xref: /openbmc/linux/kernel/trace/trace_events_filter.c (revision 9034c87d61be8cff989017740a91701ac8195a1d)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * trace_events_filter - generic event filtering
4   *
5   * Copyright (C) 2009 Tom Zanussi <tzanussi@gmail.com>
6   */
7  
8  #include <linux/uaccess.h>
9  #include <linux/module.h>
10  #include <linux/ctype.h>
11  #include <linux/mutex.h>
12  #include <linux/perf_event.h>
13  #include <linux/slab.h>
14  
15  #include "trace.h"
16  #include "trace_output.h"
17  
18  #define DEFAULT_SYS_FILTER_MESSAGE					\
19  	"### global filter ###\n"					\
20  	"# Use this to set filters for multiple events.\n"		\
21  	"# Only events with the given fields will be affected.\n"	\
22  	"# If no events are modified, an error message will be displayed here"
23  
24  /* Due to token parsing '<=' must be before '<' and '>=' must be before '>' */
25  #define OPS					\
26  	C( OP_GLOB,	"~"  ),			\
27  	C( OP_NE,	"!=" ),			\
28  	C( OP_EQ,	"==" ),			\
29  	C( OP_LE,	"<=" ),			\
30  	C( OP_LT,	"<"  ),			\
31  	C( OP_GE,	">=" ),			\
32  	C( OP_GT,	">"  ),			\
33  	C( OP_BAND,	"&"  ),			\
34  	C( OP_MAX,	NULL )
35  
36  #undef C
37  #define C(a, b)	a
38  
39  enum filter_op_ids { OPS };
40  
41  #undef C
42  #define C(a, b)	b
43  
44  static const char * ops[] = { OPS };
45  
46  enum filter_pred_fn {
47  	FILTER_PRED_FN_NOP,
48  	FILTER_PRED_FN_64,
49  	FILTER_PRED_FN_64_CPUMASK,
50  	FILTER_PRED_FN_S64,
51  	FILTER_PRED_FN_U64,
52  	FILTER_PRED_FN_32,
53  	FILTER_PRED_FN_32_CPUMASK,
54  	FILTER_PRED_FN_S32,
55  	FILTER_PRED_FN_U32,
56  	FILTER_PRED_FN_16,
57  	FILTER_PRED_FN_16_CPUMASK,
58  	FILTER_PRED_FN_S16,
59  	FILTER_PRED_FN_U16,
60  	FILTER_PRED_FN_8,
61  	FILTER_PRED_FN_8_CPUMASK,
62  	FILTER_PRED_FN_S8,
63  	FILTER_PRED_FN_U8,
64  	FILTER_PRED_FN_COMM,
65  	FILTER_PRED_FN_STRING,
66  	FILTER_PRED_FN_STRLOC,
67  	FILTER_PRED_FN_STRRELLOC,
68  	FILTER_PRED_FN_PCHAR_USER,
69  	FILTER_PRED_FN_PCHAR,
70  	FILTER_PRED_FN_CPU,
71  	FILTER_PRED_FN_CPU_CPUMASK,
72  	FILTER_PRED_FN_CPUMASK,
73  	FILTER_PRED_FN_CPUMASK_CPU,
74  	FILTER_PRED_FN_FUNCTION,
75  	FILTER_PRED_FN_,
76  	FILTER_PRED_TEST_VISITED,
77  };
78  
79  struct filter_pred {
80  	struct regex		*regex;
81  	struct cpumask          *mask;
82  	unsigned short		*ops;
83  	struct ftrace_event_field *field;
84  	u64			val;
85  	u64			val2;
86  	enum filter_pred_fn	fn_num;
87  	int			offset;
88  	int			not;
89  	int			op;
90  };
91  
92  /*
93   * pred functions are OP_LE, OP_LT, OP_GE, OP_GT, and OP_BAND
94   * pred_funcs_##type below must match the order of them above.
95   */
96  #define PRED_FUNC_START			OP_LE
97  #define PRED_FUNC_MAX			(OP_BAND - PRED_FUNC_START)
98  
99  #define ERRORS								\
100  	C(NONE,			"No error"),				\
101  	C(INVALID_OP,		"Invalid operator"),			\
102  	C(TOO_MANY_OPEN,	"Too many '('"),			\
103  	C(TOO_MANY_CLOSE,	"Too few '('"),				\
104  	C(MISSING_QUOTE,	"Missing matching quote"),		\
105  	C(MISSING_BRACE_OPEN,   "Missing '{'"),				\
106  	C(MISSING_BRACE_CLOSE,  "Missing '}'"),				\
107  	C(OPERAND_TOO_LONG,	"Operand too long"),			\
108  	C(EXPECT_STRING,	"Expecting string field"),		\
109  	C(EXPECT_DIGIT,		"Expecting numeric field"),		\
110  	C(ILLEGAL_FIELD_OP,	"Illegal operation for field type"),	\
111  	C(FIELD_NOT_FOUND,	"Field not found"),			\
112  	C(ILLEGAL_INTVAL,	"Illegal integer value"),		\
113  	C(BAD_SUBSYS_FILTER,	"Couldn't find or set field in one of a subsystem's events"), \
114  	C(TOO_MANY_PREDS,	"Too many terms in predicate expression"), \
115  	C(INVALID_FILTER,	"Meaningless filter expression"),	\
116  	C(INVALID_CPULIST,	"Invalid cpulist"),	\
117  	C(IP_FIELD_ONLY,	"Only 'ip' field is supported for function trace"), \
118  	C(INVALID_VALUE,	"Invalid value (did you forget quotes)?"), \
119  	C(NO_FUNCTION,		"Function not found"),			\
120  	C(ERRNO,		"Error"),				\
121  	C(NO_FILTER,		"No filter found")
122  
123  #undef C
124  #define C(a, b)		FILT_ERR_##a
125  
126  enum { ERRORS };
127  
128  #undef C
129  #define C(a, b)		b
130  
131  static const char *err_text[] = { ERRORS };
132  
133  /* Called after a '!' character but "!=" and "!~" are not "not"s */
is_not(const char * str)134  static bool is_not(const char *str)
135  {
136  	switch (str[1]) {
137  	case '=':
138  	case '~':
139  		return false;
140  	}
141  	return true;
142  }
143  
144  /**
145   * struct prog_entry - a singe entry in the filter program
146   * @target:	     Index to jump to on a branch (actually one minus the index)
147   * @when_to_branch:  The value of the result of the predicate to do a branch
148   * @pred:	     The predicate to execute.
149   */
150  struct prog_entry {
151  	int			target;
152  	int			when_to_branch;
153  	struct filter_pred	*pred;
154  };
155  
156  /**
157   * update_preds - assign a program entry a label target
158   * @prog: The program array
159   * @N: The index of the current entry in @prog
160   * @invert: What to assign a program entry for its branch condition
161   *
162   * The program entry at @N has a target that points to the index of a program
163   * entry that can have its target and when_to_branch fields updated.
164   * Update the current program entry denoted by index @N target field to be
165   * that of the updated entry. This will denote the entry to update if
166   * we are processing an "||" after an "&&".
167   */
update_preds(struct prog_entry * prog,int N,int invert)168  static void update_preds(struct prog_entry *prog, int N, int invert)
169  {
170  	int t, s;
171  
172  	t = prog[N].target;
173  	s = prog[t].target;
174  	prog[t].when_to_branch = invert;
175  	prog[t].target = N;
176  	prog[N].target = s;
177  }
178  
179  struct filter_parse_error {
180  	int lasterr;
181  	int lasterr_pos;
182  };
183  
parse_error(struct filter_parse_error * pe,int err,int pos)184  static void parse_error(struct filter_parse_error *pe, int err, int pos)
185  {
186  	pe->lasterr = err;
187  	pe->lasterr_pos = pos;
188  }
189  
190  typedef int (*parse_pred_fn)(const char *str, void *data, int pos,
191  			     struct filter_parse_error *pe,
192  			     struct filter_pred **pred);
193  
194  enum {
195  	INVERT		= 1,
196  	PROCESS_AND	= 2,
197  	PROCESS_OR	= 4,
198  };
199  
free_predicate(struct filter_pred * pred)200  static void free_predicate(struct filter_pred *pred)
201  {
202  	if (pred) {
203  		kfree(pred->regex);
204  		kfree(pred->mask);
205  		kfree(pred);
206  	}
207  }
208  
209  /*
210   * Without going into a formal proof, this explains the method that is used in
211   * parsing the logical expressions.
212   *
213   * For example, if we have: "a && !(!b || (c && g)) || d || e && !f"
214   * The first pass will convert it into the following program:
215   *
216   * n1: r=a;       l1: if (!r) goto l4;
217   * n2: r=b;       l2: if (!r) goto l4;
218   * n3: r=c; r=!r; l3: if (r) goto l4;
219   * n4: r=g; r=!r; l4: if (r) goto l5;
220   * n5: r=d;       l5: if (r) goto T
221   * n6: r=e;       l6: if (!r) goto l7;
222   * n7: r=f; r=!r; l7: if (!r) goto F
223   * T: return TRUE
224   * F: return FALSE
225   *
226   * To do this, we use a data structure to represent each of the above
227   * predicate and conditions that has:
228   *
229   *  predicate, when_to_branch, invert, target
230   *
231   * The "predicate" will hold the function to determine the result "r".
232   * The "when_to_branch" denotes what "r" should be if a branch is to be taken
233   * "&&" would contain "!r" or (0) and "||" would contain "r" or (1).
234   * The "invert" holds whether the value should be reversed before testing.
235   * The "target" contains the label "l#" to jump to.
236   *
237   * A stack is created to hold values when parentheses are used.
238   *
239   * To simplify the logic, the labels will start at 0 and not 1.
240   *
241   * The possible invert values are 1 and 0. The number of "!"s that are in scope
242   * before the predicate determines the invert value, if the number is odd then
243   * the invert value is 1 and 0 otherwise. This means the invert value only
244   * needs to be toggled when a new "!" is introduced compared to what is stored
245   * on the stack, where parentheses were used.
246   *
247   * The top of the stack and "invert" are initialized to zero.
248   *
249   * ** FIRST PASS **
250   *
251   * #1 A loop through all the tokens is done:
252   *
253   * #2 If the token is an "(", the stack is push, and the current stack value
254   *    gets the current invert value, and the loop continues to the next token.
255   *    The top of the stack saves the "invert" value to keep track of what
256   *    the current inversion is. As "!(a && !b || c)" would require all
257   *    predicates being affected separately by the "!" before the parentheses.
258   *    And that would end up being equivalent to "(!a || b) && !c"
259   *
260   * #3 If the token is an "!", the current "invert" value gets inverted, and
261   *    the loop continues. Note, if the next token is a predicate, then
262   *    this "invert" value is only valid for the current program entry,
263   *    and does not affect other predicates later on.
264   *
265   * The only other acceptable token is the predicate string.
266   *
267   * #4 A new entry into the program is added saving: the predicate and the
268   *    current value of "invert". The target is currently assigned to the
269   *    previous program index (this will not be its final value).
270   *
271   * #5 We now enter another loop and look at the next token. The only valid
272   *    tokens are ")", "&&", "||" or end of the input string "\0".
273   *
274   * #6 The invert variable is reset to the current value saved on the top of
275   *    the stack.
276   *
277   * #7 The top of the stack holds not only the current invert value, but also
278   *    if a "&&" or "||" needs to be processed. Note, the "&&" takes higher
279   *    precedence than "||". That is "a && b || c && d" is equivalent to
280   *    "(a && b) || (c && d)". Thus the first thing to do is to see if "&&" needs
281   *    to be processed. This is the case if an "&&" was the last token. If it was
282   *    then we call update_preds(). This takes the program, the current index in
283   *    the program, and the current value of "invert".  More will be described
284   *    below about this function.
285   *
286   * #8 If the next token is "&&" then we set a flag in the top of the stack
287   *    that denotes that "&&" needs to be processed, break out of this loop
288   *    and continue with the outer loop.
289   *
290   * #9 Otherwise, if a "||" needs to be processed then update_preds() is called.
291   *    This is called with the program, the current index in the program, but
292   *    this time with an inverted value of "invert" (that is !invert). This is
293   *    because the value taken will become the "when_to_branch" value of the
294   *    program.
295   *    Note, this is called when the next token is not an "&&". As stated before,
296   *    "&&" takes higher precedence, and "||" should not be processed yet if the
297   *    next logical operation is "&&".
298   *
299   * #10 If the next token is "||" then we set a flag in the top of the stack
300   *     that denotes that "||" needs to be processed, break out of this loop
301   *     and continue with the outer loop.
302   *
303   * #11 If this is the end of the input string "\0" then we break out of both
304   *     loops.
305   *
306   * #12 Otherwise, the next token is ")", where we pop the stack and continue
307   *     this inner loop.
308   *
309   * Now to discuss the update_pred() function, as that is key to the setting up
310   * of the program. Remember the "target" of the program is initialized to the
311   * previous index and not the "l" label. The target holds the index into the
312   * program that gets affected by the operand. Thus if we have something like
313   *  "a || b && c", when we process "a" the target will be "-1" (undefined).
314   * When we process "b", its target is "0", which is the index of "a", as that's
315   * the predicate that is affected by "||". But because the next token after "b"
316   * is "&&" we don't call update_preds(). Instead continue to "c". As the
317   * next token after "c" is not "&&" but the end of input, we first process the
318   * "&&" by calling update_preds() for the "&&" then we process the "||" by
319   * calling updates_preds() with the values for processing "||".
320   *
321   * What does that mean? What update_preds() does is to first save the "target"
322   * of the program entry indexed by the current program entry's "target"
323   * (remember the "target" is initialized to previous program entry), and then
324   * sets that "target" to the current index which represents the label "l#".
325   * That entry's "when_to_branch" is set to the value passed in (the "invert"
326   * or "!invert"). Then it sets the current program entry's target to the saved
327   * "target" value (the old value of the program that had its "target" updated
328   * to the label).
329   *
330   * Looking back at "a || b && c", we have the following steps:
331   *  "a"  - prog[0] = { "a", X, -1 } // pred, when_to_branch, target
332   *  "||" - flag that we need to process "||"; continue outer loop
333   *  "b"  - prog[1] = { "b", X, 0 }
334   *  "&&" - flag that we need to process "&&"; continue outer loop
335   * (Notice we did not process "||")
336   *  "c"  - prog[2] = { "c", X, 1 }
337   *  update_preds(prog, 2, 0); // invert = 0 as we are processing "&&"
338   *    t = prog[2].target; // t = 1
339   *    s = prog[t].target; // s = 0
340   *    prog[t].target = 2; // Set target to "l2"
341   *    prog[t].when_to_branch = 0;
342   *    prog[2].target = s;
343   * update_preds(prog, 2, 1); // invert = 1 as we are now processing "||"
344   *    t = prog[2].target; // t = 0
345   *    s = prog[t].target; // s = -1
346   *    prog[t].target = 2; // Set target to "l2"
347   *    prog[t].when_to_branch = 1;
348   *    prog[2].target = s;
349   *
350   * #13 Which brings us to the final step of the first pass, which is to set
351   *     the last program entry's when_to_branch and target, which will be
352   *     when_to_branch = 0; target = N; ( the label after the program entry after
353   *     the last program entry processed above).
354   *
355   * If we denote "TRUE" to be the entry after the last program entry processed,
356   * and "FALSE" the program entry after that, we are now done with the first
357   * pass.
358   *
359   * Making the above "a || b && c" have a program of:
360   *  prog[0] = { "a", 1, 2 }
361   *  prog[1] = { "b", 0, 2 }
362   *  prog[2] = { "c", 0, 3 }
363   *
364   * Which translates into:
365   * n0: r = a; l0: if (r) goto l2;
366   * n1: r = b; l1: if (!r) goto l2;
367   * n2: r = c; l2: if (!r) goto l3;  // Which is the same as "goto F;"
368   * T: return TRUE; l3:
369   * F: return FALSE
370   *
371   * Although, after the first pass, the program is correct, it is
372   * inefficient. The simple sample of "a || b && c" could be easily been
373   * converted into:
374   * n0: r = a; if (r) goto T
375   * n1: r = b; if (!r) goto F
376   * n2: r = c; if (!r) goto F
377   * T: return TRUE;
378   * F: return FALSE;
379   *
380   * The First Pass is over the input string. The next too passes are over
381   * the program itself.
382   *
383   * ** SECOND PASS **
384   *
385   * Which brings us to the second pass. If a jump to a label has the
386   * same condition as that label, it can instead jump to its target.
387   * The original example of "a && !(!b || (c && g)) || d || e && !f"
388   * where the first pass gives us:
389   *
390   * n1: r=a;       l1: if (!r) goto l4;
391   * n2: r=b;       l2: if (!r) goto l4;
392   * n3: r=c; r=!r; l3: if (r) goto l4;
393   * n4: r=g; r=!r; l4: if (r) goto l5;
394   * n5: r=d;       l5: if (r) goto T
395   * n6: r=e;       l6: if (!r) goto l7;
396   * n7: r=f; r=!r; l7: if (!r) goto F:
397   * T: return TRUE;
398   * F: return FALSE
399   *
400   * We can see that "l3: if (r) goto l4;" and at l4, we have "if (r) goto l5;".
401   * And "l5: if (r) goto T", we could optimize this by converting l3 and l4
402   * to go directly to T. To accomplish this, we start from the last
403   * entry in the program and work our way back. If the target of the entry
404   * has the same "when_to_branch" then we could use that entry's target.
405   * Doing this, the above would end up as:
406   *
407   * n1: r=a;       l1: if (!r) goto l4;
408   * n2: r=b;       l2: if (!r) goto l4;
409   * n3: r=c; r=!r; l3: if (r) goto T;
410   * n4: r=g; r=!r; l4: if (r) goto T;
411   * n5: r=d;       l5: if (r) goto T;
412   * n6: r=e;       l6: if (!r) goto F;
413   * n7: r=f; r=!r; l7: if (!r) goto F;
414   * T: return TRUE
415   * F: return FALSE
416   *
417   * In that same pass, if the "when_to_branch" doesn't match, we can simply
418   * go to the program entry after the label. That is, "l2: if (!r) goto l4;"
419   * where "l4: if (r) goto T;", then we can convert l2 to be:
420   * "l2: if (!r) goto n5;".
421   *
422   * This will have the second pass give us:
423   * n1: r=a;       l1: if (!r) goto n5;
424   * n2: r=b;       l2: if (!r) goto n5;
425   * n3: r=c; r=!r; l3: if (r) goto T;
426   * n4: r=g; r=!r; l4: if (r) goto T;
427   * n5: r=d;       l5: if (r) goto T
428   * n6: r=e;       l6: if (!r) goto F;
429   * n7: r=f; r=!r; l7: if (!r) goto F
430   * T: return TRUE
431   * F: return FALSE
432   *
433   * Notice, all the "l#" labels are no longer used, and they can now
434   * be discarded.
435   *
436   * ** THIRD PASS **
437   *
438   * For the third pass we deal with the inverts. As they simply just
439   * make the "when_to_branch" get inverted, a simple loop over the
440   * program to that does: "when_to_branch ^= invert;" will do the
441   * job, leaving us with:
442   * n1: r=a; if (!r) goto n5;
443   * n2: r=b; if (!r) goto n5;
444   * n3: r=c: if (!r) goto T;
445   * n4: r=g; if (!r) goto T;
446   * n5: r=d; if (r) goto T
447   * n6: r=e; if (!r) goto F;
448   * n7: r=f; if (r) goto F
449   * T: return TRUE
450   * F: return FALSE
451   *
452   * As "r = a; if (!r) goto n5;" is obviously the same as
453   * "if (!a) goto n5;" without doing anything we can interpret the
454   * program as:
455   * n1: if (!a) goto n5;
456   * n2: if (!b) goto n5;
457   * n3: if (!c) goto T;
458   * n4: if (!g) goto T;
459   * n5: if (d) goto T
460   * n6: if (!e) goto F;
461   * n7: if (f) goto F
462   * T: return TRUE
463   * F: return FALSE
464   *
465   * Since the inverts are discarded at the end, there's no reason to store
466   * them in the program array (and waste memory). A separate array to hold
467   * the inverts is used and freed at the end.
468   */
469  static struct prog_entry *
predicate_parse(const char * str,int nr_parens,int nr_preds,parse_pred_fn parse_pred,void * data,struct filter_parse_error * pe)470  predicate_parse(const char *str, int nr_parens, int nr_preds,
471  		parse_pred_fn parse_pred, void *data,
472  		struct filter_parse_error *pe)
473  {
474  	struct prog_entry *prog_stack;
475  	struct prog_entry *prog;
476  	const char *ptr = str;
477  	char *inverts = NULL;
478  	int *op_stack;
479  	int *top;
480  	int invert = 0;
481  	int ret = -ENOMEM;
482  	int len;
483  	int N = 0;
484  	int i;
485  
486  	nr_preds += 2; /* For TRUE and FALSE */
487  
488  	op_stack = kmalloc_array(nr_parens, sizeof(*op_stack), GFP_KERNEL);
489  	if (!op_stack)
490  		return ERR_PTR(-ENOMEM);
491  	prog_stack = kcalloc(nr_preds, sizeof(*prog_stack), GFP_KERNEL);
492  	if (!prog_stack) {
493  		parse_error(pe, -ENOMEM, 0);
494  		goto out_free;
495  	}
496  	inverts = kmalloc_array(nr_preds, sizeof(*inverts), GFP_KERNEL);
497  	if (!inverts) {
498  		parse_error(pe, -ENOMEM, 0);
499  		goto out_free;
500  	}
501  
502  	top = op_stack;
503  	prog = prog_stack;
504  	*top = 0;
505  
506  	/* First pass */
507  	while (*ptr) {						/* #1 */
508  		const char *next = ptr++;
509  
510  		if (isspace(*next))
511  			continue;
512  
513  		switch (*next) {
514  		case '(':					/* #2 */
515  			if (top - op_stack > nr_parens) {
516  				ret = -EINVAL;
517  				goto out_free;
518  			}
519  			*(++top) = invert;
520  			continue;
521  		case '!':					/* #3 */
522  			if (!is_not(next))
523  				break;
524  			invert = !invert;
525  			continue;
526  		}
527  
528  		if (N >= nr_preds) {
529  			parse_error(pe, FILT_ERR_TOO_MANY_PREDS, next - str);
530  			goto out_free;
531  		}
532  
533  		inverts[N] = invert;				/* #4 */
534  		prog[N].target = N-1;
535  
536  		len = parse_pred(next, data, ptr - str, pe, &prog[N].pred);
537  		if (len < 0) {
538  			ret = len;
539  			goto out_free;
540  		}
541  		ptr = next + len;
542  
543  		N++;
544  
545  		ret = -1;
546  		while (1) {					/* #5 */
547  			next = ptr++;
548  			if (isspace(*next))
549  				continue;
550  
551  			switch (*next) {
552  			case ')':
553  			case '\0':
554  				break;
555  			case '&':
556  			case '|':
557  				/* accepting only "&&" or "||" */
558  				if (next[1] == next[0]) {
559  					ptr++;
560  					break;
561  				}
562  				fallthrough;
563  			default:
564  				parse_error(pe, FILT_ERR_TOO_MANY_PREDS,
565  					    next - str);
566  				goto out_free;
567  			}
568  
569  			invert = *top & INVERT;
570  
571  			if (*top & PROCESS_AND) {		/* #7 */
572  				update_preds(prog, N - 1, invert);
573  				*top &= ~PROCESS_AND;
574  			}
575  			if (*next == '&') {			/* #8 */
576  				*top |= PROCESS_AND;
577  				break;
578  			}
579  			if (*top & PROCESS_OR) {		/* #9 */
580  				update_preds(prog, N - 1, !invert);
581  				*top &= ~PROCESS_OR;
582  			}
583  			if (*next == '|') {			/* #10 */
584  				*top |= PROCESS_OR;
585  				break;
586  			}
587  			if (!*next)				/* #11 */
588  				goto out;
589  
590  			if (top == op_stack) {
591  				ret = -1;
592  				/* Too few '(' */
593  				parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, ptr - str);
594  				goto out_free;
595  			}
596  			top--;					/* #12 */
597  		}
598  	}
599   out:
600  	if (top != op_stack) {
601  		/* Too many '(' */
602  		parse_error(pe, FILT_ERR_TOO_MANY_OPEN, ptr - str);
603  		goto out_free;
604  	}
605  
606  	if (!N) {
607  		/* No program? */
608  		ret = -EINVAL;
609  		parse_error(pe, FILT_ERR_NO_FILTER, ptr - str);
610  		goto out_free;
611  	}
612  
613  	prog[N].pred = NULL;					/* #13 */
614  	prog[N].target = 1;		/* TRUE */
615  	prog[N+1].pred = NULL;
616  	prog[N+1].target = 0;		/* FALSE */
617  	prog[N-1].target = N;
618  	prog[N-1].when_to_branch = false;
619  
620  	/* Second Pass */
621  	for (i = N-1 ; i--; ) {
622  		int target = prog[i].target;
623  		if (prog[i].when_to_branch == prog[target].when_to_branch)
624  			prog[i].target = prog[target].target;
625  	}
626  
627  	/* Third Pass */
628  	for (i = 0; i < N; i++) {
629  		invert = inverts[i] ^ prog[i].when_to_branch;
630  		prog[i].when_to_branch = invert;
631  		/* Make sure the program always moves forward */
632  		if (WARN_ON(prog[i].target <= i)) {
633  			ret = -EINVAL;
634  			goto out_free;
635  		}
636  	}
637  
638  	kfree(op_stack);
639  	kfree(inverts);
640  	return prog;
641  out_free:
642  	kfree(op_stack);
643  	kfree(inverts);
644  	if (prog_stack) {
645  		for (i = 0; prog_stack[i].pred; i++)
646  			free_predicate(prog_stack[i].pred);
647  		kfree(prog_stack);
648  	}
649  	return ERR_PTR(ret);
650  }
651  
652  static inline int
do_filter_cpumask(int op,const struct cpumask * mask,const struct cpumask * cmp)653  do_filter_cpumask(int op, const struct cpumask *mask, const struct cpumask *cmp)
654  {
655  	switch (op) {
656  	case OP_EQ:
657  		return cpumask_equal(mask, cmp);
658  	case OP_NE:
659  		return !cpumask_equal(mask, cmp);
660  	case OP_BAND:
661  		return cpumask_intersects(mask, cmp);
662  	default:
663  		return 0;
664  	}
665  }
666  
667  /* Optimisation of do_filter_cpumask() for scalar fields */
668  static inline int
do_filter_scalar_cpumask(int op,unsigned int cpu,const struct cpumask * mask)669  do_filter_scalar_cpumask(int op, unsigned int cpu, const struct cpumask *mask)
670  {
671  	/*
672  	 * Per the weight-of-one cpumask optimisations, the mask passed in this
673  	 * function has a weight >= 2, so it is never equal to a single scalar.
674  	 */
675  	switch (op) {
676  	case OP_EQ:
677  		return false;
678  	case OP_NE:
679  		return true;
680  	case OP_BAND:
681  		return cpumask_test_cpu(cpu, mask);
682  	default:
683  		return 0;
684  	}
685  }
686  
687  static inline int
do_filter_cpumask_scalar(int op,const struct cpumask * mask,unsigned int cpu)688  do_filter_cpumask_scalar(int op, const struct cpumask *mask, unsigned int cpu)
689  {
690  	switch (op) {
691  	case OP_EQ:
692  		return cpumask_test_cpu(cpu, mask) &&
693  			cpumask_nth(1, mask) >= nr_cpu_ids;
694  	case OP_NE:
695  		return !cpumask_test_cpu(cpu, mask) ||
696  			cpumask_nth(1, mask) < nr_cpu_ids;
697  	case OP_BAND:
698  		return cpumask_test_cpu(cpu, mask);
699  	default:
700  		return 0;
701  	}
702  }
703  
704  enum pred_cmp_types {
705  	PRED_CMP_TYPE_NOP,
706  	PRED_CMP_TYPE_LT,
707  	PRED_CMP_TYPE_LE,
708  	PRED_CMP_TYPE_GT,
709  	PRED_CMP_TYPE_GE,
710  	PRED_CMP_TYPE_BAND,
711  };
712  
713  #define DEFINE_COMPARISON_PRED(type)					\
714  static int filter_pred_##type(struct filter_pred *pred, void *event)	\
715  {									\
716  	switch (pred->op) {						\
717  	case OP_LT: {							\
718  		type *addr = (type *)(event + pred->offset);		\
719  		type val = (type)pred->val;				\
720  		return *addr < val;					\
721  	}								\
722  	case OP_LE: {					\
723  		type *addr = (type *)(event + pred->offset);		\
724  		type val = (type)pred->val;				\
725  		return *addr <= val;					\
726  	}								\
727  	case OP_GT: {					\
728  		type *addr = (type *)(event + pred->offset);		\
729  		type val = (type)pred->val;				\
730  		return *addr > val;					\
731  	}								\
732  	case OP_GE: {					\
733  		type *addr = (type *)(event + pred->offset);		\
734  		type val = (type)pred->val;				\
735  		return *addr >= val;					\
736  	}								\
737  	case OP_BAND: {					\
738  		type *addr = (type *)(event + pred->offset);		\
739  		type val = (type)pred->val;				\
740  		return !!(*addr & val);					\
741  	}								\
742  	default:							\
743  		return 0;						\
744  	}								\
745  }
746  
747  #define DEFINE_CPUMASK_COMPARISON_PRED(size)					\
748  static int filter_pred_##size##_cpumask(struct filter_pred *pred, void *event)	\
749  {										\
750  	u##size *addr = (u##size *)(event + pred->offset);			\
751  	unsigned int cpu = *addr;						\
752  										\
753  	if (cpu >= nr_cpu_ids)							\
754  		return 0;							\
755  										\
756  	return do_filter_scalar_cpumask(pred->op, cpu, pred->mask);		\
757  }
758  
759  #define DEFINE_EQUALITY_PRED(size)					\
760  static int filter_pred_##size(struct filter_pred *pred, void *event)	\
761  {									\
762  	u##size *addr = (u##size *)(event + pred->offset);		\
763  	u##size val = (u##size)pred->val;				\
764  	int match;							\
765  									\
766  	match = (val == *addr) ^ pred->not;				\
767  									\
768  	return match;							\
769  }
770  
771  DEFINE_COMPARISON_PRED(s64);
772  DEFINE_COMPARISON_PRED(u64);
773  DEFINE_COMPARISON_PRED(s32);
774  DEFINE_COMPARISON_PRED(u32);
775  DEFINE_COMPARISON_PRED(s16);
776  DEFINE_COMPARISON_PRED(u16);
777  DEFINE_COMPARISON_PRED(s8);
778  DEFINE_COMPARISON_PRED(u8);
779  
780  DEFINE_CPUMASK_COMPARISON_PRED(64);
781  DEFINE_CPUMASK_COMPARISON_PRED(32);
782  DEFINE_CPUMASK_COMPARISON_PRED(16);
783  DEFINE_CPUMASK_COMPARISON_PRED(8);
784  
785  DEFINE_EQUALITY_PRED(64);
786  DEFINE_EQUALITY_PRED(32);
787  DEFINE_EQUALITY_PRED(16);
788  DEFINE_EQUALITY_PRED(8);
789  
790  /* user space strings temp buffer */
791  #define USTRING_BUF_SIZE	1024
792  
793  struct ustring_buffer {
794  	char		buffer[USTRING_BUF_SIZE];
795  };
796  
797  static __percpu struct ustring_buffer *ustring_per_cpu;
798  
test_string(char * str)799  static __always_inline char *test_string(char *str)
800  {
801  	struct ustring_buffer *ubuf;
802  	char *kstr;
803  
804  	if (!ustring_per_cpu)
805  		return NULL;
806  
807  	ubuf = this_cpu_ptr(ustring_per_cpu);
808  	kstr = ubuf->buffer;
809  
810  	/* For safety, do not trust the string pointer */
811  	if (!strncpy_from_kernel_nofault(kstr, str, USTRING_BUF_SIZE))
812  		return NULL;
813  	return kstr;
814  }
815  
test_ustring(char * str)816  static __always_inline char *test_ustring(char *str)
817  {
818  	struct ustring_buffer *ubuf;
819  	char __user *ustr;
820  	char *kstr;
821  
822  	if (!ustring_per_cpu)
823  		return NULL;
824  
825  	ubuf = this_cpu_ptr(ustring_per_cpu);
826  	kstr = ubuf->buffer;
827  
828  	/* user space address? */
829  	ustr = (char __user *)str;
830  	if (!strncpy_from_user_nofault(kstr, ustr, USTRING_BUF_SIZE))
831  		return NULL;
832  
833  	return kstr;
834  }
835  
836  /* Filter predicate for fixed sized arrays of characters */
filter_pred_string(struct filter_pred * pred,void * event)837  static int filter_pred_string(struct filter_pred *pred, void *event)
838  {
839  	char *addr = (char *)(event + pred->offset);
840  	int cmp, match;
841  
842  	cmp = pred->regex->match(addr, pred->regex, pred->regex->field_len);
843  
844  	match = cmp ^ pred->not;
845  
846  	return match;
847  }
848  
filter_pchar(struct filter_pred * pred,char * str)849  static __always_inline int filter_pchar(struct filter_pred *pred, char *str)
850  {
851  	int cmp, match;
852  	int len;
853  
854  	len = strlen(str) + 1;	/* including tailing '\0' */
855  	cmp = pred->regex->match(str, pred->regex, len);
856  
857  	match = cmp ^ pred->not;
858  
859  	return match;
860  }
861  /* Filter predicate for char * pointers */
filter_pred_pchar(struct filter_pred * pred,void * event)862  static int filter_pred_pchar(struct filter_pred *pred, void *event)
863  {
864  	char **addr = (char **)(event + pred->offset);
865  	char *str;
866  
867  	str = test_string(*addr);
868  	if (!str)
869  		return 0;
870  
871  	return filter_pchar(pred, str);
872  }
873  
874  /* Filter predicate for char * pointers in user space*/
filter_pred_pchar_user(struct filter_pred * pred,void * event)875  static int filter_pred_pchar_user(struct filter_pred *pred, void *event)
876  {
877  	char **addr = (char **)(event + pred->offset);
878  	char *str;
879  
880  	str = test_ustring(*addr);
881  	if (!str)
882  		return 0;
883  
884  	return filter_pchar(pred, str);
885  }
886  
887  /*
888   * Filter predicate for dynamic sized arrays of characters.
889   * These are implemented through a list of strings at the end
890   * of the entry.
891   * Also each of these strings have a field in the entry which
892   * contains its offset from the beginning of the entry.
893   * We have then first to get this field, dereference it
894   * and add it to the address of the entry, and at last we have
895   * the address of the string.
896   */
filter_pred_strloc(struct filter_pred * pred,void * event)897  static int filter_pred_strloc(struct filter_pred *pred, void *event)
898  {
899  	u32 str_item = *(u32 *)(event + pred->offset);
900  	int str_loc = str_item & 0xffff;
901  	int str_len = str_item >> 16;
902  	char *addr = (char *)(event + str_loc);
903  	int cmp, match;
904  
905  	cmp = pred->regex->match(addr, pred->regex, str_len);
906  
907  	match = cmp ^ pred->not;
908  
909  	return match;
910  }
911  
912  /*
913   * Filter predicate for relative dynamic sized arrays of characters.
914   * These are implemented through a list of strings at the end
915   * of the entry as same as dynamic string.
916   * The difference is that the relative one records the location offset
917   * from the field itself, not the event entry.
918   */
filter_pred_strrelloc(struct filter_pred * pred,void * event)919  static int filter_pred_strrelloc(struct filter_pred *pred, void *event)
920  {
921  	u32 *item = (u32 *)(event + pred->offset);
922  	u32 str_item = *item;
923  	int str_loc = str_item & 0xffff;
924  	int str_len = str_item >> 16;
925  	char *addr = (char *)(&item[1]) + str_loc;
926  	int cmp, match;
927  
928  	cmp = pred->regex->match(addr, pred->regex, str_len);
929  
930  	match = cmp ^ pred->not;
931  
932  	return match;
933  }
934  
935  /* Filter predicate for CPUs. */
filter_pred_cpu(struct filter_pred * pred,void * event)936  static int filter_pred_cpu(struct filter_pred *pred, void *event)
937  {
938  	int cpu, cmp;
939  
940  	cpu = raw_smp_processor_id();
941  	cmp = pred->val;
942  
943  	switch (pred->op) {
944  	case OP_EQ:
945  		return cpu == cmp;
946  	case OP_NE:
947  		return cpu != cmp;
948  	case OP_LT:
949  		return cpu < cmp;
950  	case OP_LE:
951  		return cpu <= cmp;
952  	case OP_GT:
953  		return cpu > cmp;
954  	case OP_GE:
955  		return cpu >= cmp;
956  	default:
957  		return 0;
958  	}
959  }
960  
961  /* Filter predicate for current CPU vs user-provided cpumask */
filter_pred_cpu_cpumask(struct filter_pred * pred,void * event)962  static int filter_pred_cpu_cpumask(struct filter_pred *pred, void *event)
963  {
964  	int cpu = raw_smp_processor_id();
965  
966  	return do_filter_scalar_cpumask(pred->op, cpu, pred->mask);
967  }
968  
969  /* Filter predicate for cpumask field vs user-provided cpumask */
filter_pred_cpumask(struct filter_pred * pred,void * event)970  static int filter_pred_cpumask(struct filter_pred *pred, void *event)
971  {
972  	u32 item = *(u32 *)(event + pred->offset);
973  	int loc = item & 0xffff;
974  	const struct cpumask *mask = (event + loc);
975  	const struct cpumask *cmp = pred->mask;
976  
977  	return do_filter_cpumask(pred->op, mask, cmp);
978  }
979  
980  /* Filter predicate for cpumask field vs user-provided scalar  */
filter_pred_cpumask_cpu(struct filter_pred * pred,void * event)981  static int filter_pred_cpumask_cpu(struct filter_pred *pred, void *event)
982  {
983  	u32 item = *(u32 *)(event + pred->offset);
984  	int loc = item & 0xffff;
985  	const struct cpumask *mask = (event + loc);
986  	unsigned int cpu = pred->val;
987  
988  	return do_filter_cpumask_scalar(pred->op, mask, cpu);
989  }
990  
991  /* Filter predicate for COMM. */
filter_pred_comm(struct filter_pred * pred,void * event)992  static int filter_pred_comm(struct filter_pred *pred, void *event)
993  {
994  	int cmp;
995  
996  	cmp = pred->regex->match(current->comm, pred->regex,
997  				TASK_COMM_LEN);
998  	return cmp ^ pred->not;
999  }
1000  
1001  /* Filter predicate for functions. */
filter_pred_function(struct filter_pred * pred,void * event)1002  static int filter_pred_function(struct filter_pred *pred, void *event)
1003  {
1004  	unsigned long *addr = (unsigned long *)(event + pred->offset);
1005  	unsigned long start = (unsigned long)pred->val;
1006  	unsigned long end = (unsigned long)pred->val2;
1007  	int ret = *addr >= start && *addr < end;
1008  
1009  	return pred->op == OP_EQ ? ret : !ret;
1010  }
1011  
1012  /*
1013   * regex_match_foo - Basic regex callbacks
1014   *
1015   * @str: the string to be searched
1016   * @r:   the regex structure containing the pattern string
1017   * @len: the length of the string to be searched (including '\0')
1018   *
1019   * Note:
1020   * - @str might not be NULL-terminated if it's of type DYN_STRING
1021   *   RDYN_STRING, or STATIC_STRING, unless @len is zero.
1022   */
1023  
regex_match_full(char * str,struct regex * r,int len)1024  static int regex_match_full(char *str, struct regex *r, int len)
1025  {
1026  	/* len of zero means str is dynamic and ends with '\0' */
1027  	if (!len)
1028  		return strcmp(str, r->pattern) == 0;
1029  
1030  	return strncmp(str, r->pattern, len) == 0;
1031  }
1032  
regex_match_front(char * str,struct regex * r,int len)1033  static int regex_match_front(char *str, struct regex *r, int len)
1034  {
1035  	if (len && len < r->len)
1036  		return 0;
1037  
1038  	return strncmp(str, r->pattern, r->len) == 0;
1039  }
1040  
regex_match_middle(char * str,struct regex * r,int len)1041  static int regex_match_middle(char *str, struct regex *r, int len)
1042  {
1043  	if (!len)
1044  		return strstr(str, r->pattern) != NULL;
1045  
1046  	return strnstr(str, r->pattern, len) != NULL;
1047  }
1048  
regex_match_end(char * str,struct regex * r,int len)1049  static int regex_match_end(char *str, struct regex *r, int len)
1050  {
1051  	int strlen = len - 1;
1052  
1053  	if (strlen >= r->len &&
1054  	    memcmp(str + strlen - r->len, r->pattern, r->len) == 0)
1055  		return 1;
1056  	return 0;
1057  }
1058  
regex_match_glob(char * str,struct regex * r,int len __maybe_unused)1059  static int regex_match_glob(char *str, struct regex *r, int len __maybe_unused)
1060  {
1061  	if (glob_match(r->pattern, str))
1062  		return 1;
1063  	return 0;
1064  }
1065  
1066  /**
1067   * filter_parse_regex - parse a basic regex
1068   * @buff:   the raw regex
1069   * @len:    length of the regex
1070   * @search: will point to the beginning of the string to compare
1071   * @not:    tell whether the match will have to be inverted
1072   *
1073   * This passes in a buffer containing a regex and this function will
1074   * set search to point to the search part of the buffer and
1075   * return the type of search it is (see enum above).
1076   * This does modify buff.
1077   *
1078   * Returns enum type.
1079   *  search returns the pointer to use for comparison.
1080   *  not returns 1 if buff started with a '!'
1081   *     0 otherwise.
1082   */
filter_parse_regex(char * buff,int len,char ** search,int * not)1083  enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not)
1084  {
1085  	int type = MATCH_FULL;
1086  	int i;
1087  
1088  	if (buff[0] == '!') {
1089  		*not = 1;
1090  		buff++;
1091  		len--;
1092  	} else
1093  		*not = 0;
1094  
1095  	*search = buff;
1096  
1097  	if (isdigit(buff[0]))
1098  		return MATCH_INDEX;
1099  
1100  	for (i = 0; i < len; i++) {
1101  		if (buff[i] == '*') {
1102  			if (!i) {
1103  				type = MATCH_END_ONLY;
1104  			} else if (i == len - 1) {
1105  				if (type == MATCH_END_ONLY)
1106  					type = MATCH_MIDDLE_ONLY;
1107  				else
1108  					type = MATCH_FRONT_ONLY;
1109  				buff[i] = 0;
1110  				break;
1111  			} else {	/* pattern continues, use full glob */
1112  				return MATCH_GLOB;
1113  			}
1114  		} else if (strchr("[?\\", buff[i])) {
1115  			return MATCH_GLOB;
1116  		}
1117  	}
1118  	if (buff[0] == '*')
1119  		*search = buff + 1;
1120  
1121  	return type;
1122  }
1123  
filter_build_regex(struct filter_pred * pred)1124  static void filter_build_regex(struct filter_pred *pred)
1125  {
1126  	struct regex *r = pred->regex;
1127  	char *search;
1128  	enum regex_type type = MATCH_FULL;
1129  
1130  	if (pred->op == OP_GLOB) {
1131  		type = filter_parse_regex(r->pattern, r->len, &search, &pred->not);
1132  		r->len = strlen(search);
1133  		memmove(r->pattern, search, r->len+1);
1134  	}
1135  
1136  	switch (type) {
1137  	/* MATCH_INDEX should not happen, but if it does, match full */
1138  	case MATCH_INDEX:
1139  	case MATCH_FULL:
1140  		r->match = regex_match_full;
1141  		break;
1142  	case MATCH_FRONT_ONLY:
1143  		r->match = regex_match_front;
1144  		break;
1145  	case MATCH_MIDDLE_ONLY:
1146  		r->match = regex_match_middle;
1147  		break;
1148  	case MATCH_END_ONLY:
1149  		r->match = regex_match_end;
1150  		break;
1151  	case MATCH_GLOB:
1152  		r->match = regex_match_glob;
1153  		break;
1154  	}
1155  }
1156  
1157  
1158  #ifdef CONFIG_FTRACE_STARTUP_TEST
1159  static int test_pred_visited_fn(struct filter_pred *pred, void *event);
1160  #else
test_pred_visited_fn(struct filter_pred * pred,void * event)1161  static int test_pred_visited_fn(struct filter_pred *pred, void *event)
1162  {
1163  	return 0;
1164  }
1165  #endif
1166  
1167  
1168  static int filter_pred_fn_call(struct filter_pred *pred, void *event);
1169  
1170  /* return 1 if event matches, 0 otherwise (discard) */
filter_match_preds(struct event_filter * filter,void * rec)1171  int filter_match_preds(struct event_filter *filter, void *rec)
1172  {
1173  	struct prog_entry *prog;
1174  	int i;
1175  
1176  	/* no filter is considered a match */
1177  	if (!filter)
1178  		return 1;
1179  
1180  	/* Protected by either SRCU(tracepoint_srcu) or preempt_disable */
1181  	prog = rcu_dereference_raw(filter->prog);
1182  	if (!prog)
1183  		return 1;
1184  
1185  	for (i = 0; prog[i].pred; i++) {
1186  		struct filter_pred *pred = prog[i].pred;
1187  		int match = filter_pred_fn_call(pred, rec);
1188  		if (match == prog[i].when_to_branch)
1189  			i = prog[i].target;
1190  	}
1191  	return prog[i].target;
1192  }
1193  EXPORT_SYMBOL_GPL(filter_match_preds);
1194  
remove_filter_string(struct event_filter * filter)1195  static void remove_filter_string(struct event_filter *filter)
1196  {
1197  	if (!filter)
1198  		return;
1199  
1200  	kfree(filter->filter_string);
1201  	filter->filter_string = NULL;
1202  }
1203  
append_filter_err(struct trace_array * tr,struct filter_parse_error * pe,struct event_filter * filter)1204  static void append_filter_err(struct trace_array *tr,
1205  			      struct filter_parse_error *pe,
1206  			      struct event_filter *filter)
1207  {
1208  	struct trace_seq *s;
1209  	int pos = pe->lasterr_pos;
1210  	char *buf;
1211  	int len;
1212  
1213  	if (WARN_ON(!filter->filter_string))
1214  		return;
1215  
1216  	s = kmalloc(sizeof(*s), GFP_KERNEL);
1217  	if (!s)
1218  		return;
1219  	trace_seq_init(s);
1220  
1221  	len = strlen(filter->filter_string);
1222  	if (pos > len)
1223  		pos = len;
1224  
1225  	/* indexing is off by one */
1226  	if (pos)
1227  		pos++;
1228  
1229  	trace_seq_puts(s, filter->filter_string);
1230  	if (pe->lasterr > 0) {
1231  		trace_seq_printf(s, "\n%*s", pos, "^");
1232  		trace_seq_printf(s, "\nparse_error: %s\n", err_text[pe->lasterr]);
1233  		tracing_log_err(tr, "event filter parse error",
1234  				filter->filter_string, err_text,
1235  				pe->lasterr, pe->lasterr_pos);
1236  	} else {
1237  		trace_seq_printf(s, "\nError: (%d)\n", pe->lasterr);
1238  		tracing_log_err(tr, "event filter parse error",
1239  				filter->filter_string, err_text,
1240  				FILT_ERR_ERRNO, 0);
1241  	}
1242  	trace_seq_putc(s, 0);
1243  	buf = kmemdup_nul(s->buffer, s->seq.len, GFP_KERNEL);
1244  	if (buf) {
1245  		kfree(filter->filter_string);
1246  		filter->filter_string = buf;
1247  	}
1248  	kfree(s);
1249  }
1250  
event_filter(struct trace_event_file * file)1251  static inline struct event_filter *event_filter(struct trace_event_file *file)
1252  {
1253  	return file->filter;
1254  }
1255  
1256  /* caller must hold event_mutex */
print_event_filter(struct trace_event_file * file,struct trace_seq * s)1257  void print_event_filter(struct trace_event_file *file, struct trace_seq *s)
1258  {
1259  	struct event_filter *filter = event_filter(file);
1260  
1261  	if (filter && filter->filter_string)
1262  		trace_seq_printf(s, "%s\n", filter->filter_string);
1263  	else
1264  		trace_seq_puts(s, "none\n");
1265  }
1266  
print_subsystem_event_filter(struct event_subsystem * system,struct trace_seq * s)1267  void print_subsystem_event_filter(struct event_subsystem *system,
1268  				  struct trace_seq *s)
1269  {
1270  	struct event_filter *filter;
1271  
1272  	mutex_lock(&event_mutex);
1273  	filter = system->filter;
1274  	if (filter && filter->filter_string)
1275  		trace_seq_printf(s, "%s\n", filter->filter_string);
1276  	else
1277  		trace_seq_puts(s, DEFAULT_SYS_FILTER_MESSAGE "\n");
1278  	mutex_unlock(&event_mutex);
1279  }
1280  
free_prog(struct event_filter * filter)1281  static void free_prog(struct event_filter *filter)
1282  {
1283  	struct prog_entry *prog;
1284  	int i;
1285  
1286  	prog = rcu_access_pointer(filter->prog);
1287  	if (!prog)
1288  		return;
1289  
1290  	for (i = 0; prog[i].pred; i++)
1291  		free_predicate(prog[i].pred);
1292  	kfree(prog);
1293  }
1294  
filter_disable(struct trace_event_file * file)1295  static void filter_disable(struct trace_event_file *file)
1296  {
1297  	unsigned long old_flags = file->flags;
1298  
1299  	file->flags &= ~EVENT_FILE_FL_FILTERED;
1300  
1301  	if (old_flags != file->flags)
1302  		trace_buffered_event_disable();
1303  }
1304  
__free_filter(struct event_filter * filter)1305  static void __free_filter(struct event_filter *filter)
1306  {
1307  	if (!filter)
1308  		return;
1309  
1310  	free_prog(filter);
1311  	kfree(filter->filter_string);
1312  	kfree(filter);
1313  }
1314  
free_event_filter(struct event_filter * filter)1315  void free_event_filter(struct event_filter *filter)
1316  {
1317  	__free_filter(filter);
1318  }
1319  
__remove_filter(struct trace_event_file * file)1320  static inline void __remove_filter(struct trace_event_file *file)
1321  {
1322  	filter_disable(file);
1323  	remove_filter_string(file->filter);
1324  }
1325  
filter_free_subsystem_preds(struct trace_subsystem_dir * dir,struct trace_array * tr)1326  static void filter_free_subsystem_preds(struct trace_subsystem_dir *dir,
1327  					struct trace_array *tr)
1328  {
1329  	struct trace_event_file *file;
1330  
1331  	list_for_each_entry(file, &tr->events, list) {
1332  		if (file->system != dir)
1333  			continue;
1334  		__remove_filter(file);
1335  	}
1336  }
1337  
__free_subsystem_filter(struct trace_event_file * file)1338  static inline void __free_subsystem_filter(struct trace_event_file *file)
1339  {
1340  	__free_filter(file->filter);
1341  	file->filter = NULL;
1342  }
1343  
filter_free_subsystem_filters(struct trace_subsystem_dir * dir,struct trace_array * tr)1344  static void filter_free_subsystem_filters(struct trace_subsystem_dir *dir,
1345  					  struct trace_array *tr)
1346  {
1347  	struct trace_event_file *file;
1348  
1349  	list_for_each_entry(file, &tr->events, list) {
1350  		if (file->system != dir)
1351  			continue;
1352  		__free_subsystem_filter(file);
1353  	}
1354  }
1355  
filter_assign_type(const char * type)1356  int filter_assign_type(const char *type)
1357  {
1358  	if (strstr(type, "__data_loc")) {
1359  		if (strstr(type, "char"))
1360  			return FILTER_DYN_STRING;
1361  		if (strstr(type, "cpumask_t"))
1362  			return FILTER_CPUMASK;
1363  	}
1364  
1365  	if (strstr(type, "__rel_loc") && strstr(type, "char"))
1366  		return FILTER_RDYN_STRING;
1367  
1368  	if (strchr(type, '[') && strstr(type, "char"))
1369  		return FILTER_STATIC_STRING;
1370  
1371  	if (strcmp(type, "char *") == 0 || strcmp(type, "const char *") == 0)
1372  		return FILTER_PTR_STRING;
1373  
1374  	return FILTER_OTHER;
1375  }
1376  
select_comparison_fn(enum filter_op_ids op,int field_size,int field_is_signed)1377  static enum filter_pred_fn select_comparison_fn(enum filter_op_ids op,
1378  						int field_size, int field_is_signed)
1379  {
1380  	enum filter_pred_fn fn = FILTER_PRED_FN_NOP;
1381  	int pred_func_index = -1;
1382  
1383  	switch (op) {
1384  	case OP_EQ:
1385  	case OP_NE:
1386  		break;
1387  	default:
1388  		if (WARN_ON_ONCE(op < PRED_FUNC_START))
1389  			return fn;
1390  		pred_func_index = op - PRED_FUNC_START;
1391  		if (WARN_ON_ONCE(pred_func_index > PRED_FUNC_MAX))
1392  			return fn;
1393  	}
1394  
1395  	switch (field_size) {
1396  	case 8:
1397  		if (pred_func_index < 0)
1398  			fn = FILTER_PRED_FN_64;
1399  		else if (field_is_signed)
1400  			fn = FILTER_PRED_FN_S64;
1401  		else
1402  			fn = FILTER_PRED_FN_U64;
1403  		break;
1404  	case 4:
1405  		if (pred_func_index < 0)
1406  			fn = FILTER_PRED_FN_32;
1407  		else if (field_is_signed)
1408  			fn = FILTER_PRED_FN_S32;
1409  		else
1410  			fn = FILTER_PRED_FN_U32;
1411  		break;
1412  	case 2:
1413  		if (pred_func_index < 0)
1414  			fn = FILTER_PRED_FN_16;
1415  		else if (field_is_signed)
1416  			fn = FILTER_PRED_FN_S16;
1417  		else
1418  			fn = FILTER_PRED_FN_U16;
1419  		break;
1420  	case 1:
1421  		if (pred_func_index < 0)
1422  			fn = FILTER_PRED_FN_8;
1423  		else if (field_is_signed)
1424  			fn = FILTER_PRED_FN_S8;
1425  		else
1426  			fn = FILTER_PRED_FN_U8;
1427  		break;
1428  	}
1429  
1430  	return fn;
1431  }
1432  
1433  
filter_pred_fn_call(struct filter_pred * pred,void * event)1434  static int filter_pred_fn_call(struct filter_pred *pred, void *event)
1435  {
1436  	switch (pred->fn_num) {
1437  	case FILTER_PRED_FN_64:
1438  		return filter_pred_64(pred, event);
1439  	case FILTER_PRED_FN_64_CPUMASK:
1440  		return filter_pred_64_cpumask(pred, event);
1441  	case FILTER_PRED_FN_S64:
1442  		return filter_pred_s64(pred, event);
1443  	case FILTER_PRED_FN_U64:
1444  		return filter_pred_u64(pred, event);
1445  	case FILTER_PRED_FN_32:
1446  		return filter_pred_32(pred, event);
1447  	case FILTER_PRED_FN_32_CPUMASK:
1448  		return filter_pred_32_cpumask(pred, event);
1449  	case FILTER_PRED_FN_S32:
1450  		return filter_pred_s32(pred, event);
1451  	case FILTER_PRED_FN_U32:
1452  		return filter_pred_u32(pred, event);
1453  	case FILTER_PRED_FN_16:
1454  		return filter_pred_16(pred, event);
1455  	case FILTER_PRED_FN_16_CPUMASK:
1456  		return filter_pred_16_cpumask(pred, event);
1457  	case FILTER_PRED_FN_S16:
1458  		return filter_pred_s16(pred, event);
1459  	case FILTER_PRED_FN_U16:
1460  		return filter_pred_u16(pred, event);
1461  	case FILTER_PRED_FN_8:
1462  		return filter_pred_8(pred, event);
1463  	case FILTER_PRED_FN_8_CPUMASK:
1464  		return filter_pred_8_cpumask(pred, event);
1465  	case FILTER_PRED_FN_S8:
1466  		return filter_pred_s8(pred, event);
1467  	case FILTER_PRED_FN_U8:
1468  		return filter_pred_u8(pred, event);
1469  	case FILTER_PRED_FN_COMM:
1470  		return filter_pred_comm(pred, event);
1471  	case FILTER_PRED_FN_STRING:
1472  		return filter_pred_string(pred, event);
1473  	case FILTER_PRED_FN_STRLOC:
1474  		return filter_pred_strloc(pred, event);
1475  	case FILTER_PRED_FN_STRRELLOC:
1476  		return filter_pred_strrelloc(pred, event);
1477  	case FILTER_PRED_FN_PCHAR_USER:
1478  		return filter_pred_pchar_user(pred, event);
1479  	case FILTER_PRED_FN_PCHAR:
1480  		return filter_pred_pchar(pred, event);
1481  	case FILTER_PRED_FN_CPU:
1482  		return filter_pred_cpu(pred, event);
1483  	case FILTER_PRED_FN_CPU_CPUMASK:
1484  		return filter_pred_cpu_cpumask(pred, event);
1485  	case FILTER_PRED_FN_CPUMASK:
1486  		return filter_pred_cpumask(pred, event);
1487  	case FILTER_PRED_FN_CPUMASK_CPU:
1488  		return filter_pred_cpumask_cpu(pred, event);
1489  	case FILTER_PRED_FN_FUNCTION:
1490  		return filter_pred_function(pred, event);
1491  	case FILTER_PRED_TEST_VISITED:
1492  		return test_pred_visited_fn(pred, event);
1493  	default:
1494  		return 0;
1495  	}
1496  }
1497  
1498  /* Called when a predicate is encountered by predicate_parse() */
parse_pred(const char * str,void * data,int pos,struct filter_parse_error * pe,struct filter_pred ** pred_ptr)1499  static int parse_pred(const char *str, void *data,
1500  		      int pos, struct filter_parse_error *pe,
1501  		      struct filter_pred **pred_ptr)
1502  {
1503  	struct trace_event_call *call = data;
1504  	struct ftrace_event_field *field;
1505  	struct filter_pred *pred = NULL;
1506  	unsigned long offset;
1507  	unsigned long size;
1508  	unsigned long ip;
1509  	char num_buf[24];	/* Big enough to hold an address */
1510  	char *field_name;
1511  	char *name;
1512  	bool function = false;
1513  	bool ustring = false;
1514  	char q;
1515  	u64 val;
1516  	int len;
1517  	int ret;
1518  	int op;
1519  	int s;
1520  	int i = 0;
1521  
1522  	/* First find the field to associate to */
1523  	while (isspace(str[i]))
1524  		i++;
1525  	s = i;
1526  
1527  	while (isalnum(str[i]) || str[i] == '_')
1528  		i++;
1529  
1530  	len = i - s;
1531  
1532  	if (!len)
1533  		return -1;
1534  
1535  	field_name = kmemdup_nul(str + s, len, GFP_KERNEL);
1536  	if (!field_name)
1537  		return -ENOMEM;
1538  
1539  	/* Make sure that the field exists */
1540  
1541  	field = trace_find_event_field(call, field_name);
1542  	kfree(field_name);
1543  	if (!field) {
1544  		parse_error(pe, FILT_ERR_FIELD_NOT_FOUND, pos + i);
1545  		return -EINVAL;
1546  	}
1547  
1548  	/* See if the field is a user space string */
1549  	if ((len = str_has_prefix(str + i, ".ustring"))) {
1550  		ustring = true;
1551  		i += len;
1552  	}
1553  
1554  	/* See if the field is a kernel function name */
1555  	if ((len = str_has_prefix(str + i, ".function"))) {
1556  		function = true;
1557  		i += len;
1558  	}
1559  
1560  	while (isspace(str[i]))
1561  		i++;
1562  
1563  	/* Make sure this op is supported */
1564  	for (op = 0; ops[op]; op++) {
1565  		/* This is why '<=' must come before '<' in ops[] */
1566  		if (strncmp(str + i, ops[op], strlen(ops[op])) == 0)
1567  			break;
1568  	}
1569  
1570  	if (!ops[op]) {
1571  		parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1572  		goto err_free;
1573  	}
1574  
1575  	i += strlen(ops[op]);
1576  
1577  	while (isspace(str[i]))
1578  		i++;
1579  
1580  	s = i;
1581  
1582  	pred = kzalloc(sizeof(*pred), GFP_KERNEL);
1583  	if (!pred)
1584  		return -ENOMEM;
1585  
1586  	pred->field = field;
1587  	pred->offset = field->offset;
1588  	pred->op = op;
1589  
1590  	if (function) {
1591  		/* The field must be the same size as long */
1592  		if (field->size != sizeof(long)) {
1593  			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1594  			goto err_free;
1595  		}
1596  
1597  		/* Function only works with '==' or '!=' and an unquoted string */
1598  		switch (op) {
1599  		case OP_NE:
1600  		case OP_EQ:
1601  			break;
1602  		default:
1603  			parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1604  			goto err_free;
1605  		}
1606  
1607  		if (isdigit(str[i])) {
1608  			/* We allow 0xDEADBEEF */
1609  			while (isalnum(str[i]))
1610  				i++;
1611  
1612  			len = i - s;
1613  			/* 0xfeedfacedeadbeef is 18 chars max */
1614  			if (len >= sizeof(num_buf)) {
1615  				parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1616  				goto err_free;
1617  			}
1618  
1619  			strncpy(num_buf, str + s, len);
1620  			num_buf[len] = 0;
1621  
1622  			ret = kstrtoul(num_buf, 0, &ip);
1623  			if (ret) {
1624  				parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
1625  				goto err_free;
1626  			}
1627  		} else {
1628  			s = i;
1629  			for (; str[i] && !isspace(str[i]); i++)
1630  				;
1631  
1632  			len = i - s;
1633  			name = kmemdup_nul(str + s, len, GFP_KERNEL);
1634  			if (!name)
1635  				goto err_mem;
1636  			ip = kallsyms_lookup_name(name);
1637  			kfree(name);
1638  			if (!ip) {
1639  				parse_error(pe, FILT_ERR_NO_FUNCTION, pos + i);
1640  				goto err_free;
1641  			}
1642  		}
1643  
1644  		/* Now find the function start and end address */
1645  		if (!kallsyms_lookup_size_offset(ip, &size, &offset)) {
1646  			parse_error(pe, FILT_ERR_NO_FUNCTION, pos + i);
1647  			goto err_free;
1648  		}
1649  
1650  		pred->fn_num = FILTER_PRED_FN_FUNCTION;
1651  		pred->val = ip - offset;
1652  		pred->val2 = pred->val + size;
1653  
1654  	} else if (ftrace_event_is_function(call)) {
1655  		/*
1656  		 * Perf does things different with function events.
1657  		 * It only allows an "ip" field, and expects a string.
1658  		 * But the string does not need to be surrounded by quotes.
1659  		 * If it is a string, the assigned function as a nop,
1660  		 * (perf doesn't use it) and grab everything.
1661  		 */
1662  		if (strcmp(field->name, "ip") != 0) {
1663  			parse_error(pe, FILT_ERR_IP_FIELD_ONLY, pos + i);
1664  			goto err_free;
1665  		}
1666  		pred->fn_num = FILTER_PRED_FN_NOP;
1667  
1668  		/*
1669  		 * Quotes are not required, but if they exist then we need
1670  		 * to read them till we hit a matching one.
1671  		 */
1672  		if (str[i] == '\'' || str[i] == '"')
1673  			q = str[i];
1674  		else
1675  			q = 0;
1676  
1677  		for (i++; str[i]; i++) {
1678  			if (q && str[i] == q)
1679  				break;
1680  			if (!q && (str[i] == ')' || str[i] == '&' ||
1681  				   str[i] == '|'))
1682  				break;
1683  		}
1684  		/* Skip quotes */
1685  		if (q)
1686  			s++;
1687  		len = i - s;
1688  		if (len >= MAX_FILTER_STR_VAL) {
1689  			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1690  			goto err_free;
1691  		}
1692  
1693  		pred->regex = kzalloc(sizeof(*pred->regex), GFP_KERNEL);
1694  		if (!pred->regex)
1695  			goto err_mem;
1696  		pred->regex->len = len;
1697  		strncpy(pred->regex->pattern, str + s, len);
1698  		pred->regex->pattern[len] = 0;
1699  
1700  	} else if (!strncmp(str + i, "CPUS", 4)) {
1701  		unsigned int maskstart;
1702  		bool single;
1703  		char *tmp;
1704  
1705  		switch (field->filter_type) {
1706  		case FILTER_CPUMASK:
1707  		case FILTER_CPU:
1708  		case FILTER_OTHER:
1709  			break;
1710  		default:
1711  			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1712  			goto err_free;
1713  		}
1714  
1715  		switch (op) {
1716  		case OP_EQ:
1717  		case OP_NE:
1718  		case OP_BAND:
1719  			break;
1720  		default:
1721  			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1722  			goto err_free;
1723  		}
1724  
1725  		/* Skip CPUS */
1726  		i += 4;
1727  		if (str[i++] != '{') {
1728  			parse_error(pe, FILT_ERR_MISSING_BRACE_OPEN, pos + i);
1729  			goto err_free;
1730  		}
1731  		maskstart = i;
1732  
1733  		/* Walk the cpulist until closing } */
1734  		for (; str[i] && str[i] != '}'; i++)
1735  			;
1736  
1737  		if (str[i] != '}') {
1738  			parse_error(pe, FILT_ERR_MISSING_BRACE_CLOSE, pos + i);
1739  			goto err_free;
1740  		}
1741  
1742  		if (maskstart == i) {
1743  			parse_error(pe, FILT_ERR_INVALID_CPULIST, pos + i);
1744  			goto err_free;
1745  		}
1746  
1747  		/* Copy the cpulist between { and } */
1748  		tmp = kmalloc((i - maskstart) + 1, GFP_KERNEL);
1749  		if (!tmp)
1750  			goto err_mem;
1751  
1752  		strscpy(tmp, str + maskstart, (i - maskstart) + 1);
1753  		pred->mask = kzalloc(cpumask_size(), GFP_KERNEL);
1754  		if (!pred->mask) {
1755  			kfree(tmp);
1756  			goto err_mem;
1757  		}
1758  
1759  		/* Now parse it */
1760  		if (cpulist_parse(tmp, pred->mask)) {
1761  			kfree(tmp);
1762  			parse_error(pe, FILT_ERR_INVALID_CPULIST, pos + i);
1763  			goto err_free;
1764  		}
1765  		kfree(tmp);
1766  
1767  		/* Move along */
1768  		i++;
1769  
1770  		/*
1771  		 * Optimisation: if the user-provided mask has a weight of one
1772  		 * then we can treat it as a scalar input.
1773  		 */
1774  		single = cpumask_weight(pred->mask) == 1;
1775  		if (single) {
1776  			pred->val = cpumask_first(pred->mask);
1777  			kfree(pred->mask);
1778  			pred->mask = NULL;
1779  		}
1780  
1781  		if (field->filter_type == FILTER_CPUMASK) {
1782  			pred->fn_num = single ?
1783  				FILTER_PRED_FN_CPUMASK_CPU :
1784  				FILTER_PRED_FN_CPUMASK;
1785  		} else if (field->filter_type == FILTER_CPU) {
1786  			if (single) {
1787  				if (pred->op == OP_BAND)
1788  					pred->op = OP_EQ;
1789  
1790  				pred->fn_num = FILTER_PRED_FN_CPU;
1791  			} else {
1792  				pred->fn_num = FILTER_PRED_FN_CPU_CPUMASK;
1793  			}
1794  		} else if (single) {
1795  			if (pred->op == OP_BAND)
1796  				pred->op = OP_EQ;
1797  
1798  			pred->fn_num = select_comparison_fn(pred->op, field->size, false);
1799  			if (pred->op == OP_NE)
1800  				pred->not = 1;
1801  		} else {
1802  			switch (field->size) {
1803  			case 8:
1804  				pred->fn_num = FILTER_PRED_FN_64_CPUMASK;
1805  				break;
1806  			case 4:
1807  				pred->fn_num = FILTER_PRED_FN_32_CPUMASK;
1808  				break;
1809  			case 2:
1810  				pred->fn_num = FILTER_PRED_FN_16_CPUMASK;
1811  				break;
1812  			case 1:
1813  				pred->fn_num = FILTER_PRED_FN_8_CPUMASK;
1814  				break;
1815  			}
1816  		}
1817  
1818  	/* This is either a string, or an integer */
1819  	} else if (str[i] == '\'' || str[i] == '"') {
1820  		char q = str[i];
1821  
1822  		/* Make sure the op is OK for strings */
1823  		switch (op) {
1824  		case OP_NE:
1825  			pred->not = 1;
1826  			fallthrough;
1827  		case OP_GLOB:
1828  		case OP_EQ:
1829  			break;
1830  		default:
1831  			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1832  			goto err_free;
1833  		}
1834  
1835  		/* Make sure the field is OK for strings */
1836  		if (!is_string_field(field)) {
1837  			parse_error(pe, FILT_ERR_EXPECT_DIGIT, pos + i);
1838  			goto err_free;
1839  		}
1840  
1841  		for (i++; str[i]; i++) {
1842  			if (str[i] == q)
1843  				break;
1844  		}
1845  		if (!str[i]) {
1846  			parse_error(pe, FILT_ERR_MISSING_QUOTE, pos + i);
1847  			goto err_free;
1848  		}
1849  
1850  		/* Skip quotes */
1851  		s++;
1852  		len = i - s;
1853  		if (len >= MAX_FILTER_STR_VAL) {
1854  			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1855  			goto err_free;
1856  		}
1857  
1858  		pred->regex = kzalloc(sizeof(*pred->regex), GFP_KERNEL);
1859  		if (!pred->regex)
1860  			goto err_mem;
1861  		pred->regex->len = len;
1862  		strncpy(pred->regex->pattern, str + s, len);
1863  		pred->regex->pattern[len] = 0;
1864  
1865  		filter_build_regex(pred);
1866  
1867  		if (field->filter_type == FILTER_COMM) {
1868  			pred->fn_num = FILTER_PRED_FN_COMM;
1869  
1870  		} else if (field->filter_type == FILTER_STATIC_STRING) {
1871  			pred->fn_num = FILTER_PRED_FN_STRING;
1872  			pred->regex->field_len = field->size;
1873  
1874  		} else if (field->filter_type == FILTER_DYN_STRING) {
1875  			pred->fn_num = FILTER_PRED_FN_STRLOC;
1876  		} else if (field->filter_type == FILTER_RDYN_STRING)
1877  			pred->fn_num = FILTER_PRED_FN_STRRELLOC;
1878  		else {
1879  
1880  			if (!ustring_per_cpu) {
1881  				/* Once allocated, keep it around for good */
1882  				ustring_per_cpu = alloc_percpu(struct ustring_buffer);
1883  				if (!ustring_per_cpu)
1884  					goto err_mem;
1885  			}
1886  
1887  			if (ustring)
1888  				pred->fn_num = FILTER_PRED_FN_PCHAR_USER;
1889  			else
1890  				pred->fn_num = FILTER_PRED_FN_PCHAR;
1891  		}
1892  		/* go past the last quote */
1893  		i++;
1894  
1895  	} else if (isdigit(str[i]) || str[i] == '-') {
1896  
1897  		/* Make sure the field is not a string */
1898  		if (is_string_field(field)) {
1899  			parse_error(pe, FILT_ERR_EXPECT_STRING, pos + i);
1900  			goto err_free;
1901  		}
1902  
1903  		if (op == OP_GLOB) {
1904  			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1905  			goto err_free;
1906  		}
1907  
1908  		if (str[i] == '-')
1909  			i++;
1910  
1911  		/* We allow 0xDEADBEEF */
1912  		while (isalnum(str[i]))
1913  			i++;
1914  
1915  		len = i - s;
1916  		/* 0xfeedfacedeadbeef is 18 chars max */
1917  		if (len >= sizeof(num_buf)) {
1918  			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1919  			goto err_free;
1920  		}
1921  
1922  		strncpy(num_buf, str + s, len);
1923  		num_buf[len] = 0;
1924  
1925  		/* Make sure it is a value */
1926  		if (field->is_signed)
1927  			ret = kstrtoll(num_buf, 0, &val);
1928  		else
1929  			ret = kstrtoull(num_buf, 0, &val);
1930  		if (ret) {
1931  			parse_error(pe, FILT_ERR_ILLEGAL_INTVAL, pos + s);
1932  			goto err_free;
1933  		}
1934  
1935  		pred->val = val;
1936  
1937  		if (field->filter_type == FILTER_CPU)
1938  			pred->fn_num = FILTER_PRED_FN_CPU;
1939  		else {
1940  			pred->fn_num = select_comparison_fn(pred->op, field->size,
1941  							    field->is_signed);
1942  			if (pred->op == OP_NE)
1943  				pred->not = 1;
1944  		}
1945  
1946  	} else {
1947  		parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
1948  		goto err_free;
1949  	}
1950  
1951  	*pred_ptr = pred;
1952  	return i;
1953  
1954  err_free:
1955  	free_predicate(pred);
1956  	return -EINVAL;
1957  err_mem:
1958  	free_predicate(pred);
1959  	return -ENOMEM;
1960  }
1961  
1962  enum {
1963  	TOO_MANY_CLOSE		= -1,
1964  	TOO_MANY_OPEN		= -2,
1965  	MISSING_QUOTE		= -3,
1966  };
1967  
1968  /*
1969   * Read the filter string once to calculate the number of predicates
1970   * as well as how deep the parentheses go.
1971   *
1972   * Returns:
1973   *   0 - everything is fine (err is undefined)
1974   *  -1 - too many ')'
1975   *  -2 - too many '('
1976   *  -3 - No matching quote
1977   */
calc_stack(const char * str,int * parens,int * preds,int * err)1978  static int calc_stack(const char *str, int *parens, int *preds, int *err)
1979  {
1980  	bool is_pred = false;
1981  	int nr_preds = 0;
1982  	int open = 1; /* Count the expression as "(E)" */
1983  	int last_quote = 0;
1984  	int max_open = 1;
1985  	int quote = 0;
1986  	int i;
1987  
1988  	*err = 0;
1989  
1990  	for (i = 0; str[i]; i++) {
1991  		if (isspace(str[i]))
1992  			continue;
1993  		if (quote) {
1994  			if (str[i] == quote)
1995  			       quote = 0;
1996  			continue;
1997  		}
1998  
1999  		switch (str[i]) {
2000  		case '\'':
2001  		case '"':
2002  			quote = str[i];
2003  			last_quote = i;
2004  			break;
2005  		case '|':
2006  		case '&':
2007  			if (str[i+1] != str[i])
2008  				break;
2009  			is_pred = false;
2010  			continue;
2011  		case '(':
2012  			is_pred = false;
2013  			open++;
2014  			if (open > max_open)
2015  				max_open = open;
2016  			continue;
2017  		case ')':
2018  			is_pred = false;
2019  			if (open == 1) {
2020  				*err = i;
2021  				return TOO_MANY_CLOSE;
2022  			}
2023  			open--;
2024  			continue;
2025  		}
2026  		if (!is_pred) {
2027  			nr_preds++;
2028  			is_pred = true;
2029  		}
2030  	}
2031  
2032  	if (quote) {
2033  		*err = last_quote;
2034  		return MISSING_QUOTE;
2035  	}
2036  
2037  	if (open != 1) {
2038  		int level = open;
2039  
2040  		/* find the bad open */
2041  		for (i--; i; i--) {
2042  			if (quote) {
2043  				if (str[i] == quote)
2044  					quote = 0;
2045  				continue;
2046  			}
2047  			switch (str[i]) {
2048  			case '(':
2049  				if (level == open) {
2050  					*err = i;
2051  					return TOO_MANY_OPEN;
2052  				}
2053  				level--;
2054  				break;
2055  			case ')':
2056  				level++;
2057  				break;
2058  			case '\'':
2059  			case '"':
2060  				quote = str[i];
2061  				break;
2062  			}
2063  		}
2064  		/* First character is the '(' with missing ')' */
2065  		*err = 0;
2066  		return TOO_MANY_OPEN;
2067  	}
2068  
2069  	/* Set the size of the required stacks */
2070  	*parens = max_open;
2071  	*preds = nr_preds;
2072  	return 0;
2073  }
2074  
process_preds(struct trace_event_call * call,const char * filter_string,struct event_filter * filter,struct filter_parse_error * pe)2075  static int process_preds(struct trace_event_call *call,
2076  			 const char *filter_string,
2077  			 struct event_filter *filter,
2078  			 struct filter_parse_error *pe)
2079  {
2080  	struct prog_entry *prog;
2081  	int nr_parens;
2082  	int nr_preds;
2083  	int index;
2084  	int ret;
2085  
2086  	ret = calc_stack(filter_string, &nr_parens, &nr_preds, &index);
2087  	if (ret < 0) {
2088  		switch (ret) {
2089  		case MISSING_QUOTE:
2090  			parse_error(pe, FILT_ERR_MISSING_QUOTE, index);
2091  			break;
2092  		case TOO_MANY_OPEN:
2093  			parse_error(pe, FILT_ERR_TOO_MANY_OPEN, index);
2094  			break;
2095  		default:
2096  			parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, index);
2097  		}
2098  		return ret;
2099  	}
2100  
2101  	if (!nr_preds)
2102  		return -EINVAL;
2103  
2104  	prog = predicate_parse(filter_string, nr_parens, nr_preds,
2105  			       parse_pred, call, pe);
2106  	if (IS_ERR(prog))
2107  		return PTR_ERR(prog);
2108  
2109  	rcu_assign_pointer(filter->prog, prog);
2110  	return 0;
2111  }
2112  
event_set_filtered_flag(struct trace_event_file * file)2113  static inline void event_set_filtered_flag(struct trace_event_file *file)
2114  {
2115  	unsigned long old_flags = file->flags;
2116  
2117  	file->flags |= EVENT_FILE_FL_FILTERED;
2118  
2119  	if (old_flags != file->flags)
2120  		trace_buffered_event_enable();
2121  }
2122  
event_set_filter(struct trace_event_file * file,struct event_filter * filter)2123  static inline void event_set_filter(struct trace_event_file *file,
2124  				    struct event_filter *filter)
2125  {
2126  	rcu_assign_pointer(file->filter, filter);
2127  }
2128  
event_clear_filter(struct trace_event_file * file)2129  static inline void event_clear_filter(struct trace_event_file *file)
2130  {
2131  	RCU_INIT_POINTER(file->filter, NULL);
2132  }
2133  
2134  struct filter_list {
2135  	struct list_head	list;
2136  	struct event_filter	*filter;
2137  };
2138  
process_system_preds(struct trace_subsystem_dir * dir,struct trace_array * tr,struct filter_parse_error * pe,char * filter_string)2139  static int process_system_preds(struct trace_subsystem_dir *dir,
2140  				struct trace_array *tr,
2141  				struct filter_parse_error *pe,
2142  				char *filter_string)
2143  {
2144  	struct trace_event_file *file;
2145  	struct filter_list *filter_item;
2146  	struct event_filter *filter = NULL;
2147  	struct filter_list *tmp;
2148  	LIST_HEAD(filter_list);
2149  	bool fail = true;
2150  	int err;
2151  
2152  	list_for_each_entry(file, &tr->events, list) {
2153  
2154  		if (file->system != dir)
2155  			continue;
2156  
2157  		filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2158  		if (!filter)
2159  			goto fail_mem;
2160  
2161  		filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
2162  		if (!filter->filter_string)
2163  			goto fail_mem;
2164  
2165  		err = process_preds(file->event_call, filter_string, filter, pe);
2166  		if (err) {
2167  			filter_disable(file);
2168  			parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
2169  			append_filter_err(tr, pe, filter);
2170  		} else
2171  			event_set_filtered_flag(file);
2172  
2173  
2174  		filter_item = kzalloc(sizeof(*filter_item), GFP_KERNEL);
2175  		if (!filter_item)
2176  			goto fail_mem;
2177  
2178  		list_add_tail(&filter_item->list, &filter_list);
2179  		/*
2180  		 * Regardless of if this returned an error, we still
2181  		 * replace the filter for the call.
2182  		 */
2183  		filter_item->filter = event_filter(file);
2184  		event_set_filter(file, filter);
2185  		filter = NULL;
2186  
2187  		fail = false;
2188  	}
2189  
2190  	if (fail)
2191  		goto fail;
2192  
2193  	/*
2194  	 * The calls can still be using the old filters.
2195  	 * Do a synchronize_rcu() and to ensure all calls are
2196  	 * done with them before we free them.
2197  	 */
2198  	tracepoint_synchronize_unregister();
2199  	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
2200  		__free_filter(filter_item->filter);
2201  		list_del(&filter_item->list);
2202  		kfree(filter_item);
2203  	}
2204  	return 0;
2205   fail:
2206  	/* No call succeeded */
2207  	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
2208  		list_del(&filter_item->list);
2209  		kfree(filter_item);
2210  	}
2211  	parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
2212  	return -EINVAL;
2213   fail_mem:
2214  	__free_filter(filter);
2215  	/* If any call succeeded, we still need to sync */
2216  	if (!fail)
2217  		tracepoint_synchronize_unregister();
2218  	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
2219  		__free_filter(filter_item->filter);
2220  		list_del(&filter_item->list);
2221  		kfree(filter_item);
2222  	}
2223  	return -ENOMEM;
2224  }
2225  
create_filter_start(char * filter_string,bool set_str,struct filter_parse_error ** pse,struct event_filter ** filterp)2226  static int create_filter_start(char *filter_string, bool set_str,
2227  			       struct filter_parse_error **pse,
2228  			       struct event_filter **filterp)
2229  {
2230  	struct event_filter *filter;
2231  	struct filter_parse_error *pe = NULL;
2232  	int err = 0;
2233  
2234  	if (WARN_ON_ONCE(*pse || *filterp))
2235  		return -EINVAL;
2236  
2237  	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2238  	if (filter && set_str) {
2239  		filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
2240  		if (!filter->filter_string)
2241  			err = -ENOMEM;
2242  	}
2243  
2244  	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2245  
2246  	if (!filter || !pe || err) {
2247  		kfree(pe);
2248  		__free_filter(filter);
2249  		return -ENOMEM;
2250  	}
2251  
2252  	/* we're committed to creating a new filter */
2253  	*filterp = filter;
2254  	*pse = pe;
2255  
2256  	return 0;
2257  }
2258  
create_filter_finish(struct filter_parse_error * pe)2259  static void create_filter_finish(struct filter_parse_error *pe)
2260  {
2261  	kfree(pe);
2262  }
2263  
2264  /**
2265   * create_filter - create a filter for a trace_event_call
2266   * @tr: the trace array associated with these events
2267   * @call: trace_event_call to create a filter for
2268   * @filter_string: filter string
2269   * @set_str: remember @filter_str and enable detailed error in filter
2270   * @filterp: out param for created filter (always updated on return)
2271   *           Must be a pointer that references a NULL pointer.
2272   *
2273   * Creates a filter for @call with @filter_str.  If @set_str is %true,
2274   * @filter_str is copied and recorded in the new filter.
2275   *
2276   * On success, returns 0 and *@filterp points to the new filter.  On
2277   * failure, returns -errno and *@filterp may point to %NULL or to a new
2278   * filter.  In the latter case, the returned filter contains error
2279   * information if @set_str is %true and the caller is responsible for
2280   * freeing it.
2281   */
create_filter(struct trace_array * tr,struct trace_event_call * call,char * filter_string,bool set_str,struct event_filter ** filterp)2282  static int create_filter(struct trace_array *tr,
2283  			 struct trace_event_call *call,
2284  			 char *filter_string, bool set_str,
2285  			 struct event_filter **filterp)
2286  {
2287  	struct filter_parse_error *pe = NULL;
2288  	int err;
2289  
2290  	/* filterp must point to NULL */
2291  	if (WARN_ON(*filterp))
2292  		*filterp = NULL;
2293  
2294  	err = create_filter_start(filter_string, set_str, &pe, filterp);
2295  	if (err)
2296  		return err;
2297  
2298  	err = process_preds(call, filter_string, *filterp, pe);
2299  	if (err && set_str)
2300  		append_filter_err(tr, pe, *filterp);
2301  	create_filter_finish(pe);
2302  
2303  	return err;
2304  }
2305  
create_event_filter(struct trace_array * tr,struct trace_event_call * call,char * filter_str,bool set_str,struct event_filter ** filterp)2306  int create_event_filter(struct trace_array *tr,
2307  			struct trace_event_call *call,
2308  			char *filter_str, bool set_str,
2309  			struct event_filter **filterp)
2310  {
2311  	return create_filter(tr, call, filter_str, set_str, filterp);
2312  }
2313  
2314  /**
2315   * create_system_filter - create a filter for an event subsystem
2316   * @dir: the descriptor for the subsystem directory
2317   * @filter_str: filter string
2318   * @filterp: out param for created filter (always updated on return)
2319   *
2320   * Identical to create_filter() except that it creates a subsystem filter
2321   * and always remembers @filter_str.
2322   */
create_system_filter(struct trace_subsystem_dir * dir,char * filter_str,struct event_filter ** filterp)2323  static int create_system_filter(struct trace_subsystem_dir *dir,
2324  				char *filter_str, struct event_filter **filterp)
2325  {
2326  	struct filter_parse_error *pe = NULL;
2327  	int err;
2328  
2329  	err = create_filter_start(filter_str, true, &pe, filterp);
2330  	if (!err) {
2331  		err = process_system_preds(dir, dir->tr, pe, filter_str);
2332  		if (!err) {
2333  			/* System filters just show a default message */
2334  			kfree((*filterp)->filter_string);
2335  			(*filterp)->filter_string = NULL;
2336  		} else {
2337  			append_filter_err(dir->tr, pe, *filterp);
2338  		}
2339  	}
2340  	create_filter_finish(pe);
2341  
2342  	return err;
2343  }
2344  
2345  /* caller must hold event_mutex */
apply_event_filter(struct trace_event_file * file,char * filter_string)2346  int apply_event_filter(struct trace_event_file *file, char *filter_string)
2347  {
2348  	struct trace_event_call *call = file->event_call;
2349  	struct event_filter *filter = NULL;
2350  	int err;
2351  
2352  	if (file->flags & EVENT_FILE_FL_FREED)
2353  		return -ENODEV;
2354  
2355  	if (!strcmp(strstrip(filter_string), "0")) {
2356  		filter_disable(file);
2357  		filter = event_filter(file);
2358  
2359  		if (!filter)
2360  			return 0;
2361  
2362  		event_clear_filter(file);
2363  
2364  		/* Make sure the filter is not being used */
2365  		tracepoint_synchronize_unregister();
2366  		__free_filter(filter);
2367  
2368  		return 0;
2369  	}
2370  
2371  	err = create_filter(file->tr, call, filter_string, true, &filter);
2372  
2373  	/*
2374  	 * Always swap the call filter with the new filter
2375  	 * even if there was an error. If there was an error
2376  	 * in the filter, we disable the filter and show the error
2377  	 * string
2378  	 */
2379  	if (filter) {
2380  		struct event_filter *tmp;
2381  
2382  		tmp = event_filter(file);
2383  		if (!err)
2384  			event_set_filtered_flag(file);
2385  		else
2386  			filter_disable(file);
2387  
2388  		event_set_filter(file, filter);
2389  
2390  		if (tmp) {
2391  			/* Make sure the call is done with the filter */
2392  			tracepoint_synchronize_unregister();
2393  			__free_filter(tmp);
2394  		}
2395  	}
2396  
2397  	return err;
2398  }
2399  
apply_subsystem_event_filter(struct trace_subsystem_dir * dir,char * filter_string)2400  int apply_subsystem_event_filter(struct trace_subsystem_dir *dir,
2401  				 char *filter_string)
2402  {
2403  	struct event_subsystem *system = dir->subsystem;
2404  	struct trace_array *tr = dir->tr;
2405  	struct event_filter *filter = NULL;
2406  	int err = 0;
2407  
2408  	mutex_lock(&event_mutex);
2409  
2410  	/* Make sure the system still has events */
2411  	if (!dir->nr_events) {
2412  		err = -ENODEV;
2413  		goto out_unlock;
2414  	}
2415  
2416  	if (!strcmp(strstrip(filter_string), "0")) {
2417  		filter_free_subsystem_preds(dir, tr);
2418  		remove_filter_string(system->filter);
2419  		filter = system->filter;
2420  		system->filter = NULL;
2421  		/* Ensure all filters are no longer used */
2422  		tracepoint_synchronize_unregister();
2423  		filter_free_subsystem_filters(dir, tr);
2424  		__free_filter(filter);
2425  		goto out_unlock;
2426  	}
2427  
2428  	err = create_system_filter(dir, filter_string, &filter);
2429  	if (filter) {
2430  		/*
2431  		 * No event actually uses the system filter
2432  		 * we can free it without synchronize_rcu().
2433  		 */
2434  		__free_filter(system->filter);
2435  		system->filter = filter;
2436  	}
2437  out_unlock:
2438  	mutex_unlock(&event_mutex);
2439  
2440  	return err;
2441  }
2442  
2443  #ifdef CONFIG_PERF_EVENTS
2444  
ftrace_profile_free_filter(struct perf_event * event)2445  void ftrace_profile_free_filter(struct perf_event *event)
2446  {
2447  	struct event_filter *filter = event->filter;
2448  
2449  	event->filter = NULL;
2450  	__free_filter(filter);
2451  }
2452  
2453  struct function_filter_data {
2454  	struct ftrace_ops *ops;
2455  	int first_filter;
2456  	int first_notrace;
2457  };
2458  
2459  #ifdef CONFIG_FUNCTION_TRACER
2460  static char **
ftrace_function_filter_re(char * buf,int len,int * count)2461  ftrace_function_filter_re(char *buf, int len, int *count)
2462  {
2463  	char *str, **re;
2464  
2465  	str = kstrndup(buf, len, GFP_KERNEL);
2466  	if (!str)
2467  		return NULL;
2468  
2469  	/*
2470  	 * The argv_split function takes white space
2471  	 * as a separator, so convert ',' into spaces.
2472  	 */
2473  	strreplace(str, ',', ' ');
2474  
2475  	re = argv_split(GFP_KERNEL, str, count);
2476  	kfree(str);
2477  	return re;
2478  }
2479  
ftrace_function_set_regexp(struct ftrace_ops * ops,int filter,int reset,char * re,int len)2480  static int ftrace_function_set_regexp(struct ftrace_ops *ops, int filter,
2481  				      int reset, char *re, int len)
2482  {
2483  	int ret;
2484  
2485  	if (filter)
2486  		ret = ftrace_set_filter(ops, re, len, reset);
2487  	else
2488  		ret = ftrace_set_notrace(ops, re, len, reset);
2489  
2490  	return ret;
2491  }
2492  
__ftrace_function_set_filter(int filter,char * buf,int len,struct function_filter_data * data)2493  static int __ftrace_function_set_filter(int filter, char *buf, int len,
2494  					struct function_filter_data *data)
2495  {
2496  	int i, re_cnt, ret = -EINVAL;
2497  	int *reset;
2498  	char **re;
2499  
2500  	reset = filter ? &data->first_filter : &data->first_notrace;
2501  
2502  	/*
2503  	 * The 'ip' field could have multiple filters set, separated
2504  	 * either by space or comma. We first cut the filter and apply
2505  	 * all pieces separately.
2506  	 */
2507  	re = ftrace_function_filter_re(buf, len, &re_cnt);
2508  	if (!re)
2509  		return -EINVAL;
2510  
2511  	for (i = 0; i < re_cnt; i++) {
2512  		ret = ftrace_function_set_regexp(data->ops, filter, *reset,
2513  						 re[i], strlen(re[i]));
2514  		if (ret)
2515  			break;
2516  
2517  		if (*reset)
2518  			*reset = 0;
2519  	}
2520  
2521  	argv_free(re);
2522  	return ret;
2523  }
2524  
ftrace_function_check_pred(struct filter_pred * pred)2525  static int ftrace_function_check_pred(struct filter_pred *pred)
2526  {
2527  	struct ftrace_event_field *field = pred->field;
2528  
2529  	/*
2530  	 * Check the predicate for function trace, verify:
2531  	 *  - only '==' and '!=' is used
2532  	 *  - the 'ip' field is used
2533  	 */
2534  	if ((pred->op != OP_EQ) && (pred->op != OP_NE))
2535  		return -EINVAL;
2536  
2537  	if (strcmp(field->name, "ip"))
2538  		return -EINVAL;
2539  
2540  	return 0;
2541  }
2542  
ftrace_function_set_filter_pred(struct filter_pred * pred,struct function_filter_data * data)2543  static int ftrace_function_set_filter_pred(struct filter_pred *pred,
2544  					   struct function_filter_data *data)
2545  {
2546  	int ret;
2547  
2548  	/* Checking the node is valid for function trace. */
2549  	ret = ftrace_function_check_pred(pred);
2550  	if (ret)
2551  		return ret;
2552  
2553  	return __ftrace_function_set_filter(pred->op == OP_EQ,
2554  					    pred->regex->pattern,
2555  					    pred->regex->len,
2556  					    data);
2557  }
2558  
is_or(struct prog_entry * prog,int i)2559  static bool is_or(struct prog_entry *prog, int i)
2560  {
2561  	int target;
2562  
2563  	/*
2564  	 * Only "||" is allowed for function events, thus,
2565  	 * all true branches should jump to true, and any
2566  	 * false branch should jump to false.
2567  	 */
2568  	target = prog[i].target + 1;
2569  	/* True and false have NULL preds (all prog entries should jump to one */
2570  	if (prog[target].pred)
2571  		return false;
2572  
2573  	/* prog[target].target is 1 for TRUE, 0 for FALSE */
2574  	return prog[i].when_to_branch == prog[target].target;
2575  }
2576  
ftrace_function_set_filter(struct perf_event * event,struct event_filter * filter)2577  static int ftrace_function_set_filter(struct perf_event *event,
2578  				      struct event_filter *filter)
2579  {
2580  	struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2581  						lockdep_is_held(&event_mutex));
2582  	struct function_filter_data data = {
2583  		.first_filter  = 1,
2584  		.first_notrace = 1,
2585  		.ops           = &event->ftrace_ops,
2586  	};
2587  	int i;
2588  
2589  	for (i = 0; prog[i].pred; i++) {
2590  		struct filter_pred *pred = prog[i].pred;
2591  
2592  		if (!is_or(prog, i))
2593  			return -EINVAL;
2594  
2595  		if (ftrace_function_set_filter_pred(pred, &data) < 0)
2596  			return -EINVAL;
2597  	}
2598  	return 0;
2599  }
2600  #else
ftrace_function_set_filter(struct perf_event * event,struct event_filter * filter)2601  static int ftrace_function_set_filter(struct perf_event *event,
2602  				      struct event_filter *filter)
2603  {
2604  	return -ENODEV;
2605  }
2606  #endif /* CONFIG_FUNCTION_TRACER */
2607  
ftrace_profile_set_filter(struct perf_event * event,int event_id,char * filter_str)2608  int ftrace_profile_set_filter(struct perf_event *event, int event_id,
2609  			      char *filter_str)
2610  {
2611  	int err;
2612  	struct event_filter *filter = NULL;
2613  	struct trace_event_call *call;
2614  
2615  	mutex_lock(&event_mutex);
2616  
2617  	call = event->tp_event;
2618  
2619  	err = -EINVAL;
2620  	if (!call)
2621  		goto out_unlock;
2622  
2623  	err = -EEXIST;
2624  	if (event->filter)
2625  		goto out_unlock;
2626  
2627  	err = create_filter(NULL, call, filter_str, false, &filter);
2628  	if (err)
2629  		goto free_filter;
2630  
2631  	if (ftrace_event_is_function(call))
2632  		err = ftrace_function_set_filter(event, filter);
2633  	else
2634  		event->filter = filter;
2635  
2636  free_filter:
2637  	if (err || ftrace_event_is_function(call))
2638  		__free_filter(filter);
2639  
2640  out_unlock:
2641  	mutex_unlock(&event_mutex);
2642  
2643  	return err;
2644  }
2645  
2646  #endif /* CONFIG_PERF_EVENTS */
2647  
2648  #ifdef CONFIG_FTRACE_STARTUP_TEST
2649  
2650  #include <linux/types.h>
2651  #include <linux/tracepoint.h>
2652  
2653  #define CREATE_TRACE_POINTS
2654  #include "trace_events_filter_test.h"
2655  
2656  #define DATA_REC(m, va, vb, vc, vd, ve, vf, vg, vh, nvisit) \
2657  { \
2658  	.filter = FILTER, \
2659  	.rec    = { .a = va, .b = vb, .c = vc, .d = vd, \
2660  		    .e = ve, .f = vf, .g = vg, .h = vh }, \
2661  	.match  = m, \
2662  	.not_visited = nvisit, \
2663  }
2664  #define YES 1
2665  #define NO  0
2666  
2667  static struct test_filter_data_t {
2668  	char *filter;
2669  	struct trace_event_raw_ftrace_test_filter rec;
2670  	int match;
2671  	char *not_visited;
2672  } test_filter_data[] = {
2673  #define FILTER "a == 1 && b == 1 && c == 1 && d == 1 && " \
2674  	       "e == 1 && f == 1 && g == 1 && h == 1"
2675  	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, ""),
2676  	DATA_REC(NO,  0, 1, 1, 1, 1, 1, 1, 1, "bcdefgh"),
2677  	DATA_REC(NO,  1, 1, 1, 1, 1, 1, 1, 0, ""),
2678  #undef FILTER
2679  #define FILTER "a == 1 || b == 1 || c == 1 || d == 1 || " \
2680  	       "e == 1 || f == 1 || g == 1 || h == 1"
2681  	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
2682  	DATA_REC(YES, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2683  	DATA_REC(YES, 1, 0, 0, 0, 0, 0, 0, 0, "bcdefgh"),
2684  #undef FILTER
2685  #define FILTER "(a == 1 || b == 1) && (c == 1 || d == 1) && " \
2686  	       "(e == 1 || f == 1) && (g == 1 || h == 1)"
2687  	DATA_REC(NO,  0, 0, 1, 1, 1, 1, 1, 1, "dfh"),
2688  	DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2689  	DATA_REC(YES, 1, 0, 1, 0, 0, 1, 0, 1, "bd"),
2690  	DATA_REC(NO,  1, 0, 1, 0, 0, 1, 0, 0, "bd"),
2691  #undef FILTER
2692  #define FILTER "(a == 1 && b == 1) || (c == 1 && d == 1) || " \
2693  	       "(e == 1 && f == 1) || (g == 1 && h == 1)"
2694  	DATA_REC(YES, 1, 0, 1, 1, 1, 1, 1, 1, "efgh"),
2695  	DATA_REC(YES, 0, 0, 0, 0, 0, 0, 1, 1, ""),
2696  	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
2697  #undef FILTER
2698  #define FILTER "(a == 1 && b == 1) && (c == 1 && d == 1) && " \
2699  	       "(e == 1 && f == 1) || (g == 1 && h == 1)"
2700  	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 0, "gh"),
2701  	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
2702  	DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, ""),
2703  #undef FILTER
2704  #define FILTER "((a == 1 || b == 1) || (c == 1 || d == 1) || " \
2705  	       "(e == 1 || f == 1)) && (g == 1 || h == 1)"
2706  	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 1, "bcdef"),
2707  	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
2708  	DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, "h"),
2709  #undef FILTER
2710  #define FILTER "((((((((a == 1) && (b == 1)) || (c == 1)) && (d == 1)) || " \
2711  	       "(e == 1)) && (f == 1)) || (g == 1)) && (h == 1))"
2712  	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "ceg"),
2713  	DATA_REC(NO,  0, 1, 0, 1, 0, 1, 0, 1, ""),
2714  	DATA_REC(NO,  1, 0, 1, 0, 1, 0, 1, 0, ""),
2715  #undef FILTER
2716  #define FILTER "((((((((a == 1) || (b == 1)) && (c == 1)) || (d == 1)) && " \
2717  	       "(e == 1)) || (f == 1)) && (g == 1)) || (h == 1))"
2718  	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "bdfh"),
2719  	DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2720  	DATA_REC(YES, 1, 0, 1, 0, 1, 0, 1, 0, "bdfh"),
2721  };
2722  
2723  #undef DATA_REC
2724  #undef FILTER
2725  #undef YES
2726  #undef NO
2727  
2728  #define DATA_CNT ARRAY_SIZE(test_filter_data)
2729  
2730  static int test_pred_visited;
2731  
test_pred_visited_fn(struct filter_pred * pred,void * event)2732  static int test_pred_visited_fn(struct filter_pred *pred, void *event)
2733  {
2734  	struct ftrace_event_field *field = pred->field;
2735  
2736  	test_pred_visited = 1;
2737  	printk(KERN_INFO "\npred visited %s\n", field->name);
2738  	return 1;
2739  }
2740  
update_pred_fn(struct event_filter * filter,char * fields)2741  static void update_pred_fn(struct event_filter *filter, char *fields)
2742  {
2743  	struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2744  						lockdep_is_held(&event_mutex));
2745  	int i;
2746  
2747  	for (i = 0; prog[i].pred; i++) {
2748  		struct filter_pred *pred = prog[i].pred;
2749  		struct ftrace_event_field *field = pred->field;
2750  
2751  		WARN_ON_ONCE(pred->fn_num == FILTER_PRED_FN_NOP);
2752  
2753  		if (!field) {
2754  			WARN_ONCE(1, "all leafs should have field defined %d", i);
2755  			continue;
2756  		}
2757  
2758  		if (!strchr(fields, *field->name))
2759  			continue;
2760  
2761  		pred->fn_num = FILTER_PRED_TEST_VISITED;
2762  	}
2763  }
2764  
ftrace_test_event_filter(void)2765  static __init int ftrace_test_event_filter(void)
2766  {
2767  	int i;
2768  
2769  	printk(KERN_INFO "Testing ftrace filter: ");
2770  
2771  	for (i = 0; i < DATA_CNT; i++) {
2772  		struct event_filter *filter = NULL;
2773  		struct test_filter_data_t *d = &test_filter_data[i];
2774  		int err;
2775  
2776  		err = create_filter(NULL, &event_ftrace_test_filter,
2777  				    d->filter, false, &filter);
2778  		if (err) {
2779  			printk(KERN_INFO
2780  			       "Failed to get filter for '%s', err %d\n",
2781  			       d->filter, err);
2782  			__free_filter(filter);
2783  			break;
2784  		}
2785  
2786  		/* Needed to dereference filter->prog */
2787  		mutex_lock(&event_mutex);
2788  		/*
2789  		 * The preemption disabling is not really needed for self
2790  		 * tests, but the rcu dereference will complain without it.
2791  		 */
2792  		preempt_disable();
2793  		if (*d->not_visited)
2794  			update_pred_fn(filter, d->not_visited);
2795  
2796  		test_pred_visited = 0;
2797  		err = filter_match_preds(filter, &d->rec);
2798  		preempt_enable();
2799  
2800  		mutex_unlock(&event_mutex);
2801  
2802  		__free_filter(filter);
2803  
2804  		if (test_pred_visited) {
2805  			printk(KERN_INFO
2806  			       "Failed, unwanted pred visited for filter %s\n",
2807  			       d->filter);
2808  			break;
2809  		}
2810  
2811  		if (err != d->match) {
2812  			printk(KERN_INFO
2813  			       "Failed to match filter '%s', expected %d\n",
2814  			       d->filter, d->match);
2815  			break;
2816  		}
2817  	}
2818  
2819  	if (i == DATA_CNT)
2820  		printk(KERN_CONT "OK\n");
2821  
2822  	return 0;
2823  }
2824  
2825  late_initcall(ftrace_test_event_filter);
2826  
2827  #endif /* CONFIG_FTRACE_STARTUP_TEST */
2828