1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The User Datagram Protocol (UDP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 *
15 * Fixes:
16 * Alan Cox : verify_area() calls
17 * Alan Cox : stopped close while in use off icmp
18 * messages. Not a fix but a botch that
19 * for udp at least is 'valid'.
20 * Alan Cox : Fixed icmp handling properly
21 * Alan Cox : Correct error for oversized datagrams
22 * Alan Cox : Tidied select() semantics.
23 * Alan Cox : udp_err() fixed properly, also now
24 * select and read wake correctly on errors
25 * Alan Cox : udp_send verify_area moved to avoid mem leak
26 * Alan Cox : UDP can count its memory
27 * Alan Cox : send to an unknown connection causes
28 * an ECONNREFUSED off the icmp, but
29 * does NOT close.
30 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
32 * bug no longer crashes it.
33 * Fred Van Kempen : Net2e support for sk->broadcast.
34 * Alan Cox : Uses skb_free_datagram
35 * Alan Cox : Added get/set sockopt support.
36 * Alan Cox : Broadcasting without option set returns EACCES.
37 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
38 * Alan Cox : Use ip_tos and ip_ttl
39 * Alan Cox : SNMP Mibs
40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
41 * Matt Dillon : UDP length checks.
42 * Alan Cox : Smarter af_inet used properly.
43 * Alan Cox : Use new kernel side addressing.
44 * Alan Cox : Incorrect return on truncated datagram receive.
45 * Arnt Gulbrandsen : New udp_send and stuff
46 * Alan Cox : Cache last socket
47 * Alan Cox : Route cache
48 * Jon Peatfield : Minor efficiency fix to sendto().
49 * Mike Shaver : RFC1122 checks.
50 * Alan Cox : Nonblocking error fix.
51 * Willy Konynenberg : Transparent proxying support.
52 * Mike McLagan : Routing by source
53 * David S. Miller : New socket lookup architecture.
54 * Last socket cache retained as it
55 * does have a high hit rate.
56 * Olaf Kirch : Don't linearise iovec on sendmsg.
57 * Andi Kleen : Some cleanups, cache destination entry
58 * for connect.
59 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
60 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
61 * return ENOTCONN for unconnected sockets (POSIX)
62 * Janos Farkas : don't deliver multi/broadcasts to a different
63 * bound-to-device socket
64 * Hirokazu Takahashi : HW checksumming for outgoing UDP
65 * datagrams.
66 * Hirokazu Takahashi : sendfile() on UDP works now.
67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
70 * a single port at the same time.
71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72 * James Chapman : Add L2TP encapsulation type.
73 */
74
75 #define pr_fmt(fmt) "UDP: " fmt
76
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/gso.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include <linux/static_key.h>
110 #include <linux/btf_ids.h>
111 #include <trace/events/skb.h>
112 #include <net/busy_poll.h>
113 #include "udp_impl.h"
114 #include <net/sock_reuseport.h>
115 #include <net/addrconf.h>
116 #include <net/udp_tunnel.h>
117 #include <net/gro.h>
118 #if IS_ENABLED(CONFIG_IPV6)
119 #include <net/ipv6_stubs.h>
120 #endif
121
122 struct udp_table udp_table __read_mostly;
123 EXPORT_SYMBOL(udp_table);
124
125 long sysctl_udp_mem[3] __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_mem);
127
128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
129 EXPORT_SYMBOL(udp_memory_allocated);
130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
132
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
135
udp_get_table_prot(struct sock * sk)136 static struct udp_table *udp_get_table_prot(struct sock *sk)
137 {
138 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
139 }
140
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,unsigned int log)141 static int udp_lib_lport_inuse(struct net *net, __u16 num,
142 const struct udp_hslot *hslot,
143 unsigned long *bitmap,
144 struct sock *sk, unsigned int log)
145 {
146 struct sock *sk2;
147 kuid_t uid = sock_i_uid(sk);
148
149 sk_for_each(sk2, &hslot->head) {
150 if (net_eq(sock_net(sk2), net) &&
151 sk2 != sk &&
152 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 (!sk2->sk_reuse || !sk->sk_reuse) &&
154 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 inet_rcv_saddr_equal(sk, sk2, true)) {
157 if (sk2->sk_reuseport && sk->sk_reuseport &&
158 !rcu_access_pointer(sk->sk_reuseport_cb) &&
159 uid_eq(uid, sock_i_uid(sk2))) {
160 if (!bitmap)
161 return 0;
162 } else {
163 if (!bitmap)
164 return 1;
165 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
166 bitmap);
167 }
168 }
169 }
170 return 0;
171 }
172
173 /*
174 * Note: we still hold spinlock of primary hash chain, so no other writer
175 * can insert/delete a socket with local_port == num
176 */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk)177 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
178 struct udp_hslot *hslot2,
179 struct sock *sk)
180 {
181 struct sock *sk2;
182 kuid_t uid = sock_i_uid(sk);
183 int res = 0;
184
185 spin_lock(&hslot2->lock);
186 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
187 if (net_eq(sock_net(sk2), net) &&
188 sk2 != sk &&
189 (udp_sk(sk2)->udp_port_hash == num) &&
190 (!sk2->sk_reuse || !sk->sk_reuse) &&
191 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
192 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
193 inet_rcv_saddr_equal(sk, sk2, true)) {
194 if (sk2->sk_reuseport && sk->sk_reuseport &&
195 !rcu_access_pointer(sk->sk_reuseport_cb) &&
196 uid_eq(uid, sock_i_uid(sk2))) {
197 res = 0;
198 } else {
199 res = 1;
200 }
201 break;
202 }
203 }
204 spin_unlock(&hslot2->lock);
205 return res;
206 }
207
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot)208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
209 {
210 struct net *net = sock_net(sk);
211 kuid_t uid = sock_i_uid(sk);
212 struct sock *sk2;
213
214 sk_for_each(sk2, &hslot->head) {
215 if (net_eq(sock_net(sk2), net) &&
216 sk2 != sk &&
217 sk2->sk_family == sk->sk_family &&
218 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
222 inet_rcv_saddr_equal(sk, sk2, false)) {
223 return reuseport_add_sock(sk, sk2,
224 inet_rcv_saddr_any(sk));
225 }
226 }
227
228 return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
229 }
230
231 /**
232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
233 *
234 * @sk: socket struct in question
235 * @snum: port number to look up
236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237 * with NULL address
238 */
udp_lib_get_port(struct sock * sk,unsigned short snum,unsigned int hash2_nulladdr)239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 unsigned int hash2_nulladdr)
241 {
242 struct udp_table *udptable = udp_get_table_prot(sk);
243 struct udp_hslot *hslot, *hslot2;
244 struct net *net = sock_net(sk);
245 int error = -EADDRINUSE;
246
247 if (!snum) {
248 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
249 unsigned short first, last;
250 int low, high, remaining;
251 unsigned int rand;
252
253 inet_sk_get_local_port_range(sk, &low, &high);
254 remaining = (high - low) + 1;
255
256 rand = get_random_u32();
257 first = reciprocal_scale(rand, remaining) + low;
258 /*
259 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 */
261 rand = (rand | 1) * (udptable->mask + 1);
262 last = first + udptable->mask + 1;
263 do {
264 hslot = udp_hashslot(udptable, net, first);
265 bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 spin_lock_bh(&hslot->lock);
267 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268 udptable->log);
269
270 snum = first;
271 /*
272 * Iterate on all possible values of snum for this hash.
273 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 * give us randomization and full range coverage.
275 */
276 do {
277 if (low <= snum && snum <= high &&
278 !test_bit(snum >> udptable->log, bitmap) &&
279 !inet_is_local_reserved_port(net, snum))
280 goto found;
281 snum += rand;
282 } while (snum != first);
283 spin_unlock_bh(&hslot->lock);
284 cond_resched();
285 } while (++first != last);
286 goto fail;
287 } else {
288 hslot = udp_hashslot(udptable, net, snum);
289 spin_lock_bh(&hslot->lock);
290 if (hslot->count > 10) {
291 int exist;
292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293
294 slot2 &= udptable->mask;
295 hash2_nulladdr &= udptable->mask;
296
297 hslot2 = udp_hashslot2(udptable, slot2);
298 if (hslot->count < hslot2->count)
299 goto scan_primary_hash;
300
301 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 if (!exist && (hash2_nulladdr != slot2)) {
303 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 exist = udp_lib_lport_inuse2(net, snum, hslot2,
305 sk);
306 }
307 if (exist)
308 goto fail_unlock;
309 else
310 goto found;
311 }
312 scan_primary_hash:
313 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314 goto fail_unlock;
315 }
316 found:
317 inet_sk(sk)->inet_num = snum;
318 udp_sk(sk)->udp_port_hash = snum;
319 udp_sk(sk)->udp_portaddr_hash ^= snum;
320 if (sk_unhashed(sk)) {
321 if (sk->sk_reuseport &&
322 udp_reuseport_add_sock(sk, hslot)) {
323 inet_sk(sk)->inet_num = 0;
324 udp_sk(sk)->udp_port_hash = 0;
325 udp_sk(sk)->udp_portaddr_hash ^= snum;
326 goto fail_unlock;
327 }
328
329 sock_set_flag(sk, SOCK_RCU_FREE);
330
331 sk_add_node_rcu(sk, &hslot->head);
332 hslot->count++;
333 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
334
335 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
336 spin_lock(&hslot2->lock);
337 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
338 sk->sk_family == AF_INET6)
339 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
340 &hslot2->head);
341 else
342 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
343 &hslot2->head);
344 hslot2->count++;
345 spin_unlock(&hslot2->lock);
346 }
347
348 error = 0;
349 fail_unlock:
350 spin_unlock_bh(&hslot->lock);
351 fail:
352 return error;
353 }
354 EXPORT_SYMBOL(udp_lib_get_port);
355
udp_v4_get_port(struct sock * sk,unsigned short snum)356 int udp_v4_get_port(struct sock *sk, unsigned short snum)
357 {
358 unsigned int hash2_nulladdr =
359 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
360 unsigned int hash2_partial =
361 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
362
363 /* precompute partial secondary hash */
364 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
365 return udp_lib_get_port(sk, snum, hash2_nulladdr);
366 }
367
compute_score(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif,int sdif)368 static int compute_score(struct sock *sk, struct net *net,
369 __be32 saddr, __be16 sport,
370 __be32 daddr, unsigned short hnum,
371 int dif, int sdif)
372 {
373 int score;
374 struct inet_sock *inet;
375 bool dev_match;
376
377 if (!net_eq(sock_net(sk), net) ||
378 udp_sk(sk)->udp_port_hash != hnum ||
379 ipv6_only_sock(sk))
380 return -1;
381
382 if (sk->sk_rcv_saddr != daddr)
383 return -1;
384
385 score = (sk->sk_family == PF_INET) ? 2 : 1;
386
387 inet = inet_sk(sk);
388 if (inet->inet_daddr) {
389 if (inet->inet_daddr != saddr)
390 return -1;
391 score += 4;
392 }
393
394 if (inet->inet_dport) {
395 if (inet->inet_dport != sport)
396 return -1;
397 score += 4;
398 }
399
400 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
401 dif, sdif);
402 if (!dev_match)
403 return -1;
404 if (sk->sk_bound_dev_if)
405 score += 4;
406
407 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
408 score++;
409 return score;
410 }
411
412 INDIRECT_CALLABLE_SCOPE
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)413 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
414 const __be32 faddr, const __be16 fport)
415 {
416 static u32 udp_ehash_secret __read_mostly;
417
418 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
419
420 return __inet_ehashfn(laddr, lport, faddr, fport,
421 udp_ehash_secret + net_hash_mix(net));
422 }
423
424 /* called with rcu_read_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_hslot * hslot2,struct sk_buff * skb)425 static struct sock *udp4_lib_lookup2(struct net *net,
426 __be32 saddr, __be16 sport,
427 __be32 daddr, unsigned int hnum,
428 int dif, int sdif,
429 struct udp_hslot *hslot2,
430 struct sk_buff *skb)
431 {
432 struct sock *sk, *result;
433 int score, badness;
434 bool need_rescore;
435
436 result = NULL;
437 badness = 0;
438 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
439 need_rescore = false;
440 rescore:
441 score = compute_score(need_rescore ? result : sk, net, saddr,
442 sport, daddr, hnum, dif, sdif);
443 if (score > badness) {
444 badness = score;
445
446 if (need_rescore)
447 continue;
448
449 if (sk->sk_state == TCP_ESTABLISHED) {
450 result = sk;
451 continue;
452 }
453
454 result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
455 saddr, sport, daddr, hnum, udp_ehashfn);
456 if (!result) {
457 result = sk;
458 continue;
459 }
460
461 /* Fall back to scoring if group has connections */
462 if (!reuseport_has_conns(sk))
463 return result;
464
465 /* Reuseport logic returned an error, keep original score. */
466 if (IS_ERR(result))
467 continue;
468
469 /* compute_score is too long of a function to be
470 * inlined, and calling it again here yields
471 * measureable overhead for some
472 * workloads. Work around it by jumping
473 * backwards to rescore 'result'.
474 */
475 need_rescore = true;
476 goto rescore;
477 }
478 }
479 return result;
480 }
481
482 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
483 * harder than this. -DaveM
484 */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,int sdif,struct udp_table * udptable,struct sk_buff * skb)485 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
486 __be16 sport, __be32 daddr, __be16 dport, int dif,
487 int sdif, struct udp_table *udptable, struct sk_buff *skb)
488 {
489 unsigned short hnum = ntohs(dport);
490 unsigned int hash2, slot2;
491 struct udp_hslot *hslot2;
492 struct sock *result, *sk;
493
494 hash2 = ipv4_portaddr_hash(net, daddr, hnum);
495 slot2 = hash2 & udptable->mask;
496 hslot2 = &udptable->hash2[slot2];
497
498 /* Lookup connected or non-wildcard socket */
499 result = udp4_lib_lookup2(net, saddr, sport,
500 daddr, hnum, dif, sdif,
501 hslot2, skb);
502 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
503 goto done;
504
505 /* Lookup redirect from BPF */
506 if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
507 udptable == net->ipv4.udp_table) {
508 sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
509 saddr, sport, daddr, hnum, dif,
510 udp_ehashfn);
511 if (sk) {
512 result = sk;
513 goto done;
514 }
515 }
516
517 /* Got non-wildcard socket or error on first lookup */
518 if (result)
519 goto done;
520
521 /* Lookup wildcard sockets */
522 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
523 slot2 = hash2 & udptable->mask;
524 hslot2 = &udptable->hash2[slot2];
525
526 result = udp4_lib_lookup2(net, saddr, sport,
527 htonl(INADDR_ANY), hnum, dif, sdif,
528 hslot2, skb);
529 done:
530 if (IS_ERR(result))
531 return NULL;
532 return result;
533 }
534 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
535
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)536 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
537 __be16 sport, __be16 dport,
538 struct udp_table *udptable)
539 {
540 const struct iphdr *iph = ip_hdr(skb);
541
542 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
543 iph->daddr, dport, inet_iif(skb),
544 inet_sdif(skb), udptable, skb);
545 }
546
udp4_lib_lookup_skb(const struct sk_buff * skb,__be16 sport,__be16 dport)547 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
548 __be16 sport, __be16 dport)
549 {
550 const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
551 const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
552 struct net *net = dev_net(skb->dev);
553 int iif, sdif;
554
555 inet_get_iif_sdif(skb, &iif, &sdif);
556
557 return __udp4_lib_lookup(net, iph->saddr, sport,
558 iph->daddr, dport, iif,
559 sdif, net->ipv4.udp_table, NULL);
560 }
561
562 /* Must be called under rcu_read_lock().
563 * Does increment socket refcount.
564 */
565 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)566 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
567 __be32 daddr, __be16 dport, int dif)
568 {
569 struct sock *sk;
570
571 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
572 dif, 0, net->ipv4.udp_table, NULL);
573 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
574 sk = NULL;
575 return sk;
576 }
577 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
578 #endif
579
__udp_is_mcast_sock(struct net * net,const struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif,unsigned short hnum)580 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
581 __be16 loc_port, __be32 loc_addr,
582 __be16 rmt_port, __be32 rmt_addr,
583 int dif, int sdif, unsigned short hnum)
584 {
585 const struct inet_sock *inet = inet_sk(sk);
586
587 if (!net_eq(sock_net(sk), net) ||
588 udp_sk(sk)->udp_port_hash != hnum ||
589 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
590 (inet->inet_dport != rmt_port && inet->inet_dport) ||
591 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
592 ipv6_only_sock(sk) ||
593 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
594 return false;
595 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
596 return false;
597 return true;
598 }
599
600 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
601 EXPORT_SYMBOL(udp_encap_needed_key);
602
603 #if IS_ENABLED(CONFIG_IPV6)
604 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
605 EXPORT_SYMBOL(udpv6_encap_needed_key);
606 #endif
607
udp_encap_enable(void)608 void udp_encap_enable(void)
609 {
610 static_branch_inc(&udp_encap_needed_key);
611 }
612 EXPORT_SYMBOL(udp_encap_enable);
613
udp_encap_disable(void)614 void udp_encap_disable(void)
615 {
616 static_branch_dec(&udp_encap_needed_key);
617 }
618 EXPORT_SYMBOL(udp_encap_disable);
619
620 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
621 * through error handlers in encapsulations looking for a match.
622 */
__udp4_lib_err_encap_no_sk(struct sk_buff * skb,u32 info)623 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
624 {
625 int i;
626
627 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
628 int (*handler)(struct sk_buff *skb, u32 info);
629 const struct ip_tunnel_encap_ops *encap;
630
631 encap = rcu_dereference(iptun_encaps[i]);
632 if (!encap)
633 continue;
634 handler = encap->err_handler;
635 if (handler && !handler(skb, info))
636 return 0;
637 }
638
639 return -ENOENT;
640 }
641
642 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
643 * reversing source and destination port: this will match tunnels that force the
644 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
645 * lwtunnels might actually break this assumption by being configured with
646 * different destination ports on endpoints, in this case we won't be able to
647 * trace ICMP messages back to them.
648 *
649 * If this doesn't match any socket, probe tunnels with arbitrary destination
650 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
651 * we've sent packets to won't necessarily match the local destination port.
652 *
653 * Then ask the tunnel implementation to match the error against a valid
654 * association.
655 *
656 * Return an error if we can't find a match, the socket if we need further
657 * processing, zero otherwise.
658 */
__udp4_lib_err_encap(struct net * net,const struct iphdr * iph,struct udphdr * uh,struct udp_table * udptable,struct sock * sk,struct sk_buff * skb,u32 info)659 static struct sock *__udp4_lib_err_encap(struct net *net,
660 const struct iphdr *iph,
661 struct udphdr *uh,
662 struct udp_table *udptable,
663 struct sock *sk,
664 struct sk_buff *skb, u32 info)
665 {
666 int (*lookup)(struct sock *sk, struct sk_buff *skb);
667 int network_offset, transport_offset;
668 struct udp_sock *up;
669
670 network_offset = skb_network_offset(skb);
671 transport_offset = skb_transport_offset(skb);
672
673 /* Network header needs to point to the outer IPv4 header inside ICMP */
674 skb_reset_network_header(skb);
675
676 /* Transport header needs to point to the UDP header */
677 skb_set_transport_header(skb, iph->ihl << 2);
678
679 if (sk) {
680 up = udp_sk(sk);
681
682 lookup = READ_ONCE(up->encap_err_lookup);
683 if (lookup && lookup(sk, skb))
684 sk = NULL;
685
686 goto out;
687 }
688
689 sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
690 iph->saddr, uh->dest, skb->dev->ifindex, 0,
691 udptable, NULL);
692 if (sk) {
693 up = udp_sk(sk);
694
695 lookup = READ_ONCE(up->encap_err_lookup);
696 if (!lookup || lookup(sk, skb))
697 sk = NULL;
698 }
699
700 out:
701 if (!sk)
702 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
703
704 skb_set_transport_header(skb, transport_offset);
705 skb_set_network_header(skb, network_offset);
706
707 return sk;
708 }
709
710 /*
711 * This routine is called by the ICMP module when it gets some
712 * sort of error condition. If err < 0 then the socket should
713 * be closed and the error returned to the user. If err > 0
714 * it's just the icmp type << 8 | icmp code.
715 * Header points to the ip header of the error packet. We move
716 * on past this. Then (as it used to claim before adjustment)
717 * header points to the first 8 bytes of the udp header. We need
718 * to find the appropriate port.
719 */
720
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)721 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
722 {
723 struct inet_sock *inet;
724 const struct iphdr *iph = (const struct iphdr *)skb->data;
725 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
726 const int type = icmp_hdr(skb)->type;
727 const int code = icmp_hdr(skb)->code;
728 bool tunnel = false;
729 struct sock *sk;
730 int harderr;
731 int err;
732 struct net *net = dev_net(skb->dev);
733
734 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
735 iph->saddr, uh->source, skb->dev->ifindex,
736 inet_sdif(skb), udptable, NULL);
737
738 if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
739 /* No socket for error: try tunnels before discarding */
740 if (static_branch_unlikely(&udp_encap_needed_key)) {
741 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
742 info);
743 if (!sk)
744 return 0;
745 } else
746 sk = ERR_PTR(-ENOENT);
747
748 if (IS_ERR(sk)) {
749 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
750 return PTR_ERR(sk);
751 }
752
753 tunnel = true;
754 }
755
756 err = 0;
757 harderr = 0;
758 inet = inet_sk(sk);
759
760 switch (type) {
761 default:
762 case ICMP_TIME_EXCEEDED:
763 err = EHOSTUNREACH;
764 break;
765 case ICMP_SOURCE_QUENCH:
766 goto out;
767 case ICMP_PARAMETERPROB:
768 err = EPROTO;
769 harderr = 1;
770 break;
771 case ICMP_DEST_UNREACH:
772 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
773 ipv4_sk_update_pmtu(skb, sk, info);
774 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
775 err = EMSGSIZE;
776 harderr = 1;
777 break;
778 }
779 goto out;
780 }
781 err = EHOSTUNREACH;
782 if (code <= NR_ICMP_UNREACH) {
783 harderr = icmp_err_convert[code].fatal;
784 err = icmp_err_convert[code].errno;
785 }
786 break;
787 case ICMP_REDIRECT:
788 ipv4_sk_redirect(skb, sk);
789 goto out;
790 }
791
792 /*
793 * RFC1122: OK. Passes ICMP errors back to application, as per
794 * 4.1.3.3.
795 */
796 if (tunnel) {
797 /* ...not for tunnels though: we don't have a sending socket */
798 if (udp_sk(sk)->encap_err_rcv)
799 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
800 (u8 *)(uh+1));
801 goto out;
802 }
803 if (!inet_test_bit(RECVERR, sk)) {
804 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
805 goto out;
806 } else
807 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
808
809 sk->sk_err = err;
810 sk_error_report(sk);
811 out:
812 return 0;
813 }
814
udp_err(struct sk_buff * skb,u32 info)815 int udp_err(struct sk_buff *skb, u32 info)
816 {
817 return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
818 }
819
820 /*
821 * Throw away all pending data and cancel the corking. Socket is locked.
822 */
udp_flush_pending_frames(struct sock * sk)823 void udp_flush_pending_frames(struct sock *sk)
824 {
825 struct udp_sock *up = udp_sk(sk);
826
827 if (up->pending) {
828 up->len = 0;
829 WRITE_ONCE(up->pending, 0);
830 ip_flush_pending_frames(sk);
831 }
832 }
833 EXPORT_SYMBOL(udp_flush_pending_frames);
834
835 /**
836 * udp4_hwcsum - handle outgoing HW checksumming
837 * @skb: sk_buff containing the filled-in UDP header
838 * (checksum field must be zeroed out)
839 * @src: source IP address
840 * @dst: destination IP address
841 */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)842 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
843 {
844 struct udphdr *uh = udp_hdr(skb);
845 int offset = skb_transport_offset(skb);
846 int len = skb->len - offset;
847 int hlen = len;
848 __wsum csum = 0;
849
850 if (!skb_has_frag_list(skb)) {
851 /*
852 * Only one fragment on the socket.
853 */
854 skb->csum_start = skb_transport_header(skb) - skb->head;
855 skb->csum_offset = offsetof(struct udphdr, check);
856 uh->check = ~csum_tcpudp_magic(src, dst, len,
857 IPPROTO_UDP, 0);
858 } else {
859 struct sk_buff *frags;
860
861 /*
862 * HW-checksum won't work as there are two or more
863 * fragments on the socket so that all csums of sk_buffs
864 * should be together
865 */
866 skb_walk_frags(skb, frags) {
867 csum = csum_add(csum, frags->csum);
868 hlen -= frags->len;
869 }
870
871 csum = skb_checksum(skb, offset, hlen, csum);
872 skb->ip_summed = CHECKSUM_NONE;
873
874 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
875 if (uh->check == 0)
876 uh->check = CSUM_MANGLED_0;
877 }
878 }
879 EXPORT_SYMBOL_GPL(udp4_hwcsum);
880
881 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
882 * for the simple case like when setting the checksum for a UDP tunnel.
883 */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)884 void udp_set_csum(bool nocheck, struct sk_buff *skb,
885 __be32 saddr, __be32 daddr, int len)
886 {
887 struct udphdr *uh = udp_hdr(skb);
888
889 if (nocheck) {
890 uh->check = 0;
891 } else if (skb_is_gso(skb)) {
892 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
893 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
894 uh->check = 0;
895 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
896 if (uh->check == 0)
897 uh->check = CSUM_MANGLED_0;
898 } else {
899 skb->ip_summed = CHECKSUM_PARTIAL;
900 skb->csum_start = skb_transport_header(skb) - skb->head;
901 skb->csum_offset = offsetof(struct udphdr, check);
902 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
903 }
904 }
905 EXPORT_SYMBOL(udp_set_csum);
906
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4,struct inet_cork * cork)907 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
908 struct inet_cork *cork)
909 {
910 struct sock *sk = skb->sk;
911 struct inet_sock *inet = inet_sk(sk);
912 struct udphdr *uh;
913 int err;
914 int is_udplite = IS_UDPLITE(sk);
915 int offset = skb_transport_offset(skb);
916 int len = skb->len - offset;
917 int datalen = len - sizeof(*uh);
918 __wsum csum = 0;
919
920 /*
921 * Create a UDP header
922 */
923 uh = udp_hdr(skb);
924 uh->source = inet->inet_sport;
925 uh->dest = fl4->fl4_dport;
926 uh->len = htons(len);
927 uh->check = 0;
928
929 if (cork->gso_size) {
930 const int hlen = skb_network_header_len(skb) +
931 sizeof(struct udphdr);
932
933 if (hlen + min(datalen, cork->gso_size) > cork->fragsize) {
934 kfree_skb(skb);
935 return -EMSGSIZE;
936 }
937 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
938 kfree_skb(skb);
939 return -EINVAL;
940 }
941 if (sk->sk_no_check_tx) {
942 kfree_skb(skb);
943 return -EINVAL;
944 }
945 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
946 dst_xfrm(skb_dst(skb))) {
947 kfree_skb(skb);
948 return -EIO;
949 }
950
951 if (datalen > cork->gso_size) {
952 skb_shinfo(skb)->gso_size = cork->gso_size;
953 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
954 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
955 cork->gso_size);
956 }
957 goto csum_partial;
958 }
959
960 if (is_udplite) /* UDP-Lite */
961 csum = udplite_csum(skb);
962
963 else if (sk->sk_no_check_tx) { /* UDP csum off */
964
965 skb->ip_summed = CHECKSUM_NONE;
966 goto send;
967
968 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
969 csum_partial:
970
971 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
972 goto send;
973
974 } else
975 csum = udp_csum(skb);
976
977 /* add protocol-dependent pseudo-header */
978 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
979 sk->sk_protocol, csum);
980 if (uh->check == 0)
981 uh->check = CSUM_MANGLED_0;
982
983 send:
984 err = ip_send_skb(sock_net(sk), skb);
985 if (err) {
986 if (err == -ENOBUFS &&
987 !inet_test_bit(RECVERR, sk)) {
988 UDP_INC_STATS(sock_net(sk),
989 UDP_MIB_SNDBUFERRORS, is_udplite);
990 err = 0;
991 }
992 } else
993 UDP_INC_STATS(sock_net(sk),
994 UDP_MIB_OUTDATAGRAMS, is_udplite);
995 return err;
996 }
997
998 /*
999 * Push out all pending data as one UDP datagram. Socket is locked.
1000 */
udp_push_pending_frames(struct sock * sk)1001 int udp_push_pending_frames(struct sock *sk)
1002 {
1003 struct udp_sock *up = udp_sk(sk);
1004 struct inet_sock *inet = inet_sk(sk);
1005 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1006 struct sk_buff *skb;
1007 int err = 0;
1008
1009 skb = ip_finish_skb(sk, fl4);
1010 if (!skb)
1011 goto out;
1012
1013 err = udp_send_skb(skb, fl4, &inet->cork.base);
1014
1015 out:
1016 up->len = 0;
1017 WRITE_ONCE(up->pending, 0);
1018 return err;
1019 }
1020 EXPORT_SYMBOL(udp_push_pending_frames);
1021
__udp_cmsg_send(struct cmsghdr * cmsg,u16 * gso_size)1022 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1023 {
1024 switch (cmsg->cmsg_type) {
1025 case UDP_SEGMENT:
1026 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1027 return -EINVAL;
1028 *gso_size = *(__u16 *)CMSG_DATA(cmsg);
1029 return 0;
1030 default:
1031 return -EINVAL;
1032 }
1033 }
1034
udp_cmsg_send(struct sock * sk,struct msghdr * msg,u16 * gso_size)1035 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1036 {
1037 struct cmsghdr *cmsg;
1038 bool need_ip = false;
1039 int err;
1040
1041 for_each_cmsghdr(cmsg, msg) {
1042 if (!CMSG_OK(msg, cmsg))
1043 return -EINVAL;
1044
1045 if (cmsg->cmsg_level != SOL_UDP) {
1046 need_ip = true;
1047 continue;
1048 }
1049
1050 err = __udp_cmsg_send(cmsg, gso_size);
1051 if (err)
1052 return err;
1053 }
1054
1055 return need_ip;
1056 }
1057 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1058
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1059 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1060 {
1061 struct inet_sock *inet = inet_sk(sk);
1062 struct udp_sock *up = udp_sk(sk);
1063 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1064 struct flowi4 fl4_stack;
1065 struct flowi4 *fl4;
1066 int ulen = len;
1067 struct ipcm_cookie ipc;
1068 struct rtable *rt = NULL;
1069 int free = 0;
1070 int connected = 0;
1071 __be32 daddr, faddr, saddr;
1072 u8 tos, scope;
1073 __be16 dport;
1074 int err, is_udplite = IS_UDPLITE(sk);
1075 int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1076 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1077 struct sk_buff *skb;
1078 struct ip_options_data opt_copy;
1079
1080 if (len > 0xFFFF)
1081 return -EMSGSIZE;
1082
1083 /*
1084 * Check the flags.
1085 */
1086
1087 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1088 return -EOPNOTSUPP;
1089
1090 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1091
1092 fl4 = &inet->cork.fl.u.ip4;
1093 if (READ_ONCE(up->pending)) {
1094 /*
1095 * There are pending frames.
1096 * The socket lock must be held while it's corked.
1097 */
1098 lock_sock(sk);
1099 if (likely(up->pending)) {
1100 if (unlikely(up->pending != AF_INET)) {
1101 release_sock(sk);
1102 return -EINVAL;
1103 }
1104 goto do_append_data;
1105 }
1106 release_sock(sk);
1107 }
1108 ulen += sizeof(struct udphdr);
1109
1110 /*
1111 * Get and verify the address.
1112 */
1113 if (usin) {
1114 if (msg->msg_namelen < sizeof(*usin))
1115 return -EINVAL;
1116 if (usin->sin_family != AF_INET) {
1117 if (usin->sin_family != AF_UNSPEC)
1118 return -EAFNOSUPPORT;
1119 }
1120
1121 daddr = usin->sin_addr.s_addr;
1122 dport = usin->sin_port;
1123 if (dport == 0)
1124 return -EINVAL;
1125 } else {
1126 if (sk->sk_state != TCP_ESTABLISHED)
1127 return -EDESTADDRREQ;
1128 daddr = inet->inet_daddr;
1129 dport = inet->inet_dport;
1130 /* Open fast path for connected socket.
1131 Route will not be used, if at least one option is set.
1132 */
1133 connected = 1;
1134 }
1135
1136 ipcm_init_sk(&ipc, inet);
1137 ipc.gso_size = READ_ONCE(up->gso_size);
1138
1139 if (msg->msg_controllen) {
1140 err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1141 if (err > 0) {
1142 err = ip_cmsg_send(sk, msg, &ipc,
1143 sk->sk_family == AF_INET6);
1144 connected = 0;
1145 }
1146 if (unlikely(err < 0)) {
1147 kfree(ipc.opt);
1148 return err;
1149 }
1150 if (ipc.opt)
1151 free = 1;
1152 }
1153 if (!ipc.opt) {
1154 struct ip_options_rcu *inet_opt;
1155
1156 rcu_read_lock();
1157 inet_opt = rcu_dereference(inet->inet_opt);
1158 if (inet_opt) {
1159 memcpy(&opt_copy, inet_opt,
1160 sizeof(*inet_opt) + inet_opt->opt.optlen);
1161 ipc.opt = &opt_copy.opt;
1162 }
1163 rcu_read_unlock();
1164 }
1165
1166 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1167 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1168 (struct sockaddr *)usin,
1169 &msg->msg_namelen,
1170 &ipc.addr);
1171 if (err)
1172 goto out_free;
1173 if (usin) {
1174 if (usin->sin_port == 0) {
1175 /* BPF program set invalid port. Reject it. */
1176 err = -EINVAL;
1177 goto out_free;
1178 }
1179 daddr = usin->sin_addr.s_addr;
1180 dport = usin->sin_port;
1181 }
1182 }
1183
1184 saddr = ipc.addr;
1185 ipc.addr = faddr = daddr;
1186
1187 if (ipc.opt && ipc.opt->opt.srr) {
1188 if (!daddr) {
1189 err = -EINVAL;
1190 goto out_free;
1191 }
1192 faddr = ipc.opt->opt.faddr;
1193 connected = 0;
1194 }
1195 tos = get_rttos(&ipc, inet);
1196 scope = ip_sendmsg_scope(inet, &ipc, msg);
1197 if (scope == RT_SCOPE_LINK)
1198 connected = 0;
1199
1200 if (ipv4_is_multicast(daddr)) {
1201 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1202 ipc.oif = inet->mc_index;
1203 if (!saddr)
1204 saddr = inet->mc_addr;
1205 connected = 0;
1206 } else if (!ipc.oif) {
1207 ipc.oif = inet->uc_index;
1208 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1209 /* oif is set, packet is to local broadcast and
1210 * uc_index is set. oif is most likely set
1211 * by sk_bound_dev_if. If uc_index != oif check if the
1212 * oif is an L3 master and uc_index is an L3 slave.
1213 * If so, we want to allow the send using the uc_index.
1214 */
1215 if (ipc.oif != inet->uc_index &&
1216 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1217 inet->uc_index)) {
1218 ipc.oif = inet->uc_index;
1219 }
1220 }
1221
1222 if (connected)
1223 rt = (struct rtable *)sk_dst_check(sk, 0);
1224
1225 if (!rt) {
1226 struct net *net = sock_net(sk);
1227 __u8 flow_flags = inet_sk_flowi_flags(sk);
1228
1229 fl4 = &fl4_stack;
1230
1231 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1232 sk->sk_protocol, flow_flags, faddr, saddr,
1233 dport, inet->inet_sport, sk->sk_uid);
1234
1235 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1236 rt = ip_route_output_flow(net, fl4, sk);
1237 if (IS_ERR(rt)) {
1238 err = PTR_ERR(rt);
1239 rt = NULL;
1240 if (err == -ENETUNREACH)
1241 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1242 goto out;
1243 }
1244
1245 err = -EACCES;
1246 if ((rt->rt_flags & RTCF_BROADCAST) &&
1247 !sock_flag(sk, SOCK_BROADCAST))
1248 goto out;
1249 if (connected)
1250 sk_dst_set(sk, dst_clone(&rt->dst));
1251 }
1252
1253 if (msg->msg_flags&MSG_CONFIRM)
1254 goto do_confirm;
1255 back_from_confirm:
1256
1257 saddr = fl4->saddr;
1258 if (!ipc.addr)
1259 daddr = ipc.addr = fl4->daddr;
1260
1261 /* Lockless fast path for the non-corking case. */
1262 if (!corkreq) {
1263 struct inet_cork cork;
1264
1265 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1266 sizeof(struct udphdr), &ipc, &rt,
1267 &cork, msg->msg_flags);
1268 err = PTR_ERR(skb);
1269 if (!IS_ERR_OR_NULL(skb))
1270 err = udp_send_skb(skb, fl4, &cork);
1271 goto out;
1272 }
1273
1274 lock_sock(sk);
1275 if (unlikely(up->pending)) {
1276 /* The socket is already corked while preparing it. */
1277 /* ... which is an evident application bug. --ANK */
1278 release_sock(sk);
1279
1280 net_dbg_ratelimited("socket already corked\n");
1281 err = -EINVAL;
1282 goto out;
1283 }
1284 /*
1285 * Now cork the socket to pend data.
1286 */
1287 fl4 = &inet->cork.fl.u.ip4;
1288 fl4->daddr = daddr;
1289 fl4->saddr = saddr;
1290 fl4->fl4_dport = dport;
1291 fl4->fl4_sport = inet->inet_sport;
1292 WRITE_ONCE(up->pending, AF_INET);
1293
1294 do_append_data:
1295 up->len += ulen;
1296 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1297 sizeof(struct udphdr), &ipc, &rt,
1298 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1299 if (err)
1300 udp_flush_pending_frames(sk);
1301 else if (!corkreq)
1302 err = udp_push_pending_frames(sk);
1303 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1304 WRITE_ONCE(up->pending, 0);
1305 release_sock(sk);
1306
1307 out:
1308 ip_rt_put(rt);
1309 out_free:
1310 if (free)
1311 kfree(ipc.opt);
1312 if (!err)
1313 return len;
1314 /*
1315 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1316 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1317 * we don't have a good statistic (IpOutDiscards but it can be too many
1318 * things). We could add another new stat but at least for now that
1319 * seems like overkill.
1320 */
1321 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1322 UDP_INC_STATS(sock_net(sk),
1323 UDP_MIB_SNDBUFERRORS, is_udplite);
1324 }
1325 return err;
1326
1327 do_confirm:
1328 if (msg->msg_flags & MSG_PROBE)
1329 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1330 if (!(msg->msg_flags&MSG_PROBE) || len)
1331 goto back_from_confirm;
1332 err = 0;
1333 goto out;
1334 }
1335 EXPORT_SYMBOL(udp_sendmsg);
1336
udp_splice_eof(struct socket * sock)1337 void udp_splice_eof(struct socket *sock)
1338 {
1339 struct sock *sk = sock->sk;
1340 struct udp_sock *up = udp_sk(sk);
1341
1342 if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1343 return;
1344
1345 lock_sock(sk);
1346 if (up->pending && !udp_test_bit(CORK, sk))
1347 udp_push_pending_frames(sk);
1348 release_sock(sk);
1349 }
1350 EXPORT_SYMBOL_GPL(udp_splice_eof);
1351
1352 #define UDP_SKB_IS_STATELESS 0x80000000
1353
1354 /* all head states (dst, sk, nf conntrack) except skb extensions are
1355 * cleared by udp_rcv().
1356 *
1357 * We need to preserve secpath, if present, to eventually process
1358 * IP_CMSG_PASSSEC at recvmsg() time.
1359 *
1360 * Other extensions can be cleared.
1361 */
udp_try_make_stateless(struct sk_buff * skb)1362 static bool udp_try_make_stateless(struct sk_buff *skb)
1363 {
1364 if (!skb_has_extensions(skb))
1365 return true;
1366
1367 if (!secpath_exists(skb)) {
1368 skb_ext_reset(skb);
1369 return true;
1370 }
1371
1372 return false;
1373 }
1374
udp_set_dev_scratch(struct sk_buff * skb)1375 static void udp_set_dev_scratch(struct sk_buff *skb)
1376 {
1377 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1378
1379 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1380 scratch->_tsize_state = skb->truesize;
1381 #if BITS_PER_LONG == 64
1382 scratch->len = skb->len;
1383 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1384 scratch->is_linear = !skb_is_nonlinear(skb);
1385 #endif
1386 if (udp_try_make_stateless(skb))
1387 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1388 }
1389
udp_skb_csum_unnecessary_set(struct sk_buff * skb)1390 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1391 {
1392 /* We come here after udp_lib_checksum_complete() returned 0.
1393 * This means that __skb_checksum_complete() might have
1394 * set skb->csum_valid to 1.
1395 * On 64bit platforms, we can set csum_unnecessary
1396 * to true, but only if the skb is not shared.
1397 */
1398 #if BITS_PER_LONG == 64
1399 if (!skb_shared(skb))
1400 udp_skb_scratch(skb)->csum_unnecessary = true;
1401 #endif
1402 }
1403
udp_skb_truesize(struct sk_buff * skb)1404 static int udp_skb_truesize(struct sk_buff *skb)
1405 {
1406 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1407 }
1408
udp_skb_has_head_state(struct sk_buff * skb)1409 static bool udp_skb_has_head_state(struct sk_buff *skb)
1410 {
1411 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1412 }
1413
1414 /* fully reclaim rmem/fwd memory allocated for skb */
udp_rmem_release(struct sock * sk,unsigned int size,int partial,bool rx_queue_lock_held)1415 static void udp_rmem_release(struct sock *sk, unsigned int size,
1416 int partial, bool rx_queue_lock_held)
1417 {
1418 struct udp_sock *up = udp_sk(sk);
1419 struct sk_buff_head *sk_queue;
1420 unsigned int amt;
1421
1422 if (likely(partial)) {
1423 up->forward_deficit += size;
1424 size = up->forward_deficit;
1425 if (size < READ_ONCE(up->forward_threshold) &&
1426 !skb_queue_empty(&up->reader_queue))
1427 return;
1428 } else {
1429 size += up->forward_deficit;
1430 }
1431 up->forward_deficit = 0;
1432
1433 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1434 * if the called don't held it already
1435 */
1436 sk_queue = &sk->sk_receive_queue;
1437 if (!rx_queue_lock_held)
1438 spin_lock(&sk_queue->lock);
1439
1440 amt = (size + sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1441 sk_forward_alloc_add(sk, size - amt);
1442
1443 if (amt)
1444 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1445
1446 atomic_sub(size, &sk->sk_rmem_alloc);
1447
1448 /* this can save us from acquiring the rx queue lock on next receive */
1449 skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1450
1451 if (!rx_queue_lock_held)
1452 spin_unlock(&sk_queue->lock);
1453 }
1454
1455 /* Note: called with reader_queue.lock held.
1456 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1457 * This avoids a cache line miss while receive_queue lock is held.
1458 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1459 */
udp_skb_destructor(struct sock * sk,struct sk_buff * skb)1460 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1461 {
1462 prefetch(&skb->data);
1463 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1464 }
1465 EXPORT_SYMBOL(udp_skb_destructor);
1466
1467 /* as above, but the caller held the rx queue lock, too */
udp_skb_dtor_locked(struct sock * sk,struct sk_buff * skb)1468 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1469 {
1470 prefetch(&skb->data);
1471 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1472 }
1473
1474 /* Idea of busylocks is to let producers grab an extra spinlock
1475 * to relieve pressure on the receive_queue spinlock shared by consumer.
1476 * Under flood, this means that only one producer can be in line
1477 * trying to acquire the receive_queue spinlock.
1478 * These busylock can be allocated on a per cpu manner, instead of a
1479 * per socket one (that would consume a cache line per socket)
1480 */
1481 static int udp_busylocks_log __read_mostly;
1482 static spinlock_t *udp_busylocks __read_mostly;
1483
busylock_acquire(void * ptr)1484 static spinlock_t *busylock_acquire(void *ptr)
1485 {
1486 spinlock_t *busy;
1487
1488 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1489 spin_lock(busy);
1490 return busy;
1491 }
1492
busylock_release(spinlock_t * busy)1493 static void busylock_release(spinlock_t *busy)
1494 {
1495 if (busy)
1496 spin_unlock(busy);
1497 }
1498
udp_rmem_schedule(struct sock * sk,int size)1499 static int udp_rmem_schedule(struct sock *sk, int size)
1500 {
1501 int delta;
1502
1503 delta = size - sk->sk_forward_alloc;
1504 if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1505 return -ENOBUFS;
1506
1507 return 0;
1508 }
1509
__udp_enqueue_schedule_skb(struct sock * sk,struct sk_buff * skb)1510 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1511 {
1512 struct sk_buff_head *list = &sk->sk_receive_queue;
1513 int rmem, err = -ENOMEM;
1514 spinlock_t *busy = NULL;
1515 int size;
1516
1517 /* try to avoid the costly atomic add/sub pair when the receive
1518 * queue is full; always allow at least a packet
1519 */
1520 rmem = atomic_read(&sk->sk_rmem_alloc);
1521 if (rmem > sk->sk_rcvbuf)
1522 goto drop;
1523
1524 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1525 * having linear skbs :
1526 * - Reduce memory overhead and thus increase receive queue capacity
1527 * - Less cache line misses at copyout() time
1528 * - Less work at consume_skb() (less alien page frag freeing)
1529 */
1530 if (rmem > (sk->sk_rcvbuf >> 1)) {
1531 skb_condense(skb);
1532
1533 busy = busylock_acquire(sk);
1534 }
1535 size = skb->truesize;
1536 udp_set_dev_scratch(skb);
1537
1538 /* we drop only if the receive buf is full and the receive
1539 * queue contains some other skb
1540 */
1541 rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1542 if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1543 goto uncharge_drop;
1544
1545 spin_lock(&list->lock);
1546 err = udp_rmem_schedule(sk, size);
1547 if (err) {
1548 spin_unlock(&list->lock);
1549 goto uncharge_drop;
1550 }
1551
1552 sk_forward_alloc_add(sk, -size);
1553
1554 /* no need to setup a destructor, we will explicitly release the
1555 * forward allocated memory on dequeue
1556 */
1557 sock_skb_set_dropcount(sk, skb);
1558
1559 __skb_queue_tail(list, skb);
1560 spin_unlock(&list->lock);
1561
1562 if (!sock_flag(sk, SOCK_DEAD))
1563 INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1564
1565 busylock_release(busy);
1566 return 0;
1567
1568 uncharge_drop:
1569 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1570
1571 drop:
1572 atomic_inc(&sk->sk_drops);
1573 busylock_release(busy);
1574 return err;
1575 }
1576 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1577
udp_destruct_common(struct sock * sk)1578 void udp_destruct_common(struct sock *sk)
1579 {
1580 /* reclaim completely the forward allocated memory */
1581 struct udp_sock *up = udp_sk(sk);
1582 unsigned int total = 0;
1583 struct sk_buff *skb;
1584
1585 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1586 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1587 total += skb->truesize;
1588 kfree_skb(skb);
1589 }
1590 udp_rmem_release(sk, total, 0, true);
1591 }
1592 EXPORT_SYMBOL_GPL(udp_destruct_common);
1593
udp_destruct_sock(struct sock * sk)1594 static void udp_destruct_sock(struct sock *sk)
1595 {
1596 udp_destruct_common(sk);
1597 inet_sock_destruct(sk);
1598 }
1599
udp_init_sock(struct sock * sk)1600 int udp_init_sock(struct sock *sk)
1601 {
1602 udp_lib_init_sock(sk);
1603 sk->sk_destruct = udp_destruct_sock;
1604 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1605 return 0;
1606 }
1607
skb_consume_udp(struct sock * sk,struct sk_buff * skb,int len)1608 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1609 {
1610 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1611 bool slow = lock_sock_fast(sk);
1612
1613 sk_peek_offset_bwd(sk, len);
1614 unlock_sock_fast(sk, slow);
1615 }
1616
1617 if (!skb_unref(skb))
1618 return;
1619
1620 /* In the more common cases we cleared the head states previously,
1621 * see __udp_queue_rcv_skb().
1622 */
1623 if (unlikely(udp_skb_has_head_state(skb)))
1624 skb_release_head_state(skb);
1625 __consume_stateless_skb(skb);
1626 }
1627 EXPORT_SYMBOL_GPL(skb_consume_udp);
1628
__first_packet_length(struct sock * sk,struct sk_buff_head * rcvq,unsigned int * total)1629 static struct sk_buff *__first_packet_length(struct sock *sk,
1630 struct sk_buff_head *rcvq,
1631 unsigned int *total)
1632 {
1633 struct sk_buff *skb;
1634
1635 while ((skb = skb_peek(rcvq)) != NULL) {
1636 if (udp_lib_checksum_complete(skb)) {
1637 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1638 IS_UDPLITE(sk));
1639 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1640 IS_UDPLITE(sk));
1641 atomic_inc(&sk->sk_drops);
1642 __skb_unlink(skb, rcvq);
1643 *total += skb->truesize;
1644 kfree_skb(skb);
1645 } else {
1646 udp_skb_csum_unnecessary_set(skb);
1647 break;
1648 }
1649 }
1650 return skb;
1651 }
1652
1653 /**
1654 * first_packet_length - return length of first packet in receive queue
1655 * @sk: socket
1656 *
1657 * Drops all bad checksum frames, until a valid one is found.
1658 * Returns the length of found skb, or -1 if none is found.
1659 */
first_packet_length(struct sock * sk)1660 static int first_packet_length(struct sock *sk)
1661 {
1662 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1663 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1664 unsigned int total = 0;
1665 struct sk_buff *skb;
1666 int res;
1667
1668 spin_lock_bh(&rcvq->lock);
1669 skb = __first_packet_length(sk, rcvq, &total);
1670 if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1671 spin_lock(&sk_queue->lock);
1672 skb_queue_splice_tail_init(sk_queue, rcvq);
1673 spin_unlock(&sk_queue->lock);
1674
1675 skb = __first_packet_length(sk, rcvq, &total);
1676 }
1677 res = skb ? skb->len : -1;
1678 if (total)
1679 udp_rmem_release(sk, total, 1, false);
1680 spin_unlock_bh(&rcvq->lock);
1681 return res;
1682 }
1683
1684 /*
1685 * IOCTL requests applicable to the UDP protocol
1686 */
1687
udp_ioctl(struct sock * sk,int cmd,int * karg)1688 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1689 {
1690 switch (cmd) {
1691 case SIOCOUTQ:
1692 {
1693 *karg = sk_wmem_alloc_get(sk);
1694 return 0;
1695 }
1696
1697 case SIOCINQ:
1698 {
1699 *karg = max_t(int, 0, first_packet_length(sk));
1700 return 0;
1701 }
1702
1703 default:
1704 return -ENOIOCTLCMD;
1705 }
1706
1707 return 0;
1708 }
1709 EXPORT_SYMBOL(udp_ioctl);
1710
__skb_recv_udp(struct sock * sk,unsigned int flags,int * off,int * err)1711 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1712 int *off, int *err)
1713 {
1714 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1715 struct sk_buff_head *queue;
1716 struct sk_buff *last;
1717 long timeo;
1718 int error;
1719
1720 queue = &udp_sk(sk)->reader_queue;
1721 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1722 do {
1723 struct sk_buff *skb;
1724
1725 error = sock_error(sk);
1726 if (error)
1727 break;
1728
1729 error = -EAGAIN;
1730 do {
1731 spin_lock_bh(&queue->lock);
1732 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1733 err, &last);
1734 if (skb) {
1735 if (!(flags & MSG_PEEK))
1736 udp_skb_destructor(sk, skb);
1737 spin_unlock_bh(&queue->lock);
1738 return skb;
1739 }
1740
1741 if (skb_queue_empty_lockless(sk_queue)) {
1742 spin_unlock_bh(&queue->lock);
1743 goto busy_check;
1744 }
1745
1746 /* refill the reader queue and walk it again
1747 * keep both queues locked to avoid re-acquiring
1748 * the sk_receive_queue lock if fwd memory scheduling
1749 * is needed.
1750 */
1751 spin_lock(&sk_queue->lock);
1752 skb_queue_splice_tail_init(sk_queue, queue);
1753
1754 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1755 err, &last);
1756 if (skb && !(flags & MSG_PEEK))
1757 udp_skb_dtor_locked(sk, skb);
1758 spin_unlock(&sk_queue->lock);
1759 spin_unlock_bh(&queue->lock);
1760 if (skb)
1761 return skb;
1762
1763 busy_check:
1764 if (!sk_can_busy_loop(sk))
1765 break;
1766
1767 sk_busy_loop(sk, flags & MSG_DONTWAIT);
1768 } while (!skb_queue_empty_lockless(sk_queue));
1769
1770 /* sk_queue is empty, reader_queue may contain peeked packets */
1771 } while (timeo &&
1772 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1773 &error, &timeo,
1774 (struct sk_buff *)sk_queue));
1775
1776 *err = error;
1777 return NULL;
1778 }
1779 EXPORT_SYMBOL(__skb_recv_udp);
1780
udp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1781 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1782 {
1783 struct sk_buff *skb;
1784 int err;
1785
1786 try_again:
1787 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1788 if (!skb)
1789 return err;
1790
1791 if (udp_lib_checksum_complete(skb)) {
1792 int is_udplite = IS_UDPLITE(sk);
1793 struct net *net = sock_net(sk);
1794
1795 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1796 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1797 atomic_inc(&sk->sk_drops);
1798 kfree_skb(skb);
1799 goto try_again;
1800 }
1801
1802 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1803 return recv_actor(sk, skb);
1804 }
1805 EXPORT_SYMBOL(udp_read_skb);
1806
1807 /*
1808 * This should be easy, if there is something there we
1809 * return it, otherwise we block.
1810 */
1811
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)1812 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1813 int *addr_len)
1814 {
1815 struct inet_sock *inet = inet_sk(sk);
1816 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1817 struct sk_buff *skb;
1818 unsigned int ulen, copied;
1819 int off, err, peeking = flags & MSG_PEEK;
1820 int is_udplite = IS_UDPLITE(sk);
1821 bool checksum_valid = false;
1822
1823 if (flags & MSG_ERRQUEUE)
1824 return ip_recv_error(sk, msg, len, addr_len);
1825
1826 try_again:
1827 off = sk_peek_offset(sk, flags);
1828 skb = __skb_recv_udp(sk, flags, &off, &err);
1829 if (!skb)
1830 return err;
1831
1832 ulen = udp_skb_len(skb);
1833 copied = len;
1834 if (copied > ulen - off)
1835 copied = ulen - off;
1836 else if (copied < ulen)
1837 msg->msg_flags |= MSG_TRUNC;
1838
1839 /*
1840 * If checksum is needed at all, try to do it while copying the
1841 * data. If the data is truncated, or if we only want a partial
1842 * coverage checksum (UDP-Lite), do it before the copy.
1843 */
1844
1845 if (copied < ulen || peeking ||
1846 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1847 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1848 !__udp_lib_checksum_complete(skb);
1849 if (!checksum_valid)
1850 goto csum_copy_err;
1851 }
1852
1853 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1854 if (udp_skb_is_linear(skb))
1855 err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1856 else
1857 err = skb_copy_datagram_msg(skb, off, msg, copied);
1858 } else {
1859 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1860
1861 if (err == -EINVAL)
1862 goto csum_copy_err;
1863 }
1864
1865 if (unlikely(err)) {
1866 if (!peeking) {
1867 atomic_inc(&sk->sk_drops);
1868 UDP_INC_STATS(sock_net(sk),
1869 UDP_MIB_INERRORS, is_udplite);
1870 }
1871 kfree_skb(skb);
1872 return err;
1873 }
1874
1875 if (!peeking)
1876 UDP_INC_STATS(sock_net(sk),
1877 UDP_MIB_INDATAGRAMS, is_udplite);
1878
1879 sock_recv_cmsgs(msg, sk, skb);
1880
1881 /* Copy the address. */
1882 if (sin) {
1883 sin->sin_family = AF_INET;
1884 sin->sin_port = udp_hdr(skb)->source;
1885 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1886 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1887 *addr_len = sizeof(*sin);
1888
1889 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1890 (struct sockaddr *)sin,
1891 addr_len);
1892 }
1893
1894 if (udp_test_bit(GRO_ENABLED, sk))
1895 udp_cmsg_recv(msg, sk, skb);
1896
1897 if (inet_cmsg_flags(inet))
1898 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1899
1900 err = copied;
1901 if (flags & MSG_TRUNC)
1902 err = ulen;
1903
1904 skb_consume_udp(sk, skb, peeking ? -err : err);
1905 return err;
1906
1907 csum_copy_err:
1908 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1909 udp_skb_destructor)) {
1910 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1911 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1912 }
1913 kfree_skb(skb);
1914
1915 /* starting over for a new packet, but check if we need to yield */
1916 cond_resched();
1917 msg->msg_flags &= ~MSG_TRUNC;
1918 goto try_again;
1919 }
1920
udp_pre_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)1921 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1922 {
1923 /* This check is replicated from __ip4_datagram_connect() and
1924 * intended to prevent BPF program called below from accessing bytes
1925 * that are out of the bound specified by user in addr_len.
1926 */
1927 if (addr_len < sizeof(struct sockaddr_in))
1928 return -EINVAL;
1929
1930 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
1931 }
1932 EXPORT_SYMBOL(udp_pre_connect);
1933
__udp_disconnect(struct sock * sk,int flags)1934 int __udp_disconnect(struct sock *sk, int flags)
1935 {
1936 struct inet_sock *inet = inet_sk(sk);
1937 /*
1938 * 1003.1g - break association.
1939 */
1940
1941 sk->sk_state = TCP_CLOSE;
1942 inet->inet_daddr = 0;
1943 inet->inet_dport = 0;
1944 sock_rps_reset_rxhash(sk);
1945 sk->sk_bound_dev_if = 0;
1946 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1947 inet_reset_saddr(sk);
1948 if (sk->sk_prot->rehash &&
1949 (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1950 sk->sk_prot->rehash(sk);
1951 }
1952
1953 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1954 sk->sk_prot->unhash(sk);
1955 inet->inet_sport = 0;
1956 }
1957 sk_dst_reset(sk);
1958 return 0;
1959 }
1960 EXPORT_SYMBOL(__udp_disconnect);
1961
udp_disconnect(struct sock * sk,int flags)1962 int udp_disconnect(struct sock *sk, int flags)
1963 {
1964 lock_sock(sk);
1965 __udp_disconnect(sk, flags);
1966 release_sock(sk);
1967 return 0;
1968 }
1969 EXPORT_SYMBOL(udp_disconnect);
1970
udp_lib_unhash(struct sock * sk)1971 void udp_lib_unhash(struct sock *sk)
1972 {
1973 if (sk_hashed(sk)) {
1974 struct udp_table *udptable = udp_get_table_prot(sk);
1975 struct udp_hslot *hslot, *hslot2;
1976
1977 hslot = udp_hashslot(udptable, sock_net(sk),
1978 udp_sk(sk)->udp_port_hash);
1979 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1980
1981 spin_lock_bh(&hslot->lock);
1982 if (rcu_access_pointer(sk->sk_reuseport_cb))
1983 reuseport_detach_sock(sk);
1984 if (sk_del_node_init_rcu(sk)) {
1985 hslot->count--;
1986 inet_sk(sk)->inet_num = 0;
1987 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1988
1989 spin_lock(&hslot2->lock);
1990 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1991 hslot2->count--;
1992 spin_unlock(&hslot2->lock);
1993 }
1994 spin_unlock_bh(&hslot->lock);
1995 }
1996 }
1997 EXPORT_SYMBOL(udp_lib_unhash);
1998
1999 /*
2000 * inet_rcv_saddr was changed, we must rehash secondary hash
2001 */
udp_lib_rehash(struct sock * sk,u16 newhash)2002 void udp_lib_rehash(struct sock *sk, u16 newhash)
2003 {
2004 if (sk_hashed(sk)) {
2005 struct udp_table *udptable = udp_get_table_prot(sk);
2006 struct udp_hslot *hslot, *hslot2, *nhslot2;
2007
2008 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2009 nhslot2 = udp_hashslot2(udptable, newhash);
2010 udp_sk(sk)->udp_portaddr_hash = newhash;
2011
2012 if (hslot2 != nhslot2 ||
2013 rcu_access_pointer(sk->sk_reuseport_cb)) {
2014 hslot = udp_hashslot(udptable, sock_net(sk),
2015 udp_sk(sk)->udp_port_hash);
2016 /* we must lock primary chain too */
2017 spin_lock_bh(&hslot->lock);
2018 if (rcu_access_pointer(sk->sk_reuseport_cb))
2019 reuseport_detach_sock(sk);
2020
2021 if (hslot2 != nhslot2) {
2022 spin_lock(&hslot2->lock);
2023 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2024 hslot2->count--;
2025 spin_unlock(&hslot2->lock);
2026
2027 spin_lock(&nhslot2->lock);
2028 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2029 &nhslot2->head);
2030 nhslot2->count++;
2031 spin_unlock(&nhslot2->lock);
2032 }
2033
2034 spin_unlock_bh(&hslot->lock);
2035 }
2036 }
2037 }
2038 EXPORT_SYMBOL(udp_lib_rehash);
2039
udp_v4_rehash(struct sock * sk)2040 void udp_v4_rehash(struct sock *sk)
2041 {
2042 u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2043 inet_sk(sk)->inet_rcv_saddr,
2044 inet_sk(sk)->inet_num);
2045 udp_lib_rehash(sk, new_hash);
2046 }
2047
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2048 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2049 {
2050 int rc;
2051
2052 if (inet_sk(sk)->inet_daddr) {
2053 sock_rps_save_rxhash(sk, skb);
2054 sk_mark_napi_id(sk, skb);
2055 sk_incoming_cpu_update(sk);
2056 } else {
2057 sk_mark_napi_id_once(sk, skb);
2058 }
2059
2060 rc = __udp_enqueue_schedule_skb(sk, skb);
2061 if (rc < 0) {
2062 int is_udplite = IS_UDPLITE(sk);
2063 int drop_reason;
2064
2065 /* Note that an ENOMEM error is charged twice */
2066 if (rc == -ENOMEM) {
2067 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2068 is_udplite);
2069 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2070 } else {
2071 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2072 is_udplite);
2073 drop_reason = SKB_DROP_REASON_PROTO_MEM;
2074 }
2075 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2076 kfree_skb_reason(skb, drop_reason);
2077 trace_udp_fail_queue_rcv_skb(rc, sk);
2078 return -1;
2079 }
2080
2081 return 0;
2082 }
2083
2084 /* returns:
2085 * -1: error
2086 * 0: success
2087 * >0: "udp encap" protocol resubmission
2088 *
2089 * Note that in the success and error cases, the skb is assumed to
2090 * have either been requeued or freed.
2091 */
udp_queue_rcv_one_skb(struct sock * sk,struct sk_buff * skb)2092 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2093 {
2094 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2095 struct udp_sock *up = udp_sk(sk);
2096 int is_udplite = IS_UDPLITE(sk);
2097
2098 /*
2099 * Charge it to the socket, dropping if the queue is full.
2100 */
2101 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2102 drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2103 goto drop;
2104 }
2105 nf_reset_ct(skb);
2106
2107 if (static_branch_unlikely(&udp_encap_needed_key) &&
2108 READ_ONCE(up->encap_type)) {
2109 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2110
2111 /*
2112 * This is an encapsulation socket so pass the skb to
2113 * the socket's udp_encap_rcv() hook. Otherwise, just
2114 * fall through and pass this up the UDP socket.
2115 * up->encap_rcv() returns the following value:
2116 * =0 if skb was successfully passed to the encap
2117 * handler or was discarded by it.
2118 * >0 if skb should be passed on to UDP.
2119 * <0 if skb should be resubmitted as proto -N
2120 */
2121
2122 /* if we're overly short, let UDP handle it */
2123 encap_rcv = READ_ONCE(up->encap_rcv);
2124 if (encap_rcv) {
2125 int ret;
2126
2127 /* Verify checksum before giving to encap */
2128 if (udp_lib_checksum_complete(skb))
2129 goto csum_error;
2130
2131 ret = encap_rcv(sk, skb);
2132 if (ret <= 0) {
2133 __UDP_INC_STATS(sock_net(sk),
2134 UDP_MIB_INDATAGRAMS,
2135 is_udplite);
2136 return -ret;
2137 }
2138 }
2139
2140 /* FALLTHROUGH -- it's a UDP Packet */
2141 }
2142
2143 /*
2144 * UDP-Lite specific tests, ignored on UDP sockets
2145 */
2146 if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2147 u16 pcrlen = READ_ONCE(up->pcrlen);
2148
2149 /*
2150 * MIB statistics other than incrementing the error count are
2151 * disabled for the following two types of errors: these depend
2152 * on the application settings, not on the functioning of the
2153 * protocol stack as such.
2154 *
2155 * RFC 3828 here recommends (sec 3.3): "There should also be a
2156 * way ... to ... at least let the receiving application block
2157 * delivery of packets with coverage values less than a value
2158 * provided by the application."
2159 */
2160 if (pcrlen == 0) { /* full coverage was set */
2161 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2162 UDP_SKB_CB(skb)->cscov, skb->len);
2163 goto drop;
2164 }
2165 /* The next case involves violating the min. coverage requested
2166 * by the receiver. This is subtle: if receiver wants x and x is
2167 * greater than the buffersize/MTU then receiver will complain
2168 * that it wants x while sender emits packets of smaller size y.
2169 * Therefore the above ...()->partial_cov statement is essential.
2170 */
2171 if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2172 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2173 UDP_SKB_CB(skb)->cscov, pcrlen);
2174 goto drop;
2175 }
2176 }
2177
2178 prefetch(&sk->sk_rmem_alloc);
2179 if (rcu_access_pointer(sk->sk_filter) &&
2180 udp_lib_checksum_complete(skb))
2181 goto csum_error;
2182
2183 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2184 drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2185 goto drop;
2186 }
2187
2188 udp_csum_pull_header(skb);
2189
2190 ipv4_pktinfo_prepare(sk, skb, true);
2191 return __udp_queue_rcv_skb(sk, skb);
2192
2193 csum_error:
2194 drop_reason = SKB_DROP_REASON_UDP_CSUM;
2195 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2196 drop:
2197 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2198 atomic_inc(&sk->sk_drops);
2199 kfree_skb_reason(skb, drop_reason);
2200 return -1;
2201 }
2202
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2203 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2204 {
2205 struct sk_buff *next, *segs;
2206 int ret;
2207
2208 if (likely(!udp_unexpected_gso(sk, skb)))
2209 return udp_queue_rcv_one_skb(sk, skb);
2210
2211 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2212 __skb_push(skb, -skb_mac_offset(skb));
2213 segs = udp_rcv_segment(sk, skb, true);
2214 skb_list_walk_safe(segs, skb, next) {
2215 __skb_pull(skb, skb_transport_offset(skb));
2216
2217 udp_post_segment_fix_csum(skb);
2218 ret = udp_queue_rcv_one_skb(sk, skb);
2219 if (ret > 0)
2220 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2221 }
2222 return 0;
2223 }
2224
2225 /* For TCP sockets, sk_rx_dst is protected by socket lock
2226 * For UDP, we use xchg() to guard against concurrent changes.
2227 */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)2228 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2229 {
2230 struct dst_entry *old;
2231
2232 if (dst_hold_safe(dst)) {
2233 old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst)));
2234 dst_release(old);
2235 return old != dst;
2236 }
2237 return false;
2238 }
2239 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2240
2241 /*
2242 * Multicasts and broadcasts go to each listener.
2243 *
2244 * Note: called only from the BH handler context.
2245 */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)2246 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2247 struct udphdr *uh,
2248 __be32 saddr, __be32 daddr,
2249 struct udp_table *udptable,
2250 int proto)
2251 {
2252 struct sock *sk, *first = NULL;
2253 unsigned short hnum = ntohs(uh->dest);
2254 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2255 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2256 unsigned int offset = offsetof(typeof(*sk), sk_node);
2257 int dif = skb->dev->ifindex;
2258 int sdif = inet_sdif(skb);
2259 struct hlist_node *node;
2260 struct sk_buff *nskb;
2261
2262 if (use_hash2) {
2263 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2264 udptable->mask;
2265 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2266 start_lookup:
2267 hslot = &udptable->hash2[hash2];
2268 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2269 }
2270
2271 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2272 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2273 uh->source, saddr, dif, sdif, hnum))
2274 continue;
2275
2276 if (!first) {
2277 first = sk;
2278 continue;
2279 }
2280 nskb = skb_clone(skb, GFP_ATOMIC);
2281
2282 if (unlikely(!nskb)) {
2283 atomic_inc(&sk->sk_drops);
2284 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2285 IS_UDPLITE(sk));
2286 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2287 IS_UDPLITE(sk));
2288 continue;
2289 }
2290 if (udp_queue_rcv_skb(sk, nskb) > 0)
2291 consume_skb(nskb);
2292 }
2293
2294 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2295 if (use_hash2 && hash2 != hash2_any) {
2296 hash2 = hash2_any;
2297 goto start_lookup;
2298 }
2299
2300 if (first) {
2301 if (udp_queue_rcv_skb(first, skb) > 0)
2302 consume_skb(skb);
2303 } else {
2304 kfree_skb(skb);
2305 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2306 proto == IPPROTO_UDPLITE);
2307 }
2308 return 0;
2309 }
2310
2311 /* Initialize UDP checksum. If exited with zero value (success),
2312 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2313 * Otherwise, csum completion requires checksumming packet body,
2314 * including udp header and folding it to skb->csum.
2315 */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)2316 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2317 int proto)
2318 {
2319 int err;
2320
2321 UDP_SKB_CB(skb)->partial_cov = 0;
2322 UDP_SKB_CB(skb)->cscov = skb->len;
2323
2324 if (proto == IPPROTO_UDPLITE) {
2325 err = udplite_checksum_init(skb, uh);
2326 if (err)
2327 return err;
2328
2329 if (UDP_SKB_CB(skb)->partial_cov) {
2330 skb->csum = inet_compute_pseudo(skb, proto);
2331 return 0;
2332 }
2333 }
2334
2335 /* Note, we are only interested in != 0 or == 0, thus the
2336 * force to int.
2337 */
2338 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2339 inet_compute_pseudo);
2340 if (err)
2341 return err;
2342
2343 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2344 /* If SW calculated the value, we know it's bad */
2345 if (skb->csum_complete_sw)
2346 return 1;
2347
2348 /* HW says the value is bad. Let's validate that.
2349 * skb->csum is no longer the full packet checksum,
2350 * so don't treat it as such.
2351 */
2352 skb_checksum_complete_unset(skb);
2353 }
2354
2355 return 0;
2356 }
2357
2358 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2359 * return code conversion for ip layer consumption
2360 */
udp_unicast_rcv_skb(struct sock * sk,struct sk_buff * skb,struct udphdr * uh)2361 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2362 struct udphdr *uh)
2363 {
2364 int ret;
2365
2366 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2367 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2368
2369 ret = udp_queue_rcv_skb(sk, skb);
2370
2371 /* a return value > 0 means to resubmit the input, but
2372 * it wants the return to be -protocol, or 0
2373 */
2374 if (ret > 0)
2375 return -ret;
2376 return 0;
2377 }
2378
2379 /*
2380 * All we need to do is get the socket, and then do a checksum.
2381 */
2382
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)2383 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2384 int proto)
2385 {
2386 struct sock *sk;
2387 struct udphdr *uh;
2388 unsigned short ulen;
2389 struct rtable *rt = skb_rtable(skb);
2390 __be32 saddr, daddr;
2391 struct net *net = dev_net(skb->dev);
2392 bool refcounted;
2393 int drop_reason;
2394
2395 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2396
2397 /*
2398 * Validate the packet.
2399 */
2400 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2401 goto drop; /* No space for header. */
2402
2403 uh = udp_hdr(skb);
2404 ulen = ntohs(uh->len);
2405 saddr = ip_hdr(skb)->saddr;
2406 daddr = ip_hdr(skb)->daddr;
2407
2408 if (ulen > skb->len)
2409 goto short_packet;
2410
2411 if (proto == IPPROTO_UDP) {
2412 /* UDP validates ulen. */
2413 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2414 goto short_packet;
2415 uh = udp_hdr(skb);
2416 }
2417
2418 if (udp4_csum_init(skb, uh, proto))
2419 goto csum_error;
2420
2421 sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2422 &refcounted, udp_ehashfn);
2423 if (IS_ERR(sk))
2424 goto no_sk;
2425
2426 if (sk) {
2427 struct dst_entry *dst = skb_dst(skb);
2428 int ret;
2429
2430 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2431 udp_sk_rx_dst_set(sk, dst);
2432
2433 ret = udp_unicast_rcv_skb(sk, skb, uh);
2434 if (refcounted)
2435 sock_put(sk);
2436 return ret;
2437 }
2438
2439 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2440 return __udp4_lib_mcast_deliver(net, skb, uh,
2441 saddr, daddr, udptable, proto);
2442
2443 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2444 if (sk)
2445 return udp_unicast_rcv_skb(sk, skb, uh);
2446 no_sk:
2447 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2448 goto drop;
2449 nf_reset_ct(skb);
2450
2451 /* No socket. Drop packet silently, if checksum is wrong */
2452 if (udp_lib_checksum_complete(skb))
2453 goto csum_error;
2454
2455 drop_reason = SKB_DROP_REASON_NO_SOCKET;
2456 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2457 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2458
2459 /*
2460 * Hmm. We got an UDP packet to a port to which we
2461 * don't wanna listen. Ignore it.
2462 */
2463 kfree_skb_reason(skb, drop_reason);
2464 return 0;
2465
2466 short_packet:
2467 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2468 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2469 proto == IPPROTO_UDPLITE ? "Lite" : "",
2470 &saddr, ntohs(uh->source),
2471 ulen, skb->len,
2472 &daddr, ntohs(uh->dest));
2473 goto drop;
2474
2475 csum_error:
2476 /*
2477 * RFC1122: OK. Discards the bad packet silently (as far as
2478 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2479 */
2480 drop_reason = SKB_DROP_REASON_UDP_CSUM;
2481 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2482 proto == IPPROTO_UDPLITE ? "Lite" : "",
2483 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2484 ulen);
2485 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2486 drop:
2487 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2488 kfree_skb_reason(skb, drop_reason);
2489 return 0;
2490 }
2491
2492 /* We can only early demux multicast if there is a single matching socket.
2493 * If more than one socket found returns NULL
2494 */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2495 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2496 __be16 loc_port, __be32 loc_addr,
2497 __be16 rmt_port, __be32 rmt_addr,
2498 int dif, int sdif)
2499 {
2500 struct udp_table *udptable = net->ipv4.udp_table;
2501 unsigned short hnum = ntohs(loc_port);
2502 struct sock *sk, *result;
2503 struct udp_hslot *hslot;
2504 unsigned int slot;
2505
2506 slot = udp_hashfn(net, hnum, udptable->mask);
2507 hslot = &udptable->hash[slot];
2508
2509 /* Do not bother scanning a too big list */
2510 if (hslot->count > 10)
2511 return NULL;
2512
2513 result = NULL;
2514 sk_for_each_rcu(sk, &hslot->head) {
2515 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2516 rmt_port, rmt_addr, dif, sdif, hnum)) {
2517 if (result)
2518 return NULL;
2519 result = sk;
2520 }
2521 }
2522
2523 return result;
2524 }
2525
2526 /* For unicast we should only early demux connected sockets or we can
2527 * break forwarding setups. The chains here can be long so only check
2528 * if the first socket is an exact match and if not move on.
2529 */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2530 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2531 __be16 loc_port, __be32 loc_addr,
2532 __be16 rmt_port, __be32 rmt_addr,
2533 int dif, int sdif)
2534 {
2535 struct udp_table *udptable = net->ipv4.udp_table;
2536 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2537 unsigned short hnum = ntohs(loc_port);
2538 unsigned int hash2, slot2;
2539 struct udp_hslot *hslot2;
2540 __portpair ports;
2541 struct sock *sk;
2542
2543 hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2544 slot2 = hash2 & udptable->mask;
2545 hslot2 = &udptable->hash2[slot2];
2546 ports = INET_COMBINED_PORTS(rmt_port, hnum);
2547
2548 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2549 if (inet_match(net, sk, acookie, ports, dif, sdif))
2550 return sk;
2551 /* Only check first socket in chain */
2552 break;
2553 }
2554 return NULL;
2555 }
2556
udp_v4_early_demux(struct sk_buff * skb)2557 int udp_v4_early_demux(struct sk_buff *skb)
2558 {
2559 struct net *net = dev_net(skb->dev);
2560 struct in_device *in_dev = NULL;
2561 const struct iphdr *iph;
2562 const struct udphdr *uh;
2563 struct sock *sk = NULL;
2564 struct dst_entry *dst;
2565 int dif = skb->dev->ifindex;
2566 int sdif = inet_sdif(skb);
2567 int ours;
2568
2569 /* validate the packet */
2570 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2571 return 0;
2572
2573 iph = ip_hdr(skb);
2574 uh = udp_hdr(skb);
2575
2576 if (skb->pkt_type == PACKET_MULTICAST) {
2577 in_dev = __in_dev_get_rcu(skb->dev);
2578
2579 if (!in_dev)
2580 return 0;
2581
2582 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2583 iph->protocol);
2584 if (!ours)
2585 return 0;
2586
2587 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2588 uh->source, iph->saddr,
2589 dif, sdif);
2590 } else if (skb->pkt_type == PACKET_HOST) {
2591 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2592 uh->source, iph->saddr, dif, sdif);
2593 }
2594
2595 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2596 return 0;
2597
2598 skb->sk = sk;
2599 skb->destructor = sock_efree;
2600 dst = rcu_dereference(sk->sk_rx_dst);
2601
2602 if (dst)
2603 dst = dst_check(dst, 0);
2604 if (dst) {
2605 u32 itag = 0;
2606
2607 /* set noref for now.
2608 * any place which wants to hold dst has to call
2609 * dst_hold_safe()
2610 */
2611 skb_dst_set_noref(skb, dst);
2612
2613 /* for unconnected multicast sockets we need to validate
2614 * the source on each packet
2615 */
2616 if (!inet_sk(sk)->inet_daddr && in_dev)
2617 return ip_mc_validate_source(skb, iph->daddr,
2618 iph->saddr,
2619 iph->tos & IPTOS_RT_MASK,
2620 skb->dev, in_dev, &itag);
2621 }
2622 return 0;
2623 }
2624
udp_rcv(struct sk_buff * skb)2625 int udp_rcv(struct sk_buff *skb)
2626 {
2627 return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2628 }
2629
udp_destroy_sock(struct sock * sk)2630 void udp_destroy_sock(struct sock *sk)
2631 {
2632 struct udp_sock *up = udp_sk(sk);
2633 bool slow = lock_sock_fast(sk);
2634
2635 /* protects from races with udp_abort() */
2636 sock_set_flag(sk, SOCK_DEAD);
2637 udp_flush_pending_frames(sk);
2638 unlock_sock_fast(sk, slow);
2639 if (static_branch_unlikely(&udp_encap_needed_key)) {
2640 if (up->encap_type) {
2641 void (*encap_destroy)(struct sock *sk);
2642 encap_destroy = READ_ONCE(up->encap_destroy);
2643 if (encap_destroy)
2644 encap_destroy(sk);
2645 }
2646 if (udp_test_bit(ENCAP_ENABLED, sk))
2647 static_branch_dec(&udp_encap_needed_key);
2648 }
2649 }
2650
2651 /*
2652 * Socket option code for UDP
2653 */
udp_lib_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2654 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2655 sockptr_t optval, unsigned int optlen,
2656 int (*push_pending_frames)(struct sock *))
2657 {
2658 struct udp_sock *up = udp_sk(sk);
2659 int val, valbool;
2660 int err = 0;
2661 int is_udplite = IS_UDPLITE(sk);
2662
2663 if (level == SOL_SOCKET) {
2664 err = sk_setsockopt(sk, level, optname, optval, optlen);
2665
2666 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2667 sockopt_lock_sock(sk);
2668 /* paired with READ_ONCE in udp_rmem_release() */
2669 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2670 sockopt_release_sock(sk);
2671 }
2672 return err;
2673 }
2674
2675 if (optlen < sizeof(int))
2676 return -EINVAL;
2677
2678 if (copy_from_sockptr(&val, optval, sizeof(val)))
2679 return -EFAULT;
2680
2681 valbool = val ? 1 : 0;
2682
2683 switch (optname) {
2684 case UDP_CORK:
2685 if (val != 0) {
2686 udp_set_bit(CORK, sk);
2687 } else {
2688 udp_clear_bit(CORK, sk);
2689 lock_sock(sk);
2690 push_pending_frames(sk);
2691 release_sock(sk);
2692 }
2693 break;
2694
2695 case UDP_ENCAP:
2696 switch (val) {
2697 case 0:
2698 #ifdef CONFIG_XFRM
2699 case UDP_ENCAP_ESPINUDP:
2700 case UDP_ENCAP_ESPINUDP_NON_IKE:
2701 #if IS_ENABLED(CONFIG_IPV6)
2702 if (sk->sk_family == AF_INET6)
2703 WRITE_ONCE(up->encap_rcv,
2704 ipv6_stub->xfrm6_udp_encap_rcv);
2705 else
2706 #endif
2707 WRITE_ONCE(up->encap_rcv,
2708 xfrm4_udp_encap_rcv);
2709 #endif
2710 fallthrough;
2711 case UDP_ENCAP_L2TPINUDP:
2712 WRITE_ONCE(up->encap_type, val);
2713 udp_tunnel_encap_enable(sk);
2714 break;
2715 default:
2716 err = -ENOPROTOOPT;
2717 break;
2718 }
2719 break;
2720
2721 case UDP_NO_CHECK6_TX:
2722 udp_set_no_check6_tx(sk, valbool);
2723 break;
2724
2725 case UDP_NO_CHECK6_RX:
2726 udp_set_no_check6_rx(sk, valbool);
2727 break;
2728
2729 case UDP_SEGMENT:
2730 if (val < 0 || val > USHRT_MAX)
2731 return -EINVAL;
2732 WRITE_ONCE(up->gso_size, val);
2733 break;
2734
2735 case UDP_GRO:
2736
2737 /* when enabling GRO, accept the related GSO packet type */
2738 if (valbool)
2739 udp_tunnel_encap_enable(sk);
2740 udp_assign_bit(GRO_ENABLED, sk, valbool);
2741 udp_assign_bit(ACCEPT_L4, sk, valbool);
2742 break;
2743
2744 /*
2745 * UDP-Lite's partial checksum coverage (RFC 3828).
2746 */
2747 /* The sender sets actual checksum coverage length via this option.
2748 * The case coverage > packet length is handled by send module. */
2749 case UDPLITE_SEND_CSCOV:
2750 if (!is_udplite) /* Disable the option on UDP sockets */
2751 return -ENOPROTOOPT;
2752 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2753 val = 8;
2754 else if (val > USHRT_MAX)
2755 val = USHRT_MAX;
2756 WRITE_ONCE(up->pcslen, val);
2757 udp_set_bit(UDPLITE_SEND_CC, sk);
2758 break;
2759
2760 /* The receiver specifies a minimum checksum coverage value. To make
2761 * sense, this should be set to at least 8 (as done below). If zero is
2762 * used, this again means full checksum coverage. */
2763 case UDPLITE_RECV_CSCOV:
2764 if (!is_udplite) /* Disable the option on UDP sockets */
2765 return -ENOPROTOOPT;
2766 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2767 val = 8;
2768 else if (val > USHRT_MAX)
2769 val = USHRT_MAX;
2770 WRITE_ONCE(up->pcrlen, val);
2771 udp_set_bit(UDPLITE_RECV_CC, sk);
2772 break;
2773
2774 default:
2775 err = -ENOPROTOOPT;
2776 break;
2777 }
2778
2779 return err;
2780 }
2781 EXPORT_SYMBOL(udp_lib_setsockopt);
2782
udp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)2783 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2784 unsigned int optlen)
2785 {
2786 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET)
2787 return udp_lib_setsockopt(sk, level, optname,
2788 optval, optlen,
2789 udp_push_pending_frames);
2790 return ip_setsockopt(sk, level, optname, optval, optlen);
2791 }
2792
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2793 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2794 char __user *optval, int __user *optlen)
2795 {
2796 struct udp_sock *up = udp_sk(sk);
2797 int val, len;
2798
2799 if (get_user(len, optlen))
2800 return -EFAULT;
2801
2802 if (len < 0)
2803 return -EINVAL;
2804
2805 len = min_t(unsigned int, len, sizeof(int));
2806
2807 switch (optname) {
2808 case UDP_CORK:
2809 val = udp_test_bit(CORK, sk);
2810 break;
2811
2812 case UDP_ENCAP:
2813 val = READ_ONCE(up->encap_type);
2814 break;
2815
2816 case UDP_NO_CHECK6_TX:
2817 val = udp_get_no_check6_tx(sk);
2818 break;
2819
2820 case UDP_NO_CHECK6_RX:
2821 val = udp_get_no_check6_rx(sk);
2822 break;
2823
2824 case UDP_SEGMENT:
2825 val = READ_ONCE(up->gso_size);
2826 break;
2827
2828 case UDP_GRO:
2829 val = udp_test_bit(GRO_ENABLED, sk);
2830 break;
2831
2832 /* The following two cannot be changed on UDP sockets, the return is
2833 * always 0 (which corresponds to the full checksum coverage of UDP). */
2834 case UDPLITE_SEND_CSCOV:
2835 val = READ_ONCE(up->pcslen);
2836 break;
2837
2838 case UDPLITE_RECV_CSCOV:
2839 val = READ_ONCE(up->pcrlen);
2840 break;
2841
2842 default:
2843 return -ENOPROTOOPT;
2844 }
2845
2846 if (put_user(len, optlen))
2847 return -EFAULT;
2848 if (copy_to_user(optval, &val, len))
2849 return -EFAULT;
2850 return 0;
2851 }
2852 EXPORT_SYMBOL(udp_lib_getsockopt);
2853
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2854 int udp_getsockopt(struct sock *sk, int level, int optname,
2855 char __user *optval, int __user *optlen)
2856 {
2857 if (level == SOL_UDP || level == SOL_UDPLITE)
2858 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2859 return ip_getsockopt(sk, level, optname, optval, optlen);
2860 }
2861
2862 /**
2863 * udp_poll - wait for a UDP event.
2864 * @file: - file struct
2865 * @sock: - socket
2866 * @wait: - poll table
2867 *
2868 * This is same as datagram poll, except for the special case of
2869 * blocking sockets. If application is using a blocking fd
2870 * and a packet with checksum error is in the queue;
2871 * then it could get return from select indicating data available
2872 * but then block when reading it. Add special case code
2873 * to work around these arguably broken applications.
2874 */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2875 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2876 {
2877 __poll_t mask = datagram_poll(file, sock, wait);
2878 struct sock *sk = sock->sk;
2879
2880 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2881 mask |= EPOLLIN | EPOLLRDNORM;
2882
2883 /* Check for false positives due to checksum errors */
2884 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2885 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2886 mask &= ~(EPOLLIN | EPOLLRDNORM);
2887
2888 /* psock ingress_msg queue should not contain any bad checksum frames */
2889 if (sk_is_readable(sk))
2890 mask |= EPOLLIN | EPOLLRDNORM;
2891 return mask;
2892
2893 }
2894 EXPORT_SYMBOL(udp_poll);
2895
udp_abort(struct sock * sk,int err)2896 int udp_abort(struct sock *sk, int err)
2897 {
2898 if (!has_current_bpf_ctx())
2899 lock_sock(sk);
2900
2901 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2902 * with close()
2903 */
2904 if (sock_flag(sk, SOCK_DEAD))
2905 goto out;
2906
2907 sk->sk_err = err;
2908 sk_error_report(sk);
2909 __udp_disconnect(sk, 0);
2910
2911 out:
2912 if (!has_current_bpf_ctx())
2913 release_sock(sk);
2914
2915 return 0;
2916 }
2917 EXPORT_SYMBOL_GPL(udp_abort);
2918
2919 struct proto udp_prot = {
2920 .name = "UDP",
2921 .owner = THIS_MODULE,
2922 .close = udp_lib_close,
2923 .pre_connect = udp_pre_connect,
2924 .connect = ip4_datagram_connect,
2925 .disconnect = udp_disconnect,
2926 .ioctl = udp_ioctl,
2927 .init = udp_init_sock,
2928 .destroy = udp_destroy_sock,
2929 .setsockopt = udp_setsockopt,
2930 .getsockopt = udp_getsockopt,
2931 .sendmsg = udp_sendmsg,
2932 .recvmsg = udp_recvmsg,
2933 .splice_eof = udp_splice_eof,
2934 .release_cb = ip4_datagram_release_cb,
2935 .hash = udp_lib_hash,
2936 .unhash = udp_lib_unhash,
2937 .rehash = udp_v4_rehash,
2938 .get_port = udp_v4_get_port,
2939 .put_port = udp_lib_unhash,
2940 #ifdef CONFIG_BPF_SYSCALL
2941 .psock_update_sk_prot = udp_bpf_update_proto,
2942 #endif
2943 .memory_allocated = &udp_memory_allocated,
2944 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc,
2945
2946 .sysctl_mem = sysctl_udp_mem,
2947 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2948 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2949 .obj_size = sizeof(struct udp_sock),
2950 .h.udp_table = NULL,
2951 .diag_destroy = udp_abort,
2952 };
2953 EXPORT_SYMBOL(udp_prot);
2954
2955 /* ------------------------------------------------------------------------ */
2956 #ifdef CONFIG_PROC_FS
2957
2958 static unsigned short seq_file_family(const struct seq_file *seq);
seq_sk_match(struct seq_file * seq,const struct sock * sk)2959 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2960 {
2961 unsigned short family = seq_file_family(seq);
2962
2963 /* AF_UNSPEC is used as a match all */
2964 return ((family == AF_UNSPEC || family == sk->sk_family) &&
2965 net_eq(sock_net(sk), seq_file_net(seq)));
2966 }
2967
2968 #ifdef CONFIG_BPF_SYSCALL
2969 static const struct seq_operations bpf_iter_udp_seq_ops;
2970 #endif
udp_get_table_seq(struct seq_file * seq,struct net * net)2971 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2972 struct net *net)
2973 {
2974 const struct udp_seq_afinfo *afinfo;
2975
2976 #ifdef CONFIG_BPF_SYSCALL
2977 if (seq->op == &bpf_iter_udp_seq_ops)
2978 return net->ipv4.udp_table;
2979 #endif
2980
2981 afinfo = pde_data(file_inode(seq->file));
2982 return afinfo->udp_table ? : net->ipv4.udp_table;
2983 }
2984
udp_get_first(struct seq_file * seq,int start)2985 static struct sock *udp_get_first(struct seq_file *seq, int start)
2986 {
2987 struct udp_iter_state *state = seq->private;
2988 struct net *net = seq_file_net(seq);
2989 struct udp_table *udptable;
2990 struct sock *sk;
2991
2992 udptable = udp_get_table_seq(seq, net);
2993
2994 for (state->bucket = start; state->bucket <= udptable->mask;
2995 ++state->bucket) {
2996 struct udp_hslot *hslot = &udptable->hash[state->bucket];
2997
2998 if (hlist_empty(&hslot->head))
2999 continue;
3000
3001 spin_lock_bh(&hslot->lock);
3002 sk_for_each(sk, &hslot->head) {
3003 if (seq_sk_match(seq, sk))
3004 goto found;
3005 }
3006 spin_unlock_bh(&hslot->lock);
3007 }
3008 sk = NULL;
3009 found:
3010 return sk;
3011 }
3012
udp_get_next(struct seq_file * seq,struct sock * sk)3013 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3014 {
3015 struct udp_iter_state *state = seq->private;
3016 struct net *net = seq_file_net(seq);
3017 struct udp_table *udptable;
3018
3019 do {
3020 sk = sk_next(sk);
3021 } while (sk && !seq_sk_match(seq, sk));
3022
3023 if (!sk) {
3024 udptable = udp_get_table_seq(seq, net);
3025
3026 if (state->bucket <= udptable->mask)
3027 spin_unlock_bh(&udptable->hash[state->bucket].lock);
3028
3029 return udp_get_first(seq, state->bucket + 1);
3030 }
3031 return sk;
3032 }
3033
udp_get_idx(struct seq_file * seq,loff_t pos)3034 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3035 {
3036 struct sock *sk = udp_get_first(seq, 0);
3037
3038 if (sk)
3039 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3040 --pos;
3041 return pos ? NULL : sk;
3042 }
3043
udp_seq_start(struct seq_file * seq,loff_t * pos)3044 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3045 {
3046 struct udp_iter_state *state = seq->private;
3047 state->bucket = MAX_UDP_PORTS;
3048
3049 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3050 }
3051 EXPORT_SYMBOL(udp_seq_start);
3052
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)3053 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3054 {
3055 struct sock *sk;
3056
3057 if (v == SEQ_START_TOKEN)
3058 sk = udp_get_idx(seq, 0);
3059 else
3060 sk = udp_get_next(seq, v);
3061
3062 ++*pos;
3063 return sk;
3064 }
3065 EXPORT_SYMBOL(udp_seq_next);
3066
udp_seq_stop(struct seq_file * seq,void * v)3067 void udp_seq_stop(struct seq_file *seq, void *v)
3068 {
3069 struct udp_iter_state *state = seq->private;
3070 struct udp_table *udptable;
3071
3072 udptable = udp_get_table_seq(seq, seq_file_net(seq));
3073
3074 if (state->bucket <= udptable->mask)
3075 spin_unlock_bh(&udptable->hash[state->bucket].lock);
3076 }
3077 EXPORT_SYMBOL(udp_seq_stop);
3078
3079 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)3080 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3081 int bucket)
3082 {
3083 struct inet_sock *inet = inet_sk(sp);
3084 __be32 dest = inet->inet_daddr;
3085 __be32 src = inet->inet_rcv_saddr;
3086 __u16 destp = ntohs(inet->inet_dport);
3087 __u16 srcp = ntohs(inet->inet_sport);
3088
3089 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3090 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3091 bucket, src, srcp, dest, destp, sp->sk_state,
3092 sk_wmem_alloc_get(sp),
3093 udp_rqueue_get(sp),
3094 0, 0L, 0,
3095 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3096 0, sock_i_ino(sp),
3097 refcount_read(&sp->sk_refcnt), sp,
3098 atomic_read(&sp->sk_drops));
3099 }
3100
udp4_seq_show(struct seq_file * seq,void * v)3101 int udp4_seq_show(struct seq_file *seq, void *v)
3102 {
3103 seq_setwidth(seq, 127);
3104 if (v == SEQ_START_TOKEN)
3105 seq_puts(seq, " sl local_address rem_address st tx_queue "
3106 "rx_queue tr tm->when retrnsmt uid timeout "
3107 "inode ref pointer drops");
3108 else {
3109 struct udp_iter_state *state = seq->private;
3110
3111 udp4_format_sock(v, seq, state->bucket);
3112 }
3113 seq_pad(seq, '\n');
3114 return 0;
3115 }
3116
3117 #ifdef CONFIG_BPF_SYSCALL
3118 struct bpf_iter__udp {
3119 __bpf_md_ptr(struct bpf_iter_meta *, meta);
3120 __bpf_md_ptr(struct udp_sock *, udp_sk);
3121 uid_t uid __aligned(8);
3122 int bucket __aligned(8);
3123 };
3124
3125 struct bpf_udp_iter_state {
3126 struct udp_iter_state state;
3127 unsigned int cur_sk;
3128 unsigned int end_sk;
3129 unsigned int max_sk;
3130 int offset;
3131 struct sock **batch;
3132 bool st_bucket_done;
3133 };
3134
3135 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3136 unsigned int new_batch_sz);
bpf_iter_udp_batch(struct seq_file * seq)3137 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3138 {
3139 struct bpf_udp_iter_state *iter = seq->private;
3140 struct udp_iter_state *state = &iter->state;
3141 struct net *net = seq_file_net(seq);
3142 int resume_bucket, resume_offset;
3143 struct udp_table *udptable;
3144 unsigned int batch_sks = 0;
3145 bool resized = false;
3146 struct sock *sk;
3147
3148 resume_bucket = state->bucket;
3149 resume_offset = iter->offset;
3150
3151 /* The current batch is done, so advance the bucket. */
3152 if (iter->st_bucket_done)
3153 state->bucket++;
3154
3155 udptable = udp_get_table_seq(seq, net);
3156
3157 again:
3158 /* New batch for the next bucket.
3159 * Iterate over the hash table to find a bucket with sockets matching
3160 * the iterator attributes, and return the first matching socket from
3161 * the bucket. The remaining matched sockets from the bucket are batched
3162 * before releasing the bucket lock. This allows BPF programs that are
3163 * called in seq_show to acquire the bucket lock if needed.
3164 */
3165 iter->cur_sk = 0;
3166 iter->end_sk = 0;
3167 iter->st_bucket_done = false;
3168 batch_sks = 0;
3169
3170 for (; state->bucket <= udptable->mask; state->bucket++) {
3171 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3172
3173 if (hlist_empty(&hslot2->head))
3174 continue;
3175
3176 iter->offset = 0;
3177 spin_lock_bh(&hslot2->lock);
3178 udp_portaddr_for_each_entry(sk, &hslot2->head) {
3179 if (seq_sk_match(seq, sk)) {
3180 /* Resume from the last iterated socket at the
3181 * offset in the bucket before iterator was stopped.
3182 */
3183 if (state->bucket == resume_bucket &&
3184 iter->offset < resume_offset) {
3185 ++iter->offset;
3186 continue;
3187 }
3188 if (iter->end_sk < iter->max_sk) {
3189 sock_hold(sk);
3190 iter->batch[iter->end_sk++] = sk;
3191 }
3192 batch_sks++;
3193 }
3194 }
3195 spin_unlock_bh(&hslot2->lock);
3196
3197 if (iter->end_sk)
3198 break;
3199 }
3200
3201 /* All done: no batch made. */
3202 if (!iter->end_sk)
3203 return NULL;
3204
3205 if (iter->end_sk == batch_sks) {
3206 /* Batching is done for the current bucket; return the first
3207 * socket to be iterated from the batch.
3208 */
3209 iter->st_bucket_done = true;
3210 goto done;
3211 }
3212 if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3213 resized = true;
3214 /* After allocating a larger batch, retry one more time to grab
3215 * the whole bucket.
3216 */
3217 goto again;
3218 }
3219 done:
3220 return iter->batch[0];
3221 }
3222
bpf_iter_udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)3223 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3224 {
3225 struct bpf_udp_iter_state *iter = seq->private;
3226 struct sock *sk;
3227
3228 /* Whenever seq_next() is called, the iter->cur_sk is
3229 * done with seq_show(), so unref the iter->cur_sk.
3230 */
3231 if (iter->cur_sk < iter->end_sk) {
3232 sock_put(iter->batch[iter->cur_sk++]);
3233 ++iter->offset;
3234 }
3235
3236 /* After updating iter->cur_sk, check if there are more sockets
3237 * available in the current bucket batch.
3238 */
3239 if (iter->cur_sk < iter->end_sk)
3240 sk = iter->batch[iter->cur_sk];
3241 else
3242 /* Prepare a new batch. */
3243 sk = bpf_iter_udp_batch(seq);
3244
3245 ++*pos;
3246 return sk;
3247 }
3248
bpf_iter_udp_seq_start(struct seq_file * seq,loff_t * pos)3249 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3250 {
3251 /* bpf iter does not support lseek, so it always
3252 * continue from where it was stop()-ped.
3253 */
3254 if (*pos)
3255 return bpf_iter_udp_batch(seq);
3256
3257 return SEQ_START_TOKEN;
3258 }
3259
udp_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3260 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3261 struct udp_sock *udp_sk, uid_t uid, int bucket)
3262 {
3263 struct bpf_iter__udp ctx;
3264
3265 meta->seq_num--; /* skip SEQ_START_TOKEN */
3266 ctx.meta = meta;
3267 ctx.udp_sk = udp_sk;
3268 ctx.uid = uid;
3269 ctx.bucket = bucket;
3270 return bpf_iter_run_prog(prog, &ctx);
3271 }
3272
bpf_iter_udp_seq_show(struct seq_file * seq,void * v)3273 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3274 {
3275 struct udp_iter_state *state = seq->private;
3276 struct bpf_iter_meta meta;
3277 struct bpf_prog *prog;
3278 struct sock *sk = v;
3279 uid_t uid;
3280 int ret;
3281
3282 if (v == SEQ_START_TOKEN)
3283 return 0;
3284
3285 lock_sock(sk);
3286
3287 if (unlikely(sk_unhashed(sk))) {
3288 ret = SEQ_SKIP;
3289 goto unlock;
3290 }
3291
3292 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3293 meta.seq = seq;
3294 prog = bpf_iter_get_info(&meta, false);
3295 ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3296
3297 unlock:
3298 release_sock(sk);
3299 return ret;
3300 }
3301
bpf_iter_udp_put_batch(struct bpf_udp_iter_state * iter)3302 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3303 {
3304 while (iter->cur_sk < iter->end_sk)
3305 sock_put(iter->batch[iter->cur_sk++]);
3306 }
3307
bpf_iter_udp_seq_stop(struct seq_file * seq,void * v)3308 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3309 {
3310 struct bpf_udp_iter_state *iter = seq->private;
3311 struct bpf_iter_meta meta;
3312 struct bpf_prog *prog;
3313
3314 if (!v) {
3315 meta.seq = seq;
3316 prog = bpf_iter_get_info(&meta, true);
3317 if (prog)
3318 (void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3319 }
3320
3321 if (iter->cur_sk < iter->end_sk) {
3322 bpf_iter_udp_put_batch(iter);
3323 iter->st_bucket_done = false;
3324 }
3325 }
3326
3327 static const struct seq_operations bpf_iter_udp_seq_ops = {
3328 .start = bpf_iter_udp_seq_start,
3329 .next = bpf_iter_udp_seq_next,
3330 .stop = bpf_iter_udp_seq_stop,
3331 .show = bpf_iter_udp_seq_show,
3332 };
3333 #endif
3334
seq_file_family(const struct seq_file * seq)3335 static unsigned short seq_file_family(const struct seq_file *seq)
3336 {
3337 const struct udp_seq_afinfo *afinfo;
3338
3339 #ifdef CONFIG_BPF_SYSCALL
3340 /* BPF iterator: bpf programs to filter sockets. */
3341 if (seq->op == &bpf_iter_udp_seq_ops)
3342 return AF_UNSPEC;
3343 #endif
3344
3345 /* Proc fs iterator */
3346 afinfo = pde_data(file_inode(seq->file));
3347 return afinfo->family;
3348 }
3349
3350 const struct seq_operations udp_seq_ops = {
3351 .start = udp_seq_start,
3352 .next = udp_seq_next,
3353 .stop = udp_seq_stop,
3354 .show = udp4_seq_show,
3355 };
3356 EXPORT_SYMBOL(udp_seq_ops);
3357
3358 static struct udp_seq_afinfo udp4_seq_afinfo = {
3359 .family = AF_INET,
3360 .udp_table = NULL,
3361 };
3362
udp4_proc_init_net(struct net * net)3363 static int __net_init udp4_proc_init_net(struct net *net)
3364 {
3365 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3366 sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3367 return -ENOMEM;
3368 return 0;
3369 }
3370
udp4_proc_exit_net(struct net * net)3371 static void __net_exit udp4_proc_exit_net(struct net *net)
3372 {
3373 remove_proc_entry("udp", net->proc_net);
3374 }
3375
3376 static struct pernet_operations udp4_net_ops = {
3377 .init = udp4_proc_init_net,
3378 .exit = udp4_proc_exit_net,
3379 };
3380
udp4_proc_init(void)3381 int __init udp4_proc_init(void)
3382 {
3383 return register_pernet_subsys(&udp4_net_ops);
3384 }
3385
udp4_proc_exit(void)3386 void udp4_proc_exit(void)
3387 {
3388 unregister_pernet_subsys(&udp4_net_ops);
3389 }
3390 #endif /* CONFIG_PROC_FS */
3391
3392 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)3393 static int __init set_uhash_entries(char *str)
3394 {
3395 ssize_t ret;
3396
3397 if (!str)
3398 return 0;
3399
3400 ret = kstrtoul(str, 0, &uhash_entries);
3401 if (ret)
3402 return 0;
3403
3404 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3405 uhash_entries = UDP_HTABLE_SIZE_MIN;
3406 return 1;
3407 }
3408 __setup("uhash_entries=", set_uhash_entries);
3409
udp_table_init(struct udp_table * table,const char * name)3410 void __init udp_table_init(struct udp_table *table, const char *name)
3411 {
3412 unsigned int i;
3413
3414 table->hash = alloc_large_system_hash(name,
3415 2 * sizeof(struct udp_hslot),
3416 uhash_entries,
3417 21, /* one slot per 2 MB */
3418 0,
3419 &table->log,
3420 &table->mask,
3421 UDP_HTABLE_SIZE_MIN,
3422 UDP_HTABLE_SIZE_MAX);
3423
3424 table->hash2 = table->hash + (table->mask + 1);
3425 for (i = 0; i <= table->mask; i++) {
3426 INIT_HLIST_HEAD(&table->hash[i].head);
3427 table->hash[i].count = 0;
3428 spin_lock_init(&table->hash[i].lock);
3429 }
3430 for (i = 0; i <= table->mask; i++) {
3431 INIT_HLIST_HEAD(&table->hash2[i].head);
3432 table->hash2[i].count = 0;
3433 spin_lock_init(&table->hash2[i].lock);
3434 }
3435 }
3436
udp_flow_hashrnd(void)3437 u32 udp_flow_hashrnd(void)
3438 {
3439 static u32 hashrnd __read_mostly;
3440
3441 net_get_random_once(&hashrnd, sizeof(hashrnd));
3442
3443 return hashrnd;
3444 }
3445 EXPORT_SYMBOL(udp_flow_hashrnd);
3446
udp_sysctl_init(struct net * net)3447 static void __net_init udp_sysctl_init(struct net *net)
3448 {
3449 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3450 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3451
3452 #ifdef CONFIG_NET_L3_MASTER_DEV
3453 net->ipv4.sysctl_udp_l3mdev_accept = 0;
3454 #endif
3455 }
3456
udp_pernet_table_alloc(unsigned int hash_entries)3457 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3458 {
3459 struct udp_table *udptable;
3460 int i;
3461
3462 udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3463 if (!udptable)
3464 goto out;
3465
3466 udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3467 GFP_KERNEL_ACCOUNT);
3468 if (!udptable->hash)
3469 goto free_table;
3470
3471 udptable->hash2 = udptable->hash + hash_entries;
3472 udptable->mask = hash_entries - 1;
3473 udptable->log = ilog2(hash_entries);
3474
3475 for (i = 0; i < hash_entries; i++) {
3476 INIT_HLIST_HEAD(&udptable->hash[i].head);
3477 udptable->hash[i].count = 0;
3478 spin_lock_init(&udptable->hash[i].lock);
3479
3480 INIT_HLIST_HEAD(&udptable->hash2[i].head);
3481 udptable->hash2[i].count = 0;
3482 spin_lock_init(&udptable->hash2[i].lock);
3483 }
3484
3485 return udptable;
3486
3487 free_table:
3488 kfree(udptable);
3489 out:
3490 return NULL;
3491 }
3492
udp_pernet_table_free(struct net * net)3493 static void __net_exit udp_pernet_table_free(struct net *net)
3494 {
3495 struct udp_table *udptable = net->ipv4.udp_table;
3496
3497 if (udptable == &udp_table)
3498 return;
3499
3500 kvfree(udptable->hash);
3501 kfree(udptable);
3502 }
3503
udp_set_table(struct net * net)3504 static void __net_init udp_set_table(struct net *net)
3505 {
3506 struct udp_table *udptable;
3507 unsigned int hash_entries;
3508 struct net *old_net;
3509
3510 if (net_eq(net, &init_net))
3511 goto fallback;
3512
3513 old_net = current->nsproxy->net_ns;
3514 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3515 if (!hash_entries)
3516 goto fallback;
3517
3518 /* Set min to keep the bitmap on stack in udp_lib_get_port() */
3519 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3520 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3521 else
3522 hash_entries = roundup_pow_of_two(hash_entries);
3523
3524 udptable = udp_pernet_table_alloc(hash_entries);
3525 if (udptable) {
3526 net->ipv4.udp_table = udptable;
3527 } else {
3528 pr_warn("Failed to allocate UDP hash table (entries: %u) "
3529 "for a netns, fallback to the global one\n",
3530 hash_entries);
3531 fallback:
3532 net->ipv4.udp_table = &udp_table;
3533 }
3534 }
3535
udp_pernet_init(struct net * net)3536 static int __net_init udp_pernet_init(struct net *net)
3537 {
3538 udp_sysctl_init(net);
3539 udp_set_table(net);
3540
3541 return 0;
3542 }
3543
udp_pernet_exit(struct net * net)3544 static void __net_exit udp_pernet_exit(struct net *net)
3545 {
3546 udp_pernet_table_free(net);
3547 }
3548
3549 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3550 .init = udp_pernet_init,
3551 .exit = udp_pernet_exit,
3552 };
3553
3554 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(udp,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3555 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3556 struct udp_sock *udp_sk, uid_t uid, int bucket)
3557
3558 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3559 unsigned int new_batch_sz)
3560 {
3561 struct sock **new_batch;
3562
3563 new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3564 GFP_USER | __GFP_NOWARN);
3565 if (!new_batch)
3566 return -ENOMEM;
3567
3568 bpf_iter_udp_put_batch(iter);
3569 kvfree(iter->batch);
3570 iter->batch = new_batch;
3571 iter->max_sk = new_batch_sz;
3572
3573 return 0;
3574 }
3575
3576 #define INIT_BATCH_SZ 16
3577
bpf_iter_init_udp(void * priv_data,struct bpf_iter_aux_info * aux)3578 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3579 {
3580 struct bpf_udp_iter_state *iter = priv_data;
3581 int ret;
3582
3583 ret = bpf_iter_init_seq_net(priv_data, aux);
3584 if (ret)
3585 return ret;
3586
3587 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3588 if (ret)
3589 bpf_iter_fini_seq_net(priv_data);
3590
3591 return ret;
3592 }
3593
bpf_iter_fini_udp(void * priv_data)3594 static void bpf_iter_fini_udp(void *priv_data)
3595 {
3596 struct bpf_udp_iter_state *iter = priv_data;
3597
3598 bpf_iter_fini_seq_net(priv_data);
3599 kvfree(iter->batch);
3600 }
3601
3602 static const struct bpf_iter_seq_info udp_seq_info = {
3603 .seq_ops = &bpf_iter_udp_seq_ops,
3604 .init_seq_private = bpf_iter_init_udp,
3605 .fini_seq_private = bpf_iter_fini_udp,
3606 .seq_priv_size = sizeof(struct bpf_udp_iter_state),
3607 };
3608
3609 static struct bpf_iter_reg udp_reg_info = {
3610 .target = "udp",
3611 .ctx_arg_info_size = 1,
3612 .ctx_arg_info = {
3613 { offsetof(struct bpf_iter__udp, udp_sk),
3614 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3615 },
3616 .seq_info = &udp_seq_info,
3617 };
3618
bpf_iter_register(void)3619 static void __init bpf_iter_register(void)
3620 {
3621 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3622 if (bpf_iter_reg_target(&udp_reg_info))
3623 pr_warn("Warning: could not register bpf iterator udp\n");
3624 }
3625 #endif
3626
udp_init(void)3627 void __init udp_init(void)
3628 {
3629 unsigned long limit;
3630 unsigned int i;
3631
3632 udp_table_init(&udp_table, "UDP");
3633 limit = nr_free_buffer_pages() / 8;
3634 limit = max(limit, 128UL);
3635 sysctl_udp_mem[0] = limit / 4 * 3;
3636 sysctl_udp_mem[1] = limit;
3637 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3638
3639 /* 16 spinlocks per cpu */
3640 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3641 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3642 GFP_KERNEL);
3643 if (!udp_busylocks)
3644 panic("UDP: failed to alloc udp_busylocks\n");
3645 for (i = 0; i < (1U << udp_busylocks_log); i++)
3646 spin_lock_init(udp_busylocks + i);
3647
3648 if (register_pernet_subsys(&udp_sysctl_ops))
3649 panic("UDP: failed to init sysctl parameters.\n");
3650
3651 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3652 bpf_iter_register();
3653 #endif
3654 }
3655