1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <asm/pgalloc.h>
49 #include <asm/tlbflush.h>
50 #include "internal.h"
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/filemap.h>
54
55 /*
56 * FIXME: remove all knowledge of the buffer layer from the core VM
57 */
58 #include <linux/buffer_head.h> /* for try_to_free_buffers */
59
60 #include <asm/mman.h>
61
62 #include "swap.h"
63
64 /*
65 * Shared mappings implemented 30.11.1994. It's not fully working yet,
66 * though.
67 *
68 * Shared mappings now work. 15.8.1995 Bruno.
69 *
70 * finished 'unifying' the page and buffer cache and SMP-threaded the
71 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
72 *
73 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
74 */
75
76 /*
77 * Lock ordering:
78 *
79 * ->i_mmap_rwsem (truncate_pagecache)
80 * ->private_lock (__free_pte->block_dirty_folio)
81 * ->swap_lock (exclusive_swap_page, others)
82 * ->i_pages lock
83 *
84 * ->i_rwsem
85 * ->invalidate_lock (acquired by fs in truncate path)
86 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
87 *
88 * ->mmap_lock
89 * ->i_mmap_rwsem
90 * ->page_table_lock or pte_lock (various, mainly in memory.c)
91 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
92 *
93 * ->mmap_lock
94 * ->invalidate_lock (filemap_fault)
95 * ->lock_page (filemap_fault, access_process_vm)
96 *
97 * ->i_rwsem (generic_perform_write)
98 * ->mmap_lock (fault_in_readable->do_page_fault)
99 *
100 * bdi->wb.list_lock
101 * sb_lock (fs/fs-writeback.c)
102 * ->i_pages lock (__sync_single_inode)
103 *
104 * ->i_mmap_rwsem
105 * ->anon_vma.lock (vma_merge)
106 *
107 * ->anon_vma.lock
108 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
109 *
110 * ->page_table_lock or pte_lock
111 * ->swap_lock (try_to_unmap_one)
112 * ->private_lock (try_to_unmap_one)
113 * ->i_pages lock (try_to_unmap_one)
114 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
115 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
116 * ->private_lock (page_remove_rmap->set_page_dirty)
117 * ->i_pages lock (page_remove_rmap->set_page_dirty)
118 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
119 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
120 * ->memcg->move_lock (page_remove_rmap->folio_memcg_lock)
121 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
122 * ->inode->i_lock (zap_pte_range->set_page_dirty)
123 * ->private_lock (zap_pte_range->block_dirty_folio)
124 */
125
page_cache_delete(struct address_space * mapping,struct folio * folio,void * shadow)126 static void page_cache_delete(struct address_space *mapping,
127 struct folio *folio, void *shadow)
128 {
129 XA_STATE(xas, &mapping->i_pages, folio->index);
130 long nr = 1;
131
132 mapping_set_update(&xas, mapping);
133
134 /* hugetlb pages are represented by a single entry in the xarray */
135 if (!folio_test_hugetlb(folio)) {
136 xas_set_order(&xas, folio->index, folio_order(folio));
137 nr = folio_nr_pages(folio);
138 }
139
140 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
141
142 xas_store(&xas, shadow);
143 xas_init_marks(&xas);
144
145 folio->mapping = NULL;
146 /* Leave page->index set: truncation lookup relies upon it */
147 mapping->nrpages -= nr;
148 }
149
filemap_unaccount_folio(struct address_space * mapping,struct folio * folio)150 static void filemap_unaccount_folio(struct address_space *mapping,
151 struct folio *folio)
152 {
153 long nr;
154
155 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
156 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
157 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
158 current->comm, folio_pfn(folio));
159 dump_page(&folio->page, "still mapped when deleted");
160 dump_stack();
161 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
162
163 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
164 int mapcount = page_mapcount(&folio->page);
165
166 if (folio_ref_count(folio) >= mapcount + 2) {
167 /*
168 * All vmas have already been torn down, so it's
169 * a good bet that actually the page is unmapped
170 * and we'd rather not leak it: if we're wrong,
171 * another bad page check should catch it later.
172 */
173 page_mapcount_reset(&folio->page);
174 folio_ref_sub(folio, mapcount);
175 }
176 }
177 }
178
179 /* hugetlb folios do not participate in page cache accounting. */
180 if (folio_test_hugetlb(folio))
181 return;
182
183 nr = folio_nr_pages(folio);
184
185 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
186 if (folio_test_swapbacked(folio)) {
187 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
188 if (folio_test_pmd_mappable(folio))
189 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
190 } else if (folio_test_pmd_mappable(folio)) {
191 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
192 filemap_nr_thps_dec(mapping);
193 }
194
195 /*
196 * At this point folio must be either written or cleaned by
197 * truncate. Dirty folio here signals a bug and loss of
198 * unwritten data - on ordinary filesystems.
199 *
200 * But it's harmless on in-memory filesystems like tmpfs; and can
201 * occur when a driver which did get_user_pages() sets page dirty
202 * before putting it, while the inode is being finally evicted.
203 *
204 * Below fixes dirty accounting after removing the folio entirely
205 * but leaves the dirty flag set: it has no effect for truncated
206 * folio and anyway will be cleared before returning folio to
207 * buddy allocator.
208 */
209 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
210 mapping_can_writeback(mapping)))
211 folio_account_cleaned(folio, inode_to_wb(mapping->host));
212 }
213
214 /*
215 * Delete a page from the page cache and free it. Caller has to make
216 * sure the page is locked and that nobody else uses it - or that usage
217 * is safe. The caller must hold the i_pages lock.
218 */
__filemap_remove_folio(struct folio * folio,void * shadow)219 void __filemap_remove_folio(struct folio *folio, void *shadow)
220 {
221 struct address_space *mapping = folio->mapping;
222
223 trace_mm_filemap_delete_from_page_cache(folio);
224 filemap_unaccount_folio(mapping, folio);
225 page_cache_delete(mapping, folio, shadow);
226 }
227
filemap_free_folio(struct address_space * mapping,struct folio * folio)228 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
229 {
230 void (*free_folio)(struct folio *);
231 int refs = 1;
232
233 free_folio = mapping->a_ops->free_folio;
234 if (free_folio)
235 free_folio(folio);
236
237 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
238 refs = folio_nr_pages(folio);
239 folio_put_refs(folio, refs);
240 }
241
242 /**
243 * filemap_remove_folio - Remove folio from page cache.
244 * @folio: The folio.
245 *
246 * This must be called only on folios that are locked and have been
247 * verified to be in the page cache. It will never put the folio into
248 * the free list because the caller has a reference on the page.
249 */
filemap_remove_folio(struct folio * folio)250 void filemap_remove_folio(struct folio *folio)
251 {
252 struct address_space *mapping = folio->mapping;
253
254 BUG_ON(!folio_test_locked(folio));
255 spin_lock(&mapping->host->i_lock);
256 xa_lock_irq(&mapping->i_pages);
257 __filemap_remove_folio(folio, NULL);
258 xa_unlock_irq(&mapping->i_pages);
259 if (mapping_shrinkable(mapping))
260 inode_add_lru(mapping->host);
261 spin_unlock(&mapping->host->i_lock);
262
263 filemap_free_folio(mapping, folio);
264 }
265
266 /*
267 * page_cache_delete_batch - delete several folios from page cache
268 * @mapping: the mapping to which folios belong
269 * @fbatch: batch of folios to delete
270 *
271 * The function walks over mapping->i_pages and removes folios passed in
272 * @fbatch from the mapping. The function expects @fbatch to be sorted
273 * by page index and is optimised for it to be dense.
274 * It tolerates holes in @fbatch (mapping entries at those indices are not
275 * modified).
276 *
277 * The function expects the i_pages lock to be held.
278 */
page_cache_delete_batch(struct address_space * mapping,struct folio_batch * fbatch)279 static void page_cache_delete_batch(struct address_space *mapping,
280 struct folio_batch *fbatch)
281 {
282 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
283 long total_pages = 0;
284 int i = 0;
285 struct folio *folio;
286
287 mapping_set_update(&xas, mapping);
288 xas_for_each(&xas, folio, ULONG_MAX) {
289 if (i >= folio_batch_count(fbatch))
290 break;
291
292 /* A swap/dax/shadow entry got inserted? Skip it. */
293 if (xa_is_value(folio))
294 continue;
295 /*
296 * A page got inserted in our range? Skip it. We have our
297 * pages locked so they are protected from being removed.
298 * If we see a page whose index is higher than ours, it
299 * means our page has been removed, which shouldn't be
300 * possible because we're holding the PageLock.
301 */
302 if (folio != fbatch->folios[i]) {
303 VM_BUG_ON_FOLIO(folio->index >
304 fbatch->folios[i]->index, folio);
305 continue;
306 }
307
308 WARN_ON_ONCE(!folio_test_locked(folio));
309
310 folio->mapping = NULL;
311 /* Leave folio->index set: truncation lookup relies on it */
312
313 i++;
314 xas_store(&xas, NULL);
315 total_pages += folio_nr_pages(folio);
316 }
317 mapping->nrpages -= total_pages;
318 }
319
delete_from_page_cache_batch(struct address_space * mapping,struct folio_batch * fbatch)320 void delete_from_page_cache_batch(struct address_space *mapping,
321 struct folio_batch *fbatch)
322 {
323 int i;
324
325 if (!folio_batch_count(fbatch))
326 return;
327
328 spin_lock(&mapping->host->i_lock);
329 xa_lock_irq(&mapping->i_pages);
330 for (i = 0; i < folio_batch_count(fbatch); i++) {
331 struct folio *folio = fbatch->folios[i];
332
333 trace_mm_filemap_delete_from_page_cache(folio);
334 filemap_unaccount_folio(mapping, folio);
335 }
336 page_cache_delete_batch(mapping, fbatch);
337 xa_unlock_irq(&mapping->i_pages);
338 if (mapping_shrinkable(mapping))
339 inode_add_lru(mapping->host);
340 spin_unlock(&mapping->host->i_lock);
341
342 for (i = 0; i < folio_batch_count(fbatch); i++)
343 filemap_free_folio(mapping, fbatch->folios[i]);
344 }
345
filemap_check_errors(struct address_space * mapping)346 int filemap_check_errors(struct address_space *mapping)
347 {
348 int ret = 0;
349 /* Check for outstanding write errors */
350 if (test_bit(AS_ENOSPC, &mapping->flags) &&
351 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
352 ret = -ENOSPC;
353 if (test_bit(AS_EIO, &mapping->flags) &&
354 test_and_clear_bit(AS_EIO, &mapping->flags))
355 ret = -EIO;
356 return ret;
357 }
358 EXPORT_SYMBOL(filemap_check_errors);
359
filemap_check_and_keep_errors(struct address_space * mapping)360 static int filemap_check_and_keep_errors(struct address_space *mapping)
361 {
362 /* Check for outstanding write errors */
363 if (test_bit(AS_EIO, &mapping->flags))
364 return -EIO;
365 if (test_bit(AS_ENOSPC, &mapping->flags))
366 return -ENOSPC;
367 return 0;
368 }
369
370 /**
371 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
372 * @mapping: address space structure to write
373 * @wbc: the writeback_control controlling the writeout
374 *
375 * Call writepages on the mapping using the provided wbc to control the
376 * writeout.
377 *
378 * Return: %0 on success, negative error code otherwise.
379 */
filemap_fdatawrite_wbc(struct address_space * mapping,struct writeback_control * wbc)380 int filemap_fdatawrite_wbc(struct address_space *mapping,
381 struct writeback_control *wbc)
382 {
383 int ret;
384
385 if (!mapping_can_writeback(mapping) ||
386 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
387 return 0;
388
389 wbc_attach_fdatawrite_inode(wbc, mapping->host);
390 ret = do_writepages(mapping, wbc);
391 wbc_detach_inode(wbc);
392 return ret;
393 }
394 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
395
396 /**
397 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
398 * @mapping: address space structure to write
399 * @start: offset in bytes where the range starts
400 * @end: offset in bytes where the range ends (inclusive)
401 * @sync_mode: enable synchronous operation
402 *
403 * Start writeback against all of a mapping's dirty pages that lie
404 * within the byte offsets <start, end> inclusive.
405 *
406 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
407 * opposed to a regular memory cleansing writeback. The difference between
408 * these two operations is that if a dirty page/buffer is encountered, it must
409 * be waited upon, and not just skipped over.
410 *
411 * Return: %0 on success, negative error code otherwise.
412 */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)413 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
414 loff_t end, int sync_mode)
415 {
416 struct writeback_control wbc = {
417 .sync_mode = sync_mode,
418 .nr_to_write = LONG_MAX,
419 .range_start = start,
420 .range_end = end,
421 };
422
423 return filemap_fdatawrite_wbc(mapping, &wbc);
424 }
425
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)426 static inline int __filemap_fdatawrite(struct address_space *mapping,
427 int sync_mode)
428 {
429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 }
431
filemap_fdatawrite(struct address_space * mapping)432 int filemap_fdatawrite(struct address_space *mapping)
433 {
434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435 }
436 EXPORT_SYMBOL(filemap_fdatawrite);
437
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439 loff_t end)
440 {
441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite_range);
444
445 /**
446 * filemap_flush - mostly a non-blocking flush
447 * @mapping: target address_space
448 *
449 * This is a mostly non-blocking flush. Not suitable for data-integrity
450 * purposes - I/O may not be started against all dirty pages.
451 *
452 * Return: %0 on success, negative error code otherwise.
453 */
filemap_flush(struct address_space * mapping)454 int filemap_flush(struct address_space *mapping)
455 {
456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457 }
458 EXPORT_SYMBOL(filemap_flush);
459
460 /**
461 * filemap_range_has_page - check if a page exists in range.
462 * @mapping: address space within which to check
463 * @start_byte: offset in bytes where the range starts
464 * @end_byte: offset in bytes where the range ends (inclusive)
465 *
466 * Find at least one page in the range supplied, usually used to check if
467 * direct writing in this range will trigger a writeback.
468 *
469 * Return: %true if at least one page exists in the specified range,
470 * %false otherwise.
471 */
filemap_range_has_page(struct address_space * mapping,loff_t start_byte,loff_t end_byte)472 bool filemap_range_has_page(struct address_space *mapping,
473 loff_t start_byte, loff_t end_byte)
474 {
475 struct folio *folio;
476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 pgoff_t max = end_byte >> PAGE_SHIFT;
478
479 if (end_byte < start_byte)
480 return false;
481
482 rcu_read_lock();
483 for (;;) {
484 folio = xas_find(&xas, max);
485 if (xas_retry(&xas, folio))
486 continue;
487 /* Shadow entries don't count */
488 if (xa_is_value(folio))
489 continue;
490 /*
491 * We don't need to try to pin this page; we're about to
492 * release the RCU lock anyway. It is enough to know that
493 * there was a page here recently.
494 */
495 break;
496 }
497 rcu_read_unlock();
498
499 return folio != NULL;
500 }
501 EXPORT_SYMBOL(filemap_range_has_page);
502
__filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)503 static void __filemap_fdatawait_range(struct address_space *mapping,
504 loff_t start_byte, loff_t end_byte)
505 {
506 pgoff_t index = start_byte >> PAGE_SHIFT;
507 pgoff_t end = end_byte >> PAGE_SHIFT;
508 struct folio_batch fbatch;
509 unsigned nr_folios;
510
511 folio_batch_init(&fbatch);
512
513 while (index <= end) {
514 unsigned i;
515
516 nr_folios = filemap_get_folios_tag(mapping, &index, end,
517 PAGECACHE_TAG_WRITEBACK, &fbatch);
518
519 if (!nr_folios)
520 break;
521
522 for (i = 0; i < nr_folios; i++) {
523 struct folio *folio = fbatch.folios[i];
524
525 folio_wait_writeback(folio);
526 folio_clear_error(folio);
527 }
528 folio_batch_release(&fbatch);
529 cond_resched();
530 }
531 }
532
533 /**
534 * filemap_fdatawait_range - wait for writeback to complete
535 * @mapping: address space structure to wait for
536 * @start_byte: offset in bytes where the range starts
537 * @end_byte: offset in bytes where the range ends (inclusive)
538 *
539 * Walk the list of under-writeback pages of the given address space
540 * in the given range and wait for all of them. Check error status of
541 * the address space and return it.
542 *
543 * Since the error status of the address space is cleared by this function,
544 * callers are responsible for checking the return value and handling and/or
545 * reporting the error.
546 *
547 * Return: error status of the address space.
548 */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)549 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
550 loff_t end_byte)
551 {
552 __filemap_fdatawait_range(mapping, start_byte, end_byte);
553 return filemap_check_errors(mapping);
554 }
555 EXPORT_SYMBOL(filemap_fdatawait_range);
556
557 /**
558 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
559 * @mapping: address space structure to wait for
560 * @start_byte: offset in bytes where the range starts
561 * @end_byte: offset in bytes where the range ends (inclusive)
562 *
563 * Walk the list of under-writeback pages of the given address space in the
564 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
565 * this function does not clear error status of the address space.
566 *
567 * Use this function if callers don't handle errors themselves. Expected
568 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
569 * fsfreeze(8)
570 */
filemap_fdatawait_range_keep_errors(struct address_space * mapping,loff_t start_byte,loff_t end_byte)571 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
572 loff_t start_byte, loff_t end_byte)
573 {
574 __filemap_fdatawait_range(mapping, start_byte, end_byte);
575 return filemap_check_and_keep_errors(mapping);
576 }
577 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
578
579 /**
580 * file_fdatawait_range - wait for writeback to complete
581 * @file: file pointing to address space structure to wait for
582 * @start_byte: offset in bytes where the range starts
583 * @end_byte: offset in bytes where the range ends (inclusive)
584 *
585 * Walk the list of under-writeback pages of the address space that file
586 * refers to, in the given range and wait for all of them. Check error
587 * status of the address space vs. the file->f_wb_err cursor and return it.
588 *
589 * Since the error status of the file is advanced by this function,
590 * callers are responsible for checking the return value and handling and/or
591 * reporting the error.
592 *
593 * Return: error status of the address space vs. the file->f_wb_err cursor.
594 */
file_fdatawait_range(struct file * file,loff_t start_byte,loff_t end_byte)595 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
596 {
597 struct address_space *mapping = file->f_mapping;
598
599 __filemap_fdatawait_range(mapping, start_byte, end_byte);
600 return file_check_and_advance_wb_err(file);
601 }
602 EXPORT_SYMBOL(file_fdatawait_range);
603
604 /**
605 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
606 * @mapping: address space structure to wait for
607 *
608 * Walk the list of under-writeback pages of the given address space
609 * and wait for all of them. Unlike filemap_fdatawait(), this function
610 * does not clear error status of the address space.
611 *
612 * Use this function if callers don't handle errors themselves. Expected
613 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
614 * fsfreeze(8)
615 *
616 * Return: error status of the address space.
617 */
filemap_fdatawait_keep_errors(struct address_space * mapping)618 int filemap_fdatawait_keep_errors(struct address_space *mapping)
619 {
620 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
621 return filemap_check_and_keep_errors(mapping);
622 }
623 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
624
625 /* Returns true if writeback might be needed or already in progress. */
mapping_needs_writeback(struct address_space * mapping)626 static bool mapping_needs_writeback(struct address_space *mapping)
627 {
628 return mapping->nrpages;
629 }
630
filemap_range_has_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)631 bool filemap_range_has_writeback(struct address_space *mapping,
632 loff_t start_byte, loff_t end_byte)
633 {
634 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
635 pgoff_t max = end_byte >> PAGE_SHIFT;
636 struct folio *folio;
637
638 if (end_byte < start_byte)
639 return false;
640
641 rcu_read_lock();
642 xas_for_each(&xas, folio, max) {
643 if (xas_retry(&xas, folio))
644 continue;
645 if (xa_is_value(folio))
646 continue;
647 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
648 folio_test_writeback(folio))
649 break;
650 }
651 rcu_read_unlock();
652 return folio != NULL;
653 }
654 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
655
656 /**
657 * filemap_write_and_wait_range - write out & wait on a file range
658 * @mapping: the address_space for the pages
659 * @lstart: offset in bytes where the range starts
660 * @lend: offset in bytes where the range ends (inclusive)
661 *
662 * Write out and wait upon file offsets lstart->lend, inclusive.
663 *
664 * Note that @lend is inclusive (describes the last byte to be written) so
665 * that this function can be used to write to the very end-of-file (end = -1).
666 *
667 * Return: error status of the address space.
668 */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)669 int filemap_write_and_wait_range(struct address_space *mapping,
670 loff_t lstart, loff_t lend)
671 {
672 int err = 0, err2;
673
674 if (lend < lstart)
675 return 0;
676
677 if (mapping_needs_writeback(mapping)) {
678 err = __filemap_fdatawrite_range(mapping, lstart, lend,
679 WB_SYNC_ALL);
680 /*
681 * Even if the above returned error, the pages may be
682 * written partially (e.g. -ENOSPC), so we wait for it.
683 * But the -EIO is special case, it may indicate the worst
684 * thing (e.g. bug) happened, so we avoid waiting for it.
685 */
686 if (err != -EIO)
687 __filemap_fdatawait_range(mapping, lstart, lend);
688 }
689 err2 = filemap_check_errors(mapping);
690 if (!err)
691 err = err2;
692 return err;
693 }
694 EXPORT_SYMBOL(filemap_write_and_wait_range);
695
__filemap_set_wb_err(struct address_space * mapping,int err)696 void __filemap_set_wb_err(struct address_space *mapping, int err)
697 {
698 errseq_t eseq = errseq_set(&mapping->wb_err, err);
699
700 trace_filemap_set_wb_err(mapping, eseq);
701 }
702 EXPORT_SYMBOL(__filemap_set_wb_err);
703
704 /**
705 * file_check_and_advance_wb_err - report wb error (if any) that was previously
706 * and advance wb_err to current one
707 * @file: struct file on which the error is being reported
708 *
709 * When userland calls fsync (or something like nfsd does the equivalent), we
710 * want to report any writeback errors that occurred since the last fsync (or
711 * since the file was opened if there haven't been any).
712 *
713 * Grab the wb_err from the mapping. If it matches what we have in the file,
714 * then just quickly return 0. The file is all caught up.
715 *
716 * If it doesn't match, then take the mapping value, set the "seen" flag in
717 * it and try to swap it into place. If it works, or another task beat us
718 * to it with the new value, then update the f_wb_err and return the error
719 * portion. The error at this point must be reported via proper channels
720 * (a'la fsync, or NFS COMMIT operation, etc.).
721 *
722 * While we handle mapping->wb_err with atomic operations, the f_wb_err
723 * value is protected by the f_lock since we must ensure that it reflects
724 * the latest value swapped in for this file descriptor.
725 *
726 * Return: %0 on success, negative error code otherwise.
727 */
file_check_and_advance_wb_err(struct file * file)728 int file_check_and_advance_wb_err(struct file *file)
729 {
730 int err = 0;
731 errseq_t old = READ_ONCE(file->f_wb_err);
732 struct address_space *mapping = file->f_mapping;
733
734 /* Locklessly handle the common case where nothing has changed */
735 if (errseq_check(&mapping->wb_err, old)) {
736 /* Something changed, must use slow path */
737 spin_lock(&file->f_lock);
738 old = file->f_wb_err;
739 err = errseq_check_and_advance(&mapping->wb_err,
740 &file->f_wb_err);
741 trace_file_check_and_advance_wb_err(file, old);
742 spin_unlock(&file->f_lock);
743 }
744
745 /*
746 * We're mostly using this function as a drop in replacement for
747 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
748 * that the legacy code would have had on these flags.
749 */
750 clear_bit(AS_EIO, &mapping->flags);
751 clear_bit(AS_ENOSPC, &mapping->flags);
752 return err;
753 }
754 EXPORT_SYMBOL(file_check_and_advance_wb_err);
755
756 /**
757 * file_write_and_wait_range - write out & wait on a file range
758 * @file: file pointing to address_space with pages
759 * @lstart: offset in bytes where the range starts
760 * @lend: offset in bytes where the range ends (inclusive)
761 *
762 * Write out and wait upon file offsets lstart->lend, inclusive.
763 *
764 * Note that @lend is inclusive (describes the last byte to be written) so
765 * that this function can be used to write to the very end-of-file (end = -1).
766 *
767 * After writing out and waiting on the data, we check and advance the
768 * f_wb_err cursor to the latest value, and return any errors detected there.
769 *
770 * Return: %0 on success, negative error code otherwise.
771 */
file_write_and_wait_range(struct file * file,loff_t lstart,loff_t lend)772 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
773 {
774 int err = 0, err2;
775 struct address_space *mapping = file->f_mapping;
776
777 if (lend < lstart)
778 return 0;
779
780 if (mapping_needs_writeback(mapping)) {
781 err = __filemap_fdatawrite_range(mapping, lstart, lend,
782 WB_SYNC_ALL);
783 /* See comment of filemap_write_and_wait() */
784 if (err != -EIO)
785 __filemap_fdatawait_range(mapping, lstart, lend);
786 }
787 err2 = file_check_and_advance_wb_err(file);
788 if (!err)
789 err = err2;
790 return err;
791 }
792 EXPORT_SYMBOL(file_write_and_wait_range);
793
794 /**
795 * replace_page_cache_folio - replace a pagecache folio with a new one
796 * @old: folio to be replaced
797 * @new: folio to replace with
798 *
799 * This function replaces a folio in the pagecache with a new one. On
800 * success it acquires the pagecache reference for the new folio and
801 * drops it for the old folio. Both the old and new folios must be
802 * locked. This function does not add the new folio to the LRU, the
803 * caller must do that.
804 *
805 * The remove + add is atomic. This function cannot fail.
806 */
replace_page_cache_folio(struct folio * old,struct folio * new)807 void replace_page_cache_folio(struct folio *old, struct folio *new)
808 {
809 struct address_space *mapping = old->mapping;
810 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
811 pgoff_t offset = old->index;
812 XA_STATE(xas, &mapping->i_pages, offset);
813
814 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
815 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
816 VM_BUG_ON_FOLIO(new->mapping, new);
817
818 folio_get(new);
819 new->mapping = mapping;
820 new->index = offset;
821
822 mem_cgroup_migrate(old, new);
823
824 xas_lock_irq(&xas);
825 xas_store(&xas, new);
826
827 old->mapping = NULL;
828 /* hugetlb pages do not participate in page cache accounting. */
829 if (!folio_test_hugetlb(old))
830 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
831 if (!folio_test_hugetlb(new))
832 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
833 if (folio_test_swapbacked(old))
834 __lruvec_stat_sub_folio(old, NR_SHMEM);
835 if (folio_test_swapbacked(new))
836 __lruvec_stat_add_folio(new, NR_SHMEM);
837 xas_unlock_irq(&xas);
838 if (free_folio)
839 free_folio(old);
840 folio_put(old);
841 }
842 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
843
__filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp,void ** shadowp)844 noinline int __filemap_add_folio(struct address_space *mapping,
845 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
846 {
847 XA_STATE(xas, &mapping->i_pages, index);
848 int huge = folio_test_hugetlb(folio);
849 void *alloced_shadow = NULL;
850 int alloced_order = 0;
851 bool charged = false;
852 long nr = 1;
853
854 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
855 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
856 mapping_set_update(&xas, mapping);
857
858 if (!huge) {
859 int error = mem_cgroup_charge(folio, NULL, gfp);
860 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
861 if (error)
862 return error;
863 charged = true;
864 xas_set_order(&xas, index, folio_order(folio));
865 nr = folio_nr_pages(folio);
866 }
867
868 gfp &= GFP_RECLAIM_MASK;
869 folio_ref_add(folio, nr);
870 folio->mapping = mapping;
871 folio->index = xas.xa_index;
872
873 for (;;) {
874 int order = -1, split_order = 0;
875 void *entry, *old = NULL;
876
877 xas_lock_irq(&xas);
878 xas_for_each_conflict(&xas, entry) {
879 old = entry;
880 if (!xa_is_value(entry)) {
881 xas_set_err(&xas, -EEXIST);
882 goto unlock;
883 }
884 /*
885 * If a larger entry exists,
886 * it will be the first and only entry iterated.
887 */
888 if (order == -1)
889 order = xas_get_order(&xas);
890 }
891
892 /* entry may have changed before we re-acquire the lock */
893 if (alloced_order && (old != alloced_shadow || order != alloced_order)) {
894 xas_destroy(&xas);
895 alloced_order = 0;
896 }
897
898 if (old) {
899 if (order > 0 && order > folio_order(folio)) {
900 /* How to handle large swap entries? */
901 BUG_ON(shmem_mapping(mapping));
902 if (!alloced_order) {
903 split_order = order;
904 goto unlock;
905 }
906 xas_split(&xas, old, order);
907 xas_reset(&xas);
908 }
909 if (shadowp)
910 *shadowp = old;
911 }
912
913 xas_store(&xas, folio);
914 if (xas_error(&xas))
915 goto unlock;
916
917 mapping->nrpages += nr;
918
919 /* hugetlb pages do not participate in page cache accounting */
920 if (!huge) {
921 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
922 if (folio_test_pmd_mappable(folio))
923 __lruvec_stat_mod_folio(folio,
924 NR_FILE_THPS, nr);
925 }
926
927 unlock:
928 xas_unlock_irq(&xas);
929
930 /* split needed, alloc here and retry. */
931 if (split_order) {
932 xas_split_alloc(&xas, old, split_order, gfp);
933 if (xas_error(&xas))
934 goto error;
935 alloced_shadow = old;
936 alloced_order = split_order;
937 xas_reset(&xas);
938 continue;
939 }
940
941 if (!xas_nomem(&xas, gfp))
942 break;
943 }
944
945 if (xas_error(&xas))
946 goto error;
947
948 trace_mm_filemap_add_to_page_cache(folio);
949 return 0;
950 error:
951 if (charged)
952 mem_cgroup_uncharge(folio);
953 folio->mapping = NULL;
954 /* Leave page->index set: truncation relies upon it */
955 folio_put_refs(folio, nr);
956 return xas_error(&xas);
957 }
958 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
959
filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp)960 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
961 pgoff_t index, gfp_t gfp)
962 {
963 void *shadow = NULL;
964 int ret;
965
966 __folio_set_locked(folio);
967 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
968 if (unlikely(ret))
969 __folio_clear_locked(folio);
970 else {
971 /*
972 * The folio might have been evicted from cache only
973 * recently, in which case it should be activated like
974 * any other repeatedly accessed folio.
975 * The exception is folios getting rewritten; evicting other
976 * data from the working set, only to cache data that will
977 * get overwritten with something else, is a waste of memory.
978 */
979 WARN_ON_ONCE(folio_test_active(folio));
980 if (!(gfp & __GFP_WRITE) && shadow)
981 workingset_refault(folio, shadow);
982 folio_add_lru(folio);
983 }
984 return ret;
985 }
986 EXPORT_SYMBOL_GPL(filemap_add_folio);
987
988 #ifdef CONFIG_NUMA
filemap_alloc_folio(gfp_t gfp,unsigned int order)989 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
990 {
991 int n;
992 struct folio *folio;
993
994 if (cpuset_do_page_mem_spread()) {
995 unsigned int cpuset_mems_cookie;
996 do {
997 cpuset_mems_cookie = read_mems_allowed_begin();
998 n = cpuset_mem_spread_node();
999 folio = __folio_alloc_node(gfp, order, n);
1000 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1001
1002 return folio;
1003 }
1004 return folio_alloc(gfp, order);
1005 }
1006 EXPORT_SYMBOL(filemap_alloc_folio);
1007 #endif
1008
1009 /*
1010 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1011 *
1012 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1013 *
1014 * @mapping1: the first mapping to lock
1015 * @mapping2: the second mapping to lock
1016 */
filemap_invalidate_lock_two(struct address_space * mapping1,struct address_space * mapping2)1017 void filemap_invalidate_lock_two(struct address_space *mapping1,
1018 struct address_space *mapping2)
1019 {
1020 if (mapping1 > mapping2)
1021 swap(mapping1, mapping2);
1022 if (mapping1)
1023 down_write(&mapping1->invalidate_lock);
1024 if (mapping2 && mapping1 != mapping2)
1025 down_write_nested(&mapping2->invalidate_lock, 1);
1026 }
1027 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1028
1029 /*
1030 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1031 *
1032 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1033 *
1034 * @mapping1: the first mapping to unlock
1035 * @mapping2: the second mapping to unlock
1036 */
filemap_invalidate_unlock_two(struct address_space * mapping1,struct address_space * mapping2)1037 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1038 struct address_space *mapping2)
1039 {
1040 if (mapping1)
1041 up_write(&mapping1->invalidate_lock);
1042 if (mapping2 && mapping1 != mapping2)
1043 up_write(&mapping2->invalidate_lock);
1044 }
1045 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1046
1047 /*
1048 * In order to wait for pages to become available there must be
1049 * waitqueues associated with pages. By using a hash table of
1050 * waitqueues where the bucket discipline is to maintain all
1051 * waiters on the same queue and wake all when any of the pages
1052 * become available, and for the woken contexts to check to be
1053 * sure the appropriate page became available, this saves space
1054 * at a cost of "thundering herd" phenomena during rare hash
1055 * collisions.
1056 */
1057 #define PAGE_WAIT_TABLE_BITS 8
1058 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1059 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1060
folio_waitqueue(struct folio * folio)1061 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1062 {
1063 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1064 }
1065
pagecache_init(void)1066 void __init pagecache_init(void)
1067 {
1068 int i;
1069
1070 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1071 init_waitqueue_head(&folio_wait_table[i]);
1072
1073 page_writeback_init();
1074 }
1075
1076 /*
1077 * The page wait code treats the "wait->flags" somewhat unusually, because
1078 * we have multiple different kinds of waits, not just the usual "exclusive"
1079 * one.
1080 *
1081 * We have:
1082 *
1083 * (a) no special bits set:
1084 *
1085 * We're just waiting for the bit to be released, and when a waker
1086 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1087 * and remove it from the wait queue.
1088 *
1089 * Simple and straightforward.
1090 *
1091 * (b) WQ_FLAG_EXCLUSIVE:
1092 *
1093 * The waiter is waiting to get the lock, and only one waiter should
1094 * be woken up to avoid any thundering herd behavior. We'll set the
1095 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1096 *
1097 * This is the traditional exclusive wait.
1098 *
1099 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1100 *
1101 * The waiter is waiting to get the bit, and additionally wants the
1102 * lock to be transferred to it for fair lock behavior. If the lock
1103 * cannot be taken, we stop walking the wait queue without waking
1104 * the waiter.
1105 *
1106 * This is the "fair lock handoff" case, and in addition to setting
1107 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1108 * that it now has the lock.
1109 */
wake_page_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1110 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1111 {
1112 unsigned int flags;
1113 struct wait_page_key *key = arg;
1114 struct wait_page_queue *wait_page
1115 = container_of(wait, struct wait_page_queue, wait);
1116
1117 if (!wake_page_match(wait_page, key))
1118 return 0;
1119
1120 /*
1121 * If it's a lock handoff wait, we get the bit for it, and
1122 * stop walking (and do not wake it up) if we can't.
1123 */
1124 flags = wait->flags;
1125 if (flags & WQ_FLAG_EXCLUSIVE) {
1126 if (test_bit(key->bit_nr, &key->folio->flags))
1127 return -1;
1128 if (flags & WQ_FLAG_CUSTOM) {
1129 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1130 return -1;
1131 flags |= WQ_FLAG_DONE;
1132 }
1133 }
1134
1135 /*
1136 * We are holding the wait-queue lock, but the waiter that
1137 * is waiting for this will be checking the flags without
1138 * any locking.
1139 *
1140 * So update the flags atomically, and wake up the waiter
1141 * afterwards to avoid any races. This store-release pairs
1142 * with the load-acquire in folio_wait_bit_common().
1143 */
1144 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1145 wake_up_state(wait->private, mode);
1146
1147 /*
1148 * Ok, we have successfully done what we're waiting for,
1149 * and we can unconditionally remove the wait entry.
1150 *
1151 * Note that this pairs with the "finish_wait()" in the
1152 * waiter, and has to be the absolute last thing we do.
1153 * After this list_del_init(&wait->entry) the wait entry
1154 * might be de-allocated and the process might even have
1155 * exited.
1156 */
1157 list_del_init_careful(&wait->entry);
1158 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1159 }
1160
folio_wake_bit(struct folio * folio,int bit_nr)1161 static void folio_wake_bit(struct folio *folio, int bit_nr)
1162 {
1163 wait_queue_head_t *q = folio_waitqueue(folio);
1164 struct wait_page_key key;
1165 unsigned long flags;
1166 wait_queue_entry_t bookmark;
1167
1168 key.folio = folio;
1169 key.bit_nr = bit_nr;
1170 key.page_match = 0;
1171
1172 bookmark.flags = 0;
1173 bookmark.private = NULL;
1174 bookmark.func = NULL;
1175 INIT_LIST_HEAD(&bookmark.entry);
1176
1177 spin_lock_irqsave(&q->lock, flags);
1178 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1179
1180 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1181 /*
1182 * Take a breather from holding the lock,
1183 * allow pages that finish wake up asynchronously
1184 * to acquire the lock and remove themselves
1185 * from wait queue
1186 */
1187 spin_unlock_irqrestore(&q->lock, flags);
1188 cpu_relax();
1189 spin_lock_irqsave(&q->lock, flags);
1190 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1191 }
1192
1193 /*
1194 * It's possible to miss clearing waiters here, when we woke our page
1195 * waiters, but the hashed waitqueue has waiters for other pages on it.
1196 * That's okay, it's a rare case. The next waker will clear it.
1197 *
1198 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1199 * other), the flag may be cleared in the course of freeing the page;
1200 * but that is not required for correctness.
1201 */
1202 if (!waitqueue_active(q) || !key.page_match)
1203 folio_clear_waiters(folio);
1204
1205 spin_unlock_irqrestore(&q->lock, flags);
1206 }
1207
folio_wake(struct folio * folio,int bit)1208 static void folio_wake(struct folio *folio, int bit)
1209 {
1210 if (!folio_test_waiters(folio))
1211 return;
1212 folio_wake_bit(folio, bit);
1213 }
1214
1215 /*
1216 * A choice of three behaviors for folio_wait_bit_common():
1217 */
1218 enum behavior {
1219 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1220 * __folio_lock() waiting on then setting PG_locked.
1221 */
1222 SHARED, /* Hold ref to page and check the bit when woken, like
1223 * folio_wait_writeback() waiting on PG_writeback.
1224 */
1225 DROP, /* Drop ref to page before wait, no check when woken,
1226 * like folio_put_wait_locked() on PG_locked.
1227 */
1228 };
1229
1230 /*
1231 * Attempt to check (or get) the folio flag, and mark us done
1232 * if successful.
1233 */
folio_trylock_flag(struct folio * folio,int bit_nr,struct wait_queue_entry * wait)1234 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1235 struct wait_queue_entry *wait)
1236 {
1237 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1238 if (test_and_set_bit(bit_nr, &folio->flags))
1239 return false;
1240 } else if (test_bit(bit_nr, &folio->flags))
1241 return false;
1242
1243 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1244 return true;
1245 }
1246
1247 /* How many times do we accept lock stealing from under a waiter? */
1248 int sysctl_page_lock_unfairness = 5;
1249
folio_wait_bit_common(struct folio * folio,int bit_nr,int state,enum behavior behavior)1250 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1251 int state, enum behavior behavior)
1252 {
1253 wait_queue_head_t *q = folio_waitqueue(folio);
1254 int unfairness = sysctl_page_lock_unfairness;
1255 struct wait_page_queue wait_page;
1256 wait_queue_entry_t *wait = &wait_page.wait;
1257 bool thrashing = false;
1258 unsigned long pflags;
1259 bool in_thrashing;
1260
1261 if (bit_nr == PG_locked &&
1262 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1263 delayacct_thrashing_start(&in_thrashing);
1264 psi_memstall_enter(&pflags);
1265 thrashing = true;
1266 }
1267
1268 init_wait(wait);
1269 wait->func = wake_page_function;
1270 wait_page.folio = folio;
1271 wait_page.bit_nr = bit_nr;
1272
1273 repeat:
1274 wait->flags = 0;
1275 if (behavior == EXCLUSIVE) {
1276 wait->flags = WQ_FLAG_EXCLUSIVE;
1277 if (--unfairness < 0)
1278 wait->flags |= WQ_FLAG_CUSTOM;
1279 }
1280
1281 /*
1282 * Do one last check whether we can get the
1283 * page bit synchronously.
1284 *
1285 * Do the folio_set_waiters() marking before that
1286 * to let any waker we _just_ missed know they
1287 * need to wake us up (otherwise they'll never
1288 * even go to the slow case that looks at the
1289 * page queue), and add ourselves to the wait
1290 * queue if we need to sleep.
1291 *
1292 * This part needs to be done under the queue
1293 * lock to avoid races.
1294 */
1295 spin_lock_irq(&q->lock);
1296 folio_set_waiters(folio);
1297 if (!folio_trylock_flag(folio, bit_nr, wait))
1298 __add_wait_queue_entry_tail(q, wait);
1299 spin_unlock_irq(&q->lock);
1300
1301 /*
1302 * From now on, all the logic will be based on
1303 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1304 * see whether the page bit testing has already
1305 * been done by the wake function.
1306 *
1307 * We can drop our reference to the folio.
1308 */
1309 if (behavior == DROP)
1310 folio_put(folio);
1311
1312 /*
1313 * Note that until the "finish_wait()", or until
1314 * we see the WQ_FLAG_WOKEN flag, we need to
1315 * be very careful with the 'wait->flags', because
1316 * we may race with a waker that sets them.
1317 */
1318 for (;;) {
1319 unsigned int flags;
1320
1321 set_current_state(state);
1322
1323 /* Loop until we've been woken or interrupted */
1324 flags = smp_load_acquire(&wait->flags);
1325 if (!(flags & WQ_FLAG_WOKEN)) {
1326 if (signal_pending_state(state, current))
1327 break;
1328
1329 io_schedule();
1330 continue;
1331 }
1332
1333 /* If we were non-exclusive, we're done */
1334 if (behavior != EXCLUSIVE)
1335 break;
1336
1337 /* If the waker got the lock for us, we're done */
1338 if (flags & WQ_FLAG_DONE)
1339 break;
1340
1341 /*
1342 * Otherwise, if we're getting the lock, we need to
1343 * try to get it ourselves.
1344 *
1345 * And if that fails, we'll have to retry this all.
1346 */
1347 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1348 goto repeat;
1349
1350 wait->flags |= WQ_FLAG_DONE;
1351 break;
1352 }
1353
1354 /*
1355 * If a signal happened, this 'finish_wait()' may remove the last
1356 * waiter from the wait-queues, but the folio waiters bit will remain
1357 * set. That's ok. The next wakeup will take care of it, and trying
1358 * to do it here would be difficult and prone to races.
1359 */
1360 finish_wait(q, wait);
1361
1362 if (thrashing) {
1363 delayacct_thrashing_end(&in_thrashing);
1364 psi_memstall_leave(&pflags);
1365 }
1366
1367 /*
1368 * NOTE! The wait->flags weren't stable until we've done the
1369 * 'finish_wait()', and we could have exited the loop above due
1370 * to a signal, and had a wakeup event happen after the signal
1371 * test but before the 'finish_wait()'.
1372 *
1373 * So only after the finish_wait() can we reliably determine
1374 * if we got woken up or not, so we can now figure out the final
1375 * return value based on that state without races.
1376 *
1377 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1378 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1379 */
1380 if (behavior == EXCLUSIVE)
1381 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1382
1383 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1384 }
1385
1386 #ifdef CONFIG_MIGRATION
1387 /**
1388 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1389 * @entry: migration swap entry.
1390 * @ptl: already locked ptl. This function will drop the lock.
1391 *
1392 * Wait for a migration entry referencing the given page to be removed. This is
1393 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1394 * this can be called without taking a reference on the page. Instead this
1395 * should be called while holding the ptl for the migration entry referencing
1396 * the page.
1397 *
1398 * Returns after unlocking the ptl.
1399 *
1400 * This follows the same logic as folio_wait_bit_common() so see the comments
1401 * there.
1402 */
migration_entry_wait_on_locked(swp_entry_t entry,spinlock_t * ptl)1403 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1404 __releases(ptl)
1405 {
1406 struct wait_page_queue wait_page;
1407 wait_queue_entry_t *wait = &wait_page.wait;
1408 bool thrashing = false;
1409 unsigned long pflags;
1410 bool in_thrashing;
1411 wait_queue_head_t *q;
1412 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1413
1414 q = folio_waitqueue(folio);
1415 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1416 delayacct_thrashing_start(&in_thrashing);
1417 psi_memstall_enter(&pflags);
1418 thrashing = true;
1419 }
1420
1421 init_wait(wait);
1422 wait->func = wake_page_function;
1423 wait_page.folio = folio;
1424 wait_page.bit_nr = PG_locked;
1425 wait->flags = 0;
1426
1427 spin_lock_irq(&q->lock);
1428 folio_set_waiters(folio);
1429 if (!folio_trylock_flag(folio, PG_locked, wait))
1430 __add_wait_queue_entry_tail(q, wait);
1431 spin_unlock_irq(&q->lock);
1432
1433 /*
1434 * If a migration entry exists for the page the migration path must hold
1435 * a valid reference to the page, and it must take the ptl to remove the
1436 * migration entry. So the page is valid until the ptl is dropped.
1437 */
1438 spin_unlock(ptl);
1439
1440 for (;;) {
1441 unsigned int flags;
1442
1443 set_current_state(TASK_UNINTERRUPTIBLE);
1444
1445 /* Loop until we've been woken or interrupted */
1446 flags = smp_load_acquire(&wait->flags);
1447 if (!(flags & WQ_FLAG_WOKEN)) {
1448 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1449 break;
1450
1451 io_schedule();
1452 continue;
1453 }
1454 break;
1455 }
1456
1457 finish_wait(q, wait);
1458
1459 if (thrashing) {
1460 delayacct_thrashing_end(&in_thrashing);
1461 psi_memstall_leave(&pflags);
1462 }
1463 }
1464 #endif
1465
folio_wait_bit(struct folio * folio,int bit_nr)1466 void folio_wait_bit(struct folio *folio, int bit_nr)
1467 {
1468 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1469 }
1470 EXPORT_SYMBOL(folio_wait_bit);
1471
folio_wait_bit_killable(struct folio * folio,int bit_nr)1472 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1473 {
1474 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1475 }
1476 EXPORT_SYMBOL(folio_wait_bit_killable);
1477
1478 /**
1479 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1480 * @folio: The folio to wait for.
1481 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1482 *
1483 * The caller should hold a reference on @folio. They expect the page to
1484 * become unlocked relatively soon, but do not wish to hold up migration
1485 * (for example) by holding the reference while waiting for the folio to
1486 * come unlocked. After this function returns, the caller should not
1487 * dereference @folio.
1488 *
1489 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1490 */
folio_put_wait_locked(struct folio * folio,int state)1491 static int folio_put_wait_locked(struct folio *folio, int state)
1492 {
1493 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1494 }
1495
1496 /**
1497 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1498 * @folio: Folio defining the wait queue of interest
1499 * @waiter: Waiter to add to the queue
1500 *
1501 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1502 */
folio_add_wait_queue(struct folio * folio,wait_queue_entry_t * waiter)1503 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1504 {
1505 wait_queue_head_t *q = folio_waitqueue(folio);
1506 unsigned long flags;
1507
1508 spin_lock_irqsave(&q->lock, flags);
1509 __add_wait_queue_entry_tail(q, waiter);
1510 folio_set_waiters(folio);
1511 spin_unlock_irqrestore(&q->lock, flags);
1512 }
1513 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1514
1515 #ifndef clear_bit_unlock_is_negative_byte
1516
1517 /*
1518 * PG_waiters is the high bit in the same byte as PG_lock.
1519 *
1520 * On x86 (and on many other architectures), we can clear PG_lock and
1521 * test the sign bit at the same time. But if the architecture does
1522 * not support that special operation, we just do this all by hand
1523 * instead.
1524 *
1525 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1526 * being cleared, but a memory barrier should be unnecessary since it is
1527 * in the same byte as PG_locked.
1528 */
clear_bit_unlock_is_negative_byte(long nr,volatile void * mem)1529 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1530 {
1531 clear_bit_unlock(nr, mem);
1532 /* smp_mb__after_atomic(); */
1533 return test_bit(PG_waiters, mem);
1534 }
1535
1536 #endif
1537
1538 /**
1539 * folio_unlock - Unlock a locked folio.
1540 * @folio: The folio.
1541 *
1542 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1543 *
1544 * Context: May be called from interrupt or process context. May not be
1545 * called from NMI context.
1546 */
folio_unlock(struct folio * folio)1547 void folio_unlock(struct folio *folio)
1548 {
1549 /* Bit 7 allows x86 to check the byte's sign bit */
1550 BUILD_BUG_ON(PG_waiters != 7);
1551 BUILD_BUG_ON(PG_locked > 7);
1552 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1553 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1554 folio_wake_bit(folio, PG_locked);
1555 }
1556 EXPORT_SYMBOL(folio_unlock);
1557
1558 /**
1559 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1560 * @folio: The folio.
1561 *
1562 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1563 * it. The folio reference held for PG_private_2 being set is released.
1564 *
1565 * This is, for example, used when a netfs folio is being written to a local
1566 * disk cache, thereby allowing writes to the cache for the same folio to be
1567 * serialised.
1568 */
folio_end_private_2(struct folio * folio)1569 void folio_end_private_2(struct folio *folio)
1570 {
1571 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1572 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1573 folio_wake_bit(folio, PG_private_2);
1574 folio_put(folio);
1575 }
1576 EXPORT_SYMBOL(folio_end_private_2);
1577
1578 /**
1579 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1580 * @folio: The folio to wait on.
1581 *
1582 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1583 */
folio_wait_private_2(struct folio * folio)1584 void folio_wait_private_2(struct folio *folio)
1585 {
1586 while (folio_test_private_2(folio))
1587 folio_wait_bit(folio, PG_private_2);
1588 }
1589 EXPORT_SYMBOL(folio_wait_private_2);
1590
1591 /**
1592 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1593 * @folio: The folio to wait on.
1594 *
1595 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1596 * fatal signal is received by the calling task.
1597 *
1598 * Return:
1599 * - 0 if successful.
1600 * - -EINTR if a fatal signal was encountered.
1601 */
folio_wait_private_2_killable(struct folio * folio)1602 int folio_wait_private_2_killable(struct folio *folio)
1603 {
1604 int ret = 0;
1605
1606 while (folio_test_private_2(folio)) {
1607 ret = folio_wait_bit_killable(folio, PG_private_2);
1608 if (ret < 0)
1609 break;
1610 }
1611
1612 return ret;
1613 }
1614 EXPORT_SYMBOL(folio_wait_private_2_killable);
1615
1616 /**
1617 * folio_end_writeback - End writeback against a folio.
1618 * @folio: The folio.
1619 */
folio_end_writeback(struct folio * folio)1620 void folio_end_writeback(struct folio *folio)
1621 {
1622 /*
1623 * folio_test_clear_reclaim() could be used here but it is an
1624 * atomic operation and overkill in this particular case. Failing
1625 * to shuffle a folio marked for immediate reclaim is too mild
1626 * a gain to justify taking an atomic operation penalty at the
1627 * end of every folio writeback.
1628 */
1629 if (folio_test_reclaim(folio)) {
1630 folio_clear_reclaim(folio);
1631 folio_rotate_reclaimable(folio);
1632 }
1633
1634 /*
1635 * Writeback does not hold a folio reference of its own, relying
1636 * on truncation to wait for the clearing of PG_writeback.
1637 * But here we must make sure that the folio is not freed and
1638 * reused before the folio_wake().
1639 */
1640 folio_get(folio);
1641 if (!__folio_end_writeback(folio))
1642 BUG();
1643
1644 smp_mb__after_atomic();
1645 folio_wake(folio, PG_writeback);
1646 acct_reclaim_writeback(folio);
1647 folio_put(folio);
1648 }
1649 EXPORT_SYMBOL(folio_end_writeback);
1650
1651 /**
1652 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1653 * @folio: The folio to lock
1654 */
__folio_lock(struct folio * folio)1655 void __folio_lock(struct folio *folio)
1656 {
1657 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1658 EXCLUSIVE);
1659 }
1660 EXPORT_SYMBOL(__folio_lock);
1661
__folio_lock_killable(struct folio * folio)1662 int __folio_lock_killable(struct folio *folio)
1663 {
1664 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1665 EXCLUSIVE);
1666 }
1667 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1668
__folio_lock_async(struct folio * folio,struct wait_page_queue * wait)1669 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1670 {
1671 struct wait_queue_head *q = folio_waitqueue(folio);
1672 int ret = 0;
1673
1674 wait->folio = folio;
1675 wait->bit_nr = PG_locked;
1676
1677 spin_lock_irq(&q->lock);
1678 __add_wait_queue_entry_tail(q, &wait->wait);
1679 folio_set_waiters(folio);
1680 ret = !folio_trylock(folio);
1681 /*
1682 * If we were successful now, we know we're still on the
1683 * waitqueue as we're still under the lock. This means it's
1684 * safe to remove and return success, we know the callback
1685 * isn't going to trigger.
1686 */
1687 if (!ret)
1688 __remove_wait_queue(q, &wait->wait);
1689 else
1690 ret = -EIOCBQUEUED;
1691 spin_unlock_irq(&q->lock);
1692 return ret;
1693 }
1694
1695 /*
1696 * Return values:
1697 * 0 - folio is locked.
1698 * non-zero - folio is not locked.
1699 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1700 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1701 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1702 *
1703 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1704 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1705 */
__folio_lock_or_retry(struct folio * folio,struct vm_fault * vmf)1706 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1707 {
1708 unsigned int flags = vmf->flags;
1709
1710 if (fault_flag_allow_retry_first(flags)) {
1711 /*
1712 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1713 * released even though returning VM_FAULT_RETRY.
1714 */
1715 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1716 return VM_FAULT_RETRY;
1717
1718 release_fault_lock(vmf);
1719 if (flags & FAULT_FLAG_KILLABLE)
1720 folio_wait_locked_killable(folio);
1721 else
1722 folio_wait_locked(folio);
1723 return VM_FAULT_RETRY;
1724 }
1725 if (flags & FAULT_FLAG_KILLABLE) {
1726 bool ret;
1727
1728 ret = __folio_lock_killable(folio);
1729 if (ret) {
1730 release_fault_lock(vmf);
1731 return VM_FAULT_RETRY;
1732 }
1733 } else {
1734 __folio_lock(folio);
1735 }
1736
1737 return 0;
1738 }
1739
1740 /**
1741 * page_cache_next_miss() - Find the next gap in the page cache.
1742 * @mapping: Mapping.
1743 * @index: Index.
1744 * @max_scan: Maximum range to search.
1745 *
1746 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1747 * gap with the lowest index.
1748 *
1749 * This function may be called under the rcu_read_lock. However, this will
1750 * not atomically search a snapshot of the cache at a single point in time.
1751 * For example, if a gap is created at index 5, then subsequently a gap is
1752 * created at index 10, page_cache_next_miss covering both indices may
1753 * return 10 if called under the rcu_read_lock.
1754 *
1755 * Return: The index of the gap if found, otherwise an index outside the
1756 * range specified (in which case 'return - index >= max_scan' will be true).
1757 * In the rare case of index wrap-around, 0 will be returned.
1758 */
page_cache_next_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1759 pgoff_t page_cache_next_miss(struct address_space *mapping,
1760 pgoff_t index, unsigned long max_scan)
1761 {
1762 XA_STATE(xas, &mapping->i_pages, index);
1763
1764 while (max_scan--) {
1765 void *entry = xas_next(&xas);
1766 if (!entry || xa_is_value(entry))
1767 break;
1768 if (xas.xa_index == 0)
1769 break;
1770 }
1771
1772 return xas.xa_index;
1773 }
1774 EXPORT_SYMBOL(page_cache_next_miss);
1775
1776 /**
1777 * page_cache_prev_miss() - Find the previous gap in the page cache.
1778 * @mapping: Mapping.
1779 * @index: Index.
1780 * @max_scan: Maximum range to search.
1781 *
1782 * Search the range [max(index - max_scan + 1, 0), index] for the
1783 * gap with the highest index.
1784 *
1785 * This function may be called under the rcu_read_lock. However, this will
1786 * not atomically search a snapshot of the cache at a single point in time.
1787 * For example, if a gap is created at index 10, then subsequently a gap is
1788 * created at index 5, page_cache_prev_miss() covering both indices may
1789 * return 5 if called under the rcu_read_lock.
1790 *
1791 * Return: The index of the gap if found, otherwise an index outside the
1792 * range specified (in which case 'index - return >= max_scan' will be true).
1793 * In the rare case of wrap-around, ULONG_MAX will be returned.
1794 */
page_cache_prev_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1795 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1796 pgoff_t index, unsigned long max_scan)
1797 {
1798 XA_STATE(xas, &mapping->i_pages, index);
1799
1800 while (max_scan--) {
1801 void *entry = xas_prev(&xas);
1802 if (!entry || xa_is_value(entry))
1803 break;
1804 if (xas.xa_index == ULONG_MAX)
1805 break;
1806 }
1807
1808 return xas.xa_index;
1809 }
1810 EXPORT_SYMBOL(page_cache_prev_miss);
1811
1812 /*
1813 * Lockless page cache protocol:
1814 * On the lookup side:
1815 * 1. Load the folio from i_pages
1816 * 2. Increment the refcount if it's not zero
1817 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1818 *
1819 * On the removal side:
1820 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1821 * B. Remove the page from i_pages
1822 * C. Return the page to the page allocator
1823 *
1824 * This means that any page may have its reference count temporarily
1825 * increased by a speculative page cache (or fast GUP) lookup as it can
1826 * be allocated by another user before the RCU grace period expires.
1827 * Because the refcount temporarily acquired here may end up being the
1828 * last refcount on the page, any page allocation must be freeable by
1829 * folio_put().
1830 */
1831
1832 /*
1833 * filemap_get_entry - Get a page cache entry.
1834 * @mapping: the address_space to search
1835 * @index: The page cache index.
1836 *
1837 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1838 * it is returned with an increased refcount. If it is a shadow entry
1839 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1840 * it is returned without further action.
1841 *
1842 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1843 */
filemap_get_entry(struct address_space * mapping,pgoff_t index)1844 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1845 {
1846 XA_STATE(xas, &mapping->i_pages, index);
1847 struct folio *folio;
1848
1849 rcu_read_lock();
1850 repeat:
1851 xas_reset(&xas);
1852 folio = xas_load(&xas);
1853 if (xas_retry(&xas, folio))
1854 goto repeat;
1855 /*
1856 * A shadow entry of a recently evicted page, or a swap entry from
1857 * shmem/tmpfs. Return it without attempting to raise page count.
1858 */
1859 if (!folio || xa_is_value(folio))
1860 goto out;
1861
1862 if (!folio_try_get(folio))
1863 goto repeat;
1864
1865 if (unlikely(folio != xas_reload(&xas))) {
1866 folio_put(folio);
1867 goto repeat;
1868 }
1869 out:
1870 rcu_read_unlock();
1871
1872 return folio;
1873 }
1874
1875 /**
1876 * __filemap_get_folio - Find and get a reference to a folio.
1877 * @mapping: The address_space to search.
1878 * @index: The page index.
1879 * @fgp_flags: %FGP flags modify how the folio is returned.
1880 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1881 *
1882 * Looks up the page cache entry at @mapping & @index.
1883 *
1884 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1885 * if the %GFP flags specified for %FGP_CREAT are atomic.
1886 *
1887 * If this function returns a folio, it is returned with an increased refcount.
1888 *
1889 * Return: The found folio or an ERR_PTR() otherwise.
1890 */
__filemap_get_folio(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp)1891 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1892 fgf_t fgp_flags, gfp_t gfp)
1893 {
1894 struct folio *folio;
1895
1896 repeat:
1897 folio = filemap_get_entry(mapping, index);
1898 if (xa_is_value(folio))
1899 folio = NULL;
1900 if (!folio)
1901 goto no_page;
1902
1903 if (fgp_flags & FGP_LOCK) {
1904 if (fgp_flags & FGP_NOWAIT) {
1905 if (!folio_trylock(folio)) {
1906 folio_put(folio);
1907 return ERR_PTR(-EAGAIN);
1908 }
1909 } else {
1910 folio_lock(folio);
1911 }
1912
1913 /* Has the page been truncated? */
1914 if (unlikely(folio->mapping != mapping)) {
1915 folio_unlock(folio);
1916 folio_put(folio);
1917 goto repeat;
1918 }
1919 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1920 }
1921
1922 if (fgp_flags & FGP_ACCESSED)
1923 folio_mark_accessed(folio);
1924 else if (fgp_flags & FGP_WRITE) {
1925 /* Clear idle flag for buffer write */
1926 if (folio_test_idle(folio))
1927 folio_clear_idle(folio);
1928 }
1929
1930 if (fgp_flags & FGP_STABLE)
1931 folio_wait_stable(folio);
1932 no_page:
1933 if (!folio && (fgp_flags & FGP_CREAT)) {
1934 unsigned order = FGF_GET_ORDER(fgp_flags);
1935 int err;
1936
1937 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1938 gfp |= __GFP_WRITE;
1939 if (fgp_flags & FGP_NOFS)
1940 gfp &= ~__GFP_FS;
1941 if (fgp_flags & FGP_NOWAIT) {
1942 gfp &= ~GFP_KERNEL;
1943 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1944 }
1945 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1946 fgp_flags |= FGP_LOCK;
1947
1948 if (!mapping_large_folio_support(mapping))
1949 order = 0;
1950 if (order > MAX_PAGECACHE_ORDER)
1951 order = MAX_PAGECACHE_ORDER;
1952 /* If we're not aligned, allocate a smaller folio */
1953 if (index & ((1UL << order) - 1))
1954 order = __ffs(index);
1955
1956 do {
1957 gfp_t alloc_gfp = gfp;
1958
1959 err = -ENOMEM;
1960 if (order > 0)
1961 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1962 folio = filemap_alloc_folio(alloc_gfp, order);
1963 if (!folio)
1964 continue;
1965
1966 /* Init accessed so avoid atomic mark_page_accessed later */
1967 if (fgp_flags & FGP_ACCESSED)
1968 __folio_set_referenced(folio);
1969
1970 err = filemap_add_folio(mapping, folio, index, gfp);
1971 if (!err)
1972 break;
1973 folio_put(folio);
1974 folio = NULL;
1975 } while (order-- > 0);
1976
1977 if (err == -EEXIST)
1978 goto repeat;
1979 if (err) {
1980 /*
1981 * When NOWAIT I/O fails to allocate folios this could
1982 * be due to a nonblocking memory allocation and not
1983 * because the system actually is out of memory.
1984 * Return -EAGAIN so that there caller retries in a
1985 * blocking fashion instead of propagating -ENOMEM
1986 * to the application.
1987 */
1988 if ((fgp_flags & FGP_NOWAIT) && err == -ENOMEM)
1989 err = -EAGAIN;
1990 return ERR_PTR(err);
1991 }
1992 /*
1993 * filemap_add_folio locks the page, and for mmap
1994 * we expect an unlocked page.
1995 */
1996 if (folio && (fgp_flags & FGP_FOR_MMAP))
1997 folio_unlock(folio);
1998 }
1999
2000 if (!folio)
2001 return ERR_PTR(-ENOENT);
2002 return folio;
2003 }
2004 EXPORT_SYMBOL(__filemap_get_folio);
2005
find_get_entry(struct xa_state * xas,pgoff_t max,xa_mark_t mark)2006 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2007 xa_mark_t mark)
2008 {
2009 struct folio *folio;
2010
2011 retry:
2012 if (mark == XA_PRESENT)
2013 folio = xas_find(xas, max);
2014 else
2015 folio = xas_find_marked(xas, max, mark);
2016
2017 if (xas_retry(xas, folio))
2018 goto retry;
2019 /*
2020 * A shadow entry of a recently evicted page, a swap
2021 * entry from shmem/tmpfs or a DAX entry. Return it
2022 * without attempting to raise page count.
2023 */
2024 if (!folio || xa_is_value(folio))
2025 return folio;
2026
2027 if (!folio_try_get(folio))
2028 goto reset;
2029
2030 if (unlikely(folio != xas_reload(xas))) {
2031 folio_put(folio);
2032 goto reset;
2033 }
2034
2035 return folio;
2036 reset:
2037 xas_reset(xas);
2038 goto retry;
2039 }
2040
2041 /**
2042 * find_get_entries - gang pagecache lookup
2043 * @mapping: The address_space to search
2044 * @start: The starting page cache index
2045 * @end: The final page index (inclusive).
2046 * @fbatch: Where the resulting entries are placed.
2047 * @indices: The cache indices corresponding to the entries in @entries
2048 *
2049 * find_get_entries() will search for and return a batch of entries in
2050 * the mapping. The entries are placed in @fbatch. find_get_entries()
2051 * takes a reference on any actual folios it returns.
2052 *
2053 * The entries have ascending indexes. The indices may not be consecutive
2054 * due to not-present entries or large folios.
2055 *
2056 * Any shadow entries of evicted folios, or swap entries from
2057 * shmem/tmpfs, are included in the returned array.
2058 *
2059 * Return: The number of entries which were found.
2060 */
find_get_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2061 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2062 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2063 {
2064 XA_STATE(xas, &mapping->i_pages, *start);
2065 struct folio *folio;
2066
2067 rcu_read_lock();
2068 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2069 indices[fbatch->nr] = xas.xa_index;
2070 if (!folio_batch_add(fbatch, folio))
2071 break;
2072 }
2073 rcu_read_unlock();
2074
2075 if (folio_batch_count(fbatch)) {
2076 unsigned long nr = 1;
2077 int idx = folio_batch_count(fbatch) - 1;
2078
2079 folio = fbatch->folios[idx];
2080 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2081 nr = folio_nr_pages(folio);
2082 *start = indices[idx] + nr;
2083 }
2084 return folio_batch_count(fbatch);
2085 }
2086
2087 /**
2088 * find_lock_entries - Find a batch of pagecache entries.
2089 * @mapping: The address_space to search.
2090 * @start: The starting page cache index.
2091 * @end: The final page index (inclusive).
2092 * @fbatch: Where the resulting entries are placed.
2093 * @indices: The cache indices of the entries in @fbatch.
2094 *
2095 * find_lock_entries() will return a batch of entries from @mapping.
2096 * Swap, shadow and DAX entries are included. Folios are returned
2097 * locked and with an incremented refcount. Folios which are locked
2098 * by somebody else or under writeback are skipped. Folios which are
2099 * partially outside the range are not returned.
2100 *
2101 * The entries have ascending indexes. The indices may not be consecutive
2102 * due to not-present entries, large folios, folios which could not be
2103 * locked or folios under writeback.
2104 *
2105 * Return: The number of entries which were found.
2106 */
find_lock_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2107 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2108 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2109 {
2110 XA_STATE(xas, &mapping->i_pages, *start);
2111 struct folio *folio;
2112
2113 rcu_read_lock();
2114 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2115 if (!xa_is_value(folio)) {
2116 if (folio->index < *start)
2117 goto put;
2118 if (folio_next_index(folio) - 1 > end)
2119 goto put;
2120 if (!folio_trylock(folio))
2121 goto put;
2122 if (folio->mapping != mapping ||
2123 folio_test_writeback(folio))
2124 goto unlock;
2125 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2126 folio);
2127 }
2128 indices[fbatch->nr] = xas.xa_index;
2129 if (!folio_batch_add(fbatch, folio))
2130 break;
2131 continue;
2132 unlock:
2133 folio_unlock(folio);
2134 put:
2135 folio_put(folio);
2136 }
2137 rcu_read_unlock();
2138
2139 if (folio_batch_count(fbatch)) {
2140 unsigned long nr = 1;
2141 int idx = folio_batch_count(fbatch) - 1;
2142
2143 folio = fbatch->folios[idx];
2144 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2145 nr = folio_nr_pages(folio);
2146 *start = indices[idx] + nr;
2147 }
2148 return folio_batch_count(fbatch);
2149 }
2150
2151 /**
2152 * filemap_get_folios - Get a batch of folios
2153 * @mapping: The address_space to search
2154 * @start: The starting page index
2155 * @end: The final page index (inclusive)
2156 * @fbatch: The batch to fill.
2157 *
2158 * Search for and return a batch of folios in the mapping starting at
2159 * index @start and up to index @end (inclusive). The folios are returned
2160 * in @fbatch with an elevated reference count.
2161 *
2162 * The first folio may start before @start; if it does, it will contain
2163 * @start. The final folio may extend beyond @end; if it does, it will
2164 * contain @end. The folios have ascending indices. There may be gaps
2165 * between the folios if there are indices which have no folio in the
2166 * page cache. If folios are added to or removed from the page cache
2167 * while this is running, they may or may not be found by this call.
2168 *
2169 * Return: The number of folios which were found.
2170 * We also update @start to index the next folio for the traversal.
2171 */
filemap_get_folios(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2172 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2173 pgoff_t end, struct folio_batch *fbatch)
2174 {
2175 XA_STATE(xas, &mapping->i_pages, *start);
2176 struct folio *folio;
2177
2178 rcu_read_lock();
2179 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2180 /* Skip over shadow, swap and DAX entries */
2181 if (xa_is_value(folio))
2182 continue;
2183 if (!folio_batch_add(fbatch, folio)) {
2184 unsigned long nr = folio_nr_pages(folio);
2185
2186 if (folio_test_hugetlb(folio))
2187 nr = 1;
2188 *start = folio->index + nr;
2189 goto out;
2190 }
2191 }
2192
2193 /*
2194 * We come here when there is no page beyond @end. We take care to not
2195 * overflow the index @start as it confuses some of the callers. This
2196 * breaks the iteration when there is a page at index -1 but that is
2197 * already broken anyway.
2198 */
2199 if (end == (pgoff_t)-1)
2200 *start = (pgoff_t)-1;
2201 else
2202 *start = end + 1;
2203 out:
2204 rcu_read_unlock();
2205
2206 return folio_batch_count(fbatch);
2207 }
2208 EXPORT_SYMBOL(filemap_get_folios);
2209
2210 /**
2211 * filemap_get_folios_contig - Get a batch of contiguous folios
2212 * @mapping: The address_space to search
2213 * @start: The starting page index
2214 * @end: The final page index (inclusive)
2215 * @fbatch: The batch to fill
2216 *
2217 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2218 * except the returned folios are guaranteed to be contiguous. This may
2219 * not return all contiguous folios if the batch gets filled up.
2220 *
2221 * Return: The number of folios found.
2222 * Also update @start to be positioned for traversal of the next folio.
2223 */
2224
filemap_get_folios_contig(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2225 unsigned filemap_get_folios_contig(struct address_space *mapping,
2226 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2227 {
2228 XA_STATE(xas, &mapping->i_pages, *start);
2229 unsigned long nr;
2230 struct folio *folio;
2231
2232 rcu_read_lock();
2233
2234 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2235 folio = xas_next(&xas)) {
2236 if (xas_retry(&xas, folio))
2237 continue;
2238 /*
2239 * If the entry has been swapped out, we can stop looking.
2240 * No current caller is looking for DAX entries.
2241 */
2242 if (xa_is_value(folio))
2243 goto update_start;
2244
2245 if (!folio_try_get(folio))
2246 goto retry;
2247
2248 if (unlikely(folio != xas_reload(&xas)))
2249 goto put_folio;
2250
2251 if (!folio_batch_add(fbatch, folio)) {
2252 nr = folio_nr_pages(folio);
2253
2254 if (folio_test_hugetlb(folio))
2255 nr = 1;
2256 *start = folio->index + nr;
2257 goto out;
2258 }
2259 continue;
2260 put_folio:
2261 folio_put(folio);
2262
2263 retry:
2264 xas_reset(&xas);
2265 }
2266
2267 update_start:
2268 nr = folio_batch_count(fbatch);
2269
2270 if (nr) {
2271 folio = fbatch->folios[nr - 1];
2272 if (folio_test_hugetlb(folio))
2273 *start = folio->index + 1;
2274 else
2275 *start = folio_next_index(folio);
2276 }
2277 out:
2278 rcu_read_unlock();
2279 return folio_batch_count(fbatch);
2280 }
2281 EXPORT_SYMBOL(filemap_get_folios_contig);
2282
2283 /**
2284 * filemap_get_folios_tag - Get a batch of folios matching @tag
2285 * @mapping: The address_space to search
2286 * @start: The starting page index
2287 * @end: The final page index (inclusive)
2288 * @tag: The tag index
2289 * @fbatch: The batch to fill
2290 *
2291 * Same as filemap_get_folios(), but only returning folios tagged with @tag.
2292 *
2293 * Return: The number of folios found.
2294 * Also update @start to index the next folio for traversal.
2295 */
filemap_get_folios_tag(struct address_space * mapping,pgoff_t * start,pgoff_t end,xa_mark_t tag,struct folio_batch * fbatch)2296 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2297 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2298 {
2299 XA_STATE(xas, &mapping->i_pages, *start);
2300 struct folio *folio;
2301
2302 rcu_read_lock();
2303 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2304 /*
2305 * Shadow entries should never be tagged, but this iteration
2306 * is lockless so there is a window for page reclaim to evict
2307 * a page we saw tagged. Skip over it.
2308 */
2309 if (xa_is_value(folio))
2310 continue;
2311 if (!folio_batch_add(fbatch, folio)) {
2312 unsigned long nr = folio_nr_pages(folio);
2313
2314 if (folio_test_hugetlb(folio))
2315 nr = 1;
2316 *start = folio->index + nr;
2317 goto out;
2318 }
2319 }
2320 /*
2321 * We come here when there is no page beyond @end. We take care to not
2322 * overflow the index @start as it confuses some of the callers. This
2323 * breaks the iteration when there is a page at index -1 but that is
2324 * already broke anyway.
2325 */
2326 if (end == (pgoff_t)-1)
2327 *start = (pgoff_t)-1;
2328 else
2329 *start = end + 1;
2330 out:
2331 rcu_read_unlock();
2332
2333 return folio_batch_count(fbatch);
2334 }
2335 EXPORT_SYMBOL(filemap_get_folios_tag);
2336
2337 /*
2338 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2339 * a _large_ part of the i/o request. Imagine the worst scenario:
2340 *
2341 * ---R__________________________________________B__________
2342 * ^ reading here ^ bad block(assume 4k)
2343 *
2344 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2345 * => failing the whole request => read(R) => read(R+1) =>
2346 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2347 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2348 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2349 *
2350 * It is going insane. Fix it by quickly scaling down the readahead size.
2351 */
shrink_readahead_size_eio(struct file_ra_state * ra)2352 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2353 {
2354 ra->ra_pages /= 4;
2355 }
2356
2357 /*
2358 * filemap_get_read_batch - Get a batch of folios for read
2359 *
2360 * Get a batch of folios which represent a contiguous range of bytes in
2361 * the file. No exceptional entries will be returned. If @index is in
2362 * the middle of a folio, the entire folio will be returned. The last
2363 * folio in the batch may have the readahead flag set or the uptodate flag
2364 * clear so that the caller can take the appropriate action.
2365 */
filemap_get_read_batch(struct address_space * mapping,pgoff_t index,pgoff_t max,struct folio_batch * fbatch)2366 static void filemap_get_read_batch(struct address_space *mapping,
2367 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2368 {
2369 XA_STATE(xas, &mapping->i_pages, index);
2370 struct folio *folio;
2371
2372 rcu_read_lock();
2373 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2374 if (xas_retry(&xas, folio))
2375 continue;
2376 if (xas.xa_index > max || xa_is_value(folio))
2377 break;
2378 if (xa_is_sibling(folio))
2379 break;
2380 if (!folio_try_get(folio))
2381 goto retry;
2382
2383 if (unlikely(folio != xas_reload(&xas)))
2384 goto put_folio;
2385
2386 if (!folio_batch_add(fbatch, folio))
2387 break;
2388 if (!folio_test_uptodate(folio))
2389 break;
2390 if (folio_test_readahead(folio))
2391 break;
2392 xas_advance(&xas, folio_next_index(folio) - 1);
2393 continue;
2394 put_folio:
2395 folio_put(folio);
2396 retry:
2397 xas_reset(&xas);
2398 }
2399 rcu_read_unlock();
2400 }
2401
filemap_read_folio(struct file * file,filler_t filler,struct folio * folio)2402 static int filemap_read_folio(struct file *file, filler_t filler,
2403 struct folio *folio)
2404 {
2405 bool workingset = folio_test_workingset(folio);
2406 unsigned long pflags;
2407 int error;
2408
2409 /*
2410 * A previous I/O error may have been due to temporary failures,
2411 * eg. multipath errors. PG_error will be set again if read_folio
2412 * fails.
2413 */
2414 folio_clear_error(folio);
2415
2416 /* Start the actual read. The read will unlock the page. */
2417 if (unlikely(workingset))
2418 psi_memstall_enter(&pflags);
2419 error = filler(file, folio);
2420 if (unlikely(workingset))
2421 psi_memstall_leave(&pflags);
2422 if (error)
2423 return error;
2424
2425 error = folio_wait_locked_killable(folio);
2426 if (error)
2427 return error;
2428 if (folio_test_uptodate(folio))
2429 return 0;
2430 if (file)
2431 shrink_readahead_size_eio(&file->f_ra);
2432 return -EIO;
2433 }
2434
filemap_range_uptodate(struct address_space * mapping,loff_t pos,size_t count,struct folio * folio,bool need_uptodate)2435 static bool filemap_range_uptodate(struct address_space *mapping,
2436 loff_t pos, size_t count, struct folio *folio,
2437 bool need_uptodate)
2438 {
2439 if (folio_test_uptodate(folio))
2440 return true;
2441 /* pipes can't handle partially uptodate pages */
2442 if (need_uptodate)
2443 return false;
2444 if (!mapping->a_ops->is_partially_uptodate)
2445 return false;
2446 if (mapping->host->i_blkbits >= folio_shift(folio))
2447 return false;
2448
2449 if (folio_pos(folio) > pos) {
2450 count -= folio_pos(folio) - pos;
2451 pos = 0;
2452 } else {
2453 pos -= folio_pos(folio);
2454 }
2455
2456 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2457 }
2458
filemap_update_page(struct kiocb * iocb,struct address_space * mapping,size_t count,struct folio * folio,bool need_uptodate)2459 static int filemap_update_page(struct kiocb *iocb,
2460 struct address_space *mapping, size_t count,
2461 struct folio *folio, bool need_uptodate)
2462 {
2463 int error;
2464
2465 if (iocb->ki_flags & IOCB_NOWAIT) {
2466 if (!filemap_invalidate_trylock_shared(mapping))
2467 return -EAGAIN;
2468 } else {
2469 filemap_invalidate_lock_shared(mapping);
2470 }
2471
2472 if (!folio_trylock(folio)) {
2473 error = -EAGAIN;
2474 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2475 goto unlock_mapping;
2476 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2477 filemap_invalidate_unlock_shared(mapping);
2478 /*
2479 * This is where we usually end up waiting for a
2480 * previously submitted readahead to finish.
2481 */
2482 folio_put_wait_locked(folio, TASK_KILLABLE);
2483 return AOP_TRUNCATED_PAGE;
2484 }
2485 error = __folio_lock_async(folio, iocb->ki_waitq);
2486 if (error)
2487 goto unlock_mapping;
2488 }
2489
2490 error = AOP_TRUNCATED_PAGE;
2491 if (!folio->mapping)
2492 goto unlock;
2493
2494 error = 0;
2495 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2496 need_uptodate))
2497 goto unlock;
2498
2499 error = -EAGAIN;
2500 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2501 goto unlock;
2502
2503 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2504 folio);
2505 goto unlock_mapping;
2506 unlock:
2507 folio_unlock(folio);
2508 unlock_mapping:
2509 filemap_invalidate_unlock_shared(mapping);
2510 if (error == AOP_TRUNCATED_PAGE)
2511 folio_put(folio);
2512 return error;
2513 }
2514
filemap_create_folio(struct file * file,struct address_space * mapping,pgoff_t index,struct folio_batch * fbatch)2515 static int filemap_create_folio(struct file *file,
2516 struct address_space *mapping, pgoff_t index,
2517 struct folio_batch *fbatch)
2518 {
2519 struct folio *folio;
2520 int error;
2521
2522 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2523 if (!folio)
2524 return -ENOMEM;
2525
2526 /*
2527 * Protect against truncate / hole punch. Grabbing invalidate_lock
2528 * here assures we cannot instantiate and bring uptodate new
2529 * pagecache folios after evicting page cache during truncate
2530 * and before actually freeing blocks. Note that we could
2531 * release invalidate_lock after inserting the folio into
2532 * the page cache as the locked folio would then be enough to
2533 * synchronize with hole punching. But there are code paths
2534 * such as filemap_update_page() filling in partially uptodate
2535 * pages or ->readahead() that need to hold invalidate_lock
2536 * while mapping blocks for IO so let's hold the lock here as
2537 * well to keep locking rules simple.
2538 */
2539 filemap_invalidate_lock_shared(mapping);
2540 error = filemap_add_folio(mapping, folio, index,
2541 mapping_gfp_constraint(mapping, GFP_KERNEL));
2542 if (error == -EEXIST)
2543 error = AOP_TRUNCATED_PAGE;
2544 if (error)
2545 goto error;
2546
2547 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2548 if (error)
2549 goto error;
2550
2551 filemap_invalidate_unlock_shared(mapping);
2552 folio_batch_add(fbatch, folio);
2553 return 0;
2554 error:
2555 filemap_invalidate_unlock_shared(mapping);
2556 folio_put(folio);
2557 return error;
2558 }
2559
filemap_readahead(struct kiocb * iocb,struct file * file,struct address_space * mapping,struct folio * folio,pgoff_t last_index)2560 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2561 struct address_space *mapping, struct folio *folio,
2562 pgoff_t last_index)
2563 {
2564 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2565
2566 if (iocb->ki_flags & IOCB_NOIO)
2567 return -EAGAIN;
2568 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2569 return 0;
2570 }
2571
filemap_get_pages(struct kiocb * iocb,size_t count,struct folio_batch * fbatch,bool need_uptodate)2572 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2573 struct folio_batch *fbatch, bool need_uptodate)
2574 {
2575 struct file *filp = iocb->ki_filp;
2576 struct address_space *mapping = filp->f_mapping;
2577 struct file_ra_state *ra = &filp->f_ra;
2578 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2579 pgoff_t last_index;
2580 struct folio *folio;
2581 int err = 0;
2582
2583 /* "last_index" is the index of the page beyond the end of the read */
2584 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2585 retry:
2586 if (fatal_signal_pending(current))
2587 return -EINTR;
2588
2589 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2590 if (!folio_batch_count(fbatch)) {
2591 if (iocb->ki_flags & IOCB_NOIO)
2592 return -EAGAIN;
2593 page_cache_sync_readahead(mapping, ra, filp, index,
2594 last_index - index);
2595 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2596 }
2597 if (!folio_batch_count(fbatch)) {
2598 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2599 return -EAGAIN;
2600 err = filemap_create_folio(filp, mapping,
2601 iocb->ki_pos >> PAGE_SHIFT, fbatch);
2602 if (err == AOP_TRUNCATED_PAGE)
2603 goto retry;
2604 return err;
2605 }
2606
2607 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2608 if (folio_test_readahead(folio)) {
2609 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2610 if (err)
2611 goto err;
2612 }
2613 if (!folio_test_uptodate(folio)) {
2614 if ((iocb->ki_flags & IOCB_WAITQ) &&
2615 folio_batch_count(fbatch) > 1)
2616 iocb->ki_flags |= IOCB_NOWAIT;
2617 err = filemap_update_page(iocb, mapping, count, folio,
2618 need_uptodate);
2619 if (err)
2620 goto err;
2621 }
2622
2623 return 0;
2624 err:
2625 if (err < 0)
2626 folio_put(folio);
2627 if (likely(--fbatch->nr))
2628 return 0;
2629 if (err == AOP_TRUNCATED_PAGE)
2630 goto retry;
2631 return err;
2632 }
2633
pos_same_folio(loff_t pos1,loff_t pos2,struct folio * folio)2634 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2635 {
2636 unsigned int shift = folio_shift(folio);
2637
2638 return (pos1 >> shift == pos2 >> shift);
2639 }
2640
2641 /**
2642 * filemap_read - Read data from the page cache.
2643 * @iocb: The iocb to read.
2644 * @iter: Destination for the data.
2645 * @already_read: Number of bytes already read by the caller.
2646 *
2647 * Copies data from the page cache. If the data is not currently present,
2648 * uses the readahead and read_folio address_space operations to fetch it.
2649 *
2650 * Return: Total number of bytes copied, including those already read by
2651 * the caller. If an error happens before any bytes are copied, returns
2652 * a negative error number.
2653 */
filemap_read(struct kiocb * iocb,struct iov_iter * iter,ssize_t already_read)2654 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2655 ssize_t already_read)
2656 {
2657 struct file *filp = iocb->ki_filp;
2658 struct file_ra_state *ra = &filp->f_ra;
2659 struct address_space *mapping = filp->f_mapping;
2660 struct inode *inode = mapping->host;
2661 struct folio_batch fbatch;
2662 int i, error = 0;
2663 bool writably_mapped;
2664 loff_t isize, end_offset;
2665 loff_t last_pos = ra->prev_pos;
2666
2667 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2668 return 0;
2669 if (unlikely(!iov_iter_count(iter)))
2670 return 0;
2671
2672 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos);
2673 folio_batch_init(&fbatch);
2674
2675 do {
2676 cond_resched();
2677
2678 /*
2679 * If we've already successfully copied some data, then we
2680 * can no longer safely return -EIOCBQUEUED. Hence mark
2681 * an async read NOWAIT at that point.
2682 */
2683 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2684 iocb->ki_flags |= IOCB_NOWAIT;
2685
2686 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2687 break;
2688
2689 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2690 if (error < 0)
2691 break;
2692
2693 /*
2694 * i_size must be checked after we know the pages are Uptodate.
2695 *
2696 * Checking i_size after the check allows us to calculate
2697 * the correct value for "nr", which means the zero-filled
2698 * part of the page is not copied back to userspace (unless
2699 * another truncate extends the file - this is desired though).
2700 */
2701 isize = i_size_read(inode);
2702 if (unlikely(iocb->ki_pos >= isize))
2703 goto put_folios;
2704 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2705
2706 /*
2707 * Pairs with a barrier in
2708 * block_write_end()->mark_buffer_dirty() or other page
2709 * dirtying routines like iomap_write_end() to ensure
2710 * changes to page contents are visible before we see
2711 * increased inode size.
2712 */
2713 smp_rmb();
2714
2715 /*
2716 * Once we start copying data, we don't want to be touching any
2717 * cachelines that might be contended:
2718 */
2719 writably_mapped = mapping_writably_mapped(mapping);
2720
2721 /*
2722 * When a read accesses the same folio several times, only
2723 * mark it as accessed the first time.
2724 */
2725 if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2726 fbatch.folios[0]))
2727 folio_mark_accessed(fbatch.folios[0]);
2728
2729 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2730 struct folio *folio = fbatch.folios[i];
2731 size_t fsize = folio_size(folio);
2732 size_t offset = iocb->ki_pos & (fsize - 1);
2733 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2734 fsize - offset);
2735 size_t copied;
2736
2737 if (end_offset < folio_pos(folio))
2738 break;
2739 if (i > 0)
2740 folio_mark_accessed(folio);
2741 /*
2742 * If users can be writing to this folio using arbitrary
2743 * virtual addresses, take care of potential aliasing
2744 * before reading the folio on the kernel side.
2745 */
2746 if (writably_mapped)
2747 flush_dcache_folio(folio);
2748
2749 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2750
2751 already_read += copied;
2752 iocb->ki_pos += copied;
2753 last_pos = iocb->ki_pos;
2754
2755 if (copied < bytes) {
2756 error = -EFAULT;
2757 break;
2758 }
2759 }
2760 put_folios:
2761 for (i = 0; i < folio_batch_count(&fbatch); i++)
2762 folio_put(fbatch.folios[i]);
2763 folio_batch_init(&fbatch);
2764 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2765
2766 file_accessed(filp);
2767 ra->prev_pos = last_pos;
2768 return already_read ? already_read : error;
2769 }
2770 EXPORT_SYMBOL_GPL(filemap_read);
2771
kiocb_write_and_wait(struct kiocb * iocb,size_t count)2772 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2773 {
2774 struct address_space *mapping = iocb->ki_filp->f_mapping;
2775 loff_t pos = iocb->ki_pos;
2776 loff_t end = pos + count - 1;
2777
2778 if (iocb->ki_flags & IOCB_NOWAIT) {
2779 if (filemap_range_needs_writeback(mapping, pos, end))
2780 return -EAGAIN;
2781 return 0;
2782 }
2783
2784 return filemap_write_and_wait_range(mapping, pos, end);
2785 }
2786
kiocb_invalidate_pages(struct kiocb * iocb,size_t count)2787 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2788 {
2789 struct address_space *mapping = iocb->ki_filp->f_mapping;
2790 loff_t pos = iocb->ki_pos;
2791 loff_t end = pos + count - 1;
2792 int ret;
2793
2794 if (iocb->ki_flags & IOCB_NOWAIT) {
2795 /* we could block if there are any pages in the range */
2796 if (filemap_range_has_page(mapping, pos, end))
2797 return -EAGAIN;
2798 } else {
2799 ret = filemap_write_and_wait_range(mapping, pos, end);
2800 if (ret)
2801 return ret;
2802 }
2803
2804 /*
2805 * After a write we want buffered reads to be sure to go to disk to get
2806 * the new data. We invalidate clean cached page from the region we're
2807 * about to write. We do this *before* the write so that we can return
2808 * without clobbering -EIOCBQUEUED from ->direct_IO().
2809 */
2810 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2811 end >> PAGE_SHIFT);
2812 }
2813
2814 /**
2815 * generic_file_read_iter - generic filesystem read routine
2816 * @iocb: kernel I/O control block
2817 * @iter: destination for the data read
2818 *
2819 * This is the "read_iter()" routine for all filesystems
2820 * that can use the page cache directly.
2821 *
2822 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2823 * be returned when no data can be read without waiting for I/O requests
2824 * to complete; it doesn't prevent readahead.
2825 *
2826 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2827 * requests shall be made for the read or for readahead. When no data
2828 * can be read, -EAGAIN shall be returned. When readahead would be
2829 * triggered, a partial, possibly empty read shall be returned.
2830 *
2831 * Return:
2832 * * number of bytes copied, even for partial reads
2833 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2834 */
2835 ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)2836 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2837 {
2838 size_t count = iov_iter_count(iter);
2839 ssize_t retval = 0;
2840
2841 if (!count)
2842 return 0; /* skip atime */
2843
2844 if (iocb->ki_flags & IOCB_DIRECT) {
2845 struct file *file = iocb->ki_filp;
2846 struct address_space *mapping = file->f_mapping;
2847 struct inode *inode = mapping->host;
2848
2849 retval = kiocb_write_and_wait(iocb, count);
2850 if (retval < 0)
2851 return retval;
2852 file_accessed(file);
2853
2854 retval = mapping->a_ops->direct_IO(iocb, iter);
2855 if (retval >= 0) {
2856 iocb->ki_pos += retval;
2857 count -= retval;
2858 }
2859 if (retval != -EIOCBQUEUED)
2860 iov_iter_revert(iter, count - iov_iter_count(iter));
2861
2862 /*
2863 * Btrfs can have a short DIO read if we encounter
2864 * compressed extents, so if there was an error, or if
2865 * we've already read everything we wanted to, or if
2866 * there was a short read because we hit EOF, go ahead
2867 * and return. Otherwise fallthrough to buffered io for
2868 * the rest of the read. Buffered reads will not work for
2869 * DAX files, so don't bother trying.
2870 */
2871 if (retval < 0 || !count || IS_DAX(inode))
2872 return retval;
2873 if (iocb->ki_pos >= i_size_read(inode))
2874 return retval;
2875 }
2876
2877 return filemap_read(iocb, iter, retval);
2878 }
2879 EXPORT_SYMBOL(generic_file_read_iter);
2880
2881 /*
2882 * Splice subpages from a folio into a pipe.
2883 */
splice_folio_into_pipe(struct pipe_inode_info * pipe,struct folio * folio,loff_t fpos,size_t size)2884 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2885 struct folio *folio, loff_t fpos, size_t size)
2886 {
2887 struct page *page;
2888 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2889
2890 page = folio_page(folio, offset / PAGE_SIZE);
2891 size = min(size, folio_size(folio) - offset);
2892 offset %= PAGE_SIZE;
2893
2894 while (spliced < size &&
2895 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2896 struct pipe_buffer *buf = pipe_head_buf(pipe);
2897 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2898
2899 *buf = (struct pipe_buffer) {
2900 .ops = &page_cache_pipe_buf_ops,
2901 .page = page,
2902 .offset = offset,
2903 .len = part,
2904 };
2905 folio_get(folio);
2906 pipe->head++;
2907 page++;
2908 spliced += part;
2909 offset = 0;
2910 }
2911
2912 return spliced;
2913 }
2914
2915 /**
2916 * filemap_splice_read - Splice data from a file's pagecache into a pipe
2917 * @in: The file to read from
2918 * @ppos: Pointer to the file position to read from
2919 * @pipe: The pipe to splice into
2920 * @len: The amount to splice
2921 * @flags: The SPLICE_F_* flags
2922 *
2923 * This function gets folios from a file's pagecache and splices them into the
2924 * pipe. Readahead will be called as necessary to fill more folios. This may
2925 * be used for blockdevs also.
2926 *
2927 * Return: On success, the number of bytes read will be returned and *@ppos
2928 * will be updated if appropriate; 0 will be returned if there is no more data
2929 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2930 * other negative error code will be returned on error. A short read may occur
2931 * if the pipe has insufficient space, we reach the end of the data or we hit a
2932 * hole.
2933 */
filemap_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2934 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2935 struct pipe_inode_info *pipe,
2936 size_t len, unsigned int flags)
2937 {
2938 struct folio_batch fbatch;
2939 struct kiocb iocb;
2940 size_t total_spliced = 0, used, npages;
2941 loff_t isize, end_offset;
2942 bool writably_mapped;
2943 int i, error = 0;
2944
2945 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2946 return 0;
2947
2948 init_sync_kiocb(&iocb, in);
2949 iocb.ki_pos = *ppos;
2950
2951 /* Work out how much data we can actually add into the pipe */
2952 used = pipe_occupancy(pipe->head, pipe->tail);
2953 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2954 len = min_t(size_t, len, npages * PAGE_SIZE);
2955
2956 folio_batch_init(&fbatch);
2957
2958 do {
2959 cond_resched();
2960
2961 if (*ppos >= i_size_read(in->f_mapping->host))
2962 break;
2963
2964 iocb.ki_pos = *ppos;
2965 error = filemap_get_pages(&iocb, len, &fbatch, true);
2966 if (error < 0)
2967 break;
2968
2969 /*
2970 * i_size must be checked after we know the pages are Uptodate.
2971 *
2972 * Checking i_size after the check allows us to calculate
2973 * the correct value for "nr", which means the zero-filled
2974 * part of the page is not copied back to userspace (unless
2975 * another truncate extends the file - this is desired though).
2976 */
2977 isize = i_size_read(in->f_mapping->host);
2978 if (unlikely(*ppos >= isize))
2979 break;
2980 end_offset = min_t(loff_t, isize, *ppos + len);
2981
2982 /*
2983 * Once we start copying data, we don't want to be touching any
2984 * cachelines that might be contended:
2985 */
2986 writably_mapped = mapping_writably_mapped(in->f_mapping);
2987
2988 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2989 struct folio *folio = fbatch.folios[i];
2990 size_t n;
2991
2992 if (folio_pos(folio) >= end_offset)
2993 goto out;
2994 folio_mark_accessed(folio);
2995
2996 /*
2997 * If users can be writing to this folio using arbitrary
2998 * virtual addresses, take care of potential aliasing
2999 * before reading the folio on the kernel side.
3000 */
3001 if (writably_mapped)
3002 flush_dcache_folio(folio);
3003
3004 n = min_t(loff_t, len, isize - *ppos);
3005 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
3006 if (!n)
3007 goto out;
3008 len -= n;
3009 total_spliced += n;
3010 *ppos += n;
3011 in->f_ra.prev_pos = *ppos;
3012 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3013 goto out;
3014 }
3015
3016 folio_batch_release(&fbatch);
3017 } while (len);
3018
3019 out:
3020 folio_batch_release(&fbatch);
3021 file_accessed(in);
3022
3023 return total_spliced ? total_spliced : error;
3024 }
3025 EXPORT_SYMBOL(filemap_splice_read);
3026
folio_seek_hole_data(struct xa_state * xas,struct address_space * mapping,struct folio * folio,loff_t start,loff_t end,bool seek_data)3027 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
3028 struct address_space *mapping, struct folio *folio,
3029 loff_t start, loff_t end, bool seek_data)
3030 {
3031 const struct address_space_operations *ops = mapping->a_ops;
3032 size_t offset, bsz = i_blocksize(mapping->host);
3033
3034 if (xa_is_value(folio) || folio_test_uptodate(folio))
3035 return seek_data ? start : end;
3036 if (!ops->is_partially_uptodate)
3037 return seek_data ? end : start;
3038
3039 xas_pause(xas);
3040 rcu_read_unlock();
3041 folio_lock(folio);
3042 if (unlikely(folio->mapping != mapping))
3043 goto unlock;
3044
3045 offset = offset_in_folio(folio, start) & ~(bsz - 1);
3046
3047 do {
3048 if (ops->is_partially_uptodate(folio, offset, bsz) ==
3049 seek_data)
3050 break;
3051 start = (start + bsz) & ~((u64)bsz - 1);
3052 offset += bsz;
3053 } while (offset < folio_size(folio));
3054 unlock:
3055 folio_unlock(folio);
3056 rcu_read_lock();
3057 return start;
3058 }
3059
seek_folio_size(struct xa_state * xas,struct folio * folio)3060 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3061 {
3062 if (xa_is_value(folio))
3063 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
3064 return folio_size(folio);
3065 }
3066
3067 /**
3068 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3069 * @mapping: Address space to search.
3070 * @start: First byte to consider.
3071 * @end: Limit of search (exclusive).
3072 * @whence: Either SEEK_HOLE or SEEK_DATA.
3073 *
3074 * If the page cache knows which blocks contain holes and which blocks
3075 * contain data, your filesystem can use this function to implement
3076 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
3077 * entirely memory-based such as tmpfs, and filesystems which support
3078 * unwritten extents.
3079 *
3080 * Return: The requested offset on success, or -ENXIO if @whence specifies
3081 * SEEK_DATA and there is no data after @start. There is an implicit hole
3082 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3083 * and @end contain data.
3084 */
mapping_seek_hole_data(struct address_space * mapping,loff_t start,loff_t end,int whence)3085 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3086 loff_t end, int whence)
3087 {
3088 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3089 pgoff_t max = (end - 1) >> PAGE_SHIFT;
3090 bool seek_data = (whence == SEEK_DATA);
3091 struct folio *folio;
3092
3093 if (end <= start)
3094 return -ENXIO;
3095
3096 rcu_read_lock();
3097 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3098 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3099 size_t seek_size;
3100
3101 if (start < pos) {
3102 if (!seek_data)
3103 goto unlock;
3104 start = pos;
3105 }
3106
3107 seek_size = seek_folio_size(&xas, folio);
3108 pos = round_up((u64)pos + 1, seek_size);
3109 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3110 seek_data);
3111 if (start < pos)
3112 goto unlock;
3113 if (start >= end)
3114 break;
3115 if (seek_size > PAGE_SIZE)
3116 xas_set(&xas, pos >> PAGE_SHIFT);
3117 if (!xa_is_value(folio))
3118 folio_put(folio);
3119 }
3120 if (seek_data)
3121 start = -ENXIO;
3122 unlock:
3123 rcu_read_unlock();
3124 if (folio && !xa_is_value(folio))
3125 folio_put(folio);
3126 if (start > end)
3127 return end;
3128 return start;
3129 }
3130
3131 #ifdef CONFIG_MMU
3132 #define MMAP_LOTSAMISS (100)
3133 /*
3134 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3135 * @vmf - the vm_fault for this fault.
3136 * @folio - the folio to lock.
3137 * @fpin - the pointer to the file we may pin (or is already pinned).
3138 *
3139 * This works similar to lock_folio_or_retry in that it can drop the
3140 * mmap_lock. It differs in that it actually returns the folio locked
3141 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3142 * to drop the mmap_lock then fpin will point to the pinned file and
3143 * needs to be fput()'ed at a later point.
3144 */
lock_folio_maybe_drop_mmap(struct vm_fault * vmf,struct folio * folio,struct file ** fpin)3145 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3146 struct file **fpin)
3147 {
3148 if (folio_trylock(folio))
3149 return 1;
3150
3151 /*
3152 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3153 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3154 * is supposed to work. We have way too many special cases..
3155 */
3156 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3157 return 0;
3158
3159 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3160 if (vmf->flags & FAULT_FLAG_KILLABLE) {
3161 if (__folio_lock_killable(folio)) {
3162 /*
3163 * We didn't have the right flags to drop the mmap_lock,
3164 * but all fault_handlers only check for fatal signals
3165 * if we return VM_FAULT_RETRY, so we need to drop the
3166 * mmap_lock here and return 0 if we don't have a fpin.
3167 */
3168 if (*fpin == NULL)
3169 mmap_read_unlock(vmf->vma->vm_mm);
3170 return 0;
3171 }
3172 } else
3173 __folio_lock(folio);
3174
3175 return 1;
3176 }
3177
3178 /*
3179 * Synchronous readahead happens when we don't even find a page in the page
3180 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3181 * to drop the mmap sem we return the file that was pinned in order for us to do
3182 * that. If we didn't pin a file then we return NULL. The file that is
3183 * returned needs to be fput()'ed when we're done with it.
3184 */
do_sync_mmap_readahead(struct vm_fault * vmf)3185 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3186 {
3187 struct file *file = vmf->vma->vm_file;
3188 struct file_ra_state *ra = &file->f_ra;
3189 struct address_space *mapping = file->f_mapping;
3190 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3191 struct file *fpin = NULL;
3192 unsigned long vm_flags = vmf->vma->vm_flags;
3193 unsigned int mmap_miss;
3194
3195 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3196 /* Use the readahead code, even if readahead is disabled */
3197 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3198 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3199 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3200 ra->size = HPAGE_PMD_NR;
3201 /*
3202 * Fetch two PMD folios, so we get the chance to actually
3203 * readahead, unless we've been told not to.
3204 */
3205 if (!(vm_flags & VM_RAND_READ))
3206 ra->size *= 2;
3207 ra->async_size = HPAGE_PMD_NR;
3208 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3209 return fpin;
3210 }
3211 #endif
3212
3213 /* If we don't want any read-ahead, don't bother */
3214 if (vm_flags & VM_RAND_READ)
3215 return fpin;
3216 if (!ra->ra_pages)
3217 return fpin;
3218
3219 if (vm_flags & VM_SEQ_READ) {
3220 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3221 page_cache_sync_ra(&ractl, ra->ra_pages);
3222 return fpin;
3223 }
3224
3225 /* Avoid banging the cache line if not needed */
3226 mmap_miss = READ_ONCE(ra->mmap_miss);
3227 if (mmap_miss < MMAP_LOTSAMISS * 10)
3228 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3229
3230 /*
3231 * Do we miss much more than hit in this file? If so,
3232 * stop bothering with read-ahead. It will only hurt.
3233 */
3234 if (mmap_miss > MMAP_LOTSAMISS)
3235 return fpin;
3236
3237 /*
3238 * mmap read-around
3239 */
3240 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3241 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3242 ra->size = ra->ra_pages;
3243 ra->async_size = ra->ra_pages / 4;
3244 ractl._index = ra->start;
3245 page_cache_ra_order(&ractl, ra, 0);
3246 return fpin;
3247 }
3248
3249 /*
3250 * Asynchronous readahead happens when we find the page and PG_readahead,
3251 * so we want to possibly extend the readahead further. We return the file that
3252 * was pinned if we have to drop the mmap_lock in order to do IO.
3253 */
do_async_mmap_readahead(struct vm_fault * vmf,struct folio * folio)3254 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3255 struct folio *folio)
3256 {
3257 struct file *file = vmf->vma->vm_file;
3258 struct file_ra_state *ra = &file->f_ra;
3259 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3260 struct file *fpin = NULL;
3261 unsigned int mmap_miss;
3262
3263 /* If we don't want any read-ahead, don't bother */
3264 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3265 return fpin;
3266
3267 mmap_miss = READ_ONCE(ra->mmap_miss);
3268 if (mmap_miss)
3269 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3270
3271 if (folio_test_readahead(folio)) {
3272 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3273 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3274 }
3275 return fpin;
3276 }
3277
3278 /**
3279 * filemap_fault - read in file data for page fault handling
3280 * @vmf: struct vm_fault containing details of the fault
3281 *
3282 * filemap_fault() is invoked via the vma operations vector for a
3283 * mapped memory region to read in file data during a page fault.
3284 *
3285 * The goto's are kind of ugly, but this streamlines the normal case of having
3286 * it in the page cache, and handles the special cases reasonably without
3287 * having a lot of duplicated code.
3288 *
3289 * vma->vm_mm->mmap_lock must be held on entry.
3290 *
3291 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3292 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3293 *
3294 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3295 * has not been released.
3296 *
3297 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3298 *
3299 * Return: bitwise-OR of %VM_FAULT_ codes.
3300 */
filemap_fault(struct vm_fault * vmf)3301 vm_fault_t filemap_fault(struct vm_fault *vmf)
3302 {
3303 int error;
3304 struct file *file = vmf->vma->vm_file;
3305 struct file *fpin = NULL;
3306 struct address_space *mapping = file->f_mapping;
3307 struct inode *inode = mapping->host;
3308 pgoff_t max_idx, index = vmf->pgoff;
3309 struct folio *folio;
3310 vm_fault_t ret = 0;
3311 bool mapping_locked = false;
3312
3313 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3314 if (unlikely(index >= max_idx))
3315 return VM_FAULT_SIGBUS;
3316
3317 /*
3318 * Do we have something in the page cache already?
3319 */
3320 folio = filemap_get_folio(mapping, index);
3321 if (likely(!IS_ERR(folio))) {
3322 /*
3323 * We found the page, so try async readahead before waiting for
3324 * the lock.
3325 */
3326 if (!(vmf->flags & FAULT_FLAG_TRIED))
3327 fpin = do_async_mmap_readahead(vmf, folio);
3328 if (unlikely(!folio_test_uptodate(folio))) {
3329 filemap_invalidate_lock_shared(mapping);
3330 mapping_locked = true;
3331 }
3332 } else {
3333 /* No page in the page cache at all */
3334 count_vm_event(PGMAJFAULT);
3335 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3336 ret = VM_FAULT_MAJOR;
3337 fpin = do_sync_mmap_readahead(vmf);
3338 retry_find:
3339 /*
3340 * See comment in filemap_create_folio() why we need
3341 * invalidate_lock
3342 */
3343 if (!mapping_locked) {
3344 filemap_invalidate_lock_shared(mapping);
3345 mapping_locked = true;
3346 }
3347 folio = __filemap_get_folio(mapping, index,
3348 FGP_CREAT|FGP_FOR_MMAP,
3349 vmf->gfp_mask);
3350 if (IS_ERR(folio)) {
3351 if (fpin)
3352 goto out_retry;
3353 filemap_invalidate_unlock_shared(mapping);
3354 return VM_FAULT_OOM;
3355 }
3356 }
3357
3358 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3359 goto out_retry;
3360
3361 /* Did it get truncated? */
3362 if (unlikely(folio->mapping != mapping)) {
3363 folio_unlock(folio);
3364 folio_put(folio);
3365 goto retry_find;
3366 }
3367 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3368
3369 /*
3370 * We have a locked page in the page cache, now we need to check
3371 * that it's up-to-date. If not, it is going to be due to an error.
3372 */
3373 if (unlikely(!folio_test_uptodate(folio))) {
3374 /*
3375 * The page was in cache and uptodate and now it is not.
3376 * Strange but possible since we didn't hold the page lock all
3377 * the time. Let's drop everything get the invalidate lock and
3378 * try again.
3379 */
3380 if (!mapping_locked) {
3381 folio_unlock(folio);
3382 folio_put(folio);
3383 goto retry_find;
3384 }
3385 goto page_not_uptodate;
3386 }
3387
3388 /*
3389 * We've made it this far and we had to drop our mmap_lock, now is the
3390 * time to return to the upper layer and have it re-find the vma and
3391 * redo the fault.
3392 */
3393 if (fpin) {
3394 folio_unlock(folio);
3395 goto out_retry;
3396 }
3397 if (mapping_locked)
3398 filemap_invalidate_unlock_shared(mapping);
3399
3400 /*
3401 * Found the page and have a reference on it.
3402 * We must recheck i_size under page lock.
3403 */
3404 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3405 if (unlikely(index >= max_idx)) {
3406 folio_unlock(folio);
3407 folio_put(folio);
3408 return VM_FAULT_SIGBUS;
3409 }
3410
3411 vmf->page = folio_file_page(folio, index);
3412 return ret | VM_FAULT_LOCKED;
3413
3414 page_not_uptodate:
3415 /*
3416 * Umm, take care of errors if the page isn't up-to-date.
3417 * Try to re-read it _once_. We do this synchronously,
3418 * because there really aren't any performance issues here
3419 * and we need to check for errors.
3420 */
3421 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3422 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3423 if (fpin)
3424 goto out_retry;
3425 folio_put(folio);
3426
3427 if (!error || error == AOP_TRUNCATED_PAGE)
3428 goto retry_find;
3429 filemap_invalidate_unlock_shared(mapping);
3430
3431 return VM_FAULT_SIGBUS;
3432
3433 out_retry:
3434 /*
3435 * We dropped the mmap_lock, we need to return to the fault handler to
3436 * re-find the vma and come back and find our hopefully still populated
3437 * page.
3438 */
3439 if (!IS_ERR(folio))
3440 folio_put(folio);
3441 if (mapping_locked)
3442 filemap_invalidate_unlock_shared(mapping);
3443 if (fpin)
3444 fput(fpin);
3445 return ret | VM_FAULT_RETRY;
3446 }
3447 EXPORT_SYMBOL(filemap_fault);
3448
filemap_map_pmd(struct vm_fault * vmf,struct folio * folio,pgoff_t start)3449 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3450 pgoff_t start)
3451 {
3452 struct mm_struct *mm = vmf->vma->vm_mm;
3453
3454 /* Huge page is mapped? No need to proceed. */
3455 if (pmd_trans_huge(*vmf->pmd)) {
3456 folio_unlock(folio);
3457 folio_put(folio);
3458 return true;
3459 }
3460
3461 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3462 struct page *page = folio_file_page(folio, start);
3463 vm_fault_t ret = do_set_pmd(vmf, page);
3464 if (!ret) {
3465 /* The page is mapped successfully, reference consumed. */
3466 folio_unlock(folio);
3467 return true;
3468 }
3469 }
3470
3471 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3472 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3473
3474 return false;
3475 }
3476
next_uptodate_folio(struct xa_state * xas,struct address_space * mapping,pgoff_t end_pgoff)3477 static struct folio *next_uptodate_folio(struct xa_state *xas,
3478 struct address_space *mapping, pgoff_t end_pgoff)
3479 {
3480 struct folio *folio = xas_next_entry(xas, end_pgoff);
3481 unsigned long max_idx;
3482
3483 do {
3484 if (!folio)
3485 return NULL;
3486 if (xas_retry(xas, folio))
3487 continue;
3488 if (xa_is_value(folio))
3489 continue;
3490 if (folio_test_locked(folio))
3491 continue;
3492 if (!folio_try_get(folio))
3493 continue;
3494 /* Has the page moved or been split? */
3495 if (unlikely(folio != xas_reload(xas)))
3496 goto skip;
3497 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3498 goto skip;
3499 if (!folio_trylock(folio))
3500 goto skip;
3501 if (folio->mapping != mapping)
3502 goto unlock;
3503 if (!folio_test_uptodate(folio))
3504 goto unlock;
3505 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3506 if (xas->xa_index >= max_idx)
3507 goto unlock;
3508 return folio;
3509 unlock:
3510 folio_unlock(folio);
3511 skip:
3512 folio_put(folio);
3513 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3514
3515 return NULL;
3516 }
3517
3518 /*
3519 * Map page range [start_page, start_page + nr_pages) of folio.
3520 * start_page is gotten from start by folio_page(folio, start)
3521 */
filemap_map_folio_range(struct vm_fault * vmf,struct folio * folio,unsigned long start,unsigned long addr,unsigned int nr_pages,unsigned int * mmap_miss)3522 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3523 struct folio *folio, unsigned long start,
3524 unsigned long addr, unsigned int nr_pages,
3525 unsigned int *mmap_miss)
3526 {
3527 vm_fault_t ret = 0;
3528 struct page *page = folio_page(folio, start);
3529 unsigned int count = 0;
3530 pte_t *old_ptep = vmf->pte;
3531
3532 do {
3533 if (PageHWPoison(page + count))
3534 goto skip;
3535
3536 (*mmap_miss)++;
3537
3538 /*
3539 * NOTE: If there're PTE markers, we'll leave them to be
3540 * handled in the specific fault path, and it'll prohibit the
3541 * fault-around logic.
3542 */
3543 if (!pte_none(vmf->pte[count]))
3544 goto skip;
3545
3546 count++;
3547 continue;
3548 skip:
3549 if (count) {
3550 set_pte_range(vmf, folio, page, count, addr);
3551 folio_ref_add(folio, count);
3552 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3553 ret = VM_FAULT_NOPAGE;
3554 }
3555
3556 count++;
3557 page += count;
3558 vmf->pte += count;
3559 addr += count * PAGE_SIZE;
3560 count = 0;
3561 } while (--nr_pages > 0);
3562
3563 if (count) {
3564 set_pte_range(vmf, folio, page, count, addr);
3565 folio_ref_add(folio, count);
3566 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3567 ret = VM_FAULT_NOPAGE;
3568 }
3569
3570 vmf->pte = old_ptep;
3571
3572 return ret;
3573 }
3574
filemap_map_order0_folio(struct vm_fault * vmf,struct folio * folio,unsigned long addr,unsigned int * mmap_miss)3575 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3576 struct folio *folio, unsigned long addr,
3577 unsigned int *mmap_miss)
3578 {
3579 vm_fault_t ret = 0;
3580 struct page *page = &folio->page;
3581
3582 if (PageHWPoison(page))
3583 return ret;
3584
3585 (*mmap_miss)++;
3586
3587 /*
3588 * NOTE: If there're PTE markers, we'll leave them to be
3589 * handled in the specific fault path, and it'll prohibit
3590 * the fault-around logic.
3591 */
3592 if (!pte_none(ptep_get(vmf->pte)))
3593 return ret;
3594
3595 if (vmf->address == addr)
3596 ret = VM_FAULT_NOPAGE;
3597
3598 set_pte_range(vmf, folio, page, 1, addr);
3599 folio_ref_inc(folio);
3600
3601 return ret;
3602 }
3603
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)3604 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3605 pgoff_t start_pgoff, pgoff_t end_pgoff)
3606 {
3607 struct vm_area_struct *vma = vmf->vma;
3608 struct file *file = vma->vm_file;
3609 struct address_space *mapping = file->f_mapping;
3610 pgoff_t last_pgoff = start_pgoff;
3611 unsigned long addr;
3612 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3613 struct folio *folio;
3614 vm_fault_t ret = 0;
3615 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved;
3616
3617 rcu_read_lock();
3618 folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3619 if (!folio)
3620 goto out;
3621
3622 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3623 ret = VM_FAULT_NOPAGE;
3624 goto out;
3625 }
3626
3627 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3628 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3629 if (!vmf->pte) {
3630 folio_unlock(folio);
3631 folio_put(folio);
3632 goto out;
3633 }
3634 do {
3635 unsigned long end;
3636
3637 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3638 vmf->pte += xas.xa_index - last_pgoff;
3639 last_pgoff = xas.xa_index;
3640 end = folio->index + folio_nr_pages(folio) - 1;
3641 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3642
3643 if (!folio_test_large(folio))
3644 ret |= filemap_map_order0_folio(vmf,
3645 folio, addr, &mmap_miss);
3646 else
3647 ret |= filemap_map_folio_range(vmf, folio,
3648 xas.xa_index - folio->index, addr,
3649 nr_pages, &mmap_miss);
3650
3651 folio_unlock(folio);
3652 folio_put(folio);
3653 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3654 pte_unmap_unlock(vmf->pte, vmf->ptl);
3655 out:
3656 rcu_read_unlock();
3657
3658 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3659 if (mmap_miss >= mmap_miss_saved)
3660 WRITE_ONCE(file->f_ra.mmap_miss, 0);
3661 else
3662 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3663
3664 return ret;
3665 }
3666 EXPORT_SYMBOL(filemap_map_pages);
3667
filemap_page_mkwrite(struct vm_fault * vmf)3668 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3669 {
3670 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3671 struct folio *folio = page_folio(vmf->page);
3672 vm_fault_t ret = VM_FAULT_LOCKED;
3673
3674 sb_start_pagefault(mapping->host->i_sb);
3675 file_update_time(vmf->vma->vm_file);
3676 folio_lock(folio);
3677 if (folio->mapping != mapping) {
3678 folio_unlock(folio);
3679 ret = VM_FAULT_NOPAGE;
3680 goto out;
3681 }
3682 /*
3683 * We mark the folio dirty already here so that when freeze is in
3684 * progress, we are guaranteed that writeback during freezing will
3685 * see the dirty folio and writeprotect it again.
3686 */
3687 folio_mark_dirty(folio);
3688 folio_wait_stable(folio);
3689 out:
3690 sb_end_pagefault(mapping->host->i_sb);
3691 return ret;
3692 }
3693
3694 const struct vm_operations_struct generic_file_vm_ops = {
3695 .fault = filemap_fault,
3696 .map_pages = filemap_map_pages,
3697 .page_mkwrite = filemap_page_mkwrite,
3698 };
3699
3700 /* This is used for a general mmap of a disk file */
3701
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3702 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3703 {
3704 struct address_space *mapping = file->f_mapping;
3705
3706 if (!mapping->a_ops->read_folio)
3707 return -ENOEXEC;
3708 file_accessed(file);
3709 vma->vm_ops = &generic_file_vm_ops;
3710 return 0;
3711 }
3712
3713 /*
3714 * This is for filesystems which do not implement ->writepage.
3715 */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3716 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3717 {
3718 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3719 return -EINVAL;
3720 return generic_file_mmap(file, vma);
3721 }
3722 #else
filemap_page_mkwrite(struct vm_fault * vmf)3723 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3724 {
3725 return VM_FAULT_SIGBUS;
3726 }
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3727 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3728 {
3729 return -ENOSYS;
3730 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3731 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3732 {
3733 return -ENOSYS;
3734 }
3735 #endif /* CONFIG_MMU */
3736
3737 EXPORT_SYMBOL(filemap_page_mkwrite);
3738 EXPORT_SYMBOL(generic_file_mmap);
3739 EXPORT_SYMBOL(generic_file_readonly_mmap);
3740
do_read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file,gfp_t gfp)3741 static struct folio *do_read_cache_folio(struct address_space *mapping,
3742 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3743 {
3744 struct folio *folio;
3745 int err;
3746
3747 if (!filler)
3748 filler = mapping->a_ops->read_folio;
3749 repeat:
3750 folio = filemap_get_folio(mapping, index);
3751 if (IS_ERR(folio)) {
3752 folio = filemap_alloc_folio(gfp, 0);
3753 if (!folio)
3754 return ERR_PTR(-ENOMEM);
3755 err = filemap_add_folio(mapping, folio, index, gfp);
3756 if (unlikely(err)) {
3757 folio_put(folio);
3758 if (err == -EEXIST)
3759 goto repeat;
3760 /* Presumably ENOMEM for xarray node */
3761 return ERR_PTR(err);
3762 }
3763
3764 goto filler;
3765 }
3766 if (folio_test_uptodate(folio))
3767 goto out;
3768
3769 if (!folio_trylock(folio)) {
3770 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3771 goto repeat;
3772 }
3773
3774 /* Folio was truncated from mapping */
3775 if (!folio->mapping) {
3776 folio_unlock(folio);
3777 folio_put(folio);
3778 goto repeat;
3779 }
3780
3781 /* Someone else locked and filled the page in a very small window */
3782 if (folio_test_uptodate(folio)) {
3783 folio_unlock(folio);
3784 goto out;
3785 }
3786
3787 filler:
3788 err = filemap_read_folio(file, filler, folio);
3789 if (err) {
3790 folio_put(folio);
3791 if (err == AOP_TRUNCATED_PAGE)
3792 goto repeat;
3793 return ERR_PTR(err);
3794 }
3795
3796 out:
3797 folio_mark_accessed(folio);
3798 return folio;
3799 }
3800
3801 /**
3802 * read_cache_folio - Read into page cache, fill it if needed.
3803 * @mapping: The address_space to read from.
3804 * @index: The index to read.
3805 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3806 * @file: Passed to filler function, may be NULL if not required.
3807 *
3808 * Read one page into the page cache. If it succeeds, the folio returned
3809 * will contain @index, but it may not be the first page of the folio.
3810 *
3811 * If the filler function returns an error, it will be returned to the
3812 * caller.
3813 *
3814 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3815 * Return: An uptodate folio on success, ERR_PTR() on failure.
3816 */
read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file)3817 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3818 filler_t filler, struct file *file)
3819 {
3820 return do_read_cache_folio(mapping, index, filler, file,
3821 mapping_gfp_mask(mapping));
3822 }
3823 EXPORT_SYMBOL(read_cache_folio);
3824
3825 /**
3826 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3827 * @mapping: The address_space for the folio.
3828 * @index: The index that the allocated folio will contain.
3829 * @gfp: The page allocator flags to use if allocating.
3830 *
3831 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3832 * any new memory allocations done using the specified allocation flags.
3833 *
3834 * The most likely error from this function is EIO, but ENOMEM is
3835 * possible and so is EINTR. If ->read_folio returns another error,
3836 * that will be returned to the caller.
3837 *
3838 * The function expects mapping->invalidate_lock to be already held.
3839 *
3840 * Return: Uptodate folio on success, ERR_PTR() on failure.
3841 */
mapping_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)3842 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3843 pgoff_t index, gfp_t gfp)
3844 {
3845 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3846 }
3847 EXPORT_SYMBOL(mapping_read_folio_gfp);
3848
do_read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file,gfp_t gfp)3849 static struct page *do_read_cache_page(struct address_space *mapping,
3850 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3851 {
3852 struct folio *folio;
3853
3854 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3855 if (IS_ERR(folio))
3856 return &folio->page;
3857 return folio_file_page(folio, index);
3858 }
3859
read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file)3860 struct page *read_cache_page(struct address_space *mapping,
3861 pgoff_t index, filler_t *filler, struct file *file)
3862 {
3863 return do_read_cache_page(mapping, index, filler, file,
3864 mapping_gfp_mask(mapping));
3865 }
3866 EXPORT_SYMBOL(read_cache_page);
3867
3868 /**
3869 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3870 * @mapping: the page's address_space
3871 * @index: the page index
3872 * @gfp: the page allocator flags to use if allocating
3873 *
3874 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3875 * any new page allocations done using the specified allocation flags.
3876 *
3877 * If the page does not get brought uptodate, return -EIO.
3878 *
3879 * The function expects mapping->invalidate_lock to be already held.
3880 *
3881 * Return: up to date page on success, ERR_PTR() on failure.
3882 */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)3883 struct page *read_cache_page_gfp(struct address_space *mapping,
3884 pgoff_t index,
3885 gfp_t gfp)
3886 {
3887 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3888 }
3889 EXPORT_SYMBOL(read_cache_page_gfp);
3890
3891 /*
3892 * Warn about a page cache invalidation failure during a direct I/O write.
3893 */
dio_warn_stale_pagecache(struct file * filp)3894 static void dio_warn_stale_pagecache(struct file *filp)
3895 {
3896 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3897 char pathname[128];
3898 char *path;
3899
3900 errseq_set(&filp->f_mapping->wb_err, -EIO);
3901 if (__ratelimit(&_rs)) {
3902 path = file_path(filp, pathname, sizeof(pathname));
3903 if (IS_ERR(path))
3904 path = "(unknown)";
3905 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3906 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3907 current->comm);
3908 }
3909 }
3910
kiocb_invalidate_post_direct_write(struct kiocb * iocb,size_t count)3911 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3912 {
3913 struct address_space *mapping = iocb->ki_filp->f_mapping;
3914
3915 if (mapping->nrpages &&
3916 invalidate_inode_pages2_range(mapping,
3917 iocb->ki_pos >> PAGE_SHIFT,
3918 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3919 dio_warn_stale_pagecache(iocb->ki_filp);
3920 }
3921
3922 ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from)3923 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3924 {
3925 struct address_space *mapping = iocb->ki_filp->f_mapping;
3926 size_t write_len = iov_iter_count(from);
3927 ssize_t written;
3928
3929 /*
3930 * If a page can not be invalidated, return 0 to fall back
3931 * to buffered write.
3932 */
3933 written = kiocb_invalidate_pages(iocb, write_len);
3934 if (written) {
3935 if (written == -EBUSY)
3936 return 0;
3937 return written;
3938 }
3939
3940 written = mapping->a_ops->direct_IO(iocb, from);
3941
3942 /*
3943 * Finally, try again to invalidate clean pages which might have been
3944 * cached by non-direct readahead, or faulted in by get_user_pages()
3945 * if the source of the write was an mmap'ed region of the file
3946 * we're writing. Either one is a pretty crazy thing to do,
3947 * so we don't support it 100%. If this invalidation
3948 * fails, tough, the write still worked...
3949 *
3950 * Most of the time we do not need this since dio_complete() will do
3951 * the invalidation for us. However there are some file systems that
3952 * do not end up with dio_complete() being called, so let's not break
3953 * them by removing it completely.
3954 *
3955 * Noticeable example is a blkdev_direct_IO().
3956 *
3957 * Skip invalidation for async writes or if mapping has no pages.
3958 */
3959 if (written > 0) {
3960 struct inode *inode = mapping->host;
3961 loff_t pos = iocb->ki_pos;
3962
3963 kiocb_invalidate_post_direct_write(iocb, written);
3964 pos += written;
3965 write_len -= written;
3966 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3967 i_size_write(inode, pos);
3968 mark_inode_dirty(inode);
3969 }
3970 iocb->ki_pos = pos;
3971 }
3972 if (written != -EIOCBQUEUED)
3973 iov_iter_revert(from, write_len - iov_iter_count(from));
3974 return written;
3975 }
3976 EXPORT_SYMBOL(generic_file_direct_write);
3977
generic_perform_write(struct kiocb * iocb,struct iov_iter * i)3978 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3979 {
3980 struct file *file = iocb->ki_filp;
3981 loff_t pos = iocb->ki_pos;
3982 struct address_space *mapping = file->f_mapping;
3983 const struct address_space_operations *a_ops = mapping->a_ops;
3984 long status = 0;
3985 ssize_t written = 0;
3986
3987 do {
3988 struct page *page;
3989 unsigned long offset; /* Offset into pagecache page */
3990 unsigned long bytes; /* Bytes to write to page */
3991 size_t copied; /* Bytes copied from user */
3992 void *fsdata = NULL;
3993
3994 offset = (pos & (PAGE_SIZE - 1));
3995 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3996 iov_iter_count(i));
3997
3998 again:
3999 /*
4000 * Bring in the user page that we will copy from _first_.
4001 * Otherwise there's a nasty deadlock on copying from the
4002 * same page as we're writing to, without it being marked
4003 * up-to-date.
4004 */
4005 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
4006 status = -EFAULT;
4007 break;
4008 }
4009
4010 if (fatal_signal_pending(current)) {
4011 status = -EINTR;
4012 break;
4013 }
4014
4015 status = a_ops->write_begin(file, mapping, pos, bytes,
4016 &page, &fsdata);
4017 if (unlikely(status < 0))
4018 break;
4019
4020 if (mapping_writably_mapped(mapping))
4021 flush_dcache_page(page);
4022
4023 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
4024 flush_dcache_page(page);
4025
4026 status = a_ops->write_end(file, mapping, pos, bytes, copied,
4027 page, fsdata);
4028 if (unlikely(status != copied)) {
4029 iov_iter_revert(i, copied - max(status, 0L));
4030 if (unlikely(status < 0))
4031 break;
4032 }
4033 cond_resched();
4034
4035 if (unlikely(status == 0)) {
4036 /*
4037 * A short copy made ->write_end() reject the
4038 * thing entirely. Might be memory poisoning
4039 * halfway through, might be a race with munmap,
4040 * might be severe memory pressure.
4041 */
4042 if (copied)
4043 bytes = copied;
4044 goto again;
4045 }
4046 pos += status;
4047 written += status;
4048
4049 balance_dirty_pages_ratelimited(mapping);
4050 } while (iov_iter_count(i));
4051
4052 if (!written)
4053 return status;
4054 iocb->ki_pos += written;
4055 return written;
4056 }
4057 EXPORT_SYMBOL(generic_perform_write);
4058
4059 /**
4060 * __generic_file_write_iter - write data to a file
4061 * @iocb: IO state structure (file, offset, etc.)
4062 * @from: iov_iter with data to write
4063 *
4064 * This function does all the work needed for actually writing data to a
4065 * file. It does all basic checks, removes SUID from the file, updates
4066 * modification times and calls proper subroutines depending on whether we
4067 * do direct IO or a standard buffered write.
4068 *
4069 * It expects i_rwsem to be grabbed unless we work on a block device or similar
4070 * object which does not need locking at all.
4071 *
4072 * This function does *not* take care of syncing data in case of O_SYNC write.
4073 * A caller has to handle it. This is mainly due to the fact that we want to
4074 * avoid syncing under i_rwsem.
4075 *
4076 * Return:
4077 * * number of bytes written, even for truncated writes
4078 * * negative error code if no data has been written at all
4079 */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4080 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4081 {
4082 struct file *file = iocb->ki_filp;
4083 struct address_space *mapping = file->f_mapping;
4084 struct inode *inode = mapping->host;
4085 ssize_t ret;
4086
4087 ret = file_remove_privs(file);
4088 if (ret)
4089 return ret;
4090
4091 ret = file_update_time(file);
4092 if (ret)
4093 return ret;
4094
4095 if (iocb->ki_flags & IOCB_DIRECT) {
4096 ret = generic_file_direct_write(iocb, from);
4097 /*
4098 * If the write stopped short of completing, fall back to
4099 * buffered writes. Some filesystems do this for writes to
4100 * holes, for example. For DAX files, a buffered write will
4101 * not succeed (even if it did, DAX does not handle dirty
4102 * page-cache pages correctly).
4103 */
4104 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4105 return ret;
4106 return direct_write_fallback(iocb, from, ret,
4107 generic_perform_write(iocb, from));
4108 }
4109
4110 return generic_perform_write(iocb, from);
4111 }
4112 EXPORT_SYMBOL(__generic_file_write_iter);
4113
4114 /**
4115 * generic_file_write_iter - write data to a file
4116 * @iocb: IO state structure
4117 * @from: iov_iter with data to write
4118 *
4119 * This is a wrapper around __generic_file_write_iter() to be used by most
4120 * filesystems. It takes care of syncing the file in case of O_SYNC file
4121 * and acquires i_rwsem as needed.
4122 * Return:
4123 * * negative error code if no data has been written at all of
4124 * vfs_fsync_range() failed for a synchronous write
4125 * * number of bytes written, even for truncated writes
4126 */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4127 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4128 {
4129 struct file *file = iocb->ki_filp;
4130 struct inode *inode = file->f_mapping->host;
4131 ssize_t ret;
4132
4133 inode_lock(inode);
4134 ret = generic_write_checks(iocb, from);
4135 if (ret > 0)
4136 ret = __generic_file_write_iter(iocb, from);
4137 inode_unlock(inode);
4138
4139 if (ret > 0)
4140 ret = generic_write_sync(iocb, ret);
4141 return ret;
4142 }
4143 EXPORT_SYMBOL(generic_file_write_iter);
4144
4145 /**
4146 * filemap_release_folio() - Release fs-specific metadata on a folio.
4147 * @folio: The folio which the kernel is trying to free.
4148 * @gfp: Memory allocation flags (and I/O mode).
4149 *
4150 * The address_space is trying to release any data attached to a folio
4151 * (presumably at folio->private).
4152 *
4153 * This will also be called if the private_2 flag is set on a page,
4154 * indicating that the folio has other metadata associated with it.
4155 *
4156 * The @gfp argument specifies whether I/O may be performed to release
4157 * this page (__GFP_IO), and whether the call may block
4158 * (__GFP_RECLAIM & __GFP_FS).
4159 *
4160 * Return: %true if the release was successful, otherwise %false.
4161 */
filemap_release_folio(struct folio * folio,gfp_t gfp)4162 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4163 {
4164 struct address_space * const mapping = folio->mapping;
4165
4166 BUG_ON(!folio_test_locked(folio));
4167 if (!folio_needs_release(folio))
4168 return true;
4169 if (folio_test_writeback(folio))
4170 return false;
4171
4172 if (mapping && mapping->a_ops->release_folio)
4173 return mapping->a_ops->release_folio(folio, gfp);
4174 return try_to_free_buffers(folio);
4175 }
4176 EXPORT_SYMBOL(filemap_release_folio);
4177
4178 #ifdef CONFIG_CACHESTAT_SYSCALL
4179 /**
4180 * filemap_cachestat() - compute the page cache statistics of a mapping
4181 * @mapping: The mapping to compute the statistics for.
4182 * @first_index: The starting page cache index.
4183 * @last_index: The final page index (inclusive).
4184 * @cs: the cachestat struct to write the result to.
4185 *
4186 * This will query the page cache statistics of a mapping in the
4187 * page range of [first_index, last_index] (inclusive). The statistics
4188 * queried include: number of dirty pages, number of pages marked for
4189 * writeback, and the number of (recently) evicted pages.
4190 */
filemap_cachestat(struct address_space * mapping,pgoff_t first_index,pgoff_t last_index,struct cachestat * cs)4191 static void filemap_cachestat(struct address_space *mapping,
4192 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4193 {
4194 XA_STATE(xas, &mapping->i_pages, first_index);
4195 struct folio *folio;
4196
4197 rcu_read_lock();
4198 xas_for_each(&xas, folio, last_index) {
4199 int order;
4200 unsigned long nr_pages;
4201 pgoff_t folio_first_index, folio_last_index;
4202
4203 /*
4204 * Don't deref the folio. It is not pinned, and might
4205 * get freed (and reused) underneath us.
4206 *
4207 * We *could* pin it, but that would be expensive for
4208 * what should be a fast and lightweight syscall.
4209 *
4210 * Instead, derive all information of interest from
4211 * the rcu-protected xarray.
4212 */
4213
4214 if (xas_retry(&xas, folio))
4215 continue;
4216
4217 order = xa_get_order(xas.xa, xas.xa_index);
4218 nr_pages = 1 << order;
4219 folio_first_index = round_down(xas.xa_index, 1 << order);
4220 folio_last_index = folio_first_index + nr_pages - 1;
4221
4222 /* Folios might straddle the range boundaries, only count covered pages */
4223 if (folio_first_index < first_index)
4224 nr_pages -= first_index - folio_first_index;
4225
4226 if (folio_last_index > last_index)
4227 nr_pages -= folio_last_index - last_index;
4228
4229 if (xa_is_value(folio)) {
4230 /* page is evicted */
4231 void *shadow = (void *)folio;
4232 bool workingset; /* not used */
4233
4234 cs->nr_evicted += nr_pages;
4235
4236 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4237 if (shmem_mapping(mapping)) {
4238 /* shmem file - in swap cache */
4239 swp_entry_t swp = radix_to_swp_entry(folio);
4240
4241 /* swapin error results in poisoned entry */
4242 if (non_swap_entry(swp))
4243 goto resched;
4244
4245 /*
4246 * Getting a swap entry from the shmem
4247 * inode means we beat
4248 * shmem_unuse(). rcu_read_lock()
4249 * ensures swapoff waits for us before
4250 * freeing the swapper space. However,
4251 * we can race with swapping and
4252 * invalidation, so there might not be
4253 * a shadow in the swapcache (yet).
4254 */
4255 shadow = get_shadow_from_swap_cache(swp);
4256 if (!shadow)
4257 goto resched;
4258 }
4259 #endif
4260 if (workingset_test_recent(shadow, true, &workingset))
4261 cs->nr_recently_evicted += nr_pages;
4262
4263 goto resched;
4264 }
4265
4266 /* page is in cache */
4267 cs->nr_cache += nr_pages;
4268
4269 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4270 cs->nr_dirty += nr_pages;
4271
4272 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4273 cs->nr_writeback += nr_pages;
4274
4275 resched:
4276 if (need_resched()) {
4277 xas_pause(&xas);
4278 cond_resched_rcu();
4279 }
4280 }
4281 rcu_read_unlock();
4282 }
4283
4284 /*
4285 * See mincore: reveal pagecache information only for files
4286 * that the calling process has write access to, or could (if
4287 * tried) open for writing.
4288 */
can_do_cachestat(struct file * f)4289 static inline bool can_do_cachestat(struct file *f)
4290 {
4291 if (f->f_mode & FMODE_WRITE)
4292 return true;
4293 if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f)))
4294 return true;
4295 return file_permission(f, MAY_WRITE) == 0;
4296 }
4297
4298 /*
4299 * The cachestat(2) system call.
4300 *
4301 * cachestat() returns the page cache statistics of a file in the
4302 * bytes range specified by `off` and `len`: number of cached pages,
4303 * number of dirty pages, number of pages marked for writeback,
4304 * number of evicted pages, and number of recently evicted pages.
4305 *
4306 * An evicted page is a page that is previously in the page cache
4307 * but has been evicted since. A page is recently evicted if its last
4308 * eviction was recent enough that its reentry to the cache would
4309 * indicate that it is actively being used by the system, and that
4310 * there is memory pressure on the system.
4311 *
4312 * `off` and `len` must be non-negative integers. If `len` > 0,
4313 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4314 * we will query in the range from `off` to the end of the file.
4315 *
4316 * The `flags` argument is unused for now, but is included for future
4317 * extensibility. User should pass 0 (i.e no flag specified).
4318 *
4319 * Currently, hugetlbfs is not supported.
4320 *
4321 * Because the status of a page can change after cachestat() checks it
4322 * but before it returns to the application, the returned values may
4323 * contain stale information.
4324 *
4325 * return values:
4326 * zero - success
4327 * -EFAULT - cstat or cstat_range points to an illegal address
4328 * -EINVAL - invalid flags
4329 * -EBADF - invalid file descriptor
4330 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4331 */
SYSCALL_DEFINE4(cachestat,unsigned int,fd,struct cachestat_range __user *,cstat_range,struct cachestat __user *,cstat,unsigned int,flags)4332 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4333 struct cachestat_range __user *, cstat_range,
4334 struct cachestat __user *, cstat, unsigned int, flags)
4335 {
4336 struct fd f = fdget(fd);
4337 struct address_space *mapping;
4338 struct cachestat_range csr;
4339 struct cachestat cs;
4340 pgoff_t first_index, last_index;
4341
4342 if (!f.file)
4343 return -EBADF;
4344
4345 if (copy_from_user(&csr, cstat_range,
4346 sizeof(struct cachestat_range))) {
4347 fdput(f);
4348 return -EFAULT;
4349 }
4350
4351 /* hugetlbfs is not supported */
4352 if (is_file_hugepages(f.file)) {
4353 fdput(f);
4354 return -EOPNOTSUPP;
4355 }
4356
4357 if (!can_do_cachestat(f.file)) {
4358 fdput(f);
4359 return -EPERM;
4360 }
4361
4362 if (flags != 0) {
4363 fdput(f);
4364 return -EINVAL;
4365 }
4366
4367 first_index = csr.off >> PAGE_SHIFT;
4368 last_index =
4369 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4370 memset(&cs, 0, sizeof(struct cachestat));
4371 mapping = f.file->f_mapping;
4372 filemap_cachestat(mapping, first_index, last_index, &cs);
4373 fdput(f);
4374
4375 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4376 return -EFAULT;
4377
4378 return 0;
4379 }
4380 #endif /* CONFIG_CACHESTAT_SYSCALL */
4381