call sleeps to guarantee that no CPU is looking at the packet 627 * type after return. 628 */ dev_remove_pack(struct packet_type * pt)629 void dev_remove_pack(struct packet_type *pt) 630 { 631 __dev_remove_pack(pt); 632 633 synchronize_net(); 634 } 635 EXPORT_SYMBOL(dev_remove_pack); 636 637 638 /******************************************************************************* 639 * 640 * Device Interface Subroutines 641 * 642 *******************************************************************************/ 643 644 /** 645 * dev_get_iflink - get 'iflink' value of a interface 646 * @dev: targeted interface 647 * 648 * Indicates the ifindex the interface is linked to. 649 * Physical interfaces have the same 'ifindex' and 'iflink' values. 650 */ 651 dev_get_iflink(const struct net_device * dev)652 int dev_get_iflink(const struct net_device *dev) 653 { 654 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 655 return dev->netdev_ops->ndo_get_iflink(dev); 656 657 return dev->ifindex; 658 } 659 EXPORT_SYMBOL(dev_get_iflink); 660 661 /** 662 * dev_fill_metadata_dst - Retrieve tunnel egress information. 663 * @dev: targeted interface 664 * @skb: The packet. 665 * 666 * For better visibility of tunnel traffic OVS needs to retrieve 667 * egress tunnel information for a packet. Following API allows 668 * user to get this info. 669 */ dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)670 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 671 { 672 struct ip_tunnel_info *info; 673 674 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 675 return -EINVAL; 676 677 info = skb_tunnel_info_unclone(skb); 678 if (!info) 679 return -ENOMEM; 680 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 681 return -EINVAL; 682 683 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 684 } 685 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 686 dev_fwd_path(struct net_device_path_stack * stack)687 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 688 { 689 int k = stack->num_paths++; 690 691 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 692 return NULL; 693 694 return &stack->path[k]; 695 } 696 dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)697 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 698 struct net_device_path_stack *stack) 699 { 700 const struct net_device *last_dev; 701 struct net_device_path_ctx ctx = { 702 .dev = dev, 703 }; 704 struct net_device_path *path; 705 int ret = 0; 706 707 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 708 stack->num_paths = 0; 709 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 710 last_dev = ctx.dev; 711 path = dev_fwd_path(stack); 712 if (!path) 713 return -1; 714 715 memset(path, 0, sizeof(struct net_device_path)); 716 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 717 if (ret < 0) 718 return -1; 719 720 if (WARN_ON_ONCE(last_dev == ctx.dev)) 721 return -1; 722 } 723 724 if (!ctx.dev) 725 return ret; 726 727 path = dev_fwd_path(stack); 728 if (!path) 729 return -1; 730 path->type = DEV_PATH_ETHERNET; 731 path->dev = ctx.dev; 732 733 return ret; 734 } 735 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 736 737 /** 738 * __dev_get_by_name - find a device by its name 739 * @net: the applicable net namespace 740 * @name: name to find 741 * 742 * Find an interface by name. Must be called under RTNL semaphore 743 * or @dev_base_lock. If the name is found a pointer to the device 744 * is returned. If the name is not found then %NULL is returned. The 745 * reference counters are not incremented so the caller must be 746 * careful with locks. 747 */ 748 __dev_get_by_name(struct net * net,const char * name)749 struct net_device *__dev_get_by_name(struct net *net, const char *name) 750 { 751 struct netdev_name_node *node_name; 752 753 node_name = netdev_name_node_lookup(net, name); 754 return node_name ? node_name->dev : NULL; 755 } 756 EXPORT_SYMBOL(__dev_get_by_name); 757 758 /** 759 * dev_get_by_name_rcu - find a device by its name 760 * @net: the applicable net namespace 761 * @name: name to find 762 * 763 * Find an interface by name. 764 * If the name is found a pointer to the device is returned. 765 * If the name is not found then %NULL is returned. 766 * The reference counters are not incremented so the caller must be 767 * careful with locks. The caller must hold RCU lock. 768 */ 769 dev_get_by_name_rcu(struct net * net,const char * name)770 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 771 { 772 struct netdev_name_node *node_name; 773 774 node_name = netdev_name_node_lookup_rcu(net, name); 775 return node_name ? node_name->dev : NULL; 776 } 777 EXPORT_SYMBOL(dev_get_by_name_rcu); 778 779 /* Deprecated for new users, call netdev_get_by_name() instead */ dev_get_by_name(struct net * net,const char * name)780 struct net_device *dev_get_by_name(struct net *net, const char *name) 781 { 782 struct net_device *dev; 783 784 rcu_read_lock(); 785 dev = dev_get_by_name_rcu(net, name); 786 dev_hold(dev); 787 rcu_read_unlock(); 788 return dev; 789 } 790 EXPORT_SYMBOL(dev_get_by_name); 791 792 /** 793 * netdev_get_by_name() - find a device by its name 794 * @net: the applicable net namespace 795 * @name: name to find 796 * @tracker: tracking object for the acquired reference 797 * @gfp: allocation flags for the tracker 798 * 799 * Find an interface by name. This can be called from any 800 * context and does its own locking. The returned handle has 801 * the usage count incremented and the caller must use netdev_put() to 802 * release it when it is no longer needed. %NULL is returned if no 803 * matching device is found. 804 */ netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)805 struct net_device *netdev_get_by_name(struct net *net, const char *name, 806 netdevice_tracker *tracker, gfp_t gfp) 807 { 808 struct net_device *dev; 809 810 dev = dev_get_by_name(net, name); 811 if (dev) 812 netdev_tracker_alloc(dev, tracker, gfp); 813 return dev; 814 } 815 EXPORT_SYMBOL(netdev_get_by_name); 816 817 /** 818 * __dev_get_by_index - find a device by its ifindex 819 * @net: the applicable net namespace 820 * @ifindex: index of device 821 * 822 * Search for an interface by index. Returns %NULL if the device 823 * is not found or a pointer to the device. The device has not 824 * had its reference counter increased so the caller must be careful 825 * about locking. The caller must hold either the RTNL semaphore 826 * or @dev_base_lock. 827 */ 828 __dev_get_by_index(struct net * net,int ifindex)829 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 830 { 831 struct net_device *dev; 832 struct hlist_head *head = dev_index_hash(net, ifindex); 833 834 hlist_for_each_entry(dev, head, index_hlist) 835 if (dev->ifindex == ifindex) 836 return dev; 837 838 return NULL; 839 } 840 EXPORT_SYMBOL(__dev_get_by_index); 841 842 /** 843 * dev_get_by_index_rcu - find a device by its ifindex 844 * @net: the applicable net namespace 845 * @ifindex: index of device 846 * 847 * Search for an interface by index. Returns %NULL if the device 848 * is not found or a pointer to the device. The device has not 849 * had its reference counter increased so the caller must be careful 850 * about locking. The caller must hold RCU lock. 851 */ 852 dev_get_by_index_rcu(struct net * net,int ifindex)853 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 854 { 855 struct net_device *dev; 856 struct hlist_head *head = dev_index_hash(net, ifindex); 857 858 hlist_for_each_entry_rcu(dev, head, index_hlist) 859 if (dev->ifindex == ifindex) 860 return dev; 861 862 return NULL; 863 } 864 EXPORT_SYMBOL(dev_get_by_index_rcu); 865 866 /* Deprecated for new users, call netdev_get_by_index() instead */ dev_get_by_index(struct net * net,int ifindex)867 struct net_device *dev_get_by_index(struct net *net, int ifindex) 868 { 869 struct net_device *dev; 870 871 rcu_read_lock(); 872 dev = dev_get_by_index_rcu(net, ifindex); 873 dev_hold(dev); 874 rcu_read_unlock(); 875 return dev; 876 } 877 EXPORT_SYMBOL(dev_get_by_index); 878 879 /** 880 * netdev_get_by_index() - find a device by its ifindex 881 * @net: the applicable net namespace 882 * @ifindex: index of device 883 * @tracker: tracking object for the acquired reference 884 * @gfp: allocation flags for the tracker 885 * 886 * Search for an interface by index. Returns NULL if the device 887 * is not found or a pointer to the device. The device returned has 888 * had a reference added and the pointer is safe until the user calls 889 * netdev_put() to indicate they have finished with it. 890 */ netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)891 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 892 netdevice_tracker *tracker, gfp_t gfp) 893 { 894 struct net_device *dev; 895 896 dev = dev_get_by_index(net, ifindex); 897 if (dev) 898 netdev_tracker_alloc(dev, tracker, gfp); 899 return dev; 900 } 901 EXPORT_SYMBOL(netdev_get_by_index); 902 903 /** 904 * dev_get_by_napi_id - find a device by napi_id 905 * @napi_id: ID of the NAPI struct 906 * 907 * Search for an interface by NAPI ID. Returns %NULL if the device 908 * is not found or a pointer to the device. The device has not had 909 * its reference counter increased so the caller must be careful 910 * about locking. The caller must hold RCU lock. 911 */ 912 dev_get_by_napi_id(unsigned int napi_id)913 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 914 { 915 struct napi_struct *napi; 916 917 WARN_ON_ONCE(!rcu_read_lock_held()); 918 919 if (napi_id < MIN_NAPI_ID) 920 return NULL; 921 922 napi = napi_by_id(napi_id); 923 924 return napi ? napi->dev : NULL; 925 } 926 EXPORT_SYMBOL(dev_get_by_napi_id); 927 928 /** 929 * netdev_get_name - get a netdevice name, knowing its ifindex. 930 * @net: network namespace 931 * @name: a pointer to the buffer where the name will be stored. 932 * @ifindex: the ifindex of the interface to get the name from. 933 */ netdev_get_name(struct net * net,char * name,int ifindex)934 int netdev_get_name(struct net *net, char *name, int ifindex) 935 { 936 struct net_device *dev; 937 int ret; 938 939 down_read(&devnet_rename_sem); 940 rcu_read_lock(); 941 942 dev = dev_get_by_index_rcu(net, ifindex); 943 if (!dev) { 944 ret = -ENODEV; 945 goto out; 946 } 947 948 strcpy(name, dev->name); 949 950 ret = 0; 951 out: 952 rcu_read_unlock(); 953 up_read(&devnet_rename_sem); 954 return ret; 955 } 956 dev_addr_cmp(struct net_device * dev,unsigned short type,const char * ha)957 static bool dev_addr_cmp(struct net_device *dev, unsigned short type, 958 const char *ha) 959 { 960 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len); 961 } 962 963 /** 964 * dev_getbyhwaddr_rcu - find a device by its hardware address 965 * @net: the applicable net namespace 966 * @type: media type of device 967 * @ha: hardware address 968 * 969 * Search for an interface by MAC address. Returns NULL if the device 970 * is not found or a pointer to the device. 971 * The caller must hold RCU. 972 * The returned device has not had its ref count increased 973 * and the caller must therefore be careful about locking 974 * 975 */ 976 dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)977 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 978 const char *ha) 979 { 980 struct net_device *dev; 981 982 for_each_netdev_rcu(net, dev) 983 if (dev_addr_cmp(dev, type, ha)) 984 return dev; 985 986 return NULL; 987 } 988 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 989 990 /** 991 * dev_getbyhwaddr() - find a device by its hardware address 992 * @net: the applicable net namespace 993 * @type: media type of device 994 * @ha: hardware address 995 * 996 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold 997 * rtnl_lock. 998 * 999 * Context: rtnl_lock() must be held. 1000 * Return: pointer to the net_device, or NULL if not found 1001 */ dev_getbyhwaddr(struct net * net,unsigned short type,const char * ha)1002 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, 1003 const char *ha) 1004 { 1005 struct net_device *dev; 1006 1007 ASSERT_RTNL(); 1008 for_each_netdev(net, dev) 1009 if (dev_addr_cmp(dev, type, ha)) 1010 return dev; 1011 1012 return NULL; 1013 } 1014 EXPORT_SYMBOL(dev_getbyhwaddr); 1015 dev_getfirstbyhwtype(struct net * net,unsigned short type)1016 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1017 { 1018 struct net_device *dev, *ret = NULL; 1019 1020 rcu_read_lock(); 1021 for_each_netdev_rcu(net, dev) 1022 if (dev->type == type) { 1023 dev_hold(dev); 1024 ret = dev; 1025 break; 1026 } 1027 rcu_read_unlock(); 1028 return ret; 1029 } 1030 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1031 1032 /** 1033 * __dev_get_by_flags - find any device with given flags 1034 * @net: the applicable net namespace 1035 * @if_flags: IFF_* values 1036 * @mask: bitmask of bits in if_flags to check 1037 * 1038 * Search for any interface with the given flags. Returns NULL if a device 1039 * is not found or a pointer to the device. Must be called inside 1040 * rtnl_lock(), and result refcount is unchanged. 1041 */ 1042 __dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1043 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1044 unsigned short mask) 1045 { 1046 struct net_device *dev, *ret; 1047 1048 ASSERT_RTNL(); 1049 1050 ret = NULL; 1051 for_each_netdev(net, dev) { 1052 if (((dev->flags ^ if_flags) & mask) == 0) { 1053 ret = dev; 1054 break; 1055 } 1056 } 1057 return ret; 1058 } 1059 EXPORT_SYMBOL(__dev_get_by_flags); 1060 1061 /** 1062 * dev_valid_name - check if name is okay for network device 1063 * @name: name string 1064 * 1065 * Network device names need to be valid file names to 1066 * allow sysfs to work. We also disallow any kind of 1067 * whitespace. 1068 */ dev_valid_name(const char * name)1069 bool dev_valid_name(const char *name) 1070 { 1071 if (*name == '\0') 1072 return false; 1073 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1074 return false; 1075 if (!strcmp(name, ".") || !strcmp(name, "..")) 1076 return false; 1077 1078 while (*name) { 1079 if (*name == '/' || *name == ':' || isspace(*name)) 1080 return false; 1081 name++; 1082 } 1083 return true; 1084 } 1085 EXPORT_SYMBOL(dev_valid_name); 1086 1087 /** 1088 * __dev_alloc_name - allocate a name for a device 1089 * @net: network namespace to allocate the device name in 1090 * @name: name format string 1091 * @buf: scratch buffer and result name string 1092 * 1093 * Passed a format string - eg "lt%d" it will try and find a suitable 1094 * id. It scans list of devices to build up a free map, then chooses 1095 * the first empty slot. The caller must hold the dev_base or rtnl lock 1096 * while allocating the name and adding the device in order to avoid 1097 * duplicates. 1098 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1099 * Returns the number of the unit assigned or a negative errno code. 1100 */ 1101 __dev_alloc_name(struct net * net,const char * name,char * buf)1102 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1103 { 1104 int i = 0; 1105 const char *p; 1106 const int max_netdevices = 8*PAGE_SIZE; 1107 unsigned long *inuse; 1108 struct net_device *d; 1109 1110 if (!dev_valid_name(name)) 1111 return -EINVAL; 1112 1113 p = strchr(name, '%'); 1114 if (p) { 1115 /* 1116 * Verify the string as this thing may have come from 1117 * the user. There must be either one "%d" and no other "%" 1118 * characters. 1119 */ 1120 if (p[1] != 'd' || strchr(p + 2, '%')) 1121 return -EINVAL; 1122 1123 /* Use one page as a bit array of possible slots */ 1124 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1125 if (!inuse) 1126 return -ENOMEM; 1127 1128 for_each_netdev(net, d) { 1129 struct netdev_name_node *name_node; 1130 1131 netdev_for_each_altname(d, name_node) { 1132 if (!sscanf(name_node->name, name, &i)) 1133 continue; 1134 if (i < 0 || i >= max_netdevices) 1135 continue; 1136 1137 /* avoid cases where sscanf is not exact inverse of printf */ 1138 snprintf(buf, IFNAMSIZ, name, i); 1139 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1140 __set_bit(i, inuse); 1141 } 1142 if (!sscanf(d->name, name, &i)) 1143 continue; 1144 if (i < 0 || i >= max_netdevices) 1145 continue; 1146 1147 /* avoid cases where sscanf is not exact inverse of printf */ 1148 snprintf(buf, IFNAMSIZ, name, i); 1149 if (!strncmp(buf, d->name, IFNAMSIZ)) 1150 __set_bit(i, inuse); 1151 } 1152 1153 i = find_first_zero_bit(inuse, max_netdevices); 1154 bitmap_free(inuse); 1155 } 1156 1157 snprintf(buf, IFNAMSIZ, name, i); 1158 if (!netdev_name_in_use(net, buf)) 1159 return i; 1160 1161 /* It is possible to run out of possible slots 1162 * when the name is long and there isn't enough space left 1163 * for the digits, or if all bits are used. 1164 */ 1165 return -ENFILE; 1166 } 1167 dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name)1168 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1169 const char *want_name, char *out_name) 1170 { 1171 int ret; 1172 1173 if (!dev_valid_name(want_name)) 1174 return -EINVAL; 1175 1176 if (strchr(want_name, '%')) { 1177 ret = __dev_alloc_name(net, want_name, out_name); 1178 return ret < 0 ? ret : 0; 1179 } else if (netdev_name_in_use(net, want_name)) { 1180 return -EEXIST; 1181 } else if (out_name != want_name) { 1182 strscpy(out_name, want_name, IFNAMSIZ); 1183 } 1184 1185 return 0; 1186 } 1187 dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1188 static int dev_alloc_name_ns(struct net *net, 1189 struct net_device *dev, 1190 const char *name) 1191 { 1192 char buf[IFNAMSIZ]; 1193 int ret; 1194 1195 BUG_ON(!net); 1196 ret = __dev_alloc_name(net, name, buf); 1197 if (ret >= 0) 1198 strscpy(dev->name, buf, IFNAMSIZ); 1199 return ret; 1200 } 1201 1202 /** 1203 * dev_alloc_name - allocate a name for a device 1204 * @dev: device 1205 * @name: name format string 1206 * 1207 * Passed a format string - eg "lt%d" it will try and find a suitable 1208 * id. It scans list of devices to build up a free map, then chooses 1209 * the first empty slot. The caller must hold the dev_base or rtnl lock 1210 * while allocating the name and adding the device in order to avoid 1211 * duplicates. 1212 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1213 * Returns the number of the unit assigned or a negative errno code. 1214 */ 1215 dev_alloc_name(struct net_device * dev,const char * name)1216 int dev_alloc_name(struct net_device *dev, const char *name) 1217 { 1218 return dev_alloc_name_ns(dev_net(dev), dev, name); 1219 } 1220 EXPORT_SYMBOL(dev_alloc_name); 1221 dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1222 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1223 const char *name) 1224 { 1225 char buf[IFNAMSIZ]; 1226 int ret; 1227 1228 ret = dev_prep_valid_name(net, dev, name, buf); 1229 if (ret >= 0) 1230 strscpy(dev->name, buf, IFNAMSIZ); 1231 return ret; 1232 } 1233 1234 /** 1235 * dev_change_name - change name of a device 1236 * @dev: device 1237 * @newname: name (or format string) must be at least IFNAMSIZ 1238 * 1239 * Change name of a device, can pass format strings "eth%d". 1240 * for wildcarding. 1241 */ dev_change_name(struct net_device * dev,const char * newname)1242 int dev_change_name(struct net_device *dev, const char *newname) 1243 { 1244 unsigned char old_assign_type; 1245 char oldname[IFNAMSIZ]; 1246 int err = 0; 1247 int ret; 1248 struct net *net; 1249 1250 ASSERT_RTNL(); 1251 BUG_ON(!dev_net(dev)); 1252 1253 net = dev_net(dev); 1254 1255 down_write(&devnet_rename_sem); 1256 1257 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1258 up_write(&devnet_rename_sem); 1259 return 0; 1260 } 1261 1262 memcpy(oldname, dev->name, IFNAMSIZ); 1263 1264 err = dev_get_valid_name(net, dev, newname); 1265 if (err < 0) { 1266 up_write(&devnet_rename_sem); 1267 return err; 1268 } 1269 1270 if (oldname[0] && !strchr(oldname, '%')) 1271 netdev_info(dev, "renamed from %s%s\n", oldname, 1272 dev->flags & IFF_UP ? " (while UP)" : ""); 1273 1274 old_assign_type = dev->name_assign_type; 1275 dev->name_assign_type = NET_NAME_RENAMED; 1276 1277 rollback: 1278 ret = device_rename(&dev->dev, dev->name); 1279 if (ret) { 1280 memcpy(dev->name, oldname, IFNAMSIZ); 1281 dev->name_assign_type = old_assign_type; 1282 up_write(&devnet_rename_sem); 1283 return ret; 1284 } 1285 1286 up_write(&devnet_rename_sem); 1287 1288 netdev_adjacent_rename_links(dev, oldname); 1289 1290 write_lock(&dev_base_lock); 1291 netdev_name_node_del(dev->name_node); 1292 write_unlock(&dev_base_lock); 1293 1294 synchronize_rcu(); 1295 1296 write_lock(&dev_base_lock); 1297 netdev_name_node_add(net, dev->name_node); 1298 write_unlock(&dev_base_lock); 1299 1300 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1301 ret = notifier_to_errno(ret); 1302 1303 if (ret) { 1304 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1305 if (err >= 0) { 1306 err = ret; 1307 down_write(&devnet_rename_sem); 1308 memcpy(dev->name, oldname, IFNAMSIZ); 1309 memcpy(oldname, newname, IFNAMSIZ); 1310 dev->name_assign_type = old_assign_type; 1311 old_assign_type = NET_NAME_RENAMED; 1312 goto rollback; 1313 } else { 1314 netdev_err(dev, "name change rollback failed: %d\n", 1315 ret); 1316 } 1317 } 1318 1319 return err; 1320 } 1321 1322 /** 1323 * dev_set_alias - change ifalias of a device 1324 * @dev: device 1325 * @alias: name up to IFALIASZ 1326 * @len: limit of bytes to copy from info 1327 * 1328 * Set ifalias for a device, 1329 */ dev_set_alias(struct net_device * dev,const char * alias,size_t len)1330 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1331 { 1332 struct dev_ifalias *new_alias = NULL; 1333 1334 if (len >= IFALIASZ) 1335 return -EINVAL; 1336 1337 if (len) { 1338 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1339 if (!new_alias) 1340 return -ENOMEM; 1341 1342 memcpy(new_alias->ifalias, alias, len); 1343 new_alias->ifalias[len] = 0; 1344 } 1345 1346 mutex_lock(&ifalias_mutex); 1347 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1348 mutex_is_locked(&ifalias_mutex)); 1349 mutex_unlock(&ifalias_mutex); 1350 1351 if (new_alias) 1352 kfree_rcu(new_alias, rcuhead); 1353 1354 return len; 1355 } 1356 EXPORT_SYMBOL(dev_set_alias); 1357 1358 /** 1359 * dev_get_alias - get ifalias of a device 1360 * @dev: device 1361 * @name: buffer to store name of ifalias 1362 * @len: size of buffer 1363 * 1364 * get ifalias for a device. Caller must make sure dev cannot go 1365 * away, e.g. rcu read lock or own a reference count to device. 1366 */ dev_get_alias(const struct net_device * dev,char * name,size_t len)1367 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1368 { 1369 const struct dev_ifalias *alias; 1370 int ret = 0; 1371 1372 rcu_read_lock(); 1373 alias = rcu_dereference(dev->ifalias); 1374 if (alias) 1375 ret = snprintf(name, len, "%s", alias->ifalias); 1376 rcu_read_unlock(); 1377 1378 return ret; 1379 } 1380 1381 /** 1382 * netdev_features_change - device changes features 1383 * @dev: device to cause notification 1384 * 1385 * Called to indicate a device has changed features. 1386 */ netdev_features_change(struct net_device * dev)1387 void netdev_features_change(struct net_device *dev) 1388 { 1389 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1390 } 1391 EXPORT_SYMBOL(netdev_features_change); 1392 1393 /** 1394 * netdev_state_change - device changes state 1395 * @dev: device to cause notification 1396 * 1397 * Called to indicate a device has changed state. This function calls 1398 * the notifier chains for netdev_chain and sends a NEWLINK message 1399 * to the routing socket. 1400 */ netdev_state_change(struct net_device * dev)1401 void netdev_state_change(struct net_device *dev) 1402 { 1403 if (dev->flags & IFF_UP) { 1404 struct netdev_notifier_change_info change_info = { 1405 .info.dev = dev, 1406 }; 1407 1408 call_netdevice_notifiers_info(NETDEV_CHANGE, 1409 &change_info.info); 1410 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1411 } 1412 } 1413 EXPORT_SYMBOL(netdev_state_change); 1414 1415 /** 1416 * __netdev_notify_peers - notify network peers about existence of @dev, 1417 * to be called when rtnl lock is already held. 1418 * @dev: network device 1419 * 1420 * Generate traffic such that interested network peers are aware of 1421 * @dev, such as by generating a gratuitous ARP. This may be used when 1422 * a device wants to inform the rest of the network about some sort of 1423 * reconfiguration such as a failover event or virtual machine 1424 * migration. 1425 */ __netdev_notify_peers(struct net_device * dev)1426 void __netdev_notify_peers(struct net_device *dev) 1427 { 1428 ASSERT_RTNL(); 1429 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1430 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1431 } 1432 EXPORT_SYMBOL(__netdev_notify_peers); 1433 1434 /** 1435 * netdev_notify_peers - notify network peers about existence of @dev 1436 * @dev: network device 1437 * 1438 * Generate traffic such that interested network peers are aware of 1439 * @dev, such as by generating a gratuitous ARP. This may be used when 1440 * a device wants to inform the rest of the network about some sort of 1441 * reconfiguration such as a failover event or virtual machine 1442 * migration. 1443 */ netdev_notify_peers(struct net_device * dev)1444 void netdev_notify_peers(struct net_device *dev) 1445 { 1446 rtnl_lock(); 1447 __netdev_notify_peers(dev); 1448 rtnl_unlock(); 1449 } 1450 EXPORT_SYMBOL(netdev_notify_peers); 1451 1452 static int napi_threaded_poll(void *data); 1453 napi_kthread_create(struct napi_struct * n)1454 static int napi_kthread_create(struct napi_struct *n) 1455 { 1456 int err = 0; 1457 1458 /* Create and wake up the kthread once to put it in 1459 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1460 * warning and work with loadavg. 1461 */ 1462 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1463 n->dev->name, n->napi_id); 1464 if (IS_ERR(n->thread)) { 1465 err = PTR_ERR(n->thread); 1466 pr_err("kthread_run failed with err %d\n", err); 1467 n->thread = NULL; 1468 } 1469 1470 return err; 1471 } 1472 __dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1473 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1474 { 1475 const struct net_device_ops *ops = dev->netdev_ops; 1476 int ret; 1477 1478 ASSERT_RTNL(); 1479 dev_addr_check(dev); 1480 1481 if (!netif_device_present(dev)) { 1482 /* may be detached because parent is runtime-suspended */ 1483 if (dev->dev.parent) 1484 pm_runtime_resume(dev->dev.parent); 1485 if (!netif_device_present(dev)) 1486 return -ENODEV; 1487 } 1488 1489 /* Block netpoll from trying to do any rx path servicing. 1490 * If we don't do this there is a chance ndo_poll_controller 1491 * or ndo_poll may be running while we open the device 1492 */ 1493 netpoll_poll_disable(dev); 1494 1495 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1496 ret = notifier_to_errno(ret); 1497 if (ret) 1498 return ret; 1499 1500 set_bit(__LINK_STATE_START, &dev->state); 1501 1502 if (ops->ndo_validate_addr) 1503 ret = ops->ndo_validate_addr(dev); 1504 1505 if (!ret && ops->ndo_open) 1506 ret = ops->ndo_open(dev); 1507 1508 netpoll_poll_enable(dev); 1509 1510 if (ret) 1511 clear_bit(__LINK_STATE_START, &dev->state); 1512 else { 1513 dev->flags |= IFF_UP; 1514 dev_set_rx_mode(dev); 1515 dev_activate(dev); 1516 add_device_randomness(dev->dev_addr, dev->addr_len); 1517 } 1518 1519 return ret; 1520 } 1521 1522 /** 1523 * dev_open - prepare an interface for use. 1524 * @dev: device to open 1525 * @extack: netlink extended ack 1526 * 1527 * Takes a device from down to up state. The device's private open 1528 * function is invoked and then the multicast lists are loaded. Finally 1529 * the device is moved into the up state and a %NETDEV_UP message is 1530 * sent to the netdev notifier chain. 1531 * 1532 * Calling this function on an active interface is a nop. On a failure 1533 * a negative errno code is returned. 1534 */ dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1535 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1536 { 1537 int ret; 1538 1539 if (dev->flags & IFF_UP) 1540 return 0; 1541 1542 ret = __dev_open(dev, extack); 1543 if (ret < 0) 1544 return ret; 1545 1546 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1547 call_netdevice_notifiers(NETDEV_UP, dev); 1548 1549 return ret; 1550 } 1551 EXPORT_SYMBOL(dev_open); 1552 __dev_close_many(struct list_head * head)1553 static void __dev_close_many(struct list_head *head) 1554 { 1555 struct net_device *dev; 1556 1557 ASSERT_RTNL(); 1558 might_sleep(); 1559 1560 list_for_each_entry(dev, head, close_list) { 1561 /* Temporarily disable netpoll until the interface is down */ 1562 netpoll_poll_disable(dev); 1563 1564 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1565 1566 clear_bit(__LINK_STATE_START, &dev->state); 1567 1568 /* Synchronize to scheduled poll. We cannot touch poll list, it 1569 * can be even on different cpu. So just clear netif_running(). 1570 * 1571 * dev->stop() will invoke napi_disable() on all of it's 1572 * napi_struct instances on this device. 1573 */ 1574 smp_mb__after_atomic(); /* Commit netif_running(). */ 1575 } 1576 1577 dev_deactivate_many(head); 1578 1579 list_for_each_entry(dev, head, close_list) { 1580 const struct net_device_ops *ops = dev->netdev_ops; 1581 1582 /* 1583 * Call the device specific close. This cannot fail. 1584 * Only if device is UP 1585 * 1586 * We allow it to be called even after a DETACH hot-plug 1587 * event. 1588 */ 1589 if (ops->ndo_stop) 1590 ops->ndo_stop(dev); 1591 1592 dev->flags &= ~IFF_UP; 1593 netpoll_poll_enable(dev); 1594 } 1595 } 1596 __dev_close(struct net_device * dev)1597 static void __dev_close(struct net_device *dev) 1598 { 1599 LIST_HEAD(single); 1600 1601 list_add(&dev->close_list, &single); 1602 __dev_close_many(&single); 1603 list_del(&single); 1604 } 1605 dev_close_many(struct list_head * head,bool unlink)1606 void dev_close_many(struct list_head *head, bool unlink) 1607 { 1608 struct net_device *dev, *tmp; 1609 1610 /* Remove the devices that don't need to be closed */ 1611 list_for_each_entry_safe(dev, tmp, head, close_list) 1612 if (!(dev->flags & IFF_UP)) 1613 list_del_init(&dev->close_list); 1614 1615 __dev_close_many(head); 1616 1617 list_for_each_entry_safe(dev, tmp, head, close_list) { 1618 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1619 call_netdevice_notifiers(NETDEV_DOWN, dev); 1620 if (unlink) 1621 list_del_init(&dev->close_list); 1622 } 1623 } 1624 EXPORT_SYMBOL(dev_close_many); 1625 1626 /** 1627 * dev_close - shutdown an interface. 1628 * @dev: device to shutdown 1629 * 1630 * This function moves an active device into down state. A 1631 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1632 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1633 * chain. 1634 */ dev_close(struct net_device * dev)1635 void dev_close(struct net_device *dev) 1636 { 1637 if (dev->flags & IFF_UP) { 1638 LIST_HEAD(single); 1639 1640 list_add(&dev->close_list, &single); 1641 dev_close_many(&single, true); 1642 list_del(&single); 1643 } 1644 } 1645 EXPORT_SYMBOL(dev_close); 1646 1647 1648 /** 1649 * dev_disable_lro - disable Large Receive Offload on a device 1650 * @dev: device 1651 * 1652 * Disable Large Receive Offload (LRO) on a net device. Must be 1653 * called under RTNL. This is needed if received packets may be 1654 * forwarded to another interface. 1655 */ dev_disable_lro(struct net_device * dev)1656 void dev_disable_lro(struct net_device *dev) 1657 { 1658 struct net_device *lower_dev; 1659 struct list_head *iter; 1660 1661 dev->wanted_features &= ~NETIF_F_LRO; 1662 netdev_update_features(dev); 1663 1664 if (unlikely(dev->features & NETIF_F_LRO)) 1665 netdev_WARN(dev, "failed to disable LRO!\n"); 1666 1667 netdev_for_each_lower_dev(dev, lower_dev, iter) 1668 dev_disable_lro(lower_dev); 1669 } 1670 EXPORT_SYMBOL(dev_disable_lro); 1671 1672 /** 1673 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1674 * @dev: device 1675 * 1676 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1677 * called under RTNL. This is needed if Generic XDP is installed on 1678 * the device. 1679 */ dev_disable_gro_hw(struct net_device * dev)1680 static void dev_disable_gro_hw(struct net_device *dev) 1681 { 1682 dev->wanted_features &= ~NETIF_F_GRO_HW; 1683 netdev_update_features(dev); 1684 1685 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1686 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1687 } 1688 netdev_cmd_to_name(enum netdev_cmd cmd)1689 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1690 { 1691 #define N(val) \ 1692 case NETDEV_##val: \ 1693 return "NETDEV_" __stringify(val); 1694 switch (cmd) { 1695 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1696 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1697 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1698 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1699 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1700 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1701 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1702 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1703 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1704 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1705 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1706 N(XDP_FEAT_CHANGE) 1707 } 1708 #undef N 1709 return "UNKNOWN_NETDEV_EVENT"; 1710 } 1711 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1712 call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1713 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1714 struct net_device *dev) 1715 { 1716 struct netdev_notifier_info info = { 1717 .dev = dev, 1718 }; 1719 1720 return nb->notifier_call(nb, val, &info); 1721 } 1722 call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1723 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1724 struct net_device *dev) 1725 { 1726 int err; 1727 1728 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1729 err = notifier_to_errno(err); 1730 if (err) 1731 return err; 1732 1733 if (!(dev->flags & IFF_UP)) 1734 return 0; 1735 1736 call_netdevice_notifier(nb, NETDEV_UP, dev); 1737 return 0; 1738 } 1739 call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1740 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1741 struct net_device *dev) 1742 { 1743 if (dev->flags & IFF_UP) { 1744 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1745 dev); 1746 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1747 } 1748 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1749 } 1750 call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1751 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1752 struct net *net) 1753 { 1754 struct net_device *dev; 1755 int err; 1756 1757 for_each_netdev(net, dev) { 1758 err = call_netdevice_register_notifiers(nb, dev); 1759 if (err) 1760 goto rollback; 1761 } 1762 return 0; 1763 1764 rollback: 1765 for_each_netdev_continue_reverse(net, dev) 1766 call_netdevice_unregister_notifiers(nb, dev); 1767 return err; 1768 } 1769 call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1770 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1771 struct net *net) 1772 { 1773 struct net_device *dev; 1774 1775 for_each_netdev(net, dev) 1776 call_netdevice_unregister_notifiers(nb, dev); 1777 } 1778 1779 static int dev_boot_phase = 1; 1780 1781 /** 1782 * register_netdevice_notifier - register a network notifier block 1783 * @nb: notifier 1784 * 1785 * Register a notifier to be called when network device events occur. 1786 * The notifier passed is linked into the kernel structures and must 1787 * not be reused until it has been unregistered. A negative errno code 1788 * is returned on a failure. 1789 * 1790 * When registered all registration and up events are replayed 1791 * to the new notifier to allow device to have a race free 1792 * view of the network device list. 1793 */ 1794 register_netdevice_notifier(struct notifier_block * nb)1795 int register_netdevice_notifier(struct notifier_block *nb) 1796 { 1797 struct net *net; 1798 int err; 1799 1800 /* Close race with setup_net() and cleanup_net() */ 1801 down_write(&pernet_ops_rwsem); 1802 rtnl_lock(); 1803 err = raw_notifier_chain_register(&netdev_chain, nb); 1804 if (err) 1805 goto unlock; 1806 if (dev_boot_phase) 1807 goto unlock; 1808 for_each_net(net) { 1809 err = call_netdevice_register_net_notifiers(nb, net); 1810 if (err) 1811 goto rollback; 1812 } 1813 1814 unlock: 1815 rtnl_unlock(); 1816 up_write(&pernet_ops_rwsem); 1817 return err; 1818 1819 rollback: 1820 for_each_net_continue_reverse(net) 1821 call_netdevice_unregister_net_notifiers(nb, net); 1822 1823 raw_notifier_chain_unregister(&netdev_chain, nb); 1824 goto unlock; 1825 } 1826 EXPORT_SYMBOL(register_netdevice_notifier); 1827 1828 /** 1829 * unregister_netdevice_notifier - unregister a network notifier block 1830 * @nb: notifier 1831 * 1832 * Unregister a notifier previously registered by 1833 * register_netdevice_notifier(). The notifier is unlinked into the 1834 * kernel structures and may then be reused. A negative errno code 1835 * is returned on a failure. 1836 * 1837 * After unregistering unregister and down device events are synthesized 1838 * for all devices on the device list to the removed notifier to remove 1839 * the need for special case cleanup code. 1840 */ 1841 unregister_netdevice_notifier(struct notifier_block * nb)1842 int unregister_netdevice_notifier(struct notifier_block *nb) 1843 { 1844 struct net *net; 1845 int err; 1846 1847 /* Close race with setup_net() and cleanup_net() */ 1848 down_write(&pernet_ops_rwsem); 1849 rtnl_lock(); 1850 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1851 if (err) 1852 goto unlock; 1853 1854 for_each_net(net) 1855 call_netdevice_unregister_net_notifiers(nb, net); 1856 1857 unlock: 1858 rtnl_unlock(); 1859 up_write(&pernet_ops_rwsem); 1860 return err; 1861 } 1862 EXPORT_SYMBOL(unregister_netdevice_notifier); 1863 __register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1864 static int __register_netdevice_notifier_net(struct net *net, 1865 struct notifier_block *nb, 1866 bool ignore_call_fail) 1867 { 1868 int err; 1869 1870 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1871 if (err) 1872 return err; 1873 if (dev_boot_phase) 1874 return 0; 1875 1876 err = call_netdevice_register_net_notifiers(nb, net); 1877 if (err && !ignore_call_fail) 1878 goto chain_unregister; 1879 1880 return 0; 1881 1882 chain_unregister: 1883 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1884 return err; 1885 } 1886 __unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1887 static int __unregister_netdevice_notifier_net(struct net *net, 1888 struct notifier_block *nb) 1889 { 1890 int err; 1891 1892 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1893 if (err) 1894 return err; 1895 1896 call_netdevice_unregister_net_notifiers(nb, net); 1897 return 0; 1898 } 1899 1900 /** 1901 * register_netdevice_notifier_net - register a per-netns network notifier block 1902 * @net: network namespace 1903 * @nb: notifier 1904 * 1905 * Register a notifier to be called when network device events occur. 1906 * The notifier passed is linked into the kernel structures and must 1907 * not be reused until it has been unregistered. A negative errno code 1908 * is returned on a failure. 1909 * 1910 * When registered all registration and up events are replayed 1911 * to the new notifier to allow device to have a race free 1912 * view of the network device list. 1913 */ 1914 register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1915 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1916 { 1917 int err; 1918 1919 rtnl_lock(); 1920 err = __register_netdevice_notifier_net(net, nb, false); 1921 rtnl_unlock(); 1922 return err; 1923 } 1924 EXPORT_SYMBOL(register_netdevice_notifier_net); 1925 1926 /** 1927 * unregister_netdevice_notifier_net - unregister a per-netns 1928 * network notifier block 1929 * @net: network namespace 1930 * @nb: notifier 1931 * 1932 * Unregister a notifier previously registered by 1933 * register_netdevice_notifier_net(). The notifier is unlinked from the 1934 * kernel structures and may then be reused. A negative errno code 1935 * is returned on a failure. 1936 * 1937 * After unregistering unregister and down device events are synthesized 1938 * for all devices on the device list to the removed notifier to remove 1939 * the need for special case cleanup code. 1940 */ 1941 unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1942 int unregister_netdevice_notifier_net(struct net *net, 1943 struct notifier_block *nb) 1944 { 1945 int err; 1946 1947 rtnl_lock(); 1948 err = __unregister_netdevice_notifier_net(net, nb); 1949 rtnl_unlock(); 1950 return err; 1951 } 1952 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1953 __move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)1954 static void __move_netdevice_notifier_net(struct net *src_net, 1955 struct net *dst_net, 1956 struct notifier_block *nb) 1957 { 1958 __unregister_netdevice_notifier_net(src_net, nb); 1959 __register_netdevice_notifier_net(dst_net, nb, true); 1960 } 1961 register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1962 int register_netdevice_notifier_dev_net(struct net_device *dev, 1963 struct notifier_block *nb, 1964 struct netdev_net_notifier *nn) 1965 { 1966 int err; 1967 1968 rtnl_lock(); 1969 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1970 if (!err) { 1971 nn->nb = nb; 1972 list_add(&nn->list, &dev->net_notifier_list); 1973 } 1974 rtnl_unlock(); 1975 return err; 1976 } 1977 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1978 unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1979 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1980 struct notifier_block *nb, 1981 struct netdev_net_notifier *nn) 1982 { 1983 int err; 1984 1985 rtnl_lock(); 1986 list_del(&nn->list); 1987 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1988 rtnl_unlock(); 1989 return err; 1990 } 1991 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1992 move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)1993 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1994 struct net *net) 1995 { 1996 struct netdev_net_notifier *nn; 1997 1998 list_for_each_entry(nn, &dev->net_notifier_list, list) 1999 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 2000 } 2001 2002 /** 2003 * call_netdevice_notifiers_info - call all network notifier blocks 2004 * @val: value passed unmodified to notifier function 2005 * @info: notifier information data 2006 * 2007 * Call all network notifier blocks. Parameters and return value 2008 * are as for raw_notifier_call_chain(). 2009 */ 2010 call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2011 int call_netdevice_notifiers_info(unsigned long val, 2012 struct netdev_notifier_info *info) 2013 { 2014 struct net *net = dev_net(info->dev); 2015 int ret; 2016 2017 ASSERT_RTNL(); 2018 2019 /* Run per-netns notifier block chain first, then run the global one. 2020 * Hopefully, one day, the global one is going to be removed after 2021 * all notifier block registrators get converted to be per-netns. 2022 */ 2023 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2024 if (ret & NOTIFY_STOP_MASK) 2025 return ret; 2026 return raw_notifier_call_chain(&netdev_chain, val, info); 2027 } 2028 2029 /** 2030 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 2031 * for and rollback on error 2032 * @val_up: value passed unmodified to notifier function 2033 * @val_down: value passed unmodified to the notifier function when 2034 * recovering from an error on @val_up 2035 * @info: notifier information data 2036 * 2037 * Call all per-netns network notifier blocks, but not notifier blocks on 2038 * the global notifier chain. Parameters and return value are as for 2039 * raw_notifier_call_chain_robust(). 2040 */ 2041 2042 static int call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2043 call_netdevice_notifiers_info_robust(unsigned long val_up, 2044 unsigned long val_down, 2045 struct netdev_notifier_info *info) 2046 { 2047 struct net *net = dev_net(info->dev); 2048 2049 ASSERT_RTNL(); 2050 2051 return raw_notifier_call_chain_robust(&net->netdev_chain, 2052 val_up, val_down, info); 2053 } 2054 call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2055 static int call_netdevice_notifiers_extack(unsigned long val, 2056 struct net_device *dev, 2057 struct netlink_ext_ack *extack) 2058 { 2059 struct netdev_notifier_info info = { 2060 .dev = dev, 2061 .extack = extack, 2062 }; 2063 2064 return call_netdevice_notifiers_info(val, &info); 2065 } 2066 2067 /** 2068 * call_netdevice_notifiers - call all network notifier blocks 2069 * @val: value passed unmodified to notifier function 2070 * @dev: net_device pointer passed unmodified to notifier function 2071 * 2072 * Call all network notifier blocks. Parameters and return value 2073 * are as for raw_notifier_call_chain(). 2074 */ 2075 call_netdevice_notifiers(unsigned long val,struct net_device * dev)2076 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2077 { 2078 return call_netdevice_notifiers_extack(val, dev, NULL); 2079 } 2080 EXPORT_SYMBOL(call_netdevice_notifiers); 2081 2082 /** 2083 * call_netdevice_notifiers_mtu - call all network notifier blocks 2084 * @val: value passed unmodified to notifier function 2085 * @dev: net_device pointer passed unmodified to notifier function 2086 * @arg: additional u32 argument passed to the notifier function 2087 * 2088 * Call all network notifier blocks. Parameters and return value 2089 * are as for raw_notifier_call_chain(). 2090 */ call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2091 static int call_netdevice_notifiers_mtu(unsigned long val, 2092 struct net_device *dev, u32 arg) 2093 { 2094 struct netdev_notifier_info_ext info = { 2095 .info.dev = dev, 2096 .ext.mtu = arg, 2097 }; 2098 2099 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2100 2101 return call_netdevice_notifiers_info(val, &info.info); 2102 } 2103 2104 #ifdef CONFIG_NET_INGRESS 2105 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2106 net_inc_ingress_queue(void)2107 void net_inc_ingress_queue(void) 2108 { 2109 static_branch_inc(&ingress_needed_key); 2110 } 2111 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2112 net_dec_ingress_queue(void)2113 void net_dec_ingress_queue(void) 2114 { 2115 static_branch_dec(&ingress_needed_key); 2116 } 2117 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2118 #endif 2119 2120 #ifdef CONFIG_NET_EGRESS 2121 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2122 net_inc_egress_queue(void)2123 void net_inc_egress_queue(void) 2124 { 2125 static_branch_inc(&egress_needed_key); 2126 } 2127 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2128 net_dec_egress_queue(void)2129 void net_dec_egress_queue(void) 2130 { 2131 static_branch_dec(&egress_needed_key); 2132 } 2133 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2134 #endif 2135 2136 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2137 EXPORT_SYMBOL(netstamp_needed_key); 2138 #ifdef CONFIG_JUMP_LABEL 2139 static atomic_t netstamp_needed_deferred; 2140 static atomic_t netstamp_wanted; netstamp_clear(struct work_struct * work)2141 static void netstamp_clear(struct work_struct *work) 2142 { 2143 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2144 int wanted; 2145 2146 wanted = atomic_add_return(deferred, &netstamp_wanted); 2147 if (wanted > 0) 2148 static_branch_enable(&netstamp_needed_key); 2149 else 2150 static_branch_disable(&netstamp_needed_key); 2151 } 2152 static DECLARE_WORK(netstamp_work, netstamp_clear); 2153 #endif 2154 net_enable_timestamp(void)2155 void net_enable_timestamp(void) 2156 { 2157 #ifdef CONFIG_JUMP_LABEL 2158 int wanted = atomic_read(&netstamp_wanted); 2159 2160 while (wanted > 0) { 2161 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2162 return; 2163 } 2164 atomic_inc(&netstamp_needed_deferred); 2165 schedule_work(&netstamp_work); 2166 #else 2167 static_branch_inc(&netstamp_needed_key); 2168 #endif 2169 } 2170 EXPORT_SYMBOL(net_enable_timestamp); 2171 net_disable_timestamp(void)2172 void net_disable_timestamp(void) 2173 { 2174 #ifdef CONFIG_JUMP_LABEL 2175 int wanted = atomic_read(&netstamp_wanted); 2176 2177 while (wanted > 1) { 2178 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2179 return; 2180 } 2181 atomic_dec(&netstamp_needed_deferred); 2182 schedule_work(&netstamp_work); 2183 #else 2184 static_branch_dec(&netstamp_needed_key); 2185 #endif 2186 } 2187 EXPORT_SYMBOL(net_disable_timestamp); 2188 net_timestamp_set(struct sk_buff * skb)2189 static inline void net_timestamp_set(struct sk_buff *skb) 2190 { 2191 skb->tstamp = 0; 2192 skb->mono_delivery_time = 0; 2193 if (static_branch_unlikely(&netstamp_needed_key)) 2194 skb->tstamp = ktime_get_real(); 2195 } 2196 2197 #define net_timestamp_check(COND, SKB) \ 2198 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2199 if ((COND) && !(SKB)->tstamp) \ 2200 (SKB)->tstamp = ktime_get_real(); \ 2201 } \ 2202 is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2203 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2204 { 2205 return __is_skb_forwardable(dev, skb, true); 2206 } 2207 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2208 __dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2209 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2210 bool check_mtu) 2211 { 2212 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2213 2214 if (likely(!ret)) { 2215 skb->protocol = eth_type_trans(skb, dev); 2216 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2217 } 2218 2219 return ret; 2220 } 2221 __dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2222 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2223 { 2224 return __dev_forward_skb2(dev, skb, true); 2225 } 2226 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2227 2228 /** 2229 * dev_forward_skb - loopback an skb to another netif 2230 * 2231 * @dev: destination network device 2232 * @skb: buffer to forward 2233 * 2234 * return values: 2235 * NET_RX_SUCCESS (no congestion) 2236 * NET_RX_DROP (packet was dropped, but freed) 2237 * 2238 * dev_forward_skb can be used for injecting an skb from the 2239 * start_xmit function of one device into the receive queue 2240 * of another device. 2241 * 2242 * The receiving device may be in another namespace, so 2243 * we have to clear all information in the skb that could 2244 * impact namespace isolation. 2245 */ dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2246 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2247 { 2248 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2249 } 2250 EXPORT_SYMBOL_GPL(dev_forward_skb); 2251 dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2252 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2253 { 2254 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2255 } 2256 deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2257 static inline int deliver_skb(struct sk_buff *skb, 2258 struct packet_type *pt_prev, 2259 struct net_device *orig_dev) 2260 { 2261 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2262 return -ENOMEM; 2263 refcount_inc(&skb->users); 2264 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2265 } 2266 deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2267 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2268 struct packet_type **pt, 2269 struct net_device *orig_dev, 2270 __be16 type, 2271 struct list_head *ptype_list) 2272 { 2273 struct packet_type *ptype, *pt_prev = *pt; 2274 2275 list_for_each_entry_rcu(ptype, ptype_list, list) { 2276 if (ptype->type != type) 2277 continue; 2278 if (pt_prev) 2279 deliver_skb(skb, pt_prev, orig_dev); 2280 pt_prev = ptype; 2281 } 2282 *pt = pt_prev; 2283 } 2284 skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2285 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2286 { 2287 if (!ptype->af_packet_priv || !skb->sk) 2288 return false; 2289 2290 if (ptype->id_match) 2291 return ptype->id_match(ptype, skb->sk); 2292 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2293 return true; 2294 2295 return false; 2296 } 2297 2298 /** 2299 * dev_nit_active - return true if any network interface taps are in use 2300 * 2301 * @dev: network device to check for the presence of taps 2302 */ dev_nit_active(struct net_device * dev)2303 bool dev_nit_active(struct net_device *dev) 2304 { 2305 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2306 } 2307 EXPORT_SYMBOL_GPL(dev_nit_active); 2308 2309 /* 2310 * Support routine. Sends outgoing frames to any network 2311 * taps currently in use. 2312 */ 2313 dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2314 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2315 { 2316 struct packet_type *ptype; 2317 struct sk_buff *skb2 = NULL; 2318 struct packet_type *pt_prev = NULL; 2319 struct list_head *ptype_list = &ptype_all; 2320 2321 rcu_read_lock(); 2322 again: 2323 list_for_each_entry_rcu(ptype, ptype_list, list) { 2324 if (READ_ONCE(ptype->ignore_outgoing)) 2325 continue; 2326 2327 /* Never send packets back to the socket 2328 * they originated from - MvS (miquels@drinkel.ow.org) 2329 */ 2330 if (skb_loop_sk(ptype, skb)) 2331 continue; 2332 2333 if (pt_prev) { 2334 deliver_skb(skb2, pt_prev, skb->dev); 2335 pt_prev = ptype; 2336 continue; 2337 } 2338 2339 /* need to clone skb, done only once */ 2340 skb2 = skb_clone(skb, GFP_ATOMIC); 2341 if (!skb2) 2342 goto out_unlock; 2343 2344 net_timestamp_set(skb2); 2345 2346 /* skb->nh should be correctly 2347 * set by sender, so that the second statement is 2348 * just protection against buggy protocols. 2349 */ 2350 skb_reset_mac_header(skb2); 2351 2352 if (skb_network_header(skb2) < skb2->data || 2353 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2354 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2355 ntohs(skb2->protocol), 2356 dev->name); 2357 skb_reset_network_header(skb2); 2358 } 2359 2360 skb2->transport_header = skb2->network_header; 2361 skb2->pkt_type = PACKET_OUTGOING; 2362 pt_prev = ptype; 2363 } 2364 2365 if (ptype_list == &ptype_all) { 2366 ptype_list = &dev->ptype_all; 2367 goto again; 2368 } 2369 out_unlock: 2370 if (pt_prev) { 2371 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2372 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2373 else 2374 kfree_skb(skb2); 2375 } 2376 rcu_read_unlock(); 2377 } 2378 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2379 2380 /** 2381 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2382 * @dev: Network device 2383 * @txq: number of queues available 2384 * 2385 * If real_num_tx_queues is changed the tc mappings may no longer be 2386 * valid. To resolve this verify the tc mapping remains valid and if 2387 * not NULL the mapping. With no priorities mapping to this 2388 * offset/count pair it will no longer be used. In the worst case TC0 2389 * is invalid nothing can be done so disable priority mappings. If is 2390 * expected that drivers will fix this mapping if they can before 2391 * calling netif_set_real_num_tx_queues. 2392 */ netif_setup_tc(struct net_device * dev,unsigned int txq)2393 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2394 { 2395 int i; 2396 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2397 2398 /* If TC0 is invalidated disable TC mapping */ 2399 if (tc->offset + tc->count > txq) { 2400 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2401 dev->num_tc = 0; 2402 return; 2403 } 2404 2405 /* Invalidated prio to tc mappings set to TC0 */ 2406 for (i = 1; i < TC_BITMASK + 1; i++) { 2407 int q = netdev_get_prio_tc_map(dev, i); 2408 2409 tc = &dev->tc_to_txq[q]; 2410 if (tc->offset + tc->count > txq) { 2411 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2412 i, q); 2413 netdev_set_prio_tc_map(dev, i, 0); 2414 } 2415 } 2416 } 2417 netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2418 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2419 { 2420 if (dev->num_tc) { 2421 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2422 int i; 2423 2424 /* walk through the TCs and see if it falls into any of them */ 2425 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2426 if ((txq - tc->offset) < tc->count) 2427 return i; 2428 } 2429 2430 /* didn't find it, just return -1 to indicate no match */ 2431 return -1; 2432 } 2433 2434 return 0; 2435 } 2436 EXPORT_SYMBOL(netdev_txq_to_tc); 2437 2438 #ifdef CONFIG_XPS 2439 static struct static_key xps_needed __read_mostly; 2440 static struct static_key xps_rxqs_needed __read_mostly; 2441 static DEFINE_MUTEX(xps_map_mutex); 2442 #define xmap_dereference(P) \ 2443 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2444 remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2445 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2446 struct xps_dev_maps *old_maps, int tci, u16 index) 2447 { 2448 struct xps_map *map = NULL; 2449 int pos; 2450 2451 map = xmap_dereference(dev_maps->attr_map[tci]); 2452 if (!map) 2453 return false; 2454 2455 for (pos = map->len; pos--;) { 2456 if (map->queues[pos] != index) 2457 continue; 2458 2459 if (map->len > 1) { 2460 map->queues[pos] = map->queues[--map->len]; 2461 break; 2462 } 2463 2464 if (old_maps) 2465 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2466 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2467 kfree_rcu(map, rcu); 2468 return false; 2469 } 2470 2471 return true; 2472 } 2473 remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2474 static bool remove_xps_queue_cpu(struct net_device *dev, 2475 struct xps_dev_maps *dev_maps, 2476 int cpu, u16 offset, u16 count) 2477 { 2478 int num_tc = dev_maps->num_tc; 2479 bool active = false; 2480 int tci; 2481 2482 for (tci = cpu * num_tc; num_tc--; tci++) { 2483 int i, j; 2484 2485 for (i = count, j = offset; i--; j++) { 2486 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2487 break; 2488 } 2489 2490 active |= i < 0; 2491 } 2492 2493 return active; 2494 } 2495 reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2496 static void reset_xps_maps(struct net_device *dev, 2497 struct xps_dev_maps *dev_maps, 2498 enum xps_map_type type) 2499 { 2500 static_key_slow_dec_cpuslocked(&xps_needed); 2501 if (type == XPS_RXQS) 2502 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2503 2504 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2505 2506 kfree_rcu(dev_maps, rcu); 2507 } 2508 clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2509 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2510 u16 offset, u16 count) 2511 { 2512 struct xps_dev_maps *dev_maps; 2513 bool active = false; 2514 int i, j; 2515 2516 dev_maps = xmap_dereference(dev->xps_maps[type]); 2517 if (!dev_maps) 2518 return; 2519 2520 for (j = 0; j < dev_maps->nr_ids; j++) 2521 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2522 if (!active) 2523 reset_xps_maps(dev, dev_maps, type); 2524 2525 if (type == XPS_CPUS) { 2526 for (i = offset + (count - 1); count--; i--) 2527 netdev_queue_numa_node_write( 2528 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2529 } 2530 } 2531 netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2532 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2533 u16 count) 2534 { 2535 if (!static_key_false(&xps_needed)) 2536 return; 2537 2538 cpus_read_lock(); 2539 mutex_lock(&xps_map_mutex); 2540 2541 if (static_key_false(&xps_rxqs_needed)) 2542 clean_xps_maps(dev, XPS_RXQS, offset, count); 2543 2544 clean_xps_maps(dev, XPS_CPUS, offset, count); 2545 2546 mutex_unlock(&xps_map_mutex); 2547 cpus_read_unlock(); 2548 } 2549 netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2550 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2551 { 2552 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2553 } 2554 expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2555 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2556 u16 index, bool is_rxqs_map) 2557 { 2558 struct xps_map *new_map; 2559 int alloc_len = XPS_MIN_MAP_ALLOC; 2560 int i, pos; 2561 2562 for (pos = 0; map && pos < map->len; pos++) { 2563 if (map->queues[pos] != index) 2564 continue; 2565 return map; 2566 } 2567 2568 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2569 if (map) { 2570 if (pos < map->alloc_len) 2571 return map; 2572 2573 alloc_len = map->alloc_len * 2; 2574 } 2575 2576 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2577 * map 2578 */ 2579 if (is_rxqs_map) 2580 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2581 else 2582 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2583 cpu_to_node(attr_index)); 2584 if (!new_map) 2585 return NULL; 2586 2587 for (i = 0; i < pos; i++) 2588 new_map->queues[i] = map->queues[i]; 2589 new_map->alloc_len = alloc_len; 2590 new_map->len = pos; 2591 2592 return new_map; 2593 } 2594 2595 /* Copy xps maps at a given index */ xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2596 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2597 struct xps_dev_maps *new_dev_maps, int index, 2598 int tc, bool skip_tc) 2599 { 2600 int i, tci = index * dev_maps->num_tc; 2601 struct xps_map *map; 2602 2603 /* copy maps belonging to foreign traffic classes */ 2604 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2605 if (i == tc && skip_tc) 2606 continue; 2607 2608 /* fill in the new device map from the old device map */ 2609 map = xmap_dereference(dev_maps->attr_map[tci]); 2610 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2611 } 2612 } 2613 2614 /* Must be called under cpus_read_lock */ __netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2615 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2616 u16 index, enum xps_map_type type) 2617 { 2618 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2619 const unsigned long *online_mask = NULL; 2620 bool active = false, copy = false; 2621 int i, j, tci, numa_node_id = -2; 2622 int maps_sz, num_tc = 1, tc = 0; 2623 struct xps_map *map, *new_map; 2624 unsigned int nr_ids; 2625 2626 WARN_ON_ONCE(index >= dev->num_tx_queues); 2627 2628 if (dev->num_tc) { 2629 /* Do not allow XPS on subordinate device directly */ 2630 num_tc = dev->num_tc; 2631 if (num_tc < 0) 2632 return -EINVAL; 2633 2634 /* If queue belongs to subordinate dev use its map */ 2635 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2636 2637 tc = netdev_txq_to_tc(dev, index); 2638 if (tc < 0) 2639 return -EINVAL; 2640 } 2641 2642 mutex_lock(&xps_map_mutex); 2643 2644 dev_maps = xmap_dereference(dev->xps_maps[type]); 2645 if (type == XPS_RXQS) { 2646 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2647 nr_ids = dev->num_rx_queues; 2648 } else { 2649 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2650 if (num_possible_cpus() > 1) 2651 online_mask = cpumask_bits(cpu_online_mask); 2652 nr_ids = nr_cpu_ids; 2653 } 2654 2655 if (maps_sz < L1_CACHE_BYTES) 2656 maps_sz = L1_CACHE_BYTES; 2657 2658 /* The old dev_maps could be larger or smaller than the one we're 2659 * setting up now, as dev->num_tc or nr_ids could have been updated in 2660 * between. We could try to be smart, but let's be safe instead and only 2661 * copy foreign traffic classes if the two map sizes match. 2662 */ 2663 if (dev_maps && 2664 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2665 copy = true; 2666 2667 /* allocate memory for queue storage */ 2668 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2669 j < nr_ids;) { 2670 if (!new_dev_maps) { 2671 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2672 if (!new_dev_maps) { 2673 mutex_unlock(&xps_map_mutex); 2674 return -ENOMEM; 2675 } 2676 2677 new_dev_maps->nr_ids = nr_ids; 2678 new_dev_maps->num_tc = num_tc; 2679 } 2680 2681 tci = j * num_tc + tc; 2682 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2683 2684 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2685 if (!map) 2686 goto error; 2687 2688 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2689 } 2690 2691 if (!new_dev_maps) 2692 goto out_no_new_maps; 2693 2694 if (!dev_maps) { 2695 /* Increment static keys at most once per type */ 2696 static_key_slow_inc_cpuslocked(&xps_needed); 2697 if (type == XPS_RXQS) 2698 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2699 } 2700 2701 for (j = 0; j < nr_ids; j++) { 2702 bool skip_tc = false; 2703 2704 tci = j * num_tc + tc; 2705 if (netif_attr_test_mask(j, mask, nr_ids) && 2706 netif_attr_test_online(j, online_mask, nr_ids)) { 2707 /* add tx-queue to CPU/rx-queue maps */ 2708 int pos = 0; 2709 2710 skip_tc = true; 2711 2712 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2713 while ((pos < map->len) && (map->queues[pos] != index)) 2714 pos++; 2715 2716 if (pos == map->len) 2717 map->queues[map->len++] = index; 2718 #ifdef CONFIG_NUMA 2719 if (type == XPS_CPUS) { 2720 if (numa_node_id == -2) 2721 numa_node_id = cpu_to_node(j); 2722 else if (numa_node_id != cpu_to_node(j)) 2723 numa_node_id = -1; 2724 } 2725 #endif 2726 } 2727 2728 if (copy) 2729 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2730 skip_tc); 2731 } 2732 2733 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2734 2735 /* Cleanup old maps */ 2736 if (!dev_maps) 2737 goto out_no_old_maps; 2738 2739 for (j = 0; j < dev_maps->nr_ids; j++) { 2740 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2741 map = xmap_dereference(dev_maps->attr_map[tci]); 2742 if (!map) 2743 continue; 2744 2745 if (copy) { 2746 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2747 if (map == new_map) 2748 continue; 2749 } 2750 2751 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2752 kfree_rcu(map, rcu); 2753 } 2754 } 2755 2756 old_dev_maps = dev_maps; 2757 2758 out_no_old_maps: 2759 dev_maps = new_dev_maps; 2760 active = true; 2761 2762 out_no_new_maps: 2763 if (type == XPS_CPUS) 2764 /* update Tx queue numa node */ 2765 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2766 (numa_node_id >= 0) ? 2767 numa_node_id : NUMA_NO_NODE); 2768 2769 if (!dev_maps) 2770 goto out_no_maps; 2771 2772 /* removes tx-queue from unused CPUs/rx-queues */ 2773 for (j = 0; j < dev_maps->nr_ids; j++) { 2774 tci = j * dev_maps->num_tc; 2775 2776 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2777 if (i == tc && 2778 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2779 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2780 continue; 2781 2782 active |= remove_xps_queue(dev_maps, 2783 copy ? old_dev_maps : NULL, 2784 tci, index); 2785 } 2786 } 2787 2788 if (old_dev_maps) 2789 kfree_rcu(old_dev_maps, rcu); 2790 2791 /* free map if not active */ 2792 if (!active) 2793 reset_xps_maps(dev, dev_maps, type); 2794 2795 out_no_maps: 2796 mutex_unlock(&xps_map_mutex); 2797 2798 return 0; 2799 error: 2800 /* remove any maps that we added */ 2801 for (j = 0; j < nr_ids; j++) { 2802 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2803 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2804 map = copy ? 2805 xmap_dereference(dev_maps->attr_map[tci]) : 2806 NULL; 2807 if (new_map && new_map != map) 2808 kfree(new_map); 2809 } 2810 } 2811 2812 mutex_unlock(&xps_map_mutex); 2813 2814 kfree(new_dev_maps); 2815 return -ENOMEM; 2816 } 2817 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2818 netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2819 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2820 u16 index) 2821 { 2822 int ret; 2823 2824 cpus_read_lock(); 2825 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 2826 cpus_read_unlock(); 2827 2828 return ret; 2829 } 2830 EXPORT_SYMBOL(netif_set_xps_queue); 2831 2832 #endif netdev_unbind_all_sb_channels(struct net_device * dev)2833 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2834 { 2835 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2836 2837 /* Unbind any subordinate channels */ 2838 while (txq-- != &dev->_tx[0]) { 2839 if (txq->sb_dev) 2840 netdev_unbind_sb_channel(dev, txq->sb_dev); 2841 } 2842 } 2843 netdev_reset_tc(struct net_device * dev)2844 void netdev_reset_tc(struct net_device *dev) 2845 { 2846 #ifdef CONFIG_XPS 2847 netif_reset_xps_queues_gt(dev, 0); 2848 #endif 2849 netdev_unbind_all_sb_channels(dev); 2850 2851 /* Reset TC configuration of device */ 2852 dev->num_tc = 0; 2853 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2854 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2855 } 2856 EXPORT_SYMBOL(netdev_reset_tc); 2857 netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2858 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2859 { 2860 if (tc >= dev->num_tc) 2861 return -EINVAL; 2862 2863 #ifdef CONFIG_XPS 2864 netif_reset_xps_queues(dev, offset, count); 2865 #endif 2866 dev->tc_to_txq[tc].count = count; 2867 dev->tc_to_txq[tc].offset = offset; 2868 return 0; 2869 } 2870 EXPORT_SYMBOL(netdev_set_tc_queue); 2871 netdev_set_num_tc(struct net_device * dev,u8 num_tc)2872 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2873 { 2874 if (num_tc > TC_MAX_QUEUE) 2875 return -EINVAL; 2876 2877 #ifdef CONFIG_XPS 2878 netif_reset_xps_queues_gt(dev, 0); 2879 #endif 2880 netdev_unbind_all_sb_channels(dev); 2881 2882 dev->num_tc = num_tc; 2883 return 0; 2884 } 2885 EXPORT_SYMBOL(netdev_set_num_tc); 2886 netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2887 void netdev_unbind_sb_channel(struct net_device *dev, 2888 struct net_device *sb_dev) 2889 { 2890 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2891 2892 #ifdef CONFIG_XPS 2893 netif_reset_xps_queues_gt(sb_dev, 0); 2894 #endif 2895 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2896 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2897 2898 while (txq-- != &dev->_tx[0]) { 2899 if (txq->sb_dev == sb_dev) 2900 txq->sb_dev = NULL; 2901 } 2902 } 2903 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2904 netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2905 int netdev_bind_sb_channel_queue(struct net_device *dev, 2906 struct net_device *sb_dev, 2907 u8 tc, u16 count, u16 offset) 2908 { 2909 /* Make certain the sb_dev and dev are already configured */ 2910 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2911 return -EINVAL; 2912 2913 /* We cannot hand out queues we don't have */ 2914 if ((offset + count) > dev->real_num_tx_queues) 2915 return -EINVAL; 2916 2917 /* Record the mapping */ 2918 sb_dev->tc_to_txq[tc].count = count; 2919 sb_dev->tc_to_txq[tc].offset = offset; 2920 2921 /* Provide a way for Tx queue to find the tc_to_txq map or 2922 * XPS map for itself. 2923 */ 2924 while (count--) 2925 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2926 2927 return 0; 2928 } 2929 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2930 netdev_set_sb_channel(struct net_device * dev,u16 channel)2931 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2932 { 2933 /* Do not use a multiqueue device to represent a subordinate channel */ 2934 if (netif_is_multiqueue(dev)) 2935 return -ENODEV; 2936 2937 /* We allow channels 1 - 32767 to be used for subordinate channels. 2938 * Channel 0 is meant to be "native" mode and used only to represent 2939 * the main root device. We allow writing 0 to reset the device back 2940 * to normal mode after being used as a subordinate channel. 2941 */ 2942 if (channel > S16_MAX) 2943 return -EINVAL; 2944 2945 dev->num_tc = -channel; 2946 2947 return 0; 2948 } 2949 EXPORT_SYMBOL(netdev_set_sb_channel); 2950 2951 /* 2952 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2953 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2954 */ netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2955 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2956 { 2957 bool disabling; 2958 int rc; 2959 2960 disabling = txq < dev->real_num_tx_queues; 2961 2962 if (txq < 1 || txq > dev->num_tx_queues) 2963 return -EINVAL; 2964 2965 if (dev->reg_state == NETREG_REGISTERED || 2966 dev->reg_state == NETREG_UNREGISTERING) { 2967 ASSERT_RTNL(); 2968 2969 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2970 txq); 2971 if (rc) 2972 return rc; 2973 2974 if (dev->num_tc) 2975 netif_setup_tc(dev, txq); 2976 2977 dev_qdisc_change_real_num_tx(dev, txq); 2978 2979 dev->real_num_tx_queues = txq; 2980 2981 if (disabling) { 2982 synchronize_net(); 2983 qdisc_reset_all_tx_gt(dev, txq); 2984 #ifdef CONFIG_XPS 2985 netif_reset_xps_queues_gt(dev, txq); 2986 #endif 2987 } 2988 } else { 2989 dev->real_num_tx_queues = txq; 2990 } 2991 2992 return 0; 2993 } 2994 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2995 2996 #ifdef CONFIG_SYSFS 2997 /** 2998 * netif_set_real_num_rx_queues - set actual number of RX queues used 2999 * @dev: Network device 3000 * @rxq: Actual number of RX queues 3001 * 3002 * This must be called either with the rtnl_lock held or before 3003 * registration of the net device. Returns 0 on success, or a 3004 * negative error code. If called before registration, it always 3005 * succeeds. 3006 */ netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3007 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3008 { 3009 int rc; 3010 3011 if (rxq < 1 || rxq > dev->num_rx_queues) 3012 return -EINVAL; 3013 3014 if (dev->reg_state == NETREG_REGISTERED) { 3015 ASSERT_RTNL(); 3016 3017 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3018 rxq); 3019 if (rc) 3020 return rc; 3021 } 3022 3023 dev->real_num_rx_queues = rxq; 3024 return 0; 3025 } 3026 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3027 #endif 3028 3029 /** 3030 * netif_set_real_num_queues - set actual number of RX and TX queues used 3031 * @dev: Network device 3032 * @txq: Actual number of TX queues 3033 * @rxq: Actual number of RX queues 3034 * 3035 * Set the real number of both TX and RX queues. 3036 * Does nothing if the number of queues is already correct. 3037 */ netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3038 int netif_set_real_num_queues(struct net_device *dev, 3039 unsigned int txq, unsigned int rxq) 3040 { 3041 unsigned int old_rxq = dev->real_num_rx_queues; 3042 int err; 3043 3044 if (txq < 1 || txq > dev->num_tx_queues || 3045 rxq < 1 || rxq > dev->num_rx_queues) 3046 return -EINVAL; 3047 3048 /* Start from increases, so the error path only does decreases - 3049 * decreases can't fail. 3050 */ 3051 if (rxq > dev->real_num_rx_queues) { 3052 err = netif_set_real_num_rx_queues(dev, rxq); 3053 if (err) 3054 return err; 3055 } 3056 if (txq > dev->real_num_tx_queues) { 3057 err = netif_set_real_num_tx_queues(dev, txq); 3058 if (err) 3059 goto undo_rx; 3060 } 3061 if (rxq < dev->real_num_rx_queues) 3062 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3063 if (txq < dev->real_num_tx_queues) 3064 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3065 3066 return 0; 3067 undo_rx: 3068 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3069 return err; 3070 } 3071 EXPORT_SYMBOL(netif_set_real_num_queues); 3072 3073 /** 3074 * netif_set_tso_max_size() - set the max size of TSO frames supported 3075 * @dev: netdev to update 3076 * @size: max skb->len of a TSO frame 3077 * 3078 * Set the limit on the size of TSO super-frames the device can handle. 3079 * Unless explicitly set the stack will assume the value of 3080 * %GSO_LEGACY_MAX_SIZE. 3081 */ netif_set_tso_max_size(struct net_device * dev,unsigned int size)3082 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3083 { 3084 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3085 if (size < READ_ONCE(dev->gso_max_size)) 3086 netif_set_gso_max_size(dev, size); 3087 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3088 netif_set_gso_ipv4_max_size(dev, size); 3089 } 3090 EXPORT_SYMBOL(netif_set_tso_max_size); 3091 3092 /** 3093 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3094 * @dev: netdev to update 3095 * @segs: max number of TCP segments 3096 * 3097 * Set the limit on the number of TCP segments the device can generate from 3098 * a single TSO super-frame. 3099 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3100 */ netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3101 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3102 { 3103 dev->tso_max_segs = segs; 3104 if (segs < READ_ONCE(dev->gso_max_segs)) 3105 netif_set_gso_max_segs(dev, segs); 3106 } 3107 EXPORT_SYMBOL(netif_set_tso_max_segs); 3108 3109 /** 3110 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3111 * @to: netdev to update 3112 * @from: netdev from which to copy the limits 3113 */ netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3114 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3115 { 3116 netif_set_tso_max_size(to, from->tso_max_size); 3117 netif_set_tso_max_segs(to, from->tso_max_segs); 3118 } 3119 EXPORT_SYMBOL(netif_inherit_tso_max); 3120 3121 /** 3122 * netif_get_num_default_rss_queues - default number of RSS queues 3123 * 3124 * Default value is the number of physical cores if there are only 1 or 2, or 3125 * divided by 2 if there are more. 3126 */ netif_get_num_default_rss_queues(void)3127 int netif_get_num_default_rss_queues(void) 3128 { 3129 cpumask_var_t cpus; 3130 int cpu, count = 0; 3131 3132 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3133 return 1; 3134 3135 cpumask_copy(cpus, cpu_online_mask); 3136 for_each_cpu(cpu, cpus) { 3137 ++count; 3138 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3139 } 3140 free_cpumask_var(cpus); 3141 3142 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3143 } 3144 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3145 __netif_reschedule(struct Qdisc * q)3146 static void __netif_reschedule(struct Qdisc *q) 3147 { 3148 struct softnet_data *sd; 3149 unsigned long flags; 3150 3151 local_irq_save(flags); 3152 sd = this_cpu_ptr(&softnet_data); 3153 q->next_sched = NULL; 3154 *sd->output_queue_tailp = q; 3155 sd->output_queue_tailp = &q->next_sched; 3156 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3157 local_irq_restore(flags); 3158 } 3159 __netif_schedule(struct Qdisc * q)3160 void __netif_schedule(struct Qdisc *q) 3161 { 3162 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3163 __netif_reschedule(q); 3164 } 3165 EXPORT_SYMBOL(__netif_schedule); 3166 3167 struct dev_kfree_skb_cb { 3168 enum skb_drop_reason reason; 3169 }; 3170 get_kfree_skb_cb(const struct sk_buff * skb)3171 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3172 { 3173 return (struct dev_kfree_skb_cb *)skb->cb; 3174 } 3175 netif_schedule_queue(struct netdev_queue * txq)3176 void netif_schedule_queue(struct netdev_queue *txq) 3177 { 3178 rcu_read_lock(); 3179 if (!netif_xmit_stopped(txq)) { 3180 struct Qdisc *q = rcu_dereference(txq->qdisc); 3181 3182 __netif_schedule(q); 3183 } 3184 rcu_read_unlock(); 3185 } 3186 EXPORT_SYMBOL(netif_schedule_queue); 3187 netif_tx_wake_queue(struct netdev_queue * dev_queue)3188 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3189 { 3190 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3191 struct Qdisc *q; 3192 3193 rcu_read_lock(); 3194 q = rcu_dereference(dev_queue->qdisc); 3195 __netif_schedule(q); 3196 rcu_read_unlock(); 3197 } 3198 } 3199 EXPORT_SYMBOL(netif_tx_wake_queue); 3200 dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3201 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3202 { 3203 unsigned long flags; 3204 3205 if (unlikely(!skb)) 3206 return; 3207 3208 if (likely(refcount_read(&skb->users) == 1)) { 3209 smp_rmb(); 3210 refcount_set(&skb->users, 0); 3211 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3212 return; 3213 } 3214 get_kfree_skb_cb(skb)->reason = reason; 3215 local_irq_save(flags); 3216 skb->next = __this_cpu_read(softnet_data.completion_queue); 3217 __this_cpu_write(softnet_data.completion_queue, skb); 3218 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3219 local_irq_restore(flags); 3220 } 3221 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3222 dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3223 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3224 { 3225 if (in_hardirq() || irqs_disabled()) 3226 dev_kfree_skb_irq_reason(skb, reason); 3227 else 3228 kfree_skb_reason(skb, reason); 3229 } 3230 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3231 3232 3233 /** 3234 * netif_device_detach - mark device as removed 3235 * @dev: network device 3236 * 3237 * Mark device as removed from system and therefore no longer available. 3238 */ netif_device_detach(struct net_device * dev)3239 void netif_device_detach(struct net_device *dev) 3240 { 3241 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3242 netif_running(dev)) { 3243 netif_tx_stop_all_queues(dev); 3244 } 3245 } 3246 EXPORT_SYMBOL(netif_device_detach); 3247 3248 /** 3249 * netif_device_attach - mark device as attached 3250 * @dev: network device 3251 * 3252 * Mark device as attached from system and restart if needed. 3253 */ netif_device_attach(struct net_device * dev)3254 void netif_device_attach(struct net_device *dev) 3255 { 3256 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3257 netif_running(dev)) { 3258 netif_tx_wake_all_queues(dev); 3259 __netdev_watchdog_up(dev); 3260 } 3261 } 3262 EXPORT_SYMBOL(netif_device_attach); 3263 3264 /* 3265 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3266 * to be used as a distribution range. 3267 */ skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3268 static u16 skb_tx_hash(const struct net_device *dev, 3269 const struct net_device *sb_dev, 3270 struct sk_buff *skb) 3271 { 3272 u32 hash; 3273 u16 qoffset = 0; 3274 u16 qcount = dev->real_num_tx_queues; 3275 3276 if (dev->num_tc) { 3277 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3278 3279 qoffset = sb_dev->tc_to_txq[tc].offset; 3280 qcount = sb_dev->tc_to_txq[tc].count; 3281 if (unlikely(!qcount)) { 3282 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3283 sb_dev->name, qoffset, tc); 3284 qoffset = 0; 3285 qcount = dev->real_num_tx_queues; 3286 } 3287 } 3288 3289 if (skb_rx_queue_recorded(skb)) { 3290 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3291 hash = skb_get_rx_queue(skb); 3292 if (hash >= qoffset) 3293 hash -= qoffset; 3294 while (unlikely(hash >= qcount)) 3295 hash -= qcount; 3296 return hash + qoffset; 3297 } 3298 3299 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3300 } 3301 skb_warn_bad_offload(const struct sk_buff * skb)3302 void skb_warn_bad_offload(const struct sk_buff *skb) 3303 { 3304 static const netdev_features_t null_features; 3305 struct net_device *dev = skb->dev; 3306 const char *name = ""; 3307 3308 if (!net_ratelimit()) 3309 return; 3310 3311 if (dev) { 3312 if (dev->dev.parent) 3313 name = dev_driver_string(dev->dev.parent); 3314 else 3315 name = netdev_name(dev); 3316 } 3317 skb_dump(KERN_WARNING, skb, false); 3318 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3319 name, dev ? &dev->features : &null_features, 3320 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3321 } 3322 3323 /* 3324 * Invalidate hardware checksum when packet is to be mangled, and 3325 * complete checksum manually on outgoing path. 3326 */ skb_checksum_help(struct sk_buff * skb)3327 int skb_checksum_help(struct sk_buff *skb) 3328 { 3329 __wsum csum; 3330 int ret = 0, offset; 3331 3332 if (skb->ip_summed == CHECKSUM_COMPLETE) 3333 goto out_set_summed; 3334 3335 if (unlikely(skb_is_gso(skb))) { 3336 skb_warn_bad_offload(skb); 3337 return -EINVAL; 3338 } 3339 3340 /* Before computing a checksum, we should make sure no frag could 3341 * be modified by an external entity : checksum could be wrong. 3342 */ 3343 if (skb_has_shared_frag(skb)) { 3344 ret = __skb_linearize(skb); 3345 if (ret) 3346 goto out; 3347 } 3348 3349 offset = skb_checksum_start_offset(skb); 3350 ret = -EINVAL; 3351 if (unlikely(offset >= skb_headlen(skb))) { 3352 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3353 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3354 offset, skb_headlen(skb)); 3355 goto out; 3356 } 3357 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3358 3359 offset += skb->csum_offset; 3360 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3361 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3362 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3363 offset + sizeof(__sum16), skb_headlen(skb)); 3364 goto out; 3365 } 3366 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3367 if (ret) 3368 goto out; 3369 3370 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3371 out_set_summed: 3372 skb->ip_summed = CHECKSUM_NONE; 3373 out: 3374 return ret; 3375 } 3376 EXPORT_SYMBOL(skb_checksum_help); 3377 skb_crc32c_csum_help(struct sk_buff * skb)3378 int skb_crc32c_csum_help(struct sk_buff *skb) 3379 { 3380 __le32 crc32c_csum; 3381 int ret = 0, offset, start; 3382 3383 if (skb->ip_summed != CHECKSUM_PARTIAL) 3384 goto out; 3385 3386 if (unlikely(skb_is_gso(skb))) 3387 goto out; 3388 3389 /* Before computing a checksum, we should make sure no frag could 3390 * be modified by an external entity : checksum could be wrong. 3391 */ 3392 if (unlikely(skb_has_shared_frag(skb))) { 3393 ret = __skb_linearize(skb); 3394 if (ret) 3395 goto out; 3396 } 3397 start = skb_checksum_start_offset(skb); 3398 offset = start + offsetof(struct sctphdr, checksum); 3399 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3400 ret = -EINVAL; 3401 goto out; 3402 } 3403 3404 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3405 if (ret) 3406 goto out; 3407 3408 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3409 skb->len - start, ~(__u32)0, 3410 crc32c_csum_stub)); 3411 *(__le32 *)(skb->data + offset) = crc32c_csum; 3412 skb_reset_csum_not_inet(skb); 3413 out: 3414 return ret; 3415 } 3416 skb_network_protocol(struct sk_buff * skb,int * depth)3417 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3418 { 3419 __be16 type = skb->protocol; 3420 3421 /* Tunnel gso handlers can set protocol to ethernet. */ 3422 if (type == htons(ETH_P_TEB)) { 3423 struct ethhdr *eth; 3424 3425 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3426 return 0; 3427 3428 eth = (struct ethhdr *)skb->data; 3429 type = eth->h_proto; 3430 } 3431 3432 return vlan_get_protocol_and_depth(skb, type, depth); 3433 } 3434 3435 3436 /* Take action when hardware reception checksum errors are detected. */ 3437 #ifdef CONFIG_BUG do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3438 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3439 { 3440 netdev_err(dev, "hw csum failure\n"); 3441 skb_dump(KERN_ERR, skb, true); 3442 dump_stack(); 3443 } 3444 netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3445 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3446 { 3447 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3448 } 3449 EXPORT_SYMBOL(netdev_rx_csum_fault); 3450 #endif 3451 3452 /* XXX: check that highmem exists at all on the given machine. */ illegal_highdma(struct net_device * dev,struct sk_buff * skb)3453 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3454 { 3455 #ifdef CONFIG_HIGHMEM 3456 int i; 3457 3458 if (!(dev->features & NETIF_F_HIGHDMA)) { 3459 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3460 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3461 3462 if (PageHighMem(skb_frag_page(frag))) 3463 return 1; 3464 } 3465 } 3466 #endif 3467 return 0; 3468 } 3469 3470 /* If MPLS offload request, verify we are testing hardware MPLS features 3471 * instead of standard features for the netdev. 3472 */ 3473 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3474 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3475 netdev_features_t features, 3476 __be16 type) 3477 { 3478 if (eth_p_mpls(type)) 3479 features &= skb->dev->mpls_features; 3480 3481 return features; 3482 } 3483 #else net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3484 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3485 netdev_features_t features, 3486 __be16 type) 3487 { 3488 return features; 3489 } 3490 #endif 3491 harmonize_features(struct sk_buff * skb,netdev_features_t features)3492 static netdev_features_t harmonize_features(struct sk_buff *skb, 3493 netdev_features_t features) 3494 { 3495 __be16 type; 3496 3497 type = skb_network_protocol(skb, NULL); 3498 features = net_mpls_features(skb, features, type); 3499 3500 if (skb->ip_summed != CHECKSUM_NONE && 3501 !can_checksum_protocol(features, type)) { 3502 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3503 } 3504 if (illegal_highdma(skb->dev, skb)) 3505 features &= ~NETIF_F_SG; 3506 3507 return features; 3508 } 3509 passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3510 netdev_features_t passthru_features_check(struct sk_buff *skb, 3511 struct net_device *dev, 3512 netdev_features_t features) 3513 { 3514 return features; 3515 } 3516 EXPORT_SYMBOL(passthru_features_check); 3517 dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3518 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3519 struct net_device *dev, 3520 netdev_features_t features) 3521 { 3522 return vlan_features_check(skb, features); 3523 } 3524 gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3525 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3526 struct net_device *dev, 3527 netdev_features_t features) 3528 { 3529 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3530 3531 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3532 return features & ~NETIF_F_GSO_MASK; 3533 3534 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb))) 3535 return features & ~NETIF_F_GSO_MASK; 3536 3537 if (!skb_shinfo(skb)->gso_type) { 3538 skb_warn_bad_offload(skb); 3539 return features & ~NETIF_F_GSO_MASK; 3540 } 3541 3542 /* Support for GSO partial features requires software 3543 * intervention before we can actually process the packets 3544 * so we need to strip support for any partial features now 3545 * and we can pull them back in after we have partially 3546 * segmented the frame. 3547 */ 3548 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3549 features &= ~dev->gso_partial_features; 3550 3551 /* Make sure to clear the IPv4 ID mangling feature if the 3552 * IPv4 header has the potential to be fragmented. 3553 */ 3554 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3555 struct iphdr *iph = skb->encapsulation ? 3556 inner_ip_hdr(skb) : ip_hdr(skb); 3557 3558 if (!(iph->frag_off & htons(IP_DF))) 3559 features &= ~NETIF_F_TSO_MANGLEID; 3560 } 3561 3562 return features; 3563 } 3564 netif_skb_features(struct sk_buff * skb)3565 netdev_features_t netif_skb_features(struct sk_buff *skb) 3566 { 3567 struct net_device *dev = skb->dev; 3568 netdev_features_t features = dev->features; 3569 3570 if (skb_is_gso(skb)) 3571 features = gso_features_check(skb, dev, features); 3572 3573 /* If encapsulation offload request, verify we are testing 3574 * hardware encapsulation features instead of standard 3575 * features for the netdev 3576 */ 3577 if (skb->encapsulation) 3578 features &= dev->hw_enc_features; 3579 3580 if (skb_vlan_tagged(skb)) 3581 features = netdev_intersect_features(features, 3582 dev->vlan_features | 3583 NETIF_F_HW_VLAN_CTAG_TX | 3584 NETIF_F_HW_VLAN_STAG_TX); 3585 3586 if (dev->netdev_ops->ndo_features_check) 3587 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3588 features); 3589 else 3590 features &= dflt_features_check(skb, dev, features); 3591 3592 return harmonize_features(skb, features); 3593 } 3594 EXPORT_SYMBOL(netif_skb_features); 3595 xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3596 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3597 struct netdev_queue *txq, bool more) 3598 { 3599 unsigned int len; 3600 int rc; 3601 3602 if (dev_nit_active(dev)) 3603 dev_queue_xmit_nit(skb, dev); 3604 3605 len = skb->len; 3606 trace_net_dev_start_xmit(skb, dev); 3607 rc = netdev_start_xmit(skb, dev, txq, more); 3608 trace_net_dev_xmit(skb, rc, dev, len); 3609 3610 return rc; 3611 } 3612 dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3613 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3614 struct netdev_queue *txq, int *ret) 3615 { 3616 struct sk_buff *skb = first; 3617 int rc = NETDEV_TX_OK; 3618 3619 while (skb) { 3620 struct sk_buff *next = skb->next; 3621 3622 skb_mark_not_on_list(skb); 3623 rc = xmit_one(skb, dev, txq, next != NULL); 3624 if (unlikely(!dev_xmit_complete(rc))) { 3625 skb->next = next; 3626 goto out; 3627 } 3628 3629 skb = next; 3630 if (netif_tx_queue_stopped(txq) && skb) { 3631 rc = NETDEV_TX_BUSY; 3632 break; 3633 } 3634 } 3635 3636 out: 3637 *ret = rc; 3638 return skb; 3639 } 3640 validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3641 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3642 netdev_features_t features) 3643 { 3644 if (skb_vlan_tag_present(skb) && 3645 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3646 skb = __vlan_hwaccel_push_inside(skb); 3647 return skb; 3648 } 3649 skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3650 int skb_csum_hwoffload_help(struct sk_buff *skb, 3651 const netdev_features_t features) 3652 { 3653 if (unlikely(skb_csum_is_sctp(skb))) 3654 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3655 skb_crc32c_csum_help(skb); 3656 3657 if (features & NETIF_F_HW_CSUM) 3658 return 0; 3659 3660 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3661 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) && 3662 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3663 !ipv6_has_hopopt_jumbo(skb)) 3664 goto sw_checksum; 3665 3666 switch (skb->csum_offset) { 3667 case offsetof(struct tcphdr, check): 3668 case offsetof(struct udphdr, check): 3669 return 0; 3670 } 3671 } 3672 3673 sw_checksum: 3674 return skb_checksum_help(skb); 3675 } 3676 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3677 validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3678 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3679 { 3680 netdev_features_t features; 3681 3682 features = netif_skb_features(skb); 3683 skb = validate_xmit_vlan(skb, features); 3684 if (unlikely(!skb)) 3685 goto out_null; 3686 3687 skb = sk_validate_xmit_skb(skb, dev); 3688 if (unlikely(!skb)) 3689 goto out_null; 3690 3691 if (netif_needs_gso(skb, features)) { 3692 struct sk_buff *segs; 3693 3694 segs = skb_gso_segment(skb, features); 3695 if (IS_ERR(segs)) { 3696 goto out_kfree_skb; 3697 } else if (segs) { 3698 consume_skb(skb); 3699 skb = segs; 3700 } 3701 } else { 3702 if (skb_needs_linearize(skb, features) && 3703 __skb_linearize(skb)) 3704 goto out_kfree_skb; 3705 3706 /* If packet is not checksummed and device does not 3707 * support checksumming for this protocol, complete 3708 * checksumming here. 3709 */ 3710 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3711 if (skb->encapsulation) 3712 skb_set_inner_transport_header(skb, 3713 skb_checksum_start_offset(skb)); 3714 else 3715 skb_set_transport_header(skb, 3716 skb_checksum_start_offset(skb)); 3717 if (skb_csum_hwoffload_help(skb, features)) 3718 goto out_kfree_skb; 3719 } 3720 } 3721 3722 skb = validate_xmit_xfrm(skb, features, again); 3723 3724 return skb; 3725 3726 out_kfree_skb: 3727 kfree_skb(skb); 3728 out_null: 3729 dev_core_stats_tx_dropped_inc(dev); 3730 return NULL; 3731 } 3732 validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3733 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3734 { 3735 struct sk_buff *next, *head = NULL, *tail; 3736 3737 for (; skb != NULL; skb = next) { 3738 next = skb->next; 3739 skb_mark_not_on_list(skb); 3740 3741 /* in case skb wont be segmented, point to itself */ 3742 skb->prev = skb; 3743 3744 skb = validate_xmit_skb(skb, dev, again); 3745 if (!skb) 3746 continue; 3747 3748 if (!head) 3749 head = skb; 3750 else 3751 tail->next = skb; 3752 /* If skb was segmented, skb->prev points to 3753 * the last segment. If not, it still contains skb. 3754 */ 3755 tail = skb->prev; 3756 } 3757 return head; 3758 } 3759 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3760 qdisc_pkt_len_init(struct sk_buff * skb)3761 static void qdisc_pkt_len_init(struct sk_buff *skb) 3762 { 3763 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3764 3765 qdisc_skb_cb(skb)->pkt_len = skb->len; 3766 3767 /* To get more precise estimation of bytes sent on wire, 3768 * we add to pkt_len the headers size of all segments 3769 */ 3770 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3771 u16 gso_segs = shinfo->gso_segs; 3772 unsigned int hdr_len; 3773 3774 /* mac layer + network layer */ 3775 hdr_len = skb_transport_offset(skb); 3776 3777 /* + transport layer */ 3778 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3779 const struct tcphdr *th; 3780 struct tcphdr _tcphdr; 3781 3782 th = skb_header_pointer(skb, hdr_len, 3783 sizeof(_tcphdr), &_tcphdr); 3784 if (likely(th)) 3785 hdr_len += __tcp_hdrlen(th); 3786 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 3787 struct udphdr _udphdr; 3788 3789 if (skb_header_pointer(skb, hdr_len, 3790 sizeof(_udphdr), &_udphdr)) 3791 hdr_len += sizeof(struct udphdr); 3792 } 3793 3794 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { 3795 int payload = skb->len - hdr_len; 3796 3797 /* Malicious packet. */ 3798 if (payload <= 0) 3799 return; 3800 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); 3801 } 3802 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3803 } 3804 } 3805 dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)3806 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 3807 struct sk_buff **to_free, 3808 struct netdev_queue *txq) 3809 { 3810 int rc; 3811 3812 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 3813 if (rc == NET_XMIT_SUCCESS) 3814 trace_qdisc_enqueue(q, txq, skb); 3815 return rc; 3816 } 3817 __dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3818 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3819 struct net_device *dev, 3820 struct netdev_queue *txq) 3821 { 3822 spinlock_t *root_lock = qdisc_lock(q); 3823 struct sk_buff *to_free = NULL; 3824 bool contended; 3825 int rc; 3826 3827 qdisc_calculate_pkt_len(skb, q); 3828 3829 if (q->flags & TCQ_F_NOLOCK) { 3830 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 3831 qdisc_run_begin(q)) { 3832 /* Retest nolock_qdisc_is_empty() within the protection 3833 * of q->seqlock to protect from racing with requeuing. 3834 */ 3835 if (unlikely(!nolock_qdisc_is_empty(q))) { 3836 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3837 __qdisc_run(q); 3838 qdisc_run_end(q); 3839 3840 goto no_lock_out; 3841 } 3842 3843 qdisc_bstats_cpu_update(q, skb); 3844 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 3845 !nolock_qdisc_is_empty(q)) 3846 __qdisc_run(q); 3847 3848 qdisc_run_end(q); 3849 return NET_XMIT_SUCCESS; 3850 } 3851 3852 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3853 qdisc_run(q); 3854 3855 no_lock_out: 3856 if (unlikely(to_free)) 3857 kfree_skb_list_reason(to_free, 3858 SKB_DROP_REASON_QDISC_DROP); 3859 return rc; 3860 } 3861 3862 /* 3863 * Heuristic to force contended enqueues to serialize on a 3864 * separate lock before trying to get qdisc main lock. 3865 * This permits qdisc->running owner to get the lock more 3866 * often and dequeue packets faster. 3867 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 3868 * and then other tasks will only enqueue packets. The packets will be 3869 * sent after the qdisc owner is scheduled again. To prevent this 3870 * scenario the task always serialize on the lock. 3871 */ 3872 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 3873 if (unlikely(contended)) 3874 spin_lock(&q->busylock); 3875 3876 spin_lock(root_lock); 3877 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3878 __qdisc_drop(skb, &to_free); 3879 rc = NET_XMIT_DROP; 3880 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3881 qdisc_run_begin(q)) { 3882 /* 3883 * This is a work-conserving queue; there are no old skbs 3884 * waiting to be sent out; and the qdisc is not running - 3885 * xmit the skb directly. 3886 */ 3887 3888 qdisc_bstats_update(q, skb); 3889 3890 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3891 if (unlikely(contended)) { 3892 spin_unlock(&q->busylock); 3893 contended = false; 3894 } 3895 __qdisc_run(q); 3896 } 3897 3898 qdisc_run_end(q); 3899 rc = NET_XMIT_SUCCESS; 3900 } else { 3901 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3902 if (qdisc_run_begin(q)) { 3903 if (unlikely(contended)) { 3904 spin_unlock(&q->busylock); 3905 contended = false; 3906 } 3907 __qdisc_run(q); 3908 qdisc_run_end(q); 3909 } 3910 } 3911 spin_unlock(root_lock); 3912 if (unlikely(to_free)) 3913 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP); 3914 if (unlikely(contended)) 3915 spin_unlock(&q->busylock); 3916 return rc; 3917 } 3918 3919 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) skb_update_prio(struct sk_buff * skb)3920 static void skb_update_prio(struct sk_buff *skb) 3921 { 3922 const struct netprio_map *map; 3923 const struct sock *sk; 3924 unsigned int prioidx; 3925 3926 if (skb->priority) 3927 return; 3928 map = rcu_dereference_bh(skb->dev->priomap); 3929 if (!map) 3930 return; 3931 sk = skb_to_full_sk(skb); 3932 if (!sk) 3933 return; 3934 3935 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3936 3937 if (prioidx < map->priomap_len) 3938 skb->priority = map->priomap[prioidx]; 3939 } 3940 #else 3941 #define skb_update_prio(skb) 3942 #endif 3943 3944 /** 3945 * dev_loopback_xmit - loop back @skb 3946 * @net: network namespace this loopback is happening in 3947 * @sk: sk needed to be a netfilter okfn 3948 * @skb: buffer to transmit 3949 */ dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3950 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3951 { 3952 skb_reset_mac_header(skb); 3953 __skb_pull(skb, skb_network_offset(skb)); 3954 skb->pkt_type = PACKET_LOOPBACK; 3955 if (skb->ip_summed == CHECKSUM_NONE) 3956 skb->ip_summed = CHECKSUM_UNNECESSARY; 3957 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 3958 skb_dst_force(skb); 3959 netif_rx(skb); 3960 return 0; 3961 } 3962 EXPORT_SYMBOL(dev_loopback_xmit); 3963 3964 #ifdef CONFIG_NET_EGRESS 3965 static struct netdev_queue * netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)3966 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 3967 { 3968 int qm = skb_get_queue_mapping(skb); 3969 3970 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 3971 } 3972 netdev_xmit_txqueue_skipped(void)3973 static bool netdev_xmit_txqueue_skipped(void) 3974 { 3975 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 3976 } 3977 netdev_xmit_skip_txqueue(bool skip)3978 void netdev_xmit_skip_txqueue(bool skip) 3979 { 3980 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 3981 } 3982 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 3983 #endif /* CONFIG_NET_EGRESS */ 3984 3985 #ifdef CONFIG_NET_XGRESS tc_run(struct tcx_entry * entry,struct sk_buff * skb)3986 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb) 3987 { 3988 int ret = TC_ACT_UNSPEC; 3989 #ifdef CONFIG_NET_CLS_ACT 3990 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 3991 struct tcf_result res; 3992 3993 if (!miniq) 3994 return ret; 3995 3996 tc_skb_cb(skb)->mru = 0; 3997 tc_skb_cb(skb)->post_ct = false; 3998 3999 mini_qdisc_bstats_cpu_update(miniq, skb); 4000 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 4001 /* Only tcf related quirks below. */ 4002 switch (ret) { 4003 case TC_ACT_SHOT: 4004 mini_qdisc_qstats_cpu_drop(miniq); 4005 break; 4006 case TC_ACT_OK: 4007 case TC_ACT_RECLASSIFY: 4008 skb->tc_index = TC_H_MIN(res.classid); 4009 break; 4010 } 4011 #endif /* CONFIG_NET_CLS_ACT */ 4012 return ret; 4013 } 4014 4015 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 4016 tcx_inc(void)4017 void tcx_inc(void) 4018 { 4019 static_branch_inc(&tcx_needed_key); 4020 } 4021 tcx_dec(void)4022 void tcx_dec(void) 4023 { 4024 static_branch_dec(&tcx_needed_key); 4025 } 4026 4027 static __always_inline enum tcx_action_base tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4028 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4029 const bool needs_mac) 4030 { 4031 const struct bpf_mprog_fp *fp; 4032 const struct bpf_prog *prog; 4033 int ret = TCX_NEXT; 4034 4035 if (needs_mac) 4036 __skb_push(skb, skb->mac_len); 4037 bpf_mprog_foreach_prog(entry, fp, prog) { 4038 bpf_compute_data_pointers(skb); 4039 ret = bpf_prog_run(prog, skb); 4040 if (ret != TCX_NEXT) 4041 break; 4042 } 4043 if (needs_mac) 4044 __skb_pull(skb, skb->mac_len); 4045 return tcx_action_code(skb, ret); 4046 } 4047 4048 static __always_inline struct sk_buff * sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4049 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4050 struct net_device *orig_dev, bool *another) 4051 { 4052 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4053 int sch_ret; 4054 4055 if (!entry) 4056 return skb; 4057 if (*pt_prev) { 4058 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4059 *pt_prev = NULL; 4060 } 4061 4062 qdisc_skb_cb(skb)->pkt_len = skb->len; 4063 tcx_set_ingress(skb, true); 4064 4065 if (static_branch_unlikely(&tcx_needed_key)) { 4066 sch_ret = tcx_run(entry, skb, true); 4067 if (sch_ret != TC_ACT_UNSPEC) 4068 goto ingress_verdict; 4069 } 4070 sch_ret = tc_run(tcx_entry(entry), skb); 4071 ingress_verdict: 4072 switch (sch_ret) { 4073 case TC_ACT_REDIRECT: 4074 /* skb_mac_header check was done by BPF, so we can safely 4075 * push the L2 header back before redirecting to another 4076 * netdev. 4077 */ 4078 __skb_push(skb, skb->mac_len); 4079 if (skb_do_redirect(skb) == -EAGAIN) { 4080 __skb_pull(skb, skb->mac_len); 4081 *another = true; 4082 break; 4083 } 4084 *ret = NET_RX_SUCCESS; 4085 return NULL; 4086 case TC_ACT_SHOT: 4087 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS); 4088 *ret = NET_RX_DROP; 4089 return NULL; 4090 /* used by tc_run */ 4091 case TC_ACT_STOLEN: 4092 case TC_ACT_QUEUED: 4093 case TC_ACT_TRAP: 4094 consume_skb(skb); 4095 fallthrough; 4096 case TC_ACT_CONSUMED: 4097 *ret = NET_RX_SUCCESS; 4098 return NULL; 4099 } 4100 4101 return skb; 4102 } 4103 4104 static __always_inline struct sk_buff * sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4105 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4106 { 4107 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4108 int sch_ret; 4109 4110 if (!entry) 4111 return skb; 4112 4113 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4114 * already set by the caller. 4115 */ 4116 if (static_branch_unlikely(&tcx_needed_key)) { 4117 sch_ret = tcx_run(entry, skb, false); 4118 if (sch_ret != TC_ACT_UNSPEC) 4119 goto egress_verdict; 4120 } 4121 sch_ret = tc_run(tcx_entry(entry), skb); 4122 egress_verdict: 4123 switch (sch_ret) { 4124 case TC_ACT_REDIRECT: 4125 /* No need to push/pop skb's mac_header here on egress! */ 4126 skb_do_redirect(skb); 4127 *ret = NET_XMIT_SUCCESS; 4128 return NULL; 4129 case TC_ACT_SHOT: 4130 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS); 4131 *ret = NET_XMIT_DROP; 4132 return NULL; 4133 /* used by tc_run */ 4134 case TC_ACT_STOLEN: 4135 case TC_ACT_QUEUED: 4136 case TC_ACT_TRAP: 4137 consume_skb(skb); 4138 fallthrough; 4139 case TC_ACT_CONSUMED: 4140 *ret = NET_XMIT_SUCCESS; 4141 return NULL; 4142 } 4143 4144 return skb; 4145 } 4146 #else 4147 static __always_inline struct sk_buff * sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4148 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4149 struct net_device *orig_dev, bool *another) 4150 { 4151 return skb; 4152 } 4153 4154 static __always_inline struct sk_buff * sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4155 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4156 { 4157 return skb; 4158 } 4159 #endif /* CONFIG_NET_XGRESS */ 4160 4161 #ifdef CONFIG_XPS __get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4162 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4163 struct xps_dev_maps *dev_maps, unsigned int tci) 4164 { 4165 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4166 struct xps_map *map; 4167 int queue_index = -1; 4168 4169 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4170 return queue_index; 4171 4172 tci *= dev_maps->num_tc; 4173 tci += tc; 4174 4175 map = rcu_dereference(dev_maps->attr_map[tci]); 4176 if (map) { 4177 if (map->len == 1) 4178 queue_index = map->queues[0]; 4179 else 4180 queue_index = map->queues[reciprocal_scale( 4181 skb_get_hash(skb), map->len)]; 4182 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4183 queue_index = -1; 4184 } 4185 return queue_index; 4186 } 4187 #endif 4188 get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4189 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4190 struct sk_buff *skb) 4191 { 4192 #ifdef CONFIG_XPS 4193 struct xps_dev_maps *dev_maps; 4194 struct sock *sk = skb->sk; 4195 int queue_index = -1; 4196 4197 if (!static_key_false(&xps_needed)) 4198 return -1; 4199 4200 rcu_read_lock(); 4201 if (!static_key_false(&xps_rxqs_needed)) 4202 goto get_cpus_map; 4203 4204 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4205 if (dev_maps) { 4206 int tci = sk_rx_queue_get(sk); 4207 4208 if (tci >= 0) 4209 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4210 tci); 4211 } 4212 4213 get_cpus_map: 4214 if (queue_index < 0) { 4215 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4216 if (dev_maps) { 4217 unsigned int tci = skb->sender_cpu - 1; 4218 4219 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4220 tci); 4221 } 4222 } 4223 rcu_read_unlock(); 4224 4225 return queue_index; 4226 #else 4227 return -1; 4228 #endif 4229 } 4230 dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4231 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4232 struct net_device *sb_dev) 4233 { 4234 return 0; 4235 } 4236 EXPORT_SYMBOL(dev_pick_tx_zero); 4237 dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4238 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 4239 struct net_device *sb_dev) 4240 { 4241 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 4242 } 4243 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 4244 netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4245 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4246 struct net_device *sb_dev) 4247 { 4248 struct sock *sk = skb->sk; 4249 int queue_index = sk_tx_queue_get(sk); 4250 4251 sb_dev = sb_dev ? : dev; 4252 4253 if (queue_index < 0 || skb->ooo_okay || 4254 queue_index >= dev->real_num_tx_queues) { 4255 int new_index = get_xps_queue(dev, sb_dev, skb); 4256 4257 if (new_index < 0) 4258 new_index = skb_tx_hash(dev, sb_dev, skb); 4259 4260 if (queue_index != new_index && sk && 4261 sk_fullsock(sk) && 4262 rcu_access_pointer(sk->sk_dst_cache)) 4263 sk_tx_queue_set(sk, new_index); 4264 4265 queue_index = new_index; 4266 } 4267 4268 return queue_index; 4269 } 4270 EXPORT_SYMBOL(netdev_pick_tx); 4271 netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4272 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4273 struct sk_buff *skb, 4274 struct net_device *sb_dev) 4275 { 4276 int queue_index = 0; 4277 4278 #ifdef CONFIG_XPS 4279 u32 sender_cpu = skb->sender_cpu - 1; 4280 4281 if (sender_cpu >= (u32)NR_CPUS) 4282 skb->sender_cpu = raw_smp_processor_id() + 1; 4283 #endif 4284 4285 if (dev->real_num_tx_queues != 1) { 4286 const struct net_device_ops *ops = dev->netdev_ops; 4287 4288 if (ops->ndo_select_queue) 4289 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4290 else 4291 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4292 4293 queue_index = netdev_cap_txqueue(dev, queue_index); 4294 } 4295 4296 skb_set_queue_mapping(skb, queue_index); 4297 return netdev_get_tx_queue(dev, queue_index); 4298 } 4299 4300 /** 4301 * __dev_queue_xmit() - transmit a buffer 4302 * @skb: buffer to transmit 4303 * @sb_dev: suboordinate device used for L2 forwarding offload 4304 * 4305 * Queue a buffer for transmission to a network device. The caller must 4306 * have set the device and priority and built the buffer before calling 4307 * this function. The function can be called from an interrupt. 4308 * 4309 * When calling this method, interrupts MUST be enabled. This is because 4310 * the BH enable code must have IRQs enabled so that it will not deadlock. 4311 * 4312 * Regardless of the return value, the skb is consumed, so it is currently 4313 * difficult to retry a send to this method. (You can bump the ref count 4314 * before sending to hold a reference for retry if you are careful.) 4315 * 4316 * Return: 4317 * * 0 - buffer successfully transmitted 4318 * * positive qdisc return code - NET_XMIT_DROP etc. 4319 * * negative errno - other errors 4320 */ __dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4321 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4322 { 4323 struct net_device *dev = skb->dev; 4324 struct netdev_queue *txq = NULL; 4325 struct Qdisc *q; 4326 int rc = -ENOMEM; 4327 bool again = false; 4328 4329 skb_reset_mac_header(skb); 4330 skb_assert_len(skb); 4331 4332 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4333 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4334 4335 /* Disable soft irqs for various locks below. Also 4336 * stops preemption for RCU. 4337 */ 4338 rcu_read_lock_bh(); 4339 4340 skb_update_prio(skb); 4341 4342 qdisc_pkt_len_init(skb); 4343 tcx_set_ingress(skb, false); 4344 #ifdef CONFIG_NET_EGRESS 4345 if (static_branch_unlikely(&egress_needed_key)) { 4346 if (nf_hook_egress_active()) { 4347 skb = nf_hook_egress(skb, &rc, dev); 4348 if (!skb) 4349 goto out; 4350 } 4351 4352 netdev_xmit_skip_txqueue(false); 4353 4354 nf_skip_egress(skb, true); 4355 skb = sch_handle_egress(skb, &rc, dev); 4356 if (!skb) 4357 goto out; 4358 nf_skip_egress(skb, false); 4359 4360 if (netdev_xmit_txqueue_skipped()) 4361 txq = netdev_tx_queue_mapping(dev, skb); 4362 } 4363 #endif 4364 /* If device/qdisc don't need skb->dst, release it right now while 4365 * its hot in this cpu cache. 4366 */ 4367 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4368 skb_dst_drop(skb); 4369 else 4370 skb_dst_force(skb); 4371 4372 if (!txq) 4373 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4374 4375 q = rcu_dereference_bh(txq->qdisc); 4376 4377 trace_net_dev_queue(skb); 4378 if (q->enqueue) { 4379 rc = __dev_xmit_skb(skb, q, dev, txq); 4380 goto out; 4381 } 4382 4383 /* The device has no queue. Common case for software devices: 4384 * loopback, all the sorts of tunnels... 4385 4386 * Really, it is unlikely that netif_tx_lock protection is necessary 4387 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4388 * counters.) 4389 * However, it is possible, that they rely on protection 4390 * made by us here. 4391 4392 * Check this and shot the lock. It is not prone from deadlocks. 4393 *Either shot noqueue qdisc, it is even simpler 8) 4394 */ 4395 if (dev->flags & IFF_UP) { 4396 int cpu = smp_processor_id(); /* ok because BHs are off */ 4397 4398 /* Other cpus might concurrently change txq->xmit_lock_owner 4399 * to -1 or to their cpu id, but not to our id. 4400 */ 4401 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4402 if (dev_xmit_recursion()) 4403 goto recursion_alert; 4404 4405 skb = validate_xmit_skb(skb, dev, &again); 4406 if (!skb) 4407 goto out; 4408 4409 HARD_TX_LOCK(dev, txq, cpu); 4410 4411 if (!netif_xmit_stopped(txq)) { 4412 dev_xmit_recursion_inc(); 4413 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4414 dev_xmit_recursion_dec(); 4415 if (dev_xmit_complete(rc)) { 4416 HARD_TX_UNLOCK(dev, txq); 4417 goto out; 4418 } 4419 } 4420 HARD_TX_UNLOCK(dev, txq); 4421 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4422 dev->name); 4423 } else { 4424 /* Recursion is detected! It is possible, 4425 * unfortunately 4426 */ 4427 recursion_alert: 4428 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4429 dev->name); 4430 } 4431 } 4432 4433 rc = -ENETDOWN; 4434 rcu_read_unlock_bh(); 4435 4436 dev_core_stats_tx_dropped_inc(dev); 4437 kfree_skb_list(skb); 4438 return rc; 4439 out: 4440 rcu_read_unlock_bh(); 4441 return rc; 4442 } 4443 EXPORT_SYMBOL(__dev_queue_xmit); 4444 __dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4445 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4446 { 4447 struct net_device *dev = skb->dev; 4448 struct sk_buff *orig_skb = skb; 4449 struct netdev_queue *txq; 4450 int ret = NETDEV_TX_BUSY; 4451 bool again = false; 4452 4453 if (unlikely(!netif_running(dev) || 4454 !netif_carrier_ok(dev))) 4455 goto drop; 4456 4457 skb = validate_xmit_skb_list(skb, dev, &again); 4458 if (skb != orig_skb) 4459 goto drop; 4460 4461 skb_set_queue_mapping(skb, queue_id); 4462 txq = skb_get_tx_queue(dev, skb); 4463 4464 local_bh_disable(); 4465 4466 dev_xmit_recursion_inc(); 4467 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4468 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4469 ret = netdev_start_xmit(skb, dev, txq, false); 4470 HARD_TX_UNLOCK(dev, txq); 4471 dev_xmit_recursion_dec(); 4472 4473 local_bh_enable(); 4474 return ret; 4475 drop: 4476 dev_core_stats_tx_dropped_inc(dev); 4477 kfree_skb_list(skb); 4478 return NET_XMIT_DROP; 4479 } 4480 EXPORT_SYMBOL(__dev_direct_xmit); 4481 4482 /************************************************************************* 4483 * Receiver routines 4484 *************************************************************************/ 4485 4486 int netdev_max_backlog __read_mostly = 1000; 4487 EXPORT_SYMBOL(netdev_max_backlog); 4488 4489 int netdev_tstamp_prequeue __read_mostly = 1; 4490 unsigned int sysctl_skb_defer_max __read_mostly = 64; 4491 int netdev_budget __read_mostly = 300; 4492 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4493 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4494 int weight_p __read_mostly = 64; /* old backlog weight */ 4495 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4496 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4497 int dev_rx_weight __read_mostly = 64; 4498 int dev_tx_weight __read_mostly = 64; 4499 4500 /* Called with irq disabled */ ____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4501 static inline void ____napi_schedule(struct softnet_data *sd, 4502 struct napi_struct *napi) 4503 { 4504 struct task_struct *thread; 4505 4506 lockdep_assert_irqs_disabled(); 4507 4508 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4509 /* Paired with smp_mb__before_atomic() in 4510 * napi_enable()/dev_set_threaded(). 4511 * Use READ_ONCE() to guarantee a complete 4512 * read on napi->thread. Only call 4513 * wake_up_process() when it's not NULL. 4514 */ 4515 thread = READ_ONCE(napi->thread); 4516 if (thread) { 4517 /* Avoid doing set_bit() if the thread is in 4518 * INTERRUPTIBLE state, cause napi_thread_wait() 4519 * makes sure to proceed with napi polling 4520 * if the thread is explicitly woken from here. 4521 */ 4522 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE) 4523 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4524 wake_up_process(thread); 4525 return; 4526 } 4527 } 4528 4529 list_add_tail(&napi->poll_list, &sd->poll_list); 4530 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4531 /* If not called from net_rx_action() 4532 * we have to raise NET_RX_SOFTIRQ. 4533 */ 4534 if (!sd->in_net_rx_action) 4535 raise_softirq_irqoff(NET_RX_SOFTIRQ); 4536 } 4537 4538 #ifdef CONFIG_RPS 4539 4540 /* One global table that all flow-based protocols share. */ 4541 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4542 EXPORT_SYMBOL(rps_sock_flow_table); 4543 u32 rps_cpu_mask __read_mostly; 4544 EXPORT_SYMBOL(rps_cpu_mask); 4545 4546 struct static_key_false rps_needed __read_mostly; 4547 EXPORT_SYMBOL(rps_needed); 4548 struct static_key_false rfs_needed __read_mostly; 4549 EXPORT_SYMBOL(rfs_needed); 4550 4551 static struct rps_dev_flow * set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4552 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4553 struct rps_dev_flow *rflow, u16 next_cpu) 4554 { 4555 if (next_cpu < nr_cpu_ids) { 4556 #ifdef CONFIG_RFS_ACCEL 4557 struct netdev_rx_queue *rxqueue; 4558 struct rps_dev_flow_table *flow_table; 4559 struct rps_dev_flow *old_rflow; 4560 u32 flow_id; 4561 u16 rxq_index; 4562 int rc; 4563 4564 /* Should we steer this flow to a different hardware queue? */ 4565 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4566 !(dev->features & NETIF_F_NTUPLE)) 4567 goto out; 4568 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4569 if (rxq_index == skb_get_rx_queue(skb)) 4570 goto out; 4571 4572 rxqueue = dev->_rx + rxq_index; 4573 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4574 if (!flow_table) 4575 goto out; 4576 flow_id = skb_get_hash(skb) & flow_table->mask; 4577 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4578 rxq_index, flow_id); 4579 if (rc < 0) 4580 goto out; 4581 old_rflow = rflow; 4582 rflow = &flow_table->flows[flow_id]; 4583 rflow->filter = rc; 4584 if (old_rflow->filter == rflow->filter) 4585 old_rflow->filter = RPS_NO_FILTER; 4586 out: 4587 #endif 4588 rflow->last_qtail = 4589 per_cpu(softnet_data, next_cpu).input_queue_head; 4590 } 4591 4592 rflow->cpu = next_cpu; 4593 return rflow; 4594 } 4595 4596 /* 4597 * get_rps_cpu is called from netif_receive_skb and returns the target 4598 * CPU from the RPS map of the receiving queue for a given skb. 4599 * rcu_read_lock must be held on entry. 4600 */ get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4601 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4602 struct rps_dev_flow **rflowp) 4603 { 4604 const struct rps_sock_flow_table *sock_flow_table; 4605 struct netdev_rx_queue *rxqueue = dev->_rx; 4606 struct rps_dev_flow_table *flow_table; 4607 struct rps_map *map; 4608 int cpu = -1; 4609 u32 tcpu; 4610 u32 hash; 4611 4612 if (skb_rx_queue_recorded(skb)) { 4613 u16 index = skb_get_rx_queue(skb); 4614 4615 if (unlikely(index >= dev->real_num_rx_queues)) { 4616 WARN_ONCE(dev->real_num_rx_queues > 1, 4617 "%s received packet on queue %u, but number " 4618 "of RX queues is %u\n", 4619 dev->name, index, dev->real_num_rx_queues); 4620 goto done; 4621 } 4622 rxqueue += index; 4623 } 4624 4625 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4626 4627 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4628 map = rcu_dereference(rxqueue->rps_map); 4629 if (!flow_table && !map) 4630 goto done; 4631 4632 skb_reset_network_header(skb); 4633 hash = skb_get_hash(skb); 4634 if (!hash) 4635 goto done; 4636 4637 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4638 if (flow_table && sock_flow_table) { 4639 struct rps_dev_flow *rflow; 4640 u32 next_cpu; 4641 u32 ident; 4642 4643 /* First check into global flow table if there is a match. 4644 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4645 */ 4646 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4647 if ((ident ^ hash) & ~rps_cpu_mask) 4648 goto try_rps; 4649 4650 next_cpu = ident & rps_cpu_mask; 4651 4652 /* OK, now we know there is a match, 4653 * we can look at the local (per receive queue) flow table 4654 */ 4655 rflow = &flow_table->flows[hash & flow_table->mask]; 4656 tcpu = rflow->cpu; 4657 4658 /* 4659 * If the desired CPU (where last recvmsg was done) is 4660 * different from current CPU (one in the rx-queue flow 4661 * table entry), switch if one of the following holds: 4662 * - Current CPU is unset (>= nr_cpu_ids). 4663 * - Current CPU is offline. 4664 * - The current CPU's queue tail has advanced beyond the 4665 * last packet that was enqueued using this table entry. 4666 * This guarantees that all previous packets for the flow 4667 * have been dequeued, thus preserving in order delivery. 4668 */ 4669 if (unlikely(tcpu != next_cpu) && 4670 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4671 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4672 rflow->last_qtail)) >= 0)) { 4673 tcpu = next_cpu; 4674 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4675 } 4676 4677 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4678 *rflowp = rflow; 4679 cpu = tcpu; 4680 goto done; 4681 } 4682 } 4683 4684 try_rps: 4685 4686 if (map) { 4687 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4688 if (cpu_online(tcpu)) { 4689 cpu = tcpu; 4690 goto done; 4691 } 4692 } 4693 4694 done: 4695 return cpu; 4696 } 4697 4698 #ifdef CONFIG_RFS_ACCEL 4699 4700 /** 4701 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4702 * @dev: Device on which the filter was set 4703 * @rxq_index: RX queue index 4704 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4705 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4706 * 4707 * Drivers that implement ndo_rx_flow_steer() should periodically call 4708 * this function for each installed filter and remove the filters for 4709 * which it returns %true. 4710 */ rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4711 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4712 u32 flow_id, u16 filter_id) 4713 { 4714 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4715 struct rps_dev_flow_table *flow_table; 4716 struct rps_dev_flow *rflow; 4717 bool expire = true; 4718 unsigned int cpu; 4719 4720 rcu_read_lock(); 4721 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4722 if (flow_table && flow_id <= flow_table->mask) { 4723 rflow = &flow_table->flows[flow_id]; 4724 cpu = READ_ONCE(rflow->cpu); 4725 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4726 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4727 rflow->last_qtail) < 4728 (int)(10 * flow_table->mask))) 4729 expire = false; 4730 } 4731 rcu_read_unlock(); 4732 return expire; 4733 } 4734 EXPORT_SYMBOL(rps_may_expire_flow); 4735 4736 #endif /* CONFIG_RFS_ACCEL */ 4737 4738 /* Called from hardirq (IPI) context */ rps_trigger_softirq(void * data)4739 static void rps_trigger_softirq(void *data) 4740 { 4741 struct softnet_data *sd = data; 4742 4743 ____napi_schedule(sd, &sd->backlog); 4744 sd->received_rps++; 4745 } 4746 4747 #endif /* CONFIG_RPS */ 4748 4749 /* Called from hardirq (IPI) context */ trigger_rx_softirq(void * data)4750 static void trigger_rx_softirq(void *data) 4751 { 4752 struct softnet_data *sd = data; 4753 4754 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4755 smp_store_release(&sd->defer_ipi_scheduled, 0); 4756 } 4757 4758 /* 4759 * After we queued a packet into sd->input_pkt_queue, 4760 * we need to make sure this queue is serviced soon. 4761 * 4762 * - If this is another cpu queue, link it to our rps_ipi_list, 4763 * and make sure we will process rps_ipi_list from net_rx_action(). 4764 * 4765 * - If this is our own queue, NAPI schedule our backlog. 4766 * Note that this also raises NET_RX_SOFTIRQ. 4767 */ napi_schedule_rps(struct softnet_data * sd)4768 static void napi_schedule_rps(struct softnet_data *sd) 4769 { 4770 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4771 4772 #ifdef CONFIG_RPS 4773 if (sd != mysd) { 4774 sd->rps_ipi_next = mysd->rps_ipi_list; 4775 mysd->rps_ipi_list = sd; 4776 4777 /* If not called from net_rx_action() or napi_threaded_poll() 4778 * we have to raise NET_RX_SOFTIRQ. 4779 */ 4780 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 4781 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4782 return; 4783 } 4784 #endif /* CONFIG_RPS */ 4785 __napi_schedule_irqoff(&mysd->backlog); 4786 } 4787 4788 #ifdef CONFIG_NET_FLOW_LIMIT 4789 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4790 #endif 4791 skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4792 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4793 { 4794 #ifdef CONFIG_NET_FLOW_LIMIT 4795 struct sd_flow_limit *fl; 4796 struct softnet_data *sd; 4797 unsigned int old_flow, new_flow; 4798 4799 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1)) 4800 return false; 4801 4802 sd = this_cpu_ptr(&softnet_data); 4803 4804 rcu_read_lock(); 4805 fl = rcu_dereference(sd->flow_limit); 4806 if (fl) { 4807 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4808 old_flow = fl->history[fl->history_head]; 4809 fl->history[fl->history_head] = new_flow; 4810 4811 fl->history_head++; 4812 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4813 4814 if (likely(fl->buckets[old_flow])) 4815 fl->buckets[old_flow]--; 4816 4817 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4818 fl->count++; 4819 rcu_read_unlock(); 4820 return true; 4821 } 4822 } 4823 rcu_read_unlock(); 4824 #endif 4825 return false; 4826 } 4827 4828 /* 4829 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4830 * queue (may be a remote CPU queue). 4831 */ enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4832 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4833 unsigned int *qtail) 4834 { 4835 enum skb_drop_reason reason; 4836 struct softnet_data *sd; 4837 unsigned long flags; 4838 unsigned int qlen; 4839 4840 reason = SKB_DROP_REASON_NOT_SPECIFIED; 4841 sd = &per_cpu(softnet_data, cpu); 4842 4843 rps_lock_irqsave(sd, &flags); 4844 if (!netif_running(skb->dev)) 4845 goto drop; 4846 qlen = skb_queue_len(&sd->input_pkt_queue); 4847 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) { 4848 if (qlen) { 4849 enqueue: 4850 __skb_queue_tail(&sd->input_pkt_queue, skb); 4851 input_queue_tail_incr_save(sd, qtail); 4852 rps_unlock_irq_restore(sd, &flags); 4853 return NET_RX_SUCCESS; 4854 } 4855 4856 /* Schedule NAPI for backlog device 4857 * We can use non atomic operation since we own the queue lock 4858 */ 4859 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 4860 napi_schedule_rps(sd); 4861 goto enqueue; 4862 } 4863 reason = SKB_DROP_REASON_CPU_BACKLOG; 4864 4865 drop: 4866 sd->dropped++; 4867 rps_unlock_irq_restore(sd, &flags); 4868 4869 dev_core_stats_rx_dropped_inc(skb->dev); 4870 kfree_skb_reason(skb, reason); 4871 return NET_RX_DROP; 4872 } 4873 netif_get_rxqueue(struct sk_buff * skb)4874 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4875 { 4876 struct net_device *dev = skb->dev; 4877 struct netdev_rx_queue *rxqueue; 4878 4879 rxqueue = dev->_rx; 4880 4881 if (skb_rx_queue_recorded(skb)) { 4882 u16 index = skb_get_rx_queue(skb); 4883 4884 if (unlikely(index >= dev->real_num_rx_queues)) { 4885 WARN_ONCE(dev->real_num_rx_queues > 1, 4886 "%s received packet on queue %u, but number " 4887 "of RX queues is %u\n", 4888 dev->name, index, dev->real_num_rx_queues); 4889 4890 return rxqueue; /* Return first rxqueue */ 4891 } 4892 rxqueue += index; 4893 } 4894 return rxqueue; 4895 } 4896 bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4897 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4898 struct bpf_prog *xdp_prog) 4899 { 4900 void *orig_data, *orig_data_end, *hard_start; 4901 struct netdev_rx_queue *rxqueue; 4902 bool orig_bcast, orig_host; 4903 u32 mac_len, frame_sz; 4904 __be16 orig_eth_type; 4905 struct ethhdr *eth; 4906 u32 metalen, act; 4907 int off; 4908 4909 /* The XDP program wants to see the packet starting at the MAC 4910 * header. 4911 */ 4912 mac_len = skb->data - skb_mac_header(skb); 4913 hard_start = skb->data - skb_headroom(skb); 4914 4915 /* SKB "head" area always have tailroom for skb_shared_info */ 4916 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4917 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4918 4919 rxqueue = netif_get_rxqueue(skb); 4920 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4921 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4922 skb_headlen(skb) + mac_len, true); 4923 4924 orig_data_end = xdp->data_end; 4925 orig_data = xdp->data; 4926 eth = (struct ethhdr *)xdp->data; 4927 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 4928 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4929 orig_eth_type = eth->h_proto; 4930 4931 act = bpf_prog_run_xdp(xdp_prog, xdp); 4932 4933 /* check if bpf_xdp_adjust_head was used */ 4934 off = xdp->data - orig_data; 4935 if (off) { 4936 if (off > 0) 4937 __skb_pull(skb, off); 4938 else if (off < 0) 4939 __skb_push(skb, -off); 4940 4941 skb->mac_header += off; 4942 skb_reset_network_header(skb); 4943 } 4944 4945 /* check if bpf_xdp_adjust_tail was used */ 4946 off = xdp->data_end - orig_data_end; 4947 if (off != 0) { 4948 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4949 skb->len += off; /* positive on grow, negative on shrink */ 4950 } 4951 4952 /* check if XDP changed eth hdr such SKB needs update */ 4953 eth = (struct ethhdr *)xdp->data; 4954 if ((orig_eth_type != eth->h_proto) || 4955 (orig_host != ether_addr_equal_64bits(eth->h_dest, 4956 skb->dev->dev_addr)) || 4957 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4958 __skb_push(skb, ETH_HLEN); 4959 skb->pkt_type = PACKET_HOST; 4960 skb->protocol = eth_type_trans(skb, skb->dev); 4961 } 4962 4963 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 4964 * before calling us again on redirect path. We do not call do_redirect 4965 * as we leave that up to the caller. 4966 * 4967 * Caller is responsible for managing lifetime of skb (i.e. calling 4968 * kfree_skb in response to actions it cannot handle/XDP_DROP). 4969 */ 4970 switch (act) { 4971 case XDP_REDIRECT: 4972 case XDP_TX: 4973 __skb_push(skb, mac_len); 4974 break; 4975 case XDP_PASS: 4976 metalen = xdp->data - xdp->data_meta; 4977 if (metalen) 4978 skb_metadata_set(skb, metalen); 4979 break; 4980 } 4981 4982 return act; 4983 } 4984 netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4985 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4986 struct xdp_buff *xdp, 4987 struct bpf_prog *xdp_prog) 4988 { 4989 u32 act = XDP_DROP; 4990 4991 /* Reinjected packets coming from act_mirred or similar should 4992 * not get XDP generic processing. 4993 */ 4994 if (skb_is_redirected(skb)) 4995 return XDP_PASS; 4996 4997 /* XDP packets must be linear and must have sufficient headroom 4998 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4999 * native XDP provides, thus we need to do it here as well. 5000 */ 5001 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5002 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5003 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5004 int troom = skb->tail + skb->data_len - skb->end; 5005 5006 /* In case we have to go down the path and also linearize, 5007 * then lets do the pskb_expand_head() work just once here. 5008 */ 5009 if (pskb_expand_head(skb, 5010 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5011 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 5012 goto do_drop; 5013 if (skb_linearize(skb)) 5014 goto do_drop; 5015 } 5016 5017 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog); 5018 switch (act) { 5019 case XDP_REDIRECT: 5020 case XDP_TX: 5021 case XDP_PASS: 5022 break; 5023 default: 5024 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act); 5025 fallthrough; 5026 case XDP_ABORTED: 5027 trace_xdp_exception(skb->dev, xdp_prog, act); 5028 fallthrough; 5029 case XDP_DROP: 5030 do_drop: 5031 kfree_skb(skb); 5032 break; 5033 } 5034 5035 return act; 5036 } 5037 5038 /* When doing generic XDP we have to bypass the qdisc layer and the 5039 * network taps in order to match in-driver-XDP behavior. This also means 5040 * that XDP packets are able to starve other packets going through a qdisc, 5041 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5042 * queues, so they do not have this starvation issue. 5043 */ generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)5044 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 5045 { 5046 struct net_device *dev = skb->dev; 5047 struct netdev_queue *txq; 5048 bool free_skb = true; 5049 int cpu, rc; 5050 5051 txq = netdev_core_pick_tx(dev, skb, NULL); 5052 cpu = smp_processor_id(); 5053 HARD_TX_LOCK(dev, txq, cpu); 5054 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5055 rc = netdev_start_xmit(skb, dev, txq, 0); 5056 if (dev_xmit_complete(rc)) 5057 free_skb = false; 5058 } 5059 HARD_TX_UNLOCK(dev, txq); 5060 if (free_skb) { 5061 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5062 dev_core_stats_tx_dropped_inc(dev); 5063 kfree_skb(skb); 5064 } 5065 } 5066 5067 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5068 do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)5069 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 5070 { 5071 if (xdp_prog) { 5072 struct xdp_buff xdp; 5073 u32 act; 5074 int err; 5075 5076 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 5077 if (act != XDP_PASS) { 5078 switch (act) { 5079 case XDP_REDIRECT: 5080 err = xdp_do_generic_redirect(skb->dev, skb, 5081 &xdp, xdp_prog); 5082 if (err) 5083 goto out_redir; 5084 break; 5085 case XDP_TX: 5086 generic_xdp_tx(skb, xdp_prog); 5087 break; 5088 } 5089 return XDP_DROP; 5090 } 5091 } 5092 return XDP_PASS; 5093 out_redir: 5094 kfree_skb_reason(skb, SKB_DROP_REASON_XDP); 5095 return XDP_DROP; 5096 } 5097 EXPORT_SYMBOL_GPL(do_xdp_generic); 5098 netif_rx_internal(struct sk_buff * skb)5099 static int netif_rx_internal(struct sk_buff *skb) 5100 { 5101 int ret; 5102 5103 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 5104 5105 trace_netif_rx(skb); 5106 5107 #ifdef CONFIG_RPS 5108 if (static_branch_unlikely(&rps_needed)) { 5109 struct rps_dev_flow voidflow, *rflow = &voidflow; 5110 int cpu; 5111 5112 rcu_read_lock(); 5113 5114 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5115 if (cpu < 0) 5116 cpu = smp_processor_id(); 5117 5118 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5119 5120 rcu_read_unlock(); 5121 } else 5122 #endif 5123 { 5124 unsigned int qtail; 5125 5126 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5127 } 5128 return ret; 5129 } 5130 5131 /** 5132 * __netif_rx - Slightly optimized version of netif_rx 5133 * @skb: buffer to post 5134 * 5135 * This behaves as netif_rx except that it does not disable bottom halves. 5136 * As a result this function may only be invoked from the interrupt context 5137 * (either hard or soft interrupt). 5138 */ __netif_rx(struct sk_buff * skb)5139 int __netif_rx(struct sk_buff *skb) 5140 { 5141 int ret; 5142 5143 lockdep_assert_once(hardirq_count() | softirq_count()); 5144 5145 trace_netif_rx_entry(skb); 5146 ret = netif_rx_internal(skb); 5147 trace_netif_rx_exit(ret); 5148 return ret; 5149 } 5150 EXPORT_SYMBOL(__netif_rx); 5151 5152 /** 5153 * netif_rx - post buffer to the network code 5154 * @skb: buffer to post 5155 * 5156 * This function receives a packet from a device driver and queues it for 5157 * the upper (protocol) levels to process via the backlog NAPI device. It 5158 * always succeeds. The buffer may be dropped during processing for 5159 * congestion control or by the protocol layers. 5160 * The network buffer is passed via the backlog NAPI device. Modern NIC 5161 * driver should use NAPI and GRO. 5162 * This function can used from interrupt and from process context. The 5163 * caller from process context must not disable interrupts before invoking 5164 * this function. 5165 * 5166 * return values: 5167 * NET_RX_SUCCESS (no congestion) 5168 * NET_RX_DROP (packet was dropped) 5169 * 5170 */ netif_rx(struct sk_buff * skb)5171 int netif_rx(struct sk_buff *skb) 5172 { 5173 bool need_bh_off = !(hardirq_count() | softirq_count()); 5174 int ret; 5175 5176 if (need_bh_off) 5177 local_bh_disable(); 5178 trace_netif_rx_entry(skb); 5179 ret = netif_rx_internal(skb); 5180 trace_netif_rx_exit(ret); 5181 if (need_bh_off) 5182 local_bh_enable(); 5183 return ret; 5184 } 5185 EXPORT_SYMBOL(netif_rx); 5186 net_tx_action(struct softirq_action * h)5187 static __latent_entropy void net_tx_action(struct softirq_action *h) 5188 { 5189 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5190 5191 if (sd->completion_queue) { 5192 struct sk_buff *clist; 5193 5194 local_irq_disable(); 5195 clist = sd->completion_queue; 5196 sd->completion_queue = NULL; 5197 local_irq_enable(); 5198 5199 while (clist) { 5200 struct sk_buff *skb = clist; 5201 5202 clist = clist->next; 5203 5204 WARN_ON(refcount_read(&skb->users)); 5205 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5206 trace_consume_skb(skb, net_tx_action); 5207 else 5208 trace_kfree_skb(skb, net_tx_action, 5209 get_kfree_skb_cb(skb)->reason); 5210 5211 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5212 __kfree_skb(skb); 5213 else 5214 __napi_kfree_skb(skb, 5215 get_kfree_skb_cb(skb)->reason); 5216 } 5217 } 5218 5219 if (sd->output_queue) { 5220 struct Qdisc *head; 5221 5222 local_irq_disable(); 5223 head = sd->output_queue; 5224 sd->output_queue = NULL; 5225 sd->output_queue_tailp = &sd->output_queue; 5226 local_irq_enable(); 5227 5228 rcu_read_lock(); 5229 5230 while (head) { 5231 struct Qdisc *q = head; 5232 spinlock_t *root_lock = NULL; 5233 5234 head = head->next_sched; 5235 5236 /* We need to make sure head->next_sched is read 5237 * before clearing __QDISC_STATE_SCHED 5238 */ 5239 smp_mb__before_atomic(); 5240 5241 if (!(q->flags & TCQ_F_NOLOCK)) { 5242 root_lock = qdisc_lock(q); 5243 spin_lock(root_lock); 5244 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5245 &q->state))) { 5246 /* There is a synchronize_net() between 5247 * STATE_DEACTIVATED flag being set and 5248 * qdisc_reset()/some_qdisc_is_busy() in 5249 * dev_deactivate(), so we can safely bail out 5250 * early here to avoid data race between 5251 * qdisc_deactivate() and some_qdisc_is_busy() 5252 * for lockless qdisc. 5253 */ 5254 clear_bit(__QDISC_STATE_SCHED, &q->state); 5255 continue; 5256 } 5257 5258 clear_bit(__QDISC_STATE_SCHED, &q->state); 5259 qdisc_run(q); 5260 if (root_lock) 5261 spin_unlock(root_lock); 5262 } 5263 5264 rcu_read_unlock(); 5265 } 5266 5267 xfrm_dev_backlog(sd); 5268 } 5269 5270 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5271 /* This hook is defined here for ATM LANE */ 5272 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5273 unsigned char *addr) __read_mostly; 5274 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5275 #endif 5276 5277 /** 5278 * netdev_is_rx_handler_busy - check if receive handler is registered 5279 * @dev: device to check 5280 * 5281 * Check if a receive handler is already registered for a given device. 5282 * Return true if there one. 5283 * 5284 * The caller must hold the rtnl_mutex. 5285 */ netdev_is_rx_handler_busy(struct net_device * dev)5286 bool netdev_is_rx_handler_busy(struct net_device *dev) 5287 { 5288 ASSERT_RTNL(); 5289 return dev && rtnl_dereference(dev->rx_handler); 5290 } 5291 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5292 5293 /** 5294 * netdev_rx_handler_register - register receive handler 5295 * @dev: device to register a handler for 5296 * @rx_handler: receive handler to register 5297 * @rx_handler_data: data pointer that is used by rx handler 5298 * 5299 * Register a receive handler for a device. This handler will then be 5300 * called from __netif_receive_skb. A negative errno code is returned 5301 * on a failure. 5302 * 5303 * The caller must hold the rtnl_mutex. 5304 * 5305 * For a general description of rx_handler, see enum rx_handler_result. 5306 */ netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5307 int netdev_rx_handler_register(struct net_device *dev, 5308 rx_handler_func_t *rx_handler, 5309 void *rx_handler_data) 5310 { 5311 if (netdev_is_rx_handler_busy(dev)) 5312 return -EBUSY; 5313 5314 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5315 return -EINVAL; 5316 5317 /* Note: rx_handler_data must be set before rx_handler */ 5318 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5319 rcu_assign_pointer(dev->rx_handler, rx_handler); 5320 5321 return 0; 5322 } 5323 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5324 5325 /** 5326 * netdev_rx_handler_unregister - unregister receive handler 5327 * @dev: device to unregister a handler from 5328 * 5329 * Unregister a receive handler from a device. 5330 * 5331 * The caller must hold the rtnl_mutex. 5332 */ netdev_rx_handler_unregister(struct net_device * dev)5333 void netdev_rx_handler_unregister(struct net_device *dev) 5334 { 5335 5336 ASSERT_RTNL(); 5337 RCU_INIT_POINTER(dev->rx_handler, NULL); 5338 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5339 * section has a guarantee to see a non NULL rx_handler_data 5340 * as well. 5341 */ 5342 synchronize_net(); 5343 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5344 } 5345 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5346 5347 /* 5348 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5349 * the special handling of PFMEMALLOC skbs. 5350 */ skb_pfmemalloc_protocol(struct sk_buff * skb)5351 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5352 { 5353 switch (skb->protocol) { 5354 case htons(ETH_P_ARP): 5355 case htons(ETH_P_IP): 5356 case htons(ETH_P_IPV6): 5357 case htons(ETH_P_8021Q): 5358 case htons(ETH_P_8021AD): 5359 return true; 5360 default: 5361 return false; 5362 } 5363 } 5364 nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5365 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5366 int *ret, struct net_device *orig_dev) 5367 { 5368 if (nf_hook_ingress_active(skb)) { 5369 int ingress_retval; 5370 5371 if (*pt_prev) { 5372 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5373 *pt_prev = NULL; 5374 } 5375 5376 rcu_read_lock(); 5377 ingress_retval = nf_hook_ingress(skb); 5378 rcu_read_unlock(); 5379 return ingress_retval; 5380 } 5381 return 0; 5382 } 5383 __netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5384 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5385 struct packet_type **ppt_prev) 5386 { 5387 struct packet_type *ptype, *pt_prev; 5388 rx_handler_func_t *rx_handler; 5389 struct sk_buff *skb = *pskb; 5390 struct net_device *orig_dev; 5391 bool deliver_exact = false; 5392 int ret = NET_RX_DROP; 5393 __be16 type; 5394 5395 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb); 5396 5397 trace_netif_receive_skb(skb); 5398 5399 orig_dev = skb->dev; 5400 5401 skb_reset_network_header(skb); 5402 if (!skb_transport_header_was_set(skb)) 5403 skb_reset_transport_header(skb); 5404 skb_reset_mac_len(skb); 5405 5406 pt_prev = NULL; 5407 5408 another_round: 5409 skb->skb_iif = skb->dev->ifindex; 5410 5411 __this_cpu_inc(softnet_data.processed); 5412 5413 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5414 int ret2; 5415 5416 migrate_disable(); 5417 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5418 migrate_enable(); 5419 5420 if (ret2 != XDP_PASS) { 5421 ret = NET_RX_DROP; 5422 goto out; 5423 } 5424 } 5425 5426 if (eth_type_vlan(skb->protocol)) { 5427 skb = skb_vlan_untag(skb); 5428 if (unlikely(!skb)) 5429 goto out; 5430 } 5431 5432 if (skb_skip_tc_classify(skb)) 5433 goto skip_classify; 5434 5435 if (pfmemalloc) 5436 goto skip_taps; 5437 5438 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5439 if (pt_prev) 5440 ret = deliver_skb(skb, pt_prev, orig_dev); 5441 pt_prev = ptype; 5442 } 5443 5444 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5445 if (pt_prev) 5446 ret = deliver_skb(skb, pt_prev, orig_dev); 5447 pt_prev = ptype; 5448 } 5449 5450 skip_taps: 5451 #ifdef CONFIG_NET_INGRESS 5452 if (static_branch_unlikely(&ingress_needed_key)) { 5453 bool another = false; 5454 5455 nf_skip_egress(skb, true); 5456 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5457 &another); 5458 if (another) 5459 goto another_round; 5460 if (!skb) 5461 goto out; 5462 5463 nf_skip_egress(skb, false); 5464 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5465 goto out; 5466 } 5467 #endif 5468 skb_reset_redirect(skb); 5469 skip_classify: 5470 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5471 goto drop; 5472 5473 if (skb_vlan_tag_present(skb)) { 5474 if (pt_prev) { 5475 ret = deliver_skb(skb, pt_prev, orig_dev); 5476 pt_prev = NULL; 5477 } 5478 if (vlan_do_receive(&skb)) 5479 goto another_round; 5480 else if (unlikely(!skb)) 5481 goto out; 5482 } 5483 5484 rx_handler = rcu_dereference(skb->dev->rx_handler); 5485 if (rx_handler) { 5486 if (pt_prev) { 5487 ret = deliver_skb(skb, pt_prev, orig_dev); 5488 pt_prev = NULL; 5489 } 5490 switch (rx_handler(&skb)) { 5491 case RX_HANDLER_CONSUMED: 5492 ret = NET_RX_SUCCESS; 5493 goto out; 5494 case RX_HANDLER_ANOTHER: 5495 goto another_round; 5496 case RX_HANDLER_EXACT: 5497 deliver_exact = true; 5498 break; 5499 case RX_HANDLER_PASS: 5500 break; 5501 default: 5502 BUG(); 5503 } 5504 } 5505 5506 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5507 check_vlan_id: 5508 if (skb_vlan_tag_get_id(skb)) { 5509 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5510 * find vlan device. 5511 */ 5512 skb->pkt_type = PACKET_OTHERHOST; 5513 } else if (eth_type_vlan(skb->protocol)) { 5514 /* Outer header is 802.1P with vlan 0, inner header is 5515 * 802.1Q or 802.1AD and vlan_do_receive() above could 5516 * not find vlan dev for vlan id 0. 5517 */ 5518 __vlan_hwaccel_clear_tag(skb); 5519 skb = skb_vlan_untag(skb); 5520 if (unlikely(!skb)) 5521 goto out; 5522 if (vlan_do_receive(&skb)) 5523 /* After stripping off 802.1P header with vlan 0 5524 * vlan dev is found for inner header. 5525 */ 5526 goto another_round; 5527 else if (unlikely(!skb)) 5528 goto out; 5529 else 5530 /* We have stripped outer 802.1P vlan 0 header. 5531 * But could not find vlan dev. 5532 * check again for vlan id to set OTHERHOST. 5533 */ 5534 goto check_vlan_id; 5535 } 5536 /* Note: we might in the future use prio bits 5537 * and set skb->priority like in vlan_do_receive() 5538 * For the time being, just ignore Priority Code Point 5539 */ 5540 __vlan_hwaccel_clear_tag(skb); 5541 } 5542 5543 type = skb->protocol; 5544 5545 /* deliver only exact match when indicated */ 5546 if (likely(!deliver_exact)) { 5547 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5548 &ptype_base[ntohs(type) & 5549 PTYPE_HASH_MASK]); 5550 } 5551 5552 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5553 &orig_dev->ptype_specific); 5554 5555 if (unlikely(skb->dev != orig_dev)) { 5556 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5557 &skb->dev->ptype_specific); 5558 } 5559 5560 if (pt_prev) { 5561 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5562 goto drop; 5563 *ppt_prev = pt_prev; 5564 } else { 5565 drop: 5566 if (!deliver_exact) 5567 dev_core_stats_rx_dropped_inc(skb->dev); 5568 else 5569 dev_core_stats_rx_nohandler_inc(skb->dev); 5570 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); 5571 /* Jamal, now you will not able to escape explaining 5572 * me how you were going to use this. :-) 5573 */ 5574 ret = NET_RX_DROP; 5575 } 5576 5577 out: 5578 /* The invariant here is that if *ppt_prev is not NULL 5579 * then skb should also be non-NULL. 5580 * 5581 * Apparently *ppt_prev assignment above holds this invariant due to 5582 * skb dereferencing near it. 5583 */ 5584 *pskb = skb; 5585 return ret; 5586 } 5587 __netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5588 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5589 { 5590 struct net_device *orig_dev = skb->dev; 5591 struct packet_type *pt_prev = NULL; 5592 int ret; 5593 5594 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5595 if (pt_prev) 5596 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5597 skb->dev, pt_prev, orig_dev); 5598 return ret; 5599 } 5600 5601 /** 5602 * netif_receive_skb_core - special purpose version of netif_receive_skb 5603 * @skb: buffer to process 5604 * 5605 * More direct receive version of netif_receive_skb(). It should 5606 * only be used by callers that have a need to skip RPS and Generic XDP. 5607 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5608 * 5609 * This function may only be called from softirq context and interrupts 5610 * should be enabled. 5611 * 5612 * Return values (usually ignored): 5613 * NET_RX_SUCCESS: no congestion 5614 * NET_RX_DROP: packet was dropped 5615 */ netif_receive_skb_core(struct sk_buff * skb)5616 int netif_receive_skb_core(struct sk_buff *skb) 5617 { 5618 int ret; 5619 5620 rcu_read_lock(); 5621 ret = __netif_receive_skb_one_core(skb, false); 5622 rcu_read_unlock(); 5623 5624 return ret; 5625 } 5626 EXPORT_SYMBOL(netif_receive_skb_core); 5627 __netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5628 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5629 struct packet_type *pt_prev, 5630 struct net_device *orig_dev) 5631 { 5632 struct sk_buff *skb, *next; 5633 5634 if (!pt_prev) 5635 return; 5636 if (list_empty(head)) 5637 return; 5638 if (pt_prev->list_func != NULL) 5639 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5640 ip_list_rcv, head, pt_prev, orig_dev); 5641 else 5642 list_for_each_entry_safe(skb, next, head, list) { 5643 skb_list_del_init(skb); 5644 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5645 } 5646 } 5647 __netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5648 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5649 { 5650 /* Fast-path assumptions: 5651 * - There is no RX handler. 5652 * - Only one packet_type matches. 5653 * If either of these fails, we will end up doing some per-packet 5654 * processing in-line, then handling the 'last ptype' for the whole 5655 * sublist. This can't cause out-of-order delivery to any single ptype, 5656 * because the 'last ptype' must be constant across the sublist, and all 5657 * other ptypes are handled per-packet. 5658 */ 5659 /* Current (common) ptype of sublist */ 5660 struct packet_type *pt_curr = NULL; 5661 /* Current (common) orig_dev of sublist */ 5662 struct net_device *od_curr = NULL; 5663 struct list_head sublist; 5664 struct sk_buff *skb, *next; 5665 5666 INIT_LIST_HEAD(&sublist); 5667 list_for_each_entry_safe(skb, next, head, list) { 5668 struct net_device *orig_dev = skb->dev; 5669 struct packet_type *pt_prev = NULL; 5670 5671 skb_list_del_init(skb); 5672 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5673 if (!pt_prev) 5674 continue; 5675 if (pt_curr != pt_prev || od_curr != orig_dev) { 5676 /* dispatch old sublist */ 5677 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5678 /* start new sublist */ 5679 INIT_LIST_HEAD(&sublist); 5680 pt_curr = pt_prev; 5681 od_curr = orig_dev; 5682 } 5683 list_add_tail(&skb->list, &sublist); 5684 } 5685 5686 /* dispatch final sublist */ 5687 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5688 } 5689 __netif_receive_skb(struct sk_buff * skb)5690 static int __netif_receive_skb(struct sk_buff *skb) 5691 { 5692 int ret; 5693 5694 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5695 unsigned int noreclaim_flag; 5696 5697 /* 5698 * PFMEMALLOC skbs are special, they should 5699 * - be delivered to SOCK_MEMALLOC sockets only 5700 * - stay away from userspace 5701 * - have bounded memory usage 5702 * 5703 * Use PF_MEMALLOC as this saves us from propagating the allocation 5704 * context down to all allocation sites. 5705 */ 5706 noreclaim_flag = memalloc_noreclaim_save(); 5707 ret = __netif_receive_skb_one_core(skb, true); 5708 memalloc_noreclaim_restore(noreclaim_flag); 5709 } else 5710 ret = __netif_receive_skb_one_core(skb, false); 5711 5712 return ret; 5713 } 5714 __netif_receive_skb_list(struct list_head * head)5715 static void __netif_receive_skb_list(struct list_head *head) 5716 { 5717 unsigned long noreclaim_flag = 0; 5718 struct sk_buff *skb, *next; 5719 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5720 5721 list_for_each_entry_safe(skb, next, head, list) { 5722 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5723 struct list_head sublist; 5724 5725 /* Handle the previous sublist */ 5726 list_cut_before(&sublist, head, &skb->list); 5727 if (!list_empty(&sublist)) 5728 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5729 pfmemalloc = !pfmemalloc; 5730 /* See comments in __netif_receive_skb */ 5731 if (pfmemalloc) 5732 noreclaim_flag = memalloc_noreclaim_save(); 5733 else 5734 memalloc_noreclaim_restore(noreclaim_flag); 5735 } 5736 } 5737 /* Handle the remaining sublist */ 5738 if (!list_empty(head)) 5739 __netif_receive_skb_list_core(head, pfmemalloc); 5740 /* Restore pflags */ 5741 if (pfmemalloc) 5742 memalloc_noreclaim_restore(noreclaim_flag); 5743 } 5744 generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5745 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5746 { 5747 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5748 struct bpf_prog *new = xdp->prog; 5749 int ret = 0; 5750 5751 switch (xdp->command) { 5752 case XDP_SETUP_PROG: 5753 rcu_assign_pointer(dev->xdp_prog, new); 5754 if (old) 5755 bpf_prog_put(old); 5756 5757 if (old && !new) { 5758 static_branch_dec(&generic_xdp_needed_key); 5759 } else if (new && !old) { 5760 static_branch_inc(&generic_xdp_needed_key); 5761 dev_disable_lro(dev); 5762 dev_disable_gro_hw(dev); 5763 } 5764 break; 5765 5766 default: 5767 ret = -EINVAL; 5768 break; 5769 } 5770 5771 return ret; 5772 } 5773 netif_receive_skb_internal(struct sk_buff * skb)5774 static int netif_receive_skb_internal(struct sk_buff *skb) 5775 { 5776 int ret; 5777 5778 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 5779 5780 if (skb_defer_rx_timestamp(skb)) 5781 return NET_RX_SUCCESS; 5782 5783 rcu_read_lock(); 5784 #ifdef CONFIG_RPS 5785 if (static_branch_unlikely(&rps_needed)) { 5786 struct rps_dev_flow voidflow, *rflow = &voidflow; 5787 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5788 5789 if (cpu >= 0) { 5790 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5791 rcu_read_unlock(); 5792 return ret; 5793 } 5794 } 5795 #endif 5796 ret = __netif_receive_skb(skb); 5797 rcu_read_unlock(); 5798 return ret; 5799 } 5800 netif_receive_skb_list_internal(struct list_head * head)5801 void netif_receive_skb_list_internal(struct list_head *head) 5802 { 5803 struct sk_buff *skb, *next; 5804 struct list_head sublist; 5805 5806 INIT_LIST_HEAD(&sublist); 5807 list_for_each_entry_safe(skb, next, head, list) { 5808 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 5809 skb_list_del_init(skb); 5810 if (!skb_defer_rx_timestamp(skb)) 5811 list_add_tail(&skb->list, &sublist); 5812 } 5813 list_splice_init(&sublist, head); 5814 5815 rcu_read_lock(); 5816 #ifdef CONFIG_RPS 5817 if (static_branch_unlikely(&rps_needed)) { 5818 list_for_each_entry_safe(skb, next, head, list) { 5819 struct rps_dev_flow voidflow, *rflow = &voidflow; 5820 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5821 5822 if (cpu >= 0) { 5823 /* Will be handled, remove from list */ 5824 skb_list_del_init(skb); 5825 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5826 } 5827 } 5828 } 5829 #endif 5830 __netif_receive_skb_list(head); 5831 rcu_read_unlock(); 5832 } 5833 5834 /** 5835 * netif_receive_skb - process receive buffer from network 5836 * @skb: buffer to process 5837 * 5838 * netif_receive_skb() is the main receive data processing function. 5839 * It always succeeds. The buffer may be dropped during processing 5840 * for congestion control or by the protocol layers. 5841 * 5842 * This function may only be called from softirq context and interrupts 5843 * should be enabled. 5844 * 5845 * Return values (usually ignored): 5846 * NET_RX_SUCCESS: no congestion 5847 * NET_RX_DROP: packet was dropped 5848 */ netif_receive_skb(struct sk_buff * skb)5849 int netif_receive_skb(struct sk_buff *skb) 5850 { 5851 int ret; 5852 5853 trace_netif_receive_skb_entry(skb); 5854 5855 ret = netif_receive_skb_internal(skb); 5856 trace_netif_receive_skb_exit(ret); 5857 5858 return ret; 5859 } 5860 EXPORT_SYMBOL(netif_receive_skb); 5861 5862 /** 5863 * netif_receive_skb_list - process many receive buffers from network 5864 * @head: list of skbs to process. 5865 * 5866 * Since return value of netif_receive_skb() is normally ignored, and 5867 * wouldn't be meaningful for a list, this function returns void. 5868 * 5869 * This function may only be called from softirq context and interrupts 5870 * should be enabled. 5871 */ netif_receive_skb_list(struct list_head * head)5872 void netif_receive_skb_list(struct list_head *head) 5873 { 5874 struct sk_buff *skb; 5875 5876 if (list_empty(head)) 5877 return; 5878 if (trace_netif_receive_skb_list_entry_enabled()) { 5879 list_for_each_entry(skb, head, list) 5880 trace_netif_receive_skb_list_entry(skb); 5881 } 5882 netif_receive_skb_list_internal(head); 5883 trace_netif_receive_skb_list_exit(0); 5884 } 5885 EXPORT_SYMBOL(netif_receive_skb_list); 5886 5887 static DEFINE_PER_CPU(struct work_struct, flush_works); 5888 5889 /* Network device is going away, flush any packets still pending */ flush_backlog(struct work_struct * work)5890 static void flush_backlog(struct work_struct *work) 5891 { 5892 struct sk_buff *skb, *tmp; 5893 struct softnet_data *sd; 5894 5895 local_bh_disable(); 5896 sd = this_cpu_ptr(&softnet_data); 5897 5898 rps_lock_irq_disable(sd); 5899 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5900 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5901 __skb_unlink(skb, &sd->input_pkt_queue); 5902 dev_kfree_skb_irq(skb); 5903 input_queue_head_incr(sd); 5904 } 5905 } 5906 rps_unlock_irq_enable(sd); 5907 5908 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5909 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5910 __skb_unlink(skb, &sd->process_queue); 5911 kfree_skb(skb); 5912 input_queue_head_incr(sd); 5913 } 5914 } 5915 local_bh_enable(); 5916 } 5917 flush_required(int cpu)5918 static bool flush_required(int cpu) 5919 { 5920 #if IS_ENABLED(CONFIG_RPS) 5921 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5922 bool do_flush; 5923 5924 rps_lock_irq_disable(sd); 5925 5926 /* as insertion into process_queue happens with the rps lock held, 5927 * process_queue access may race only with dequeue 5928 */ 5929 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5930 !skb_queue_empty_lockless(&sd->process_queue); 5931 rps_unlock_irq_enable(sd); 5932 5933 return do_flush; 5934 #endif 5935 /* without RPS we can't safely check input_pkt_queue: during a 5936 * concurrent remote skb_queue_splice() we can detect as empty both 5937 * input_pkt_queue and process_queue even if the latter could end-up 5938 * containing a lot of packets. 5939 */ 5940 return true; 5941 } 5942 flush_all_backlogs(void)5943 static void flush_all_backlogs(void) 5944 { 5945 static cpumask_t flush_cpus; 5946 unsigned int cpu; 5947 5948 /* since we are under rtnl lock protection we can use static data 5949 * for the cpumask and avoid allocating on stack the possibly 5950 * large mask 5951 */ 5952 ASSERT_RTNL(); 5953 5954 cpus_read_lock(); 5955 5956 cpumask_clear(&flush_cpus); 5957 for_each_online_cpu(cpu) { 5958 if (flush_required(cpu)) { 5959 queue_work_on(cpu, system_highpri_wq, 5960 per_cpu_ptr(&flush_works, cpu)); 5961 cpumask_set_cpu(cpu, &flush_cpus); 5962 } 5963 } 5964 5965 /* we can have in flight packet[s] on the cpus we are not flushing, 5966 * synchronize_net() in unregister_netdevice_many() will take care of 5967 * them 5968 */ 5969 for_each_cpu(cpu, &flush_cpus) 5970 flush_work(per_cpu_ptr(&flush_works, cpu)); 5971 5972 cpus_read_unlock(); 5973 } 5974 net_rps_send_ipi(struct softnet_data * remsd)5975 static void net_rps_send_ipi(struct softnet_data *remsd) 5976 { 5977 #ifdef CONFIG_RPS 5978 while (remsd) { 5979 struct softnet_data *next = remsd->rps_ipi_next; 5980 5981 if (cpu_online(remsd->cpu)) 5982 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5983 remsd = next; 5984 } 5985 #endif 5986 } 5987 5988 /* 5989 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5990 * Note: called with local irq disabled, but exits with local irq enabled. 5991 */ net_rps_action_and_irq_enable(struct softnet_data * sd)5992 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5993 { 5994 #ifdef CONFIG_RPS 5995 struct softnet_data *remsd = sd->rps_ipi_list; 5996 5997 if (remsd) { 5998 sd->rps_ipi_list = NULL; 5999 6000 local_irq_enable(); 6001 6002 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6003 net_rps_send_ipi(remsd); 6004 } else 6005 #endif 6006 local_irq_enable(); 6007 } 6008 sd_has_rps_ipi_waiting(struct softnet_data * sd)6009 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6010 { 6011 #ifdef CONFIG_RPS 6012 return sd->rps_ipi_list != NULL; 6013 #else 6014 return false; 6015 #endif 6016 } 6017 process_backlog(struct napi_struct * napi,int quota)6018 static int process_backlog(struct napi_struct *napi, int quota) 6019 { 6020 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6021 bool again = true; 6022 int work = 0; 6023 6024 /* Check if we have pending ipi, its better to send them now, 6025 * not waiting net_rx_action() end. 6026 */ 6027 if (sd_has_rps_ipi_waiting(sd)) { 6028 local_irq_disable(); 6029 net_rps_action_and_irq_enable(sd); 6030 } 6031 6032 napi->weight = READ_ONCE(dev_rx_weight); 6033 while (again) { 6034 struct sk_buff *skb; 6035 6036 while ((skb = __skb_dequeue(&sd->process_queue))) { 6037 rcu_read_lock(); 6038 __netif_receive_skb(skb); 6039 rcu_read_unlock(); 6040 input_queue_head_incr(sd); 6041 if (++work >= quota) 6042 return work; 6043 6044 } 6045 6046 rps_lock_irq_disable(sd); 6047 if (skb_queue_empty(&sd->input_pkt_queue)) { 6048 /* 6049 * Inline a custom version of __napi_complete(). 6050 * only current cpu owns and manipulates this napi, 6051 * and NAPI_STATE_SCHED is the only possible flag set 6052 * on backlog. 6053 * We can use a plain write instead of clear_bit(), 6054 * and we dont need an smp_mb() memory barrier. 6055 */ 6056 napi->state = 0; 6057 again = false; 6058 } else { 6059 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6060 &sd->process_queue); 6061 } 6062 rps_unlock_irq_enable(sd); 6063 } 6064 6065 return work; 6066 } 6067 6068 /** 6069 * __napi_schedule - schedule for receive 6070 * @n: entry to schedule 6071 * 6072 * The entry's receive function will be scheduled to run. 6073 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6074 */ __napi_schedule(struct napi_struct * n)6075 void __napi_schedule(struct napi_struct *n) 6076 { 6077 unsigned long flags; 6078 6079 local_irq_save(flags); 6080 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6081 local_irq_restore(flags); 6082 } 6083 EXPORT_SYMBOL(__napi_schedule); 6084 6085 /** 6086 * napi_schedule_prep - check if napi can be scheduled 6087 * @n: napi context 6088 * 6089 * Test if NAPI routine is already running, and if not mark 6090 * it as running. This is used as a condition variable to 6091 * insure only one NAPI poll instance runs. We also make 6092 * sure there is no pending NAPI disable. 6093 */ napi_schedule_prep(struct napi_struct * n)6094 bool napi_schedule_prep(struct napi_struct *n) 6095 { 6096 unsigned long new, val = READ_ONCE(n->state); 6097 6098 do { 6099 if (unlikely(val & NAPIF_STATE_DISABLE)) 6100 return false; 6101 new = val | NAPIF_STATE_SCHED; 6102 6103 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6104 * This was suggested by Alexander Duyck, as compiler 6105 * emits better code than : 6106 * if (val & NAPIF_STATE_SCHED) 6107 * new |= NAPIF_STATE_MISSED; 6108 */ 6109 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6110 NAPIF_STATE_MISSED; 6111 } while (!try_cmpxchg(&n->state, &val, new)); 6112 6113 return !(val & NAPIF_STATE_SCHED); 6114 } 6115 EXPORT_SYMBOL(napi_schedule_prep); 6116 6117 /** 6118 * __napi_schedule_irqoff - schedule for receive 6119 * @n: entry to schedule 6120 * 6121 * Variant of __napi_schedule() assuming hard irqs are masked. 6122 * 6123 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6124 * because the interrupt disabled assumption might not be true 6125 * due to force-threaded interrupts and spinlock substitution. 6126 */ __napi_schedule_irqoff(struct napi_struct * n)6127 void __napi_schedule_irqoff(struct napi_struct *n) 6128 { 6129 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6130 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6131 else 6132 __napi_schedule(n); 6133 } 6134 EXPORT_SYMBOL(__napi_schedule_irqoff); 6135 napi_complete_done(struct napi_struct * n,int work_done)6136 bool napi_complete_done(struct napi_struct *n, int work_done) 6137 { 6138 unsigned long flags, val, new, timeout = 0; 6139 bool ret = true; 6140 6141 /* 6142 * 1) Don't let napi dequeue from the cpu poll list 6143 * just in case its running on a different cpu. 6144 * 2) If we are busy polling, do nothing here, we have 6145 * the guarantee we will be called later. 6146 */ 6147 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6148 NAPIF_STATE_IN_BUSY_POLL))) 6149 return false; 6150 6151 if (work_done) { 6152 if (n->gro_bitmask) 6153 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6154 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6155 } 6156 if (n->defer_hard_irqs_count > 0) { 6157 n->defer_hard_irqs_count--; 6158 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6159 if (timeout) 6160 ret = false; 6161 } 6162 if (n->gro_bitmask) { 6163 /* When the NAPI instance uses a timeout and keeps postponing 6164 * it, we need to bound somehow the time packets are kept in 6165 * the GRO layer 6166 */ 6167 napi_gro_flush(n, !!timeout); 6168 } 6169 6170 gro_normal_list(n); 6171 6172 if (unlikely(!list_empty(&n->poll_list))) { 6173 /* If n->poll_list is not empty, we need to mask irqs */ 6174 local_irq_save(flags); 6175 list_del_init(&n->poll_list); 6176 local_irq_restore(flags); 6177 } 6178 WRITE_ONCE(n->list_owner, -1); 6179 6180 val = READ_ONCE(n->state); 6181 do { 6182 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6183 6184 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6185 NAPIF_STATE_SCHED_THREADED | 6186 NAPIF_STATE_PREFER_BUSY_POLL); 6187 6188 /* If STATE_MISSED was set, leave STATE_SCHED set, 6189 * because we will call napi->poll() one more time. 6190 * This C code was suggested by Alexander Duyck to help gcc. 6191 */ 6192 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6193 NAPIF_STATE_SCHED; 6194 } while (!try_cmpxchg(&n->state, &val, new)); 6195 6196 if (unlikely(val & NAPIF_STATE_MISSED)) { 6197 __napi_schedule(n); 6198 return false; 6199 } 6200 6201 if (timeout) 6202 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6203 HRTIMER_MODE_REL_PINNED); 6204 return ret; 6205 } 6206 EXPORT_SYMBOL(napi_complete_done); 6207 6208 /* must be called under rcu_read_lock(), as we dont take a reference */ napi_by_id(unsigned int napi_id)6209 static struct napi_struct *napi_by_id(unsigned int napi_id) 6210 { 6211 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6212 struct napi_struct *napi; 6213 6214 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6215 if (napi->napi_id == napi_id) 6216 return napi; 6217 6218 return NULL; 6219 } 6220 6221 #if defined(CONFIG_NET_RX_BUSY_POLL) 6222 __busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6223 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6224 { 6225 if (!skip_schedule) { 6226 gro_normal_list(napi); 6227 __napi_schedule(napi); 6228 return; 6229 } 6230 6231 if (napi->gro_bitmask) { 6232 /* flush too old packets 6233 * If HZ < 1000, flush all packets. 6234 */ 6235 napi_gro_flush(napi, HZ >= 1000); 6236 } 6237 6238 gro_normal_list(napi); 6239 clear_bit(NAPI_STATE_SCHED, &napi->state); 6240 } 6241 busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,bool prefer_busy_poll,u16 budget)6242 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll, 6243 u16 budget) 6244 { 6245 bool skip_schedule = false; 6246 unsigned long timeout; 6247 int rc; 6248 6249 /* Busy polling means there is a high chance device driver hard irq 6250 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6251 * set in napi_schedule_prep(). 6252 * Since we are about to call napi->poll() once more, we can safely 6253 * clear NAPI_STATE_MISSED. 6254 * 6255 * Note: x86 could use a single "lock and ..." instruction 6256 * to perform these two clear_bit() 6257 */ 6258 clear_bit(NAPI_STATE_MISSED, &napi->state); 6259 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6260 6261 local_bh_disable(); 6262 6263 if (prefer_busy_poll) { 6264 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); 6265 timeout = READ_ONCE(napi->dev->gro_flush_timeout); 6266 if (napi->defer_hard_irqs_count && timeout) { 6267 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6268 skip_schedule = true; 6269 } 6270 } 6271 6272 /* All we really want here is to re-enable device interrupts. 6273 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6274 */ 6275 rc = napi->poll(napi, budget); 6276 /* We can't gro_normal_list() here, because napi->poll() might have 6277 * rearmed the napi (napi_complete_done()) in which case it could 6278 * already be running on another CPU. 6279 */ 6280 trace_napi_poll(napi, rc, budget); 6281 netpoll_poll_unlock(have_poll_lock); 6282 if (rc == budget) 6283 __busy_poll_stop(napi, skip_schedule); 6284 local_bh_enable(); 6285 } 6286 napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6287 void napi_busy_loop(unsigned int napi_id, 6288 bool (*loop_end)(void *, unsigned long), 6289 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6290 { 6291 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6292 int (*napi_poll)(struct napi_struct *napi, int budget); 6293 void *have_poll_lock = NULL; 6294 struct napi_struct *napi; 6295 6296 restart: 6297 napi_poll = NULL; 6298 6299 rcu_read_lock(); 6300 6301 napi = napi_by_id(napi_id); 6302 if (!napi) 6303 goto out; 6304 6305 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6306 preempt_disable(); 6307 for (;;) { 6308 int work = 0; 6309 6310 local_bh_disable(); 6311 if (!napi_poll) { 6312 unsigned long val = READ_ONCE(napi->state); 6313 6314 /* If multiple threads are competing for this napi, 6315 * we avoid dirtying napi->state as much as we can. 6316 */ 6317 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6318 NAPIF_STATE_IN_BUSY_POLL)) { 6319 if (prefer_busy_poll) 6320 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6321 goto count; 6322 } 6323 if (cmpxchg(&napi->state, val, 6324 val | NAPIF_STATE_IN_BUSY_POLL | 6325 NAPIF_STATE_SCHED) != val) { 6326 if (prefer_busy_poll) 6327 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6328 goto count; 6329 } 6330 have_poll_lock = netpoll_poll_lock(napi); 6331 napi_poll = napi->poll; 6332 } 6333 work = napi_poll(napi, budget); 6334 trace_napi_poll(napi, work, budget); 6335 gro_normal_list(napi); 6336 count: 6337 if (work > 0) 6338 __NET_ADD_STATS(dev_net(napi->dev), 6339 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6340 local_bh_enable(); 6341 6342 if (!loop_end || loop_end(loop_end_arg, start_time)) 6343 break; 6344 6345 if (unlikely(need_resched())) { 6346 if (napi_poll) 6347 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6348 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6349 preempt_enable(); 6350 rcu_read_unlock(); 6351 cond_resched(); 6352 if (loop_end(loop_end_arg, start_time)) 6353 return; 6354 goto restart; 6355 } 6356 cpu_relax(); 6357 } 6358 if (napi_poll) 6359 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6360 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6361 preempt_enable(); 6362 out: 6363 rcu_read_unlock(); 6364 } 6365 EXPORT_SYMBOL(napi_busy_loop); 6366 6367 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6368 napi_hash_add(struct napi_struct * napi)6369 static void napi_hash_add(struct napi_struct *napi) 6370 { 6371 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6372 return; 6373 6374 spin_lock(&napi_hash_lock); 6375 6376 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6377 do { 6378 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6379 napi_gen_id = MIN_NAPI_ID; 6380 } while (napi_by_id(napi_gen_id)); 6381 napi->napi_id = napi_gen_id; 6382 6383 hlist_add_head_rcu(&napi->napi_hash_node, 6384 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6385 6386 spin_unlock(&napi_hash_lock); 6387 } 6388 6389 /* Warning : caller is responsible to make sure rcu grace period 6390 * is respected before freeing memory containing @napi 6391 */ napi_hash_del(struct napi_struct * napi)6392 static void napi_hash_del(struct napi_struct *napi) 6393 { 6394 spin_lock(&napi_hash_lock); 6395 6396 hlist_del_init_rcu(&napi->napi_hash_node); 6397 6398 spin_unlock(&napi_hash_lock); 6399 } 6400 napi_watchdog(struct hrtimer * timer)6401 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6402 { 6403 struct napi_struct *napi; 6404 6405 napi = container_of(timer, struct napi_struct, timer); 6406 6407 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6408 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6409 */ 6410 if (!napi_disable_pending(napi) && 6411 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6412 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6413 __napi_schedule_irqoff(napi); 6414 } 6415 6416 return HRTIMER_NORESTART; 6417 } 6418 init_gro_hash(struct napi_struct * napi)6419 static void init_gro_hash(struct napi_struct *napi) 6420 { 6421 int i; 6422 6423 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6424 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6425 napi->gro_hash[i].count = 0; 6426 } 6427 napi->gro_bitmask = 0; 6428 } 6429 dev_set_threaded(struct net_device * dev,bool threaded)6430 int dev_set_threaded(struct net_device *dev, bool threaded) 6431 { 6432 struct napi_struct *napi; 6433 int err = 0; 6434 6435 if (dev->threaded == threaded) 6436 return 0; 6437 6438 if (threaded) { 6439 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6440 if (!napi->thread) { 6441 err = napi_kthread_create(napi); 6442 if (err) { 6443 threaded = false; 6444 break; 6445 } 6446 } 6447 } 6448 } 6449 6450 dev->threaded = threaded; 6451 6452 /* Make sure kthread is created before THREADED bit 6453 * is set. 6454 */ 6455 smp_mb__before_atomic(); 6456 6457 /* Setting/unsetting threaded mode on a napi might not immediately 6458 * take effect, if the current napi instance is actively being 6459 * polled. In this case, the switch between threaded mode and 6460 * softirq mode will happen in the next round of napi_schedule(). 6461 * This should not cause hiccups/stalls to the live traffic. 6462 */ 6463 list_for_each_entry(napi, &dev->napi_list, dev_list) 6464 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 6465 6466 return err; 6467 } 6468 EXPORT_SYMBOL(dev_set_threaded); 6469 netif_napi_add_weight(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6470 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 6471 int (*poll)(struct napi_struct *, int), int weight) 6472 { 6473 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6474 return; 6475 6476 INIT_LIST_HEAD(&napi->poll_list); 6477 INIT_HLIST_NODE(&napi->napi_hash_node); 6478 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6479 napi->timer.function = napi_watchdog; 6480 init_gro_hash(napi); 6481 napi->skb = NULL; 6482 INIT_LIST_HEAD(&napi->rx_list); 6483 napi->rx_count = 0; 6484 napi->poll = poll; 6485 if (weight > NAPI_POLL_WEIGHT) 6486 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6487 weight); 6488 napi->weight = weight; 6489 napi->dev = dev; 6490 #ifdef CONFIG_NETPOLL 6491 napi->poll_owner = -1; 6492 #endif 6493 napi->list_owner = -1; 6494 set_bit(NAPI_STATE_SCHED, &napi->state); 6495 set_bit(NAPI_STATE_NPSVC, &napi->state); 6496 list_add_rcu(&napi->dev_list, &dev->napi_list); 6497 napi_hash_add(napi); 6498 napi_get_frags_check(napi); 6499 /* Create kthread for this napi if dev->threaded is set. 6500 * Clear dev->threaded if kthread creation failed so that 6501 * threaded mode will not be enabled in napi_enable(). 6502 */ 6503 if (dev->threaded && napi_kthread_create(napi)) 6504 dev->threaded = 0; 6505 } 6506 EXPORT_SYMBOL(netif_napi_add_weight); 6507 napi_disable(struct napi_struct * n)6508 void napi_disable(struct napi_struct *n) 6509 { 6510 unsigned long val, new; 6511 6512 might_sleep(); 6513 set_bit(NAPI_STATE_DISABLE, &n->state); 6514 6515 val = READ_ONCE(n->state); 6516 do { 6517 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 6518 usleep_range(20, 200); 6519 val = READ_ONCE(n->state); 6520 } 6521 6522 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 6523 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 6524 } while (!try_cmpxchg(&n->state, &val, new)); 6525 6526 hrtimer_cancel(&n->timer); 6527 6528 clear_bit(NAPI_STATE_DISABLE, &n->state); 6529 } 6530 EXPORT_SYMBOL(napi_disable); 6531 6532 /** 6533 * napi_enable - enable NAPI scheduling 6534 * @n: NAPI context 6535 * 6536 * Resume NAPI from being scheduled on this context. 6537 * Must be paired with napi_disable. 6538 */ napi_enable(struct napi_struct * n)6539 void napi_enable(struct napi_struct *n) 6540 { 6541 unsigned long new, val = READ_ONCE(n->state); 6542 6543 do { 6544 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 6545 6546 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 6547 if (n->dev->threaded && n->thread) 6548 new |= NAPIF_STATE_THREADED; 6549 } while (!try_cmpxchg(&n->state, &val, new)); 6550 } 6551 EXPORT_SYMBOL(napi_enable); 6552 flush_gro_hash(struct napi_struct * napi)6553 static void flush_gro_hash(struct napi_struct *napi) 6554 { 6555 int i; 6556 6557 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6558 struct sk_buff *skb, *n; 6559 6560 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6561 kfree_skb(skb); 6562 napi->gro_hash[i].count = 0; 6563 } 6564 } 6565 6566 /* Must be called in process context */ __netif_napi_del(struct napi_struct * napi)6567 void __netif_napi_del(struct napi_struct *napi) 6568 { 6569 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6570 return; 6571 6572 napi_hash_del(napi); 6573 list_del_rcu(&napi->dev_list); 6574 napi_free_frags(napi); 6575 6576 flush_gro_hash(napi); 6577 napi->gro_bitmask = 0; 6578 6579 if (napi->thread) { 6580 kthread_stop(napi->thread); 6581 napi->thread = NULL; 6582 } 6583 } 6584 EXPORT_SYMBOL(__netif_napi_del); 6585 __napi_poll(struct napi_struct * n,bool * repoll)6586 static int __napi_poll(struct napi_struct *n, bool *repoll) 6587 { 6588 int work, weight; 6589 6590 weight = n->weight; 6591 6592 /* This NAPI_STATE_SCHED test is for avoiding a race 6593 * with netpoll's poll_napi(). Only the entity which 6594 * obtains the lock and sees NAPI_STATE_SCHED set will 6595 * actually make the ->poll() call. Therefore we avoid 6596 * accidentally calling ->poll() when NAPI is not scheduled. 6597 */ 6598 work = 0; 6599 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6600 work = n->poll(n, weight); 6601 trace_napi_poll(n, work, weight); 6602 } 6603 6604 if (unlikely(work > weight)) 6605 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6606 n->poll, work, weight); 6607 6608 if (likely(work < weight)) 6609 return work; 6610 6611 /* Drivers must not modify the NAPI state if they 6612 * consume the entire weight. In such cases this code 6613 * still "owns" the NAPI instance and therefore can 6614 * move the instance around on the list at-will. 6615 */ 6616 if (unlikely(napi_disable_pending(n))) { 6617 napi_complete(n); 6618 return work; 6619 } 6620 6621 /* The NAPI context has more processing work, but busy-polling 6622 * is preferred. Exit early. 6623 */ 6624 if (napi_prefer_busy_poll(n)) { 6625 if (napi_complete_done(n, work)) { 6626 /* If timeout is not set, we need to make sure 6627 * that the NAPI is re-scheduled. 6628 */ 6629 napi_schedule(n); 6630 } 6631 return work; 6632 } 6633 6634 if (n->gro_bitmask) { 6635 /* flush too old packets 6636 * If HZ < 1000, flush all packets. 6637 */ 6638 napi_gro_flush(n, HZ >= 1000); 6639 } 6640 6641 gro_normal_list(n); 6642 6643 /* Some drivers may have called napi_schedule 6644 * prior to exhausting their budget. 6645 */ 6646 if (unlikely(!list_empty(&n->poll_list))) { 6647 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6648 n->dev ? n->dev->name : "backlog"); 6649 return work; 6650 } 6651 6652 *repoll = true; 6653 6654 return work; 6655 } 6656 napi_poll(struct napi_struct * n,struct list_head * repoll)6657 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6658 { 6659 bool do_repoll = false; 6660 void *have; 6661 int work; 6662 6663 list_del_init(&n->poll_list); 6664 6665 have = netpoll_poll_lock(n); 6666 6667 work = __napi_poll(n, &do_repoll); 6668 6669 if (do_repoll) 6670 list_add_tail(&n->poll_list, repoll); 6671 6672 netpoll_poll_unlock(have); 6673 6674 return work; 6675 } 6676 napi_thread_wait(struct napi_struct * napi)6677 static int napi_thread_wait(struct napi_struct *napi) 6678 { 6679 bool woken = false; 6680 6681 set_current_state(TASK_INTERRUPTIBLE); 6682 6683 while (!kthread_should_stop()) { 6684 /* Testing SCHED_THREADED bit here to make sure the current 6685 * kthread owns this napi and could poll on this napi. 6686 * Testing SCHED bit is not enough because SCHED bit might be 6687 * set by some other busy poll thread or by napi_disable(). 6688 */ 6689 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) { 6690 WARN_ON(!list_empty(&napi->poll_list)); 6691 __set_current_state(TASK_RUNNING); 6692 return 0; 6693 } 6694 6695 schedule(); 6696 /* woken being true indicates this thread owns this napi. */ 6697 woken = true; 6698 set_current_state(TASK_INTERRUPTIBLE); 6699 } 6700 __set_current_state(TASK_RUNNING); 6701 6702 return -1; 6703 } 6704 skb_defer_free_flush(struct softnet_data * sd)6705 static void skb_defer_free_flush(struct softnet_data *sd) 6706 { 6707 struct sk_buff *skb, *next; 6708 6709 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6710 if (!READ_ONCE(sd->defer_list)) 6711 return; 6712 6713 spin_lock(&sd->defer_lock); 6714 skb = sd->defer_list; 6715 sd->defer_list = NULL; 6716 sd->defer_count = 0; 6717 spin_unlock(&sd->defer_lock); 6718 6719 while (skb != NULL) { 6720 next = skb->next; 6721 napi_consume_skb(skb, 1); 6722 skb = next; 6723 } 6724 } 6725 napi_threaded_poll(void * data)6726 static int napi_threaded_poll(void *data) 6727 { 6728 struct napi_struct *napi = data; 6729 struct softnet_data *sd; 6730 void *have; 6731 6732 while (!napi_thread_wait(napi)) { 6733 unsigned long last_qs = jiffies; 6734 6735 for (;;) { 6736 bool repoll = false; 6737 6738 local_bh_disable(); 6739 sd = this_cpu_ptr(&softnet_data); 6740 sd->in_napi_threaded_poll = true; 6741 6742 have = netpoll_poll_lock(napi); 6743 __napi_poll(napi, &repoll); 6744 netpoll_poll_unlock(have); 6745 6746 sd->in_napi_threaded_poll = false; 6747 barrier(); 6748 6749 if (sd_has_rps_ipi_waiting(sd)) { 6750 local_irq_disable(); 6751 net_rps_action_and_irq_enable(sd); 6752 } 6753 skb_defer_free_flush(sd); 6754 local_bh_enable(); 6755 6756 if (!repoll) 6757 break; 6758 6759 rcu_softirq_qs_periodic(last_qs); 6760 cond_resched(); 6761 } 6762 } 6763 return 0; 6764 } 6765 net_rx_action(struct softirq_action * h)6766 static __latent_entropy void net_rx_action(struct softirq_action *h) 6767 { 6768 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6769 unsigned long time_limit = jiffies + 6770 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs)); 6771 int budget = READ_ONCE(netdev_budget); 6772 LIST_HEAD(list); 6773 LIST_HEAD(repoll); 6774 6775 start: 6776 sd->in_net_rx_action = true; 6777 local_irq_disable(); 6778 list_splice_init(&sd->poll_list, &list); 6779 local_irq_enable(); 6780 6781 for (;;) { 6782 struct napi_struct *n; 6783 6784 skb_defer_free_flush(sd); 6785 6786 if (list_empty(&list)) { 6787 if (list_empty(&repoll)) { 6788 sd->in_net_rx_action = false; 6789 barrier(); 6790 /* We need to check if ____napi_schedule() 6791 * had refilled poll_list while 6792 * sd->in_net_rx_action was true. 6793 */ 6794 if (!list_empty(&sd->poll_list)) 6795 goto start; 6796 if (!sd_has_rps_ipi_waiting(sd)) 6797 goto end; 6798 } 6799 break; 6800 } 6801 6802 n = list_first_entry(&list, struct napi_struct, poll_list); 6803 budget -= napi_poll(n, &repoll); 6804 6805 /* If softirq window is exhausted then punt. 6806 * Allow this to run for 2 jiffies since which will allow 6807 * an average latency of 1.5/HZ. 6808 */ 6809 if (unlikely(budget <= 0 || 6810 time_after_eq(jiffies, time_limit))) { 6811 sd->time_squeeze++; 6812 break; 6813 } 6814 } 6815 6816 local_irq_disable(); 6817 6818 list_splice_tail_init(&sd->poll_list, &list); 6819 list_splice_tail(&repoll, &list); 6820 list_splice(&list, &sd->poll_list); 6821 if (!list_empty(&sd->poll_list)) 6822 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6823 else 6824 sd->in_net_rx_action = false; 6825 6826 net_rps_action_and_irq_enable(sd); 6827 end:; 6828 } 6829 6830 struct netdev_adjacent { 6831 struct net_device *dev; 6832 netdevice_tracker dev_tracker; 6833 6834 /* upper master flag, there can only be one master device per list */ 6835 bool master; 6836 6837 /* lookup ignore flag */ 6838 bool ignore; 6839 6840 /* counter for the number of times this device was added to us */ 6841 u16 ref_nr; 6842 6843 /* private field for the users */ 6844 void *private; 6845 6846 struct list_head list; 6847 struct rcu_head rcu; 6848 }; 6849 __netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)6850 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6851 struct list_head *adj_list) 6852 { 6853 struct netdev_adjacent *adj; 6854 6855 list_for_each_entry(adj, adj_list, list) { 6856 if (adj->dev == adj_dev) 6857 return adj; 6858 } 6859 return NULL; 6860 } 6861 ____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)6862 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 6863 struct netdev_nested_priv *priv) 6864 { 6865 struct net_device *dev = (struct net_device *)priv->data; 6866 6867 return upper_dev == dev; 6868 } 6869 6870 /** 6871 * netdev_has_upper_dev - Check if device is linked to an upper device 6872 * @dev: device 6873 * @upper_dev: upper device to check 6874 * 6875 * Find out if a device is linked to specified upper device and return true 6876 * in case it is. Note that this checks only immediate upper device, 6877 * not through a complete stack of devices. The caller must hold the RTNL lock. 6878 */ netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6879 bool netdev_has_upper_dev(struct net_device *dev, 6880 struct net_device *upper_dev) 6881 { 6882 struct netdev_nested_priv priv = { 6883 .data = (void *)upper_dev, 6884 }; 6885 6886 ASSERT_RTNL(); 6887 6888 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6889 &priv); 6890 } 6891 EXPORT_SYMBOL(netdev_has_upper_dev); 6892 6893 /** 6894 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 6895 * @dev: device 6896 * @upper_dev: upper device to check 6897 * 6898 * Find out if a device is linked to specified upper device and return true 6899 * in case it is. Note that this checks the entire upper device chain. 6900 * The caller must hold rcu lock. 6901 */ 6902 netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)6903 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6904 struct net_device *upper_dev) 6905 { 6906 struct netdev_nested_priv priv = { 6907 .data = (void *)upper_dev, 6908 }; 6909 6910 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6911 &priv); 6912 } 6913 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6914 6915 /** 6916 * netdev_has_any_upper_dev - Check if device is linked to some device 6917 * @dev: device 6918 * 6919 * Find out if a device is linked to an upper device and return true in case 6920 * it is. The caller must hold the RTNL lock. 6921 */ netdev_has_any_upper_dev(struct net_device * dev)6922 bool netdev_has_any_upper_dev(struct net_device *dev) 6923 { 6924 ASSERT_RTNL(); 6925 6926 return !list_empty(&dev->adj_list.upper); 6927 } 6928 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6929 6930 /** 6931 * netdev_master_upper_dev_get - Get master upper device 6932 * @dev: device 6933 * 6934 * Find a master upper device and return pointer to it or NULL in case 6935 * it's not there. The caller must hold the RTNL lock. 6936 */ netdev_master_upper_dev_get(struct net_device * dev)6937 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6938 { 6939 struct netdev_adjacent *upper; 6940 6941 ASSERT_RTNL(); 6942 6943 if (list_empty(&dev->adj_list.upper)) 6944 return NULL; 6945 6946 upper = list_first_entry(&dev->adj_list.upper, 6947 struct netdev_adjacent, list); 6948 if (likely(upper->master)) 6949 return upper->dev; 6950 return NULL; 6951 } 6952 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6953 __netdev_master_upper_dev_get(struct net_device * dev)6954 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 6955 { 6956 struct netdev_adjacent *upper; 6957 6958 ASSERT_RTNL(); 6959 6960 if (list_empty(&dev->adj_list.upper)) 6961 return NULL; 6962 6963 upper = list_first_entry(&dev->adj_list.upper, 6964 struct netdev_adjacent, list); 6965 if (likely(upper->master) && !upper->ignore) 6966 return upper->dev; 6967 return NULL; 6968 } 6969 6970 /** 6971 * netdev_has_any_lower_dev - Check if device is linked to some device 6972 * @dev: device 6973 * 6974 * Find out if a device is linked to a lower device and return true in case 6975 * it is. The caller must hold the RTNL lock. 6976 */ netdev_has_any_lower_dev(struct net_device * dev)6977 static bool netdev_has_any_lower_dev(struct net_device *dev) 6978 { 6979 ASSERT_RTNL(); 6980 6981 return !list_empty(&dev->adj_list.lower); 6982 } 6983 netdev_adjacent_get_private(struct list_head * adj_list)6984 void *netdev_adjacent_get_private(struct list_head *adj_list) 6985 { 6986 struct netdev_adjacent *adj; 6987 6988 adj = list_entry(adj_list, struct netdev_adjacent, list); 6989 6990 return adj->private; 6991 } 6992 EXPORT_SYMBOL(netdev_adjacent_get_private); 6993 6994 /** 6995 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6996 * @dev: device 6997 * @iter: list_head ** of the current position 6998 * 6999 * Gets the next device from the dev's upper list, starting from iter 7000 * position. The caller must hold RCU read lock. 7001 */ netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7002 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7003 struct list_head **iter) 7004 { 7005 struct netdev_adjacent *upper; 7006 7007 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7008 7009 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7010 7011 if (&upper->list == &dev->adj_list.upper) 7012 return NULL; 7013 7014 *iter = &upper->list; 7015 7016 return upper->dev; 7017 } 7018 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7019 __netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7020 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7021 struct list_head **iter, 7022 bool *ignore) 7023 { 7024 struct netdev_adjacent *upper; 7025 7026 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7027 7028 if (&upper->list == &dev->adj_list.upper) 7029 return NULL; 7030 7031 *iter = &upper->list; 7032 *ignore = upper->ignore; 7033 7034 return upper->dev; 7035 } 7036 netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7037 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7038 struct list_head **iter) 7039 { 7040 struct netdev_adjacent *upper; 7041 7042 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7043 7044 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7045 7046 if (&upper->list == &dev->adj_list.upper) 7047 return NULL; 7048 7049 *iter = &upper->list; 7050 7051 return upper->dev; 7052 } 7053 __netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7054 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7055 int (*fn)(struct net_device *dev, 7056 struct netdev_nested_priv *priv), 7057 struct netdev_nested_priv *priv) 7058 { 7059 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7060 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7061 int ret, cur = 0; 7062 bool ignore; 7063 7064 now = dev; 7065 iter = &dev->adj_list.upper; 7066 7067 while (1) { 7068 if (now != dev) { 7069 ret = fn(now, priv); 7070 if (ret) 7071 return ret; 7072 } 7073 7074 next = NULL; 7075 while (1) { 7076 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7077 if (!udev) 7078 break; 7079 if (ignore) 7080 continue; 7081 7082 next = udev; 7083 niter = &udev->adj_list.upper; 7084 dev_stack[cur] = now; 7085 iter_stack[cur++] = iter; 7086 break; 7087 } 7088 7089 if (!next) { 7090 if (!cur) 7091 return 0; 7092 next = dev_stack[--cur]; 7093 niter = iter_stack[cur]; 7094 } 7095 7096 now = next; 7097 iter = niter; 7098 } 7099 7100 return 0; 7101 } 7102 netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7103 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7104 int (*fn)(struct net_device *dev, 7105 struct netdev_nested_priv *priv), 7106 struct netdev_nested_priv *priv) 7107 { 7108 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7109 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7110 int ret, cur = 0; 7111 7112 now = dev; 7113 iter = &dev->adj_list.upper; 7114 7115 while (1) { 7116 if (now != dev) { 7117 ret = fn(now, priv); 7118 if (ret) 7119 return ret; 7120 } 7121 7122 next = NULL; 7123 while (1) { 7124 udev = netdev_next_upper_dev_rcu(now, &iter); 7125 if (!udev) 7126 break; 7127 7128 next = udev; 7129 niter = &udev->adj_list.upper; 7130 dev_stack[cur] = now; 7131 iter_stack[cur++] = iter; 7132 break; 7133 } 7134 7135 if (!next) { 7136 if (!cur) 7137 return 0; 7138 next = dev_stack[--cur]; 7139 niter = iter_stack[cur]; 7140 } 7141 7142 now = next; 7143 iter = niter; 7144 } 7145 7146 return 0; 7147 } 7148 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7149 __netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7150 static bool __netdev_has_upper_dev(struct net_device *dev, 7151 struct net_device *upper_dev) 7152 { 7153 struct netdev_nested_priv priv = { 7154 .flags = 0, 7155 .data = (void *)upper_dev, 7156 }; 7157 7158 ASSERT_RTNL(); 7159 7160 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7161 &priv); 7162 } 7163 7164 /** 7165 * netdev_lower_get_next_private - Get the next ->private from the 7166 * lower neighbour list 7167 * @dev: device 7168 * @iter: list_head ** of the current position 7169 * 7170 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7171 * list, starting from iter position. The caller must hold either hold the 7172 * RTNL lock or its own locking that guarantees that the neighbour lower 7173 * list will remain unchanged. 7174 */ netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7175 void *netdev_lower_get_next_private(struct net_device *dev, 7176 struct list_head **iter) 7177 { 7178 struct netdev_adjacent *lower; 7179 7180 lower = list_entry(*iter, struct netdev_adjacent, list); 7181 7182 if (&lower->list == &dev->adj_list.lower) 7183 return NULL; 7184 7185 *iter = lower->list.next; 7186 7187 return lower->private; 7188 } 7189 EXPORT_SYMBOL(netdev_lower_get_next_private); 7190 7191 /** 7192 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7193 * lower neighbour list, RCU 7194 * variant 7195 * @dev: device 7196 * @iter: list_head ** of the current position 7197 * 7198 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7199 * list, starting from iter position. The caller must hold RCU read lock. 7200 */ netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7201 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7202 struct list_head **iter) 7203 { 7204 struct netdev_adjacent *lower; 7205 7206 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 7207 7208 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7209 7210 if (&lower->list == &dev->adj_list.lower) 7211 return NULL; 7212 7213 *iter = &lower->list; 7214 7215 return lower->private; 7216 } 7217 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7218 7219 /** 7220 * netdev_lower_get_next - Get the next device from the lower neighbour 7221 * list 7222 * @dev: device 7223 * @iter: list_head ** of the current position 7224 * 7225 * Gets the next netdev_adjacent from the dev's lower neighbour 7226 * list, starting from iter position. The caller must hold RTNL lock or 7227 * its own locking that guarantees that the neighbour lower 7228 * list will remain unchanged. 7229 */ netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7230 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7231 { 7232 struct netdev_adjacent *lower; 7233 7234 lower = list_entry(*iter, struct netdev_adjacent, list); 7235 7236 if (&lower->list == &dev->adj_list.lower) 7237 return NULL; 7238 7239 *iter = lower->list.next; 7240 7241 return lower->dev; 7242 } 7243 EXPORT_SYMBOL(netdev_lower_get_next); 7244 netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7245 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7246 struct list_head **iter) 7247 { 7248 struct netdev_adjacent *lower; 7249 7250 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7251 7252 if (&lower->list == &dev->adj_list.lower) 7253 return NULL; 7254 7255 *iter = &lower->list; 7256 7257 return lower->dev; 7258 } 7259 __netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7260 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7261 struct list_head **iter, 7262 bool *ignore) 7263 { 7264 struct netdev_adjacent *lower; 7265 7266 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7267 7268 if (&lower->list == &dev->adj_list.lower) 7269 return NULL; 7270 7271 *iter = &lower->list; 7272 *ignore = lower->ignore; 7273 7274 return lower->dev; 7275 } 7276 netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7277 int netdev_walk_all_lower_dev(struct net_device *dev, 7278 int (*fn)(struct net_device *dev, 7279 struct netdev_nested_priv *priv), 7280 struct netdev_nested_priv *priv) 7281 { 7282 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7283 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7284 int ret, cur = 0; 7285 7286 now = dev; 7287 iter = &dev->adj_list.lower; 7288 7289 while (1) { 7290 if (now != dev) { 7291 ret = fn(now, priv); 7292 if (ret) 7293 return ret; 7294 } 7295 7296 next = NULL; 7297 while (1) { 7298 ldev = netdev_next_lower_dev(now, &iter); 7299 if (!ldev) 7300 break; 7301 7302 next = ldev; 7303 niter = &ldev->adj_list.lower; 7304 dev_stack[cur] = now; 7305 iter_stack[cur++] = iter; 7306 break; 7307 } 7308 7309 if (!next) { 7310 if (!cur) 7311 return 0; 7312 next = dev_stack[--cur]; 7313 niter = iter_stack[cur]; 7314 } 7315 7316 now = next; 7317 iter = niter; 7318 } 7319 7320 return 0; 7321 } 7322 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7323 __netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7324 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7325 int (*fn)(struct net_device *dev, 7326 struct netdev_nested_priv *priv), 7327 struct netdev_nested_priv *priv) 7328 { 7329 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7330 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7331 int ret, cur = 0; 7332 bool ignore; 7333 7334 now = dev; 7335 iter = &dev->adj_list.lower; 7336 7337 while (1) { 7338 if (now != dev) { 7339 ret = fn(now, priv); 7340 if (ret) 7341 return ret; 7342 } 7343 7344 next = NULL; 7345 while (1) { 7346 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7347 if (!ldev) 7348 break; 7349 if (ignore) 7350 continue; 7351 7352 next = ldev; 7353 niter = &ldev->adj_list.lower; 7354 dev_stack[cur] = now; 7355 iter_stack[cur++] = iter; 7356 break; 7357 } 7358 7359 if (!next) { 7360 if (!cur) 7361 return 0; 7362 next = dev_stack[--cur]; 7363 niter = iter_stack[cur]; 7364 } 7365 7366 now = next; 7367 iter = niter; 7368 } 7369 7370 return 0; 7371 } 7372 netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7373 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7374 struct list_head **iter) 7375 { 7376 struct netdev_adjacent *lower; 7377 7378 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7379 if (&lower->list == &dev->adj_list.lower) 7380 return NULL; 7381 7382 *iter = &lower->list; 7383 7384 return lower->dev; 7385 } 7386 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7387 __netdev_upper_depth(struct net_device * dev)7388 static u8 __netdev_upper_depth(struct net_device *dev) 7389 { 7390 struct net_device *udev; 7391 struct list_head *iter; 7392 u8 max_depth = 0; 7393 bool ignore; 7394 7395 for (iter = &dev->adj_list.upper, 7396 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7397 udev; 7398 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7399 if (ignore) 7400 continue; 7401 if (max_depth < udev->upper_level) 7402 max_depth = udev->upper_level; 7403 } 7404 7405 return max_depth; 7406 } 7407 __netdev_lower_depth(struct net_device * dev)7408 static u8 __netdev_lower_depth(struct net_device *dev) 7409 { 7410 struct net_device *ldev; 7411 struct list_head *iter; 7412 u8 max_depth = 0; 7413 bool ignore; 7414 7415 for (iter = &dev->adj_list.lower, 7416 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7417 ldev; 7418 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7419 if (ignore) 7420 continue; 7421 if (max_depth < ldev->lower_level) 7422 max_depth = ldev->lower_level; 7423 } 7424 7425 return max_depth; 7426 } 7427 __netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7428 static int __netdev_update_upper_level(struct net_device *dev, 7429 struct netdev_nested_priv *__unused) 7430 { 7431 dev->upper_level = __netdev_upper_depth(dev) + 1; 7432 return 0; 7433 } 7434 7435 #ifdef CONFIG_LOCKDEP 7436 static LIST_HEAD(net_unlink_list); 7437 net_unlink_todo(struct net_device * dev)7438 static void net_unlink_todo(struct net_device *dev) 7439 { 7440 if (list_empty(&dev->unlink_list)) 7441 list_add_tail(&dev->unlink_list, &net_unlink_list); 7442 } 7443 #endif 7444 __netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7445 static int __netdev_update_lower_level(struct net_device *dev, 7446 struct netdev_nested_priv *priv) 7447 { 7448 dev->lower_level = __netdev_lower_depth(dev) + 1; 7449 7450 #ifdef CONFIG_LOCKDEP 7451 if (!priv) 7452 return 0; 7453 7454 if (priv->flags & NESTED_SYNC_IMM) 7455 dev->nested_level = dev->lower_level - 1; 7456 if (priv->flags & NESTED_SYNC_TODO) 7457 net_unlink_todo(dev); 7458 #endif 7459 return 0; 7460 } 7461 netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7462 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7463 int (*fn)(struct net_device *dev, 7464 struct netdev_nested_priv *priv), 7465 struct netdev_nested_priv *priv) 7466 { 7467 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7468 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7469 int ret, cur = 0; 7470 7471 now = dev; 7472 iter = &dev->adj_list.lower; 7473 7474 while (1) { 7475 if (now != dev) { 7476 ret = fn(now, priv); 7477 if (ret) 7478 return ret; 7479 } 7480 7481 next = NULL; 7482 while (1) { 7483 ldev = netdev_next_lower_dev_rcu(now, &iter); 7484 if (!ldev) 7485 break; 7486 7487 next = ldev; 7488 niter = &ldev->adj_list.lower; 7489 dev_stack[cur] = now; 7490 iter_stack[cur++] = iter; 7491 break; 7492 } 7493 7494 if (!next) { 7495 if (!cur) 7496 return 0; 7497 next = dev_stack[--cur]; 7498 niter = iter_stack[cur]; 7499 } 7500 7501 now = next; 7502 iter = niter; 7503 } 7504 7505 return 0; 7506 } 7507 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7508 7509 /** 7510 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7511 * lower neighbour list, RCU 7512 * variant 7513 * @dev: device 7514 * 7515 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7516 * list. The caller must hold RCU read lock. 7517 */ netdev_lower_get_first_private_rcu(struct net_device * dev)7518 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7519 { 7520 struct netdev_adjacent *lower; 7521 7522 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7523 struct netdev_adjacent, list); 7524 if (lower) 7525 return lower->private; 7526 return NULL; 7527 } 7528 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7529 7530 /** 7531 * netdev_master_upper_dev_get_rcu - Get master upper device 7532 * @dev: device 7533 * 7534 * Find a master upper device and return pointer to it or NULL in case 7535 * it's not there. The caller must hold the RCU read lock. 7536 */ netdev_master_upper_dev_get_rcu(struct net_device * dev)7537 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7538 { 7539 struct netdev_adjacent *upper; 7540 7541 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7542 struct netdev_adjacent, list); 7543 if (upper && likely(upper->master)) 7544 return upper->dev; 7545 return NULL; 7546 } 7547 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7548 netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7549 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7550 struct net_device *adj_dev, 7551 struct list_head *dev_list) 7552 { 7553 char linkname[IFNAMSIZ+7]; 7554 7555 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7556 "upper_%s" : "lower_%s", adj_dev->name); 7557 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7558 linkname); 7559 } netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7560 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7561 char *name, 7562 struct list_head *dev_list) 7563 { 7564 char linkname[IFNAMSIZ+7]; 7565 7566 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7567 "upper_%s" : "lower_%s", name); 7568 sysfs_remove_link(&(dev->dev.kobj), linkname); 7569 } 7570 netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7571 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7572 struct net_device *adj_dev, 7573 struct list_head *dev_list) 7574 { 7575 return (dev_list == &dev->adj_list.upper || 7576 dev_list == &dev->adj_list.lower) && 7577 net_eq(dev_net(dev), dev_net(adj_dev)); 7578 } 7579 __netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7580 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7581 struct net_device *adj_dev, 7582 struct list_head *dev_list, 7583 void *private, bool master) 7584 { 7585 struct netdev_adjacent *adj; 7586 int ret; 7587 7588 adj = __netdev_find_adj(adj_dev, dev_list); 7589 7590 if (adj) { 7591 adj->ref_nr += 1; 7592 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7593 dev->name, adj_dev->name, adj->ref_nr); 7594 7595 return 0; 7596 } 7597 7598 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7599 if (!adj) 7600 return -ENOMEM; 7601 7602 adj->dev = adj_dev; 7603 adj->master = master; 7604 adj->ref_nr = 1; 7605 adj->private = private; 7606 adj->ignore = false; 7607 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 7608 7609 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7610 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7611 7612 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7613 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7614 if (ret) 7615 goto free_adj; 7616 } 7617 7618 /* Ensure that master link is always the first item in list. */ 7619 if (master) { 7620 ret = sysfs_create_link(&(dev->dev.kobj), 7621 &(adj_dev->dev.kobj), "master"); 7622 if (ret) 7623 goto remove_symlinks; 7624 7625 list_add_rcu(&adj->list, dev_list); 7626 } else { 7627 list_add_tail_rcu(&adj->list, dev_list); 7628 } 7629 7630 return 0; 7631 7632 remove_symlinks: 7633 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7634 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7635 free_adj: 7636 netdev_put(adj_dev, &adj->dev_tracker); 7637 kfree(adj); 7638 7639 return ret; 7640 } 7641 __netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7642 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7643 struct net_device *adj_dev, 7644 u16 ref_nr, 7645 struct list_head *dev_list) 7646 { 7647 struct netdev_adjacent *adj; 7648 7649 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7650 dev->name, adj_dev->name, ref_nr); 7651 7652 adj = __netdev_find_adj(adj_dev, dev_list); 7653 7654 if (!adj) { 7655 pr_err("Adjacency does not exist for device %s from %s\n", 7656 dev->name, adj_dev->name); 7657 WARN_ON(1); 7658 return; 7659 } 7660 7661 if (adj->ref_nr > ref_nr) { 7662 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7663 dev->name, adj_dev->name, ref_nr, 7664 adj->ref_nr - ref_nr); 7665 adj->ref_nr -= ref_nr; 7666 return; 7667 } 7668 7669 if (adj->master) 7670 sysfs_remove_link(&(dev->dev.kobj), "master"); 7671 7672 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7673 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7674 7675 list_del_rcu(&adj->list); 7676 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7677 adj_dev->name, dev->name, adj_dev->name); 7678 netdev_put(adj_dev, &adj->dev_tracker); 7679 kfree_rcu(adj, rcu); 7680 } 7681 __netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7682 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7683 struct net_device *upper_dev, 7684 struct list_head *up_list, 7685 struct list_head *down_list, 7686 void *private, bool master) 7687 { 7688 int ret; 7689 7690 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7691 private, master); 7692 if (ret) 7693 return ret; 7694 7695 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7696 private, false); 7697 if (ret) { 7698 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7699 return ret; 7700 } 7701 7702 return 0; 7703 } 7704 __netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7705 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7706 struct net_device *upper_dev, 7707 u16 ref_nr, 7708 struct list_head *up_list, 7709 struct list_head *down_list) 7710 { 7711 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7712 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7713 } 7714 __netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7715 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7716 struct net_device *upper_dev, 7717 void *private, bool master) 7718 { 7719 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7720 &dev->adj_list.upper, 7721 &upper_dev->adj_list.lower, 7722 private, master); 7723 } 7724 __netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7725 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7726 struct net_device *upper_dev) 7727 { 7728 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7729 &dev->adj_list.upper, 7730 &upper_dev->adj_list.lower); 7731 } 7732 __netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)7733 static int __netdev_upper_dev_link(struct net_device *dev, 7734 struct net_device *upper_dev, bool master, 7735 void *upper_priv, void *upper_info, 7736 struct netdev_nested_priv *priv, 7737 struct netlink_ext_ack *extack) 7738 { 7739 struct netdev_notifier_changeupper_info changeupper_info = { 7740 .info = { 7741 .dev = dev, 7742 .extack = extack, 7743 }, 7744 .upper_dev = upper_dev, 7745 .master = master, 7746 .linking = true, 7747 .upper_info = upper_info, 7748 }; 7749 struct net_device *master_dev; 7750 int ret = 0; 7751 7752 ASSERT_RTNL(); 7753 7754 if (dev == upper_dev) 7755 return -EBUSY; 7756 7757 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7758 if (__netdev_has_upper_dev(upper_dev, dev)) 7759 return -EBUSY; 7760 7761 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7762 return -EMLINK; 7763 7764 if (!master) { 7765 if (__netdev_has_upper_dev(dev, upper_dev)) 7766 return -EEXIST; 7767 } else { 7768 master_dev = __netdev_master_upper_dev_get(dev); 7769 if (master_dev) 7770 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7771 } 7772 7773 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7774 &changeupper_info.info); 7775 ret = notifier_to_errno(ret); 7776 if (ret) 7777 return ret; 7778 7779 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7780 master); 7781 if (ret) 7782 return ret; 7783 7784 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7785 &changeupper_info.info); 7786 ret = notifier_to_errno(ret); 7787 if (ret) 7788 goto rollback; 7789 7790 __netdev_update_upper_level(dev, NULL); 7791 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7792 7793 __netdev_update_lower_level(upper_dev, priv); 7794 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7795 priv); 7796 7797 return 0; 7798 7799 rollback: 7800 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7801 7802 return ret; 7803 } 7804 7805 /** 7806 * netdev_upper_dev_link - Add a link to the upper device 7807 * @dev: device 7808 * @upper_dev: new upper device 7809 * @extack: netlink extended ack 7810 * 7811 * Adds a link to device which is upper to this one. The caller must hold 7812 * the RTNL lock. On a failure a negative errno code is returned. 7813 * On success the reference counts are adjusted and the function 7814 * returns zero. 7815 */ netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7816 int netdev_upper_dev_link(struct net_device *dev, 7817 struct net_device *upper_dev, 7818 struct netlink_ext_ack *extack) 7819 { 7820 struct netdev_nested_priv priv = { 7821 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7822 .data = NULL, 7823 }; 7824 7825 return __netdev_upper_dev_link(dev, upper_dev, false, 7826 NULL, NULL, &priv, extack); 7827 } 7828 EXPORT_SYMBOL(netdev_upper_dev_link); 7829 7830 /** 7831 * netdev_master_upper_dev_link - Add a master link to the upper device 7832 * @dev: device 7833 * @upper_dev: new upper device 7834 * @upper_priv: upper device private 7835 * @upper_info: upper info to be passed down via notifier 7836 * @extack: netlink extended ack 7837 * 7838 * Adds a link to device which is upper to this one. In this case, only 7839 * one master upper device can be linked, although other non-master devices 7840 * might be linked as well. The caller must hold the RTNL lock. 7841 * On a failure a negative errno code is returned. On success the reference 7842 * counts are adjusted and the function returns zero. 7843 */ netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7844 int netdev_master_upper_dev_link(struct net_device *dev, 7845 struct net_device *upper_dev, 7846 void *upper_priv, void *upper_info, 7847 struct netlink_ext_ack *extack) 7848 { 7849 struct netdev_nested_priv priv = { 7850 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7851 .data = NULL, 7852 }; 7853 7854 return __netdev_upper_dev_link(dev, upper_dev, true, 7855 upper_priv, upper_info, &priv, extack); 7856 } 7857 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7858 __netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)7859 static void __netdev_upper_dev_unlink(struct net_device *dev, 7860 struct net_device *upper_dev, 7861 struct netdev_nested_priv *priv) 7862 { 7863 struct netdev_notifier_changeupper_info changeupper_info = { 7864 .info = { 7865 .dev = dev, 7866 }, 7867 .upper_dev = upper_dev, 7868 .linking = false, 7869 }; 7870 7871 ASSERT_RTNL(); 7872 7873 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7874 7875 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7876 &changeupper_info.info); 7877 7878 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7879 7880 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7881 &changeupper_info.info); 7882 7883 __netdev_update_upper_level(dev, NULL); 7884 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7885 7886 __netdev_update_lower_level(upper_dev, priv); 7887 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7888 priv); 7889 } 7890 7891 /** 7892 * netdev_upper_dev_unlink - Removes a link to upper device 7893 * @dev: device 7894 * @upper_dev: new upper device 7895 * 7896 * Removes a link to device which is upper to this one. The caller must hold 7897 * the RTNL lock. 7898 */ netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)7899 void netdev_upper_dev_unlink(struct net_device *dev, 7900 struct net_device *upper_dev) 7901 { 7902 struct netdev_nested_priv priv = { 7903 .flags = NESTED_SYNC_TODO, 7904 .data = NULL, 7905 }; 7906 7907 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 7908 } 7909 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7910 __netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)7911 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7912 struct net_device *lower_dev, 7913 bool val) 7914 { 7915 struct netdev_adjacent *adj; 7916 7917 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7918 if (adj) 7919 adj->ignore = val; 7920 7921 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7922 if (adj) 7923 adj->ignore = val; 7924 } 7925 netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)7926 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7927 struct net_device *lower_dev) 7928 { 7929 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7930 } 7931 netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)7932 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7933 struct net_device *lower_dev) 7934 { 7935 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7936 } 7937 netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)7938 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7939 struct net_device *new_dev, 7940 struct net_device *dev, 7941 struct netlink_ext_ack *extack) 7942 { 7943 struct netdev_nested_priv priv = { 7944 .flags = 0, 7945 .data = NULL, 7946 }; 7947 int err; 7948 7949 if (!new_dev) 7950 return 0; 7951 7952 if (old_dev && new_dev != old_dev) 7953 netdev_adjacent_dev_disable(dev, old_dev); 7954 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 7955 extack); 7956 if (err) { 7957 if (old_dev && new_dev != old_dev) 7958 netdev_adjacent_dev_enable(dev, old_dev); 7959 return err; 7960 } 7961 7962 return 0; 7963 } 7964 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 7965 netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)7966 void netdev_adjacent_change_commit(struct net_device *old_dev, 7967 struct net_device *new_dev, 7968 struct net_device *dev) 7969 { 7970 struct netdev_nested_priv priv = { 7971 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7972 .data = NULL, 7973 }; 7974 7975 if (!new_dev || !old_dev) 7976 return; 7977 7978 if (new_dev == old_dev) 7979 return; 7980 7981 netdev_adjacent_dev_enable(dev, old_dev); 7982 __netdev_upper_dev_unlink(old_dev, dev, &priv); 7983 } 7984 EXPORT_SYMBOL(netdev_adjacent_change_commit); 7985 netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)7986 void netdev_adjacent_change_abort(struct net_device *old_dev, 7987 struct net_device *new_dev, 7988 struct net_device *dev) 7989 { 7990 struct netdev_nested_priv priv = { 7991 .flags = 0, 7992 .data = NULL, 7993 }; 7994 7995 if (!new_dev) 7996 return; 7997 7998 if (old_dev && new_dev != old_dev) 7999 netdev_adjacent_dev_enable(dev, old_dev); 8000 8001 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8002 } 8003 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8004 8005 /** 8006 * netdev_bonding_info_change - Dispatch event about slave change 8007 * @dev: device 8008 * @bonding_info: info to dispatch 8009 * 8010 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8011 * The caller must hold the RTNL lock. 8012 */ netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8013 void netdev_bonding_info_change(struct net_device *dev, 8014 struct netdev_bonding_info *bonding_info) 8015 { 8016 struct netdev_notifier_bonding_info info = { 8017 .info.dev = dev, 8018 }; 8019 8020 memcpy(&info.bonding_info, bonding_info, 8021 sizeof(struct netdev_bonding_info)); 8022 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8023 &info.info); 8024 } 8025 EXPORT_SYMBOL(netdev_bonding_info_change); 8026 netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)8027 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 8028 struct netlink_ext_ack *extack) 8029 { 8030 struct netdev_notifier_offload_xstats_info info = { 8031 .info.dev = dev, 8032 .info.extack = extack, 8033 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8034 }; 8035 int err; 8036 int rc; 8037 8038 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 8039 GFP_KERNEL); 8040 if (!dev->offload_xstats_l3) 8041 return -ENOMEM; 8042 8043 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 8044 NETDEV_OFFLOAD_XSTATS_DISABLE, 8045 &info.info); 8046 err = notifier_to_errno(rc); 8047 if (err) 8048 goto free_stats; 8049 8050 return 0; 8051 8052 free_stats: 8053 kfree(dev->offload_xstats_l3); 8054 dev->offload_xstats_l3 = NULL; 8055 return err; 8056 } 8057 netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)8058 int netdev_offload_xstats_enable(struct net_device *dev, 8059 enum netdev_offload_xstats_type type, 8060 struct netlink_ext_ack *extack) 8061 { 8062 ASSERT_RTNL(); 8063 8064 if (netdev_offload_xstats_enabled(dev, type)) 8065 return -EALREADY; 8066 8067 switch (type) { 8068 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8069 return netdev_offload_xstats_enable_l3(dev, extack); 8070 } 8071 8072 WARN_ON(1); 8073 return -EINVAL; 8074 } 8075 EXPORT_SYMBOL(netdev_offload_xstats_enable); 8076 netdev_offload_xstats_disable_l3(struct net_device * dev)8077 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 8078 { 8079 struct netdev_notifier_offload_xstats_info info = { 8080 .info.dev = dev, 8081 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8082 }; 8083 8084 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 8085 &info.info); 8086 kfree(dev->offload_xstats_l3); 8087 dev->offload_xstats_l3 = NULL; 8088 } 8089 netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)8090 int netdev_offload_xstats_disable(struct net_device *dev, 8091 enum netdev_offload_xstats_type type) 8092 { 8093 ASSERT_RTNL(); 8094 8095 if (!netdev_offload_xstats_enabled(dev, type)) 8096 return -EALREADY; 8097 8098 switch (type) { 8099 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8100 netdev_offload_xstats_disable_l3(dev); 8101 return 0; 8102 } 8103 8104 WARN_ON(1); 8105 return -EINVAL; 8106 } 8107 EXPORT_SYMBOL(netdev_offload_xstats_disable); 8108 netdev_offload_xstats_disable_all(struct net_device * dev)8109 static void netdev_offload_xstats_disable_all(struct net_device *dev) 8110 { 8111 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 8112 } 8113 8114 static struct rtnl_hw_stats64 * netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)8115 netdev_offload_xstats_get_ptr(const struct net_device *dev, 8116 enum netdev_offload_xstats_type type) 8117 { 8118 switch (type) { 8119 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8120 return dev->offload_xstats_l3; 8121 } 8122 8123 WARN_ON(1); 8124 return NULL; 8125 } 8126 netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)8127 bool netdev_offload_xstats_enabled(const struct net_device *dev, 8128 enum netdev_offload_xstats_type type) 8129 { 8130 ASSERT_RTNL(); 8131 8132 return netdev_offload_xstats_get_ptr(dev, type); 8133 } 8134 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 8135 8136 struct netdev_notifier_offload_xstats_ru { 8137 bool used; 8138 }; 8139 8140 struct netdev_notifier_offload_xstats_rd { 8141 struct rtnl_hw_stats64 stats; 8142 bool used; 8143 }; 8144 netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)8145 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 8146 const struct rtnl_hw_stats64 *src) 8147 { 8148 dest->rx_packets += src->rx_packets; 8149 dest->tx_packets += src->tx_packets; 8150 dest->rx_bytes += src->rx_bytes; 8151 dest->tx_bytes += src->tx_bytes; 8152 dest->rx_errors += src->rx_errors; 8153 dest->tx_errors += src->tx_errors; 8154 dest->rx_dropped += src->rx_dropped; 8155 dest->tx_dropped += src->tx_dropped; 8156 dest->multicast += src->multicast; 8157 } 8158 netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)8159 static int netdev_offload_xstats_get_used(struct net_device *dev, 8160 enum netdev_offload_xstats_type type, 8161 bool *p_used, 8162 struct netlink_ext_ack *extack) 8163 { 8164 struct netdev_notifier_offload_xstats_ru report_used = {}; 8165 struct netdev_notifier_offload_xstats_info info = { 8166 .info.dev = dev, 8167 .info.extack = extack, 8168 .type = type, 8169 .report_used = &report_used, 8170 }; 8171 int rc; 8172 8173 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 8174 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 8175 &info.info); 8176 *p_used = report_used.used; 8177 return notifier_to_errno(rc); 8178 } 8179 netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8180 static int netdev_offload_xstats_get_stats(struct net_device *dev, 8181 enum netdev_offload_xstats_type type, 8182 struct rtnl_hw_stats64 *p_stats, 8183 bool *p_used, 8184 struct netlink_ext_ack *extack) 8185 { 8186 struct netdev_notifier_offload_xstats_rd report_delta = {}; 8187 struct netdev_notifier_offload_xstats_info info = { 8188 .info.dev = dev, 8189 .info.extack = extack, 8190 .type = type, 8191 .report_delta = &report_delta, 8192 }; 8193 struct rtnl_hw_stats64 *stats; 8194 int rc; 8195 8196 stats = netdev_offload_xstats_get_ptr(dev, type); 8197 if (WARN_ON(!stats)) 8198 return -EINVAL; 8199 8200 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 8201 &info.info); 8202 8203 /* Cache whatever we got, even if there was an error, otherwise the 8204 * successful stats retrievals would get lost. 8205 */ 8206 netdev_hw_stats64_add(stats, &report_delta.stats); 8207 8208 if (p_stats) 8209 *p_stats = *stats; 8210 *p_used = report_delta.used; 8211 8212 return notifier_to_errno(rc); 8213 } 8214 netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8215 int netdev_offload_xstats_get(struct net_device *dev, 8216 enum netdev_offload_xstats_type type, 8217 struct rtnl_hw_stats64 *p_stats, bool *p_used, 8218 struct netlink_ext_ack *extack) 8219 { 8220 ASSERT_RTNL(); 8221 8222 if (p_stats) 8223 return netdev_offload_xstats_get_stats(dev, type, p_stats, 8224 p_used, extack); 8225 else 8226 return netdev_offload_xstats_get_used(dev, type, p_used, 8227 extack); 8228 } 8229 EXPORT_SYMBOL(netdev_offload_xstats_get); 8230 8231 void netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)8232 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 8233 const struct rtnl_hw_stats64 *stats) 8234 { 8235 report_delta->used = true; 8236 netdev_hw_stats64_add(&report_delta->stats, stats); 8237 } 8238 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 8239 8240 void netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)8241 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 8242 { 8243 report_used->used = true; 8244 } 8245 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 8246 netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)8247 void netdev_offload_xstats_push_delta(struct net_device *dev, 8248 enum netdev_offload_xstats_type type, 8249 const struct rtnl_hw_stats64 *p_stats) 8250 { 8251 struct rtnl_hw_stats64 *stats; 8252 8253 ASSERT_RTNL(); 8254 8255 stats = netdev_offload_xstats_get_ptr(dev, type); 8256 if (WARN_ON(!stats)) 8257 return; 8258 8259 netdev_hw_stats64_add(stats, p_stats); 8260 } 8261 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 8262 8263 /** 8264 * netdev_get_xmit_slave - Get the xmit slave of master device 8265 * @dev: device 8266 * @skb: The packet 8267 * @all_slaves: assume all the slaves are active 8268 * 8269 * The reference counters are not incremented so the caller must be 8270 * careful with locks. The caller must hold RCU lock. 8271 * %NULL is returned if no slave is found. 8272 */ 8273 netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8274 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8275 struct sk_buff *skb, 8276 bool all_slaves) 8277 { 8278 const struct net_device_ops *ops = dev->netdev_ops; 8279 8280 if (!ops->ndo_get_xmit_slave) 8281 return NULL; 8282 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8283 } 8284 EXPORT_SYMBOL(netdev_get_xmit_slave); 8285 netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)8286 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8287 struct sock *sk) 8288 { 8289 const struct net_device_ops *ops = dev->netdev_ops; 8290 8291 if (!ops->ndo_sk_get_lower_dev) 8292 return NULL; 8293 return ops->ndo_sk_get_lower_dev(dev, sk); 8294 } 8295 8296 /** 8297 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8298 * @dev: device 8299 * @sk: the socket 8300 * 8301 * %NULL is returned if no lower device is found. 8302 */ 8303 netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)8304 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8305 struct sock *sk) 8306 { 8307 struct net_device *lower; 8308 8309 lower = netdev_sk_get_lower_dev(dev, sk); 8310 while (lower) { 8311 dev = lower; 8312 lower = netdev_sk_get_lower_dev(dev, sk); 8313 } 8314 8315 return dev; 8316 } 8317 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8318 netdev_adjacent_add_links(struct net_device * dev)8319 static void netdev_adjacent_add_links(struct net_device *dev) 8320 { 8321 struct netdev_adjacent *iter; 8322 8323 struct net *net = dev_net(dev); 8324 8325 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8326 if (!net_eq(net, dev_net(iter->dev))) 8327 continue; 8328 netdev_adjacent_sysfs_add(iter->dev, dev, 8329 &iter->dev->adj_list.lower); 8330 netdev_adjacent_sysfs_add(dev, iter->dev, 8331 &dev->adj_list.upper); 8332 } 8333 8334 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8335 if (!net_eq(net, dev_net(iter->dev))) 8336 continue; 8337 netdev_adjacent_sysfs_add(iter->dev, dev, 8338 &iter->dev->adj_list.upper); 8339 netdev_adjacent_sysfs_add(dev, iter->dev, 8340 &dev->adj_list.lower); 8341 } 8342 } 8343 netdev_adjacent_del_links(struct net_device * dev)8344 static void netdev_adjacent_del_links(struct net_device *dev) 8345 { 8346 struct netdev_adjacent *iter; 8347 8348 struct net *net = dev_net(dev); 8349 8350 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8351 if (!net_eq(net, dev_net(iter->dev))) 8352 continue; 8353 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8354 &iter->dev->adj_list.lower); 8355 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8356 &dev->adj_list.upper); 8357 } 8358 8359 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8360 if (!net_eq(net, dev_net(iter->dev))) 8361 continue; 8362 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8363 &iter->dev->adj_list.upper); 8364 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8365 &dev->adj_list.lower); 8366 } 8367 } 8368 netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8369 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8370 { 8371 struct netdev_adjacent *iter; 8372 8373 struct net *net = dev_net(dev); 8374 8375 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8376 if (!net_eq(net, dev_net(iter->dev))) 8377 continue; 8378 netdev_adjacent_sysfs_del(iter->dev, oldname, 8379 &iter->dev->adj_list.lower); 8380 netdev_adjacent_sysfs_add(iter->dev, dev, 8381 &iter->dev->adj_list.lower); 8382 } 8383 8384 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8385 if (!net_eq(net, dev_net(iter->dev))) 8386 continue; 8387 netdev_adjacent_sysfs_del(iter->dev, oldname, 8388 &iter->dev->adj_list.upper); 8389 netdev_adjacent_sysfs_add(iter->dev, dev, 8390 &iter->dev->adj_list.upper); 8391 } 8392 } 8393 netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8394 void *netdev_lower_dev_get_private(struct net_device *dev, 8395 struct net_device *lower_dev) 8396 { 8397 struct netdev_adjacent *lower; 8398 8399 if (!lower_dev) 8400 return NULL; 8401 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8402 if (!lower) 8403 return NULL; 8404 8405 return lower->private; 8406 } 8407 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8408 8409 8410 /** 8411 * netdev_lower_state_changed - Dispatch event about lower device state change 8412 * @lower_dev: device 8413 * @lower_state_info: state to dispatch 8414 * 8415 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8416 * The caller must hold the RTNL lock. 8417 */ netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8418 void netdev_lower_state_changed(struct net_device *lower_dev, 8419 void *lower_state_info) 8420 { 8421 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8422 .info.dev = lower_dev, 8423 }; 8424 8425 ASSERT_RTNL(); 8426 changelowerstate_info.lower_state_info = lower_state_info; 8427 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8428 &changelowerstate_info.info); 8429 } 8430 EXPORT_SYMBOL(netdev_lower_state_changed); 8431 dev_change_rx_flags(struct net_device * dev,int flags)8432 static void dev_change_rx_flags(struct net_device *dev, int flags) 8433 { 8434 const struct net_device_ops *ops = dev->netdev_ops; 8435 8436 if (ops->ndo_change_rx_flags) 8437 ops->ndo_change_rx_flags(dev, flags); 8438 } 8439 __dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8440 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8441 { 8442 unsigned int old_flags = dev->flags; 8443 kuid_t uid; 8444 kgid_t gid; 8445 8446 ASSERT_RTNL(); 8447 8448 dev->flags |= IFF_PROMISC; 8449 dev->promiscuity += inc; 8450 if (dev->promiscuity == 0) { 8451 /* 8452 * Avoid overflow. 8453 * If inc causes overflow, untouch promisc and return error. 8454 */ 8455 if (inc < 0) 8456 dev->flags &= ~IFF_PROMISC; 8457 else { 8458 dev->promiscuity -= inc; 8459 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 8460 return -EOVERFLOW; 8461 } 8462 } 8463 if (dev->flags != old_flags) { 8464 netdev_info(dev, "%s promiscuous mode\n", 8465 dev->flags & IFF_PROMISC ? "entered" : "left"); 8466 if (audit_enabled) { 8467 current_uid_gid(&uid, &gid); 8468 audit_log(audit_context(), GFP_ATOMIC, 8469 AUDIT_ANOM_PROMISCUOUS, 8470 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8471 dev->name, (dev->flags & IFF_PROMISC), 8472 (old_flags & IFF_PROMISC), 8473 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8474 from_kuid(&init_user_ns, uid), 8475 from_kgid(&init_user_ns, gid), 8476 audit_get_sessionid(current)); 8477 } 8478 8479 dev_change_rx_flags(dev, IFF_PROMISC); 8480 } 8481 if (notify) 8482 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 8483 return 0; 8484 } 8485 8486 /** 8487 * dev_set_promiscuity - update promiscuity count on a device 8488 * @dev: device 8489 * @inc: modifier 8490 * 8491 * Add or remove promiscuity from a device. While the count in the device 8492 * remains above zero the interface remains promiscuous. Once it hits zero 8493 * the device reverts back to normal filtering operation. A negative inc 8494 * value is used to drop promiscuity on the device. 8495 * Return 0 if successful or a negative errno code on error. 8496 */ dev_set_promiscuity(struct net_device * dev,int inc)8497 int dev_set_promiscuity(struct net_device *dev, int inc) 8498 { 8499 unsigned int old_flags = dev->flags; 8500 int err; 8501 8502 err = __dev_set_promiscuity(dev, inc, true); 8503 if (err < 0) 8504 return err; 8505 if (dev->flags != old_flags) 8506 dev_set_rx_mode(dev); 8507 return err; 8508 } 8509 EXPORT_SYMBOL(dev_set_promiscuity); 8510 __dev_set_allmulti(struct net_device * dev,int inc,bool notify)8511 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8512 { 8513 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8514 8515 ASSERT_RTNL(); 8516 8517 dev->flags |= IFF_ALLMULTI; 8518 dev->allmulti += inc; 8519 if (dev->allmulti == 0) { 8520 /* 8521 * Avoid overflow. 8522 * If inc causes overflow, untouch allmulti and return error. 8523 */ 8524 if (inc < 0) 8525 dev->flags &= ~IFF_ALLMULTI; 8526 else { 8527 dev->allmulti -= inc; 8528 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 8529 return -EOVERFLOW; 8530 } 8531 } 8532 if (dev->flags ^ old_flags) { 8533 netdev_info(dev, "%s allmulticast mode\n", 8534 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 8535 dev_change_rx_flags(dev, IFF_ALLMULTI); 8536 dev_set_rx_mode(dev); 8537 if (notify) 8538 __dev_notify_flags(dev, old_flags, 8539 dev->gflags ^ old_gflags, 0, NULL); 8540 } 8541 return 0; 8542 } 8543 8544 /** 8545 * dev_set_allmulti - update allmulti count on a device 8546 * @dev: device 8547 * @inc: modifier 8548 * 8549 * Add or remove reception of all multicast frames to a device. While the 8550 * count in the device remains above zero the interface remains listening 8551 * to all interfaces. Once it hits zero the device reverts back to normal 8552 * filtering operation. A negative @inc value is used to drop the counter 8553 * when releasing a resource needing all multicasts. 8554 * Return 0 if successful or a negative errno code on error. 8555 */ 8556 dev_set_allmulti(struct net_device * dev,int inc)8557 int dev_set_allmulti(struct net_device *dev, int inc) 8558 { 8559 return __dev_set_allmulti(dev, inc, true); 8560 } 8561 EXPORT_SYMBOL(dev_set_allmulti); 8562 8563 /* 8564 * Upload unicast and multicast address lists to device and 8565 * configure RX filtering. When the device doesn't support unicast 8566 * filtering it is put in promiscuous mode while unicast addresses 8567 * are present. 8568 */ __dev_set_rx_mode(struct net_device * dev)8569 void __dev_set_rx_mode(struct net_device *dev) 8570 { 8571 const struct net_device_ops *ops = dev->netdev_ops; 8572 8573 /* dev_open will call this function so the list will stay sane. */ 8574 if (!(dev->flags&IFF_UP)) 8575 return; 8576 8577 if (!netif_device_present(dev)) 8578 return; 8579 8580 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8581 /* Unicast addresses changes may only happen under the rtnl, 8582 * therefore calling __dev_set_promiscuity here is safe. 8583 */ 8584 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8585 __dev_set_promiscuity(dev, 1, false); 8586 dev->uc_promisc = true; 8587 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8588 __dev_set_promiscuity(dev, -1, false); 8589 dev->uc_promisc = false; 8590 } 8591 } 8592 8593 if (ops->ndo_set_rx_mode) 8594 ops->ndo_set_rx_mode(dev); 8595 } 8596 dev_set_rx_mode(struct net_device * dev)8597 void dev_set_rx_mode(struct net_device *dev) 8598 { 8599 netif_addr_lock_bh(dev); 8600 __dev_set_rx_mode(dev); 8601 netif_addr_unlock_bh(dev); 8602 } 8603 8604 /** 8605 * dev_get_flags - get flags reported to userspace 8606 * @dev: device 8607 * 8608 * Get the combination of flag bits exported through APIs to userspace. 8609 */ dev_get_flags(const struct net_device * dev)8610 unsigned int dev_get_flags(const struct net_device *dev) 8611 { 8612 unsigned int flags; 8613 8614 flags = (dev->flags & ~(IFF_PROMISC | 8615 IFF_ALLMULTI | 8616 IFF_RUNNING | 8617 IFF_LOWER_UP | 8618 IFF_DORMANT)) | 8619 (dev->gflags & (IFF_PROMISC | 8620 IFF_ALLMULTI)); 8621 8622 if (netif_running(dev)) { 8623 if (netif_oper_up(dev)) 8624 flags |= IFF_RUNNING; 8625 if (netif_carrier_ok(dev)) 8626 flags |= IFF_LOWER_UP; 8627 if (netif_dormant(dev)) 8628 flags |= IFF_DORMANT; 8629 } 8630 8631 return flags; 8632 } 8633 EXPORT_SYMBOL(dev_get_flags); 8634 __dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8635 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8636 struct netlink_ext_ack *extack) 8637 { 8638 unsigned int old_flags = dev->flags; 8639 int ret; 8640 8641 ASSERT_RTNL(); 8642 8643 /* 8644 * Set the flags on our device. 8645 */ 8646 8647 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8648 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8649 IFF_AUTOMEDIA)) | 8650 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8651 IFF_ALLMULTI)); 8652 8653 /* 8654 * Load in the correct multicast list now the flags have changed. 8655 */ 8656 8657 if ((old_flags ^ flags) & IFF_MULTICAST) 8658 dev_change_rx_flags(dev, IFF_MULTICAST); 8659 8660 dev_set_rx_mode(dev); 8661 8662 /* 8663 * Have we downed the interface. We handle IFF_UP ourselves 8664 * according to user attempts to set it, rather than blindly 8665 * setting it. 8666 */ 8667 8668 ret = 0; 8669 if ((old_flags ^ flags) & IFF_UP) { 8670 if (old_flags & IFF_UP) 8671 __dev_close(dev); 8672 else 8673 ret = __dev_open(dev, extack); 8674 } 8675 8676 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8677 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8678 unsigned int old_flags = dev->flags; 8679 8680 dev->gflags ^= IFF_PROMISC; 8681 8682 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8683 if (dev->flags != old_flags) 8684 dev_set_rx_mode(dev); 8685 } 8686 8687 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8688 * is important. Some (broken) drivers set IFF_PROMISC, when 8689 * IFF_ALLMULTI is requested not asking us and not reporting. 8690 */ 8691 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8692 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8693 8694 dev->gflags ^= IFF_ALLMULTI; 8695 __dev_set_allmulti(dev, inc, false); 8696 } 8697 8698 return ret; 8699 } 8700 __dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)8701 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8702 unsigned int gchanges, u32 portid, 8703 const struct nlmsghdr *nlh) 8704 { 8705 unsigned int changes = dev->flags ^ old_flags; 8706 8707 if (gchanges) 8708 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 8709 8710 if (changes & IFF_UP) { 8711 if (dev->flags & IFF_UP) 8712 call_netdevice_notifiers(NETDEV_UP, dev); 8713 else 8714 call_netdevice_notifiers(NETDEV_DOWN, dev); 8715 } 8716 8717 if (dev->flags & IFF_UP && 8718 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8719 struct netdev_notifier_change_info change_info = { 8720 .info = { 8721 .dev = dev, 8722 }, 8723 .flags_changed = changes, 8724 }; 8725 8726 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8727 } 8728 } 8729 8730 /** 8731 * dev_change_flags - change device settings 8732 * @dev: device 8733 * @flags: device state flags 8734 * @extack: netlink extended ack 8735 * 8736 * Change settings on device based state flags. The flags are 8737 * in the userspace exported format. 8738 */ dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8739 int dev_change_flags(struct net_device *dev, unsigned int flags, 8740 struct netlink_ext_ack *extack) 8741 { 8742 int ret; 8743 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8744 8745 ret = __dev_change_flags(dev, flags, extack); 8746 if (ret < 0) 8747 return ret; 8748 8749 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8750 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 8751 return ret; 8752 } 8753 EXPORT_SYMBOL(dev_change_flags); 8754 __dev_set_mtu(struct net_device * dev,int new_mtu)8755 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8756 { 8757 const struct net_device_ops *ops = dev->netdev_ops; 8758 8759 if (ops->ndo_change_mtu) 8760 return ops->ndo_change_mtu(dev, new_mtu); 8761 8762 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8763 WRITE_ONCE(dev->mtu, new_mtu); 8764 return 0; 8765 } 8766 EXPORT_SYMBOL(__dev_set_mtu); 8767 dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8768 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8769 struct netlink_ext_ack *extack) 8770 { 8771 /* MTU must be positive, and in range */ 8772 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8773 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8774 return -EINVAL; 8775 } 8776 8777 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8778 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8779 return -EINVAL; 8780 } 8781 return 0; 8782 } 8783 8784 /** 8785 * dev_set_mtu_ext - Change maximum transfer unit 8786 * @dev: device 8787 * @new_mtu: new transfer unit 8788 * @extack: netlink extended ack 8789 * 8790 * Change the maximum transfer size of the network device. 8791 */ dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8792 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8793 struct netlink_ext_ack *extack) 8794 { 8795 int err, orig_mtu; 8796 8797 if (new_mtu == dev->mtu) 8798 return 0; 8799 8800 err = dev_validate_mtu(dev, new_mtu, extack); 8801 if (err) 8802 return err; 8803 8804 if (!netif_device_present(dev)) 8805 return -ENODEV; 8806 8807 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8808 err = notifier_to_errno(err); 8809 if (err) 8810 return err; 8811 8812 orig_mtu = dev->mtu; 8813 err = __dev_set_mtu(dev, new_mtu); 8814 8815 if (!err) { 8816 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8817 orig_mtu); 8818 err = notifier_to_errno(err); 8819 if (err) { 8820 /* setting mtu back and notifying everyone again, 8821 * so that they have a chance to revert changes. 8822 */ 8823 __dev_set_mtu(dev, orig_mtu); 8824 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8825 new_mtu); 8826 } 8827 } 8828 return err; 8829 } 8830 dev_set_mtu(struct net_device * dev,int new_mtu)8831 int dev_set_mtu(struct net_device *dev, int new_mtu) 8832 { 8833 struct netlink_ext_ack extack; 8834 int err; 8835 8836 memset(&extack, 0, sizeof(extack)); 8837 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8838 if (err && extack._msg) 8839 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8840 return err; 8841 } 8842 EXPORT_SYMBOL(dev_set_mtu); 8843 8844 /** 8845 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8846 * @dev: device 8847 * @new_len: new tx queue length 8848 */ dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)8849 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8850 { 8851 unsigned int orig_len = dev->tx_queue_len; 8852 int res; 8853 8854 if (new_len != (unsigned int)new_len) 8855 return -ERANGE; 8856 8857 if (new_len != orig_len) { 8858 dev->tx_queue_len = new_len; 8859 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8860 res = notifier_to_errno(res); 8861 if (res) 8862 goto err_rollback; 8863 res = dev_qdisc_change_tx_queue_len(dev); 8864 if (res) 8865 goto err_rollback; 8866 } 8867 8868 return 0; 8869 8870 err_rollback: 8871 netdev_err(dev, "refused to change device tx_queue_len\n"); 8872 dev->tx_queue_len = orig_len; 8873 return res; 8874 } 8875 8876 /** 8877 * dev_set_group - Change group this device belongs to 8878 * @dev: device 8879 * @new_group: group this device should belong to 8880 */ dev_set_group(struct net_device * dev,int new_group)8881 void dev_set_group(struct net_device *dev, int new_group) 8882 { 8883 dev->group = new_group; 8884 } 8885 8886 /** 8887 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8888 * @dev: device 8889 * @addr: new address 8890 * @extack: netlink extended ack 8891 */ dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)8892 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8893 struct netlink_ext_ack *extack) 8894 { 8895 struct netdev_notifier_pre_changeaddr_info info = { 8896 .info.dev = dev, 8897 .info.extack = extack, 8898 .dev_addr = addr, 8899 }; 8900 int rc; 8901 8902 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8903 return notifier_to_errno(rc); 8904 } 8905 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8906 8907 /** 8908 * dev_set_mac_address - Change Media Access Control Address 8909 * @dev: device 8910 * @sa: new address 8911 * @extack: netlink extended ack 8912 * 8913 * Change the hardware (MAC) address of the device 8914 */ dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8915 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8916 struct netlink_ext_ack *extack) 8917 { 8918 const struct net_device_ops *ops = dev->netdev_ops; 8919 int err; 8920 8921 if (!ops->ndo_set_mac_address) 8922 return -EOPNOTSUPP; 8923 if (sa->sa_family != dev->type) 8924 return -EINVAL; 8925 if (!netif_device_present(dev)) 8926 return -ENODEV; 8927 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8928 if (err) 8929 return err; 8930 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) { 8931 err = ops->ndo_set_mac_address(dev, sa); 8932 if (err) 8933 return err; 8934 } 8935 dev->addr_assign_type = NET_ADDR_SET; 8936 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8937 add_device_randomness(dev->dev_addr, dev->addr_len); 8938 return 0; 8939 } 8940 EXPORT_SYMBOL(dev_set_mac_address); 8941 8942 static DECLARE_RWSEM(dev_addr_sem); 8943 dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8944 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 8945 struct netlink_ext_ack *extack) 8946 { 8947 int ret; 8948 8949 down_write(&dev_addr_sem); 8950 ret = dev_set_mac_address(dev, sa, extack); 8951 up_write(&dev_addr_sem); 8952 return ret; 8953 } 8954 EXPORT_SYMBOL(dev_set_mac_address_user); 8955 dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)8956 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 8957 { 8958 size_t size = sizeof(sa->sa_data_min); 8959 struct net_device *dev; 8960 int ret = 0; 8961 8962 down_read(&dev_addr_sem); 8963 rcu_read_lock(); 8964 8965 dev = dev_get_by_name_rcu(net, dev_name); 8966 if (!dev) { 8967 ret = -ENODEV; 8968 goto unlock; 8969 } 8970 if (!dev->addr_len) 8971 memset(sa->sa_data, 0, size); 8972 else 8973 memcpy(sa->sa_data, dev->dev_addr, 8974 min_t(size_t, size, dev->addr_len)); 8975 sa->sa_family = dev->type; 8976 8977 unlock: 8978 rcu_read_unlock(); 8979 up_read(&dev_addr_sem); 8980 return ret; 8981 } 8982 EXPORT_SYMBOL(dev_get_mac_address); 8983 8984 /** 8985 * dev_change_carrier - Change device carrier 8986 * @dev: device 8987 * @new_carrier: new value 8988 * 8989 * Change device carrier 8990 */ dev_change_carrier(struct net_device * dev,bool new_carrier)8991 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8992 { 8993 const struct net_device_ops *ops = dev->netdev_ops; 8994 8995 if (!ops->ndo_change_carrier) 8996 return -EOPNOTSUPP; 8997 if (!netif_device_present(dev)) 8998 return -ENODEV; 8999 return ops->ndo_change_carrier(dev, new_carrier); 9000 } 9001 9002 /** 9003 * dev_get_phys_port_id - Get device physical port ID 9004 * @dev: device 9005 * @ppid: port ID 9006 * 9007 * Get device physical port ID 9008 */ dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)9009 int dev_get_phys_port_id(struct net_device *dev, 9010 struct netdev_phys_item_id *ppid) 9011 { 9012 const struct net_device_ops *ops = dev->netdev_ops; 9013 9014 if (!ops->ndo_get_phys_port_id) 9015 return -EOPNOTSUPP; 9016 return ops->ndo_get_phys_port_id(dev, ppid); 9017 } 9018 9019 /** 9020 * dev_get_phys_port_name - Get device physical port name 9021 * @dev: device 9022 * @name: port name 9023 * @len: limit of bytes to copy to name 9024 * 9025 * Get device physical port name 9026 */ dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)9027 int dev_get_phys_port_name(struct net_device *dev, 9028 char *name, size_t len) 9029 { 9030 const struct net_device_ops *ops = dev->netdev_ops; 9031 int err; 9032 9033 if (ops->ndo_get_phys_port_name) { 9034 err = ops->ndo_get_phys_port_name(dev, name, len); 9035 if (err != -EOPNOTSUPP) 9036 return err; 9037 } 9038 return devlink_compat_phys_port_name_get(dev, name, len); 9039 } 9040 9041 /** 9042 * dev_get_port_parent_id - Get the device's port parent identifier 9043 * @dev: network device 9044 * @ppid: pointer to a storage for the port's parent identifier 9045 * @recurse: allow/disallow recursion to lower devices 9046 * 9047 * Get the devices's port parent identifier 9048 */ dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9049 int dev_get_port_parent_id(struct net_device *dev, 9050 struct netdev_phys_item_id *ppid, 9051 bool recurse) 9052 { 9053 const struct net_device_ops *ops = dev->netdev_ops; 9054 struct netdev_phys_item_id first = { }; 9055 struct net_device *lower_dev; 9056 struct list_head *iter; 9057 int err; 9058 9059 if (ops->ndo_get_port_parent_id) { 9060 err = ops->ndo_get_port_parent_id(dev, ppid); 9061 if (err != -EOPNOTSUPP) 9062 return err; 9063 } 9064 9065 err = devlink_compat_switch_id_get(dev, ppid); 9066 if (!recurse || err != -EOPNOTSUPP) 9067 return err; 9068 9069 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9070 err = dev_get_port_parent_id(lower_dev, ppid, true); 9071 if (err) 9072 break; 9073 if (!first.id_len) 9074 first = *ppid; 9075 else if (memcmp(&first, ppid, sizeof(*ppid))) 9076 return -EOPNOTSUPP; 9077 } 9078 9079 return err; 9080 } 9081 EXPORT_SYMBOL(dev_get_port_parent_id); 9082 9083 /** 9084 * netdev_port_same_parent_id - Indicate if two network devices have 9085 * the same port parent identifier 9086 * @a: first network device 9087 * @b: second network device 9088 */ netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9089 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9090 { 9091 struct netdev_phys_item_id a_id = { }; 9092 struct netdev_phys_item_id b_id = { }; 9093 9094 if (dev_get_port_parent_id(a, &a_id, true) || 9095 dev_get_port_parent_id(b, &b_id, true)) 9096 return false; 9097 9098 return netdev_phys_item_id_same(&a_id, &b_id); 9099 } 9100 EXPORT_SYMBOL(netdev_port_same_parent_id); 9101 9102 /** 9103 * dev_change_proto_down - set carrier according to proto_down. 9104 * 9105 * @dev: device 9106 * @proto_down: new value 9107 */ dev_change_proto_down(struct net_device * dev,bool proto_down)9108 int dev_change_proto_down(struct net_device *dev, bool proto_down) 9109 { 9110 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN)) 9111 return -EOPNOTSUPP; 9112 if (!netif_device_present(dev)) 9113 return -ENODEV; 9114 if (proto_down) 9115 netif_carrier_off(dev); 9116 else 9117 netif_carrier_on(dev); 9118 dev->proto_down = proto_down; 9119 return 0; 9120 } 9121 9122 /** 9123 * dev_change_proto_down_reason - proto down reason 9124 * 9125 * @dev: device 9126 * @mask: proto down mask 9127 * @value: proto down value 9128 */ dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)9129 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 9130 u32 value) 9131 { 9132 int b; 9133 9134 if (!mask) { 9135 dev->proto_down_reason = value; 9136 } else { 9137 for_each_set_bit(b, &mask, 32) { 9138 if (value & (1 << b)) 9139 dev->proto_down_reason |= BIT(b); 9140 else 9141 dev->proto_down_reason &= ~BIT(b); 9142 } 9143 } 9144 } 9145 9146 struct bpf_xdp_link { 9147 struct bpf_link link; 9148 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9149 int flags; 9150 }; 9151 dev_xdp_mode(struct net_device * dev,u32 flags)9152 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9153 { 9154 if (flags & XDP_FLAGS_HW_MODE) 9155 return XDP_MODE_HW; 9156 if (flags & XDP_FLAGS_DRV_MODE) 9157 return XDP_MODE_DRV; 9158 if (flags & XDP_FLAGS_SKB_MODE) 9159 return XDP_MODE_SKB; 9160 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9161 } 9162 dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9163 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9164 { 9165 switch (mode) { 9166 case XDP_MODE_SKB: 9167 return generic_xdp_install; 9168 case XDP_MODE_DRV: 9169 case XDP_MODE_HW: 9170 return dev->netdev_ops->ndo_bpf; 9171 default: 9172 return NULL; 9173 } 9174 } 9175 dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9176 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9177 enum bpf_xdp_mode mode) 9178 { 9179 return dev->xdp_state[mode].link; 9180 } 9181 dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9182 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9183 enum bpf_xdp_mode mode) 9184 { 9185 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9186 9187 if (link) 9188 return link->link.prog; 9189 return dev->xdp_state[mode].prog; 9190 } 9191 dev_xdp_prog_count(struct net_device * dev)9192 u8 dev_xdp_prog_count(struct net_device *dev) 9193 { 9194 u8 count = 0; 9195 int i; 9196 9197 for (i = 0; i < __MAX_XDP_MODE; i++) 9198 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9199 count++; 9200 return count; 9201 } 9202 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 9203 dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9204 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9205 { 9206 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9207 9208 return prog ? prog->aux->id : 0; 9209 } 9210 dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9211 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9212 struct bpf_xdp_link *link) 9213 { 9214 dev->xdp_state[mode].link = link; 9215 dev->xdp_state[mode].prog = NULL; 9216 } 9217 dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9218 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9219 struct bpf_prog *prog) 9220 { 9221 dev->xdp_state[mode].link = NULL; 9222 dev->xdp_state[mode].prog = prog; 9223 } 9224 dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9225 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9226 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9227 u32 flags, struct bpf_prog *prog) 9228 { 9229 struct netdev_bpf xdp; 9230 int err; 9231 9232 memset(&xdp, 0, sizeof(xdp)); 9233 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9234 xdp.extack = extack; 9235 xdp.flags = flags; 9236 xdp.prog = prog; 9237 9238 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9239 * "moved" into driver), so they don't increment it on their own, but 9240 * they do decrement refcnt when program is detached or replaced. 9241 * Given net_device also owns link/prog, we need to bump refcnt here 9242 * to prevent drivers from underflowing it. 9243 */ 9244 if (prog) 9245 bpf_prog_inc(prog); 9246 err = bpf_op(dev, &xdp); 9247 if (err) { 9248 if (prog) 9249 bpf_prog_put(prog); 9250 return err; 9251 } 9252 9253 if (mode != XDP_MODE_HW) 9254 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9255 9256 return 0; 9257 } 9258 dev_xdp_uninstall(struct net_device * dev)9259 static void dev_xdp_uninstall(struct net_device *dev) 9260 { 9261 struct bpf_xdp_link *link; 9262 struct bpf_prog *prog; 9263 enum bpf_xdp_mode mode; 9264 bpf_op_t bpf_op; 9265 9266 ASSERT_RTNL(); 9267 9268 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9269 prog = dev_xdp_prog(dev, mode); 9270 if (!prog) 9271 continue; 9272 9273 bpf_op = dev_xdp_bpf_op(dev, mode); 9274 if (!bpf_op) 9275 continue; 9276 9277 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9278 9279 /* auto-detach link from net device */ 9280 link = dev_xdp_link(dev, mode); 9281 if (link) 9282 link->dev = NULL; 9283 else 9284 bpf_prog_put(prog); 9285 9286 dev_xdp_set_link(dev, mode, NULL); 9287 } 9288 } 9289 dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9290 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9291 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9292 struct bpf_prog *old_prog, u32 flags) 9293 { 9294 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9295 struct bpf_prog *cur_prog; 9296 struct net_device *upper; 9297 struct list_head *iter; 9298 enum bpf_xdp_mode mode; 9299 bpf_op_t bpf_op; 9300 int err; 9301 9302 ASSERT_RTNL(); 9303 9304 /* either link or prog attachment, never both */ 9305 if (link && (new_prog || old_prog)) 9306 return -EINVAL; 9307 /* link supports only XDP mode flags */ 9308 if (link && (flags & ~XDP_FLAGS_MODES)) { 9309 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9310 return -EINVAL; 9311 } 9312 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9313 if (num_modes > 1) { 9314 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9315 return -EINVAL; 9316 } 9317 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9318 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9319 NL_SET_ERR_MSG(extack, 9320 "More than one program loaded, unset mode is ambiguous"); 9321 return -EINVAL; 9322 } 9323 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9324 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9325 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9326 return -EINVAL; 9327 } 9328 9329 mode = dev_xdp_mode(dev, flags); 9330 /* can't replace attached link */ 9331 if (dev_xdp_link(dev, mode)) { 9332 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9333 return -EBUSY; 9334 } 9335 9336 /* don't allow if an upper device already has a program */ 9337 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 9338 if (dev_xdp_prog_count(upper) > 0) { 9339 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 9340 return -EEXIST; 9341 } 9342 } 9343 9344 cur_prog = dev_xdp_prog(dev, mode); 9345 /* can't replace attached prog with link */ 9346 if (link && cur_prog) { 9347 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9348 return -EBUSY; 9349 } 9350 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9351 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9352 return -EEXIST; 9353 } 9354 9355 /* put effective new program into new_prog */ 9356 if (link) 9357 new_prog = link->link.prog; 9358 9359 if (new_prog) { 9360 bool offload = mode == XDP_MODE_HW; 9361 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9362 ? XDP_MODE_DRV : XDP_MODE_SKB; 9363 9364 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9365 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9366 return -EBUSY; 9367 } 9368 if (!offload && dev_xdp_prog(dev, other_mode)) { 9369 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9370 return -EEXIST; 9371 } 9372 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 9373 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 9374 return -EINVAL; 9375 } 9376 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 9377 NL_SET_ERR_MSG(extack, "Program bound to different device"); 9378 return -EINVAL; 9379 } 9380 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) { 9381 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode"); 9382 return -EINVAL; 9383 } 9384 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9385 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9386 return -EINVAL; 9387 } 9388 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9389 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9390 return -EINVAL; 9391 } 9392 } 9393 9394 /* don't call drivers if the effective program didn't change */ 9395 if (new_prog != cur_prog) { 9396 bpf_op = dev_xdp_bpf_op(dev, mode); 9397 if (!bpf_op) { 9398 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9399 return -EOPNOTSUPP; 9400 } 9401 9402 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9403 if (err) 9404 return err; 9405 } 9406 9407 if (link) 9408 dev_xdp_set_link(dev, mode, link); 9409 else 9410 dev_xdp_set_prog(dev, mode, new_prog); 9411 if (cur_prog) 9412 bpf_prog_put(cur_prog); 9413 9414 return 0; 9415 } 9416 dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9417 static int dev_xdp_attach_link(struct net_device *dev, 9418 struct netlink_ext_ack *extack, 9419 struct bpf_xdp_link *link) 9420 { 9421 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9422 } 9423 dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9424 static int dev_xdp_detach_link(struct net_device *dev, 9425 struct netlink_ext_ack *extack, 9426 struct bpf_xdp_link *link) 9427 { 9428 enum bpf_xdp_mode mode; 9429 bpf_op_t bpf_op; 9430 9431 ASSERT_RTNL(); 9432 9433 mode = dev_xdp_mode(dev, link->flags); 9434 if (dev_xdp_link(dev, mode) != link) 9435 return -EINVAL; 9436 9437 bpf_op = dev_xdp_bpf_op(dev, mode); 9438 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9439 dev_xdp_set_link(dev, mode, NULL); 9440 return 0; 9441 } 9442 bpf_xdp_link_release(struct bpf_link * link)9443 static void bpf_xdp_link_release(struct bpf_link *link) 9444 { 9445 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9446 9447 rtnl_lock(); 9448 9449 /* if racing with net_device's tear down, xdp_link->dev might be 9450 * already NULL, in which case link was already auto-detached 9451 */ 9452 if (xdp_link->dev) { 9453 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9454 xdp_link->dev = NULL; 9455 } 9456 9457 rtnl_unlock(); 9458 } 9459 bpf_xdp_link_detach(struct bpf_link * link)9460 static int bpf_xdp_link_detach(struct bpf_link *link) 9461 { 9462 bpf_xdp_link_release(link); 9463 return 0; 9464 } 9465 bpf_xdp_link_dealloc(struct bpf_link * link)9466 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9467 { 9468 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9469 9470 kfree(xdp_link); 9471 } 9472 bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9473 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9474 struct seq_file *seq) 9475 { 9476 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9477 u32 ifindex = 0; 9478 9479 rtnl_lock(); 9480 if (xdp_link->dev) 9481 ifindex = xdp_link->dev->ifindex; 9482 rtnl_unlock(); 9483 9484 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9485 } 9486 bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9487 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9488 struct bpf_link_info *info) 9489 { 9490 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9491 u32 ifindex = 0; 9492 9493 rtnl_lock(); 9494 if (xdp_link->dev) 9495 ifindex = xdp_link->dev->ifindex; 9496 rtnl_unlock(); 9497 9498 info->xdp.ifindex = ifindex; 9499 return 0; 9500 } 9501 bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9502 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9503 struct bpf_prog *old_prog) 9504 { 9505 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9506 enum bpf_xdp_mode mode; 9507 bpf_op_t bpf_op; 9508 int err = 0; 9509 9510 rtnl_lock(); 9511 9512 /* link might have been auto-released already, so fail */ 9513 if (!xdp_link->dev) { 9514 err = -ENOLINK; 9515 goto out_unlock; 9516 } 9517 9518 if (old_prog && link->prog != old_prog) { 9519 err = -EPERM; 9520 goto out_unlock; 9521 } 9522 old_prog = link->prog; 9523 if (old_prog->type != new_prog->type || 9524 old_prog->expected_attach_type != new_prog->expected_attach_type) { 9525 err = -EINVAL; 9526 goto out_unlock; 9527 } 9528 9529 if (old_prog == new_prog) { 9530 /* no-op, don't disturb drivers */ 9531 bpf_prog_put(new_prog); 9532 goto out_unlock; 9533 } 9534 9535 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9536 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9537 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9538 xdp_link->flags, new_prog); 9539 if (err) 9540 goto out_unlock; 9541 9542 old_prog = xchg(&link->prog, new_prog); 9543 bpf_prog_put(old_prog); 9544 9545 out_unlock: 9546 rtnl_unlock(); 9547 return err; 9548 } 9549 9550 static const struct bpf_link_ops bpf_xdp_link_lops = { 9551 .release = bpf_xdp_link_release, 9552 .dealloc = bpf_xdp_link_dealloc, 9553 .detach = bpf_xdp_link_detach, 9554 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9555 .fill_link_info = bpf_xdp_link_fill_link_info, 9556 .update_prog = bpf_xdp_link_update, 9557 }; 9558 bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9559 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9560 { 9561 struct net *net = current->nsproxy->net_ns; 9562 struct bpf_link_primer link_primer; 9563 struct netlink_ext_ack extack = {}; 9564 struct bpf_xdp_link *link; 9565 struct net_device *dev; 9566 int err, fd; 9567 9568 rtnl_lock(); 9569 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9570 if (!dev) { 9571 rtnl_unlock(); 9572 return -EINVAL; 9573 } 9574 9575 link = kzalloc(sizeof(*link), GFP_USER); 9576 if (!link) { 9577 err = -ENOMEM; 9578 goto unlock; 9579 } 9580 9581 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9582 link->dev = dev; 9583 link->flags = attr->link_create.flags; 9584 9585 err = bpf_link_prime(&link->link, &link_primer); 9586 if (err) { 9587 kfree(link); 9588 goto unlock; 9589 } 9590 9591 err = dev_xdp_attach_link(dev, &extack, link); 9592 rtnl_unlock(); 9593 9594 if (err) { 9595 link->dev = NULL; 9596 bpf_link_cleanup(&link_primer); 9597 trace_bpf_xdp_link_attach_failed(extack._msg); 9598 goto out_put_dev; 9599 } 9600 9601 fd = bpf_link_settle(&link_primer); 9602 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9603 dev_put(dev); 9604 return fd; 9605 9606 unlock: 9607 rtnl_unlock(); 9608 9609 out_put_dev: 9610 dev_put(dev); 9611 return err; 9612 } 9613 9614 /** 9615 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9616 * @dev: device 9617 * @extack: netlink extended ack 9618 * @fd: new program fd or negative value to clear 9619 * @expected_fd: old program fd that userspace expects to replace or clear 9620 * @flags: xdp-related flags 9621 * 9622 * Set or clear a bpf program for a device 9623 */ dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9624 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9625 int fd, int expected_fd, u32 flags) 9626 { 9627 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9628 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9629 int err; 9630 9631 ASSERT_RTNL(); 9632 9633 if (fd >= 0) { 9634 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9635 mode != XDP_MODE_SKB); 9636 if (IS_ERR(new_prog)) 9637 return PTR_ERR(new_prog); 9638 } 9639 9640 if (expected_fd >= 0) { 9641 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9642 mode != XDP_MODE_SKB); 9643 if (IS_ERR(old_prog)) { 9644 err = PTR_ERR(old_prog); 9645 old_prog = NULL; 9646 goto err_out; 9647 } 9648 } 9649 9650 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9651 9652 err_out: 9653 if (err && new_prog) 9654 bpf_prog_put(new_prog); 9655 if (old_prog) 9656 bpf_prog_put(old_prog); 9657 return err; 9658 } 9659 9660 /** 9661 * dev_index_reserve() - allocate an ifindex in a namespace 9662 * @net: the applicable net namespace 9663 * @ifindex: requested ifindex, pass %0 to get one allocated 9664 * 9665 * Allocate a ifindex for a new device. Caller must either use the ifindex 9666 * to store the device (via list_netdevice()) or call dev_index_release() 9667 * to give the index up. 9668 * 9669 * Return: a suitable unique value for a new device interface number or -errno. 9670 */ dev_index_reserve(struct net * net,u32 ifindex)9671 static int dev_index_reserve(struct net *net, u32 ifindex) 9672 { 9673 int err; 9674 9675 if (ifindex > INT_MAX) { 9676 DEBUG_NET_WARN_ON_ONCE(1); 9677 return -EINVAL; 9678 } 9679 9680 if (!ifindex) 9681 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 9682 xa_limit_31b, &net->ifindex, GFP_KERNEL); 9683 else 9684 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 9685 if (err < 0) 9686 return err; 9687 9688 return ifindex; 9689 } 9690 dev_index_release(struct net * net,int ifindex)9691 static void dev_index_release(struct net *net, int ifindex) 9692 { 9693 /* Expect only unused indexes, unlist_netdevice() removes the used */ 9694 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 9695 } 9696 9697 /* Delayed registration/unregisteration */ 9698 LIST_HEAD(net_todo_list); 9699 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9700 net_set_todo(struct net_device * dev)9701 static void net_set_todo(struct net_device *dev) 9702 { 9703 list_add_tail(&dev->todo_list, &net_todo_list); 9704 atomic_inc(&dev_net(dev)->dev_unreg_count); 9705 } 9706 netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)9707 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9708 struct net_device *upper, netdev_features_t features) 9709 { 9710 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9711 netdev_features_t feature; 9712 int feature_bit; 9713 9714 for_each_netdev_feature(upper_disables, feature_bit) { 9715 feature = __NETIF_F_BIT(feature_bit); 9716 if (!(upper->wanted_features & feature) 9717 && (features & feature)) { 9718 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9719 &feature, upper->name); 9720 features &= ~feature; 9721 } 9722 } 9723 9724 return features; 9725 } 9726 netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)9727 static void netdev_sync_lower_features(struct net_device *upper, 9728 struct net_device *lower, netdev_features_t features) 9729 { 9730 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9731 netdev_features_t feature; 9732 int feature_bit; 9733 9734 for_each_netdev_feature(upper_disables, feature_bit) { 9735 feature = __NETIF_F_BIT(feature_bit); 9736 if (!(features & feature) && (lower->features & feature)) { 9737 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9738 &feature, lower->name); 9739 lower->wanted_features &= ~feature; 9740 __netdev_update_features(lower); 9741 9742 if (unlikely(lower->features & feature)) 9743 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9744 &feature, lower->name); 9745 else 9746 netdev_features_change(lower); 9747 } 9748 } 9749 } 9750 netdev_fix_features(struct net_device * dev,netdev_features_t features)9751 static netdev_features_t netdev_fix_features(struct net_device *dev, 9752 netdev_features_t features) 9753 { 9754 /* Fix illegal checksum combinations */ 9755 if ((features & NETIF_F_HW_CSUM) && 9756 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9757 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9758 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9759 } 9760 9761 /* TSO requires that SG is present as well. */ 9762 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9763 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9764 features &= ~NETIF_F_ALL_TSO; 9765 } 9766 9767 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9768 !(features & NETIF_F_IP_CSUM)) { 9769 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9770 features &= ~NETIF_F_TSO; 9771 features &= ~NETIF_F_TSO_ECN; 9772 } 9773 9774 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9775 !(features & NETIF_F_IPV6_CSUM)) { 9776 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9777 features &= ~NETIF_F_TSO6; 9778 } 9779 9780 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9781 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9782 features &= ~NETIF_F_TSO_MANGLEID; 9783 9784 /* TSO ECN requires that TSO is present as well. */ 9785 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9786 features &= ~NETIF_F_TSO_ECN; 9787 9788 /* Software GSO depends on SG. */ 9789 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9790 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9791 features &= ~NETIF_F_GSO; 9792 } 9793 9794 /* GSO partial features require GSO partial be set */ 9795 if ((features & dev->gso_partial_features) && 9796 !(features & NETIF_F_GSO_PARTIAL)) { 9797 netdev_dbg(dev, 9798 "Dropping partially supported GSO features since no GSO partial.\n"); 9799 features &= ~dev->gso_partial_features; 9800 } 9801 9802 if (!(features & NETIF_F_RXCSUM)) { 9803 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9804 * successfully merged by hardware must also have the 9805 * checksum verified by hardware. If the user does not 9806 * want to enable RXCSUM, logically, we should disable GRO_HW. 9807 */ 9808 if (features & NETIF_F_GRO_HW) { 9809 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9810 features &= ~NETIF_F_GRO_HW; 9811 } 9812 } 9813 9814 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9815 if (features & NETIF_F_RXFCS) { 9816 if (features & NETIF_F_LRO) { 9817 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9818 features &= ~NETIF_F_LRO; 9819 } 9820 9821 if (features & NETIF_F_GRO_HW) { 9822 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9823 features &= ~NETIF_F_GRO_HW; 9824 } 9825 } 9826 9827 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 9828 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 9829 features &= ~NETIF_F_LRO; 9830 } 9831 9832 if (features & NETIF_F_HW_TLS_TX) { 9833 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) == 9834 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 9835 bool hw_csum = features & NETIF_F_HW_CSUM; 9836 9837 if (!ip_csum && !hw_csum) { 9838 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 9839 features &= ~NETIF_F_HW_TLS_TX; 9840 } 9841 } 9842 9843 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 9844 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 9845 features &= ~NETIF_F_HW_TLS_RX; 9846 } 9847 9848 return features; 9849 } 9850 __netdev_update_features(struct net_device * dev)9851 int __netdev_update_features(struct net_device *dev) 9852 { 9853 struct net_device *upper, *lower; 9854 netdev_features_t features; 9855 struct list_head *iter; 9856 int err = -1; 9857 9858 ASSERT_RTNL(); 9859 9860 features = netdev_get_wanted_features(dev); 9861 9862 if (dev->netdev_ops->ndo_fix_features) 9863 features = dev->netdev_ops->ndo_fix_features(dev, features); 9864 9865 /* driver might be less strict about feature dependencies */ 9866 features = netdev_fix_features(dev, features); 9867 9868 /* some features can't be enabled if they're off on an upper device */ 9869 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9870 features = netdev_sync_upper_features(dev, upper, features); 9871 9872 if (dev->features == features) 9873 goto sync_lower; 9874 9875 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9876 &dev->features, &features); 9877 9878 if (dev->netdev_ops->ndo_set_features) 9879 err = dev->netdev_ops->ndo_set_features(dev, features); 9880 else 9881 err = 0; 9882 9883 if (unlikely(err < 0)) { 9884 netdev_err(dev, 9885 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9886 err, &features, &dev->features); 9887 /* return non-0 since some features might have changed and 9888 * it's better to fire a spurious notification than miss it 9889 */ 9890 return -1; 9891 } 9892 9893 sync_lower: 9894 /* some features must be disabled on lower devices when disabled 9895 * on an upper device (think: bonding master or bridge) 9896 */ 9897 netdev_for_each_lower_dev(dev, lower, iter) 9898 netdev_sync_lower_features(dev, lower, features); 9899 9900 if (!err) { 9901 netdev_features_t diff = features ^ dev->features; 9902 9903 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9904 /* udp_tunnel_{get,drop}_rx_info both need 9905 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9906 * device, or they won't do anything. 9907 * Thus we need to update dev->features 9908 * *before* calling udp_tunnel_get_rx_info, 9909 * but *after* calling udp_tunnel_drop_rx_info. 9910 */ 9911 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9912 dev->features = features; 9913 udp_tunnel_get_rx_info(dev); 9914 } else { 9915 udp_tunnel_drop_rx_info(dev); 9916 } 9917 } 9918 9919 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9920 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9921 dev->features = features; 9922 err |= vlan_get_rx_ctag_filter_info(dev); 9923 } else { 9924 vlan_drop_rx_ctag_filter_info(dev); 9925 } 9926 } 9927 9928 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9929 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9930 dev->features = features; 9931 err |= vlan_get_rx_stag_filter_info(dev); 9932 } else { 9933 vlan_drop_rx_stag_filter_info(dev); 9934 } 9935 } 9936 9937 dev->features = features; 9938 } 9939 9940 return err < 0 ? 0 : 1; 9941 } 9942 9943 /** 9944 * netdev_update_features - recalculate device features 9945 * @dev: the device to check 9946 * 9947 * Recalculate dev->features set and send notifications if it 9948 * has changed. Should be called after driver or hardware dependent 9949 * conditions might have changed that influence the features. 9950 */ netdev_update_features(struct net_device * dev)9951 void netdev_update_features(struct net_device *dev) 9952 { 9953 if (__netdev_update_features(dev)) 9954 netdev_features_change(dev); 9955 } 9956 EXPORT_SYMBOL(netdev_update_features); 9957 9958 /** 9959 * netdev_change_features - recalculate device features 9960 * @dev: the device to check 9961 * 9962 * Recalculate dev->features set and send notifications even 9963 * if they have not changed. Should be called instead of 9964 * netdev_update_features() if also dev->vlan_features might 9965 * have changed to allow the changes to be propagated to stacked 9966 * VLAN devices. 9967 */ netdev_change_features(struct net_device * dev)9968 void netdev_change_features(struct net_device *dev) 9969 { 9970 __netdev_update_features(dev); 9971 netdev_features_change(dev); 9972 } 9973 EXPORT_SYMBOL(netdev_change_features); 9974 9975 /** 9976 * netif_stacked_transfer_operstate - transfer operstate 9977 * @rootdev: the root or lower level device to transfer state from 9978 * @dev: the device to transfer operstate to 9979 * 9980 * Transfer operational state from root to device. This is normally 9981 * called when a stacking relationship exists between the root 9982 * device and the device(a leaf device). 9983 */ netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)9984 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9985 struct net_device *dev) 9986 { 9987 if (rootdev->operstate == IF_OPER_DORMANT) 9988 netif_dormant_on(dev); 9989 else 9990 netif_dormant_off(dev); 9991 9992 if (rootdev->operstate == IF_OPER_TESTING) 9993 netif_testing_on(dev); 9994 else 9995 netif_testing_off(dev); 9996 9997 if (netif_carrier_ok(rootdev)) 9998 netif_carrier_on(dev); 9999 else 10000 netif_carrier_off(dev); 10001 } 10002 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 10003 netif_alloc_rx_queues(struct net_device * dev)10004 static int netif_alloc_rx_queues(struct net_device *dev) 10005 { 10006 unsigned int i, count = dev->num_rx_queues; 10007 struct netdev_rx_queue *rx; 10008 size_t sz = count * sizeof(*rx); 10009 int err = 0; 10010 10011 BUG_ON(count < 1); 10012 10013 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10014 if (!rx) 10015 return -ENOMEM; 10016 10017 dev->_rx = rx; 10018 10019 for (i = 0; i < count; i++) { 10020 rx[i].dev = dev; 10021 10022 /* XDP RX-queue setup */ 10023 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10024 if (err < 0) 10025 goto err_rxq_info; 10026 } 10027 return 0; 10028 10029 err_rxq_info: 10030 /* Rollback successful reg's and free other resources */ 10031 while (i--) 10032 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10033 kvfree(dev->_rx); 10034 dev->_rx = NULL; 10035 return err; 10036 } 10037 netif_free_rx_queues(struct net_device * dev)10038 static void netif_free_rx_queues(struct net_device *dev) 10039 { 10040 unsigned int i, count = dev->num_rx_queues; 10041 10042 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10043 if (!dev->_rx) 10044 return; 10045 10046 for (i = 0; i < count; i++) 10047 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10048 10049 kvfree(dev->_rx); 10050 } 10051 netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10052 static void netdev_init_one_queue(struct net_device *dev, 10053 struct netdev_queue *queue, void *_unused) 10054 { 10055 /* Initialize queue lock */ 10056 spin_lock_init(&queue->_xmit_lock); 10057 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10058 queue->xmit_lock_owner = -1; 10059 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10060 queue->dev = dev; 10061 #ifdef CONFIG_BQL 10062 dql_init(&queue->dql, HZ); 10063 #endif 10064 } 10065 netif_free_tx_queues(struct net_device * dev)10066 static void netif_free_tx_queues(struct net_device *dev) 10067 { 10068 kvfree(dev->_tx); 10069 } 10070 netif_alloc_netdev_queues(struct net_device * dev)10071 static int netif_alloc_netdev_queues(struct net_device *dev) 10072 { 10073 unsigned int count = dev->num_tx_queues; 10074 struct netdev_queue *tx; 10075 size_t sz = count * sizeof(*tx); 10076 10077 if (count < 1 || count > 0xffff) 10078 return -EINVAL; 10079 10080 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10081 if (!tx) 10082 return -ENOMEM; 10083 10084 dev->_tx = tx; 10085 10086 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10087 spin_lock_init(&dev->tx_global_lock); 10088 10089 return 0; 10090 } 10091 netif_tx_stop_all_queues(struct net_device * dev)10092 void netif_tx_stop_all_queues(struct net_device *dev) 10093 { 10094 unsigned int i; 10095 10096 for (i = 0; i < dev->num_tx_queues; i++) { 10097 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10098 10099 netif_tx_stop_queue(txq); 10100 } 10101 } 10102 EXPORT_SYMBOL(netif_tx_stop_all_queues); 10103 netdev_do_alloc_pcpu_stats(struct net_device * dev)10104 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 10105 { 10106 void __percpu *v; 10107 10108 /* Drivers implementing ndo_get_peer_dev must support tstat 10109 * accounting, so that skb_do_redirect() can bump the dev's 10110 * RX stats upon network namespace switch. 10111 */ 10112 if (dev->netdev_ops->ndo_get_peer_dev && 10113 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 10114 return -EOPNOTSUPP; 10115 10116 switch (dev->pcpu_stat_type) { 10117 case NETDEV_PCPU_STAT_NONE: 10118 return 0; 10119 case NETDEV_PCPU_STAT_LSTATS: 10120 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 10121 break; 10122 case NETDEV_PCPU_STAT_TSTATS: 10123 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 10124 break; 10125 case NETDEV_PCPU_STAT_DSTATS: 10126 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 10127 break; 10128 default: 10129 return -EINVAL; 10130 } 10131 10132 return v ? 0 : -ENOMEM; 10133 } 10134 netdev_do_free_pcpu_stats(struct net_device * dev)10135 static void netdev_do_free_pcpu_stats(struct net_device *dev) 10136 { 10137 switch (dev->pcpu_stat_type) { 10138 case NETDEV_PCPU_STAT_NONE: 10139 return; 10140 case NETDEV_PCPU_STAT_LSTATS: 10141 free_percpu(dev->lstats); 10142 break; 10143 case NETDEV_PCPU_STAT_TSTATS: 10144 free_percpu(dev->tstats); 10145 break; 10146 case NETDEV_PCPU_STAT_DSTATS: 10147 free_percpu(dev->dstats); 10148 break; 10149 } 10150 } 10151 10152 /** 10153 * register_netdevice() - register a network device 10154 * @dev: device to register 10155 * 10156 * Take a prepared network device structure and make it externally accessible. 10157 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 10158 * Callers must hold the rtnl lock - you may want register_netdev() 10159 * instead of this. 10160 */ register_netdevice(struct net_device * dev)10161 int register_netdevice(struct net_device *dev) 10162 { 10163 int ret; 10164 struct net *net = dev_net(dev); 10165 10166 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 10167 NETDEV_FEATURE_COUNT); 10168 BUG_ON(dev_boot_phase); 10169 ASSERT_RTNL(); 10170 10171 might_sleep(); 10172 10173 /* When net_device's are persistent, this will be fatal. */ 10174 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 10175 BUG_ON(!net); 10176 10177 ret = ethtool_check_ops(dev->ethtool_ops); 10178 if (ret) 10179 return ret; 10180 10181 spin_lock_init(&dev->addr_list_lock); 10182 netdev_set_addr_lockdep_class(dev); 10183 10184 ret = dev_get_valid_name(net, dev, dev->name); 10185 if (ret < 0) 10186 goto out; 10187 10188 ret = -ENOMEM; 10189 dev->name_node = netdev_name_node_head_alloc(dev); 10190 if (!dev->name_node) 10191 goto out; 10192 10193 /* Init, if this function is available */ 10194 if (dev->netdev_ops->ndo_init) { 10195 ret = dev->netdev_ops->ndo_init(dev); 10196 if (ret) { 10197 if (ret > 0) 10198 ret = -EIO; 10199 goto err_free_name; 10200 } 10201 } 10202 10203 if (((dev->hw_features | dev->features) & 10204 NETIF_F_HW_VLAN_CTAG_FILTER) && 10205 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 10206 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 10207 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 10208 ret = -EINVAL; 10209 goto err_uninit; 10210 } 10211 10212 ret = netdev_do_alloc_pcpu_stats(dev); 10213 if (ret) 10214 goto err_uninit; 10215 10216 ret = dev_index_reserve(net, dev->ifindex); 10217 if (ret < 0) 10218 goto err_free_pcpu; 10219 dev->ifindex = ret; 10220 10221 /* Transfer changeable features to wanted_features and enable 10222 * software offloads (GSO and GRO). 10223 */ 10224 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 10225 dev->features |= NETIF_F_SOFT_FEATURES; 10226 10227 if (dev->udp_tunnel_nic_info) { 10228 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10229 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10230 } 10231 10232 dev->wanted_features = dev->features & dev->hw_features; 10233 10234 if (!(dev->flags & IFF_LOOPBACK)) 10235 dev->hw_features |= NETIF_F_NOCACHE_COPY; 10236 10237 /* If IPv4 TCP segmentation offload is supported we should also 10238 * allow the device to enable segmenting the frame with the option 10239 * of ignoring a static IP ID value. This doesn't enable the 10240 * feature itself but allows the user to enable it later. 10241 */ 10242 if (dev->hw_features & NETIF_F_TSO) 10243 dev->hw_features |= NETIF_F_TSO_MANGLEID; 10244 if (dev->vlan_features & NETIF_F_TSO) 10245 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 10246 if (dev->mpls_features & NETIF_F_TSO) 10247 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 10248 if (dev->hw_enc_features & NETIF_F_TSO) 10249 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 10250 10251 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 10252 */ 10253 dev->vlan_features |= NETIF_F_HIGHDMA; 10254 10255 /* Make NETIF_F_SG inheritable to tunnel devices. 10256 */ 10257 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10258 10259 /* Make NETIF_F_SG inheritable to MPLS. 10260 */ 10261 dev->mpls_features |= NETIF_F_SG; 10262 10263 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 10264 ret = notifier_to_errno(ret); 10265 if (ret) 10266 goto err_ifindex_release; 10267 10268 ret = netdev_register_kobject(dev); 10269 write_lock(&dev_base_lock); 10270 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED; 10271 write_unlock(&dev_base_lock); 10272 if (ret) 10273 goto err_uninit_notify; 10274 10275 __netdev_update_features(dev); 10276 10277 /* 10278 * Default initial state at registry is that the 10279 * device is present. 10280 */ 10281 10282 set_bit(__LINK_STATE_PRESENT, &dev->state); 10283 10284 linkwatch_init_dev(dev); 10285 10286 dev_init_scheduler(dev); 10287 10288 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 10289 list_netdevice(dev); 10290 10291 add_device_randomness(dev->dev_addr, dev->addr_len); 10292 10293 /* If the device has permanent device address, driver should 10294 * set dev_addr and also addr_assign_type should be set to 10295 * NET_ADDR_PERM (default value). 10296 */ 10297 if (dev->addr_assign_type == NET_ADDR_PERM) 10298 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10299 10300 /* Notify protocols, that a new device appeared. */ 10301 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10302 ret = notifier_to_errno(ret); 10303 if (ret) { 10304 /* Expect explicit free_netdev() on failure */ 10305 dev->needs_free_netdev = false; 10306 unregister_netdevice_queue(dev, NULL); 10307 goto out; 10308 } 10309 /* 10310 * Prevent userspace races by waiting until the network 10311 * device is fully setup before sending notifications. 10312 */ 10313 if (!dev->rtnl_link_ops || 10314 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10315 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 10316 10317 out: 10318 return ret; 10319 10320 err_uninit_notify: 10321 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 10322 err_ifindex_release: 10323 dev_index_release(net, dev->ifindex); 10324 err_free_pcpu: 10325 netdev_do_free_pcpu_stats(dev); 10326 err_uninit: 10327 if (dev->netdev_ops->ndo_uninit) 10328 dev->netdev_ops->ndo_uninit(dev); 10329 if (dev->priv_destructor) 10330 dev->priv_destructor(dev); 10331 err_free_name: 10332 netdev_name_node_free(dev->name_node); 10333 goto out; 10334 } 10335 EXPORT_SYMBOL(register_netdevice); 10336 10337 /** 10338 * init_dummy_netdev - init a dummy network device for NAPI 10339 * @dev: device to init 10340 * 10341 * This takes a network device structure and initialize the minimum 10342 * amount of fields so it can be used to schedule NAPI polls without 10343 * registering a full blown interface. This is to be used by drivers 10344 * that need to tie several hardware interfaces to a single NAPI 10345 * poll scheduler due to HW limitations. 10346 */ init_dummy_netdev(struct net_device * dev)10347 int init_dummy_netdev(struct net_device *dev) 10348 { 10349 /* Clear everything. Note we don't initialize spinlocks 10350 * are they aren't supposed to be taken by any of the 10351 * NAPI code and this dummy netdev is supposed to be 10352 * only ever used for NAPI polls 10353 */ 10354 memset(dev, 0, sizeof(struct net_device)); 10355 10356 /* make sure we BUG if trying to hit standard 10357 * register/unregister code path 10358 */ 10359 dev->reg_state = NETREG_DUMMY; 10360 10361 /* NAPI wants this */ 10362 INIT_LIST_HEAD(&dev->napi_list); 10363 10364 /* a dummy interface is started by default */ 10365 set_bit(__LINK_STATE_PRESENT, &dev->state); 10366 set_bit(__LINK_STATE_START, &dev->state); 10367 10368 /* napi_busy_loop stats accounting wants this */ 10369 dev_net_set(dev, &init_net); 10370 10371 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10372 * because users of this 'device' dont need to change 10373 * its refcount. 10374 */ 10375 10376 return 0; 10377 } 10378 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10379 10380 10381 /** 10382 * register_netdev - register a network device 10383 * @dev: device to register 10384 * 10385 * Take a completed network device structure and add it to the kernel 10386 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10387 * chain. 0 is returned on success. A negative errno code is returned 10388 * on a failure to set up the device, or if the name is a duplicate. 10389 * 10390 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10391 * and expands the device name if you passed a format string to 10392 * alloc_netdev. 10393 */ register_netdev(struct net_device * dev)10394 int register_netdev(struct net_device *dev) 10395 { 10396 int err; 10397 10398 if (rtnl_lock_killable()) 10399 return -EINTR; 10400 err = register_netdevice(dev); 10401 rtnl_unlock(); 10402 return err; 10403 } 10404 EXPORT_SYMBOL(register_netdev); 10405 netdev_refcnt_read(const struct net_device * dev)10406 int netdev_refcnt_read(const struct net_device *dev) 10407 { 10408 #ifdef CONFIG_PCPU_DEV_REFCNT 10409 int i, refcnt = 0; 10410 10411 for_each_possible_cpu(i) 10412 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10413 return refcnt; 10414 #else 10415 return refcount_read(&dev->dev_refcnt); 10416 #endif 10417 } 10418 EXPORT_SYMBOL(netdev_refcnt_read); 10419 10420 int netdev_unregister_timeout_secs __read_mostly = 10; 10421 10422 #define WAIT_REFS_MIN_MSECS 1 10423 #define WAIT_REFS_MAX_MSECS 250 10424 /** 10425 * netdev_wait_allrefs_any - wait until all references are gone. 10426 * @list: list of net_devices to wait on 10427 * 10428 * This is called when unregistering network devices. 10429 * 10430 * Any protocol or device that holds a reference should register 10431 * for netdevice notification, and cleanup and put back the 10432 * reference if they receive an UNREGISTER event. 10433 * We can get stuck here if buggy protocols don't correctly 10434 * call dev_put. 10435 */ netdev_wait_allrefs_any(struct list_head * list)10436 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 10437 { 10438 unsigned long rebroadcast_time, warning_time; 10439 struct net_device *dev; 10440 int wait = 0; 10441 10442 rebroadcast_time = warning_time = jiffies; 10443 10444 list_for_each_entry(dev, list, todo_list) 10445 if (netdev_refcnt_read(dev) == 1) 10446 return dev; 10447 10448 while (true) { 10449 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10450 rtnl_lock(); 10451 10452 /* Rebroadcast unregister notification */ 10453 list_for_each_entry(dev, list, todo_list) 10454 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10455 10456 __rtnl_unlock(); 10457 rcu_barrier(); 10458 rtnl_lock(); 10459 10460 list_for_each_entry(dev, list, todo_list) 10461 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10462 &dev->state)) { 10463 /* We must not have linkwatch events 10464 * pending on unregister. If this 10465 * happens, we simply run the queue 10466 * unscheduled, resulting in a noop 10467 * for this device. 10468 */ 10469 linkwatch_run_queue(); 10470 break; 10471 } 10472 10473 __rtnl_unlock(); 10474 10475 rebroadcast_time = jiffies; 10476 } 10477 10478 rcu_barrier(); 10479 10480 if (!wait) { 10481 wait = WAIT_REFS_MIN_MSECS; 10482 } else { 10483 msleep(wait); 10484 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10485 } 10486 10487 list_for_each_entry(dev, list, todo_list) 10488 if (netdev_refcnt_read(dev) == 1) 10489 return dev; 10490 10491 if (time_after(jiffies, warning_time + 10492 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 10493 list_for_each_entry(dev, list, todo_list) { 10494 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10495 dev->name, netdev_refcnt_read(dev)); 10496 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 10497 } 10498 10499 warning_time = jiffies; 10500 } 10501 } 10502 } 10503 10504 /* The sequence is: 10505 * 10506 * rtnl_lock(); 10507 * ... 10508 * register_netdevice(x1); 10509 * register_netdevice(x2); 10510 * ... 10511 * unregister_netdevice(y1); 10512 * unregister_netdevice(y2); 10513 * ... 10514 * rtnl_unlock(); 10515 * free_netdev(y1); 10516 * free_netdev(y2); 10517 * 10518 * We are invoked by rtnl_unlock(). 10519 * This allows us to deal with problems: 10520 * 1) We can delete sysfs objects which invoke hotplug 10521 * without deadlocking with linkwatch via keventd. 10522 * 2) Since we run with the RTNL semaphore not held, we can sleep 10523 * safely in order to wait for the netdev refcnt to drop to zero. 10524 * 10525 * We must not return until all unregister events added during 10526 * the interval the lock was held have been completed. 10527 */ netdev_run_todo(void)10528 void netdev_run_todo(void) 10529 { 10530 struct net_device *dev, *tmp; 10531 struct list_head list; 10532 #ifdef CONFIG_LOCKDEP 10533 struct list_head unlink_list; 10534 10535 list_replace_init(&net_unlink_list, &unlink_list); 10536 10537 while (!list_empty(&unlink_list)) { 10538 struct net_device *dev = list_first_entry(&unlink_list, 10539 struct net_device, 10540 unlink_list); 10541 list_del_init(&dev->unlink_list); 10542 dev->nested_level = dev->lower_level - 1; 10543 } 10544 #endif 10545 10546 /* Snapshot list, allow later requests */ 10547 list_replace_init(&net_todo_list, &list); 10548 10549 __rtnl_unlock(); 10550 10551 /* Wait for rcu callbacks to finish before next phase */ 10552 if (!list_empty(&list)) 10553 rcu_barrier(); 10554 10555 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 10556 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10557 netdev_WARN(dev, "run_todo but not unregistering\n"); 10558 list_del(&dev->todo_list); 10559 continue; 10560 } 10561 10562 write_lock(&dev_base_lock); 10563 dev->reg_state = NETREG_UNREGISTERED; 10564 write_unlock(&dev_base_lock); 10565 linkwatch_forget_dev(dev); 10566 } 10567 10568 while (!list_empty(&list)) { 10569 dev = netdev_wait_allrefs_any(&list); 10570 list_del(&dev->todo_list); 10571 10572 /* paranoia */ 10573 BUG_ON(netdev_refcnt_read(dev) != 1); 10574 BUG_ON(!list_empty(&dev->ptype_all)); 10575 BUG_ON(!list_empty(&dev->ptype_specific)); 10576 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10577 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10578 10579 netdev_do_free_pcpu_stats(dev); 10580 if (dev->priv_destructor) 10581 dev->priv_destructor(dev); 10582 if (dev->needs_free_netdev) 10583 free_netdev(dev); 10584 10585 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count)) 10586 wake_up(&netdev_unregistering_wq); 10587 10588 /* Free network device */ 10589 kobject_put(&dev->dev.kobj); 10590 } 10591 } 10592 10593 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10594 * all the same fields in the same order as net_device_stats, with only 10595 * the type differing, but rtnl_link_stats64 may have additional fields 10596 * at the end for newer counters. 10597 */ netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10598 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10599 const struct net_device_stats *netdev_stats) 10600 { 10601 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 10602 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 10603 u64 *dst = (u64 *)stats64; 10604 10605 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10606 for (i = 0; i < n; i++) 10607 dst[i] = (unsigned long)atomic_long_read(&src[i]); 10608 /* zero out counters that only exist in rtnl_link_stats64 */ 10609 memset((char *)stats64 + n * sizeof(u64), 0, 10610 sizeof(*stats64) - n * sizeof(u64)); 10611 } 10612 EXPORT_SYMBOL(netdev_stats_to_stats64); 10613 netdev_core_stats_alloc(struct net_device * dev)10614 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev) 10615 { 10616 struct net_device_core_stats __percpu *p; 10617 10618 p = alloc_percpu_gfp(struct net_device_core_stats, 10619 GFP_ATOMIC | __GFP_NOWARN); 10620 10621 if (p && cmpxchg(&dev->core_stats, NULL, p)) 10622 free_percpu(p); 10623 10624 /* This READ_ONCE() pairs with the cmpxchg() above */ 10625 return READ_ONCE(dev->core_stats); 10626 } 10627 EXPORT_SYMBOL(netdev_core_stats_alloc); 10628 10629 /** 10630 * dev_get_stats - get network device statistics 10631 * @dev: device to get statistics from 10632 * @storage: place to store stats 10633 * 10634 * Get network statistics from device. Return @storage. 10635 * The device driver may provide its own method by setting 10636 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10637 * otherwise the internal statistics structure is used. 10638 */ dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)10639 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10640 struct rtnl_link_stats64 *storage) 10641 { 10642 const struct net_device_ops *ops = dev->netdev_ops; 10643 const struct net_device_core_stats __percpu *p; 10644 10645 if (ops->ndo_get_stats64) { 10646 memset(storage, 0, sizeof(*storage)); 10647 ops->ndo_get_stats64(dev, storage); 10648 } else if (ops->ndo_get_stats) { 10649 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10650 } else { 10651 netdev_stats_to_stats64(storage, &dev->stats); 10652 } 10653 10654 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 10655 p = READ_ONCE(dev->core_stats); 10656 if (p) { 10657 const struct net_device_core_stats *core_stats; 10658 int i; 10659 10660 for_each_possible_cpu(i) { 10661 core_stats = per_cpu_ptr(p, i); 10662 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 10663 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 10664 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 10665 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 10666 } 10667 } 10668 return storage; 10669 } 10670 EXPORT_SYMBOL(dev_get_stats); 10671 10672 /** 10673 * dev_fetch_sw_netstats - get per-cpu network device statistics 10674 * @s: place to store stats 10675 * @netstats: per-cpu network stats to read from 10676 * 10677 * Read per-cpu network statistics and populate the related fields in @s. 10678 */ dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)10679 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10680 const struct pcpu_sw_netstats __percpu *netstats) 10681 { 10682 int cpu; 10683 10684 for_each_possible_cpu(cpu) { 10685 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 10686 const struct pcpu_sw_netstats *stats; 10687 unsigned int start; 10688 10689 stats = per_cpu_ptr(netstats, cpu); 10690 do { 10691 start = u64_stats_fetch_begin(&stats->syncp); 10692 rx_packets = u64_stats_read(&stats->rx_packets); 10693 rx_bytes = u64_stats_read(&stats->rx_bytes); 10694 tx_packets = u64_stats_read(&stats->tx_packets); 10695 tx_bytes = u64_stats_read(&stats->tx_bytes); 10696 } while (u64_stats_fetch_retry(&stats->syncp, start)); 10697 10698 s->rx_packets += rx_packets; 10699 s->rx_bytes += rx_bytes; 10700 s->tx_packets += tx_packets; 10701 s->tx_bytes += tx_bytes; 10702 } 10703 } 10704 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10705 10706 /** 10707 * dev_get_tstats64 - ndo_get_stats64 implementation 10708 * @dev: device to get statistics from 10709 * @s: place to store stats 10710 * 10711 * Populate @s from dev->stats and dev->tstats. Can be used as 10712 * ndo_get_stats64() callback. 10713 */ dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)10714 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 10715 { 10716 netdev_stats_to_stats64(s, &dev->stats); 10717 dev_fetch_sw_netstats(s, dev->tstats); 10718 } 10719 EXPORT_SYMBOL_GPL(dev_get_tstats64); 10720 dev_ingress_queue_create(struct net_device * dev)10721 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10722 { 10723 struct netdev_queue *queue = dev_ingress_queue(dev); 10724 10725 #ifdef CONFIG_NET_CLS_ACT 10726 if (queue) 10727 return queue; 10728 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10729 if (!queue) 10730 return NULL; 10731 netdev_init_one_queue(dev, queue, NULL); 10732 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10733 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 10734 rcu_assign_pointer(dev->ingress_queue, queue); 10735 #endif 10736 return queue; 10737 } 10738 10739 static const struct ethtool_ops default_ethtool_ops; 10740 netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)10741 void netdev_set_default_ethtool_ops(struct net_device *dev, 10742 const struct ethtool_ops *ops) 10743 { 10744 if (dev->ethtool_ops == &default_ethtool_ops) 10745 dev->ethtool_ops = ops; 10746 } 10747 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10748 10749 /** 10750 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 10751 * @dev: netdev to enable the IRQ coalescing on 10752 * 10753 * Sets a conservative default for SW IRQ coalescing. Users can use 10754 * sysfs attributes to override the default values. 10755 */ netdev_sw_irq_coalesce_default_on(struct net_device * dev)10756 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 10757 { 10758 WARN_ON(dev->reg_state == NETREG_REGISTERED); 10759 10760 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 10761 dev->gro_flush_timeout = 20000; 10762 dev->napi_defer_hard_irqs = 1; 10763 } 10764 } 10765 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 10766 netdev_freemem(struct net_device * dev)10767 void netdev_freemem(struct net_device *dev) 10768 { 10769 char *addr = (char *)dev - dev->padded; 10770 10771 kvfree(addr); 10772 } 10773 10774 /** 10775 * alloc_netdev_mqs - allocate network device 10776 * @sizeof_priv: size of private data to allocate space for 10777 * @name: device name format string 10778 * @name_assign_type: origin of device name 10779 * @setup: callback to initialize device 10780 * @txqs: the number of TX subqueues to allocate 10781 * @rxqs: the number of RX subqueues to allocate 10782 * 10783 * Allocates a struct net_device with private data area for driver use 10784 * and performs basic initialization. Also allocates subqueue structs 10785 * for each queue on the device. 10786 */ alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)10787 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10788 unsigned char name_assign_type, 10789 void (*setup)(struct net_device *), 10790 unsigned int txqs, unsigned int rxqs) 10791 { 10792 struct net_device *dev; 10793 unsigned int alloc_size; 10794 struct net_device *p; 10795 10796 BUG_ON(strlen(name) >= sizeof(dev->name)); 10797 10798 if (txqs < 1) { 10799 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10800 return NULL; 10801 } 10802 10803 if (rxqs < 1) { 10804 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10805 return NULL; 10806 } 10807 10808 alloc_size = sizeof(struct net_device); 10809 if (sizeof_priv) { 10810 /* ensure 32-byte alignment of private area */ 10811 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10812 alloc_size += sizeof_priv; 10813 } 10814 /* ensure 32-byte alignment of whole construct */ 10815 alloc_size += NETDEV_ALIGN - 1; 10816 10817 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10818 if (!p) 10819 return NULL; 10820 10821 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10822 dev->padded = (char *)dev - (char *)p; 10823 10824 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name); 10825 #ifdef CONFIG_PCPU_DEV_REFCNT 10826 dev->pcpu_refcnt = alloc_percpu(int); 10827 if (!dev->pcpu_refcnt) 10828 goto free_dev; 10829 __dev_hold(dev); 10830 #else 10831 refcount_set(&dev->dev_refcnt, 1); 10832 #endif 10833 10834 if (dev_addr_init(dev)) 10835 goto free_pcpu; 10836 10837 dev_mc_init(dev); 10838 dev_uc_init(dev); 10839 10840 dev_net_set(dev, &init_net); 10841 10842 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 10843 dev->xdp_zc_max_segs = 1; 10844 dev->gso_max_segs = GSO_MAX_SEGS; 10845 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 10846 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 10847 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 10848 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 10849 dev->tso_max_segs = TSO_MAX_SEGS; 10850 dev->upper_level = 1; 10851 dev->lower_level = 1; 10852 #ifdef CONFIG_LOCKDEP 10853 dev->nested_level = 0; 10854 INIT_LIST_HEAD(&dev->unlink_list); 10855 #endif 10856 10857 INIT_LIST_HEAD(&dev->napi_list); 10858 INIT_LIST_HEAD(&dev->unreg_list); 10859 INIT_LIST_HEAD(&dev->close_list); 10860 INIT_LIST_HEAD(&dev->link_watch_list); 10861 INIT_LIST_HEAD(&dev->adj_list.upper); 10862 INIT_LIST_HEAD(&dev->adj_list.lower); 10863 INIT_LIST_HEAD(&dev->ptype_all); 10864 INIT_LIST_HEAD(&dev->ptype_specific); 10865 INIT_LIST_HEAD(&dev->net_notifier_list); 10866 #ifdef CONFIG_NET_SCHED 10867 hash_init(dev->qdisc_hash); 10868 #endif 10869 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 10870 setup(dev); 10871 10872 if (!dev->tx_queue_len) { 10873 dev->priv_flags |= IFF_NO_QUEUE; 10874 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 10875 } 10876 10877 dev->num_tx_queues = txqs; 10878 dev->real_num_tx_queues = txqs; 10879 if (netif_alloc_netdev_queues(dev)) 10880 goto free_all; 10881 10882 dev->num_rx_queues = rxqs; 10883 dev->real_num_rx_queues = rxqs; 10884 if (netif_alloc_rx_queues(dev)) 10885 goto free_all; 10886 10887 strcpy(dev->name, name); 10888 dev->name_assign_type = name_assign_type; 10889 dev->group = INIT_NETDEV_GROUP; 10890 if (!dev->ethtool_ops) 10891 dev->ethtool_ops = &default_ethtool_ops; 10892 10893 nf_hook_netdev_init(dev); 10894 10895 return dev; 10896 10897 free_all: 10898 free_netdev(dev); 10899 return NULL; 10900 10901 free_pcpu: 10902 #ifdef CONFIG_PCPU_DEV_REFCNT 10903 free_percpu(dev->pcpu_refcnt); 10904 free_dev: 10905 #endif 10906 netdev_freemem(dev); 10907 return NULL; 10908 } 10909 EXPORT_SYMBOL(alloc_netdev_mqs); 10910 10911 /** 10912 * free_netdev - free network device 10913 * @dev: device 10914 * 10915 * This function does the last stage of destroying an allocated device 10916 * interface. The reference to the device object is released. If this 10917 * is the last reference then it will be freed.Must be called in process 10918 * context. 10919 */ free_netdev(struct net_device * dev)10920 void free_netdev(struct net_device *dev) 10921 { 10922 struct napi_struct *p, *n; 10923 10924 might_sleep(); 10925 10926 /* When called immediately after register_netdevice() failed the unwind 10927 * handling may still be dismantling the device. Handle that case by 10928 * deferring the free. 10929 */ 10930 if (dev->reg_state == NETREG_UNREGISTERING) { 10931 ASSERT_RTNL(); 10932 dev->needs_free_netdev = true; 10933 return; 10934 } 10935 10936 netif_free_tx_queues(dev); 10937 netif_free_rx_queues(dev); 10938 10939 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10940 10941 /* Flush device addresses */ 10942 dev_addr_flush(dev); 10943 10944 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10945 netif_napi_del(p); 10946 10947 ref_tracker_dir_exit(&dev->refcnt_tracker); 10948 #ifdef CONFIG_PCPU_DEV_REFCNT 10949 free_percpu(dev->pcpu_refcnt); 10950 dev->pcpu_refcnt = NULL; 10951 #endif 10952 free_percpu(dev->core_stats); 10953 dev->core_stats = NULL; 10954 free_percpu(dev->xdp_bulkq); 10955 dev->xdp_bulkq = NULL; 10956 10957 /* Compatibility with error handling in drivers */ 10958 if (dev->reg_state == NETREG_UNINITIALIZED) { 10959 netdev_freemem(dev); 10960 return; 10961 } 10962 10963 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10964 dev->reg_state = NETREG_RELEASED; 10965 10966 /* will free via device release */ 10967 put_device(&dev->dev); 10968 } 10969 EXPORT_SYMBOL(free_netdev); 10970 10971 /** 10972 * synchronize_net - Synchronize with packet receive processing 10973 * 10974 * Wait for packets currently being received to be done. 10975 * Does not block later packets from starting. 10976 */ synchronize_net(void)10977 void synchronize_net(void) 10978 { 10979 might_sleep(); 10980 if (rtnl_is_locked()) 10981 synchronize_rcu_expedited(); 10982 else 10983 synchronize_rcu(); 10984 } 10985 EXPORT_SYMBOL(synchronize_net); 10986 10987 /** 10988 * unregister_netdevice_queue - remove device from the kernel 10989 * @dev: device 10990 * @head: list 10991 * 10992 * This function shuts down a device interface and removes it 10993 * from the kernel tables. 10994 * If head not NULL, device is queued to be unregistered later. 10995 * 10996 * Callers must hold the rtnl semaphore. You may want 10997 * unregister_netdev() instead of this. 10998 */ 10999 unregister_netdevice_queue(struct net_device * dev,struct list_head * head)11000 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 11001 { 11002 ASSERT_RTNL(); 11003 11004 if (head) { 11005 list_move_tail(&dev->unreg_list, head); 11006 } else { 11007 LIST_HEAD(single); 11008 11009 list_add(&dev->unreg_list, &single); 11010 unregister_netdevice_many(&single); 11011 } 11012 } 11013 EXPORT_SYMBOL(unregister_netdevice_queue); 11014 unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)11015 void unregister_netdevice_many_notify(struct list_head *head, 11016 u32 portid, const struct nlmsghdr *nlh) 11017 { 11018 struct net_device *dev, *tmp; 11019 LIST_HEAD(close_head); 11020 11021 BUG_ON(dev_boot_phase); 11022 ASSERT_RTNL(); 11023 11024 if (list_empty(head)) 11025 return; 11026 11027 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 11028 /* Some devices call without registering 11029 * for initialization unwind. Remove those 11030 * devices and proceed with the remaining. 11031 */ 11032 if (dev->reg_state == NETREG_UNINITIALIZED) { 11033 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 11034 dev->name, dev); 11035 11036 WARN_ON(1); 11037 list_del(&dev->unreg_list); 11038 continue; 11039 } 11040 dev->dismantle = true; 11041 BUG_ON(dev->reg_state != NETREG_REGISTERED); 11042 } 11043 11044 /* If device is running, close it first. */ 11045 list_for_each_entry(dev, head, unreg_list) 11046 list_add_tail(&dev->close_list, &close_head); 11047 dev_close_many(&close_head, true); 11048 11049 list_for_each_entry(dev, head, unreg_list) { 11050 /* And unlink it from device chain. */ 11051 write_lock(&dev_base_lock); 11052 unlist_netdevice(dev, false); 11053 dev->reg_state = NETREG_UNREGISTERING; 11054 write_unlock(&dev_base_lock); 11055 } 11056 flush_all_backlogs(); 11057 11058 synchronize_net(); 11059 11060 list_for_each_entry(dev, head, unreg_list) { 11061 struct sk_buff *skb = NULL; 11062 11063 /* Shutdown queueing discipline. */ 11064 dev_shutdown(dev); 11065 dev_tcx_uninstall(dev); 11066 dev_xdp_uninstall(dev); 11067 bpf_dev_bound_netdev_unregister(dev); 11068 11069 netdev_offload_xstats_disable_all(dev); 11070 11071 /* Notify protocols, that we are about to destroy 11072 * this device. They should clean all the things. 11073 */ 11074 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11075 11076 if (!dev->rtnl_link_ops || 11077 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 11078 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 11079 GFP_KERNEL, NULL, 0, 11080 portid, nlh); 11081 11082 /* 11083 * Flush the unicast and multicast chains 11084 */ 11085 dev_uc_flush(dev); 11086 dev_mc_flush(dev); 11087 11088 netdev_name_node_alt_flush(dev); 11089 netdev_name_node_free(dev->name_node); 11090 11091 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11092 11093 if (dev->netdev_ops->ndo_uninit) 11094 dev->netdev_ops->ndo_uninit(dev); 11095 11096 if (skb) 11097 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 11098 11099 /* Notifier chain MUST detach us all upper devices. */ 11100 WARN_ON(netdev_has_any_upper_dev(dev)); 11101 WARN_ON(netdev_has_any_lower_dev(dev)); 11102 11103 /* Remove entries from kobject tree */ 11104 netdev_unregister_kobject(dev); 11105 #ifdef CONFIG_XPS 11106 /* Remove XPS queueing entries */ 11107 netif_reset_xps_queues_gt(dev, 0); 11108 #endif 11109 } 11110 11111 synchronize_net(); 11112 11113 list_for_each_entry(dev, head, unreg_list) { 11114 netdev_put(dev, &dev->dev_registered_tracker); 11115 net_set_todo(dev); 11116 } 11117 11118 list_del(head); 11119 } 11120 11121 /** 11122 * unregister_netdevice_many - unregister many devices 11123 * @head: list of devices 11124 * 11125 * Note: As most callers use a stack allocated list_head, 11126 * we force a list_del() to make sure stack wont be corrupted later. 11127 */ unregister_netdevice_many(struct list_head * head)11128 void unregister_netdevice_many(struct list_head *head) 11129 { 11130 unregister_netdevice_many_notify(head, 0, NULL); 11131 } 11132 EXPORT_SYMBOL(unregister_netdevice_many); 11133 11134 /** 11135 * unregister_netdev - remove device from the kernel 11136 * @dev: device 11137 * 11138 * This function shuts down a device interface and removes it 11139 * from the kernel tables. 11140 * 11141 * This is just a wrapper for unregister_netdevice that takes 11142 * the rtnl semaphore. In general you want to use this and not 11143 * unregister_netdevice. 11144 */ unregister_netdev(struct net_device * dev)11145 void unregister_netdev(struct net_device *dev) 11146 { 11147 rtnl_lock(); 11148 unregister_netdevice(dev); 11149 rtnl_unlock(); 11150 } 11151 EXPORT_SYMBOL(unregister_netdev); 11152 11153 /** 11154 * __dev_change_net_namespace - move device to different nethost namespace 11155 * @dev: device 11156 * @net: network namespace 11157 * @pat: If not NULL name pattern to try if the current device name 11158 * is already taken in the destination network namespace. 11159 * @new_ifindex: If not zero, specifies device index in the target 11160 * namespace. 11161 * 11162 * This function shuts down a device interface and moves it 11163 * to a new network namespace. On success 0 is returned, on 11164 * a failure a netagive errno code is returned. 11165 * 11166 * Callers must hold the rtnl semaphore. 11167 */ 11168 __dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex)11169 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 11170 const char *pat, int new_ifindex) 11171 { 11172 struct netdev_name_node *name_node; 11173 struct net *net_old = dev_net(dev); 11174 char new_name[IFNAMSIZ] = {}; 11175 int err, new_nsid; 11176 11177 ASSERT_RTNL(); 11178 11179 /* Don't allow namespace local devices to be moved. */ 11180 err = -EINVAL; 11181 if (dev->features & NETIF_F_NETNS_LOCAL) 11182 goto out; 11183 11184 /* Ensure the device has been registrered */ 11185 if (dev->reg_state != NETREG_REGISTERED) 11186 goto out; 11187 11188 /* Get out if there is nothing todo */ 11189 err = 0; 11190 if (net_eq(net_old, net)) 11191 goto out; 11192 11193 /* Pick the destination device name, and ensure 11194 * we can use it in the destination network namespace. 11195 */ 11196 err = -EEXIST; 11197 if (netdev_name_in_use(net, dev->name)) { 11198 /* We get here if we can't use the current device name */ 11199 if (!pat) 11200 goto out; 11201 err = dev_prep_valid_name(net, dev, pat, new_name); 11202 if (err < 0) 11203 goto out; 11204 } 11205 /* Check that none of the altnames conflicts. */ 11206 err = -EEXIST; 11207 netdev_for_each_altname(dev, name_node) 11208 if (netdev_name_in_use(net, name_node->name)) 11209 goto out; 11210 11211 /* Check that new_ifindex isn't used yet. */ 11212 if (new_ifindex) { 11213 err = dev_index_reserve(net, new_ifindex); 11214 if (err < 0) 11215 goto out; 11216 } else { 11217 /* If there is an ifindex conflict assign a new one */ 11218 err = dev_index_reserve(net, dev->ifindex); 11219 if (err == -EBUSY) 11220 err = dev_index_reserve(net, 0); 11221 if (err < 0) 11222 goto out; 11223 new_ifindex = err; 11224 } 11225 11226 /* 11227 * And now a mini version of register_netdevice unregister_netdevice. 11228 */ 11229 11230 /* If device is running close it first. */ 11231 dev_close(dev); 11232 11233 /* And unlink it from device chain */ 11234 unlist_netdevice(dev, true); 11235 11236 synchronize_net(); 11237 11238 /* Shutdown queueing discipline. */ 11239 dev_shutdown(dev); 11240 11241 /* Notify protocols, that we are about to destroy 11242 * this device. They should clean all the things. 11243 * 11244 * Note that dev->reg_state stays at NETREG_REGISTERED. 11245 * This is wanted because this way 8021q and macvlan know 11246 * the device is just moving and can keep their slaves up. 11247 */ 11248 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11249 rcu_barrier(); 11250 11251 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 11252 11253 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 11254 new_ifindex); 11255 11256 /* 11257 * Flush the unicast and multicast chains 11258 */ 11259 dev_uc_flush(dev); 11260 dev_mc_flush(dev); 11261 11262 /* Send a netdev-removed uevent to the old namespace */ 11263 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 11264 netdev_adjacent_del_links(dev); 11265 11266 /* Move per-net netdevice notifiers that are following the netdevice */ 11267 move_netdevice_notifiers_dev_net(dev, net); 11268 11269 /* Actually switch the network namespace */ 11270 dev_net_set(dev, net); 11271 dev->ifindex = new_ifindex; 11272 11273 /* Send a netdev-add uevent to the new namespace */ 11274 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 11275 netdev_adjacent_add_links(dev); 11276 11277 if (new_name[0]) /* Rename the netdev to prepared name */ 11278 strscpy(dev->name, new_name, IFNAMSIZ); 11279 11280 /* Fixup kobjects */ 11281 err = device_rename(&dev->dev, dev->name); 11282 WARN_ON(err); 11283 11284 /* Adapt owner in case owning user namespace of target network 11285 * namespace is different from the original one. 11286 */ 11287 err = netdev_change_owner(dev, net_old, net); 11288 WARN_ON(err); 11289 11290 /* Add the device back in the hashes */ 11291 list_netdevice(dev); 11292 11293 /* Notify protocols, that a new device appeared. */ 11294 call_netdevice_notifiers(NETDEV_REGISTER, dev); 11295 11296 /* 11297 * Prevent userspace races by waiting until the network 11298 * device is fully setup before sending notifications. 11299 */ 11300 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11301 11302 synchronize_net(); 11303 err = 0; 11304 out: 11305 return err; 11306 } 11307 EXPORT_SYMBOL_GPL(__dev_change_net_namespace); 11308 dev_cpu_dead(unsigned int oldcpu)11309 static int dev_cpu_dead(unsigned int oldcpu) 11310 { 11311 struct sk_buff **list_skb; 11312 struct sk_buff *skb; 11313 unsigned int cpu; 11314 struct softnet_data *sd, *oldsd, *remsd = NULL; 11315 11316 local_irq_disable(); 11317 cpu = smp_processor_id(); 11318 sd = &per_cpu(softnet_data, cpu); 11319 oldsd = &per_cpu(softnet_data, oldcpu); 11320 11321 /* Find end of our completion_queue. */ 11322 list_skb = &sd->completion_queue; 11323 while (*list_skb) 11324 list_skb = &(*list_skb)->next; 11325 /* Append completion queue from offline CPU. */ 11326 *list_skb = oldsd->completion_queue; 11327 oldsd->completion_queue = NULL; 11328 11329 /* Append output queue from offline CPU. */ 11330 if (oldsd->output_queue) { 11331 *sd->output_queue_tailp = oldsd->output_queue; 11332 sd->output_queue_tailp = oldsd->output_queue_tailp; 11333 oldsd->output_queue = NULL; 11334 oldsd->output_queue_tailp = &oldsd->output_queue; 11335 } 11336 /* Append NAPI poll list from offline CPU, with one exception : 11337 * process_backlog() must be called by cpu owning percpu backlog. 11338 * We properly handle process_queue & input_pkt_queue later. 11339 */ 11340 while (!list_empty(&oldsd->poll_list)) { 11341 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 11342 struct napi_struct, 11343 poll_list); 11344 11345 list_del_init(&napi->poll_list); 11346 if (napi->poll == process_backlog) 11347 napi->state = 0; 11348 else 11349 ____napi_schedule(sd, napi); 11350 } 11351 11352 raise_softirq_irqoff(NET_TX_SOFTIRQ); 11353 local_irq_enable(); 11354 11355 #ifdef CONFIG_RPS 11356 remsd = oldsd->rps_ipi_list; 11357 oldsd->rps_ipi_list = NULL; 11358 #endif 11359 /* send out pending IPI's on offline CPU */ 11360 net_rps_send_ipi(remsd); 11361 11362 /* Process offline CPU's input_pkt_queue */ 11363 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 11364 netif_rx(skb); 11365 input_queue_head_incr(oldsd); 11366 } 11367 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 11368 netif_rx(skb); 11369 input_queue_head_incr(oldsd); 11370 } 11371 11372 return 0; 11373 } 11374 11375 /** 11376 * netdev_increment_features - increment feature set by one 11377 * @all: current feature set 11378 * @one: new feature set 11379 * @mask: mask feature set 11380 * 11381 * Computes a new feature set after adding a device with feature set 11382 * @one to the master device with current feature set @all. Will not 11383 * enable anything that is off in @mask. Returns the new feature set. 11384 */ netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)11385 netdev_features_t netdev_increment_features(netdev_features_t all, 11386 netdev_features_t one, netdev_features_t mask) 11387 { 11388 if (mask & NETIF_F_HW_CSUM) 11389 mask |= NETIF_F_CSUM_MASK; 11390 mask |= NETIF_F_VLAN_CHALLENGED; 11391 11392 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 11393 all &= one | ~NETIF_F_ALL_FOR_ALL; 11394 11395 /* If one device supports hw checksumming, set for all. */ 11396 if (all & NETIF_F_HW_CSUM) 11397 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 11398 11399 return all; 11400 } 11401 EXPORT_SYMBOL(netdev_increment_features); 11402 netdev_create_hash(void)11403 static struct hlist_head * __net_init netdev_create_hash(void) 11404 { 11405 int i; 11406 struct hlist_head *hash; 11407 11408 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11409 if (hash != NULL) 11410 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11411 INIT_HLIST_HEAD(&hash[i]); 11412 11413 return hash; 11414 } 11415 11416 /* Initialize per network namespace state */ netdev_init(struct net * net)11417 static int __net_init netdev_init(struct net *net) 11418 { 11419 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11420 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11421 11422 INIT_LIST_HEAD(&net->dev_base_head); 11423 11424 net->dev_name_head = netdev_create_hash(); 11425 if (net->dev_name_head == NULL) 11426 goto err_name; 11427 11428 net->dev_index_head = netdev_create_hash(); 11429 if (net->dev_index_head == NULL) 11430 goto err_idx; 11431 11432 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 11433 11434 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11435 11436 return 0; 11437 11438 err_idx: 11439 kfree(net->dev_name_head); 11440 err_name: 11441 return -ENOMEM; 11442 } 11443 11444 /** 11445 * netdev_drivername - network driver for the device 11446 * @dev: network device 11447 * 11448 * Determine network driver for device. 11449 */ netdev_drivername(const struct net_device * dev)11450 const char *netdev_drivername(const struct net_device *dev) 11451 { 11452 const struct device_driver *driver; 11453 const struct device *parent; 11454 const char *empty = ""; 11455 11456 parent = dev->dev.parent; 11457 if (!parent) 11458 return empty; 11459 11460 driver = parent->driver; 11461 if (driver && driver->name) 11462 return driver->name; 11463 return empty; 11464 } 11465 __netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)11466 static void __netdev_printk(const char *level, const struct net_device *dev, 11467 struct va_format *vaf) 11468 { 11469 if (dev && dev->dev.parent) { 11470 dev_printk_emit(level[1] - '0', 11471 dev->dev.parent, 11472 "%s %s %s%s: %pV", 11473 dev_driver_string(dev->dev.parent), 11474 dev_name(dev->dev.parent), 11475 netdev_name(dev), netdev_reg_state(dev), 11476 vaf); 11477 } else if (dev) { 11478 printk("%s%s%s: %pV", 11479 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11480 } else { 11481 printk("%s(NULL net_device): %pV", level, vaf); 11482 } 11483 } 11484 netdev_printk(const char * level,const struct net_device * dev,const char * format,...)11485 void netdev_printk(const char *level, const struct net_device *dev, 11486 const char *format, ...) 11487 { 11488 struct va_format vaf; 11489 va_list args; 11490 11491 va_start(args, format); 11492 11493 vaf.fmt = format; 11494 vaf.va = &args; 11495 11496 __netdev_printk(level, dev, &vaf); 11497 11498 va_end(args); 11499 } 11500 EXPORT_SYMBOL(netdev_printk); 11501 11502 #define define_netdev_printk_level(func, level) \ 11503 void func(const struct net_device *dev, const char *fmt, ...) \ 11504 { \ 11505 struct va_format vaf; \ 11506 va_list args; \ 11507 \ 11508 va_start(args, fmt); \ 11509 \ 11510 vaf.fmt = fmt; \ 11511 vaf.va = &args; \ 11512 \ 11513 __netdev_printk(level, dev, &vaf); \ 11514 \ 11515 va_end(args); \ 11516 } \ 11517 EXPORT_SYMBOL(func); 11518 11519 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11520 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11521 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11522 define_netdev_printk_level(netdev_err, KERN_ERR); 11523 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11524 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11525 define_netdev_printk_level(netdev_info, KERN_INFO); 11526 netdev_exit(struct net * net)11527 static void __net_exit netdev_exit(struct net *net) 11528 { 11529 kfree(net->dev_name_head); 11530 kfree(net->dev_index_head); 11531 xa_destroy(&net->dev_by_index); 11532 if (net != &init_net) 11533 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11534 } 11535 11536 static struct pernet_operations __net_initdata netdev_net_ops = { 11537 .init = netdev_init, 11538 .exit = netdev_exit, 11539 }; 11540 default_device_exit_net(struct net * net)11541 static void __net_exit default_device_exit_net(struct net *net) 11542 { 11543 struct netdev_name_node *name_node, *tmp; 11544 struct net_device *dev, *aux; 11545 /* 11546 * Push all migratable network devices back to the 11547 * initial network namespace 11548 */ 11549 ASSERT_RTNL(); 11550 for_each_netdev_safe(net, dev, aux) { 11551 int err; 11552 char fb_name[IFNAMSIZ]; 11553 11554 /* Ignore unmoveable devices (i.e. loopback) */ 11555 if (dev->features & NETIF_F_NETNS_LOCAL) 11556 continue; 11557 11558 /* Leave virtual devices for the generic cleanup */ 11559 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 11560 continue; 11561 11562 /* Push remaining network devices to init_net */ 11563 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11564 if (netdev_name_in_use(&init_net, fb_name)) 11565 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11566 11567 netdev_for_each_altname_safe(dev, name_node, tmp) 11568 if (netdev_name_in_use(&init_net, name_node->name)) { 11569 netdev_name_node_del(name_node); 11570 synchronize_rcu(); 11571 __netdev_name_node_alt_destroy(name_node); 11572 } 11573 11574 err = dev_change_net_namespace(dev, &init_net, fb_name); 11575 if (err) { 11576 pr_emerg("%s: failed to move %s to init_net: %d\n", 11577 __func__, dev->name, err); 11578 BUG(); 11579 } 11580 } 11581 } 11582 default_device_exit_batch(struct list_head * net_list)11583 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11584 { 11585 /* At exit all network devices most be removed from a network 11586 * namespace. Do this in the reverse order of registration. 11587 * Do this across as many network namespaces as possible to 11588 * improve batching efficiency. 11589 */ 11590 struct net_device *dev; 11591 struct net *net; 11592 LIST_HEAD(dev_kill_list); 11593 11594 rtnl_lock(); 11595 list_for_each_entry(net, net_list, exit_list) { 11596 default_device_exit_net(net); 11597 cond_resched(); 11598 } 11599 11600 list_for_each_entry(net, net_list, exit_list) { 11601 for_each_netdev_reverse(net, dev) { 11602 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11603 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11604 else 11605 unregister_netdevice_queue(dev, &dev_kill_list); 11606 } 11607 } 11608 unregister_netdevice_many(&dev_kill_list); 11609 rtnl_unlock(); 11610 } 11611 11612 static struct pernet_operations __net_initdata default_device_ops = { 11613 .exit_batch = default_device_exit_batch, 11614 }; 11615 11616 /* 11617 * Initialize the DEV module. At boot time this walks the device list and 11618 * unhooks any devices that fail to initialise (normally hardware not 11619 * present) and leaves us with a valid list of present and active devices. 11620 * 11621 */ 11622 11623 /* 11624 * This is called single threaded during boot, so no need 11625 * to take the rtnl semaphore. 11626 */ net_dev_init(void)11627 static int __init net_dev_init(void) 11628 { 11629 int i, rc = -ENOMEM; 11630 11631 BUG_ON(!dev_boot_phase); 11632 11633 if (dev_proc_init()) 11634 goto out; 11635 11636 if (netdev_kobject_init()) 11637 goto out; 11638 11639 INIT_LIST_HEAD(&ptype_all); 11640 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11641 INIT_LIST_HEAD(&ptype_base[i]); 11642 11643 if (register_pernet_subsys(&netdev_net_ops)) 11644 goto out; 11645 11646 /* 11647 * Initialise the packet receive queues. 11648 */ 11649 11650 for_each_possible_cpu(i) { 11651 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11652 struct softnet_data *sd = &per_cpu(softnet_data, i); 11653 11654 INIT_WORK(flush, flush_backlog); 11655 11656 skb_queue_head_init(&sd->input_pkt_queue); 11657 skb_queue_head_init(&sd->process_queue); 11658 #ifdef CONFIG_XFRM_OFFLOAD 11659 skb_queue_head_init(&sd->xfrm_backlog); 11660 #endif 11661 INIT_LIST_HEAD(&sd->poll_list); 11662 sd->output_queue_tailp = &sd->output_queue; 11663 #ifdef CONFIG_RPS 11664 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 11665 sd->cpu = i; 11666 #endif 11667 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 11668 spin_lock_init(&sd->defer_lock); 11669 11670 init_gro_hash(&sd->backlog); 11671 sd->backlog.poll = process_backlog; 11672 sd->backlog.weight = weight_p; 11673 } 11674 11675 dev_boot_phase = 0; 11676 11677 /* The loopback device is special if any other network devices 11678 * is present in a network namespace the loopback device must 11679 * be present. Since we now dynamically allocate and free the 11680 * loopback device ensure this invariant is maintained by 11681 * keeping the loopback device as the first device on the 11682 * list of network devices. Ensuring the loopback devices 11683 * is the first device that appears and the last network device 11684 * that disappears. 11685 */ 11686 if (register_pernet_device(&loopback_net_ops)) 11687 goto out; 11688 11689 if (register_pernet_device(&default_device_ops)) 11690 goto out; 11691 11692 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11693 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11694 11695 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11696 NULL, dev_cpu_dead); 11697 WARN_ON(rc < 0); 11698 rc = 0; 11699 out: 11700 return rc; 11701 } 11702 11703 subsys_initcall(net_dev_init); 11704